Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/CodeGen/CallingConvLower.cpp
35233 views
1
//===-- CallingConvLower.cpp - Calling Conventions ------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the CCState class, used for lowering and implementing
10
// calling conventions.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/CodeGen/CallingConvLower.h"
15
#include "llvm/CodeGen/MachineFrameInfo.h"
16
#include "llvm/CodeGen/MachineFunction.h"
17
#include "llvm/CodeGen/TargetLowering.h"
18
#include "llvm/CodeGen/TargetRegisterInfo.h"
19
#include "llvm/CodeGen/TargetSubtargetInfo.h"
20
#include "llvm/MC/MCRegisterInfo.h"
21
#include "llvm/Support/Debug.h"
22
#include "llvm/Support/ErrorHandling.h"
23
#include "llvm/Support/SaveAndRestore.h"
24
#include "llvm/Support/raw_ostream.h"
25
26
using namespace llvm;
27
28
CCState::CCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
29
SmallVectorImpl<CCValAssign> &Locs, LLVMContext &Context,
30
bool NegativeOffsets)
31
: CallingConv(CC), IsVarArg(IsVarArg), MF(MF),
32
TRI(*MF.getSubtarget().getRegisterInfo()), Locs(Locs), Context(Context),
33
NegativeOffsets(NegativeOffsets) {
34
35
// No stack is used.
36
StackSize = 0;
37
38
clearByValRegsInfo();
39
UsedRegs.resize((TRI.getNumRegs()+31)/32);
40
}
41
42
/// Allocate space on the stack large enough to pass an argument by value.
43
/// The size and alignment information of the argument is encoded in
44
/// its parameter attribute.
45
void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT,
46
CCValAssign::LocInfo LocInfo, int MinSize,
47
Align MinAlign, ISD::ArgFlagsTy ArgFlags) {
48
Align Alignment = ArgFlags.getNonZeroByValAlign();
49
unsigned Size = ArgFlags.getByValSize();
50
if (MinSize > (int)Size)
51
Size = MinSize;
52
if (MinAlign > Alignment)
53
Alignment = MinAlign;
54
ensureMaxAlignment(Alignment);
55
MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Alignment);
56
Size = unsigned(alignTo(Size, MinAlign));
57
uint64_t Offset = AllocateStack(Size, Alignment);
58
addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
59
}
60
61
/// Mark a register and all of its aliases as allocated.
62
void CCState::MarkAllocated(MCPhysReg Reg) {
63
for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
64
UsedRegs[*AI / 32] |= 1 << (*AI & 31);
65
}
66
67
void CCState::MarkUnallocated(MCPhysReg Reg) {
68
for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
69
UsedRegs[*AI / 32] &= ~(1 << (*AI & 31));
70
}
71
72
bool CCState::IsShadowAllocatedReg(MCRegister Reg) const {
73
if (!isAllocated(Reg))
74
return false;
75
76
for (auto const &ValAssign : Locs)
77
if (ValAssign.isRegLoc() && TRI.regsOverlap(ValAssign.getLocReg(), Reg))
78
return false;
79
return true;
80
}
81
82
/// Analyze an array of argument values,
83
/// incorporating info about the formals into this state.
84
void
85
CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
86
CCAssignFn Fn) {
87
unsigned NumArgs = Ins.size();
88
89
for (unsigned i = 0; i != NumArgs; ++i) {
90
MVT ArgVT = Ins[i].VT;
91
ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
92
if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this))
93
report_fatal_error("unable to allocate function argument #" + Twine(i));
94
}
95
}
96
97
/// Analyze the return values of a function, returning true if the return can
98
/// be performed without sret-demotion and false otherwise.
99
bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
100
CCAssignFn Fn) {
101
// Determine which register each value should be copied into.
102
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
103
MVT VT = Outs[i].VT;
104
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
105
if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
106
return false;
107
}
108
return true;
109
}
110
111
/// Analyze the returned values of a return,
112
/// incorporating info about the result values into this state.
113
void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
114
CCAssignFn Fn) {
115
// Determine which register each value should be copied into.
116
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
117
MVT VT = Outs[i].VT;
118
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
119
if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
120
report_fatal_error("unable to allocate function return #" + Twine(i));
121
}
122
}
123
124
/// Analyze the outgoing arguments to a call,
125
/// incorporating info about the passed values into this state.
126
void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
127
CCAssignFn Fn) {
128
unsigned NumOps = Outs.size();
129
for (unsigned i = 0; i != NumOps; ++i) {
130
MVT ArgVT = Outs[i].VT;
131
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
132
if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
133
#ifndef NDEBUG
134
dbgs() << "Call operand #" << i << " has unhandled type "
135
<< ArgVT << '\n';
136
#endif
137
llvm_unreachable(nullptr);
138
}
139
}
140
}
141
142
/// Same as above except it takes vectors of types and argument flags.
143
void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
144
SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
145
CCAssignFn Fn) {
146
unsigned NumOps = ArgVTs.size();
147
for (unsigned i = 0; i != NumOps; ++i) {
148
MVT ArgVT = ArgVTs[i];
149
ISD::ArgFlagsTy ArgFlags = Flags[i];
150
if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
151
#ifndef NDEBUG
152
dbgs() << "Call operand #" << i << " has unhandled type "
153
<< ArgVT << '\n';
154
#endif
155
llvm_unreachable(nullptr);
156
}
157
}
158
}
159
160
/// Analyze the return values of a call, incorporating info about the passed
161
/// values into this state.
162
void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
163
CCAssignFn Fn) {
164
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
165
MVT VT = Ins[i].VT;
166
ISD::ArgFlagsTy Flags = Ins[i].Flags;
167
if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) {
168
#ifndef NDEBUG
169
dbgs() << "Call result #" << i << " has unhandled type "
170
<< VT << '\n';
171
#endif
172
llvm_unreachable(nullptr);
173
}
174
}
175
}
176
177
/// Same as above except it's specialized for calls that produce a single value.
178
void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) {
179
if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) {
180
#ifndef NDEBUG
181
dbgs() << "Call result has unhandled type "
182
<< VT << '\n';
183
#endif
184
llvm_unreachable(nullptr);
185
}
186
}
187
188
void CCState::ensureMaxAlignment(Align Alignment) {
189
if (!AnalyzingMustTailForwardedRegs)
190
MF.getFrameInfo().ensureMaxAlignment(Alignment);
191
}
192
193
static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) {
194
if (VT.isVector())
195
return true; // Assume -msse-regparm might be in effect.
196
if (!VT.isInteger())
197
return false;
198
return (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall);
199
}
200
201
void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs,
202
MVT VT, CCAssignFn Fn) {
203
uint64_t SavedStackSize = StackSize;
204
Align SavedMaxStackArgAlign = MaxStackArgAlign;
205
unsigned NumLocs = Locs.size();
206
207
// Set the 'inreg' flag if it is used for this calling convention.
208
ISD::ArgFlagsTy Flags;
209
if (isValueTypeInRegForCC(CallingConv, VT))
210
Flags.setInReg();
211
212
// Allocate something of this value type repeatedly until we get assigned a
213
// location in memory.
214
bool HaveRegParm;
215
do {
216
if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) {
217
#ifndef NDEBUG
218
dbgs() << "Call has unhandled type " << VT
219
<< " while computing remaining regparms\n";
220
#endif
221
llvm_unreachable(nullptr);
222
}
223
HaveRegParm = Locs.back().isRegLoc();
224
} while (HaveRegParm);
225
226
// Copy all the registers from the value locations we added.
227
assert(NumLocs < Locs.size() && "CC assignment failed to add location");
228
for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I)
229
if (Locs[I].isRegLoc())
230
Regs.push_back(MCPhysReg(Locs[I].getLocReg()));
231
232
// Clear the assigned values and stack memory. We leave the registers marked
233
// as allocated so that future queries don't return the same registers, i.e.
234
// when i64 and f64 are both passed in GPRs.
235
StackSize = SavedStackSize;
236
MaxStackArgAlign = SavedMaxStackArgAlign;
237
Locs.truncate(NumLocs);
238
}
239
240
void CCState::analyzeMustTailForwardedRegisters(
241
SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
242
CCAssignFn Fn) {
243
// Oftentimes calling conventions will not user register parameters for
244
// variadic functions, so we need to assume we're not variadic so that we get
245
// all the registers that might be used in a non-variadic call.
246
SaveAndRestore SavedVarArg(IsVarArg, false);
247
SaveAndRestore SavedMustTail(AnalyzingMustTailForwardedRegs, true);
248
249
for (MVT RegVT : RegParmTypes) {
250
SmallVector<MCPhysReg, 8> RemainingRegs;
251
getRemainingRegParmsForType(RemainingRegs, RegVT, Fn);
252
const TargetLowering *TL = MF.getSubtarget().getTargetLowering();
253
const TargetRegisterClass *RC = TL->getRegClassFor(RegVT);
254
for (MCPhysReg PReg : RemainingRegs) {
255
Register VReg = MF.addLiveIn(PReg, RC);
256
Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT));
257
}
258
}
259
}
260
261
bool CCState::resultsCompatible(CallingConv::ID CalleeCC,
262
CallingConv::ID CallerCC, MachineFunction &MF,
263
LLVMContext &C,
264
const SmallVectorImpl<ISD::InputArg> &Ins,
265
CCAssignFn CalleeFn, CCAssignFn CallerFn) {
266
if (CalleeCC == CallerCC)
267
return true;
268
SmallVector<CCValAssign, 4> RVLocs1;
269
CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C);
270
CCInfo1.AnalyzeCallResult(Ins, CalleeFn);
271
272
SmallVector<CCValAssign, 4> RVLocs2;
273
CCState CCInfo2(CallerCC, false, MF, RVLocs2, C);
274
CCInfo2.AnalyzeCallResult(Ins, CallerFn);
275
276
auto AreCompatible = [](const CCValAssign &Loc1, const CCValAssign &Loc2) {
277
assert(!Loc1.isPendingLoc() && !Loc2.isPendingLoc() &&
278
"The location must have been decided by now");
279
// Must fill the same part of their locations.
280
if (Loc1.getLocInfo() != Loc2.getLocInfo())
281
return false;
282
// Must both be in the same registers, or both in memory at the same offset.
283
if (Loc1.isRegLoc() && Loc2.isRegLoc())
284
return Loc1.getLocReg() == Loc2.getLocReg();
285
if (Loc1.isMemLoc() && Loc2.isMemLoc())
286
return Loc1.getLocMemOffset() == Loc2.getLocMemOffset();
287
llvm_unreachable("Unknown location kind");
288
};
289
290
return std::equal(RVLocs1.begin(), RVLocs1.end(), RVLocs2.begin(),
291
RVLocs2.end(), AreCompatible);
292
}
293
294