Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp
35234 views
1
//===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains a pass (at IR level) to replace atomic instructions with
10
// __atomic_* library calls, or target specific instruction which implement the
11
// same semantics in a way which better fits the target backend. This can
12
// include the use of (intrinsic-based) load-linked/store-conditional loops,
13
// AtomicCmpXchg, or type coercions.
14
//
15
//===----------------------------------------------------------------------===//
16
17
#include "llvm/ADT/ArrayRef.h"
18
#include "llvm/ADT/STLFunctionalExtras.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/Analysis/InstSimplifyFolder.h"
21
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
22
#include "llvm/CodeGen/AtomicExpand.h"
23
#include "llvm/CodeGen/AtomicExpandUtils.h"
24
#include "llvm/CodeGen/RuntimeLibcallUtil.h"
25
#include "llvm/CodeGen/TargetLowering.h"
26
#include "llvm/CodeGen/TargetPassConfig.h"
27
#include "llvm/CodeGen/TargetSubtargetInfo.h"
28
#include "llvm/CodeGen/ValueTypes.h"
29
#include "llvm/IR/Attributes.h"
30
#include "llvm/IR/BasicBlock.h"
31
#include "llvm/IR/Constant.h"
32
#include "llvm/IR/Constants.h"
33
#include "llvm/IR/DataLayout.h"
34
#include "llvm/IR/DerivedTypes.h"
35
#include "llvm/IR/Function.h"
36
#include "llvm/IR/IRBuilder.h"
37
#include "llvm/IR/InstIterator.h"
38
#include "llvm/IR/Instruction.h"
39
#include "llvm/IR/Instructions.h"
40
#include "llvm/IR/MDBuilder.h"
41
#include "llvm/IR/MemoryModelRelaxationAnnotations.h"
42
#include "llvm/IR/Module.h"
43
#include "llvm/IR/Type.h"
44
#include "llvm/IR/User.h"
45
#include "llvm/IR/Value.h"
46
#include "llvm/InitializePasses.h"
47
#include "llvm/Pass.h"
48
#include "llvm/Support/AtomicOrdering.h"
49
#include "llvm/Support/Casting.h"
50
#include "llvm/Support/Debug.h"
51
#include "llvm/Support/ErrorHandling.h"
52
#include "llvm/Support/raw_ostream.h"
53
#include "llvm/Target/TargetMachine.h"
54
#include "llvm/Transforms/Utils/LowerAtomic.h"
55
#include <cassert>
56
#include <cstdint>
57
#include <iterator>
58
59
using namespace llvm;
60
61
#define DEBUG_TYPE "atomic-expand"
62
63
namespace {
64
65
class AtomicExpandImpl {
66
const TargetLowering *TLI = nullptr;
67
const DataLayout *DL = nullptr;
68
69
private:
70
bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
71
IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
72
LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
73
bool tryExpandAtomicLoad(LoadInst *LI);
74
bool expandAtomicLoadToLL(LoadInst *LI);
75
bool expandAtomicLoadToCmpXchg(LoadInst *LI);
76
StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
77
bool tryExpandAtomicStore(StoreInst *SI);
78
void expandAtomicStore(StoreInst *SI);
79
bool tryExpandAtomicRMW(AtomicRMWInst *AI);
80
AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
81
Value *
82
insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr,
83
Align AddrAlign, AtomicOrdering MemOpOrder,
84
function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
85
void expandAtomicOpToLLSC(
86
Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign,
87
AtomicOrdering MemOpOrder,
88
function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
89
void expandPartwordAtomicRMW(
90
AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind);
91
AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
92
bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
93
void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
94
void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
95
96
AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
97
static Value *insertRMWCmpXchgLoop(
98
IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign,
99
AtomicOrdering MemOpOrder, SyncScope::ID SSID,
100
function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
101
CreateCmpXchgInstFun CreateCmpXchg);
102
bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
103
104
bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
105
bool isIdempotentRMW(AtomicRMWInst *RMWI);
106
bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
107
108
bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
109
Value *PointerOperand, Value *ValueOperand,
110
Value *CASExpected, AtomicOrdering Ordering,
111
AtomicOrdering Ordering2,
112
ArrayRef<RTLIB::Libcall> Libcalls);
113
void expandAtomicLoadToLibcall(LoadInst *LI);
114
void expandAtomicStoreToLibcall(StoreInst *LI);
115
void expandAtomicRMWToLibcall(AtomicRMWInst *I);
116
void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
117
118
friend bool
119
llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
120
CreateCmpXchgInstFun CreateCmpXchg);
121
122
public:
123
bool run(Function &F, const TargetMachine *TM);
124
};
125
126
class AtomicExpandLegacy : public FunctionPass {
127
public:
128
static char ID; // Pass identification, replacement for typeid
129
130
AtomicExpandLegacy() : FunctionPass(ID) {
131
initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry());
132
}
133
134
bool runOnFunction(Function &F) override;
135
};
136
137
// IRBuilder to be used for replacement atomic instructions.
138
struct ReplacementIRBuilder
139
: IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> {
140
MDNode *MMRAMD = nullptr;
141
142
// Preserves the DebugLoc from I, and preserves still valid metadata.
143
// Enable StrictFP builder mode when appropriate.
144
explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL)
145
: IRBuilder(I->getContext(), DL,
146
IRBuilderCallbackInserter(
147
[this](Instruction *I) { addMMRAMD(I); })) {
148
SetInsertPoint(I);
149
this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections});
150
if (BB->getParent()->getAttributes().hasFnAttr(Attribute::StrictFP))
151
this->setIsFPConstrained(true);
152
153
MMRAMD = I->getMetadata(LLVMContext::MD_mmra);
154
}
155
156
void addMMRAMD(Instruction *I) {
157
if (canInstructionHaveMMRAs(*I))
158
I->setMetadata(LLVMContext::MD_mmra, MMRAMD);
159
}
160
};
161
162
} // end anonymous namespace
163
164
char AtomicExpandLegacy::ID = 0;
165
166
char &llvm::AtomicExpandID = AtomicExpandLegacy::ID;
167
168
INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE,
169
"Expand Atomic instructions", false, false)
170
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
171
INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE,
172
"Expand Atomic instructions", false, false)
173
174
// Helper functions to retrieve the size of atomic instructions.
175
static unsigned getAtomicOpSize(LoadInst *LI) {
176
const DataLayout &DL = LI->getDataLayout();
177
return DL.getTypeStoreSize(LI->getType());
178
}
179
180
static unsigned getAtomicOpSize(StoreInst *SI) {
181
const DataLayout &DL = SI->getDataLayout();
182
return DL.getTypeStoreSize(SI->getValueOperand()->getType());
183
}
184
185
static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
186
const DataLayout &DL = RMWI->getDataLayout();
187
return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
188
}
189
190
static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
191
const DataLayout &DL = CASI->getDataLayout();
192
return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
193
}
194
195
// Determine if a particular atomic operation has a supported size,
196
// and is of appropriate alignment, to be passed through for target
197
// lowering. (Versus turning into a __atomic libcall)
198
template <typename Inst>
199
static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
200
unsigned Size = getAtomicOpSize(I);
201
Align Alignment = I->getAlign();
202
return Alignment >= Size &&
203
Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
204
}
205
206
bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) {
207
const auto *Subtarget = TM->getSubtargetImpl(F);
208
if (!Subtarget->enableAtomicExpand())
209
return false;
210
TLI = Subtarget->getTargetLowering();
211
DL = &F.getDataLayout();
212
213
SmallVector<Instruction *, 1> AtomicInsts;
214
215
// Changing control-flow while iterating through it is a bad idea, so gather a
216
// list of all atomic instructions before we start.
217
for (Instruction &I : instructions(F))
218
if (I.isAtomic() && !isa<FenceInst>(&I))
219
AtomicInsts.push_back(&I);
220
221
bool MadeChange = false;
222
for (auto *I : AtomicInsts) {
223
auto LI = dyn_cast<LoadInst>(I);
224
auto SI = dyn_cast<StoreInst>(I);
225
auto RMWI = dyn_cast<AtomicRMWInst>(I);
226
auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
227
assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
228
229
// If the Size/Alignment is not supported, replace with a libcall.
230
if (LI) {
231
if (!atomicSizeSupported(TLI, LI)) {
232
expandAtomicLoadToLibcall(LI);
233
MadeChange = true;
234
continue;
235
}
236
} else if (SI) {
237
if (!atomicSizeSupported(TLI, SI)) {
238
expandAtomicStoreToLibcall(SI);
239
MadeChange = true;
240
continue;
241
}
242
} else if (RMWI) {
243
if (!atomicSizeSupported(TLI, RMWI)) {
244
expandAtomicRMWToLibcall(RMWI);
245
MadeChange = true;
246
continue;
247
}
248
} else if (CASI) {
249
if (!atomicSizeSupported(TLI, CASI)) {
250
expandAtomicCASToLibcall(CASI);
251
MadeChange = true;
252
continue;
253
}
254
}
255
256
if (LI && TLI->shouldCastAtomicLoadInIR(LI) ==
257
TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
258
I = LI = convertAtomicLoadToIntegerType(LI);
259
MadeChange = true;
260
} else if (SI &&
261
TLI->shouldCastAtomicStoreInIR(SI) ==
262
TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
263
I = SI = convertAtomicStoreToIntegerType(SI);
264
MadeChange = true;
265
} else if (RMWI &&
266
TLI->shouldCastAtomicRMWIInIR(RMWI) ==
267
TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
268
I = RMWI = convertAtomicXchgToIntegerType(RMWI);
269
MadeChange = true;
270
} else if (CASI) {
271
// TODO: when we're ready to make the change at the IR level, we can
272
// extend convertCmpXchgToInteger for floating point too.
273
if (CASI->getCompareOperand()->getType()->isPointerTy()) {
274
// TODO: add a TLI hook to control this so that each target can
275
// convert to lowering the original type one at a time.
276
I = CASI = convertCmpXchgToIntegerType(CASI);
277
MadeChange = true;
278
}
279
}
280
281
if (TLI->shouldInsertFencesForAtomic(I)) {
282
auto FenceOrdering = AtomicOrdering::Monotonic;
283
if (LI && isAcquireOrStronger(LI->getOrdering())) {
284
FenceOrdering = LI->getOrdering();
285
LI->setOrdering(AtomicOrdering::Monotonic);
286
} else if (SI && isReleaseOrStronger(SI->getOrdering())) {
287
FenceOrdering = SI->getOrdering();
288
SI->setOrdering(AtomicOrdering::Monotonic);
289
} else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
290
isAcquireOrStronger(RMWI->getOrdering()))) {
291
FenceOrdering = RMWI->getOrdering();
292
RMWI->setOrdering(AtomicOrdering::Monotonic);
293
} else if (CASI &&
294
TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
295
TargetLoweringBase::AtomicExpansionKind::None &&
296
(isReleaseOrStronger(CASI->getSuccessOrdering()) ||
297
isAcquireOrStronger(CASI->getSuccessOrdering()) ||
298
isAcquireOrStronger(CASI->getFailureOrdering()))) {
299
// If a compare and swap is lowered to LL/SC, we can do smarter fence
300
// insertion, with a stronger one on the success path than on the
301
// failure path. As a result, fence insertion is directly done by
302
// expandAtomicCmpXchg in that case.
303
FenceOrdering = CASI->getMergedOrdering();
304
CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
305
CASI->setFailureOrdering(AtomicOrdering::Monotonic);
306
}
307
308
if (FenceOrdering != AtomicOrdering::Monotonic) {
309
MadeChange |= bracketInstWithFences(I, FenceOrdering);
310
}
311
} else if (I->hasAtomicStore() &&
312
TLI->shouldInsertTrailingFenceForAtomicStore(I)) {
313
auto FenceOrdering = AtomicOrdering::Monotonic;
314
if (SI)
315
FenceOrdering = SI->getOrdering();
316
else if (RMWI)
317
FenceOrdering = RMWI->getOrdering();
318
else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) !=
319
TargetLoweringBase::AtomicExpansionKind::LLSC)
320
// LLSC is handled in expandAtomicCmpXchg().
321
FenceOrdering = CASI->getSuccessOrdering();
322
323
IRBuilder Builder(I);
324
if (auto TrailingFence =
325
TLI->emitTrailingFence(Builder, I, FenceOrdering)) {
326
TrailingFence->moveAfter(I);
327
MadeChange = true;
328
}
329
}
330
331
if (LI)
332
MadeChange |= tryExpandAtomicLoad(LI);
333
else if (SI)
334
MadeChange |= tryExpandAtomicStore(SI);
335
else if (RMWI) {
336
// There are two different ways of expanding RMW instructions:
337
// - into a load if it is idempotent
338
// - into a Cmpxchg/LL-SC loop otherwise
339
// we try them in that order.
340
341
if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
342
MadeChange = true;
343
} else {
344
MadeChange |= tryExpandAtomicRMW(RMWI);
345
}
346
} else if (CASI)
347
MadeChange |= tryExpandAtomicCmpXchg(CASI);
348
}
349
return MadeChange;
350
}
351
352
bool AtomicExpandLegacy::runOnFunction(Function &F) {
353
354
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
355
if (!TPC)
356
return false;
357
auto *TM = &TPC->getTM<TargetMachine>();
358
AtomicExpandImpl AE;
359
return AE.run(F, TM);
360
}
361
362
FunctionPass *llvm::createAtomicExpandLegacyPass() {
363
return new AtomicExpandLegacy();
364
}
365
366
PreservedAnalyses AtomicExpandPass::run(Function &F,
367
FunctionAnalysisManager &AM) {
368
AtomicExpandImpl AE;
369
370
bool Changed = AE.run(F, TM);
371
if (!Changed)
372
return PreservedAnalyses::all();
373
374
return PreservedAnalyses::none();
375
}
376
377
bool AtomicExpandImpl::bracketInstWithFences(Instruction *I,
378
AtomicOrdering Order) {
379
ReplacementIRBuilder Builder(I, *DL);
380
381
auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
382
383
auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
384
// We have a guard here because not every atomic operation generates a
385
// trailing fence.
386
if (TrailingFence)
387
TrailingFence->moveAfter(I);
388
389
return (LeadingFence || TrailingFence);
390
}
391
392
/// Get the iX type with the same bitwidth as T.
393
IntegerType *
394
AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) {
395
EVT VT = TLI->getMemValueType(DL, T);
396
unsigned BitWidth = VT.getStoreSizeInBits();
397
assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
398
return IntegerType::get(T->getContext(), BitWidth);
399
}
400
401
/// Convert an atomic load of a non-integral type to an integer load of the
402
/// equivalent bitwidth. See the function comment on
403
/// convertAtomicStoreToIntegerType for background.
404
LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) {
405
auto *M = LI->getModule();
406
Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout());
407
408
ReplacementIRBuilder Builder(LI, *DL);
409
410
Value *Addr = LI->getPointerOperand();
411
412
auto *NewLI = Builder.CreateLoad(NewTy, Addr);
413
NewLI->setAlignment(LI->getAlign());
414
NewLI->setVolatile(LI->isVolatile());
415
NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
416
LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
417
418
Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
419
LI->replaceAllUsesWith(NewVal);
420
LI->eraseFromParent();
421
return NewLI;
422
}
423
424
AtomicRMWInst *
425
AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
426
auto *M = RMWI->getModule();
427
Type *NewTy =
428
getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
429
430
ReplacementIRBuilder Builder(RMWI, *DL);
431
432
Value *Addr = RMWI->getPointerOperand();
433
Value *Val = RMWI->getValOperand();
434
Value *NewVal = Val->getType()->isPointerTy()
435
? Builder.CreatePtrToInt(Val, NewTy)
436
: Builder.CreateBitCast(Val, NewTy);
437
438
auto *NewRMWI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal,
439
RMWI->getAlign(), RMWI->getOrdering(),
440
RMWI->getSyncScopeID());
441
NewRMWI->setVolatile(RMWI->isVolatile());
442
LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n");
443
444
Value *NewRVal = RMWI->getType()->isPointerTy()
445
? Builder.CreateIntToPtr(NewRMWI, RMWI->getType())
446
: Builder.CreateBitCast(NewRMWI, RMWI->getType());
447
RMWI->replaceAllUsesWith(NewRVal);
448
RMWI->eraseFromParent();
449
return NewRMWI;
450
}
451
452
bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) {
453
switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
454
case TargetLoweringBase::AtomicExpansionKind::None:
455
return false;
456
case TargetLoweringBase::AtomicExpansionKind::LLSC:
457
expandAtomicOpToLLSC(
458
LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
459
LI->getOrdering(),
460
[](IRBuilderBase &Builder, Value *Loaded) { return Loaded; });
461
return true;
462
case TargetLoweringBase::AtomicExpansionKind::LLOnly:
463
return expandAtomicLoadToLL(LI);
464
case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
465
return expandAtomicLoadToCmpXchg(LI);
466
case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
467
LI->setAtomic(AtomicOrdering::NotAtomic);
468
return true;
469
default:
470
llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
471
}
472
}
473
474
bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) {
475
switch (TLI->shouldExpandAtomicStoreInIR(SI)) {
476
case TargetLoweringBase::AtomicExpansionKind::None:
477
return false;
478
case TargetLoweringBase::AtomicExpansionKind::Expand:
479
expandAtomicStore(SI);
480
return true;
481
case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
482
SI->setAtomic(AtomicOrdering::NotAtomic);
483
return true;
484
default:
485
llvm_unreachable("Unhandled case in tryExpandAtomicStore");
486
}
487
}
488
489
bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) {
490
ReplacementIRBuilder Builder(LI, *DL);
491
492
// On some architectures, load-linked instructions are atomic for larger
493
// sizes than normal loads. For example, the only 64-bit load guaranteed
494
// to be single-copy atomic by ARM is an ldrexd (A3.5.3).
495
Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
496
LI->getPointerOperand(), LI->getOrdering());
497
TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
498
499
LI->replaceAllUsesWith(Val);
500
LI->eraseFromParent();
501
502
return true;
503
}
504
505
bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) {
506
ReplacementIRBuilder Builder(LI, *DL);
507
AtomicOrdering Order = LI->getOrdering();
508
if (Order == AtomicOrdering::Unordered)
509
Order = AtomicOrdering::Monotonic;
510
511
Value *Addr = LI->getPointerOperand();
512
Type *Ty = LI->getType();
513
Constant *DummyVal = Constant::getNullValue(Ty);
514
515
Value *Pair = Builder.CreateAtomicCmpXchg(
516
Addr, DummyVal, DummyVal, LI->getAlign(), Order,
517
AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
518
Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
519
520
LI->replaceAllUsesWith(Loaded);
521
LI->eraseFromParent();
522
523
return true;
524
}
525
526
/// Convert an atomic store of a non-integral type to an integer store of the
527
/// equivalent bitwidth. We used to not support floating point or vector
528
/// atomics in the IR at all. The backends learned to deal with the bitcast
529
/// idiom because that was the only way of expressing the notion of a atomic
530
/// float or vector store. The long term plan is to teach each backend to
531
/// instruction select from the original atomic store, but as a migration
532
/// mechanism, we convert back to the old format which the backends understand.
533
/// Each backend will need individual work to recognize the new format.
534
StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) {
535
ReplacementIRBuilder Builder(SI, *DL);
536
auto *M = SI->getModule();
537
Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
538
M->getDataLayout());
539
Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
540
541
Value *Addr = SI->getPointerOperand();
542
543
StoreInst *NewSI = Builder.CreateStore(NewVal, Addr);
544
NewSI->setAlignment(SI->getAlign());
545
NewSI->setVolatile(SI->isVolatile());
546
NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
547
LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
548
SI->eraseFromParent();
549
return NewSI;
550
}
551
552
void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) {
553
// This function is only called on atomic stores that are too large to be
554
// atomic if implemented as a native store. So we replace them by an
555
// atomic swap, that can be implemented for example as a ldrex/strex on ARM
556
// or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
557
// It is the responsibility of the target to only signal expansion via
558
// shouldExpandAtomicRMW in cases where this is required and possible.
559
ReplacementIRBuilder Builder(SI, *DL);
560
AtomicOrdering Ordering = SI->getOrdering();
561
assert(Ordering != AtomicOrdering::NotAtomic);
562
AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered
563
? AtomicOrdering::Monotonic
564
: Ordering;
565
AtomicRMWInst *AI = Builder.CreateAtomicRMW(
566
AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
567
SI->getAlign(), RMWOrdering);
568
SI->eraseFromParent();
569
570
// Now we have an appropriate swap instruction, lower it as usual.
571
tryExpandAtomicRMW(AI);
572
}
573
574
static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr,
575
Value *Loaded, Value *NewVal, Align AddrAlign,
576
AtomicOrdering MemOpOrder, SyncScope::ID SSID,
577
Value *&Success, Value *&NewLoaded) {
578
Type *OrigTy = NewVal->getType();
579
580
// This code can go away when cmpxchg supports FP and vector types.
581
assert(!OrigTy->isPointerTy());
582
bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy();
583
if (NeedBitcast) {
584
IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
585
NewVal = Builder.CreateBitCast(NewVal, IntTy);
586
Loaded = Builder.CreateBitCast(Loaded, IntTy);
587
}
588
589
Value *Pair = Builder.CreateAtomicCmpXchg(
590
Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
591
AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
592
Success = Builder.CreateExtractValue(Pair, 1, "success");
593
NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
594
595
if (NeedBitcast)
596
NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
597
}
598
599
bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) {
600
LLVMContext &Ctx = AI->getModule()->getContext();
601
TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI);
602
switch (Kind) {
603
case TargetLoweringBase::AtomicExpansionKind::None:
604
return false;
605
case TargetLoweringBase::AtomicExpansionKind::LLSC: {
606
unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
607
unsigned ValueSize = getAtomicOpSize(AI);
608
if (ValueSize < MinCASSize) {
609
expandPartwordAtomicRMW(AI,
610
TargetLoweringBase::AtomicExpansionKind::LLSC);
611
} else {
612
auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) {
613
return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
614
AI->getValOperand());
615
};
616
expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
617
AI->getAlign(), AI->getOrdering(), PerformOp);
618
}
619
return true;
620
}
621
case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
622
unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
623
unsigned ValueSize = getAtomicOpSize(AI);
624
if (ValueSize < MinCASSize) {
625
expandPartwordAtomicRMW(AI,
626
TargetLoweringBase::AtomicExpansionKind::CmpXChg);
627
} else {
628
SmallVector<StringRef> SSNs;
629
Ctx.getSyncScopeNames(SSNs);
630
auto MemScope = SSNs[AI->getSyncScopeID()].empty()
631
? "system"
632
: SSNs[AI->getSyncScopeID()];
633
OptimizationRemarkEmitter ORE(AI->getFunction());
634
ORE.emit([&]() {
635
return OptimizationRemark(DEBUG_TYPE, "Passed", AI)
636
<< "A compare and swap loop was generated for an atomic "
637
<< AI->getOperationName(AI->getOperation()) << " operation at "
638
<< MemScope << " memory scope";
639
});
640
expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
641
}
642
return true;
643
}
644
case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
645
unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
646
unsigned ValueSize = getAtomicOpSize(AI);
647
if (ValueSize < MinCASSize) {
648
AtomicRMWInst::BinOp Op = AI->getOperation();
649
// Widen And/Or/Xor and give the target another chance at expanding it.
650
if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
651
Op == AtomicRMWInst::And) {
652
tryExpandAtomicRMW(widenPartwordAtomicRMW(AI));
653
return true;
654
}
655
}
656
expandAtomicRMWToMaskedIntrinsic(AI);
657
return true;
658
}
659
case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: {
660
TLI->emitBitTestAtomicRMWIntrinsic(AI);
661
return true;
662
}
663
case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: {
664
TLI->emitCmpArithAtomicRMWIntrinsic(AI);
665
return true;
666
}
667
case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
668
return lowerAtomicRMWInst(AI);
669
case TargetLoweringBase::AtomicExpansionKind::Expand:
670
TLI->emitExpandAtomicRMW(AI);
671
return true;
672
default:
673
llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
674
}
675
}
676
677
namespace {
678
679
struct PartwordMaskValues {
680
// These three fields are guaranteed to be set by createMaskInstrs.
681
Type *WordType = nullptr;
682
Type *ValueType = nullptr;
683
Type *IntValueType = nullptr;
684
Value *AlignedAddr = nullptr;
685
Align AlignedAddrAlignment;
686
// The remaining fields can be null.
687
Value *ShiftAmt = nullptr;
688
Value *Mask = nullptr;
689
Value *Inv_Mask = nullptr;
690
};
691
692
LLVM_ATTRIBUTE_UNUSED
693
raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
694
auto PrintObj = [&O](auto *V) {
695
if (V)
696
O << *V;
697
else
698
O << "nullptr";
699
O << '\n';
700
};
701
O << "PartwordMaskValues {\n";
702
O << " WordType: ";
703
PrintObj(PMV.WordType);
704
O << " ValueType: ";
705
PrintObj(PMV.ValueType);
706
O << " AlignedAddr: ";
707
PrintObj(PMV.AlignedAddr);
708
O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
709
O << " ShiftAmt: ";
710
PrintObj(PMV.ShiftAmt);
711
O << " Mask: ";
712
PrintObj(PMV.Mask);
713
O << " Inv_Mask: ";
714
PrintObj(PMV.Inv_Mask);
715
O << "}\n";
716
return O;
717
}
718
719
} // end anonymous namespace
720
721
/// This is a helper function which builds instructions to provide
722
/// values necessary for partword atomic operations. It takes an
723
/// incoming address, Addr, and ValueType, and constructs the address,
724
/// shift-amounts and masks needed to work with a larger value of size
725
/// WordSize.
726
///
727
/// AlignedAddr: Addr rounded down to a multiple of WordSize
728
///
729
/// ShiftAmt: Number of bits to right-shift a WordSize value loaded
730
/// from AlignAddr for it to have the same value as if
731
/// ValueType was loaded from Addr.
732
///
733
/// Mask: Value to mask with the value loaded from AlignAddr to
734
/// include only the part that would've been loaded from Addr.
735
///
736
/// Inv_Mask: The inverse of Mask.
737
static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder,
738
Instruction *I, Type *ValueType,
739
Value *Addr, Align AddrAlign,
740
unsigned MinWordSize) {
741
PartwordMaskValues PMV;
742
743
Module *M = I->getModule();
744
LLVMContext &Ctx = M->getContext();
745
const DataLayout &DL = M->getDataLayout();
746
unsigned ValueSize = DL.getTypeStoreSize(ValueType);
747
748
PMV.ValueType = PMV.IntValueType = ValueType;
749
if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy())
750
PMV.IntValueType =
751
Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits());
752
753
PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
754
: ValueType;
755
if (PMV.ValueType == PMV.WordType) {
756
PMV.AlignedAddr = Addr;
757
PMV.AlignedAddrAlignment = AddrAlign;
758
PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
759
PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true);
760
return PMV;
761
}
762
763
PMV.AlignedAddrAlignment = Align(MinWordSize);
764
765
assert(ValueSize < MinWordSize);
766
767
PointerType *PtrTy = cast<PointerType>(Addr->getType());
768
IntegerType *IntTy = DL.getIndexType(Ctx, PtrTy->getAddressSpace());
769
Value *PtrLSB;
770
771
if (AddrAlign < MinWordSize) {
772
PMV.AlignedAddr = Builder.CreateIntrinsic(
773
Intrinsic::ptrmask, {PtrTy, IntTy},
774
{Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr,
775
"AlignedAddr");
776
777
Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy);
778
PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
779
} else {
780
// If the alignment is high enough, the LSB are known 0.
781
PMV.AlignedAddr = Addr;
782
PtrLSB = ConstantInt::getNullValue(IntTy);
783
}
784
785
if (DL.isLittleEndian()) {
786
// turn bytes into bits
787
PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
788
} else {
789
// turn bytes into bits, and count from the other side.
790
PMV.ShiftAmt = Builder.CreateShl(
791
Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
792
}
793
794
PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
795
PMV.Mask = Builder.CreateShl(
796
ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
797
"Mask");
798
799
PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
800
801
return PMV;
802
}
803
804
static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord,
805
const PartwordMaskValues &PMV) {
806
assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
807
if (PMV.WordType == PMV.ValueType)
808
return WideWord;
809
810
Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
811
Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted");
812
return Builder.CreateBitCast(Trunc, PMV.ValueType);
813
}
814
815
static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord,
816
Value *Updated, const PartwordMaskValues &PMV) {
817
assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
818
assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
819
if (PMV.WordType == PMV.ValueType)
820
return Updated;
821
822
Updated = Builder.CreateBitCast(Updated, PMV.IntValueType);
823
824
Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
825
Value *Shift =
826
Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
827
Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
828
Value *Or = Builder.CreateOr(And, Shift, "inserted");
829
return Or;
830
}
831
832
/// Emit IR to implement a masked version of a given atomicrmw
833
/// operation. (That is, only the bits under the Mask should be
834
/// affected by the operation)
835
static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
836
IRBuilderBase &Builder, Value *Loaded,
837
Value *Shifted_Inc, Value *Inc,
838
const PartwordMaskValues &PMV) {
839
// TODO: update to use
840
// https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
841
// to merge bits from two values without requiring PMV.Inv_Mask.
842
switch (Op) {
843
case AtomicRMWInst::Xchg: {
844
Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
845
Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
846
return FinalVal;
847
}
848
case AtomicRMWInst::Or:
849
case AtomicRMWInst::Xor:
850
case AtomicRMWInst::And:
851
llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
852
case AtomicRMWInst::Add:
853
case AtomicRMWInst::Sub:
854
case AtomicRMWInst::Nand: {
855
// The other arithmetic ops need to be masked into place.
856
Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc);
857
Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
858
Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
859
Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
860
return FinalVal;
861
}
862
case AtomicRMWInst::Max:
863
case AtomicRMWInst::Min:
864
case AtomicRMWInst::UMax:
865
case AtomicRMWInst::UMin:
866
case AtomicRMWInst::FAdd:
867
case AtomicRMWInst::FSub:
868
case AtomicRMWInst::FMin:
869
case AtomicRMWInst::FMax:
870
case AtomicRMWInst::UIncWrap:
871
case AtomicRMWInst::UDecWrap: {
872
// Finally, other ops will operate on the full value, so truncate down to
873
// the original size, and expand out again after doing the
874
// operation. Bitcasts will be inserted for FP values.
875
Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
876
Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc);
877
Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
878
return FinalVal;
879
}
880
default:
881
llvm_unreachable("Unknown atomic op");
882
}
883
}
884
885
/// Expand a sub-word atomicrmw operation into an appropriate
886
/// word-sized operation.
887
///
888
/// It will create an LL/SC or cmpxchg loop, as appropriate, the same
889
/// way as a typical atomicrmw expansion. The only difference here is
890
/// that the operation inside of the loop may operate upon only a
891
/// part of the value.
892
void AtomicExpandImpl::expandPartwordAtomicRMW(
893
AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
894
// Widen And/Or/Xor and give the target another chance at expanding it.
895
AtomicRMWInst::BinOp Op = AI->getOperation();
896
if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
897
Op == AtomicRMWInst::And) {
898
tryExpandAtomicRMW(widenPartwordAtomicRMW(AI));
899
return;
900
}
901
AtomicOrdering MemOpOrder = AI->getOrdering();
902
SyncScope::ID SSID = AI->getSyncScopeID();
903
904
ReplacementIRBuilder Builder(AI, *DL);
905
906
PartwordMaskValues PMV =
907
createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
908
AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
909
910
Value *ValOperand_Shifted = nullptr;
911
if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add ||
912
Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) {
913
Value *ValOp = Builder.CreateBitCast(AI->getValOperand(), PMV.IntValueType);
914
ValOperand_Shifted =
915
Builder.CreateShl(Builder.CreateZExt(ValOp, PMV.WordType), PMV.ShiftAmt,
916
"ValOperand_Shifted");
917
}
918
919
auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) {
920
return performMaskedAtomicOp(Op, Builder, Loaded, ValOperand_Shifted,
921
AI->getValOperand(), PMV);
922
};
923
924
Value *OldResult;
925
if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
926
OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
927
PMV.AlignedAddrAlignment, MemOpOrder, SSID,
928
PerformPartwordOp, createCmpXchgInstFun);
929
} else {
930
assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
931
OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
932
PMV.AlignedAddrAlignment, MemOpOrder,
933
PerformPartwordOp);
934
}
935
936
Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
937
AI->replaceAllUsesWith(FinalOldResult);
938
AI->eraseFromParent();
939
}
940
941
/// Copy metadata that's safe to preserve when widening atomics.
942
static void copyMetadataForAtomic(Instruction &Dest,
943
const Instruction &Source) {
944
SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
945
Source.getAllMetadata(MD);
946
LLVMContext &Ctx = Dest.getContext();
947
MDBuilder MDB(Ctx);
948
949
for (auto [ID, N] : MD) {
950
switch (ID) {
951
case LLVMContext::MD_dbg:
952
case LLVMContext::MD_tbaa:
953
case LLVMContext::MD_tbaa_struct:
954
case LLVMContext::MD_alias_scope:
955
case LLVMContext::MD_noalias:
956
case LLVMContext::MD_access_group:
957
case LLVMContext::MD_mmra:
958
Dest.setMetadata(ID, N);
959
break;
960
default:
961
if (ID == Ctx.getMDKindID("amdgpu.no.remote.memory"))
962
Dest.setMetadata(ID, N);
963
else if (ID == Ctx.getMDKindID("amdgpu.no.fine.grained.memory"))
964
Dest.setMetadata(ID, N);
965
966
break;
967
}
968
}
969
}
970
971
// Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
972
AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
973
ReplacementIRBuilder Builder(AI, *DL);
974
AtomicRMWInst::BinOp Op = AI->getOperation();
975
976
assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
977
Op == AtomicRMWInst::And) &&
978
"Unable to widen operation");
979
980
PartwordMaskValues PMV =
981
createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
982
AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
983
984
Value *ValOperand_Shifted =
985
Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
986
PMV.ShiftAmt, "ValOperand_Shifted");
987
988
Value *NewOperand;
989
990
if (Op == AtomicRMWInst::And)
991
NewOperand =
992
Builder.CreateOr(ValOperand_Shifted, PMV.Inv_Mask, "AndOperand");
993
else
994
NewOperand = ValOperand_Shifted;
995
996
AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(
997
Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment,
998
AI->getOrdering(), AI->getSyncScopeID());
999
1000
copyMetadataForAtomic(*NewAI, *AI);
1001
1002
Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
1003
AI->replaceAllUsesWith(FinalOldResult);
1004
AI->eraseFromParent();
1005
return NewAI;
1006
}
1007
1008
bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
1009
// The basic idea here is that we're expanding a cmpxchg of a
1010
// smaller memory size up to a word-sized cmpxchg. To do this, we
1011
// need to add a retry-loop for strong cmpxchg, so that
1012
// modifications to other parts of the word don't cause a spurious
1013
// failure.
1014
1015
// This generates code like the following:
1016
// [[Setup mask values PMV.*]]
1017
// %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
1018
// %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
1019
// %InitLoaded = load i32* %addr
1020
// %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
1021
// br partword.cmpxchg.loop
1022
// partword.cmpxchg.loop:
1023
// %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
1024
// [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
1025
// %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
1026
// %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
1027
// %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
1028
// i32 %FullWord_NewVal success_ordering failure_ordering
1029
// %OldVal = extractvalue { i32, i1 } %NewCI, 0
1030
// %Success = extractvalue { i32, i1 } %NewCI, 1
1031
// br i1 %Success, label %partword.cmpxchg.end,
1032
// label %partword.cmpxchg.failure
1033
// partword.cmpxchg.failure:
1034
// %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
1035
// %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
1036
// br i1 %ShouldContinue, label %partword.cmpxchg.loop,
1037
// label %partword.cmpxchg.end
1038
// partword.cmpxchg.end:
1039
// %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
1040
// %FinalOldVal = trunc i32 %tmp1 to i8
1041
// %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
1042
// %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
1043
1044
Value *Addr = CI->getPointerOperand();
1045
Value *Cmp = CI->getCompareOperand();
1046
Value *NewVal = CI->getNewValOperand();
1047
1048
BasicBlock *BB = CI->getParent();
1049
Function *F = BB->getParent();
1050
ReplacementIRBuilder Builder(CI, *DL);
1051
LLVMContext &Ctx = Builder.getContext();
1052
1053
BasicBlock *EndBB =
1054
BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
1055
auto FailureBB =
1056
BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
1057
auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
1058
1059
// The split call above "helpfully" added a branch at the end of BB
1060
// (to the wrong place).
1061
std::prev(BB->end())->eraseFromParent();
1062
Builder.SetInsertPoint(BB);
1063
1064
PartwordMaskValues PMV =
1065
createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1066
CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1067
1068
// Shift the incoming values over, into the right location in the word.
1069
Value *NewVal_Shifted =
1070
Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
1071
Value *Cmp_Shifted =
1072
Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
1073
1074
// Load the entire current word, and mask into place the expected and new
1075
// values
1076
LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
1077
InitLoaded->setVolatile(CI->isVolatile());
1078
Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
1079
Builder.CreateBr(LoopBB);
1080
1081
// partword.cmpxchg.loop:
1082
Builder.SetInsertPoint(LoopBB);
1083
PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
1084
Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
1085
1086
// Mask/Or the expected and new values into place in the loaded word.
1087
Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
1088
Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
1089
AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
1090
PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
1091
CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
1092
NewCI->setVolatile(CI->isVolatile());
1093
// When we're building a strong cmpxchg, we need a loop, so you
1094
// might think we could use a weak cmpxchg inside. But, using strong
1095
// allows the below comparison for ShouldContinue, and we're
1096
// expecting the underlying cmpxchg to be a machine instruction,
1097
// which is strong anyways.
1098
NewCI->setWeak(CI->isWeak());
1099
1100
Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1101
Value *Success = Builder.CreateExtractValue(NewCI, 1);
1102
1103
if (CI->isWeak())
1104
Builder.CreateBr(EndBB);
1105
else
1106
Builder.CreateCondBr(Success, EndBB, FailureBB);
1107
1108
// partword.cmpxchg.failure:
1109
Builder.SetInsertPoint(FailureBB);
1110
// Upon failure, verify that the masked-out part of the loaded value
1111
// has been modified. If it didn't, abort the cmpxchg, since the
1112
// masked-in part must've.
1113
Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
1114
Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
1115
Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
1116
1117
// Add the second value to the phi from above
1118
Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
1119
1120
// partword.cmpxchg.end:
1121
Builder.SetInsertPoint(CI);
1122
1123
Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1124
Value *Res = PoisonValue::get(CI->getType());
1125
Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1126
Res = Builder.CreateInsertValue(Res, Success, 1);
1127
1128
CI->replaceAllUsesWith(Res);
1129
CI->eraseFromParent();
1130
return true;
1131
}
1132
1133
void AtomicExpandImpl::expandAtomicOpToLLSC(
1134
Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
1135
AtomicOrdering MemOpOrder,
1136
function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
1137
ReplacementIRBuilder Builder(I, *DL);
1138
Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
1139
MemOpOrder, PerformOp);
1140
1141
I->replaceAllUsesWith(Loaded);
1142
I->eraseFromParent();
1143
}
1144
1145
void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
1146
ReplacementIRBuilder Builder(AI, *DL);
1147
1148
PartwordMaskValues PMV =
1149
createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
1150
AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1151
1152
// The value operand must be sign-extended for signed min/max so that the
1153
// target's signed comparison instructions can be used. Otherwise, just
1154
// zero-ext.
1155
Instruction::CastOps CastOp = Instruction::ZExt;
1156
AtomicRMWInst::BinOp RMWOp = AI->getOperation();
1157
if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
1158
CastOp = Instruction::SExt;
1159
1160
Value *ValOperand_Shifted = Builder.CreateShl(
1161
Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
1162
PMV.ShiftAmt, "ValOperand_Shifted");
1163
Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
1164
Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
1165
AI->getOrdering());
1166
Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1167
AI->replaceAllUsesWith(FinalOldResult);
1168
AI->eraseFromParent();
1169
}
1170
1171
void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic(
1172
AtomicCmpXchgInst *CI) {
1173
ReplacementIRBuilder Builder(CI, *DL);
1174
1175
PartwordMaskValues PMV = createMaskInstrs(
1176
Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1177
CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1178
1179
Value *CmpVal_Shifted = Builder.CreateShl(
1180
Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1181
"CmpVal_Shifted");
1182
Value *NewVal_Shifted = Builder.CreateShl(
1183
Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1184
"NewVal_Shifted");
1185
Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1186
Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1187
CI->getMergedOrdering());
1188
Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1189
Value *Res = PoisonValue::get(CI->getType());
1190
Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1191
Value *Success = Builder.CreateICmpEQ(
1192
CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1193
Res = Builder.CreateInsertValue(Res, Success, 1);
1194
1195
CI->replaceAllUsesWith(Res);
1196
CI->eraseFromParent();
1197
}
1198
1199
Value *AtomicExpandImpl::insertRMWLLSCLoop(
1200
IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1201
AtomicOrdering MemOpOrder,
1202
function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
1203
LLVMContext &Ctx = Builder.getContext();
1204
BasicBlock *BB = Builder.GetInsertBlock();
1205
Function *F = BB->getParent();
1206
1207
assert(AddrAlign >=
1208
F->getDataLayout().getTypeStoreSize(ResultTy) &&
1209
"Expected at least natural alignment at this point.");
1210
1211
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
1212
//
1213
// The standard expansion we produce is:
1214
// [...]
1215
// atomicrmw.start:
1216
// %loaded = @load.linked(%addr)
1217
// %new = some_op iN %loaded, %incr
1218
// %stored = @store_conditional(%new, %addr)
1219
// %try_again = icmp i32 ne %stored, 0
1220
// br i1 %try_again, label %loop, label %atomicrmw.end
1221
// atomicrmw.end:
1222
// [...]
1223
BasicBlock *ExitBB =
1224
BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1225
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1226
1227
// The split call above "helpfully" added a branch at the end of BB (to the
1228
// wrong place).
1229
std::prev(BB->end())->eraseFromParent();
1230
Builder.SetInsertPoint(BB);
1231
Builder.CreateBr(LoopBB);
1232
1233
// Start the main loop block now that we've taken care of the preliminaries.
1234
Builder.SetInsertPoint(LoopBB);
1235
Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
1236
1237
Value *NewVal = PerformOp(Builder, Loaded);
1238
1239
Value *StoreSuccess =
1240
TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1241
Value *TryAgain = Builder.CreateICmpNE(
1242
StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1243
Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1244
1245
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1246
return Loaded;
1247
}
1248
1249
/// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1250
/// the equivalent bitwidth. We used to not support pointer cmpxchg in the
1251
/// IR. As a migration step, we convert back to what use to be the standard
1252
/// way to represent a pointer cmpxchg so that we can update backends one by
1253
/// one.
1254
AtomicCmpXchgInst *
1255
AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1256
auto *M = CI->getModule();
1257
Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1258
M->getDataLayout());
1259
1260
ReplacementIRBuilder Builder(CI, *DL);
1261
1262
Value *Addr = CI->getPointerOperand();
1263
1264
Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1265
Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1266
1267
auto *NewCI = Builder.CreateAtomicCmpXchg(
1268
Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1269
CI->getFailureOrdering(), CI->getSyncScopeID());
1270
NewCI->setVolatile(CI->isVolatile());
1271
NewCI->setWeak(CI->isWeak());
1272
LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1273
1274
Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1275
Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1276
1277
OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1278
1279
Value *Res = PoisonValue::get(CI->getType());
1280
Res = Builder.CreateInsertValue(Res, OldVal, 0);
1281
Res = Builder.CreateInsertValue(Res, Succ, 1);
1282
1283
CI->replaceAllUsesWith(Res);
1284
CI->eraseFromParent();
1285
return NewCI;
1286
}
1287
1288
bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1289
AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1290
AtomicOrdering FailureOrder = CI->getFailureOrdering();
1291
Value *Addr = CI->getPointerOperand();
1292
BasicBlock *BB = CI->getParent();
1293
Function *F = BB->getParent();
1294
LLVMContext &Ctx = F->getContext();
1295
// If shouldInsertFencesForAtomic() returns true, then the target does not
1296
// want to deal with memory orders, and emitLeading/TrailingFence should take
1297
// care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1298
// should preserve the ordering.
1299
bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1300
AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
1301
? AtomicOrdering::Monotonic
1302
: CI->getMergedOrdering();
1303
1304
// In implementations which use a barrier to achieve release semantics, we can
1305
// delay emitting this barrier until we know a store is actually going to be
1306
// attempted. The cost of this delay is that we need 2 copies of the block
1307
// emitting the load-linked, affecting code size.
1308
//
1309
// Ideally, this logic would be unconditional except for the minsize check
1310
// since in other cases the extra blocks naturally collapse down to the
1311
// minimal loop. Unfortunately, this puts too much stress on later
1312
// optimisations so we avoid emitting the extra logic in those cases too.
1313
bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1314
SuccessOrder != AtomicOrdering::Monotonic &&
1315
SuccessOrder != AtomicOrdering::Acquire &&
1316
!F->hasMinSize();
1317
1318
// There's no overhead for sinking the release barrier in a weak cmpxchg, so
1319
// do it even on minsize.
1320
bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1321
1322
// Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1323
//
1324
// The full expansion we produce is:
1325
// [...]
1326
// %aligned.addr = ...
1327
// cmpxchg.start:
1328
// %unreleasedload = @load.linked(%aligned.addr)
1329
// %unreleasedload.extract = extract value from %unreleasedload
1330
// %should_store = icmp eq %unreleasedload.extract, %desired
1331
// br i1 %should_store, label %cmpxchg.releasingstore,
1332
// label %cmpxchg.nostore
1333
// cmpxchg.releasingstore:
1334
// fence?
1335
// br label cmpxchg.trystore
1336
// cmpxchg.trystore:
1337
// %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1338
// [%releasedload, %cmpxchg.releasedload]
1339
// %updated.new = insert %new into %loaded.trystore
1340
// %stored = @store_conditional(%updated.new, %aligned.addr)
1341
// %success = icmp eq i32 %stored, 0
1342
// br i1 %success, label %cmpxchg.success,
1343
// label %cmpxchg.releasedload/%cmpxchg.failure
1344
// cmpxchg.releasedload:
1345
// %releasedload = @load.linked(%aligned.addr)
1346
// %releasedload.extract = extract value from %releasedload
1347
// %should_store = icmp eq %releasedload.extract, %desired
1348
// br i1 %should_store, label %cmpxchg.trystore,
1349
// label %cmpxchg.failure
1350
// cmpxchg.success:
1351
// fence?
1352
// br label %cmpxchg.end
1353
// cmpxchg.nostore:
1354
// %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1355
// [%releasedload,
1356
// %cmpxchg.releasedload/%cmpxchg.trystore]
1357
// @load_linked_fail_balance()?
1358
// br label %cmpxchg.failure
1359
// cmpxchg.failure:
1360
// fence?
1361
// br label %cmpxchg.end
1362
// cmpxchg.end:
1363
// %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1364
// [%loaded.trystore, %cmpxchg.trystore]
1365
// %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1366
// %loaded = extract value from %loaded.exit
1367
// %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1368
// %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1369
// [...]
1370
BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1371
auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1372
auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1373
auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1374
auto ReleasedLoadBB =
1375
BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1376
auto TryStoreBB =
1377
BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1378
auto ReleasingStoreBB =
1379
BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1380
auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1381
1382
ReplacementIRBuilder Builder(CI, *DL);
1383
1384
// The split call above "helpfully" added a branch at the end of BB (to the
1385
// wrong place), but we might want a fence too. It's easiest to just remove
1386
// the branch entirely.
1387
std::prev(BB->end())->eraseFromParent();
1388
Builder.SetInsertPoint(BB);
1389
if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1390
TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1391
1392
PartwordMaskValues PMV =
1393
createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1394
CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1395
Builder.CreateBr(StartBB);
1396
1397
// Start the main loop block now that we've taken care of the preliminaries.
1398
Builder.SetInsertPoint(StartBB);
1399
Value *UnreleasedLoad =
1400
TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1401
Value *UnreleasedLoadExtract =
1402
extractMaskedValue(Builder, UnreleasedLoad, PMV);
1403
Value *ShouldStore = Builder.CreateICmpEQ(
1404
UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1405
1406
// If the cmpxchg doesn't actually need any ordering when it fails, we can
1407
// jump straight past that fence instruction (if it exists).
1408
Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1409
1410
Builder.SetInsertPoint(ReleasingStoreBB);
1411
if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1412
TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1413
Builder.CreateBr(TryStoreBB);
1414
1415
Builder.SetInsertPoint(TryStoreBB);
1416
PHINode *LoadedTryStore =
1417
Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1418
LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1419
Value *NewValueInsert =
1420
insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1421
Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert,
1422
PMV.AlignedAddr, MemOpOrder);
1423
StoreSuccess = Builder.CreateICmpEQ(
1424
StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1425
BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1426
Builder.CreateCondBr(StoreSuccess, SuccessBB,
1427
CI->isWeak() ? FailureBB : RetryBB);
1428
1429
Builder.SetInsertPoint(ReleasedLoadBB);
1430
Value *SecondLoad;
1431
if (HasReleasedLoadBB) {
1432
SecondLoad =
1433
TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1434
Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1435
ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1436
CI->getCompareOperand(), "should_store");
1437
1438
// If the cmpxchg doesn't actually need any ordering when it fails, we can
1439
// jump straight past that fence instruction (if it exists).
1440
Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1441
// Update PHI node in TryStoreBB.
1442
LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1443
} else
1444
Builder.CreateUnreachable();
1445
1446
// Make sure later instructions don't get reordered with a fence if
1447
// necessary.
1448
Builder.SetInsertPoint(SuccessBB);
1449
if (ShouldInsertFencesForAtomic ||
1450
TLI->shouldInsertTrailingFenceForAtomicStore(CI))
1451
TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1452
Builder.CreateBr(ExitBB);
1453
1454
Builder.SetInsertPoint(NoStoreBB);
1455
PHINode *LoadedNoStore =
1456
Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1457
LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1458
if (HasReleasedLoadBB)
1459
LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1460
1461
// In the failing case, where we don't execute the store-conditional, the
1462
// target might want to balance out the load-linked with a dedicated
1463
// instruction (e.g., on ARM, clearing the exclusive monitor).
1464
TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1465
Builder.CreateBr(FailureBB);
1466
1467
Builder.SetInsertPoint(FailureBB);
1468
PHINode *LoadedFailure =
1469
Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1470
LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1471
if (CI->isWeak())
1472
LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1473
if (ShouldInsertFencesForAtomic)
1474
TLI->emitTrailingFence(Builder, CI, FailureOrder);
1475
Builder.CreateBr(ExitBB);
1476
1477
// Finally, we have control-flow based knowledge of whether the cmpxchg
1478
// succeeded or not. We expose this to later passes by converting any
1479
// subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1480
// PHI.
1481
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1482
PHINode *LoadedExit =
1483
Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1484
LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1485
LoadedExit->addIncoming(LoadedFailure, FailureBB);
1486
PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1487
Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1488
Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1489
1490
// This is the "exit value" from the cmpxchg expansion. It may be of
1491
// a type wider than the one in the cmpxchg instruction.
1492
Value *LoadedFull = LoadedExit;
1493
1494
Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1495
Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1496
1497
// Look for any users of the cmpxchg that are just comparing the loaded value
1498
// against the desired one, and replace them with the CFG-derived version.
1499
SmallVector<ExtractValueInst *, 2> PrunedInsts;
1500
for (auto *User : CI->users()) {
1501
ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1502
if (!EV)
1503
continue;
1504
1505
assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1506
"weird extraction from { iN, i1 }");
1507
1508
if (EV->getIndices()[0] == 0)
1509
EV->replaceAllUsesWith(Loaded);
1510
else
1511
EV->replaceAllUsesWith(Success);
1512
1513
PrunedInsts.push_back(EV);
1514
}
1515
1516
// We can remove the instructions now we're no longer iterating through them.
1517
for (auto *EV : PrunedInsts)
1518
EV->eraseFromParent();
1519
1520
if (!CI->use_empty()) {
1521
// Some use of the full struct return that we don't understand has happened,
1522
// so we've got to reconstruct it properly.
1523
Value *Res;
1524
Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0);
1525
Res = Builder.CreateInsertValue(Res, Success, 1);
1526
1527
CI->replaceAllUsesWith(Res);
1528
}
1529
1530
CI->eraseFromParent();
1531
return true;
1532
}
1533
1534
bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) {
1535
auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1536
if (!C)
1537
return false;
1538
1539
AtomicRMWInst::BinOp Op = RMWI->getOperation();
1540
switch (Op) {
1541
case AtomicRMWInst::Add:
1542
case AtomicRMWInst::Sub:
1543
case AtomicRMWInst::Or:
1544
case AtomicRMWInst::Xor:
1545
return C->isZero();
1546
case AtomicRMWInst::And:
1547
return C->isMinusOne();
1548
// FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1549
default:
1550
return false;
1551
}
1552
}
1553
1554
bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) {
1555
if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1556
tryExpandAtomicLoad(ResultingLoad);
1557
return true;
1558
}
1559
return false;
1560
}
1561
1562
Value *AtomicExpandImpl::insertRMWCmpXchgLoop(
1563
IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1564
AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1565
function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
1566
CreateCmpXchgInstFun CreateCmpXchg) {
1567
LLVMContext &Ctx = Builder.getContext();
1568
BasicBlock *BB = Builder.GetInsertBlock();
1569
Function *F = BB->getParent();
1570
1571
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
1572
//
1573
// The standard expansion we produce is:
1574
// [...]
1575
// %init_loaded = load atomic iN* %addr
1576
// br label %loop
1577
// loop:
1578
// %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1579
// %new = some_op iN %loaded, %incr
1580
// %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1581
// %new_loaded = extractvalue { iN, i1 } %pair, 0
1582
// %success = extractvalue { iN, i1 } %pair, 1
1583
// br i1 %success, label %atomicrmw.end, label %loop
1584
// atomicrmw.end:
1585
// [...]
1586
BasicBlock *ExitBB =
1587
BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1588
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1589
1590
// The split call above "helpfully" added a branch at the end of BB (to the
1591
// wrong place), but we want a load. It's easiest to just remove
1592
// the branch entirely.
1593
std::prev(BB->end())->eraseFromParent();
1594
Builder.SetInsertPoint(BB);
1595
LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1596
Builder.CreateBr(LoopBB);
1597
1598
// Start the main loop block now that we've taken care of the preliminaries.
1599
Builder.SetInsertPoint(LoopBB);
1600
PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1601
Loaded->addIncoming(InitLoaded, BB);
1602
1603
Value *NewVal = PerformOp(Builder, Loaded);
1604
1605
Value *NewLoaded = nullptr;
1606
Value *Success = nullptr;
1607
1608
CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1609
MemOpOrder == AtomicOrdering::Unordered
1610
? AtomicOrdering::Monotonic
1611
: MemOpOrder,
1612
SSID, Success, NewLoaded);
1613
assert(Success && NewLoaded);
1614
1615
Loaded->addIncoming(NewLoaded, LoopBB);
1616
1617
Builder.CreateCondBr(Success, ExitBB, LoopBB);
1618
1619
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1620
return NewLoaded;
1621
}
1622
1623
bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1624
unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1625
unsigned ValueSize = getAtomicOpSize(CI);
1626
1627
switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1628
default:
1629
llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1630
case TargetLoweringBase::AtomicExpansionKind::None:
1631
if (ValueSize < MinCASSize)
1632
return expandPartwordCmpXchg(CI);
1633
return false;
1634
case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1635
return expandAtomicCmpXchg(CI);
1636
}
1637
case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1638
expandAtomicCmpXchgToMaskedIntrinsic(CI);
1639
return true;
1640
case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
1641
return lowerAtomicCmpXchgInst(CI);
1642
}
1643
}
1644
1645
// Note: This function is exposed externally by AtomicExpandUtils.h
1646
bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1647
CreateCmpXchgInstFun CreateCmpXchg) {
1648
ReplacementIRBuilder Builder(AI, AI->getDataLayout());
1649
Builder.setIsFPConstrained(
1650
AI->getFunction()->hasFnAttribute(Attribute::StrictFP));
1651
1652
// FIXME: If FP exceptions are observable, we should force them off for the
1653
// loop for the FP atomics.
1654
Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop(
1655
Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1656
AI->getOrdering(), AI->getSyncScopeID(),
1657
[&](IRBuilderBase &Builder, Value *Loaded) {
1658
return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
1659
AI->getValOperand());
1660
},
1661
CreateCmpXchg);
1662
1663
AI->replaceAllUsesWith(Loaded);
1664
AI->eraseFromParent();
1665
return true;
1666
}
1667
1668
// In order to use one of the sized library calls such as
1669
// __atomic_fetch_add_4, the alignment must be sufficient, the size
1670
// must be one of the potentially-specialized sizes, and the value
1671
// type must actually exist in C on the target (otherwise, the
1672
// function wouldn't actually be defined.)
1673
static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1674
const DataLayout &DL) {
1675
// TODO: "LargestSize" is an approximation for "largest type that
1676
// you can express in C". It seems to be the case that int128 is
1677
// supported on all 64-bit platforms, otherwise only up to 64-bit
1678
// integers are supported. If we get this wrong, then we'll try to
1679
// call a sized libcall that doesn't actually exist. There should
1680
// really be some more reliable way in LLVM of determining integer
1681
// sizes which are valid in the target's C ABI...
1682
unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1683
return Alignment >= Size &&
1684
(Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1685
Size <= LargestSize;
1686
}
1687
1688
void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) {
1689
static const RTLIB::Libcall Libcalls[6] = {
1690
RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1691
RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1692
unsigned Size = getAtomicOpSize(I);
1693
1694
bool expanded = expandAtomicOpToLibcall(
1695
I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1696
I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1697
if (!expanded)
1698
report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1699
}
1700
1701
void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) {
1702
static const RTLIB::Libcall Libcalls[6] = {
1703
RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1704
RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1705
unsigned Size = getAtomicOpSize(I);
1706
1707
bool expanded = expandAtomicOpToLibcall(
1708
I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1709
nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1710
if (!expanded)
1711
report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1712
}
1713
1714
void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1715
static const RTLIB::Libcall Libcalls[6] = {
1716
RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1717
RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1718
RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1719
unsigned Size = getAtomicOpSize(I);
1720
1721
bool expanded = expandAtomicOpToLibcall(
1722
I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1723
I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1724
Libcalls);
1725
if (!expanded)
1726
report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1727
}
1728
1729
static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1730
static const RTLIB::Libcall LibcallsXchg[6] = {
1731
RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
1732
RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1733
RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1734
static const RTLIB::Libcall LibcallsAdd[6] = {
1735
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
1736
RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1737
RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1738
static const RTLIB::Libcall LibcallsSub[6] = {
1739
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
1740
RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1741
RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1742
static const RTLIB::Libcall LibcallsAnd[6] = {
1743
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
1744
RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1745
RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1746
static const RTLIB::Libcall LibcallsOr[6] = {
1747
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
1748
RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1749
RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1750
static const RTLIB::Libcall LibcallsXor[6] = {
1751
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
1752
RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1753
RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1754
static const RTLIB::Libcall LibcallsNand[6] = {
1755
RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
1756
RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1757
RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1758
1759
switch (Op) {
1760
case AtomicRMWInst::BAD_BINOP:
1761
llvm_unreachable("Should not have BAD_BINOP.");
1762
case AtomicRMWInst::Xchg:
1763
return ArrayRef(LibcallsXchg);
1764
case AtomicRMWInst::Add:
1765
return ArrayRef(LibcallsAdd);
1766
case AtomicRMWInst::Sub:
1767
return ArrayRef(LibcallsSub);
1768
case AtomicRMWInst::And:
1769
return ArrayRef(LibcallsAnd);
1770
case AtomicRMWInst::Or:
1771
return ArrayRef(LibcallsOr);
1772
case AtomicRMWInst::Xor:
1773
return ArrayRef(LibcallsXor);
1774
case AtomicRMWInst::Nand:
1775
return ArrayRef(LibcallsNand);
1776
case AtomicRMWInst::Max:
1777
case AtomicRMWInst::Min:
1778
case AtomicRMWInst::UMax:
1779
case AtomicRMWInst::UMin:
1780
case AtomicRMWInst::FMax:
1781
case AtomicRMWInst::FMin:
1782
case AtomicRMWInst::FAdd:
1783
case AtomicRMWInst::FSub:
1784
case AtomicRMWInst::UIncWrap:
1785
case AtomicRMWInst::UDecWrap:
1786
// No atomic libcalls are available for max/min/umax/umin.
1787
return {};
1788
}
1789
llvm_unreachable("Unexpected AtomicRMW operation.");
1790
}
1791
1792
void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1793
ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1794
1795
unsigned Size = getAtomicOpSize(I);
1796
1797
bool Success = false;
1798
if (!Libcalls.empty())
1799
Success = expandAtomicOpToLibcall(
1800
I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1801
nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1802
1803
// The expansion failed: either there were no libcalls at all for
1804
// the operation (min/max), or there were only size-specialized
1805
// libcalls (add/sub/etc) and we needed a generic. So, expand to a
1806
// CAS libcall, via a CAS loop, instead.
1807
if (!Success) {
1808
expandAtomicRMWToCmpXchg(
1809
I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded,
1810
Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1811
SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1812
// Create the CAS instruction normally...
1813
AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1814
Addr, Loaded, NewVal, Alignment, MemOpOrder,
1815
AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1816
Success = Builder.CreateExtractValue(Pair, 1, "success");
1817
NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1818
1819
// ...and then expand the CAS into a libcall.
1820
expandAtomicCASToLibcall(Pair);
1821
});
1822
}
1823
}
1824
1825
// A helper routine for the above expandAtomic*ToLibcall functions.
1826
//
1827
// 'Libcalls' contains an array of enum values for the particular
1828
// ATOMIC libcalls to be emitted. All of the other arguments besides
1829
// 'I' are extracted from the Instruction subclass by the
1830
// caller. Depending on the particular call, some will be null.
1831
bool AtomicExpandImpl::expandAtomicOpToLibcall(
1832
Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1833
Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1834
AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1835
assert(Libcalls.size() == 6);
1836
1837
LLVMContext &Ctx = I->getContext();
1838
Module *M = I->getModule();
1839
const DataLayout &DL = M->getDataLayout();
1840
IRBuilder<> Builder(I);
1841
IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1842
1843
bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1844
Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1845
1846
const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1847
1848
// TODO: the "order" argument type is "int", not int32. So
1849
// getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1850
ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1851
assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1852
Constant *OrderingVal =
1853
ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1854
Constant *Ordering2Val = nullptr;
1855
if (CASExpected) {
1856
assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1857
Ordering2Val =
1858
ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1859
}
1860
bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1861
1862
RTLIB::Libcall RTLibType;
1863
if (UseSizedLibcall) {
1864
switch (Size) {
1865
case 1:
1866
RTLibType = Libcalls[1];
1867
break;
1868
case 2:
1869
RTLibType = Libcalls[2];
1870
break;
1871
case 4:
1872
RTLibType = Libcalls[3];
1873
break;
1874
case 8:
1875
RTLibType = Libcalls[4];
1876
break;
1877
case 16:
1878
RTLibType = Libcalls[5];
1879
break;
1880
}
1881
} else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1882
RTLibType = Libcalls[0];
1883
} else {
1884
// Can't use sized function, and there's no generic for this
1885
// operation, so give up.
1886
return false;
1887
}
1888
1889
if (!TLI->getLibcallName(RTLibType)) {
1890
// This target does not implement the requested atomic libcall so give up.
1891
return false;
1892
}
1893
1894
// Build up the function call. There's two kinds. First, the sized
1895
// variants. These calls are going to be one of the following (with
1896
// N=1,2,4,8,16):
1897
// iN __atomic_load_N(iN *ptr, int ordering)
1898
// void __atomic_store_N(iN *ptr, iN val, int ordering)
1899
// iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1900
// bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1901
// int success_order, int failure_order)
1902
//
1903
// Note that these functions can be used for non-integer atomic
1904
// operations, the values just need to be bitcast to integers on the
1905
// way in and out.
1906
//
1907
// And, then, the generic variants. They look like the following:
1908
// void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1909
// void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1910
// void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1911
// int ordering)
1912
// bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1913
// void *desired, int success_order,
1914
// int failure_order)
1915
//
1916
// The different signatures are built up depending on the
1917
// 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1918
// variables.
1919
1920
AllocaInst *AllocaCASExpected = nullptr;
1921
AllocaInst *AllocaValue = nullptr;
1922
AllocaInst *AllocaResult = nullptr;
1923
1924
Type *ResultTy;
1925
SmallVector<Value *, 6> Args;
1926
AttributeList Attr;
1927
1928
// 'size' argument.
1929
if (!UseSizedLibcall) {
1930
// Note, getIntPtrType is assumed equivalent to size_t.
1931
Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1932
}
1933
1934
// 'ptr' argument.
1935
// note: This assumes all address spaces share a common libfunc
1936
// implementation and that addresses are convertable. For systems without
1937
// that property, we'd need to extend this mechanism to support AS-specific
1938
// families of atomic intrinsics.
1939
Value *PtrVal = PointerOperand;
1940
PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx));
1941
Args.push_back(PtrVal);
1942
1943
// 'expected' argument, if present.
1944
if (CASExpected) {
1945
AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1946
AllocaCASExpected->setAlignment(AllocaAlignment);
1947
Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64);
1948
Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1949
Args.push_back(AllocaCASExpected);
1950
}
1951
1952
// 'val' argument ('desired' for cas), if present.
1953
if (ValueOperand) {
1954
if (UseSizedLibcall) {
1955
Value *IntValue =
1956
Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1957
Args.push_back(IntValue);
1958
} else {
1959
AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1960
AllocaValue->setAlignment(AllocaAlignment);
1961
Builder.CreateLifetimeStart(AllocaValue, SizeVal64);
1962
Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1963
Args.push_back(AllocaValue);
1964
}
1965
}
1966
1967
// 'ret' argument.
1968
if (!CASExpected && HasResult && !UseSizedLibcall) {
1969
AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1970
AllocaResult->setAlignment(AllocaAlignment);
1971
Builder.CreateLifetimeStart(AllocaResult, SizeVal64);
1972
Args.push_back(AllocaResult);
1973
}
1974
1975
// 'ordering' ('success_order' for cas) argument.
1976
Args.push_back(OrderingVal);
1977
1978
// 'failure_order' argument, if present.
1979
if (Ordering2Val)
1980
Args.push_back(Ordering2Val);
1981
1982
// Now, the return type.
1983
if (CASExpected) {
1984
ResultTy = Type::getInt1Ty(Ctx);
1985
Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt);
1986
} else if (HasResult && UseSizedLibcall)
1987
ResultTy = SizedIntTy;
1988
else
1989
ResultTy = Type::getVoidTy(Ctx);
1990
1991
// Done with setting up arguments and return types, create the call:
1992
SmallVector<Type *, 6> ArgTys;
1993
for (Value *Arg : Args)
1994
ArgTys.push_back(Arg->getType());
1995
FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1996
FunctionCallee LibcallFn =
1997
M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1998
CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1999
Call->setAttributes(Attr);
2000
Value *Result = Call;
2001
2002
// And then, extract the results...
2003
if (ValueOperand && !UseSizedLibcall)
2004
Builder.CreateLifetimeEnd(AllocaValue, SizeVal64);
2005
2006
if (CASExpected) {
2007
// The final result from the CAS is {load of 'expected' alloca, bool result
2008
// from call}
2009
Type *FinalResultTy = I->getType();
2010
Value *V = PoisonValue::get(FinalResultTy);
2011
Value *ExpectedOut = Builder.CreateAlignedLoad(
2012
CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
2013
Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64);
2014
V = Builder.CreateInsertValue(V, ExpectedOut, 0);
2015
V = Builder.CreateInsertValue(V, Result, 1);
2016
I->replaceAllUsesWith(V);
2017
} else if (HasResult) {
2018
Value *V;
2019
if (UseSizedLibcall)
2020
V = Builder.CreateBitOrPointerCast(Result, I->getType());
2021
else {
2022
V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
2023
AllocaAlignment);
2024
Builder.CreateLifetimeEnd(AllocaResult, SizeVal64);
2025
}
2026
I->replaceAllUsesWith(V);
2027
}
2028
I->eraseFromParent();
2029
return true;
2030
}
2031
2032