Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/CodeGen/AssignmentTrackingAnalysis.cpp
35232 views
1
//===-- AssignmentTrackingAnalysis.cpp ------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
10
#include "LiveDebugValues/LiveDebugValues.h"
11
#include "llvm/ADT/BitVector.h"
12
#include "llvm/ADT/DenseMapInfo.h"
13
#include "llvm/ADT/IntervalMap.h"
14
#include "llvm/ADT/PostOrderIterator.h"
15
#include "llvm/ADT/STLExtras.h"
16
#include "llvm/ADT/Statistic.h"
17
#include "llvm/ADT/UniqueVector.h"
18
#include "llvm/BinaryFormat/Dwarf.h"
19
#include "llvm/IR/BasicBlock.h"
20
#include "llvm/IR/DataLayout.h"
21
#include "llvm/IR/DebugInfo.h"
22
#include "llvm/IR/DebugProgramInstruction.h"
23
#include "llvm/IR/Function.h"
24
#include "llvm/IR/Instruction.h"
25
#include "llvm/IR/IntrinsicInst.h"
26
#include "llvm/IR/Module.h"
27
#include "llvm/IR/PassManager.h"
28
#include "llvm/IR/PrintPasses.h"
29
#include "llvm/InitializePasses.h"
30
#include "llvm/Support/CommandLine.h"
31
#include "llvm/Support/ErrorHandling.h"
32
#include "llvm/Support/raw_ostream.h"
33
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
34
#include <assert.h>
35
#include <cstdint>
36
#include <optional>
37
#include <queue>
38
#include <sstream>
39
#include <unordered_map>
40
41
using namespace llvm;
42
#define DEBUG_TYPE "debug-ata"
43
44
STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
45
STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
46
STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
47
STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
48
49
static cl::opt<unsigned>
50
MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
51
cl::desc("Maximum num basic blocks before debug info dropped"),
52
cl::Hidden);
53
/// Option for debugging the pass, determines if the memory location fragment
54
/// filling happens after generating the variable locations.
55
static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
56
cl::Hidden);
57
/// Print the results of the analysis. Respects -filter-print-funcs.
58
static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
59
cl::Hidden);
60
61
/// Coalesce adjacent dbg locs describing memory locations that have contiguous
62
/// fragments. This reduces the cost of LiveDebugValues which does SSA
63
/// construction for each explicitly stated variable fragment.
64
static cl::opt<cl::boolOrDefault>
65
CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden);
66
67
// Implicit conversions are disabled for enum class types, so unfortunately we
68
// need to create a DenseMapInfo wrapper around the specified underlying type.
69
template <> struct llvm::DenseMapInfo<VariableID> {
70
using Wrapped = DenseMapInfo<unsigned>;
71
static inline VariableID getEmptyKey() {
72
return static_cast<VariableID>(Wrapped::getEmptyKey());
73
}
74
static inline VariableID getTombstoneKey() {
75
return static_cast<VariableID>(Wrapped::getTombstoneKey());
76
}
77
static unsigned getHashValue(const VariableID &Val) {
78
return Wrapped::getHashValue(static_cast<unsigned>(Val));
79
}
80
static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
81
return LHS == RHS;
82
}
83
};
84
85
using VarLocInsertPt = PointerUnion<const Instruction *, const DbgRecord *>;
86
87
namespace std {
88
template <> struct hash<VarLocInsertPt> {
89
using argument_type = VarLocInsertPt;
90
using result_type = std::size_t;
91
92
result_type operator()(const argument_type &Arg) const {
93
return std::hash<void *>()(Arg.getOpaqueValue());
94
}
95
};
96
} // namespace std
97
98
/// Helper class to build FunctionVarLocs, since that class isn't easy to
99
/// modify. TODO: There's not a great deal of value in the split, it could be
100
/// worth merging the two classes.
101
class FunctionVarLocsBuilder {
102
friend FunctionVarLocs;
103
UniqueVector<DebugVariable> Variables;
104
// Use an unordered_map so we don't invalidate iterators after
105
// insert/modifications.
106
std::unordered_map<VarLocInsertPt, SmallVector<VarLocInfo>> VarLocsBeforeInst;
107
108
SmallVector<VarLocInfo> SingleLocVars;
109
110
public:
111
unsigned getNumVariables() const { return Variables.size(); }
112
113
/// Find or insert \p V and return the ID.
114
VariableID insertVariable(DebugVariable V) {
115
return static_cast<VariableID>(Variables.insert(V));
116
}
117
118
/// Get a variable from its \p ID.
119
const DebugVariable &getVariable(VariableID ID) const {
120
return Variables[static_cast<unsigned>(ID)];
121
}
122
123
/// Return ptr to wedge of defs or nullptr if no defs come just before /p
124
/// Before.
125
const SmallVectorImpl<VarLocInfo> *getWedge(VarLocInsertPt Before) const {
126
auto R = VarLocsBeforeInst.find(Before);
127
if (R == VarLocsBeforeInst.end())
128
return nullptr;
129
return &R->second;
130
}
131
132
/// Replace the defs that come just before /p Before with /p Wedge.
133
void setWedge(VarLocInsertPt Before, SmallVector<VarLocInfo> &&Wedge) {
134
VarLocsBeforeInst[Before] = std::move(Wedge);
135
}
136
137
/// Add a def for a variable that is valid for its lifetime.
138
void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
139
RawLocationWrapper R) {
140
VarLocInfo VarLoc;
141
VarLoc.VariableID = insertVariable(Var);
142
VarLoc.Expr = Expr;
143
VarLoc.DL = DL;
144
VarLoc.Values = R;
145
SingleLocVars.emplace_back(VarLoc);
146
}
147
148
/// Add a def to the wedge of defs just before /p Before.
149
void addVarLoc(VarLocInsertPt Before, DebugVariable Var, DIExpression *Expr,
150
DebugLoc DL, RawLocationWrapper R) {
151
VarLocInfo VarLoc;
152
VarLoc.VariableID = insertVariable(Var);
153
VarLoc.Expr = Expr;
154
VarLoc.DL = DL;
155
VarLoc.Values = R;
156
VarLocsBeforeInst[Before].emplace_back(VarLoc);
157
}
158
};
159
160
void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
161
// Print the variable table first. TODO: Sorting by variable could make the
162
// output more stable?
163
unsigned Counter = -1;
164
OS << "=== Variables ===\n";
165
for (const DebugVariable &V : Variables) {
166
++Counter;
167
// Skip first entry because it is a dummy entry.
168
if (Counter == 0) {
169
continue;
170
}
171
OS << "[" << Counter << "] " << V.getVariable()->getName();
172
if (auto F = V.getFragment())
173
OS << " bits [" << F->OffsetInBits << ", "
174
<< F->OffsetInBits + F->SizeInBits << ")";
175
if (const auto *IA = V.getInlinedAt())
176
OS << " inlined-at " << *IA;
177
OS << "\n";
178
}
179
180
auto PrintLoc = [&OS](const VarLocInfo &Loc) {
181
OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
182
<< " Expr=" << *Loc.Expr << " Values=(";
183
for (auto *Op : Loc.Values.location_ops()) {
184
errs() << Op->getName() << " ";
185
}
186
errs() << ")\n";
187
};
188
189
// Print the single location variables.
190
OS << "=== Single location vars ===\n";
191
for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
192
++It) {
193
PrintLoc(*It);
194
}
195
196
// Print the non-single-location defs in line with IR.
197
OS << "=== In-line variable defs ===";
198
for (const BasicBlock &BB : Fn) {
199
OS << "\n" << BB.getName() << ":\n";
200
for (const Instruction &I : BB) {
201
for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
202
PrintLoc(*It);
203
}
204
OS << I << "\n";
205
}
206
}
207
}
208
209
void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
210
// Add the single-location variables first.
211
for (const auto &VarLoc : Builder.SingleLocVars)
212
VarLocRecords.emplace_back(VarLoc);
213
// Mark the end of the section.
214
SingleVarLocEnd = VarLocRecords.size();
215
216
// Insert a contiguous block of VarLocInfos for each instruction, mapping it
217
// to the start and end position in the vector with VarLocsBeforeInst. This
218
// block includes VarLocs for any DbgVariableRecords attached to that
219
// instruction.
220
for (auto &P : Builder.VarLocsBeforeInst) {
221
// Process VarLocs attached to a DbgRecord alongside their marker
222
// Instruction.
223
if (isa<const DbgRecord *>(P.first))
224
continue;
225
const Instruction *I = cast<const Instruction *>(P.first);
226
unsigned BlockStart = VarLocRecords.size();
227
// Any VarLocInfos attached to a DbgRecord should now be remapped to their
228
// marker Instruction, in order of DbgRecord appearance and prior to any
229
// VarLocInfos attached directly to that instruction.
230
for (const DbgVariableRecord &DVR : filterDbgVars(I->getDbgRecordRange())) {
231
// Even though DVR defines a variable location, VarLocsBeforeInst can
232
// still be empty if that VarLoc was redundant.
233
if (!Builder.VarLocsBeforeInst.count(&DVR))
234
continue;
235
for (const VarLocInfo &VarLoc : Builder.VarLocsBeforeInst[&DVR])
236
VarLocRecords.emplace_back(VarLoc);
237
}
238
for (const VarLocInfo &VarLoc : P.second)
239
VarLocRecords.emplace_back(VarLoc);
240
unsigned BlockEnd = VarLocRecords.size();
241
// Record the start and end indices.
242
if (BlockEnd != BlockStart)
243
VarLocsBeforeInst[I] = {BlockStart, BlockEnd};
244
}
245
246
// Copy the Variables vector from the builder's UniqueVector.
247
assert(Variables.empty() && "Expect clear before init");
248
// UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
249
// are one-based) so reserve an extra and insert a dummy.
250
Variables.reserve(Builder.Variables.size() + 1);
251
Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
252
Variables.append(Builder.Variables.begin(), Builder.Variables.end());
253
}
254
255
void FunctionVarLocs::clear() {
256
Variables.clear();
257
VarLocRecords.clear();
258
VarLocsBeforeInst.clear();
259
SingleVarLocEnd = 0;
260
}
261
262
/// Walk backwards along constant GEPs and bitcasts to the base storage from \p
263
/// Start as far as possible. Prepend \Expression with the offset and append it
264
/// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
265
/// value and modified expression.
266
static std::pair<Value *, DIExpression *>
267
walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
268
DIExpression *Expression) {
269
APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
270
Value *End =
271
Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
272
SmallVector<uint64_t, 3> Ops;
273
if (OffsetInBytes.getBoolValue()) {
274
Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
275
Expression = DIExpression::prependOpcodes(
276
Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
277
}
278
Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
279
return {End, Expression};
280
}
281
282
/// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
283
/// doesn't explicitly describe a memory location with DW_OP_deref or if the
284
/// expression is too complex to interpret.
285
static std::optional<int64_t>
286
getDerefOffsetInBytes(const DIExpression *DIExpr) {
287
int64_t Offset = 0;
288
const unsigned NumElements = DIExpr->getNumElements();
289
const auto Elements = DIExpr->getElements();
290
unsigned ExpectedDerefIdx = 0;
291
// Extract the offset.
292
if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
293
Offset = Elements[1];
294
ExpectedDerefIdx = 2;
295
} else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
296
ExpectedDerefIdx = 3;
297
if (Elements[2] == dwarf::DW_OP_plus)
298
Offset = Elements[1];
299
else if (Elements[2] == dwarf::DW_OP_minus)
300
Offset = -Elements[1];
301
else
302
return std::nullopt;
303
}
304
305
// If that's all there is it means there's no deref.
306
if (ExpectedDerefIdx >= NumElements)
307
return std::nullopt;
308
309
// Check the next element is DW_OP_deref - otherwise this is too complex or
310
// isn't a deref expression.
311
if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref)
312
return std::nullopt;
313
314
// Check the final operation is either the DW_OP_deref or is a fragment.
315
if (NumElements == ExpectedDerefIdx + 1)
316
return Offset; // Ends with deref.
317
unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1;
318
unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2;
319
if (NumElements == ExpectedFragFinalIdx + 1 &&
320
Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment)
321
return Offset; // Ends with deref + fragment.
322
323
// Don't bother trying to interpret anything more complex.
324
return std::nullopt;
325
}
326
327
/// A whole (unfragmented) source variable.
328
using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
329
static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
330
return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
331
}
332
static DebugAggregate getAggregate(const DebugVariable &Var) {
333
return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
334
}
335
336
static bool shouldCoalesceFragments(Function &F) {
337
// Enabling fragment coalescing reduces compiler run time when instruction
338
// referencing is enabled. However, it may cause LiveDebugVariables to create
339
// incorrect locations. Since instruction-referencing mode effectively
340
// bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag
341
// has not been explicitly set and instruction-referencing is turned on.
342
switch (CoalesceAdjacentFragmentsOpt) {
343
case cl::boolOrDefault::BOU_UNSET:
344
return debuginfoShouldUseDebugInstrRef(
345
Triple(F.getParent()->getTargetTriple()));
346
case cl::boolOrDefault::BOU_TRUE:
347
return true;
348
case cl::boolOrDefault::BOU_FALSE:
349
return false;
350
}
351
llvm_unreachable("Unknown boolOrDefault value");
352
}
353
354
namespace {
355
/// In dwarf emission, the following sequence
356
/// 1. dbg.value ... Fragment(0, 64)
357
/// 2. dbg.value ... Fragment(0, 32)
358
/// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
359
/// the intersection of the fragments to having "no location"). This makes
360
/// sense for implicit location values because splitting the computed values
361
/// could be troublesome, and is probably quite uncommon. When we convert
362
/// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
363
/// a location (memory) rather than a value means we don't need to worry about
364
/// splitting any values, so we try to recover the rest of the fragment
365
/// location here.
366
/// This class performs a(nother) dataflow analysis over the function, adding
367
/// variable locations so that any bits of a variable with a memory location
368
/// have that location explicitly reinstated at each subsequent variable
369
/// location definition that that doesn't overwrite those bits. i.e. after a
370
/// variable location def, insert new defs for the memory location with
371
/// fragments for the difference of "all bits currently in memory" and "the
372
/// fragment of the second def".
373
class MemLocFragmentFill {
374
Function &Fn;
375
FunctionVarLocsBuilder *FnVarLocs;
376
const DenseSet<DebugAggregate> *VarsWithStackSlot;
377
bool CoalesceAdjacentFragments;
378
379
// 0 = no memory location.
380
using BaseAddress = unsigned;
381
using OffsetInBitsTy = unsigned;
382
using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
383
using FragsInMemMap = IntervalMap<
384
OffsetInBitsTy, BaseAddress,
385
IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
386
FragTraits>;
387
FragsInMemMap::Allocator IntervalMapAlloc;
388
using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
389
390
/// IDs for memory location base addresses in maps. Use 0 to indicate that
391
/// there's no memory location.
392
UniqueVector<RawLocationWrapper> Bases;
393
UniqueVector<DebugAggregate> Aggregates;
394
DenseMap<const BasicBlock *, VarFragMap> LiveIn;
395
DenseMap<const BasicBlock *, VarFragMap> LiveOut;
396
397
struct FragMemLoc {
398
unsigned Var;
399
unsigned Base;
400
unsigned OffsetInBits;
401
unsigned SizeInBits;
402
DebugLoc DL;
403
};
404
using InsertMap = MapVector<VarLocInsertPt, SmallVector<FragMemLoc>>;
405
406
/// BBInsertBeforeMap holds a description for the set of location defs to be
407
/// inserted after the analysis is complete. It is updated during the dataflow
408
/// and the entry for a block is CLEARED each time it is (re-)visited. After
409
/// the dataflow is complete, each block entry will contain the set of defs
410
/// calculated during the final (fixed-point) iteration.
411
DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
412
413
static bool intervalMapsAreEqual(const FragsInMemMap &A,
414
const FragsInMemMap &B) {
415
auto AIt = A.begin(), AEnd = A.end();
416
auto BIt = B.begin(), BEnd = B.end();
417
for (; AIt != AEnd; ++AIt, ++BIt) {
418
if (BIt == BEnd)
419
return false; // B has fewer elements than A.
420
if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
421
return false; // Interval is different.
422
if (*AIt != *BIt)
423
return false; // Value at interval is different.
424
}
425
// AIt == AEnd. Check BIt is also now at end.
426
return BIt == BEnd;
427
}
428
429
static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
430
if (A.size() != B.size())
431
return false;
432
for (const auto &APair : A) {
433
auto BIt = B.find(APair.first);
434
if (BIt == B.end())
435
return false;
436
if (!intervalMapsAreEqual(APair.second, BIt->second))
437
return false;
438
}
439
return true;
440
}
441
442
/// Return a string for the value that \p BaseID represents.
443
std::string toString(unsigned BaseID) {
444
if (BaseID)
445
return Bases[BaseID].getVariableLocationOp(0)->getName().str();
446
else
447
return "None";
448
}
449
450
/// Format string describing an FragsInMemMap (IntervalMap) interval.
451
std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
452
std::string String;
453
std::stringstream S(String);
454
if (It.valid()) {
455
S << "[" << It.start() << ", " << It.stop()
456
<< "): " << toString(It.value());
457
} else {
458
S << "invalid iterator (end)";
459
}
460
if (Newline)
461
S << "\n";
462
return S.str();
463
};
464
465
FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
466
FragsInMemMap Result(IntervalMapAlloc);
467
for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
468
LLVM_DEBUG(dbgs() << "a " << toString(AIt));
469
// This is basically copied from process() and inverted (process is
470
// performing something like a union whereas this is more of an
471
// intersect).
472
473
// There's no work to do if interval `a` overlaps no fragments in map `B`.
474
if (!B.overlaps(AIt.start(), AIt.stop()))
475
continue;
476
477
// Does StartBit intersect an existing fragment?
478
auto FirstOverlap = B.find(AIt.start());
479
assert(FirstOverlap != B.end());
480
bool IntersectStart = FirstOverlap.start() < AIt.start();
481
LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
482
<< ", IntersectStart: " << IntersectStart << "\n");
483
484
// Does EndBit intersect an existing fragment?
485
auto LastOverlap = B.find(AIt.stop());
486
bool IntersectEnd =
487
LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
488
LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
489
<< ", IntersectEnd: " << IntersectEnd << "\n");
490
491
// Check if both ends of `a` intersect the same interval `b`.
492
if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
493
// Insert `a` (`a` is contained in `b`) if the values match.
494
// [ a ]
495
// [ - b - ]
496
// -
497
// [ r ]
498
LLVM_DEBUG(dbgs() << "- a is contained within "
499
<< toString(FirstOverlap));
500
if (*AIt && *AIt == *FirstOverlap)
501
Result.insert(AIt.start(), AIt.stop(), *AIt);
502
} else {
503
// There's an overlap but `a` is not fully contained within
504
// `b`. Shorten any end-point intersections.
505
// [ - a - ]
506
// [ - b - ]
507
// -
508
// [ r ]
509
auto Next = FirstOverlap;
510
if (IntersectStart) {
511
LLVM_DEBUG(dbgs() << "- insert intersection of a and "
512
<< toString(FirstOverlap));
513
if (*AIt && *AIt == *FirstOverlap)
514
Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
515
++Next;
516
}
517
// [ - a - ]
518
// [ - b - ]
519
// -
520
// [ r ]
521
if (IntersectEnd) {
522
LLVM_DEBUG(dbgs() << "- insert intersection of a and "
523
<< toString(LastOverlap));
524
if (*AIt && *AIt == *LastOverlap)
525
Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
526
}
527
528
// Insert all intervals in map `B` that are contained within interval
529
// `a` where the values match.
530
// [ - - a - - ]
531
// [ b1 ] [ b2 ]
532
// -
533
// [ r1 ] [ r2 ]
534
while (Next != B.end() && Next.start() < AIt.stop() &&
535
Next.stop() <= AIt.stop()) {
536
LLVM_DEBUG(dbgs()
537
<< "- insert intersection of a and " << toString(Next));
538
if (*AIt && *AIt == *Next)
539
Result.insert(Next.start(), Next.stop(), *Next);
540
++Next;
541
}
542
}
543
}
544
return Result;
545
}
546
547
/// Meet \p A and \p B, storing the result in \p A.
548
void meetVars(VarFragMap &A, const VarFragMap &B) {
549
// Meet A and B.
550
//
551
// Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
552
for (auto It = A.begin(), End = A.end(); It != End; ++It) {
553
unsigned AVar = It->first;
554
FragsInMemMap &AFrags = It->second;
555
auto BIt = B.find(AVar);
556
if (BIt == B.end()) {
557
A.erase(It);
558
continue; // Var has no bits defined in B.
559
}
560
LLVM_DEBUG(dbgs() << "meet fragment maps for "
561
<< Aggregates[AVar].first->getName() << "\n");
562
AFrags = meetFragments(AFrags, BIt->second);
563
}
564
}
565
566
bool meet(const BasicBlock &BB,
567
const SmallPtrSet<BasicBlock *, 16> &Visited) {
568
LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
569
<< "\n");
570
571
VarFragMap BBLiveIn;
572
bool FirstMeet = true;
573
// LiveIn locs for BB is the meet of the already-processed preds' LiveOut
574
// locs.
575
for (const BasicBlock *Pred : predecessors(&BB)) {
576
// Ignore preds that haven't been processed yet. This is essentially the
577
// same as initialising all variables to implicit top value (⊤) which is
578
// the identity value for the meet operation.
579
if (!Visited.count(Pred))
580
continue;
581
582
auto PredLiveOut = LiveOut.find(Pred);
583
assert(PredLiveOut != LiveOut.end());
584
585
if (FirstMeet) {
586
LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
587
BBLiveIn = PredLiveOut->second;
588
FirstMeet = false;
589
} else {
590
LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
591
<< "\n");
592
meetVars(BBLiveIn, PredLiveOut->second);
593
}
594
595
// An empty set is ⊥ for the intersect-like meet operation. If we've
596
// already got ⊥ there's no need to run the code - we know the result is
597
// ⊥ since `meet(a, ⊥) = ⊥`.
598
if (BBLiveIn.size() == 0)
599
break;
600
}
601
602
auto CurrentLiveInEntry = LiveIn.find(&BB);
603
// If there's no LiveIn entry for the block yet, add it.
604
if (CurrentLiveInEntry == LiveIn.end()) {
605
LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
606
<< "\n");
607
LiveIn[&BB] = std::move(BBLiveIn);
608
return /*Changed=*/true;
609
}
610
611
// If the LiveIn set has changed (expensive check) update it and return
612
// true.
613
if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
614
LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
615
CurrentLiveInEntry->second = std::move(BBLiveIn);
616
return /*Changed=*/true;
617
}
618
619
LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
620
return /*Changed=*/false;
621
}
622
623
void insertMemLoc(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
624
unsigned StartBit, unsigned EndBit, unsigned Base,
625
DebugLoc DL) {
626
assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
627
if (!Base)
628
return;
629
FragMemLoc Loc;
630
Loc.Var = Var;
631
Loc.OffsetInBits = StartBit;
632
Loc.SizeInBits = EndBit - StartBit;
633
assert(Base && "Expected a non-zero ID for Base address");
634
Loc.Base = Base;
635
Loc.DL = DL;
636
BBInsertBeforeMap[&BB][Before].push_back(Loc);
637
LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
638
<< " bits [" << StartBit << ", " << EndBit << ")\n");
639
}
640
641
/// Inserts a new dbg def if the interval found when looking up \p StartBit
642
/// in \p FragMap starts before \p StartBit or ends after \p EndBit (which
643
/// indicates - assuming StartBit->EndBit has just been inserted - that the
644
/// slice has been coalesced in the map).
645
void coalesceFragments(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
646
unsigned StartBit, unsigned EndBit, unsigned Base,
647
DebugLoc DL, const FragsInMemMap &FragMap) {
648
if (!CoalesceAdjacentFragments)
649
return;
650
// We've inserted the location into the map. The map will have coalesced
651
// adjacent intervals (variable fragments) that describe the same memory
652
// location. Use this knowledge to insert a debug location that describes
653
// that coalesced fragment. This may eclipse other locs we've just
654
// inserted. This is okay as redundant locs will be cleaned up later.
655
auto CoalescedFrag = FragMap.find(StartBit);
656
// Bail if no coalescing has taken place.
657
if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit)
658
return;
659
660
LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start()
661
<< " to " << CoalescedFrag.stop() << "\n");
662
insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(),
663
Base, DL);
664
}
665
666
void addDef(const VarLocInfo &VarLoc, VarLocInsertPt Before, BasicBlock &BB,
667
VarFragMap &LiveSet) {
668
DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
669
if (skipVariable(DbgVar.getVariable()))
670
return;
671
// Don't bother doing anything for this variables if we know it's fully
672
// promoted. We're only interested in variables that (sometimes) live on
673
// the stack here.
674
if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
675
return;
676
unsigned Var = Aggregates.insert(
677
DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
678
679
// [StartBit: EndBit) are the bits affected by this def.
680
const DIExpression *DIExpr = VarLoc.Expr;
681
unsigned StartBit;
682
unsigned EndBit;
683
if (auto Frag = DIExpr->getFragmentInfo()) {
684
StartBit = Frag->OffsetInBits;
685
EndBit = StartBit + Frag->SizeInBits;
686
} else {
687
assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
688
StartBit = 0;
689
EndBit = *DbgVar.getVariable()->getSizeInBits();
690
}
691
692
// We will only fill fragments for simple memory-describing dbg.value
693
// intrinsics. If the fragment offset is the same as the offset from the
694
// base pointer, do The Thing, otherwise fall back to normal dbg.value
695
// behaviour. AssignmentTrackingLowering has generated DIExpressions
696
// written in terms of the base pointer.
697
// TODO: Remove this condition since the fragment offset doesn't always
698
// equal the offset from base pointer (e.g. for a SROA-split variable).
699
const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
700
const unsigned Base =
701
DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
702
? Bases.insert(VarLoc.Values)
703
: 0;
704
LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
705
<< StartBit << ", " << EndBit << "): " << toString(Base)
706
<< "\n");
707
708
// First of all, any locs that use mem that are disrupted need reinstating.
709
// Unfortunately, IntervalMap doesn't let us insert intervals that overlap
710
// with existing intervals so this code involves a lot of fiddling around
711
// with intervals to do that manually.
712
auto FragIt = LiveSet.find(Var);
713
714
// Check if the variable does not exist in the map.
715
if (FragIt == LiveSet.end()) {
716
// Add this variable to the BB map.
717
auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
718
assert(P.second && "Var already in map?");
719
// Add the interval to the fragment map.
720
P.first->second.insert(StartBit, EndBit, Base);
721
return;
722
}
723
// The variable has an entry in the map.
724
725
FragsInMemMap &FragMap = FragIt->second;
726
// First check the easy case: the new fragment `f` doesn't overlap with any
727
// intervals.
728
if (!FragMap.overlaps(StartBit, EndBit)) {
729
LLVM_DEBUG(dbgs() << "- No overlaps\n");
730
FragMap.insert(StartBit, EndBit, Base);
731
coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
732
FragMap);
733
return;
734
}
735
// There is at least one overlap.
736
737
// Does StartBit intersect an existing fragment?
738
auto FirstOverlap = FragMap.find(StartBit);
739
assert(FirstOverlap != FragMap.end());
740
bool IntersectStart = FirstOverlap.start() < StartBit;
741
742
// Does EndBit intersect an existing fragment?
743
auto LastOverlap = FragMap.find(EndBit);
744
bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
745
746
// Check if both ends of `f` intersect the same interval `i`.
747
if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
748
LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
749
// Shorten `i` so that there's space to insert `f`.
750
// [ f ]
751
// [ - i - ]
752
// +
753
// [ i ][ f ][ i ]
754
755
// Save values for use after inserting a new interval.
756
auto EndBitOfOverlap = FirstOverlap.stop();
757
unsigned OverlapValue = FirstOverlap.value();
758
759
// Shorten the overlapping interval.
760
FirstOverlap.setStop(StartBit);
761
insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
762
OverlapValue, VarLoc.DL);
763
764
// Insert a new interval to represent the end part.
765
FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
766
insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
767
VarLoc.DL);
768
769
// Insert the new (middle) fragment now there is space.
770
FragMap.insert(StartBit, EndBit, Base);
771
} else {
772
// There's an overlap but `f` may not be fully contained within
773
// `i`. Shorten any end-point intersections so that we can then
774
// insert `f`.
775
// [ - f - ]
776
// [ - i - ]
777
// | |
778
// [ i ]
779
// Shorten any end-point intersections.
780
if (IntersectStart) {
781
LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
782
// Split off at the intersection.
783
FirstOverlap.setStop(StartBit);
784
insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
785
*FirstOverlap, VarLoc.DL);
786
}
787
// [ - f - ]
788
// [ - i - ]
789
// | |
790
// [ i ]
791
if (IntersectEnd) {
792
LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
793
// Split off at the intersection.
794
LastOverlap.setStart(EndBit);
795
insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
796
VarLoc.DL);
797
}
798
799
LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
800
// FirstOverlap and LastOverlap have been shortened such that they're
801
// no longer overlapping with [StartBit, EndBit). Delete any overlaps
802
// that remain (these will be fully contained within `f`).
803
// [ - f - ] }
804
// [ - i - ] } Intersection shortening that has happened above.
805
// | | }
806
// [ i ] }
807
// -----------------
808
// [i2 ] } Intervals fully contained within `f` get erased.
809
// -----------------
810
// [ - f - ][ i ] } Completed insertion.
811
auto It = FirstOverlap;
812
if (IntersectStart)
813
++It; // IntersectStart: first overlap has been shortened.
814
while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
815
LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
816
It.erase(); // This increments It after removing the interval.
817
}
818
// We've dealt with all the overlaps now!
819
assert(!FragMap.overlaps(StartBit, EndBit));
820
LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
821
FragMap.insert(StartBit, EndBit, Base);
822
}
823
824
coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
825
FragMap);
826
}
827
828
bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
829
830
void process(BasicBlock &BB, VarFragMap &LiveSet) {
831
BBInsertBeforeMap[&BB].clear();
832
for (auto &I : BB) {
833
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
834
if (const auto *Locs = FnVarLocs->getWedge(&DVR)) {
835
for (const VarLocInfo &Loc : *Locs) {
836
addDef(Loc, &DVR, *I.getParent(), LiveSet);
837
}
838
}
839
}
840
if (const auto *Locs = FnVarLocs->getWedge(&I)) {
841
for (const VarLocInfo &Loc : *Locs) {
842
addDef(Loc, &I, *I.getParent(), LiveSet);
843
}
844
}
845
}
846
}
847
848
public:
849
MemLocFragmentFill(Function &Fn,
850
const DenseSet<DebugAggregate> *VarsWithStackSlot,
851
bool CoalesceAdjacentFragments)
852
: Fn(Fn), VarsWithStackSlot(VarsWithStackSlot),
853
CoalesceAdjacentFragments(CoalesceAdjacentFragments) {}
854
855
/// Add variable locations to \p FnVarLocs so that any bits of a variable
856
/// with a memory location have that location explicitly reinstated at each
857
/// subsequent variable location definition that that doesn't overwrite those
858
/// bits. i.e. after a variable location def, insert new defs for the memory
859
/// location with fragments for the difference of "all bits currently in
860
/// memory" and "the fragment of the second def". e.g.
861
///
862
/// Before:
863
///
864
/// var x bits 0 to 63: value in memory
865
/// more instructions
866
/// var x bits 0 to 31: value is %0
867
///
868
/// After:
869
///
870
/// var x bits 0 to 63: value in memory
871
/// more instructions
872
/// var x bits 0 to 31: value is %0
873
/// var x bits 32 to 61: value in memory ; <-- new loc def
874
///
875
void run(FunctionVarLocsBuilder *FnVarLocs) {
876
if (!EnableMemLocFragFill)
877
return;
878
879
this->FnVarLocs = FnVarLocs;
880
881
// Prepare for traversal.
882
//
883
ReversePostOrderTraversal<Function *> RPOT(&Fn);
884
std::priority_queue<unsigned int, std::vector<unsigned int>,
885
std::greater<unsigned int>>
886
Worklist;
887
std::priority_queue<unsigned int, std::vector<unsigned int>,
888
std::greater<unsigned int>>
889
Pending;
890
DenseMap<unsigned int, BasicBlock *> OrderToBB;
891
DenseMap<BasicBlock *, unsigned int> BBToOrder;
892
{ // Init OrderToBB and BBToOrder.
893
unsigned int RPONumber = 0;
894
for (BasicBlock *BB : RPOT) {
895
OrderToBB[RPONumber] = BB;
896
BBToOrder[BB] = RPONumber;
897
Worklist.push(RPONumber);
898
++RPONumber;
899
}
900
LiveIn.init(RPONumber);
901
LiveOut.init(RPONumber);
902
}
903
904
// Perform the traversal.
905
//
906
// This is a standard "intersect of predecessor outs" dataflow problem. To
907
// solve it, we perform meet() and process() using the two worklist method
908
// until the LiveIn data for each block becomes unchanging.
909
//
910
// This dataflow is essentially working on maps of sets and at each meet we
911
// intersect the maps and the mapped sets. So, initialized live-in maps
912
// monotonically decrease in value throughout the dataflow.
913
SmallPtrSet<BasicBlock *, 16> Visited;
914
while (!Worklist.empty() || !Pending.empty()) {
915
// We track what is on the pending worklist to avoid inserting the same
916
// thing twice. We could avoid this with a custom priority queue, but
917
// this is probably not worth it.
918
SmallPtrSet<BasicBlock *, 16> OnPending;
919
LLVM_DEBUG(dbgs() << "Processing Worklist\n");
920
while (!Worklist.empty()) {
921
BasicBlock *BB = OrderToBB[Worklist.top()];
922
LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
923
Worklist.pop();
924
bool InChanged = meet(*BB, Visited);
925
// Always consider LiveIn changed on the first visit.
926
InChanged |= Visited.insert(BB).second;
927
if (InChanged) {
928
LLVM_DEBUG(dbgs()
929
<< BB->getName() << " has new InLocs, process it\n");
930
// Mutate a copy of LiveIn while processing BB. Once we've processed
931
// the terminator LiveSet is the LiveOut set for BB.
932
// This is an expensive copy!
933
VarFragMap LiveSet = LiveIn[BB];
934
935
// Process the instructions in the block.
936
process(*BB, LiveSet);
937
938
// Relatively expensive check: has anything changed in LiveOut for BB?
939
if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
940
LLVM_DEBUG(dbgs() << BB->getName()
941
<< " has new OutLocs, add succs to worklist: [ ");
942
LiveOut[BB] = std::move(LiveSet);
943
for (BasicBlock *Succ : successors(BB)) {
944
if (OnPending.insert(Succ).second) {
945
LLVM_DEBUG(dbgs() << Succ->getName() << " ");
946
Pending.push(BBToOrder[Succ]);
947
}
948
}
949
LLVM_DEBUG(dbgs() << "]\n");
950
}
951
}
952
}
953
Worklist.swap(Pending);
954
// At this point, pending must be empty, since it was just the empty
955
// worklist
956
assert(Pending.empty() && "Pending should be empty");
957
}
958
959
// Insert new location defs.
960
for (auto &Pair : BBInsertBeforeMap) {
961
InsertMap &Map = Pair.second;
962
for (auto &Pair : Map) {
963
auto InsertBefore = Pair.first;
964
assert(InsertBefore && "should never be null");
965
auto FragMemLocs = Pair.second;
966
auto &Ctx = Fn.getContext();
967
968
for (auto &FragMemLoc : FragMemLocs) {
969
DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
970
if (FragMemLoc.SizeInBits !=
971
*Aggregates[FragMemLoc.Var].first->getSizeInBits())
972
Expr = *DIExpression::createFragmentExpression(
973
Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
974
Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
975
FragMemLoc.OffsetInBits / 8);
976
DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
977
FragMemLoc.DL.getInlinedAt());
978
FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
979
Bases[FragMemLoc.Base]);
980
}
981
}
982
}
983
}
984
};
985
986
/// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
987
/// that interprets assignment tracking debug info metadata and stores in IR to
988
/// create a map of variable locations.
989
class AssignmentTrackingLowering {
990
public:
991
/// The kind of location in use for a variable, where Mem is the stack home,
992
/// Val is an SSA value or const, and None means that there is not one single
993
/// kind (either because there are multiple or because there is none; it may
994
/// prove useful to split this into two values in the future).
995
///
996
/// LocKind is a join-semilattice with the partial order:
997
/// None > Mem, Val
998
///
999
/// i.e.
1000
/// join(Mem, Mem) = Mem
1001
/// join(Val, Val) = Val
1002
/// join(Mem, Val) = None
1003
/// join(None, Mem) = None
1004
/// join(None, Val) = None
1005
/// join(None, None) = None
1006
///
1007
/// Note: the order is not `None > Val > Mem` because we're using DIAssignID
1008
/// to name assignments and are not tracking the actual stored values.
1009
/// Therefore currently there's no way to ensure that Mem values and Val
1010
/// values are the same. This could be a future extension, though it's not
1011
/// clear that many additional locations would be recovered that way in
1012
/// practice as the likelihood of this sitation arising naturally seems
1013
/// incredibly low.
1014
enum class LocKind { Mem, Val, None };
1015
1016
/// An abstraction of the assignment of a value to a variable or memory
1017
/// location.
1018
///
1019
/// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
1020
/// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
1021
/// can't) know the ID of the last assignment that took place.
1022
///
1023
/// The Status of the Assignment (Known or NoneOrPhi) is another
1024
/// join-semilattice. The partial order is:
1025
/// NoneOrPhi > Known {id_0, id_1, ...id_N}
1026
///
1027
/// i.e. for all values x and y where x != y:
1028
/// join(x, x) = x
1029
/// join(x, y) = NoneOrPhi
1030
using AssignRecord = PointerUnion<DbgAssignIntrinsic *, DbgVariableRecord *>;
1031
struct Assignment {
1032
enum S { Known, NoneOrPhi } Status;
1033
/// ID of the assignment. nullptr if Status is not Known.
1034
DIAssignID *ID;
1035
/// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
1036
/// May be nullptr.
1037
AssignRecord Source;
1038
1039
bool isSameSourceAssignment(const Assignment &Other) const {
1040
// Don't include Source in the equality check. Assignments are
1041
// defined by their ID, not debug intrinsic(s).
1042
return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
1043
}
1044
void dump(raw_ostream &OS) {
1045
static const char *LUT[] = {"Known", "NoneOrPhi"};
1046
OS << LUT[Status] << "(id=";
1047
if (ID)
1048
OS << ID;
1049
else
1050
OS << "null";
1051
OS << ", s=";
1052
if (Source.isNull())
1053
OS << "null";
1054
else if (isa<DbgAssignIntrinsic *>(Source))
1055
OS << Source.get<DbgAssignIntrinsic *>();
1056
else
1057
OS << Source.get<DbgVariableRecord *>();
1058
OS << ")";
1059
}
1060
1061
static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
1062
return Assignment(Known, ID, Source);
1063
}
1064
static Assignment make(DIAssignID *ID, DbgVariableRecord *Source) {
1065
assert(Source->isDbgAssign() &&
1066
"Cannot make an assignment from a non-assign DbgVariableRecord");
1067
return Assignment(Known, ID, Source);
1068
}
1069
static Assignment make(DIAssignID *ID, AssignRecord Source) {
1070
return Assignment(Known, ID, Source);
1071
}
1072
static Assignment makeFromMemDef(DIAssignID *ID) {
1073
return Assignment(Known, ID);
1074
}
1075
static Assignment makeNoneOrPhi() { return Assignment(NoneOrPhi, nullptr); }
1076
// Again, need a Top value?
1077
Assignment() : Status(NoneOrPhi), ID(nullptr) {} // Can we delete this?
1078
Assignment(S Status, DIAssignID *ID) : Status(Status), ID(ID) {
1079
// If the Status is Known then we expect there to be an assignment ID.
1080
assert(Status == NoneOrPhi || ID);
1081
}
1082
Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
1083
: Status(Status), ID(ID), Source(Source) {
1084
// If the Status is Known then we expect there to be an assignment ID.
1085
assert(Status == NoneOrPhi || ID);
1086
}
1087
Assignment(S Status, DIAssignID *ID, DbgVariableRecord *Source)
1088
: Status(Status), ID(ID), Source(Source) {
1089
// If the Status is Known then we expect there to be an assignment ID.
1090
assert(Status == NoneOrPhi || ID);
1091
}
1092
Assignment(S Status, DIAssignID *ID, AssignRecord Source)
1093
: Status(Status), ID(ID), Source(Source) {
1094
// If the Status is Known then we expect there to be an assignment ID.
1095
assert(Status == NoneOrPhi || ID);
1096
}
1097
};
1098
1099
using AssignmentMap = SmallVector<Assignment>;
1100
using LocMap = SmallVector<LocKind>;
1101
using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>;
1102
using UntaggedStoreAssignmentMap =
1103
DenseMap<const Instruction *,
1104
SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
1105
1106
private:
1107
/// The highest numbered VariableID for partially promoted variables plus 1,
1108
/// the values for which start at 1.
1109
unsigned TrackedVariablesVectorSize = 0;
1110
/// Map a variable to the set of variables that it fully contains.
1111
OverlapMap VarContains;
1112
/// Map untagged stores to the variable fragments they assign to. Used by
1113
/// processUntaggedInstruction.
1114
UntaggedStoreAssignmentMap UntaggedStoreVars;
1115
1116
// Machinery to defer inserting dbg.values.
1117
using InstInsertMap = MapVector<VarLocInsertPt, SmallVector<VarLocInfo>>;
1118
InstInsertMap InsertBeforeMap;
1119
/// Clear the location definitions currently cached for insertion after /p
1120
/// After.
1121
void resetInsertionPoint(Instruction &After);
1122
void resetInsertionPoint(DbgVariableRecord &After);
1123
1124
// emitDbgValue can be called with:
1125
// Source=[AssignRecord|DbgValueInst*|DbgAssignIntrinsic*|DbgVariableRecord*]
1126
// Since AssignRecord can be cast to one of the latter two types, and all
1127
// other types have a shared interface, we use a template to handle the latter
1128
// three types, and an explicit overload for AssignRecord that forwards to
1129
// the template version with the right type.
1130
void emitDbgValue(LocKind Kind, AssignRecord Source, VarLocInsertPt After);
1131
template <typename T>
1132
void emitDbgValue(LocKind Kind, const T Source, VarLocInsertPt After);
1133
1134
static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A,
1135
const AssignmentMap &B) {
1136
return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) {
1137
return A[VarID].isSameSourceAssignment(B[VarID]);
1138
});
1139
}
1140
1141
/// Represents the stack and debug assignments in a block. Used to describe
1142
/// the live-in and live-out values for blocks, as well as the "current"
1143
/// value as we process each instruction in a block.
1144
struct BlockInfo {
1145
/// The set of variables (VariableID) being tracked in this block.
1146
BitVector VariableIDsInBlock;
1147
/// Dominating assignment to memory for each variable, indexed by
1148
/// VariableID.
1149
AssignmentMap StackHomeValue;
1150
/// Dominating assignemnt to each variable, indexed by VariableID.
1151
AssignmentMap DebugValue;
1152
/// Location kind for each variable. LiveLoc indicates whether the
1153
/// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
1154
/// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
1155
/// preference. This cannot be derived by inspecting DebugValue and
1156
/// StackHomeValue due to the fact that there's no distinction in
1157
/// Assignment (the class) between whether an assignment is unknown or a
1158
/// merge of multiple assignments (both are Status::NoneOrPhi). In other
1159
/// words, the memory location may well be valid while both DebugValue and
1160
/// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
1161
/// Indexed by VariableID.
1162
LocMap LiveLoc;
1163
1164
public:
1165
enum AssignmentKind { Stack, Debug };
1166
const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const {
1167
switch (Kind) {
1168
case Stack:
1169
return StackHomeValue;
1170
case Debug:
1171
return DebugValue;
1172
}
1173
llvm_unreachable("Unknown AssignmentKind");
1174
}
1175
AssignmentMap &getAssignmentMap(AssignmentKind Kind) {
1176
return const_cast<AssignmentMap &>(
1177
const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind));
1178
}
1179
1180
bool isVariableTracked(VariableID Var) const {
1181
return VariableIDsInBlock[static_cast<unsigned>(Var)];
1182
}
1183
1184
const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const {
1185
assert(isVariableTracked(Var) && "Var not tracked in block");
1186
return getAssignmentMap(Kind)[static_cast<unsigned>(Var)];
1187
}
1188
1189
LocKind getLocKind(VariableID Var) const {
1190
assert(isVariableTracked(Var) && "Var not tracked in block");
1191
return LiveLoc[static_cast<unsigned>(Var)];
1192
}
1193
1194
/// Set LocKind for \p Var only: does not set LocKind for VariableIDs of
1195
/// fragments contained win \p Var.
1196
void setLocKind(VariableID Var, LocKind K) {
1197
VariableIDsInBlock.set(static_cast<unsigned>(Var));
1198
LiveLoc[static_cast<unsigned>(Var)] = K;
1199
}
1200
1201
/// Set the assignment in the \p Kind assignment map for \p Var only: does
1202
/// not set the assignment for VariableIDs of fragments contained win \p
1203
/// Var.
1204
void setAssignment(AssignmentKind Kind, VariableID Var,
1205
const Assignment &AV) {
1206
VariableIDsInBlock.set(static_cast<unsigned>(Var));
1207
getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV;
1208
}
1209
1210
/// Return true if there is an assignment matching \p AV in the \p Kind
1211
/// assignment map. Does consider assignments for VariableIDs of fragments
1212
/// contained win \p Var.
1213
bool hasAssignment(AssignmentKind Kind, VariableID Var,
1214
const Assignment &AV) const {
1215
if (!isVariableTracked(Var))
1216
return false;
1217
return AV.isSameSourceAssignment(getAssignment(Kind, Var));
1218
}
1219
1220
/// Compare every element in each map to determine structural equality
1221
/// (slow).
1222
bool operator==(const BlockInfo &Other) const {
1223
return VariableIDsInBlock == Other.VariableIDsInBlock &&
1224
LiveLoc == Other.LiveLoc &&
1225
mapsAreEqual(VariableIDsInBlock, StackHomeValue,
1226
Other.StackHomeValue) &&
1227
mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue);
1228
}
1229
bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
1230
bool isValid() {
1231
return LiveLoc.size() == DebugValue.size() &&
1232
LiveLoc.size() == StackHomeValue.size();
1233
}
1234
1235
/// Clear everything and initialise with ⊤-values for all variables.
1236
void init(int NumVars) {
1237
StackHomeValue.clear();
1238
DebugValue.clear();
1239
LiveLoc.clear();
1240
VariableIDsInBlock = BitVector(NumVars);
1241
StackHomeValue.insert(StackHomeValue.begin(), NumVars,
1242
Assignment::makeNoneOrPhi());
1243
DebugValue.insert(DebugValue.begin(), NumVars,
1244
Assignment::makeNoneOrPhi());
1245
LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None);
1246
}
1247
1248
/// Helper for join.
1249
template <typename ElmtType, typename FnInputType>
1250
static void joinElmt(int Index, SmallVector<ElmtType> &Target,
1251
const SmallVector<ElmtType> &A,
1252
const SmallVector<ElmtType> &B,
1253
ElmtType (*Fn)(FnInputType, FnInputType)) {
1254
Target[Index] = Fn(A[Index], B[Index]);
1255
}
1256
1257
/// See comment for AssignmentTrackingLowering::joinBlockInfo.
1258
static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) {
1259
// Join A and B.
1260
//
1261
// Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b)
1262
// Difference = join(x, ⊤) for x where Var(x) is in A xor B
1263
// Join = Intersect ∪ Difference
1264
//
1265
// This is achieved by performing a join on elements from A and B with
1266
// variables common to both A and B (join elements indexed by var
1267
// intersect), then adding ⊤-value elements for vars in A xor B. The
1268
// latter part is equivalent to performing join on elements with variables
1269
// in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤.
1270
// BlockInfo::init initializes all variable entries to the ⊤ value so we
1271
// don't need to explicitly perform that step as Join.VariableIDsInBlock
1272
// is set to the union of the variables in A and B at the end of this
1273
// function.
1274
BlockInfo Join;
1275
Join.init(NumVars);
1276
1277
BitVector Intersect = A.VariableIDsInBlock;
1278
Intersect &= B.VariableIDsInBlock;
1279
1280
for (auto VarID : Intersect.set_bits()) {
1281
joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind);
1282
joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue,
1283
joinAssignment);
1284
joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue,
1285
joinAssignment);
1286
}
1287
1288
Join.VariableIDsInBlock = A.VariableIDsInBlock;
1289
Join.VariableIDsInBlock |= B.VariableIDsInBlock;
1290
assert(Join.isValid());
1291
return Join;
1292
}
1293
};
1294
1295
Function &Fn;
1296
const DataLayout &Layout;
1297
const DenseSet<DebugAggregate> *VarsWithStackSlot;
1298
FunctionVarLocsBuilder *FnVarLocs;
1299
DenseMap<const BasicBlock *, BlockInfo> LiveIn;
1300
DenseMap<const BasicBlock *, BlockInfo> LiveOut;
1301
1302
/// Helper for process methods to track variables touched each frame.
1303
DenseSet<VariableID> VarsTouchedThisFrame;
1304
1305
/// The set of variables that sometimes are not located in their stack home.
1306
DenseSet<DebugAggregate> NotAlwaysStackHomed;
1307
1308
VariableID getVariableID(const DebugVariable &Var) {
1309
return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
1310
}
1311
1312
/// Join the LiveOut values of preds that are contained in \p Visited into
1313
/// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
1314
/// values monotonically increase. See the @link joinMethods join methods
1315
/// @endlink documentation for more info.
1316
bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
1317
///@name joinMethods
1318
/// Functions that implement `join` (the least upper bound) for the
1319
/// join-semilattice types used in the dataflow. There is an explicit bottom
1320
/// value (⊥) for some types and and explicit top value (⊤) for all types.
1321
/// By definition:
1322
///
1323
/// Join(A, B) >= A && Join(A, B) >= B
1324
/// Join(A, ⊥) = A
1325
/// Join(A, ⊤) = ⊤
1326
///
1327
/// These invariants are important for monotonicity.
1328
///
1329
/// For the map-type functions, all unmapped keys in an empty map are
1330
/// associated with a bottom value (⊥). This represents their values being
1331
/// unknown. Unmapped keys in non-empty maps (joining two maps with a key
1332
/// only present in one) represents either a variable going out of scope or
1333
/// dropped debug info. It is assumed the key is associated with a top value
1334
/// (⊤) in this case (unknown location / assignment).
1335
///@{
1336
static LocKind joinKind(LocKind A, LocKind B);
1337
static Assignment joinAssignment(const Assignment &A, const Assignment &B);
1338
BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
1339
///@}
1340
1341
/// Process the instructions in \p BB updating \p LiveSet along the way. \p
1342
/// LiveSet must be initialized with the current live-in locations before
1343
/// calling this.
1344
void process(BasicBlock &BB, BlockInfo *LiveSet);
1345
///@name processMethods
1346
/// Methods to process instructions in order to update the LiveSet (current
1347
/// location information).
1348
///@{
1349
void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
1350
void processDbgInstruction(DbgInfoIntrinsic &I, BlockInfo *LiveSet);
1351
/// Update \p LiveSet after encountering an instruction with a DIAssignID
1352
/// attachment, \p I.
1353
void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1354
/// Update \p LiveSet after encountering an instruciton without a DIAssignID
1355
/// attachment, \p I.
1356
void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1357
void processDbgAssign(AssignRecord Assign, BlockInfo *LiveSet);
1358
void processDbgVariableRecord(DbgVariableRecord &DVR, BlockInfo *LiveSet);
1359
void processDbgValue(
1360
PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgValueRecord,
1361
BlockInfo *LiveSet);
1362
/// Add an assignment to memory for the variable /p Var.
1363
void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1364
/// Add an assignment to the variable /p Var.
1365
void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1366
///@}
1367
1368
/// Set the LocKind for \p Var.
1369
void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
1370
/// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
1371
/// have been called for \p Var first.
1372
LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
1373
/// Return true if \p Var has an assignment in \p M matching \p AV.
1374
bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind,
1375
VariableID Var, const Assignment &AV);
1376
/// Return the set of VariableIDs corresponding the fragments contained fully
1377
/// within the variable/fragment \p Var.
1378
ArrayRef<VariableID> getContainedFragments(VariableID Var) const;
1379
1380
/// Mark \p Var as having been touched this frame. Note, this applies only
1381
/// to the exact fragment \p Var and not to any fragments contained within.
1382
void touchFragment(VariableID Var);
1383
1384
/// Emit info for variables that are fully promoted.
1385
bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
1386
1387
public:
1388
AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
1389
const DenseSet<DebugAggregate> *VarsWithStackSlot)
1390
: Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
1391
/// Run the analysis, adding variable location info to \p FnVarLocs. Returns
1392
/// true if any variable locations have been added to FnVarLocs.
1393
bool run(FunctionVarLocsBuilder *FnVarLocs);
1394
};
1395
} // namespace
1396
1397
ArrayRef<VariableID>
1398
AssignmentTrackingLowering::getContainedFragments(VariableID Var) const {
1399
auto R = VarContains.find(Var);
1400
if (R == VarContains.end())
1401
return std::nullopt;
1402
return R->second;
1403
}
1404
1405
void AssignmentTrackingLowering::touchFragment(VariableID Var) {
1406
VarsTouchedThisFrame.insert(Var);
1407
}
1408
1409
void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
1410
LocKind K) {
1411
auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
1412
LiveSet->setLocKind(Var, K);
1413
touchFragment(Var);
1414
};
1415
SetKind(LiveSet, Var, K);
1416
1417
// Update the LocKind for all fragments contained within Var.
1418
for (VariableID Frag : getContainedFragments(Var))
1419
SetKind(LiveSet, Frag, K);
1420
}
1421
1422
AssignmentTrackingLowering::LocKind
1423
AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
1424
return LiveSet->getLocKind(Var);
1425
}
1426
1427
void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
1428
const Assignment &AV) {
1429
LiveSet->setAssignment(BlockInfo::Stack, Var, AV);
1430
1431
// Use this assigment for all fragments contained within Var, but do not
1432
// provide a Source because we cannot convert Var's value to a value for the
1433
// fragment.
1434
Assignment FragAV = AV;
1435
FragAV.Source = nullptr;
1436
for (VariableID Frag : getContainedFragments(Var))
1437
LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV);
1438
}
1439
1440
void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
1441
const Assignment &AV) {
1442
LiveSet->setAssignment(BlockInfo::Debug, Var, AV);
1443
1444
// Use this assigment for all fragments contained within Var, but do not
1445
// provide a Source because we cannot convert Var's value to a value for the
1446
// fragment.
1447
Assignment FragAV = AV;
1448
FragAV.Source = nullptr;
1449
for (VariableID Frag : getContainedFragments(Var))
1450
LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV);
1451
}
1452
1453
static DIAssignID *getIDFromInst(const Instruction &I) {
1454
return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
1455
}
1456
1457
static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
1458
return cast<DIAssignID>(DAI.getAssignID());
1459
}
1460
1461
static DIAssignID *getIDFromMarker(const DbgVariableRecord &DVR) {
1462
assert(DVR.isDbgAssign() &&
1463
"Cannot get a DIAssignID from a non-assign DbgVariableRecord!");
1464
return DVR.getAssignID();
1465
}
1466
1467
/// Return true if \p Var has an assignment in \p M matching \p AV.
1468
bool AssignmentTrackingLowering::hasVarWithAssignment(
1469
BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var,
1470
const Assignment &AV) {
1471
if (!LiveSet->hasAssignment(Kind, Var, AV))
1472
return false;
1473
1474
// Check all the frags contained within Var as these will have all been
1475
// mapped to AV at the last store to Var.
1476
for (VariableID Frag : getContainedFragments(Var))
1477
if (!LiveSet->hasAssignment(Kind, Frag, AV))
1478
return false;
1479
return true;
1480
}
1481
1482
#ifndef NDEBUG
1483
const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
1484
using LocKind = AssignmentTrackingLowering::LocKind;
1485
switch (Loc) {
1486
case LocKind::Val:
1487
return "Val";
1488
case LocKind::Mem:
1489
return "Mem";
1490
case LocKind::None:
1491
return "None";
1492
};
1493
llvm_unreachable("unknown LocKind");
1494
}
1495
#endif
1496
1497
VarLocInsertPt getNextNode(const DbgRecord *DVR) {
1498
auto NextIt = ++(DVR->getIterator());
1499
if (NextIt == DVR->getMarker()->getDbgRecordRange().end())
1500
return DVR->getMarker()->MarkedInstr;
1501
return &*NextIt;
1502
}
1503
VarLocInsertPt getNextNode(const Instruction *Inst) {
1504
const Instruction *Next = Inst->getNextNode();
1505
if (!Next->hasDbgRecords())
1506
return Next;
1507
return &*Next->getDbgRecordRange().begin();
1508
}
1509
VarLocInsertPt getNextNode(VarLocInsertPt InsertPt) {
1510
if (isa<const Instruction *>(InsertPt))
1511
return getNextNode(cast<const Instruction *>(InsertPt));
1512
return getNextNode(cast<const DbgRecord *>(InsertPt));
1513
}
1514
1515
DbgAssignIntrinsic *CastToDbgAssign(DbgVariableIntrinsic *DVI) {
1516
return cast<DbgAssignIntrinsic>(DVI);
1517
}
1518
1519
DbgVariableRecord *CastToDbgAssign(DbgVariableRecord *DVR) {
1520
assert(DVR->isDbgAssign() &&
1521
"Attempted to cast non-assign DbgVariableRecord to DVRAssign.");
1522
return DVR;
1523
}
1524
1525
void AssignmentTrackingLowering::emitDbgValue(
1526
AssignmentTrackingLowering::LocKind Kind,
1527
AssignmentTrackingLowering::AssignRecord Source, VarLocInsertPt After) {
1528
if (isa<DbgAssignIntrinsic *>(Source))
1529
emitDbgValue(Kind, cast<DbgAssignIntrinsic *>(Source), After);
1530
else
1531
emitDbgValue(Kind, cast<DbgVariableRecord *>(Source), After);
1532
}
1533
template <typename T>
1534
void AssignmentTrackingLowering::emitDbgValue(
1535
AssignmentTrackingLowering::LocKind Kind, const T Source,
1536
VarLocInsertPt After) {
1537
1538
DILocation *DL = Source->getDebugLoc();
1539
auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) {
1540
assert(Expr);
1541
if (!Val)
1542
Val = ValueAsMetadata::get(
1543
PoisonValue::get(Type::getInt1Ty(Source->getContext())));
1544
1545
// Find a suitable insert point.
1546
auto InsertBefore = getNextNode(After);
1547
assert(InsertBefore && "Shouldn't be inserting after a terminator");
1548
1549
VariableID Var = getVariableID(DebugVariable(Source));
1550
VarLocInfo VarLoc;
1551
VarLoc.VariableID = static_cast<VariableID>(Var);
1552
VarLoc.Expr = Expr;
1553
VarLoc.Values = RawLocationWrapper(Val);
1554
VarLoc.DL = DL;
1555
// Insert it into the map for later.
1556
InsertBeforeMap[InsertBefore].push_back(VarLoc);
1557
};
1558
1559
// NOTE: This block can mutate Kind.
1560
if (Kind == LocKind::Mem) {
1561
const auto *Assign = CastToDbgAssign(Source);
1562
// Check the address hasn't been dropped (e.g. the debug uses may not have
1563
// been replaced before deleting a Value).
1564
if (Assign->isKillAddress()) {
1565
// The address isn't valid so treat this as a non-memory def.
1566
Kind = LocKind::Val;
1567
} else {
1568
Value *Val = Assign->getAddress();
1569
DIExpression *Expr = Assign->getAddressExpression();
1570
assert(!Expr->getFragmentInfo() &&
1571
"fragment info should be stored in value-expression only");
1572
// Copy the fragment info over from the value-expression to the new
1573
// DIExpression.
1574
if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
1575
auto FragInfo = *OptFragInfo;
1576
Expr = *DIExpression::createFragmentExpression(
1577
Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
1578
}
1579
// The address-expression has an implicit deref, add it now.
1580
std::tie(Val, Expr) =
1581
walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
1582
Emit(ValueAsMetadata::get(Val), Expr);
1583
return;
1584
}
1585
}
1586
1587
if (Kind == LocKind::Val) {
1588
Emit(Source->getRawLocation(), Source->getExpression());
1589
return;
1590
}
1591
1592
if (Kind == LocKind::None) {
1593
Emit(nullptr, Source->getExpression());
1594
return;
1595
}
1596
}
1597
1598
void AssignmentTrackingLowering::processNonDbgInstruction(
1599
Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1600
if (I.hasMetadata(LLVMContext::MD_DIAssignID))
1601
processTaggedInstruction(I, LiveSet);
1602
else
1603
processUntaggedInstruction(I, LiveSet);
1604
}
1605
1606
void AssignmentTrackingLowering::processUntaggedInstruction(
1607
Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1608
// Interpret stack stores that are not tagged as an assignment in memory for
1609
// the variables associated with that address. These stores may not be tagged
1610
// because a) the store cannot be represented using dbg.assigns (non-const
1611
// length or offset) or b) the tag was accidentally dropped during
1612
// optimisations. For these stores we fall back to assuming that the stack
1613
// home is a valid location for the variables. The benefit is that this
1614
// prevents us missing an assignment and therefore incorrectly maintaining
1615
// earlier location definitions, and in many cases it should be a reasonable
1616
// assumption. However, this will occasionally lead to slight
1617
// inaccuracies. The value of a hoisted untagged store will be visible
1618
// "early", for example.
1619
assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
1620
auto It = UntaggedStoreVars.find(&I);
1621
if (It == UntaggedStoreVars.end())
1622
return; // No variables associated with the store destination.
1623
1624
LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
1625
<< "\n");
1626
// Iterate over the variables that this store affects, add a NoneOrPhi dbg
1627
// and mem def, set lockind to Mem, and emit a location def for each.
1628
for (auto [Var, Info] : It->second) {
1629
// This instruction is treated as both a debug and memory assignment,
1630
// meaning the memory location should be used. We don't have an assignment
1631
// ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
1632
addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1633
addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1634
setLocKind(LiveSet, Var, LocKind::Mem);
1635
LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem)
1636
<< "\n");
1637
// Build the dbg location def to insert.
1638
//
1639
// DIExpression: Add fragment and offset.
1640
DebugVariable V = FnVarLocs->getVariable(Var);
1641
DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
1642
if (auto Frag = V.getFragment()) {
1643
auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
1644
Frag->SizeInBits);
1645
assert(R && "unexpected createFragmentExpression failure");
1646
DIE = *R;
1647
}
1648
SmallVector<uint64_t, 3> Ops;
1649
if (Info.OffsetInBits)
1650
Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
1651
Ops.push_back(dwarf::DW_OP_deref);
1652
DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
1653
/*EntryValue=*/false);
1654
// Find a suitable insert point, before the next instruction or DbgRecord
1655
// after I.
1656
auto InsertBefore = getNextNode(&I);
1657
assert(InsertBefore && "Shouldn't be inserting after a terminator");
1658
1659
// Get DILocation for this unrecorded assignment.
1660
DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
1661
const DILocation *DILoc = DILocation::get(
1662
Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
1663
1664
VarLocInfo VarLoc;
1665
VarLoc.VariableID = static_cast<VariableID>(Var);
1666
VarLoc.Expr = DIE;
1667
VarLoc.Values = RawLocationWrapper(
1668
ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base)));
1669
VarLoc.DL = DILoc;
1670
// 3. Insert it into the map for later.
1671
InsertBeforeMap[InsertBefore].push_back(VarLoc);
1672
}
1673
}
1674
1675
void AssignmentTrackingLowering::processTaggedInstruction(
1676
Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1677
auto Linked = at::getAssignmentMarkers(&I);
1678
auto LinkedDPAssigns = at::getDVRAssignmentMarkers(&I);
1679
// No dbg.assign intrinsics linked.
1680
// FIXME: All vars that have a stack slot this store modifies that don't have
1681
// a dbg.assign linked to it should probably treat this like an untagged
1682
// store.
1683
if (Linked.empty() && LinkedDPAssigns.empty())
1684
return;
1685
1686
LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
1687
auto ProcessLinkedAssign = [&](auto *Assign) {
1688
VariableID Var = getVariableID(DebugVariable(Assign));
1689
// Something has gone wrong if VarsWithStackSlot doesn't contain a variable
1690
// that is linked to a store.
1691
assert(VarsWithStackSlot->count(getAggregate(Assign)) &&
1692
"expected Assign's variable to have stack slot");
1693
1694
Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
1695
addMemDef(LiveSet, Var, AV);
1696
1697
LLVM_DEBUG(dbgs() << " linked to " << *Assign << "\n");
1698
LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1699
<< " -> ");
1700
1701
// The last assignment to the stack is now AV. Check if the last debug
1702
// assignment has a matching Assignment.
1703
if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) {
1704
// The StackHomeValue and DebugValue for this variable match so we can
1705
// emit a stack home location here.
1706
LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1707
LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
1708
LLVM_DEBUG(dbgs() << " Debug val: ";
1709
LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs());
1710
dbgs() << "\n");
1711
setLocKind(LiveSet, Var, LocKind::Mem);
1712
emitDbgValue(LocKind::Mem, Assign, &I);
1713
return;
1714
}
1715
1716
// The StackHomeValue and DebugValue for this variable do not match. I.e.
1717
// The value currently stored in the stack is not what we'd expect to
1718
// see, so we cannot use emit a stack home location here. Now we will
1719
// look at the live LocKind for the variable and determine an appropriate
1720
// dbg.value to emit.
1721
LocKind PrevLoc = getLocKind(LiveSet, Var);
1722
switch (PrevLoc) {
1723
case LocKind::Val: {
1724
// The value in memory in memory has changed but we're not currently
1725
// using the memory location. Do nothing.
1726
LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
1727
setLocKind(LiveSet, Var, LocKind::Val);
1728
} break;
1729
case LocKind::Mem: {
1730
// There's been an assignment to memory that we were using as a
1731
// location for this variable, and the Assignment doesn't match what
1732
// we'd expect to see in memory.
1733
Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var);
1734
if (DbgAV.Status == Assignment::NoneOrPhi) {
1735
// We need to terminate any previously open location now.
1736
LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
1737
setLocKind(LiveSet, Var, LocKind::None);
1738
emitDbgValue(LocKind::None, Assign, &I);
1739
} else {
1740
// The previous DebugValue Value can be used here.
1741
LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
1742
setLocKind(LiveSet, Var, LocKind::Val);
1743
if (DbgAV.Source) {
1744
emitDbgValue(LocKind::Val, DbgAV.Source, &I);
1745
} else {
1746
// PrevAV.Source is nullptr so we must emit undef here.
1747
emitDbgValue(LocKind::None, Assign, &I);
1748
}
1749
}
1750
} break;
1751
case LocKind::None: {
1752
// There's been an assignment to memory and we currently are
1753
// not tracking a location for the variable. Do not emit anything.
1754
LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
1755
setLocKind(LiveSet, Var, LocKind::None);
1756
} break;
1757
}
1758
};
1759
for (DbgAssignIntrinsic *DAI : Linked)
1760
ProcessLinkedAssign(DAI);
1761
for (DbgVariableRecord *DVR : LinkedDPAssigns)
1762
ProcessLinkedAssign(DVR);
1763
}
1764
1765
void AssignmentTrackingLowering::processDbgAssign(AssignRecord Assign,
1766
BlockInfo *LiveSet) {
1767
auto ProcessDbgAssignImpl = [&](auto *DbgAssign) {
1768
// Only bother tracking variables that are at some point stack homed. Other
1769
// variables can be dealt with trivially later.
1770
if (!VarsWithStackSlot->count(getAggregate(DbgAssign)))
1771
return;
1772
1773
VariableID Var = getVariableID(DebugVariable(DbgAssign));
1774
Assignment AV = Assignment::make(getIDFromMarker(*DbgAssign), DbgAssign);
1775
addDbgDef(LiveSet, Var, AV);
1776
1777
LLVM_DEBUG(dbgs() << "processDbgAssign on " << *DbgAssign << "\n";);
1778
LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1779
<< " -> ");
1780
1781
// Check if the DebugValue and StackHomeValue both hold the same
1782
// Assignment.
1783
if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) {
1784
// They match. We can use the stack home because the debug intrinsics
1785
// state that an assignment happened here, and we know that specific
1786
// assignment was the last one to take place in memory for this variable.
1787
LocKind Kind;
1788
if (DbgAssign->isKillAddress()) {
1789
LLVM_DEBUG(
1790
dbgs()
1791
<< "Val, Stack matches Debug program but address is killed\n";);
1792
Kind = LocKind::Val;
1793
} else {
1794
LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1795
Kind = LocKind::Mem;
1796
};
1797
setLocKind(LiveSet, Var, Kind);
1798
emitDbgValue(Kind, DbgAssign, DbgAssign);
1799
} else {
1800
// The last assignment to the memory location isn't the one that we want
1801
// to show to the user so emit a dbg.value(Value). Value may be undef.
1802
LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
1803
setLocKind(LiveSet, Var, LocKind::Val);
1804
emitDbgValue(LocKind::Val, DbgAssign, DbgAssign);
1805
}
1806
};
1807
if (isa<DbgVariableRecord *>(Assign))
1808
return ProcessDbgAssignImpl(cast<DbgVariableRecord *>(Assign));
1809
return ProcessDbgAssignImpl(cast<DbgAssignIntrinsic *>(Assign));
1810
}
1811
1812
void AssignmentTrackingLowering::processDbgValue(
1813
PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgValueRecord,
1814
BlockInfo *LiveSet) {
1815
auto ProcessDbgValueImpl = [&](auto *DbgValue) {
1816
// Only other tracking variables that are at some point stack homed.
1817
// Other variables can be dealt with trivally later.
1818
if (!VarsWithStackSlot->count(getAggregate(DbgValue)))
1819
return;
1820
1821
VariableID Var = getVariableID(DebugVariable(DbgValue));
1822
// We have no ID to create an Assignment with so we mark this assignment as
1823
// NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
1824
// the assignment responsible for setting this value.
1825
// This is fine; dbg.values are essentially interchangable with unlinked
1826
// dbg.assigns, and some passes such as mem2reg and instcombine add them to
1827
// PHIs for promoted variables.
1828
Assignment AV = Assignment::makeNoneOrPhi();
1829
addDbgDef(LiveSet, Var, AV);
1830
1831
LLVM_DEBUG(dbgs() << "processDbgValue on " << *DbgValue << "\n";);
1832
LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1833
<< " -> Val, dbg.value override");
1834
1835
setLocKind(LiveSet, Var, LocKind::Val);
1836
emitDbgValue(LocKind::Val, DbgValue, DbgValue);
1837
};
1838
if (isa<DbgVariableRecord *>(DbgValueRecord))
1839
return ProcessDbgValueImpl(cast<DbgVariableRecord *>(DbgValueRecord));
1840
return ProcessDbgValueImpl(cast<DbgValueInst *>(DbgValueRecord));
1841
}
1842
1843
template <typename T> static bool hasZeroSizedFragment(T &DbgValue) {
1844
if (auto F = DbgValue.getExpression()->getFragmentInfo())
1845
return F->SizeInBits == 0;
1846
return false;
1847
}
1848
1849
void AssignmentTrackingLowering::processDbgInstruction(
1850
DbgInfoIntrinsic &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1851
auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
1852
if (!DVI)
1853
return;
1854
1855
// Ignore assignments to zero bits of the variable.
1856
if (hasZeroSizedFragment(*DVI))
1857
return;
1858
1859
if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
1860
processDbgAssign(DAI, LiveSet);
1861
else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
1862
processDbgValue(DVI, LiveSet);
1863
}
1864
void AssignmentTrackingLowering::processDbgVariableRecord(
1865
DbgVariableRecord &DVR, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1866
// Ignore assignments to zero bits of the variable.
1867
if (hasZeroSizedFragment(DVR))
1868
return;
1869
1870
if (DVR.isDbgAssign())
1871
processDbgAssign(&DVR, LiveSet);
1872
else if (DVR.isDbgValue())
1873
processDbgValue(&DVR, LiveSet);
1874
}
1875
1876
void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
1877
assert(!After.isTerminator() && "Can't insert after a terminator");
1878
auto *R = InsertBeforeMap.find(getNextNode(&After));
1879
if (R == InsertBeforeMap.end())
1880
return;
1881
R->second.clear();
1882
}
1883
void AssignmentTrackingLowering::resetInsertionPoint(DbgVariableRecord &After) {
1884
auto *R = InsertBeforeMap.find(getNextNode(&After));
1885
if (R == InsertBeforeMap.end())
1886
return;
1887
R->second.clear();
1888
}
1889
1890
void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
1891
// If the block starts with DbgRecords, we need to process those DbgRecords as
1892
// their own frame without processing any instructions first.
1893
bool ProcessedLeadingDbgRecords = !BB.begin()->hasDbgRecords();
1894
for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
1895
assert(VarsTouchedThisFrame.empty());
1896
// Process the instructions in "frames". A "frame" includes a single
1897
// non-debug instruction followed any debug instructions before the
1898
// next non-debug instruction.
1899
1900
// Skip the current instruction if it has unprocessed DbgRecords attached
1901
// (see comment above `ProcessedLeadingDbgRecords`).
1902
if (ProcessedLeadingDbgRecords) {
1903
// II is now either a debug intrinsic, a non-debug instruction with no
1904
// attached DbgRecords, or a non-debug instruction with attached processed
1905
// DbgRecords.
1906
// II has not been processed.
1907
if (!isa<DbgInfoIntrinsic>(&*II)) {
1908
if (II->isTerminator())
1909
break;
1910
resetInsertionPoint(*II);
1911
processNonDbgInstruction(*II, LiveSet);
1912
assert(LiveSet->isValid());
1913
++II;
1914
}
1915
}
1916
// II is now either a debug intrinsic, a non-debug instruction with no
1917
// attached DbgRecords, or a non-debug instruction with attached unprocessed
1918
// DbgRecords.
1919
if (II != EI && II->hasDbgRecords()) {
1920
// Skip over non-variable debug records (i.e., labels). They're going to
1921
// be read from IR (possibly re-ordering them within the debug record
1922
// range) rather than from the analysis results.
1923
for (DbgVariableRecord &DVR : filterDbgVars(II->getDbgRecordRange())) {
1924
resetInsertionPoint(DVR);
1925
processDbgVariableRecord(DVR, LiveSet);
1926
assert(LiveSet->isValid());
1927
}
1928
}
1929
ProcessedLeadingDbgRecords = true;
1930
while (II != EI) {
1931
auto *Dbg = dyn_cast<DbgInfoIntrinsic>(&*II);
1932
if (!Dbg)
1933
break;
1934
resetInsertionPoint(*II);
1935
processDbgInstruction(*Dbg, LiveSet);
1936
assert(LiveSet->isValid());
1937
++II;
1938
}
1939
// II is now a non-debug instruction either with no attached DbgRecords, or
1940
// with attached processed DbgRecords. II has not been processed, and all
1941
// debug instructions or DbgRecords in the frame preceding II have been
1942
// processed.
1943
1944
// We've processed everything in the "frame". Now determine which variables
1945
// cannot be represented by a dbg.declare.
1946
for (auto Var : VarsTouchedThisFrame) {
1947
LocKind Loc = getLocKind(LiveSet, Var);
1948
// If a variable's LocKind is anything other than LocKind::Mem then we
1949
// must note that it cannot be represented with a dbg.declare.
1950
// Note that this check is enough without having to check the result of
1951
// joins() because for join to produce anything other than Mem after
1952
// we've already seen a Mem we'd be joining None or Val with Mem. In that
1953
// case, we've already hit this codepath when we set the LocKind to Val
1954
// or None in that block.
1955
if (Loc != LocKind::Mem) {
1956
DebugVariable DbgVar = FnVarLocs->getVariable(Var);
1957
DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
1958
NotAlwaysStackHomed.insert(Aggr);
1959
}
1960
}
1961
VarsTouchedThisFrame.clear();
1962
}
1963
}
1964
1965
AssignmentTrackingLowering::LocKind
1966
AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
1967
// Partial order:
1968
// None > Mem, Val
1969
return A == B ? A : LocKind::None;
1970
}
1971
1972
AssignmentTrackingLowering::Assignment
1973
AssignmentTrackingLowering::joinAssignment(const Assignment &A,
1974
const Assignment &B) {
1975
// Partial order:
1976
// NoneOrPhi(null, null) > Known(v, ?s)
1977
1978
// If either are NoneOrPhi the join is NoneOrPhi.
1979
// If either value is different then the result is
1980
// NoneOrPhi (joining two values is a Phi).
1981
if (!A.isSameSourceAssignment(B))
1982
return Assignment::makeNoneOrPhi();
1983
if (A.Status == Assignment::NoneOrPhi)
1984
return Assignment::makeNoneOrPhi();
1985
1986
// Source is used to lookup the value + expression in the debug program if
1987
// the stack slot gets assigned a value earlier than expected. Because
1988
// we're only tracking the one dbg.assign, we can't capture debug PHIs.
1989
// It's unlikely that we're losing out on much coverage by avoiding that
1990
// extra work.
1991
// The Source may differ in this situation:
1992
// Pred.1:
1993
// dbg.assign i32 0, ..., !1, ...
1994
// Pred.2:
1995
// dbg.assign i32 1, ..., !1, ...
1996
// Here the same assignment (!1) was performed in both preds in the source,
1997
// but we can't use either one unless they are identical (e.g. .we don't
1998
// want to arbitrarily pick between constant values).
1999
auto JoinSource = [&]() -> AssignRecord {
2000
if (A.Source == B.Source)
2001
return A.Source;
2002
if (!A.Source || !B.Source)
2003
return AssignRecord();
2004
assert(isa<DbgVariableRecord *>(A.Source) ==
2005
isa<DbgVariableRecord *>(B.Source));
2006
if (isa<DbgVariableRecord *>(A.Source) &&
2007
cast<DbgVariableRecord *>(A.Source)->isEquivalentTo(
2008
*cast<DbgVariableRecord *>(B.Source)))
2009
return A.Source;
2010
if (isa<DbgAssignIntrinsic *>(A.Source) &&
2011
cast<DbgAssignIntrinsic *>(A.Source)->isIdenticalTo(
2012
cast<DbgAssignIntrinsic *>(B.Source)))
2013
return A.Source;
2014
return AssignRecord();
2015
};
2016
AssignRecord Source = JoinSource();
2017
assert(A.Status == B.Status && A.Status == Assignment::Known);
2018
assert(A.ID == B.ID);
2019
return Assignment::make(A.ID, Source);
2020
}
2021
2022
AssignmentTrackingLowering::BlockInfo
2023
AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
2024
const BlockInfo &B) {
2025
return BlockInfo::join(A, B, TrackedVariablesVectorSize);
2026
}
2027
2028
bool AssignmentTrackingLowering::join(
2029
const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
2030
2031
SmallVector<const BasicBlock *> VisitedPreds;
2032
// Ignore backedges if we have not visited the predecessor yet. As the
2033
// predecessor hasn't yet had locations propagated into it, most locations
2034
// will not yet be valid, so treat them as all being uninitialized and
2035
// potentially valid. If a location guessed to be correct here is
2036
// invalidated later, we will remove it when we revisit this block. This
2037
// is essentially the same as initialising all LocKinds and Assignments to
2038
// an implicit ⊥ value which is the identity value for the join operation.
2039
for (const BasicBlock *Pred : predecessors(&BB)) {
2040
if (Visited.count(Pred))
2041
VisitedPreds.push_back(Pred);
2042
}
2043
2044
// No preds visited yet.
2045
if (VisitedPreds.empty()) {
2046
auto It = LiveIn.try_emplace(&BB, BlockInfo());
2047
bool DidInsert = It.second;
2048
if (DidInsert)
2049
It.first->second.init(TrackedVariablesVectorSize);
2050
return /*Changed*/ DidInsert;
2051
}
2052
2053
// Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn.
2054
if (VisitedPreds.size() == 1) {
2055
const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second;
2056
auto CurrentLiveInEntry = LiveIn.find(&BB);
2057
2058
// Check if there isn't an entry, or there is but the LiveIn set has
2059
// changed (expensive check).
2060
if (CurrentLiveInEntry == LiveIn.end())
2061
LiveIn.insert(std::make_pair(&BB, PredLiveOut));
2062
else if (PredLiveOut != CurrentLiveInEntry->second)
2063
CurrentLiveInEntry->second = PredLiveOut;
2064
else
2065
return /*Changed*/ false;
2066
return /*Changed*/ true;
2067
}
2068
2069
// More than one pred. Join LiveOuts of blocks 1 and 2.
2070
assert(VisitedPreds.size() > 1);
2071
const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second;
2072
const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second;
2073
BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1);
2074
2075
// Join the LiveOuts of subsequent blocks.
2076
ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2);
2077
for (const BasicBlock *Pred : Tail) {
2078
const auto &PredLiveOut = LiveOut.find(Pred);
2079
assert(PredLiveOut != LiveOut.end() &&
2080
"block should have been processed already");
2081
BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
2082
}
2083
2084
// Save the joined result for BB.
2085
auto CurrentLiveInEntry = LiveIn.find(&BB);
2086
// Check if there isn't an entry, or there is but the LiveIn set has changed
2087
// (expensive check).
2088
if (CurrentLiveInEntry == LiveIn.end())
2089
LiveIn.try_emplace(&BB, std::move(BBLiveIn));
2090
else if (BBLiveIn != CurrentLiveInEntry->second)
2091
CurrentLiveInEntry->second = std::move(BBLiveIn);
2092
else
2093
return /*Changed*/ false;
2094
return /*Changed*/ true;
2095
}
2096
2097
/// Return true if A fully contains B.
2098
static bool fullyContains(DIExpression::FragmentInfo A,
2099
DIExpression::FragmentInfo B) {
2100
auto ALeft = A.OffsetInBits;
2101
auto BLeft = B.OffsetInBits;
2102
if (BLeft < ALeft)
2103
return false;
2104
2105
auto ARight = ALeft + A.SizeInBits;
2106
auto BRight = BLeft + B.SizeInBits;
2107
if (BRight > ARight)
2108
return false;
2109
return true;
2110
}
2111
2112
static std::optional<at::AssignmentInfo>
2113
getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
2114
// Don't bother checking if this is an AllocaInst. We know this
2115
// instruction has no tag which means there are no variables associated
2116
// with it.
2117
if (const auto *SI = dyn_cast<StoreInst>(&I))
2118
return at::getAssignmentInfo(Layout, SI);
2119
if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
2120
return at::getAssignmentInfo(Layout, MI);
2121
// Alloca or non-store-like inst.
2122
return std::nullopt;
2123
}
2124
2125
DbgDeclareInst *DynCastToDbgDeclare(DbgVariableIntrinsic *DVI) {
2126
return dyn_cast<DbgDeclareInst>(DVI);
2127
}
2128
2129
DbgVariableRecord *DynCastToDbgDeclare(DbgVariableRecord *DVR) {
2130
return DVR->isDbgDeclare() ? DVR : nullptr;
2131
}
2132
2133
/// Build a map of {Variable x: Variables y} where all variable fragments
2134
/// contained within the variable fragment x are in set y. This means that
2135
/// y does not contain all overlaps because partial overlaps are excluded.
2136
///
2137
/// While we're iterating over the function, add single location defs for
2138
/// dbg.declares to \p FnVarLocs.
2139
///
2140
/// Variables that are interesting to this pass in are added to
2141
/// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of
2142
/// the last interesting variable plus 1, meaning variables with ID 1
2143
/// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The
2144
/// subsequent variables are either stack homed or fully promoted.
2145
///
2146
/// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
2147
/// the stored-to variable fragments.
2148
///
2149
/// These tasks are bundled together to reduce the number of times we need
2150
/// to iterate over the function as they can be achieved together in one pass.
2151
static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
2152
Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
2153
const DenseSet<DebugAggregate> &VarsWithStackSlot,
2154
AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars,
2155
unsigned &TrackedVariablesVectorSize) {
2156
DenseSet<DebugVariable> Seen;
2157
// Map of Variable: [Fragments].
2158
DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
2159
// Iterate over all instructions:
2160
// - dbg.declare -> add single location variable record
2161
// - dbg.* -> Add fragments to FragmentMap
2162
// - untagged store -> Add fragments to FragmentMap and update
2163
// UntaggedStoreVars.
2164
// We need to add fragments for untagged stores too so that we can correctly
2165
// clobber overlapped fragment locations later.
2166
SmallVector<DbgDeclareInst *> InstDeclares;
2167
SmallVector<DbgVariableRecord *> DPDeclares;
2168
auto ProcessDbgRecord = [&](auto *Record, auto &DeclareList) {
2169
if (auto *Declare = DynCastToDbgDeclare(Record)) {
2170
DeclareList.push_back(Declare);
2171
return;
2172
}
2173
DebugVariable DV = DebugVariable(Record);
2174
DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2175
if (!VarsWithStackSlot.contains(DA))
2176
return;
2177
if (Seen.insert(DV).second)
2178
FragmentMap[DA].push_back(DV);
2179
};
2180
for (auto &BB : Fn) {
2181
for (auto &I : BB) {
2182
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2183
ProcessDbgRecord(&DVR, DPDeclares);
2184
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
2185
ProcessDbgRecord(DII, InstDeclares);
2186
} else if (auto Info = getUntaggedStoreAssignmentInfo(
2187
I, Fn.getDataLayout())) {
2188
// Find markers linked to this alloca.
2189
auto HandleDbgAssignForStore = [&](auto *Assign) {
2190
std::optional<DIExpression::FragmentInfo> FragInfo;
2191
2192
// Skip this assignment if the affected bits are outside of the
2193
// variable fragment.
2194
if (!at::calculateFragmentIntersect(
2195
I.getDataLayout(), Info->Base,
2196
Info->OffsetInBits, Info->SizeInBits, Assign, FragInfo) ||
2197
(FragInfo && FragInfo->SizeInBits == 0))
2198
return;
2199
2200
// FragInfo from calculateFragmentIntersect is nullopt if the
2201
// resultant fragment matches DAI's fragment or entire variable - in
2202
// which case copy the fragment info from DAI. If FragInfo is still
2203
// nullopt after the copy it means "no fragment info" instead, which
2204
// is how it is usually interpreted.
2205
if (!FragInfo)
2206
FragInfo = Assign->getExpression()->getFragmentInfo();
2207
2208
DebugVariable DV =
2209
DebugVariable(Assign->getVariable(), FragInfo,
2210
Assign->getDebugLoc().getInlinedAt());
2211
DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2212
if (!VarsWithStackSlot.contains(DA))
2213
return;
2214
2215
// Cache this info for later.
2216
UntaggedStoreVars[&I].push_back(
2217
{FnVarLocs->insertVariable(DV), *Info});
2218
2219
if (Seen.insert(DV).second)
2220
FragmentMap[DA].push_back(DV);
2221
};
2222
for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base))
2223
HandleDbgAssignForStore(DAI);
2224
for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(Info->Base))
2225
HandleDbgAssignForStore(DVR);
2226
}
2227
}
2228
}
2229
2230
// Sort the fragment map for each DebugAggregate in ascending
2231
// order of fragment size - there should be no duplicates.
2232
for (auto &Pair : FragmentMap) {
2233
SmallVector<DebugVariable, 8> &Frags = Pair.second;
2234
std::sort(Frags.begin(), Frags.end(),
2235
[](const DebugVariable &Next, const DebugVariable &Elmt) {
2236
return Elmt.getFragmentOrDefault().SizeInBits >
2237
Next.getFragmentOrDefault().SizeInBits;
2238
});
2239
// Check for duplicates.
2240
assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end());
2241
}
2242
2243
// Build the map.
2244
AssignmentTrackingLowering::OverlapMap Map;
2245
for (auto &Pair : FragmentMap) {
2246
auto &Frags = Pair.second;
2247
for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
2248
DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
2249
// Find the frags that this is contained within.
2250
//
2251
// Because Frags is sorted by size and none have the same offset and
2252
// size, we know that this frag can only be contained by subsequent
2253
// elements.
2254
SmallVector<DebugVariable, 8>::iterator OtherIt = It;
2255
++OtherIt;
2256
VariableID ThisVar = FnVarLocs->insertVariable(*It);
2257
for (; OtherIt != IEnd; ++OtherIt) {
2258
DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
2259
VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
2260
if (fullyContains(OtherFrag, Frag))
2261
Map[OtherVar].push_back(ThisVar);
2262
}
2263
}
2264
}
2265
2266
// VariableIDs are 1-based so the variable-tracking bitvector needs
2267
// NumVariables plus 1 bits.
2268
TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1;
2269
2270
// Finally, insert the declares afterwards, so the first IDs are all
2271
// partially stack homed vars.
2272
for (auto *DDI : InstDeclares)
2273
FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
2274
DDI->getDebugLoc(), DDI->getWrappedLocation());
2275
for (auto *DVR : DPDeclares)
2276
FnVarLocs->addSingleLocVar(DebugVariable(DVR), DVR->getExpression(),
2277
DVR->getDebugLoc(),
2278
RawLocationWrapper(DVR->getRawLocation()));
2279
return Map;
2280
}
2281
2282
bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
2283
if (Fn.size() > MaxNumBlocks) {
2284
LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
2285
<< ": too many blocks (" << Fn.size() << ")\n");
2286
at::deleteAll(&Fn);
2287
return false;
2288
}
2289
2290
FnVarLocs = FnVarLocsBuilder;
2291
2292
// The general structure here is inspired by VarLocBasedImpl.cpp
2293
// (LiveDebugValues).
2294
2295
// Build the variable fragment overlap map.
2296
// Note that this pass doesn't handle partial overlaps correctly (FWIW
2297
// neither does LiveDebugVariables) because that is difficult to do and
2298
// appears to be rare occurance.
2299
VarContains = buildOverlapMapAndRecordDeclares(
2300
Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars,
2301
TrackedVariablesVectorSize);
2302
2303
// Prepare for traversal.
2304
ReversePostOrderTraversal<Function *> RPOT(&Fn);
2305
std::priority_queue<unsigned int, std::vector<unsigned int>,
2306
std::greater<unsigned int>>
2307
Worklist;
2308
std::priority_queue<unsigned int, std::vector<unsigned int>,
2309
std::greater<unsigned int>>
2310
Pending;
2311
DenseMap<unsigned int, BasicBlock *> OrderToBB;
2312
DenseMap<BasicBlock *, unsigned int> BBToOrder;
2313
{ // Init OrderToBB and BBToOrder.
2314
unsigned int RPONumber = 0;
2315
for (BasicBlock *BB : RPOT) {
2316
OrderToBB[RPONumber] = BB;
2317
BBToOrder[BB] = RPONumber;
2318
Worklist.push(RPONumber);
2319
++RPONumber;
2320
}
2321
LiveIn.init(RPONumber);
2322
LiveOut.init(RPONumber);
2323
}
2324
2325
// Perform the traversal.
2326
//
2327
// This is a standard "union of predecessor outs" dataflow problem. To solve
2328
// it, we perform join() and process() using the two worklist method until
2329
// the LiveIn data for each block becomes unchanging. The "proof" that this
2330
// terminates can be put together by looking at the comments around LocKind,
2331
// Assignment, and the various join methods, which show that all the elements
2332
// involved are made up of join-semilattices; LiveIn(n) can only
2333
// monotonically increase in value throughout the dataflow.
2334
//
2335
SmallPtrSet<BasicBlock *, 16> Visited;
2336
while (!Worklist.empty()) {
2337
// We track what is on the pending worklist to avoid inserting the same
2338
// thing twice.
2339
SmallPtrSet<BasicBlock *, 16> OnPending;
2340
LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2341
while (!Worklist.empty()) {
2342
BasicBlock *BB = OrderToBB[Worklist.top()];
2343
LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
2344
Worklist.pop();
2345
bool InChanged = join(*BB, Visited);
2346
// Always consider LiveIn changed on the first visit.
2347
InChanged |= Visited.insert(BB).second;
2348
if (InChanged) {
2349
LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
2350
// Mutate a copy of LiveIn while processing BB. After calling process
2351
// LiveSet is the LiveOut set for BB.
2352
BlockInfo LiveSet = LiveIn[BB];
2353
2354
// Process the instructions in the block.
2355
process(*BB, &LiveSet);
2356
2357
// Relatively expensive check: has anything changed in LiveOut for BB?
2358
if (LiveOut[BB] != LiveSet) {
2359
LLVM_DEBUG(dbgs() << BB->getName()
2360
<< " has new OutLocs, add succs to worklist: [ ");
2361
LiveOut[BB] = std::move(LiveSet);
2362
for (BasicBlock *Succ : successors(BB)) {
2363
if (OnPending.insert(Succ).second) {
2364
LLVM_DEBUG(dbgs() << Succ->getName() << " ");
2365
Pending.push(BBToOrder[Succ]);
2366
}
2367
}
2368
LLVM_DEBUG(dbgs() << "]\n");
2369
}
2370
}
2371
}
2372
Worklist.swap(Pending);
2373
// At this point, pending must be empty, since it was just the empty
2374
// worklist
2375
assert(Pending.empty() && "Pending should be empty");
2376
}
2377
2378
// That's the hard part over. Now we just have some admin to do.
2379
2380
// Record whether we inserted any intrinsics.
2381
bool InsertedAnyIntrinsics = false;
2382
2383
// Identify and add defs for single location variables.
2384
//
2385
// Go through all of the defs that we plan to add. If the aggregate variable
2386
// it's a part of is not in the NotAlwaysStackHomed set we can emit a single
2387
// location def and omit the rest. Add an entry to AlwaysStackHomed so that
2388
// we can identify those uneeded defs later.
2389
DenseSet<DebugAggregate> AlwaysStackHomed;
2390
for (const auto &Pair : InsertBeforeMap) {
2391
auto &Vec = Pair.second;
2392
for (VarLocInfo VarLoc : Vec) {
2393
DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2394
DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2395
2396
// Skip this Var if it's not always stack homed.
2397
if (NotAlwaysStackHomed.contains(Aggr))
2398
continue;
2399
2400
// Skip complex cases such as when different fragments of a variable have
2401
// been split into different allocas. Skipping in this case means falling
2402
// back to using a list of defs (which could reduce coverage, but is no
2403
// less correct).
2404
bool Simple =
2405
VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
2406
if (!Simple) {
2407
NotAlwaysStackHomed.insert(Aggr);
2408
continue;
2409
}
2410
2411
// All source assignments to this variable remain and all stores to any
2412
// part of the variable store to the same address (with varying
2413
// offsets). We can just emit a single location for the whole variable.
2414
//
2415
// Unless we've already done so, create the single location def now.
2416
if (AlwaysStackHomed.insert(Aggr).second) {
2417
assert(!VarLoc.Values.hasArgList());
2418
// TODO: When more complex cases are handled VarLoc.Expr should be
2419
// built appropriately rather than always using an empty DIExpression.
2420
// The assert below is a reminder.
2421
assert(Simple);
2422
VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
2423
DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2424
FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values);
2425
InsertedAnyIntrinsics = true;
2426
}
2427
}
2428
}
2429
2430
// Insert the other DEFs.
2431
for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
2432
SmallVector<VarLocInfo> NewDefs;
2433
for (const VarLocInfo &VarLoc : Vec) {
2434
DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2435
DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2436
// If this variable is always stack homed then we have already inserted a
2437
// dbg.declare and deleted this dbg.value.
2438
if (AlwaysStackHomed.contains(Aggr))
2439
continue;
2440
NewDefs.push_back(VarLoc);
2441
InsertedAnyIntrinsics = true;
2442
}
2443
2444
FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
2445
}
2446
2447
InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
2448
2449
return InsertedAnyIntrinsics;
2450
}
2451
2452
bool AssignmentTrackingLowering::emitPromotedVarLocs(
2453
FunctionVarLocsBuilder *FnVarLocs) {
2454
bool InsertedAnyIntrinsics = false;
2455
// Go through every block, translating debug intrinsics for fully promoted
2456
// variables into FnVarLocs location defs. No analysis required for these.
2457
auto TranslateDbgRecord = [&](auto *Record) {
2458
// Skip variables that haven't been promoted - we've dealt with those
2459
// already.
2460
if (VarsWithStackSlot->contains(getAggregate(Record)))
2461
return;
2462
auto InsertBefore = getNextNode(Record);
2463
assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
2464
FnVarLocs->addVarLoc(InsertBefore, DebugVariable(Record),
2465
Record->getExpression(), Record->getDebugLoc(),
2466
RawLocationWrapper(Record->getRawLocation()));
2467
InsertedAnyIntrinsics = true;
2468
};
2469
for (auto &BB : Fn) {
2470
for (auto &I : BB) {
2471
// Skip instructions other than dbg.values and dbg.assigns.
2472
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2473
if (DVR.isDbgValue() || DVR.isDbgAssign())
2474
TranslateDbgRecord(&DVR);
2475
auto *DVI = dyn_cast<DbgValueInst>(&I);
2476
if (DVI)
2477
TranslateDbgRecord(DVI);
2478
}
2479
}
2480
return InsertedAnyIntrinsics;
2481
}
2482
2483
/// Remove redundant definitions within sequences of consecutive location defs.
2484
/// This is done using a backward scan to keep the last def describing a
2485
/// specific variable/fragment.
2486
///
2487
/// This implements removeRedundantDbgInstrsUsingBackwardScan from
2488
/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2489
/// FunctionVarLocsBuilder instead of with intrinsics.
2490
static bool
2491
removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
2492
FunctionVarLocsBuilder &FnVarLocs) {
2493
bool Changed = false;
2494
SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBytes;
2495
// Scan over the entire block, not just over the instructions mapped by
2496
// FnVarLocs, because wedges in FnVarLocs may only be separated by debug
2497
// instructions.
2498
for (const Instruction &I : reverse(*BB)) {
2499
if (!isa<DbgVariableIntrinsic>(I)) {
2500
// Sequence of consecutive defs ended. Clear map for the next one.
2501
VariableDefinedBytes.clear();
2502
}
2503
2504
auto HandleLocsForWedge = [&](auto *WedgePosition) {
2505
// Get the location defs that start just before this instruction.
2506
const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2507
if (!Locs)
2508
return;
2509
2510
NumWedgesScanned++;
2511
bool ChangedThisWedge = false;
2512
// The new pruned set of defs, reversed because we're scanning backwards.
2513
SmallVector<VarLocInfo> NewDefsReversed;
2514
2515
// Iterate over the existing defs in reverse.
2516
for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
2517
NumDefsScanned++;
2518
DebugAggregate Aggr =
2519
getAggregate(FnVarLocs.getVariable(RIt->VariableID));
2520
uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0);
2521
uint64_t SizeInBytes = divideCeil(SizeInBits, 8);
2522
2523
// Cutoff for large variables to prevent expensive bitvector operations.
2524
const uint64_t MaxSizeBytes = 2048;
2525
2526
if (SizeInBytes == 0 || SizeInBytes > MaxSizeBytes) {
2527
// If the size is unknown (0) then keep this location def to be safe.
2528
// Do the same for defs of large variables, which would be expensive
2529
// to represent with a BitVector.
2530
NewDefsReversed.push_back(*RIt);
2531
continue;
2532
}
2533
2534
// Only keep this location definition if it is not fully eclipsed by
2535
// other definitions in this wedge that come after it
2536
2537
// Inert the bytes the location definition defines.
2538
auto InsertResult =
2539
VariableDefinedBytes.try_emplace(Aggr, BitVector(SizeInBytes));
2540
bool FirstDefinition = InsertResult.second;
2541
BitVector &DefinedBytes = InsertResult.first->second;
2542
2543
DIExpression::FragmentInfo Fragment =
2544
RIt->Expr->getFragmentInfo().value_or(
2545
DIExpression::FragmentInfo(SizeInBits, 0));
2546
bool InvalidFragment = Fragment.endInBits() > SizeInBits;
2547
uint64_t StartInBytes = Fragment.startInBits() / 8;
2548
uint64_t EndInBytes = divideCeil(Fragment.endInBits(), 8);
2549
2550
// If this defines any previously undefined bytes, keep it.
2551
if (FirstDefinition || InvalidFragment ||
2552
DefinedBytes.find_first_unset_in(StartInBytes, EndInBytes) != -1) {
2553
if (!InvalidFragment)
2554
DefinedBytes.set(StartInBytes, EndInBytes);
2555
NewDefsReversed.push_back(*RIt);
2556
continue;
2557
}
2558
2559
// Redundant def found: throw it away. Since the wedge of defs is being
2560
// rebuilt, doing nothing is the same as deleting an entry.
2561
ChangedThisWedge = true;
2562
NumDefsRemoved++;
2563
}
2564
2565
// Un-reverse the defs and replace the wedge with the pruned version.
2566
if (ChangedThisWedge) {
2567
std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
2568
FnVarLocs.setWedge(WedgePosition, std::move(NewDefsReversed));
2569
NumWedgesChanged++;
2570
Changed = true;
2571
}
2572
};
2573
HandleLocsForWedge(&I);
2574
for (DbgVariableRecord &DVR : reverse(filterDbgVars(I.getDbgRecordRange())))
2575
HandleLocsForWedge(&DVR);
2576
}
2577
2578
return Changed;
2579
}
2580
2581
/// Remove redundant location defs using a forward scan. This can remove a
2582
/// location definition that is redundant due to indicating that a variable has
2583
/// the same value as is already being indicated by an earlier def.
2584
///
2585
/// This implements removeRedundantDbgInstrsUsingForwardScan from
2586
/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2587
/// FunctionVarLocsBuilder instead of with intrinsics
2588
static bool
2589
removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
2590
FunctionVarLocsBuilder &FnVarLocs) {
2591
bool Changed = false;
2592
DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>>
2593
VariableMap;
2594
2595
// Scan over the entire block, not just over the instructions mapped by
2596
// FnVarLocs, because wedges in FnVarLocs may only be separated by debug
2597
// instructions.
2598
for (const Instruction &I : *BB) {
2599
// Get the defs that come just before this instruction.
2600
auto HandleLocsForWedge = [&](auto *WedgePosition) {
2601
const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2602
if (!Locs)
2603
return;
2604
2605
NumWedgesScanned++;
2606
bool ChangedThisWedge = false;
2607
// The new pruned set of defs.
2608
SmallVector<VarLocInfo> NewDefs;
2609
2610
// Iterate over the existing defs.
2611
for (const VarLocInfo &Loc : *Locs) {
2612
NumDefsScanned++;
2613
DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2614
std::nullopt, Loc.DL.getInlinedAt());
2615
auto VMI = VariableMap.find(Key);
2616
2617
// Update the map if we found a new value/expression describing the
2618
// variable, or if the variable wasn't mapped already.
2619
if (VMI == VariableMap.end() || VMI->second.first != Loc.Values ||
2620
VMI->second.second != Loc.Expr) {
2621
VariableMap[Key] = {Loc.Values, Loc.Expr};
2622
NewDefs.push_back(Loc);
2623
continue;
2624
}
2625
2626
// Did not insert this Loc, which is the same as removing it.
2627
ChangedThisWedge = true;
2628
NumDefsRemoved++;
2629
}
2630
2631
// Replace the existing wedge with the pruned version.
2632
if (ChangedThisWedge) {
2633
FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2634
NumWedgesChanged++;
2635
Changed = true;
2636
}
2637
};
2638
2639
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2640
HandleLocsForWedge(&DVR);
2641
HandleLocsForWedge(&I);
2642
}
2643
2644
return Changed;
2645
}
2646
2647
static bool
2648
removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
2649
FunctionVarLocsBuilder &FnVarLocs) {
2650
assert(BB->isEntryBlock());
2651
// Do extra work to ensure that we remove semantically unimportant undefs.
2652
//
2653
// This is to work around the fact that SelectionDAG will hoist dbg.values
2654
// using argument values to the top of the entry block. That can move arg
2655
// dbg.values before undef and constant dbg.values which they previously
2656
// followed. The easiest thing to do is to just try to feed SelectionDAG
2657
// input it's happy with.
2658
//
2659
// Map of {Variable x: Fragments y} where the fragments y of variable x have
2660
// have at least one non-undef location defined already. Don't use directly,
2661
// instead call DefineBits and HasDefinedBits.
2662
SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
2663
VarsWithDef;
2664
// Specify that V (a fragment of A) has a non-undef location.
2665
auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2666
VarsWithDef[A].insert(V.getFragmentOrDefault());
2667
};
2668
// Return true if a non-undef location has been defined for V (a fragment of
2669
// A). Doesn't imply that the location is currently non-undef, just that a
2670
// non-undef location has been seen previously.
2671
auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2672
auto FragsIt = VarsWithDef.find(A);
2673
if (FragsIt == VarsWithDef.end())
2674
return false;
2675
return llvm::any_of(FragsIt->second, [V](auto Frag) {
2676
return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
2677
});
2678
};
2679
2680
bool Changed = false;
2681
DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
2682
2683
// Scan over the entire block, not just over the instructions mapped by
2684
// FnVarLocs, because wedges in FnVarLocs may only be separated by debug
2685
// instructions.
2686
for (const Instruction &I : *BB) {
2687
// Get the defs that come just before this instruction.
2688
auto HandleLocsForWedge = [&](auto *WedgePosition) {
2689
const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2690
if (!Locs)
2691
return;
2692
2693
NumWedgesScanned++;
2694
bool ChangedThisWedge = false;
2695
// The new pruned set of defs.
2696
SmallVector<VarLocInfo> NewDefs;
2697
2698
// Iterate over the existing defs.
2699
for (const VarLocInfo &Loc : *Locs) {
2700
NumDefsScanned++;
2701
DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2702
Loc.DL.getInlinedAt()};
2703
DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
2704
2705
// Remove undef entries that are encountered before any non-undef
2706
// intrinsics from the entry block.
2707
if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) {
2708
// Did not insert this Loc, which is the same as removing it.
2709
NumDefsRemoved++;
2710
ChangedThisWedge = true;
2711
continue;
2712
}
2713
2714
DefineBits(Aggr, Var);
2715
NewDefs.push_back(Loc);
2716
}
2717
2718
// Replace the existing wedge with the pruned version.
2719
if (ChangedThisWedge) {
2720
FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2721
NumWedgesChanged++;
2722
Changed = true;
2723
}
2724
};
2725
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2726
HandleLocsForWedge(&DVR);
2727
HandleLocsForWedge(&I);
2728
}
2729
2730
return Changed;
2731
}
2732
2733
static bool removeRedundantDbgLocs(const BasicBlock *BB,
2734
FunctionVarLocsBuilder &FnVarLocs) {
2735
bool MadeChanges = false;
2736
MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
2737
if (BB->isEntryBlock())
2738
MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
2739
MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
2740
2741
if (MadeChanges)
2742
LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
2743
<< "\n");
2744
return MadeChanges;
2745
}
2746
2747
static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
2748
DenseSet<DebugAggregate> Result;
2749
for (auto &BB : Fn) {
2750
for (auto &I : BB) {
2751
// Any variable linked to an instruction is considered
2752
// interesting. Ideally we only need to check Allocas, however, a
2753
// DIAssignID might get dropped from an alloca but not stores. In that
2754
// case, we need to consider the variable interesting for NFC behaviour
2755
// with this change. TODO: Consider only looking at allocas.
2756
for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
2757
Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
2758
}
2759
for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(&I)) {
2760
Result.insert({DVR->getVariable(), DVR->getDebugLoc().getInlinedAt()});
2761
}
2762
}
2763
}
2764
return Result;
2765
}
2766
2767
static void analyzeFunction(Function &Fn, const DataLayout &Layout,
2768
FunctionVarLocsBuilder *FnVarLocs) {
2769
// The analysis will generate location definitions for all variables, but we
2770
// only need to perform a dataflow on the set of variables which have a stack
2771
// slot. Find those now.
2772
DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
2773
2774
bool Changed = false;
2775
2776
// Use a scope block to clean up AssignmentTrackingLowering before running
2777
// MemLocFragmentFill to reduce peak memory consumption.
2778
{
2779
AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
2780
Changed = Pass.run(FnVarLocs);
2781
}
2782
2783
if (Changed) {
2784
MemLocFragmentFill Pass(Fn, &VarsWithStackSlot,
2785
shouldCoalesceFragments(Fn));
2786
Pass.run(FnVarLocs);
2787
2788
// Remove redundant entries. As well as reducing memory consumption and
2789
// avoiding waiting cycles later by burning some now, this has another
2790
// important job. That is to work around some SelectionDAG quirks. See
2791
// removeRedundantDbgLocsUsingForwardScan comments for more info on that.
2792
for (auto &BB : Fn)
2793
removeRedundantDbgLocs(&BB, *FnVarLocs);
2794
}
2795
}
2796
2797
FunctionVarLocs
2798
DebugAssignmentTrackingAnalysis::run(Function &F,
2799
FunctionAnalysisManager &FAM) {
2800
if (!isAssignmentTrackingEnabled(*F.getParent()))
2801
return FunctionVarLocs();
2802
2803
auto &DL = F.getDataLayout();
2804
2805
FunctionVarLocsBuilder Builder;
2806
analyzeFunction(F, DL, &Builder);
2807
2808
// Save these results.
2809
FunctionVarLocs Results;
2810
Results.init(Builder);
2811
return Results;
2812
}
2813
2814
AnalysisKey DebugAssignmentTrackingAnalysis::Key;
2815
2816
PreservedAnalyses
2817
DebugAssignmentTrackingPrinterPass::run(Function &F,
2818
FunctionAnalysisManager &FAM) {
2819
FAM.getResult<DebugAssignmentTrackingAnalysis>(F).print(OS, F);
2820
return PreservedAnalyses::all();
2821
}
2822
2823
bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
2824
if (!isAssignmentTrackingEnabled(*F.getParent()))
2825
return false;
2826
2827
LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
2828
<< "\n");
2829
auto DL = std::make_unique<DataLayout>(F.getParent());
2830
2831
// Clear previous results.
2832
Results->clear();
2833
2834
FunctionVarLocsBuilder Builder;
2835
analyzeFunction(F, *DL.get(), &Builder);
2836
2837
// Save these results.
2838
Results->init(Builder);
2839
2840
if (PrintResults && isFunctionInPrintList(F.getName()))
2841
Results->print(errs(), F);
2842
2843
// Return false because this pass does not modify the function.
2844
return false;
2845
}
2846
2847
AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
2848
: FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
2849
2850
char AssignmentTrackingAnalysis::ID = 0;
2851
2852
INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
2853
"Assignment Tracking Analysis", false, true)
2854
2855