Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp
35232 views
1
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass munges the code in the input function to better prepare it for
10
// SelectionDAG-based code generation. This works around limitations in it's
11
// basic-block-at-a-time approach. It should eventually be removed.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "llvm/CodeGen/CodeGenPrepare.h"
16
#include "llvm/ADT/APInt.h"
17
#include "llvm/ADT/ArrayRef.h"
18
#include "llvm/ADT/DenseMap.h"
19
#include "llvm/ADT/MapVector.h"
20
#include "llvm/ADT/PointerIntPair.h"
21
#include "llvm/ADT/STLExtras.h"
22
#include "llvm/ADT/SmallPtrSet.h"
23
#include "llvm/ADT/SmallVector.h"
24
#include "llvm/ADT/Statistic.h"
25
#include "llvm/Analysis/BlockFrequencyInfo.h"
26
#include "llvm/Analysis/BranchProbabilityInfo.h"
27
#include "llvm/Analysis/InstructionSimplify.h"
28
#include "llvm/Analysis/LoopInfo.h"
29
#include "llvm/Analysis/ProfileSummaryInfo.h"
30
#include "llvm/Analysis/TargetLibraryInfo.h"
31
#include "llvm/Analysis/TargetTransformInfo.h"
32
#include "llvm/Analysis/ValueTracking.h"
33
#include "llvm/Analysis/VectorUtils.h"
34
#include "llvm/CodeGen/Analysis.h"
35
#include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
36
#include "llvm/CodeGen/ISDOpcodes.h"
37
#include "llvm/CodeGen/SelectionDAGNodes.h"
38
#include "llvm/CodeGen/TargetLowering.h"
39
#include "llvm/CodeGen/TargetPassConfig.h"
40
#include "llvm/CodeGen/TargetSubtargetInfo.h"
41
#include "llvm/CodeGen/ValueTypes.h"
42
#include "llvm/CodeGenTypes/MachineValueType.h"
43
#include "llvm/Config/llvm-config.h"
44
#include "llvm/IR/Argument.h"
45
#include "llvm/IR/Attributes.h"
46
#include "llvm/IR/BasicBlock.h"
47
#include "llvm/IR/Constant.h"
48
#include "llvm/IR/Constants.h"
49
#include "llvm/IR/DataLayout.h"
50
#include "llvm/IR/DebugInfo.h"
51
#include "llvm/IR/DerivedTypes.h"
52
#include "llvm/IR/Dominators.h"
53
#include "llvm/IR/Function.h"
54
#include "llvm/IR/GetElementPtrTypeIterator.h"
55
#include "llvm/IR/GlobalValue.h"
56
#include "llvm/IR/GlobalVariable.h"
57
#include "llvm/IR/IRBuilder.h"
58
#include "llvm/IR/InlineAsm.h"
59
#include "llvm/IR/InstrTypes.h"
60
#include "llvm/IR/Instruction.h"
61
#include "llvm/IR/Instructions.h"
62
#include "llvm/IR/IntrinsicInst.h"
63
#include "llvm/IR/Intrinsics.h"
64
#include "llvm/IR/IntrinsicsAArch64.h"
65
#include "llvm/IR/LLVMContext.h"
66
#include "llvm/IR/MDBuilder.h"
67
#include "llvm/IR/Module.h"
68
#include "llvm/IR/Operator.h"
69
#include "llvm/IR/PatternMatch.h"
70
#include "llvm/IR/ProfDataUtils.h"
71
#include "llvm/IR/Statepoint.h"
72
#include "llvm/IR/Type.h"
73
#include "llvm/IR/Use.h"
74
#include "llvm/IR/User.h"
75
#include "llvm/IR/Value.h"
76
#include "llvm/IR/ValueHandle.h"
77
#include "llvm/IR/ValueMap.h"
78
#include "llvm/InitializePasses.h"
79
#include "llvm/Pass.h"
80
#include "llvm/Support/BlockFrequency.h"
81
#include "llvm/Support/BranchProbability.h"
82
#include "llvm/Support/Casting.h"
83
#include "llvm/Support/CommandLine.h"
84
#include "llvm/Support/Compiler.h"
85
#include "llvm/Support/Debug.h"
86
#include "llvm/Support/ErrorHandling.h"
87
#include "llvm/Support/MathExtras.h"
88
#include "llvm/Support/raw_ostream.h"
89
#include "llvm/Target/TargetMachine.h"
90
#include "llvm/Target/TargetOptions.h"
91
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
92
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
93
#include "llvm/Transforms/Utils/Local.h"
94
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95
#include "llvm/Transforms/Utils/SizeOpts.h"
96
#include <algorithm>
97
#include <cassert>
98
#include <cstdint>
99
#include <iterator>
100
#include <limits>
101
#include <memory>
102
#include <optional>
103
#include <utility>
104
#include <vector>
105
106
using namespace llvm;
107
using namespace llvm::PatternMatch;
108
109
#define DEBUG_TYPE "codegenprepare"
110
111
STATISTIC(NumBlocksElim, "Number of blocks eliminated");
112
STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
113
STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
114
STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
115
"sunken Cmps");
116
STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
117
"of sunken Casts");
118
STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
119
"computations were sunk");
120
STATISTIC(NumMemoryInstsPhiCreated,
121
"Number of phis created when address "
122
"computations were sunk to memory instructions");
123
STATISTIC(NumMemoryInstsSelectCreated,
124
"Number of select created when address "
125
"computations were sunk to memory instructions");
126
STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
127
STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
128
STATISTIC(NumAndsAdded,
129
"Number of and mask instructions added to form ext loads");
130
STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
131
STATISTIC(NumRetsDup, "Number of return instructions duplicated");
132
STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
133
STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
134
STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
135
136
static cl::opt<bool> DisableBranchOpts(
137
"disable-cgp-branch-opts", cl::Hidden, cl::init(false),
138
cl::desc("Disable branch optimizations in CodeGenPrepare"));
139
140
static cl::opt<bool>
141
DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
142
cl::desc("Disable GC optimizations in CodeGenPrepare"));
143
144
static cl::opt<bool>
145
DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden,
146
cl::init(false),
147
cl::desc("Disable select to branch conversion."));
148
149
static cl::opt<bool>
150
AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden, cl::init(true),
151
cl::desc("Address sinking in CGP using GEPs."));
152
153
static cl::opt<bool>
154
EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden, cl::init(true),
155
cl::desc("Enable sinkinig and/cmp into branches."));
156
157
static cl::opt<bool> DisableStoreExtract(
158
"disable-cgp-store-extract", cl::Hidden, cl::init(false),
159
cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
160
161
static cl::opt<bool> StressStoreExtract(
162
"stress-cgp-store-extract", cl::Hidden, cl::init(false),
163
cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
164
165
static cl::opt<bool> DisableExtLdPromotion(
166
"disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
167
cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
168
"CodeGenPrepare"));
169
170
static cl::opt<bool> StressExtLdPromotion(
171
"stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
172
cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
173
"optimization in CodeGenPrepare"));
174
175
static cl::opt<bool> DisablePreheaderProtect(
176
"disable-preheader-prot", cl::Hidden, cl::init(false),
177
cl::desc("Disable protection against removing loop preheaders"));
178
179
static cl::opt<bool> ProfileGuidedSectionPrefix(
180
"profile-guided-section-prefix", cl::Hidden, cl::init(true),
181
cl::desc("Use profile info to add section prefix for hot/cold functions"));
182
183
static cl::opt<bool> ProfileUnknownInSpecialSection(
184
"profile-unknown-in-special-section", cl::Hidden,
185
cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
186
"profile, we cannot tell the function is cold for sure because "
187
"it may be a function newly added without ever being sampled. "
188
"With the flag enabled, compiler can put such profile unknown "
189
"functions into a special section, so runtime system can choose "
190
"to handle it in a different way than .text section, to save "
191
"RAM for example. "));
192
193
static cl::opt<bool> BBSectionsGuidedSectionPrefix(
194
"bbsections-guided-section-prefix", cl::Hidden, cl::init(true),
195
cl::desc("Use the basic-block-sections profile to determine the text "
196
"section prefix for hot functions. Functions with "
197
"basic-block-sections profile will be placed in `.text.hot` "
198
"regardless of their FDO profile info. Other functions won't be "
199
"impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
200
"profiles."));
201
202
static cl::opt<uint64_t> FreqRatioToSkipMerge(
203
"cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
204
cl::desc("Skip merging empty blocks if (frequency of empty block) / "
205
"(frequency of destination block) is greater than this ratio"));
206
207
static cl::opt<bool> ForceSplitStore(
208
"force-split-store", cl::Hidden, cl::init(false),
209
cl::desc("Force store splitting no matter what the target query says."));
210
211
static cl::opt<bool> EnableTypePromotionMerge(
212
"cgp-type-promotion-merge", cl::Hidden,
213
cl::desc("Enable merging of redundant sexts when one is dominating"
214
" the other."),
215
cl::init(true));
216
217
static cl::opt<bool> DisableComplexAddrModes(
218
"disable-complex-addr-modes", cl::Hidden, cl::init(false),
219
cl::desc("Disables combining addressing modes with different parts "
220
"in optimizeMemoryInst."));
221
222
static cl::opt<bool>
223
AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
224
cl::desc("Allow creation of Phis in Address sinking."));
225
226
static cl::opt<bool> AddrSinkNewSelects(
227
"addr-sink-new-select", cl::Hidden, cl::init(true),
228
cl::desc("Allow creation of selects in Address sinking."));
229
230
static cl::opt<bool> AddrSinkCombineBaseReg(
231
"addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
232
cl::desc("Allow combining of BaseReg field in Address sinking."));
233
234
static cl::opt<bool> AddrSinkCombineBaseGV(
235
"addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
236
cl::desc("Allow combining of BaseGV field in Address sinking."));
237
238
static cl::opt<bool> AddrSinkCombineBaseOffs(
239
"addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
240
cl::desc("Allow combining of BaseOffs field in Address sinking."));
241
242
static cl::opt<bool> AddrSinkCombineScaledReg(
243
"addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
244
cl::desc("Allow combining of ScaledReg field in Address sinking."));
245
246
static cl::opt<bool>
247
EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
248
cl::init(true),
249
cl::desc("Enable splitting large offset of GEP."));
250
251
static cl::opt<bool> EnableICMP_EQToICMP_ST(
252
"cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
253
cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
254
255
static cl::opt<bool>
256
VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
257
cl::desc("Enable BFI update verification for "
258
"CodeGenPrepare."));
259
260
static cl::opt<bool>
261
OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden, cl::init(true),
262
cl::desc("Enable converting phi types in CodeGenPrepare"));
263
264
static cl::opt<unsigned>
265
HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden,
266
cl::desc("Least BB number of huge function."));
267
268
static cl::opt<unsigned>
269
MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100),
270
cl::Hidden,
271
cl::desc("Max number of address users to look at"));
272
273
static cl::opt<bool>
274
DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden, cl::init(false),
275
cl::desc("Disable elimination of dead PHI nodes."));
276
277
namespace {
278
279
enum ExtType {
280
ZeroExtension, // Zero extension has been seen.
281
SignExtension, // Sign extension has been seen.
282
BothExtension // This extension type is used if we saw sext after
283
// ZeroExtension had been set, or if we saw zext after
284
// SignExtension had been set. It makes the type
285
// information of a promoted instruction invalid.
286
};
287
288
enum ModifyDT {
289
NotModifyDT, // Not Modify any DT.
290
ModifyBBDT, // Modify the Basic Block Dominator Tree.
291
ModifyInstDT // Modify the Instruction Dominator in a Basic Block,
292
// This usually means we move/delete/insert instruction
293
// in a Basic Block. So we should re-iterate instructions
294
// in such Basic Block.
295
};
296
297
using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
298
using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
299
using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
300
using SExts = SmallVector<Instruction *, 16>;
301
using ValueToSExts = MapVector<Value *, SExts>;
302
303
class TypePromotionTransaction;
304
305
class CodeGenPrepare {
306
friend class CodeGenPrepareLegacyPass;
307
const TargetMachine *TM = nullptr;
308
const TargetSubtargetInfo *SubtargetInfo = nullptr;
309
const TargetLowering *TLI = nullptr;
310
const TargetRegisterInfo *TRI = nullptr;
311
const TargetTransformInfo *TTI = nullptr;
312
const BasicBlockSectionsProfileReader *BBSectionsProfileReader = nullptr;
313
const TargetLibraryInfo *TLInfo = nullptr;
314
LoopInfo *LI = nullptr;
315
std::unique_ptr<BlockFrequencyInfo> BFI;
316
std::unique_ptr<BranchProbabilityInfo> BPI;
317
ProfileSummaryInfo *PSI = nullptr;
318
319
/// As we scan instructions optimizing them, this is the next instruction
320
/// to optimize. Transforms that can invalidate this should update it.
321
BasicBlock::iterator CurInstIterator;
322
323
/// Keeps track of non-local addresses that have been sunk into a block.
324
/// This allows us to avoid inserting duplicate code for blocks with
325
/// multiple load/stores of the same address. The usage of WeakTrackingVH
326
/// enables SunkAddrs to be treated as a cache whose entries can be
327
/// invalidated if a sunken address computation has been erased.
328
ValueMap<Value *, WeakTrackingVH> SunkAddrs;
329
330
/// Keeps track of all instructions inserted for the current function.
331
SetOfInstrs InsertedInsts;
332
333
/// Keeps track of the type of the related instruction before their
334
/// promotion for the current function.
335
InstrToOrigTy PromotedInsts;
336
337
/// Keep track of instructions removed during promotion.
338
SetOfInstrs RemovedInsts;
339
340
/// Keep track of sext chains based on their initial value.
341
DenseMap<Value *, Instruction *> SeenChainsForSExt;
342
343
/// Keep track of GEPs accessing the same data structures such as structs or
344
/// arrays that are candidates to be split later because of their large
345
/// size.
346
MapVector<AssertingVH<Value>,
347
SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
348
LargeOffsetGEPMap;
349
350
/// Keep track of new GEP base after splitting the GEPs having large offset.
351
SmallSet<AssertingVH<Value>, 2> NewGEPBases;
352
353
/// Map serial numbers to Large offset GEPs.
354
DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
355
356
/// Keep track of SExt promoted.
357
ValueToSExts ValToSExtendedUses;
358
359
/// True if the function has the OptSize attribute.
360
bool OptSize;
361
362
/// DataLayout for the Function being processed.
363
const DataLayout *DL = nullptr;
364
365
/// Building the dominator tree can be expensive, so we only build it
366
/// lazily and update it when required.
367
std::unique_ptr<DominatorTree> DT;
368
369
public:
370
CodeGenPrepare(){};
371
CodeGenPrepare(const TargetMachine *TM) : TM(TM){};
372
/// If encounter huge function, we need to limit the build time.
373
bool IsHugeFunc = false;
374
375
/// FreshBBs is like worklist, it collected the updated BBs which need
376
/// to be optimized again.
377
/// Note: Consider building time in this pass, when a BB updated, we need
378
/// to insert such BB into FreshBBs for huge function.
379
SmallSet<BasicBlock *, 32> FreshBBs;
380
381
void releaseMemory() {
382
// Clear per function information.
383
InsertedInsts.clear();
384
PromotedInsts.clear();
385
FreshBBs.clear();
386
BPI.reset();
387
BFI.reset();
388
}
389
390
bool run(Function &F, FunctionAnalysisManager &AM);
391
392
private:
393
template <typename F>
394
void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
395
// Substituting can cause recursive simplifications, which can invalidate
396
// our iterator. Use a WeakTrackingVH to hold onto it in case this
397
// happens.
398
Value *CurValue = &*CurInstIterator;
399
WeakTrackingVH IterHandle(CurValue);
400
401
f();
402
403
// If the iterator instruction was recursively deleted, start over at the
404
// start of the block.
405
if (IterHandle != CurValue) {
406
CurInstIterator = BB->begin();
407
SunkAddrs.clear();
408
}
409
}
410
411
// Get the DominatorTree, building if necessary.
412
DominatorTree &getDT(Function &F) {
413
if (!DT)
414
DT = std::make_unique<DominatorTree>(F);
415
return *DT;
416
}
417
418
void removeAllAssertingVHReferences(Value *V);
419
bool eliminateAssumptions(Function &F);
420
bool eliminateFallThrough(Function &F, DominatorTree *DT = nullptr);
421
bool eliminateMostlyEmptyBlocks(Function &F);
422
BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
423
bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
424
void eliminateMostlyEmptyBlock(BasicBlock *BB);
425
bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
426
bool isPreheader);
427
bool makeBitReverse(Instruction &I);
428
bool optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT);
429
bool optimizeInst(Instruction *I, ModifyDT &ModifiedDT);
430
bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy,
431
unsigned AddrSpace);
432
bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
433
bool optimizeInlineAsmInst(CallInst *CS);
434
bool optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT);
435
bool optimizeExt(Instruction *&I);
436
bool optimizeExtUses(Instruction *I);
437
bool optimizeLoadExt(LoadInst *Load);
438
bool optimizeShiftInst(BinaryOperator *BO);
439
bool optimizeFunnelShift(IntrinsicInst *Fsh);
440
bool optimizeSelectInst(SelectInst *SI);
441
bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
442
bool optimizeSwitchType(SwitchInst *SI);
443
bool optimizeSwitchPhiConstants(SwitchInst *SI);
444
bool optimizeSwitchInst(SwitchInst *SI);
445
bool optimizeExtractElementInst(Instruction *Inst);
446
bool dupRetToEnableTailCallOpts(BasicBlock *BB, ModifyDT &ModifiedDT);
447
bool fixupDbgValue(Instruction *I);
448
bool fixupDbgVariableRecord(DbgVariableRecord &I);
449
bool fixupDbgVariableRecordsOnInst(Instruction &I);
450
bool placeDbgValues(Function &F);
451
bool placePseudoProbes(Function &F);
452
bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
453
LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
454
bool tryToPromoteExts(TypePromotionTransaction &TPT,
455
const SmallVectorImpl<Instruction *> &Exts,
456
SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
457
unsigned CreatedInstsCost = 0);
458
bool mergeSExts(Function &F);
459
bool splitLargeGEPOffsets();
460
bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
461
SmallPtrSetImpl<Instruction *> &DeletedInstrs);
462
bool optimizePhiTypes(Function &F);
463
bool performAddressTypePromotion(
464
Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
465
bool HasPromoted, TypePromotionTransaction &TPT,
466
SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
467
bool splitBranchCondition(Function &F, ModifyDT &ModifiedDT);
468
bool simplifyOffsetableRelocate(GCStatepointInst &I);
469
470
bool tryToSinkFreeOperands(Instruction *I);
471
bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, Value *Arg1,
472
CmpInst *Cmp, Intrinsic::ID IID);
473
bool optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT);
474
bool combineToUSubWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
475
bool combineToUAddWithOverflow(CmpInst *Cmp, ModifyDT &ModifiedDT);
476
void verifyBFIUpdates(Function &F);
477
bool _run(Function &F);
478
};
479
480
class CodeGenPrepareLegacyPass : public FunctionPass {
481
public:
482
static char ID; // Pass identification, replacement for typeid
483
484
CodeGenPrepareLegacyPass() : FunctionPass(ID) {
485
initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry());
486
}
487
488
bool runOnFunction(Function &F) override;
489
490
StringRef getPassName() const override { return "CodeGen Prepare"; }
491
492
void getAnalysisUsage(AnalysisUsage &AU) const override {
493
// FIXME: When we can selectively preserve passes, preserve the domtree.
494
AU.addRequired<ProfileSummaryInfoWrapperPass>();
495
AU.addRequired<TargetLibraryInfoWrapperPass>();
496
AU.addRequired<TargetPassConfig>();
497
AU.addRequired<TargetTransformInfoWrapperPass>();
498
AU.addRequired<LoopInfoWrapperPass>();
499
AU.addUsedIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
500
}
501
};
502
503
} // end anonymous namespace
504
505
char CodeGenPrepareLegacyPass::ID = 0;
506
507
bool CodeGenPrepareLegacyPass::runOnFunction(Function &F) {
508
if (skipFunction(F))
509
return false;
510
auto TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
511
CodeGenPrepare CGP(TM);
512
CGP.DL = &F.getDataLayout();
513
CGP.SubtargetInfo = TM->getSubtargetImpl(F);
514
CGP.TLI = CGP.SubtargetInfo->getTargetLowering();
515
CGP.TRI = CGP.SubtargetInfo->getRegisterInfo();
516
CGP.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
517
CGP.TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
518
CGP.LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
519
CGP.BPI.reset(new BranchProbabilityInfo(F, *CGP.LI));
520
CGP.BFI.reset(new BlockFrequencyInfo(F, *CGP.BPI, *CGP.LI));
521
CGP.PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
522
auto BBSPRWP =
523
getAnalysisIfAvailable<BasicBlockSectionsProfileReaderWrapperPass>();
524
CGP.BBSectionsProfileReader = BBSPRWP ? &BBSPRWP->getBBSPR() : nullptr;
525
526
return CGP._run(F);
527
}
528
529
INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass, DEBUG_TYPE,
530
"Optimize for code generation", false, false)
531
INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass)
532
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
533
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
534
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
535
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
536
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
537
INITIALIZE_PASS_END(CodeGenPrepareLegacyPass, DEBUG_TYPE,
538
"Optimize for code generation", false, false)
539
540
FunctionPass *llvm::createCodeGenPrepareLegacyPass() {
541
return new CodeGenPrepareLegacyPass();
542
}
543
544
PreservedAnalyses CodeGenPreparePass::run(Function &F,
545
FunctionAnalysisManager &AM) {
546
CodeGenPrepare CGP(TM);
547
548
bool Changed = CGP.run(F, AM);
549
if (!Changed)
550
return PreservedAnalyses::all();
551
552
PreservedAnalyses PA;
553
PA.preserve<TargetLibraryAnalysis>();
554
PA.preserve<TargetIRAnalysis>();
555
PA.preserve<LoopAnalysis>();
556
return PA;
557
}
558
559
bool CodeGenPrepare::run(Function &F, FunctionAnalysisManager &AM) {
560
DL = &F.getDataLayout();
561
SubtargetInfo = TM->getSubtargetImpl(F);
562
TLI = SubtargetInfo->getTargetLowering();
563
TRI = SubtargetInfo->getRegisterInfo();
564
TLInfo = &AM.getResult<TargetLibraryAnalysis>(F);
565
TTI = &AM.getResult<TargetIRAnalysis>(F);
566
LI = &AM.getResult<LoopAnalysis>(F);
567
BPI.reset(new BranchProbabilityInfo(F, *LI));
568
BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
569
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
570
PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
571
BBSectionsProfileReader =
572
AM.getCachedResult<BasicBlockSectionsProfileReaderAnalysis>(F);
573
return _run(F);
574
}
575
576
bool CodeGenPrepare::_run(Function &F) {
577
bool EverMadeChange = false;
578
579
OptSize = F.hasOptSize();
580
// Use the basic-block-sections profile to promote hot functions to .text.hot
581
// if requested.
582
if (BBSectionsGuidedSectionPrefix && BBSectionsProfileReader &&
583
BBSectionsProfileReader->isFunctionHot(F.getName())) {
584
F.setSectionPrefix("hot");
585
} else if (ProfileGuidedSectionPrefix) {
586
// The hot attribute overwrites profile count based hotness while profile
587
// counts based hotness overwrite the cold attribute.
588
// This is a conservative behabvior.
589
if (F.hasFnAttribute(Attribute::Hot) ||
590
PSI->isFunctionHotInCallGraph(&F, *BFI))
591
F.setSectionPrefix("hot");
592
// If PSI shows this function is not hot, we will placed the function
593
// into unlikely section if (1) PSI shows this is a cold function, or
594
// (2) the function has a attribute of cold.
595
else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
596
F.hasFnAttribute(Attribute::Cold))
597
F.setSectionPrefix("unlikely");
598
else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
599
PSI->isFunctionHotnessUnknown(F))
600
F.setSectionPrefix("unknown");
601
}
602
603
/// This optimization identifies DIV instructions that can be
604
/// profitably bypassed and carried out with a shorter, faster divide.
605
if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
606
const DenseMap<unsigned int, unsigned int> &BypassWidths =
607
TLI->getBypassSlowDivWidths();
608
BasicBlock *BB = &*F.begin();
609
while (BB != nullptr) {
610
// bypassSlowDivision may create new BBs, but we don't want to reapply the
611
// optimization to those blocks.
612
BasicBlock *Next = BB->getNextNode();
613
// F.hasOptSize is already checked in the outer if statement.
614
if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
615
EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
616
BB = Next;
617
}
618
}
619
620
// Get rid of @llvm.assume builtins before attempting to eliminate empty
621
// blocks, since there might be blocks that only contain @llvm.assume calls
622
// (plus arguments that we can get rid of).
623
EverMadeChange |= eliminateAssumptions(F);
624
625
// Eliminate blocks that contain only PHI nodes and an
626
// unconditional branch.
627
EverMadeChange |= eliminateMostlyEmptyBlocks(F);
628
629
ModifyDT ModifiedDT = ModifyDT::NotModifyDT;
630
if (!DisableBranchOpts)
631
EverMadeChange |= splitBranchCondition(F, ModifiedDT);
632
633
// Split some critical edges where one of the sources is an indirect branch,
634
// to help generate sane code for PHIs involving such edges.
635
EverMadeChange |=
636
SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/true);
637
638
// If we are optimzing huge function, we need to consider the build time.
639
// Because the basic algorithm's complex is near O(N!).
640
IsHugeFunc = F.size() > HugeFuncThresholdInCGPP;
641
642
// Transformations above may invalidate dominator tree and/or loop info.
643
DT.reset();
644
LI->releaseMemory();
645
LI->analyze(getDT(F));
646
647
bool MadeChange = true;
648
bool FuncIterated = false;
649
while (MadeChange) {
650
MadeChange = false;
651
652
for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
653
if (FuncIterated && !FreshBBs.contains(&BB))
654
continue;
655
656
ModifyDT ModifiedDTOnIteration = ModifyDT::NotModifyDT;
657
bool Changed = optimizeBlock(BB, ModifiedDTOnIteration);
658
659
if (ModifiedDTOnIteration == ModifyDT::ModifyBBDT)
660
DT.reset();
661
662
MadeChange |= Changed;
663
if (IsHugeFunc) {
664
// If the BB is updated, it may still has chance to be optimized.
665
// This usually happen at sink optimization.
666
// For example:
667
//
668
// bb0:
669
// %and = and i32 %a, 4
670
// %cmp = icmp eq i32 %and, 0
671
//
672
// If the %cmp sink to other BB, the %and will has chance to sink.
673
if (Changed)
674
FreshBBs.insert(&BB);
675
else if (FuncIterated)
676
FreshBBs.erase(&BB);
677
} else {
678
// For small/normal functions, we restart BB iteration if the dominator
679
// tree of the Function was changed.
680
if (ModifiedDTOnIteration != ModifyDT::NotModifyDT)
681
break;
682
}
683
}
684
// We have iterated all the BB in the (only work for huge) function.
685
FuncIterated = IsHugeFunc;
686
687
if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
688
MadeChange |= mergeSExts(F);
689
if (!LargeOffsetGEPMap.empty())
690
MadeChange |= splitLargeGEPOffsets();
691
MadeChange |= optimizePhiTypes(F);
692
693
if (MadeChange)
694
eliminateFallThrough(F, DT.get());
695
696
#ifndef NDEBUG
697
if (MadeChange && VerifyLoopInfo)
698
LI->verify(getDT(F));
699
#endif
700
701
// Really free removed instructions during promotion.
702
for (Instruction *I : RemovedInsts)
703
I->deleteValue();
704
705
EverMadeChange |= MadeChange;
706
SeenChainsForSExt.clear();
707
ValToSExtendedUses.clear();
708
RemovedInsts.clear();
709
LargeOffsetGEPMap.clear();
710
LargeOffsetGEPID.clear();
711
}
712
713
NewGEPBases.clear();
714
SunkAddrs.clear();
715
716
if (!DisableBranchOpts) {
717
MadeChange = false;
718
// Use a set vector to get deterministic iteration order. The order the
719
// blocks are removed may affect whether or not PHI nodes in successors
720
// are removed.
721
SmallSetVector<BasicBlock *, 8> WorkList;
722
for (BasicBlock &BB : F) {
723
SmallVector<BasicBlock *, 2> Successors(successors(&BB));
724
MadeChange |= ConstantFoldTerminator(&BB, true);
725
if (!MadeChange)
726
continue;
727
728
for (BasicBlock *Succ : Successors)
729
if (pred_empty(Succ))
730
WorkList.insert(Succ);
731
}
732
733
// Delete the dead blocks and any of their dead successors.
734
MadeChange |= !WorkList.empty();
735
while (!WorkList.empty()) {
736
BasicBlock *BB = WorkList.pop_back_val();
737
SmallVector<BasicBlock *, 2> Successors(successors(BB));
738
739
DeleteDeadBlock(BB);
740
741
for (BasicBlock *Succ : Successors)
742
if (pred_empty(Succ))
743
WorkList.insert(Succ);
744
}
745
746
// Merge pairs of basic blocks with unconditional branches, connected by
747
// a single edge.
748
if (EverMadeChange || MadeChange)
749
MadeChange |= eliminateFallThrough(F);
750
751
EverMadeChange |= MadeChange;
752
}
753
754
if (!DisableGCOpts) {
755
SmallVector<GCStatepointInst *, 2> Statepoints;
756
for (BasicBlock &BB : F)
757
for (Instruction &I : BB)
758
if (auto *SP = dyn_cast<GCStatepointInst>(&I))
759
Statepoints.push_back(SP);
760
for (auto &I : Statepoints)
761
EverMadeChange |= simplifyOffsetableRelocate(*I);
762
}
763
764
// Do this last to clean up use-before-def scenarios introduced by other
765
// preparatory transforms.
766
EverMadeChange |= placeDbgValues(F);
767
EverMadeChange |= placePseudoProbes(F);
768
769
#ifndef NDEBUG
770
if (VerifyBFIUpdates)
771
verifyBFIUpdates(F);
772
#endif
773
774
return EverMadeChange;
775
}
776
777
bool CodeGenPrepare::eliminateAssumptions(Function &F) {
778
bool MadeChange = false;
779
for (BasicBlock &BB : F) {
780
CurInstIterator = BB.begin();
781
while (CurInstIterator != BB.end()) {
782
Instruction *I = &*(CurInstIterator++);
783
if (auto *Assume = dyn_cast<AssumeInst>(I)) {
784
MadeChange = true;
785
Value *Operand = Assume->getOperand(0);
786
Assume->eraseFromParent();
787
788
resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
789
RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
790
});
791
}
792
}
793
}
794
return MadeChange;
795
}
796
797
/// An instruction is about to be deleted, so remove all references to it in our
798
/// GEP-tracking data strcutures.
799
void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
800
LargeOffsetGEPMap.erase(V);
801
NewGEPBases.erase(V);
802
803
auto GEP = dyn_cast<GetElementPtrInst>(V);
804
if (!GEP)
805
return;
806
807
LargeOffsetGEPID.erase(GEP);
808
809
auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
810
if (VecI == LargeOffsetGEPMap.end())
811
return;
812
813
auto &GEPVector = VecI->second;
814
llvm::erase_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
815
816
if (GEPVector.empty())
817
LargeOffsetGEPMap.erase(VecI);
818
}
819
820
// Verify BFI has been updated correctly by recomputing BFI and comparing them.
821
void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
822
DominatorTree NewDT(F);
823
LoopInfo NewLI(NewDT);
824
BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
825
BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
826
NewBFI.verifyMatch(*BFI);
827
}
828
829
/// Merge basic blocks which are connected by a single edge, where one of the
830
/// basic blocks has a single successor pointing to the other basic block,
831
/// which has a single predecessor.
832
bool CodeGenPrepare::eliminateFallThrough(Function &F, DominatorTree *DT) {
833
bool Changed = false;
834
// Scan all of the blocks in the function, except for the entry block.
835
// Use a temporary array to avoid iterator being invalidated when
836
// deleting blocks.
837
SmallVector<WeakTrackingVH, 16> Blocks;
838
for (auto &Block : llvm::drop_begin(F))
839
Blocks.push_back(&Block);
840
841
SmallSet<WeakTrackingVH, 16> Preds;
842
for (auto &Block : Blocks) {
843
auto *BB = cast_or_null<BasicBlock>(Block);
844
if (!BB)
845
continue;
846
// If the destination block has a single pred, then this is a trivial
847
// edge, just collapse it.
848
BasicBlock *SinglePred = BB->getSinglePredecessor();
849
850
// Don't merge if BB's address is taken.
851
if (!SinglePred || SinglePred == BB || BB->hasAddressTaken())
852
continue;
853
854
// Make an effort to skip unreachable blocks.
855
if (DT && !DT->isReachableFromEntry(BB))
856
continue;
857
858
BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
859
if (Term && !Term->isConditional()) {
860
Changed = true;
861
LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
862
863
// Merge BB into SinglePred and delete it.
864
MergeBlockIntoPredecessor(BB, /* DTU */ nullptr, LI, /* MSSAU */ nullptr,
865
/* MemDep */ nullptr,
866
/* PredecessorWithTwoSuccessors */ false, DT);
867
Preds.insert(SinglePred);
868
869
if (IsHugeFunc) {
870
// Update FreshBBs to optimize the merged BB.
871
FreshBBs.insert(SinglePred);
872
FreshBBs.erase(BB);
873
}
874
}
875
}
876
877
// (Repeatedly) merging blocks into their predecessors can create redundant
878
// debug intrinsics.
879
for (const auto &Pred : Preds)
880
if (auto *BB = cast_or_null<BasicBlock>(Pred))
881
RemoveRedundantDbgInstrs(BB);
882
883
return Changed;
884
}
885
886
/// Find a destination block from BB if BB is mergeable empty block.
887
BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
888
// If this block doesn't end with an uncond branch, ignore it.
889
BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
890
if (!BI || !BI->isUnconditional())
891
return nullptr;
892
893
// If the instruction before the branch (skipping debug info) isn't a phi
894
// node, then other stuff is happening here.
895
BasicBlock::iterator BBI = BI->getIterator();
896
if (BBI != BB->begin()) {
897
--BBI;
898
while (isa<DbgInfoIntrinsic>(BBI)) {
899
if (BBI == BB->begin())
900
break;
901
--BBI;
902
}
903
if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
904
return nullptr;
905
}
906
907
// Do not break infinite loops.
908
BasicBlock *DestBB = BI->getSuccessor(0);
909
if (DestBB == BB)
910
return nullptr;
911
912
if (!canMergeBlocks(BB, DestBB))
913
DestBB = nullptr;
914
915
return DestBB;
916
}
917
918
/// Eliminate blocks that contain only PHI nodes, debug info directives, and an
919
/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
920
/// edges in ways that are non-optimal for isel. Start by eliminating these
921
/// blocks so we can split them the way we want them.
922
bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
923
SmallPtrSet<BasicBlock *, 16> Preheaders;
924
SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
925
while (!LoopList.empty()) {
926
Loop *L = LoopList.pop_back_val();
927
llvm::append_range(LoopList, *L);
928
if (BasicBlock *Preheader = L->getLoopPreheader())
929
Preheaders.insert(Preheader);
930
}
931
932
bool MadeChange = false;
933
// Copy blocks into a temporary array to avoid iterator invalidation issues
934
// as we remove them.
935
// Note that this intentionally skips the entry block.
936
SmallVector<WeakTrackingVH, 16> Blocks;
937
for (auto &Block : llvm::drop_begin(F)) {
938
// Delete phi nodes that could block deleting other empty blocks.
939
if (!DisableDeletePHIs)
940
MadeChange |= DeleteDeadPHIs(&Block, TLInfo);
941
Blocks.push_back(&Block);
942
}
943
944
for (auto &Block : Blocks) {
945
BasicBlock *BB = cast_or_null<BasicBlock>(Block);
946
if (!BB)
947
continue;
948
BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
949
if (!DestBB ||
950
!isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
951
continue;
952
953
eliminateMostlyEmptyBlock(BB);
954
MadeChange = true;
955
}
956
return MadeChange;
957
}
958
959
bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
960
BasicBlock *DestBB,
961
bool isPreheader) {
962
// Do not delete loop preheaders if doing so would create a critical edge.
963
// Loop preheaders can be good locations to spill registers. If the
964
// preheader is deleted and we create a critical edge, registers may be
965
// spilled in the loop body instead.
966
if (!DisablePreheaderProtect && isPreheader &&
967
!(BB->getSinglePredecessor() &&
968
BB->getSinglePredecessor()->getSingleSuccessor()))
969
return false;
970
971
// Skip merging if the block's successor is also a successor to any callbr
972
// that leads to this block.
973
// FIXME: Is this really needed? Is this a correctness issue?
974
for (BasicBlock *Pred : predecessors(BB)) {
975
if (isa<CallBrInst>(Pred->getTerminator()) &&
976
llvm::is_contained(successors(Pred), DestBB))
977
return false;
978
}
979
980
// Try to skip merging if the unique predecessor of BB is terminated by a
981
// switch or indirect branch instruction, and BB is used as an incoming block
982
// of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
983
// add COPY instructions in the predecessor of BB instead of BB (if it is not
984
// merged). Note that the critical edge created by merging such blocks wont be
985
// split in MachineSink because the jump table is not analyzable. By keeping
986
// such empty block (BB), ISel will place COPY instructions in BB, not in the
987
// predecessor of BB.
988
BasicBlock *Pred = BB->getUniquePredecessor();
989
if (!Pred || !(isa<SwitchInst>(Pred->getTerminator()) ||
990
isa<IndirectBrInst>(Pred->getTerminator())))
991
return true;
992
993
if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
994
return true;
995
996
// We use a simple cost heuristic which determine skipping merging is
997
// profitable if the cost of skipping merging is less than the cost of
998
// merging : Cost(skipping merging) < Cost(merging BB), where the
999
// Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
1000
// the Cost(merging BB) is Freq(Pred) * Cost(Copy).
1001
// Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
1002
// Freq(Pred) / Freq(BB) > 2.
1003
// Note that if there are multiple empty blocks sharing the same incoming
1004
// value for the PHIs in the DestBB, we consider them together. In such
1005
// case, Cost(merging BB) will be the sum of their frequencies.
1006
1007
if (!isa<PHINode>(DestBB->begin()))
1008
return true;
1009
1010
SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
1011
1012
// Find all other incoming blocks from which incoming values of all PHIs in
1013
// DestBB are the same as the ones from BB.
1014
for (BasicBlock *DestBBPred : predecessors(DestBB)) {
1015
if (DestBBPred == BB)
1016
continue;
1017
1018
if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
1019
return DestPN.getIncomingValueForBlock(BB) ==
1020
DestPN.getIncomingValueForBlock(DestBBPred);
1021
}))
1022
SameIncomingValueBBs.insert(DestBBPred);
1023
}
1024
1025
// See if all BB's incoming values are same as the value from Pred. In this
1026
// case, no reason to skip merging because COPYs are expected to be place in
1027
// Pred already.
1028
if (SameIncomingValueBBs.count(Pred))
1029
return true;
1030
1031
BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
1032
BlockFrequency BBFreq = BFI->getBlockFreq(BB);
1033
1034
for (auto *SameValueBB : SameIncomingValueBBs)
1035
if (SameValueBB->getUniquePredecessor() == Pred &&
1036
DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
1037
BBFreq += BFI->getBlockFreq(SameValueBB);
1038
1039
std::optional<BlockFrequency> Limit = BBFreq.mul(FreqRatioToSkipMerge);
1040
return !Limit || PredFreq <= *Limit;
1041
}
1042
1043
/// Return true if we can merge BB into DestBB if there is a single
1044
/// unconditional branch between them, and BB contains no other non-phi
1045
/// instructions.
1046
bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
1047
const BasicBlock *DestBB) const {
1048
// We only want to eliminate blocks whose phi nodes are used by phi nodes in
1049
// the successor. If there are more complex condition (e.g. preheaders),
1050
// don't mess around with them.
1051
for (const PHINode &PN : BB->phis()) {
1052
for (const User *U : PN.users()) {
1053
const Instruction *UI = cast<Instruction>(U);
1054
if (UI->getParent() != DestBB || !isa<PHINode>(UI))
1055
return false;
1056
// If User is inside DestBB block and it is a PHINode then check
1057
// incoming value. If incoming value is not from BB then this is
1058
// a complex condition (e.g. preheaders) we want to avoid here.
1059
if (UI->getParent() == DestBB) {
1060
if (const PHINode *UPN = dyn_cast<PHINode>(UI))
1061
for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
1062
Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
1063
if (Insn && Insn->getParent() == BB &&
1064
Insn->getParent() != UPN->getIncomingBlock(I))
1065
return false;
1066
}
1067
}
1068
}
1069
}
1070
1071
// If BB and DestBB contain any common predecessors, then the phi nodes in BB
1072
// and DestBB may have conflicting incoming values for the block. If so, we
1073
// can't merge the block.
1074
const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
1075
if (!DestBBPN)
1076
return true; // no conflict.
1077
1078
// Collect the preds of BB.
1079
SmallPtrSet<const BasicBlock *, 16> BBPreds;
1080
if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1081
// It is faster to get preds from a PHI than with pred_iterator.
1082
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1083
BBPreds.insert(BBPN->getIncomingBlock(i));
1084
} else {
1085
BBPreds.insert(pred_begin(BB), pred_end(BB));
1086
}
1087
1088
// Walk the preds of DestBB.
1089
for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
1090
BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
1091
if (BBPreds.count(Pred)) { // Common predecessor?
1092
for (const PHINode &PN : DestBB->phis()) {
1093
const Value *V1 = PN.getIncomingValueForBlock(Pred);
1094
const Value *V2 = PN.getIncomingValueForBlock(BB);
1095
1096
// If V2 is a phi node in BB, look up what the mapped value will be.
1097
if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
1098
if (V2PN->getParent() == BB)
1099
V2 = V2PN->getIncomingValueForBlock(Pred);
1100
1101
// If there is a conflict, bail out.
1102
if (V1 != V2)
1103
return false;
1104
}
1105
}
1106
}
1107
1108
return true;
1109
}
1110
1111
/// Replace all old uses with new ones, and push the updated BBs into FreshBBs.
1112
static void replaceAllUsesWith(Value *Old, Value *New,
1113
SmallSet<BasicBlock *, 32> &FreshBBs,
1114
bool IsHuge) {
1115
auto *OldI = dyn_cast<Instruction>(Old);
1116
if (OldI) {
1117
for (Value::user_iterator UI = OldI->user_begin(), E = OldI->user_end();
1118
UI != E; ++UI) {
1119
Instruction *User = cast<Instruction>(*UI);
1120
if (IsHuge)
1121
FreshBBs.insert(User->getParent());
1122
}
1123
}
1124
Old->replaceAllUsesWith(New);
1125
}
1126
1127
/// Eliminate a basic block that has only phi's and an unconditional branch in
1128
/// it.
1129
void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
1130
BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1131
BasicBlock *DestBB = BI->getSuccessor(0);
1132
1133
LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
1134
<< *BB << *DestBB);
1135
1136
// If the destination block has a single pred, then this is a trivial edge,
1137
// just collapse it.
1138
if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
1139
if (SinglePred != DestBB) {
1140
assert(SinglePred == BB &&
1141
"Single predecessor not the same as predecessor");
1142
// Merge DestBB into SinglePred/BB and delete it.
1143
MergeBlockIntoPredecessor(DestBB);
1144
// Note: BB(=SinglePred) will not be deleted on this path.
1145
// DestBB(=its single successor) is the one that was deleted.
1146
LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
1147
1148
if (IsHugeFunc) {
1149
// Update FreshBBs to optimize the merged BB.
1150
FreshBBs.insert(SinglePred);
1151
FreshBBs.erase(DestBB);
1152
}
1153
return;
1154
}
1155
}
1156
1157
// Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
1158
// to handle the new incoming edges it is about to have.
1159
for (PHINode &PN : DestBB->phis()) {
1160
// Remove the incoming value for BB, and remember it.
1161
Value *InVal = PN.removeIncomingValue(BB, false);
1162
1163
// Two options: either the InVal is a phi node defined in BB or it is some
1164
// value that dominates BB.
1165
PHINode *InValPhi = dyn_cast<PHINode>(InVal);
1166
if (InValPhi && InValPhi->getParent() == BB) {
1167
// Add all of the input values of the input PHI as inputs of this phi.
1168
for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
1169
PN.addIncoming(InValPhi->getIncomingValue(i),
1170
InValPhi->getIncomingBlock(i));
1171
} else {
1172
// Otherwise, add one instance of the dominating value for each edge that
1173
// we will be adding.
1174
if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
1175
for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
1176
PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
1177
} else {
1178
for (BasicBlock *Pred : predecessors(BB))
1179
PN.addIncoming(InVal, Pred);
1180
}
1181
}
1182
}
1183
1184
// The PHIs are now updated, change everything that refers to BB to use
1185
// DestBB and remove BB.
1186
BB->replaceAllUsesWith(DestBB);
1187
BB->eraseFromParent();
1188
++NumBlocksElim;
1189
1190
LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1191
}
1192
1193
// Computes a map of base pointer relocation instructions to corresponding
1194
// derived pointer relocation instructions given a vector of all relocate calls
1195
static void computeBaseDerivedRelocateMap(
1196
const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1197
MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>>
1198
&RelocateInstMap) {
1199
// Collect information in two maps: one primarily for locating the base object
1200
// while filling the second map; the second map is the final structure holding
1201
// a mapping between Base and corresponding Derived relocate calls
1202
MapVector<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1203
for (auto *ThisRelocate : AllRelocateCalls) {
1204
auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1205
ThisRelocate->getDerivedPtrIndex());
1206
RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1207
}
1208
for (auto &Item : RelocateIdxMap) {
1209
std::pair<unsigned, unsigned> Key = Item.first;
1210
if (Key.first == Key.second)
1211
// Base relocation: nothing to insert
1212
continue;
1213
1214
GCRelocateInst *I = Item.second;
1215
auto BaseKey = std::make_pair(Key.first, Key.first);
1216
1217
// We're iterating over RelocateIdxMap so we cannot modify it.
1218
auto MaybeBase = RelocateIdxMap.find(BaseKey);
1219
if (MaybeBase == RelocateIdxMap.end())
1220
// TODO: We might want to insert a new base object relocate and gep off
1221
// that, if there are enough derived object relocates.
1222
continue;
1223
1224
RelocateInstMap[MaybeBase->second].push_back(I);
1225
}
1226
}
1227
1228
// Accepts a GEP and extracts the operands into a vector provided they're all
1229
// small integer constants
1230
static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1231
SmallVectorImpl<Value *> &OffsetV) {
1232
for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1233
// Only accept small constant integer operands
1234
auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1235
if (!Op || Op->getZExtValue() > 20)
1236
return false;
1237
}
1238
1239
for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1240
OffsetV.push_back(GEP->getOperand(i));
1241
return true;
1242
}
1243
1244
// Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1245
// replace, computes a replacement, and affects it.
1246
static bool
1247
simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1248
const SmallVectorImpl<GCRelocateInst *> &Targets) {
1249
bool MadeChange = false;
1250
// We must ensure the relocation of derived pointer is defined after
1251
// relocation of base pointer. If we find a relocation corresponding to base
1252
// defined earlier than relocation of base then we move relocation of base
1253
// right before found relocation. We consider only relocation in the same
1254
// basic block as relocation of base. Relocations from other basic block will
1255
// be skipped by optimization and we do not care about them.
1256
for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1257
&*R != RelocatedBase; ++R)
1258
if (auto *RI = dyn_cast<GCRelocateInst>(R))
1259
if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1260
if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1261
RelocatedBase->moveBefore(RI);
1262
MadeChange = true;
1263
break;
1264
}
1265
1266
for (GCRelocateInst *ToReplace : Targets) {
1267
assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1268
"Not relocating a derived object of the original base object");
1269
if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1270
// A duplicate relocate call. TODO: coalesce duplicates.
1271
continue;
1272
}
1273
1274
if (RelocatedBase->getParent() != ToReplace->getParent()) {
1275
// Base and derived relocates are in different basic blocks.
1276
// In this case transform is only valid when base dominates derived
1277
// relocate. However it would be too expensive to check dominance
1278
// for each such relocate, so we skip the whole transformation.
1279
continue;
1280
}
1281
1282
Value *Base = ToReplace->getBasePtr();
1283
auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1284
if (!Derived || Derived->getPointerOperand() != Base)
1285
continue;
1286
1287
SmallVector<Value *, 2> OffsetV;
1288
if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1289
continue;
1290
1291
// Create a Builder and replace the target callsite with a gep
1292
assert(RelocatedBase->getNextNode() &&
1293
"Should always have one since it's not a terminator");
1294
1295
// Insert after RelocatedBase
1296
IRBuilder<> Builder(RelocatedBase->getNextNode());
1297
Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1298
1299
// If gc_relocate does not match the actual type, cast it to the right type.
1300
// In theory, there must be a bitcast after gc_relocate if the type does not
1301
// match, and we should reuse it to get the derived pointer. But it could be
1302
// cases like this:
1303
// bb1:
1304
// ...
1305
// %g1 = call coldcc i8 addrspace(1)*
1306
// @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1307
//
1308
// bb2:
1309
// ...
1310
// %g2 = call coldcc i8 addrspace(1)*
1311
// @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1312
//
1313
// merge:
1314
// %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1315
// %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1316
//
1317
// In this case, we can not find the bitcast any more. So we insert a new
1318
// bitcast no matter there is already one or not. In this way, we can handle
1319
// all cases, and the extra bitcast should be optimized away in later
1320
// passes.
1321
Value *ActualRelocatedBase = RelocatedBase;
1322
if (RelocatedBase->getType() != Base->getType()) {
1323
ActualRelocatedBase =
1324
Builder.CreateBitCast(RelocatedBase, Base->getType());
1325
}
1326
Value *Replacement =
1327
Builder.CreateGEP(Derived->getSourceElementType(), ActualRelocatedBase,
1328
ArrayRef(OffsetV));
1329
Replacement->takeName(ToReplace);
1330
// If the newly generated derived pointer's type does not match the original
1331
// derived pointer's type, cast the new derived pointer to match it. Same
1332
// reasoning as above.
1333
Value *ActualReplacement = Replacement;
1334
if (Replacement->getType() != ToReplace->getType()) {
1335
ActualReplacement =
1336
Builder.CreateBitCast(Replacement, ToReplace->getType());
1337
}
1338
ToReplace->replaceAllUsesWith(ActualReplacement);
1339
ToReplace->eraseFromParent();
1340
1341
MadeChange = true;
1342
}
1343
return MadeChange;
1344
}
1345
1346
// Turns this:
1347
//
1348
// %base = ...
1349
// %ptr = gep %base + 15
1350
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1351
// %base' = relocate(%tok, i32 4, i32 4)
1352
// %ptr' = relocate(%tok, i32 4, i32 5)
1353
// %val = load %ptr'
1354
//
1355
// into this:
1356
//
1357
// %base = ...
1358
// %ptr = gep %base + 15
1359
// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1360
// %base' = gc.relocate(%tok, i32 4, i32 4)
1361
// %ptr' = gep %base' + 15
1362
// %val = load %ptr'
1363
bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1364
bool MadeChange = false;
1365
SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1366
for (auto *U : I.users())
1367
if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1368
// Collect all the relocate calls associated with a statepoint
1369
AllRelocateCalls.push_back(Relocate);
1370
1371
// We need at least one base pointer relocation + one derived pointer
1372
// relocation to mangle
1373
if (AllRelocateCalls.size() < 2)
1374
return false;
1375
1376
// RelocateInstMap is a mapping from the base relocate instruction to the
1377
// corresponding derived relocate instructions
1378
MapVector<GCRelocateInst *, SmallVector<GCRelocateInst *, 0>> RelocateInstMap;
1379
computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1380
if (RelocateInstMap.empty())
1381
return false;
1382
1383
for (auto &Item : RelocateInstMap)
1384
// Item.first is the RelocatedBase to offset against
1385
// Item.second is the vector of Targets to replace
1386
MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1387
return MadeChange;
1388
}
1389
1390
/// Sink the specified cast instruction into its user blocks.
1391
static bool SinkCast(CastInst *CI) {
1392
BasicBlock *DefBB = CI->getParent();
1393
1394
/// InsertedCasts - Only insert a cast in each block once.
1395
DenseMap<BasicBlock *, CastInst *> InsertedCasts;
1396
1397
bool MadeChange = false;
1398
for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1399
UI != E;) {
1400
Use &TheUse = UI.getUse();
1401
Instruction *User = cast<Instruction>(*UI);
1402
1403
// Figure out which BB this cast is used in. For PHI's this is the
1404
// appropriate predecessor block.
1405
BasicBlock *UserBB = User->getParent();
1406
if (PHINode *PN = dyn_cast<PHINode>(User)) {
1407
UserBB = PN->getIncomingBlock(TheUse);
1408
}
1409
1410
// Preincrement use iterator so we don't invalidate it.
1411
++UI;
1412
1413
// The first insertion point of a block containing an EH pad is after the
1414
// pad. If the pad is the user, we cannot sink the cast past the pad.
1415
if (User->isEHPad())
1416
continue;
1417
1418
// If the block selected to receive the cast is an EH pad that does not
1419
// allow non-PHI instructions before the terminator, we can't sink the
1420
// cast.
1421
if (UserBB->getTerminator()->isEHPad())
1422
continue;
1423
1424
// If this user is in the same block as the cast, don't change the cast.
1425
if (UserBB == DefBB)
1426
continue;
1427
1428
// If we have already inserted a cast into this block, use it.
1429
CastInst *&InsertedCast = InsertedCasts[UserBB];
1430
1431
if (!InsertedCast) {
1432
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1433
assert(InsertPt != UserBB->end());
1434
InsertedCast = cast<CastInst>(CI->clone());
1435
InsertedCast->insertBefore(*UserBB, InsertPt);
1436
}
1437
1438
// Replace a use of the cast with a use of the new cast.
1439
TheUse = InsertedCast;
1440
MadeChange = true;
1441
++NumCastUses;
1442
}
1443
1444
// If we removed all uses, nuke the cast.
1445
if (CI->use_empty()) {
1446
salvageDebugInfo(*CI);
1447
CI->eraseFromParent();
1448
MadeChange = true;
1449
}
1450
1451
return MadeChange;
1452
}
1453
1454
/// If the specified cast instruction is a noop copy (e.g. it's casting from
1455
/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1456
/// reduce the number of virtual registers that must be created and coalesced.
1457
///
1458
/// Return true if any changes are made.
1459
static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1460
const DataLayout &DL) {
1461
// Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1462
// than sinking only nop casts, but is helpful on some platforms.
1463
if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1464
if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1465
ASC->getDestAddressSpace()))
1466
return false;
1467
}
1468
1469
// If this is a noop copy,
1470
EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1471
EVT DstVT = TLI.getValueType(DL, CI->getType());
1472
1473
// This is an fp<->int conversion?
1474
if (SrcVT.isInteger() != DstVT.isInteger())
1475
return false;
1476
1477
// If this is an extension, it will be a zero or sign extension, which
1478
// isn't a noop.
1479
if (SrcVT.bitsLT(DstVT))
1480
return false;
1481
1482
// If these values will be promoted, find out what they will be promoted
1483
// to. This helps us consider truncates on PPC as noop copies when they
1484
// are.
1485
if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1486
TargetLowering::TypePromoteInteger)
1487
SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1488
if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1489
TargetLowering::TypePromoteInteger)
1490
DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1491
1492
// If, after promotion, these are the same types, this is a noop copy.
1493
if (SrcVT != DstVT)
1494
return false;
1495
1496
return SinkCast(CI);
1497
}
1498
1499
// Match a simple increment by constant operation. Note that if a sub is
1500
// matched, the step is negated (as if the step had been canonicalized to
1501
// an add, even though we leave the instruction alone.)
1502
static bool matchIncrement(const Instruction *IVInc, Instruction *&LHS,
1503
Constant *&Step) {
1504
if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1505
match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1506
m_Instruction(LHS), m_Constant(Step)))))
1507
return true;
1508
if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1509
match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1510
m_Instruction(LHS), m_Constant(Step))))) {
1511
Step = ConstantExpr::getNeg(Step);
1512
return true;
1513
}
1514
return false;
1515
}
1516
1517
/// If given \p PN is an inductive variable with value IVInc coming from the
1518
/// backedge, and on each iteration it gets increased by Step, return pair
1519
/// <IVInc, Step>. Otherwise, return std::nullopt.
1520
static std::optional<std::pair<Instruction *, Constant *>>
1521
getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1522
const Loop *L = LI->getLoopFor(PN->getParent());
1523
if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1524
return std::nullopt;
1525
auto *IVInc =
1526
dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1527
if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1528
return std::nullopt;
1529
Instruction *LHS = nullptr;
1530
Constant *Step = nullptr;
1531
if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1532
return std::make_pair(IVInc, Step);
1533
return std::nullopt;
1534
}
1535
1536
static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1537
auto *I = dyn_cast<Instruction>(V);
1538
if (!I)
1539
return false;
1540
Instruction *LHS = nullptr;
1541
Constant *Step = nullptr;
1542
if (!matchIncrement(I, LHS, Step))
1543
return false;
1544
if (auto *PN = dyn_cast<PHINode>(LHS))
1545
if (auto IVInc = getIVIncrement(PN, LI))
1546
return IVInc->first == I;
1547
return false;
1548
}
1549
1550
bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1551
Value *Arg0, Value *Arg1,
1552
CmpInst *Cmp,
1553
Intrinsic::ID IID) {
1554
auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1555
if (!isIVIncrement(BO, LI))
1556
return false;
1557
const Loop *L = LI->getLoopFor(BO->getParent());
1558
assert(L && "L should not be null after isIVIncrement()");
1559
// Do not risk on moving increment into a child loop.
1560
if (LI->getLoopFor(Cmp->getParent()) != L)
1561
return false;
1562
1563
// Finally, we need to ensure that the insert point will dominate all
1564
// existing uses of the increment.
1565
1566
auto &DT = getDT(*BO->getParent()->getParent());
1567
if (DT.dominates(Cmp->getParent(), BO->getParent()))
1568
// If we're moving up the dom tree, all uses are trivially dominated.
1569
// (This is the common case for code produced by LSR.)
1570
return true;
1571
1572
// Otherwise, special case the single use in the phi recurrence.
1573
return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1574
};
1575
if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1576
// We used to use a dominator tree here to allow multi-block optimization.
1577
// But that was problematic because:
1578
// 1. It could cause a perf regression by hoisting the math op into the
1579
// critical path.
1580
// 2. It could cause a perf regression by creating a value that was live
1581
// across multiple blocks and increasing register pressure.
1582
// 3. Use of a dominator tree could cause large compile-time regression.
1583
// This is because we recompute the DT on every change in the main CGP
1584
// run-loop. The recomputing is probably unnecessary in many cases, so if
1585
// that was fixed, using a DT here would be ok.
1586
//
1587
// There is one important particular case we still want to handle: if BO is
1588
// the IV increment. Important properties that make it profitable:
1589
// - We can speculate IV increment anywhere in the loop (as long as the
1590
// indvar Phi is its only user);
1591
// - Upon computing Cmp, we effectively compute something equivalent to the
1592
// IV increment (despite it loops differently in the IR). So moving it up
1593
// to the cmp point does not really increase register pressure.
1594
return false;
1595
}
1596
1597
// We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1598
if (BO->getOpcode() == Instruction::Add &&
1599
IID == Intrinsic::usub_with_overflow) {
1600
assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1601
Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1602
}
1603
1604
// Insert at the first instruction of the pair.
1605
Instruction *InsertPt = nullptr;
1606
for (Instruction &Iter : *Cmp->getParent()) {
1607
// If BO is an XOR, it is not guaranteed that it comes after both inputs to
1608
// the overflow intrinsic are defined.
1609
if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1610
InsertPt = &Iter;
1611
break;
1612
}
1613
}
1614
assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1615
1616
IRBuilder<> Builder(InsertPt);
1617
Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1618
if (BO->getOpcode() != Instruction::Xor) {
1619
Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1620
replaceAllUsesWith(BO, Math, FreshBBs, IsHugeFunc);
1621
} else
1622
assert(BO->hasOneUse() &&
1623
"Patterns with XOr should use the BO only in the compare");
1624
Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1625
replaceAllUsesWith(Cmp, OV, FreshBBs, IsHugeFunc);
1626
Cmp->eraseFromParent();
1627
BO->eraseFromParent();
1628
return true;
1629
}
1630
1631
/// Match special-case patterns that check for unsigned add overflow.
1632
static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1633
BinaryOperator *&Add) {
1634
// Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1635
// Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1636
Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1637
1638
// We are not expecting non-canonical/degenerate code. Just bail out.
1639
if (isa<Constant>(A))
1640
return false;
1641
1642
ICmpInst::Predicate Pred = Cmp->getPredicate();
1643
if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1644
B = ConstantInt::get(B->getType(), 1);
1645
else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1646
B = ConstantInt::get(B->getType(), -1);
1647
else
1648
return false;
1649
1650
// Check the users of the variable operand of the compare looking for an add
1651
// with the adjusted constant.
1652
for (User *U : A->users()) {
1653
if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1654
Add = cast<BinaryOperator>(U);
1655
return true;
1656
}
1657
}
1658
return false;
1659
}
1660
1661
/// Try to combine the compare into a call to the llvm.uadd.with.overflow
1662
/// intrinsic. Return true if any changes were made.
1663
bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1664
ModifyDT &ModifiedDT) {
1665
bool EdgeCase = false;
1666
Value *A, *B;
1667
BinaryOperator *Add;
1668
if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1669
if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1670
return false;
1671
// Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1672
A = Add->getOperand(0);
1673
B = Add->getOperand(1);
1674
EdgeCase = true;
1675
}
1676
1677
if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1678
TLI->getValueType(*DL, Add->getType()),
1679
Add->hasNUsesOrMore(EdgeCase ? 1 : 2)))
1680
return false;
1681
1682
// We don't want to move around uses of condition values this late, so we
1683
// check if it is legal to create the call to the intrinsic in the basic
1684
// block containing the icmp.
1685
if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1686
return false;
1687
1688
if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1689
Intrinsic::uadd_with_overflow))
1690
return false;
1691
1692
// Reset callers - do not crash by iterating over a dead instruction.
1693
ModifiedDT = ModifyDT::ModifyInstDT;
1694
return true;
1695
}
1696
1697
bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1698
ModifyDT &ModifiedDT) {
1699
// We are not expecting non-canonical/degenerate code. Just bail out.
1700
Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1701
if (isa<Constant>(A) && isa<Constant>(B))
1702
return false;
1703
1704
// Convert (A u> B) to (A u< B) to simplify pattern matching.
1705
ICmpInst::Predicate Pred = Cmp->getPredicate();
1706
if (Pred == ICmpInst::ICMP_UGT) {
1707
std::swap(A, B);
1708
Pred = ICmpInst::ICMP_ULT;
1709
}
1710
// Convert special-case: (A == 0) is the same as (A u< 1).
1711
if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1712
B = ConstantInt::get(B->getType(), 1);
1713
Pred = ICmpInst::ICMP_ULT;
1714
}
1715
// Convert special-case: (A != 0) is the same as (0 u< A).
1716
if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1717
std::swap(A, B);
1718
Pred = ICmpInst::ICMP_ULT;
1719
}
1720
if (Pred != ICmpInst::ICMP_ULT)
1721
return false;
1722
1723
// Walk the users of a variable operand of a compare looking for a subtract or
1724
// add with that same operand. Also match the 2nd operand of the compare to
1725
// the add/sub, but that may be a negated constant operand of an add.
1726
Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1727
BinaryOperator *Sub = nullptr;
1728
for (User *U : CmpVariableOperand->users()) {
1729
// A - B, A u< B --> usubo(A, B)
1730
if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1731
Sub = cast<BinaryOperator>(U);
1732
break;
1733
}
1734
1735
// A + (-C), A u< C (canonicalized form of (sub A, C))
1736
const APInt *CmpC, *AddC;
1737
if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1738
match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1739
Sub = cast<BinaryOperator>(U);
1740
break;
1741
}
1742
}
1743
if (!Sub)
1744
return false;
1745
1746
if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1747
TLI->getValueType(*DL, Sub->getType()),
1748
Sub->hasNUsesOrMore(1)))
1749
return false;
1750
1751
if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1752
Cmp, Intrinsic::usub_with_overflow))
1753
return false;
1754
1755
// Reset callers - do not crash by iterating over a dead instruction.
1756
ModifiedDT = ModifyDT::ModifyInstDT;
1757
return true;
1758
}
1759
1760
/// Sink the given CmpInst into user blocks to reduce the number of virtual
1761
/// registers that must be created and coalesced. This is a clear win except on
1762
/// targets with multiple condition code registers (PowerPC), where it might
1763
/// lose; some adjustment may be wanted there.
1764
///
1765
/// Return true if any changes are made.
1766
static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1767
if (TLI.hasMultipleConditionRegisters())
1768
return false;
1769
1770
// Avoid sinking soft-FP comparisons, since this can move them into a loop.
1771
if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1772
return false;
1773
1774
// Only insert a cmp in each block once.
1775
DenseMap<BasicBlock *, CmpInst *> InsertedCmps;
1776
1777
bool MadeChange = false;
1778
for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1779
UI != E;) {
1780
Use &TheUse = UI.getUse();
1781
Instruction *User = cast<Instruction>(*UI);
1782
1783
// Preincrement use iterator so we don't invalidate it.
1784
++UI;
1785
1786
// Don't bother for PHI nodes.
1787
if (isa<PHINode>(User))
1788
continue;
1789
1790
// Figure out which BB this cmp is used in.
1791
BasicBlock *UserBB = User->getParent();
1792
BasicBlock *DefBB = Cmp->getParent();
1793
1794
// If this user is in the same block as the cmp, don't change the cmp.
1795
if (UserBB == DefBB)
1796
continue;
1797
1798
// If we have already inserted a cmp into this block, use it.
1799
CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1800
1801
if (!InsertedCmp) {
1802
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1803
assert(InsertPt != UserBB->end());
1804
InsertedCmp = CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1805
Cmp->getOperand(0), Cmp->getOperand(1), "");
1806
InsertedCmp->insertBefore(*UserBB, InsertPt);
1807
// Propagate the debug info.
1808
InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1809
}
1810
1811
// Replace a use of the cmp with a use of the new cmp.
1812
TheUse = InsertedCmp;
1813
MadeChange = true;
1814
++NumCmpUses;
1815
}
1816
1817
// If we removed all uses, nuke the cmp.
1818
if (Cmp->use_empty()) {
1819
Cmp->eraseFromParent();
1820
MadeChange = true;
1821
}
1822
1823
return MadeChange;
1824
}
1825
1826
/// For pattern like:
1827
///
1828
/// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1829
/// ...
1830
/// DomBB:
1831
/// ...
1832
/// br DomCond, TrueBB, CmpBB
1833
/// CmpBB: (with DomBB being the single predecessor)
1834
/// ...
1835
/// Cmp = icmp eq CmpOp0, CmpOp1
1836
/// ...
1837
///
1838
/// It would use two comparison on targets that lowering of icmp sgt/slt is
1839
/// different from lowering of icmp eq (PowerPC). This function try to convert
1840
/// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1841
/// After that, DomCond and Cmp can use the same comparison so reduce one
1842
/// comparison.
1843
///
1844
/// Return true if any changes are made.
1845
static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1846
const TargetLowering &TLI) {
1847
if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1848
return false;
1849
1850
ICmpInst::Predicate Pred = Cmp->getPredicate();
1851
if (Pred != ICmpInst::ICMP_EQ)
1852
return false;
1853
1854
// If icmp eq has users other than BranchInst and SelectInst, converting it to
1855
// icmp slt/sgt would introduce more redundant LLVM IR.
1856
for (User *U : Cmp->users()) {
1857
if (isa<BranchInst>(U))
1858
continue;
1859
if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1860
continue;
1861
return false;
1862
}
1863
1864
// This is a cheap/incomplete check for dominance - just match a single
1865
// predecessor with a conditional branch.
1866
BasicBlock *CmpBB = Cmp->getParent();
1867
BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1868
if (!DomBB)
1869
return false;
1870
1871
// We want to ensure that the only way control gets to the comparison of
1872
// interest is that a less/greater than comparison on the same operands is
1873
// false.
1874
Value *DomCond;
1875
BasicBlock *TrueBB, *FalseBB;
1876
if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1877
return false;
1878
if (CmpBB != FalseBB)
1879
return false;
1880
1881
Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1882
ICmpInst::Predicate DomPred;
1883
if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1884
return false;
1885
if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1886
return false;
1887
1888
// Convert the equality comparison to the opposite of the dominating
1889
// comparison and swap the direction for all branch/select users.
1890
// We have conceptually converted:
1891
// Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1892
// to
1893
// Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>;
1894
// And similarly for branches.
1895
for (User *U : Cmp->users()) {
1896
if (auto *BI = dyn_cast<BranchInst>(U)) {
1897
assert(BI->isConditional() && "Must be conditional");
1898
BI->swapSuccessors();
1899
continue;
1900
}
1901
if (auto *SI = dyn_cast<SelectInst>(U)) {
1902
// Swap operands
1903
SI->swapValues();
1904
SI->swapProfMetadata();
1905
continue;
1906
}
1907
llvm_unreachable("Must be a branch or a select");
1908
}
1909
Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1910
return true;
1911
}
1912
1913
/// Many architectures use the same instruction for both subtract and cmp. Try
1914
/// to swap cmp operands to match subtract operations to allow for CSE.
1915
static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst *Cmp) {
1916
Value *Op0 = Cmp->getOperand(0);
1917
Value *Op1 = Cmp->getOperand(1);
1918
if (!Op0->getType()->isIntegerTy() || isa<Constant>(Op0) ||
1919
isa<Constant>(Op1) || Op0 == Op1)
1920
return false;
1921
1922
// If a subtract already has the same operands as a compare, swapping would be
1923
// bad. If a subtract has the same operands as a compare but in reverse order,
1924
// then swapping is good.
1925
int GoodToSwap = 0;
1926
unsigned NumInspected = 0;
1927
for (const User *U : Op0->users()) {
1928
// Avoid walking many users.
1929
if (++NumInspected > 128)
1930
return false;
1931
if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
1932
GoodToSwap++;
1933
else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
1934
GoodToSwap--;
1935
}
1936
1937
if (GoodToSwap > 0) {
1938
Cmp->swapOperands();
1939
return true;
1940
}
1941
return false;
1942
}
1943
1944
static bool foldFCmpToFPClassTest(CmpInst *Cmp, const TargetLowering &TLI,
1945
const DataLayout &DL) {
1946
FCmpInst *FCmp = dyn_cast<FCmpInst>(Cmp);
1947
if (!FCmp)
1948
return false;
1949
1950
// Don't fold if the target offers free fabs and the predicate is legal.
1951
EVT VT = TLI.getValueType(DL, Cmp->getOperand(0)->getType());
1952
if (TLI.isFAbsFree(VT) &&
1953
TLI.isCondCodeLegal(getFCmpCondCode(FCmp->getPredicate()),
1954
VT.getSimpleVT()))
1955
return false;
1956
1957
// Reverse the canonicalization if it is a FP class test
1958
auto ShouldReverseTransform = [](FPClassTest ClassTest) {
1959
return ClassTest == fcInf || ClassTest == (fcInf | fcNan);
1960
};
1961
auto [ClassVal, ClassTest] =
1962
fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
1963
FCmp->getOperand(0), FCmp->getOperand(1));
1964
if (!ClassVal)
1965
return false;
1966
1967
if (!ShouldReverseTransform(ClassTest) && !ShouldReverseTransform(~ClassTest))
1968
return false;
1969
1970
IRBuilder<> Builder(Cmp);
1971
Value *IsFPClass = Builder.createIsFPClass(ClassVal, ClassTest);
1972
Cmp->replaceAllUsesWith(IsFPClass);
1973
RecursivelyDeleteTriviallyDeadInstructions(Cmp);
1974
return true;
1975
}
1976
1977
bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, ModifyDT &ModifiedDT) {
1978
if (sinkCmpExpression(Cmp, *TLI))
1979
return true;
1980
1981
if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1982
return true;
1983
1984
if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1985
return true;
1986
1987
if (foldICmpWithDominatingICmp(Cmp, *TLI))
1988
return true;
1989
1990
if (swapICmpOperandsToExposeCSEOpportunities(Cmp))
1991
return true;
1992
1993
if (foldFCmpToFPClassTest(Cmp, *TLI, *DL))
1994
return true;
1995
1996
return false;
1997
}
1998
1999
/// Duplicate and sink the given 'and' instruction into user blocks where it is
2000
/// used in a compare to allow isel to generate better code for targets where
2001
/// this operation can be combined.
2002
///
2003
/// Return true if any changes are made.
2004
static bool sinkAndCmp0Expression(Instruction *AndI, const TargetLowering &TLI,
2005
SetOfInstrs &InsertedInsts) {
2006
// Double-check that we're not trying to optimize an instruction that was
2007
// already optimized by some other part of this pass.
2008
assert(!InsertedInsts.count(AndI) &&
2009
"Attempting to optimize already optimized and instruction");
2010
(void)InsertedInsts;
2011
2012
// Nothing to do for single use in same basic block.
2013
if (AndI->hasOneUse() &&
2014
AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
2015
return false;
2016
2017
// Try to avoid cases where sinking/duplicating is likely to increase register
2018
// pressure.
2019
if (!isa<ConstantInt>(AndI->getOperand(0)) &&
2020
!isa<ConstantInt>(AndI->getOperand(1)) &&
2021
AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
2022
return false;
2023
2024
for (auto *U : AndI->users()) {
2025
Instruction *User = cast<Instruction>(U);
2026
2027
// Only sink 'and' feeding icmp with 0.
2028
if (!isa<ICmpInst>(User))
2029
return false;
2030
2031
auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
2032
if (!CmpC || !CmpC->isZero())
2033
return false;
2034
}
2035
2036
if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
2037
return false;
2038
2039
LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
2040
LLVM_DEBUG(AndI->getParent()->dump());
2041
2042
// Push the 'and' into the same block as the icmp 0. There should only be
2043
// one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
2044
// others, so we don't need to keep track of which BBs we insert into.
2045
for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
2046
UI != E;) {
2047
Use &TheUse = UI.getUse();
2048
Instruction *User = cast<Instruction>(*UI);
2049
2050
// Preincrement use iterator so we don't invalidate it.
2051
++UI;
2052
2053
LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
2054
2055
// Keep the 'and' in the same place if the use is already in the same block.
2056
Instruction *InsertPt =
2057
User->getParent() == AndI->getParent() ? AndI : User;
2058
Instruction *InsertedAnd = BinaryOperator::Create(
2059
Instruction::And, AndI->getOperand(0), AndI->getOperand(1), "",
2060
InsertPt->getIterator());
2061
// Propagate the debug info.
2062
InsertedAnd->setDebugLoc(AndI->getDebugLoc());
2063
2064
// Replace a use of the 'and' with a use of the new 'and'.
2065
TheUse = InsertedAnd;
2066
++NumAndUses;
2067
LLVM_DEBUG(User->getParent()->dump());
2068
}
2069
2070
// We removed all uses, nuke the and.
2071
AndI->eraseFromParent();
2072
return true;
2073
}
2074
2075
/// Check if the candidates could be combined with a shift instruction, which
2076
/// includes:
2077
/// 1. Truncate instruction
2078
/// 2. And instruction and the imm is a mask of the low bits:
2079
/// imm & (imm+1) == 0
2080
static bool isExtractBitsCandidateUse(Instruction *User) {
2081
if (!isa<TruncInst>(User)) {
2082
if (User->getOpcode() != Instruction::And ||
2083
!isa<ConstantInt>(User->getOperand(1)))
2084
return false;
2085
2086
const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
2087
2088
if ((Cimm & (Cimm + 1)).getBoolValue())
2089
return false;
2090
}
2091
return true;
2092
}
2093
2094
/// Sink both shift and truncate instruction to the use of truncate's BB.
2095
static bool
2096
SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
2097
DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
2098
const TargetLowering &TLI, const DataLayout &DL) {
2099
BasicBlock *UserBB = User->getParent();
2100
DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
2101
auto *TruncI = cast<TruncInst>(User);
2102
bool MadeChange = false;
2103
2104
for (Value::user_iterator TruncUI = TruncI->user_begin(),
2105
TruncE = TruncI->user_end();
2106
TruncUI != TruncE;) {
2107
2108
Use &TruncTheUse = TruncUI.getUse();
2109
Instruction *TruncUser = cast<Instruction>(*TruncUI);
2110
// Preincrement use iterator so we don't invalidate it.
2111
2112
++TruncUI;
2113
2114
int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
2115
if (!ISDOpcode)
2116
continue;
2117
2118
// If the use is actually a legal node, there will not be an
2119
// implicit truncate.
2120
// FIXME: always querying the result type is just an
2121
// approximation; some nodes' legality is determined by the
2122
// operand or other means. There's no good way to find out though.
2123
if (TLI.isOperationLegalOrCustom(
2124
ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
2125
continue;
2126
2127
// Don't bother for PHI nodes.
2128
if (isa<PHINode>(TruncUser))
2129
continue;
2130
2131
BasicBlock *TruncUserBB = TruncUser->getParent();
2132
2133
if (UserBB == TruncUserBB)
2134
continue;
2135
2136
BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
2137
CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
2138
2139
if (!InsertedShift && !InsertedTrunc) {
2140
BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
2141
assert(InsertPt != TruncUserBB->end());
2142
// Sink the shift
2143
if (ShiftI->getOpcode() == Instruction::AShr)
2144
InsertedShift =
2145
BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2146
else
2147
InsertedShift =
2148
BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2149
InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2150
InsertedShift->insertBefore(*TruncUserBB, InsertPt);
2151
2152
// Sink the trunc
2153
BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
2154
TruncInsertPt++;
2155
// It will go ahead of any debug-info.
2156
TruncInsertPt.setHeadBit(true);
2157
assert(TruncInsertPt != TruncUserBB->end());
2158
2159
InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
2160
TruncI->getType(), "");
2161
InsertedTrunc->insertBefore(*TruncUserBB, TruncInsertPt);
2162
InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
2163
2164
MadeChange = true;
2165
2166
TruncTheUse = InsertedTrunc;
2167
}
2168
}
2169
return MadeChange;
2170
}
2171
2172
/// Sink the shift *right* instruction into user blocks if the uses could
2173
/// potentially be combined with this shift instruction and generate BitExtract
2174
/// instruction. It will only be applied if the architecture supports BitExtract
2175
/// instruction. Here is an example:
2176
/// BB1:
2177
/// %x.extract.shift = lshr i64 %arg1, 32
2178
/// BB2:
2179
/// %x.extract.trunc = trunc i64 %x.extract.shift to i16
2180
/// ==>
2181
///
2182
/// BB2:
2183
/// %x.extract.shift.1 = lshr i64 %arg1, 32
2184
/// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
2185
///
2186
/// CodeGen will recognize the pattern in BB2 and generate BitExtract
2187
/// instruction.
2188
/// Return true if any changes are made.
2189
static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
2190
const TargetLowering &TLI,
2191
const DataLayout &DL) {
2192
BasicBlock *DefBB = ShiftI->getParent();
2193
2194
/// Only insert instructions in each block once.
2195
DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
2196
2197
bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
2198
2199
bool MadeChange = false;
2200
for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
2201
UI != E;) {
2202
Use &TheUse = UI.getUse();
2203
Instruction *User = cast<Instruction>(*UI);
2204
// Preincrement use iterator so we don't invalidate it.
2205
++UI;
2206
2207
// Don't bother for PHI nodes.
2208
if (isa<PHINode>(User))
2209
continue;
2210
2211
if (!isExtractBitsCandidateUse(User))
2212
continue;
2213
2214
BasicBlock *UserBB = User->getParent();
2215
2216
if (UserBB == DefBB) {
2217
// If the shift and truncate instruction are in the same BB. The use of
2218
// the truncate(TruncUse) may still introduce another truncate if not
2219
// legal. In this case, we would like to sink both shift and truncate
2220
// instruction to the BB of TruncUse.
2221
// for example:
2222
// BB1:
2223
// i64 shift.result = lshr i64 opnd, imm
2224
// trunc.result = trunc shift.result to i16
2225
//
2226
// BB2:
2227
// ----> We will have an implicit truncate here if the architecture does
2228
// not have i16 compare.
2229
// cmp i16 trunc.result, opnd2
2230
//
2231
if (isa<TruncInst>(User) &&
2232
shiftIsLegal
2233
// If the type of the truncate is legal, no truncate will be
2234
// introduced in other basic blocks.
2235
&& (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
2236
MadeChange =
2237
SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
2238
2239
continue;
2240
}
2241
// If we have already inserted a shift into this block, use it.
2242
BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
2243
2244
if (!InsertedShift) {
2245
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2246
assert(InsertPt != UserBB->end());
2247
2248
if (ShiftI->getOpcode() == Instruction::AShr)
2249
InsertedShift =
2250
BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "");
2251
else
2252
InsertedShift =
2253
BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "");
2254
InsertedShift->insertBefore(*UserBB, InsertPt);
2255
InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
2256
2257
MadeChange = true;
2258
}
2259
2260
// Replace a use of the shift with a use of the new shift.
2261
TheUse = InsertedShift;
2262
}
2263
2264
// If we removed all uses, or there are none, nuke the shift.
2265
if (ShiftI->use_empty()) {
2266
salvageDebugInfo(*ShiftI);
2267
ShiftI->eraseFromParent();
2268
MadeChange = true;
2269
}
2270
2271
return MadeChange;
2272
}
2273
2274
/// If counting leading or trailing zeros is an expensive operation and a zero
2275
/// input is defined, add a check for zero to avoid calling the intrinsic.
2276
///
2277
/// We want to transform:
2278
/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2279
///
2280
/// into:
2281
/// entry:
2282
/// %cmpz = icmp eq i64 %A, 0
2283
/// br i1 %cmpz, label %cond.end, label %cond.false
2284
/// cond.false:
2285
/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2286
/// br label %cond.end
2287
/// cond.end:
2288
/// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2289
///
2290
/// If the transform is performed, return true and set ModifiedDT to true.
2291
static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2292
LoopInfo &LI,
2293
const TargetLowering *TLI,
2294
const DataLayout *DL, ModifyDT &ModifiedDT,
2295
SmallSet<BasicBlock *, 32> &FreshBBs,
2296
bool IsHugeFunc) {
2297
// If a zero input is undefined, it doesn't make sense to despeculate that.
2298
if (match(CountZeros->getOperand(1), m_One()))
2299
return false;
2300
2301
// If it's cheap to speculate, there's nothing to do.
2302
Type *Ty = CountZeros->getType();
2303
auto IntrinsicID = CountZeros->getIntrinsicID();
2304
if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz(Ty)) ||
2305
(IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz(Ty)))
2306
return false;
2307
2308
// Only handle legal scalar cases. Anything else requires too much work.
2309
unsigned SizeInBits = Ty->getScalarSizeInBits();
2310
if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2311
return false;
2312
2313
// Bail if the value is never zero.
2314
Use &Op = CountZeros->getOperandUse(0);
2315
if (isKnownNonZero(Op, *DL))
2316
return false;
2317
2318
// The intrinsic will be sunk behind a compare against zero and branch.
2319
BasicBlock *StartBlock = CountZeros->getParent();
2320
BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2321
if (IsHugeFunc)
2322
FreshBBs.insert(CallBlock);
2323
2324
// Create another block after the count zero intrinsic. A PHI will be added
2325
// in this block to select the result of the intrinsic or the bit-width
2326
// constant if the input to the intrinsic is zero.
2327
BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(CountZeros));
2328
// Any debug-info after CountZeros should not be included.
2329
SplitPt.setHeadBit(true);
2330
BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2331
if (IsHugeFunc)
2332
FreshBBs.insert(EndBlock);
2333
2334
// Update the LoopInfo. The new blocks are in the same loop as the start
2335
// block.
2336
if (Loop *L = LI.getLoopFor(StartBlock)) {
2337
L->addBasicBlockToLoop(CallBlock, LI);
2338
L->addBasicBlockToLoop(EndBlock, LI);
2339
}
2340
2341
// Set up a builder to create a compare, conditional branch, and PHI.
2342
IRBuilder<> Builder(CountZeros->getContext());
2343
Builder.SetInsertPoint(StartBlock->getTerminator());
2344
Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2345
2346
// Replace the unconditional branch that was created by the first split with
2347
// a compare against zero and a conditional branch.
2348
Value *Zero = Constant::getNullValue(Ty);
2349
// Avoid introducing branch on poison. This also replaces the ctz operand.
2350
if (!isGuaranteedNotToBeUndefOrPoison(Op))
2351
Op = Builder.CreateFreeze(Op, Op->getName() + ".fr");
2352
Value *Cmp = Builder.CreateICmpEQ(Op, Zero, "cmpz");
2353
Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2354
StartBlock->getTerminator()->eraseFromParent();
2355
2356
// Create a PHI in the end block to select either the output of the intrinsic
2357
// or the bit width of the operand.
2358
Builder.SetInsertPoint(EndBlock, EndBlock->begin());
2359
PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2360
replaceAllUsesWith(CountZeros, PN, FreshBBs, IsHugeFunc);
2361
Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2362
PN->addIncoming(BitWidth, StartBlock);
2363
PN->addIncoming(CountZeros, CallBlock);
2364
2365
// We are explicitly handling the zero case, so we can set the intrinsic's
2366
// undefined zero argument to 'true'. This will also prevent reprocessing the
2367
// intrinsic; we only despeculate when a zero input is defined.
2368
CountZeros->setArgOperand(1, Builder.getTrue());
2369
ModifiedDT = ModifyDT::ModifyBBDT;
2370
return true;
2371
}
2372
2373
bool CodeGenPrepare::optimizeCallInst(CallInst *CI, ModifyDT &ModifiedDT) {
2374
BasicBlock *BB = CI->getParent();
2375
2376
// Lower inline assembly if we can.
2377
// If we found an inline asm expession, and if the target knows how to
2378
// lower it to normal LLVM code, do so now.
2379
if (CI->isInlineAsm()) {
2380
if (TLI->ExpandInlineAsm(CI)) {
2381
// Avoid invalidating the iterator.
2382
CurInstIterator = BB->begin();
2383
// Avoid processing instructions out of order, which could cause
2384
// reuse before a value is defined.
2385
SunkAddrs.clear();
2386
return true;
2387
}
2388
// Sink address computing for memory operands into the block.
2389
if (optimizeInlineAsmInst(CI))
2390
return true;
2391
}
2392
2393
// Align the pointer arguments to this call if the target thinks it's a good
2394
// idea
2395
unsigned MinSize;
2396
Align PrefAlign;
2397
if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2398
for (auto &Arg : CI->args()) {
2399
// We want to align both objects whose address is used directly and
2400
// objects whose address is used in casts and GEPs, though it only makes
2401
// sense for GEPs if the offset is a multiple of the desired alignment and
2402
// if size - offset meets the size threshold.
2403
if (!Arg->getType()->isPointerTy())
2404
continue;
2405
APInt Offset(DL->getIndexSizeInBits(
2406
cast<PointerType>(Arg->getType())->getAddressSpace()),
2407
0);
2408
Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2409
uint64_t Offset2 = Offset.getLimitedValue();
2410
if (!isAligned(PrefAlign, Offset2))
2411
continue;
2412
AllocaInst *AI;
2413
if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlign() < PrefAlign &&
2414
DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2415
AI->setAlignment(PrefAlign);
2416
// Global variables can only be aligned if they are defined in this
2417
// object (i.e. they are uniquely initialized in this object), and
2418
// over-aligning global variables that have an explicit section is
2419
// forbidden.
2420
GlobalVariable *GV;
2421
if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2422
GV->getPointerAlignment(*DL) < PrefAlign &&
2423
DL->getTypeAllocSize(GV->getValueType()) >= MinSize + Offset2)
2424
GV->setAlignment(PrefAlign);
2425
}
2426
}
2427
// If this is a memcpy (or similar) then we may be able to improve the
2428
// alignment.
2429
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2430
Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2431
MaybeAlign MIDestAlign = MI->getDestAlign();
2432
if (!MIDestAlign || DestAlign > *MIDestAlign)
2433
MI->setDestAlignment(DestAlign);
2434
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2435
MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2436
Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2437
if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2438
MTI->setSourceAlignment(SrcAlign);
2439
}
2440
}
2441
2442
// If we have a cold call site, try to sink addressing computation into the
2443
// cold block. This interacts with our handling for loads and stores to
2444
// ensure that we can fold all uses of a potential addressing computation
2445
// into their uses. TODO: generalize this to work over profiling data
2446
if (CI->hasFnAttr(Attribute::Cold) && !OptSize &&
2447
!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2448
for (auto &Arg : CI->args()) {
2449
if (!Arg->getType()->isPointerTy())
2450
continue;
2451
unsigned AS = Arg->getType()->getPointerAddressSpace();
2452
if (optimizeMemoryInst(CI, Arg, Arg->getType(), AS))
2453
return true;
2454
}
2455
2456
IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2457
if (II) {
2458
switch (II->getIntrinsicID()) {
2459
default:
2460
break;
2461
case Intrinsic::assume:
2462
llvm_unreachable("llvm.assume should have been removed already");
2463
case Intrinsic::allow_runtime_check:
2464
case Intrinsic::allow_ubsan_check:
2465
case Intrinsic::experimental_widenable_condition: {
2466
// Give up on future widening opportunities so that we can fold away dead
2467
// paths and merge blocks before going into block-local instruction
2468
// selection.
2469
if (II->use_empty()) {
2470
II->eraseFromParent();
2471
return true;
2472
}
2473
Constant *RetVal = ConstantInt::getTrue(II->getContext());
2474
resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2475
replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2476
});
2477
return true;
2478
}
2479
case Intrinsic::objectsize:
2480
llvm_unreachable("llvm.objectsize.* should have been lowered already");
2481
case Intrinsic::is_constant:
2482
llvm_unreachable("llvm.is.constant.* should have been lowered already");
2483
case Intrinsic::aarch64_stlxr:
2484
case Intrinsic::aarch64_stxr: {
2485
ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2486
if (!ExtVal || !ExtVal->hasOneUse() ||
2487
ExtVal->getParent() == CI->getParent())
2488
return false;
2489
// Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2490
ExtVal->moveBefore(CI);
2491
// Mark this instruction as "inserted by CGP", so that other
2492
// optimizations don't touch it.
2493
InsertedInsts.insert(ExtVal);
2494
return true;
2495
}
2496
2497
case Intrinsic::launder_invariant_group:
2498
case Intrinsic::strip_invariant_group: {
2499
Value *ArgVal = II->getArgOperand(0);
2500
auto it = LargeOffsetGEPMap.find(II);
2501
if (it != LargeOffsetGEPMap.end()) {
2502
// Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2503
// Make sure not to have to deal with iterator invalidation
2504
// after possibly adding ArgVal to LargeOffsetGEPMap.
2505
auto GEPs = std::move(it->second);
2506
LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2507
LargeOffsetGEPMap.erase(II);
2508
}
2509
2510
replaceAllUsesWith(II, ArgVal, FreshBBs, IsHugeFunc);
2511
II->eraseFromParent();
2512
return true;
2513
}
2514
case Intrinsic::cttz:
2515
case Intrinsic::ctlz:
2516
// If counting zeros is expensive, try to avoid it.
2517
return despeculateCountZeros(II, *LI, TLI, DL, ModifiedDT, FreshBBs,
2518
IsHugeFunc);
2519
case Intrinsic::fshl:
2520
case Intrinsic::fshr:
2521
return optimizeFunnelShift(II);
2522
case Intrinsic::dbg_assign:
2523
case Intrinsic::dbg_value:
2524
return fixupDbgValue(II);
2525
case Intrinsic::masked_gather:
2526
return optimizeGatherScatterInst(II, II->getArgOperand(0));
2527
case Intrinsic::masked_scatter:
2528
return optimizeGatherScatterInst(II, II->getArgOperand(1));
2529
}
2530
2531
SmallVector<Value *, 2> PtrOps;
2532
Type *AccessTy;
2533
if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2534
while (!PtrOps.empty()) {
2535
Value *PtrVal = PtrOps.pop_back_val();
2536
unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2537
if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2538
return true;
2539
}
2540
}
2541
2542
// From here on out we're working with named functions.
2543
if (!CI->getCalledFunction())
2544
return false;
2545
2546
// Lower all default uses of _chk calls. This is very similar
2547
// to what InstCombineCalls does, but here we are only lowering calls
2548
// to fortified library functions (e.g. __memcpy_chk) that have the default
2549
// "don't know" as the objectsize. Anything else should be left alone.
2550
FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2551
IRBuilder<> Builder(CI);
2552
if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2553
replaceAllUsesWith(CI, V, FreshBBs, IsHugeFunc);
2554
CI->eraseFromParent();
2555
return true;
2556
}
2557
2558
return false;
2559
}
2560
2561
static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo *TLInfo,
2562
const CallInst *CI) {
2563
assert(CI && CI->use_empty());
2564
2565
if (const auto *II = dyn_cast<IntrinsicInst>(CI))
2566
switch (II->getIntrinsicID()) {
2567
case Intrinsic::memset:
2568
case Intrinsic::memcpy:
2569
case Intrinsic::memmove:
2570
return true;
2571
default:
2572
return false;
2573
}
2574
2575
LibFunc LF;
2576
Function *Callee = CI->getCalledFunction();
2577
if (Callee && TLInfo && TLInfo->getLibFunc(*Callee, LF))
2578
switch (LF) {
2579
case LibFunc_strcpy:
2580
case LibFunc_strncpy:
2581
case LibFunc_strcat:
2582
case LibFunc_strncat:
2583
return true;
2584
default:
2585
return false;
2586
}
2587
2588
return false;
2589
}
2590
2591
/// Look for opportunities to duplicate return instructions to the predecessor
2592
/// to enable tail call optimizations. The case it is currently looking for is
2593
/// the following one. Known intrinsics or library function that may be tail
2594
/// called are taken into account as well.
2595
/// @code
2596
/// bb0:
2597
/// %tmp0 = tail call i32 @f0()
2598
/// br label %return
2599
/// bb1:
2600
/// %tmp1 = tail call i32 @f1()
2601
/// br label %return
2602
/// bb2:
2603
/// %tmp2 = tail call i32 @f2()
2604
/// br label %return
2605
/// return:
2606
/// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2607
/// ret i32 %retval
2608
/// @endcode
2609
///
2610
/// =>
2611
///
2612
/// @code
2613
/// bb0:
2614
/// %tmp0 = tail call i32 @f0()
2615
/// ret i32 %tmp0
2616
/// bb1:
2617
/// %tmp1 = tail call i32 @f1()
2618
/// ret i32 %tmp1
2619
/// bb2:
2620
/// %tmp2 = tail call i32 @f2()
2621
/// ret i32 %tmp2
2622
/// @endcode
2623
bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB,
2624
ModifyDT &ModifiedDT) {
2625
if (!BB->getTerminator())
2626
return false;
2627
2628
ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2629
if (!RetI)
2630
return false;
2631
2632
assert(LI->getLoopFor(BB) == nullptr && "A return block cannot be in a loop");
2633
2634
PHINode *PN = nullptr;
2635
ExtractValueInst *EVI = nullptr;
2636
BitCastInst *BCI = nullptr;
2637
Value *V = RetI->getReturnValue();
2638
if (V) {
2639
BCI = dyn_cast<BitCastInst>(V);
2640
if (BCI)
2641
V = BCI->getOperand(0);
2642
2643
EVI = dyn_cast<ExtractValueInst>(V);
2644
if (EVI) {
2645
V = EVI->getOperand(0);
2646
if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2647
return false;
2648
}
2649
2650
PN = dyn_cast<PHINode>(V);
2651
}
2652
2653
if (PN && PN->getParent() != BB)
2654
return false;
2655
2656
auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2657
const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2658
if (BC && BC->hasOneUse())
2659
Inst = BC->user_back();
2660
2661
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2662
return II->getIntrinsicID() == Intrinsic::lifetime_end;
2663
return false;
2664
};
2665
2666
// Make sure there are no instructions between the first instruction
2667
// and return.
2668
const Instruction *BI = BB->getFirstNonPHI();
2669
// Skip over debug and the bitcast.
2670
while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2671
isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI))
2672
BI = BI->getNextNode();
2673
if (BI != RetI)
2674
return false;
2675
2676
/// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2677
/// call.
2678
const Function *F = BB->getParent();
2679
SmallVector<BasicBlock *, 4> TailCallBBs;
2680
if (PN) {
2681
for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2682
// Look through bitcasts.
2683
Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2684
CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2685
BasicBlock *PredBB = PN->getIncomingBlock(I);
2686
// Make sure the phi value is indeed produced by the tail call.
2687
if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2688
TLI->mayBeEmittedAsTailCall(CI) &&
2689
attributesPermitTailCall(F, CI, RetI, *TLI)) {
2690
TailCallBBs.push_back(PredBB);
2691
} else {
2692
// Consider the cases in which the phi value is indirectly produced by
2693
// the tail call, for example when encountering memset(), memmove(),
2694
// strcpy(), whose return value may have been optimized out. In such
2695
// cases, the value needs to be the first function argument.
2696
//
2697
// bb0:
2698
// tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1)
2699
// br label %return
2700
// return:
2701
// %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ]
2702
if (PredBB && PredBB->getSingleSuccessor() == BB)
2703
CI = dyn_cast_or_null<CallInst>(
2704
PredBB->getTerminator()->getPrevNonDebugInstruction(true));
2705
2706
if (CI && CI->use_empty() &&
2707
isIntrinsicOrLFToBeTailCalled(TLInfo, CI) &&
2708
IncomingVal == CI->getArgOperand(0) &&
2709
TLI->mayBeEmittedAsTailCall(CI) &&
2710
attributesPermitTailCall(F, CI, RetI, *TLI))
2711
TailCallBBs.push_back(PredBB);
2712
}
2713
}
2714
} else {
2715
SmallPtrSet<BasicBlock *, 4> VisitedBBs;
2716
for (BasicBlock *Pred : predecessors(BB)) {
2717
if (!VisitedBBs.insert(Pred).second)
2718
continue;
2719
if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2720
CallInst *CI = dyn_cast<CallInst>(I);
2721
if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2722
attributesPermitTailCall(F, CI, RetI, *TLI)) {
2723
// Either we return void or the return value must be the first
2724
// argument of a known intrinsic or library function.
2725
if (!V || isa<UndefValue>(V) ||
2726
(isIntrinsicOrLFToBeTailCalled(TLInfo, CI) &&
2727
V == CI->getArgOperand(0))) {
2728
TailCallBBs.push_back(Pred);
2729
}
2730
}
2731
}
2732
}
2733
}
2734
2735
bool Changed = false;
2736
for (auto const &TailCallBB : TailCallBBs) {
2737
// Make sure the call instruction is followed by an unconditional branch to
2738
// the return block.
2739
BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2740
if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2741
continue;
2742
2743
// Duplicate the return into TailCallBB.
2744
(void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2745
assert(!VerifyBFIUpdates ||
2746
BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2747
BFI->setBlockFreq(BB,
2748
(BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)));
2749
ModifiedDT = ModifyDT::ModifyBBDT;
2750
Changed = true;
2751
++NumRetsDup;
2752
}
2753
2754
// If we eliminated all predecessors of the block, delete the block now.
2755
if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2756
BB->eraseFromParent();
2757
2758
return Changed;
2759
}
2760
2761
//===----------------------------------------------------------------------===//
2762
// Memory Optimization
2763
//===----------------------------------------------------------------------===//
2764
2765
namespace {
2766
2767
/// This is an extended version of TargetLowering::AddrMode
2768
/// which holds actual Value*'s for register values.
2769
struct ExtAddrMode : public TargetLowering::AddrMode {
2770
Value *BaseReg = nullptr;
2771
Value *ScaledReg = nullptr;
2772
Value *OriginalValue = nullptr;
2773
bool InBounds = true;
2774
2775
enum FieldName {
2776
NoField = 0x00,
2777
BaseRegField = 0x01,
2778
BaseGVField = 0x02,
2779
BaseOffsField = 0x04,
2780
ScaledRegField = 0x08,
2781
ScaleField = 0x10,
2782
MultipleFields = 0xff
2783
};
2784
2785
ExtAddrMode() = default;
2786
2787
void print(raw_ostream &OS) const;
2788
void dump() const;
2789
2790
FieldName compare(const ExtAddrMode &other) {
2791
// First check that the types are the same on each field, as differing types
2792
// is something we can't cope with later on.
2793
if (BaseReg && other.BaseReg &&
2794
BaseReg->getType() != other.BaseReg->getType())
2795
return MultipleFields;
2796
if (BaseGV && other.BaseGV && BaseGV->getType() != other.BaseGV->getType())
2797
return MultipleFields;
2798
if (ScaledReg && other.ScaledReg &&
2799
ScaledReg->getType() != other.ScaledReg->getType())
2800
return MultipleFields;
2801
2802
// Conservatively reject 'inbounds' mismatches.
2803
if (InBounds != other.InBounds)
2804
return MultipleFields;
2805
2806
// Check each field to see if it differs.
2807
unsigned Result = NoField;
2808
if (BaseReg != other.BaseReg)
2809
Result |= BaseRegField;
2810
if (BaseGV != other.BaseGV)
2811
Result |= BaseGVField;
2812
if (BaseOffs != other.BaseOffs)
2813
Result |= BaseOffsField;
2814
if (ScaledReg != other.ScaledReg)
2815
Result |= ScaledRegField;
2816
// Don't count 0 as being a different scale, because that actually means
2817
// unscaled (which will already be counted by having no ScaledReg).
2818
if (Scale && other.Scale && Scale != other.Scale)
2819
Result |= ScaleField;
2820
2821
if (llvm::popcount(Result) > 1)
2822
return MultipleFields;
2823
else
2824
return static_cast<FieldName>(Result);
2825
}
2826
2827
// An AddrMode is trivial if it involves no calculation i.e. it is just a base
2828
// with no offset.
2829
bool isTrivial() {
2830
// An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2831
// trivial if at most one of these terms is nonzero, except that BaseGV and
2832
// BaseReg both being zero actually means a null pointer value, which we
2833
// consider to be 'non-zero' here.
2834
return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2835
}
2836
2837
Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2838
switch (Field) {
2839
default:
2840
return nullptr;
2841
case BaseRegField:
2842
return BaseReg;
2843
case BaseGVField:
2844
return BaseGV;
2845
case ScaledRegField:
2846
return ScaledReg;
2847
case BaseOffsField:
2848
return ConstantInt::get(IntPtrTy, BaseOffs);
2849
}
2850
}
2851
2852
void SetCombinedField(FieldName Field, Value *V,
2853
const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2854
switch (Field) {
2855
default:
2856
llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2857
break;
2858
case ExtAddrMode::BaseRegField:
2859
BaseReg = V;
2860
break;
2861
case ExtAddrMode::BaseGVField:
2862
// A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2863
// in the BaseReg field.
2864
assert(BaseReg == nullptr);
2865
BaseReg = V;
2866
BaseGV = nullptr;
2867
break;
2868
case ExtAddrMode::ScaledRegField:
2869
ScaledReg = V;
2870
// If we have a mix of scaled and unscaled addrmodes then we want scale
2871
// to be the scale and not zero.
2872
if (!Scale)
2873
for (const ExtAddrMode &AM : AddrModes)
2874
if (AM.Scale) {
2875
Scale = AM.Scale;
2876
break;
2877
}
2878
break;
2879
case ExtAddrMode::BaseOffsField:
2880
// The offset is no longer a constant, so it goes in ScaledReg with a
2881
// scale of 1.
2882
assert(ScaledReg == nullptr);
2883
ScaledReg = V;
2884
Scale = 1;
2885
BaseOffs = 0;
2886
break;
2887
}
2888
}
2889
};
2890
2891
#ifndef NDEBUG
2892
static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2893
AM.print(OS);
2894
return OS;
2895
}
2896
#endif
2897
2898
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2899
void ExtAddrMode::print(raw_ostream &OS) const {
2900
bool NeedPlus = false;
2901
OS << "[";
2902
if (InBounds)
2903
OS << "inbounds ";
2904
if (BaseGV) {
2905
OS << "GV:";
2906
BaseGV->printAsOperand(OS, /*PrintType=*/false);
2907
NeedPlus = true;
2908
}
2909
2910
if (BaseOffs) {
2911
OS << (NeedPlus ? " + " : "") << BaseOffs;
2912
NeedPlus = true;
2913
}
2914
2915
if (BaseReg) {
2916
OS << (NeedPlus ? " + " : "") << "Base:";
2917
BaseReg->printAsOperand(OS, /*PrintType=*/false);
2918
NeedPlus = true;
2919
}
2920
if (Scale) {
2921
OS << (NeedPlus ? " + " : "") << Scale << "*";
2922
ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2923
}
2924
2925
OS << ']';
2926
}
2927
2928
LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2929
print(dbgs());
2930
dbgs() << '\n';
2931
}
2932
#endif
2933
2934
} // end anonymous namespace
2935
2936
namespace {
2937
2938
/// This class provides transaction based operation on the IR.
2939
/// Every change made through this class is recorded in the internal state and
2940
/// can be undone (rollback) until commit is called.
2941
/// CGP does not check if instructions could be speculatively executed when
2942
/// moved. Preserving the original location would pessimize the debugging
2943
/// experience, as well as negatively impact the quality of sample PGO.
2944
class TypePromotionTransaction {
2945
/// This represents the common interface of the individual transaction.
2946
/// Each class implements the logic for doing one specific modification on
2947
/// the IR via the TypePromotionTransaction.
2948
class TypePromotionAction {
2949
protected:
2950
/// The Instruction modified.
2951
Instruction *Inst;
2952
2953
public:
2954
/// Constructor of the action.
2955
/// The constructor performs the related action on the IR.
2956
TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2957
2958
virtual ~TypePromotionAction() = default;
2959
2960
/// Undo the modification done by this action.
2961
/// When this method is called, the IR must be in the same state as it was
2962
/// before this action was applied.
2963
/// \pre Undoing the action works if and only if the IR is in the exact same
2964
/// state as it was directly after this action was applied.
2965
virtual void undo() = 0;
2966
2967
/// Advocate every change made by this action.
2968
/// When the results on the IR of the action are to be kept, it is important
2969
/// to call this function, otherwise hidden information may be kept forever.
2970
virtual void commit() {
2971
// Nothing to be done, this action is not doing anything.
2972
}
2973
};
2974
2975
/// Utility to remember the position of an instruction.
2976
class InsertionHandler {
2977
/// Position of an instruction.
2978
/// Either an instruction:
2979
/// - Is the first in a basic block: BB is used.
2980
/// - Has a previous instruction: PrevInst is used.
2981
union {
2982
Instruction *PrevInst;
2983
BasicBlock *BB;
2984
} Point;
2985
std::optional<DbgRecord::self_iterator> BeforeDbgRecord = std::nullopt;
2986
2987
/// Remember whether or not the instruction had a previous instruction.
2988
bool HasPrevInstruction;
2989
2990
public:
2991
/// Record the position of \p Inst.
2992
InsertionHandler(Instruction *Inst) {
2993
HasPrevInstruction = (Inst != &*(Inst->getParent()->begin()));
2994
BasicBlock *BB = Inst->getParent();
2995
2996
// Record where we would have to re-insert the instruction in the sequence
2997
// of DbgRecords, if we ended up reinserting.
2998
if (BB->IsNewDbgInfoFormat)
2999
BeforeDbgRecord = Inst->getDbgReinsertionPosition();
3000
3001
if (HasPrevInstruction) {
3002
Point.PrevInst = &*std::prev(Inst->getIterator());
3003
} else {
3004
Point.BB = BB;
3005
}
3006
}
3007
3008
/// Insert \p Inst at the recorded position.
3009
void insert(Instruction *Inst) {
3010
if (HasPrevInstruction) {
3011
if (Inst->getParent())
3012
Inst->removeFromParent();
3013
Inst->insertAfter(&*Point.PrevInst);
3014
} else {
3015
BasicBlock::iterator Position = Point.BB->getFirstInsertionPt();
3016
if (Inst->getParent())
3017
Inst->moveBefore(*Point.BB, Position);
3018
else
3019
Inst->insertBefore(*Point.BB, Position);
3020
}
3021
3022
Inst->getParent()->reinsertInstInDbgRecords(Inst, BeforeDbgRecord);
3023
}
3024
};
3025
3026
/// Move an instruction before another.
3027
class InstructionMoveBefore : public TypePromotionAction {
3028
/// Original position of the instruction.
3029
InsertionHandler Position;
3030
3031
public:
3032
/// Move \p Inst before \p Before.
3033
InstructionMoveBefore(Instruction *Inst, Instruction *Before)
3034
: TypePromotionAction(Inst), Position(Inst) {
3035
LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
3036
<< "\n");
3037
Inst->moveBefore(Before);
3038
}
3039
3040
/// Move the instruction back to its original position.
3041
void undo() override {
3042
LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
3043
Position.insert(Inst);
3044
}
3045
};
3046
3047
/// Set the operand of an instruction with a new value.
3048
class OperandSetter : public TypePromotionAction {
3049
/// Original operand of the instruction.
3050
Value *Origin;
3051
3052
/// Index of the modified instruction.
3053
unsigned Idx;
3054
3055
public:
3056
/// Set \p Idx operand of \p Inst with \p NewVal.
3057
OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
3058
: TypePromotionAction(Inst), Idx(Idx) {
3059
LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
3060
<< "for:" << *Inst << "\n"
3061
<< "with:" << *NewVal << "\n");
3062
Origin = Inst->getOperand(Idx);
3063
Inst->setOperand(Idx, NewVal);
3064
}
3065
3066
/// Restore the original value of the instruction.
3067
void undo() override {
3068
LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
3069
<< "for: " << *Inst << "\n"
3070
<< "with: " << *Origin << "\n");
3071
Inst->setOperand(Idx, Origin);
3072
}
3073
};
3074
3075
/// Hide the operands of an instruction.
3076
/// Do as if this instruction was not using any of its operands.
3077
class OperandsHider : public TypePromotionAction {
3078
/// The list of original operands.
3079
SmallVector<Value *, 4> OriginalValues;
3080
3081
public:
3082
/// Remove \p Inst from the uses of the operands of \p Inst.
3083
OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
3084
LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
3085
unsigned NumOpnds = Inst->getNumOperands();
3086
OriginalValues.reserve(NumOpnds);
3087
for (unsigned It = 0; It < NumOpnds; ++It) {
3088
// Save the current operand.
3089
Value *Val = Inst->getOperand(It);
3090
OriginalValues.push_back(Val);
3091
// Set a dummy one.
3092
// We could use OperandSetter here, but that would imply an overhead
3093
// that we are not willing to pay.
3094
Inst->setOperand(It, UndefValue::get(Val->getType()));
3095
}
3096
}
3097
3098
/// Restore the original list of uses.
3099
void undo() override {
3100
LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
3101
for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
3102
Inst->setOperand(It, OriginalValues[It]);
3103
}
3104
};
3105
3106
/// Build a truncate instruction.
3107
class TruncBuilder : public TypePromotionAction {
3108
Value *Val;
3109
3110
public:
3111
/// Build a truncate instruction of \p Opnd producing a \p Ty
3112
/// result.
3113
/// trunc Opnd to Ty.
3114
TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
3115
IRBuilder<> Builder(Opnd);
3116
Builder.SetCurrentDebugLocation(DebugLoc());
3117
Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
3118
LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
3119
}
3120
3121
/// Get the built value.
3122
Value *getBuiltValue() { return Val; }
3123
3124
/// Remove the built instruction.
3125
void undo() override {
3126
LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
3127
if (Instruction *IVal = dyn_cast<Instruction>(Val))
3128
IVal->eraseFromParent();
3129
}
3130
};
3131
3132
/// Build a sign extension instruction.
3133
class SExtBuilder : public TypePromotionAction {
3134
Value *Val;
3135
3136
public:
3137
/// Build a sign extension instruction of \p Opnd producing a \p Ty
3138
/// result.
3139
/// sext Opnd to Ty.
3140
SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3141
: TypePromotionAction(InsertPt) {
3142
IRBuilder<> Builder(InsertPt);
3143
Val = Builder.CreateSExt(Opnd, Ty, "promoted");
3144
LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
3145
}
3146
3147
/// Get the built value.
3148
Value *getBuiltValue() { return Val; }
3149
3150
/// Remove the built instruction.
3151
void undo() override {
3152
LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
3153
if (Instruction *IVal = dyn_cast<Instruction>(Val))
3154
IVal->eraseFromParent();
3155
}
3156
};
3157
3158
/// Build a zero extension instruction.
3159
class ZExtBuilder : public TypePromotionAction {
3160
Value *Val;
3161
3162
public:
3163
/// Build a zero extension instruction of \p Opnd producing a \p Ty
3164
/// result.
3165
/// zext Opnd to Ty.
3166
ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3167
: TypePromotionAction(InsertPt) {
3168
IRBuilder<> Builder(InsertPt);
3169
Builder.SetCurrentDebugLocation(DebugLoc());
3170
Val = Builder.CreateZExt(Opnd, Ty, "promoted");
3171
LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3172
}
3173
3174
/// Get the built value.
3175
Value *getBuiltValue() { return Val; }
3176
3177
/// Remove the built instruction.
3178
void undo() override {
3179
LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3180
if (Instruction *IVal = dyn_cast<Instruction>(Val))
3181
IVal->eraseFromParent();
3182
}
3183
};
3184
3185
/// Mutate an instruction to another type.
3186
class TypeMutator : public TypePromotionAction {
3187
/// Record the original type.
3188
Type *OrigTy;
3189
3190
public:
3191
/// Mutate the type of \p Inst into \p NewTy.
3192
TypeMutator(Instruction *Inst, Type *NewTy)
3193
: TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3194
LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3195
<< "\n");
3196
Inst->mutateType(NewTy);
3197
}
3198
3199
/// Mutate the instruction back to its original type.
3200
void undo() override {
3201
LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3202
<< "\n");
3203
Inst->mutateType(OrigTy);
3204
}
3205
};
3206
3207
/// Replace the uses of an instruction by another instruction.
3208
class UsesReplacer : public TypePromotionAction {
3209
/// Helper structure to keep track of the replaced uses.
3210
struct InstructionAndIdx {
3211
/// The instruction using the instruction.
3212
Instruction *Inst;
3213
3214
/// The index where this instruction is used for Inst.
3215
unsigned Idx;
3216
3217
InstructionAndIdx(Instruction *Inst, unsigned Idx)
3218
: Inst(Inst), Idx(Idx) {}
3219
};
3220
3221
/// Keep track of the original uses (pair Instruction, Index).
3222
SmallVector<InstructionAndIdx, 4> OriginalUses;
3223
/// Keep track of the debug users.
3224
SmallVector<DbgValueInst *, 1> DbgValues;
3225
/// And non-instruction debug-users too.
3226
SmallVector<DbgVariableRecord *, 1> DbgVariableRecords;
3227
3228
/// Keep track of the new value so that we can undo it by replacing
3229
/// instances of the new value with the original value.
3230
Value *New;
3231
3232
using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
3233
3234
public:
3235
/// Replace all the use of \p Inst by \p New.
3236
UsesReplacer(Instruction *Inst, Value *New)
3237
: TypePromotionAction(Inst), New(New) {
3238
LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3239
<< "\n");
3240
// Record the original uses.
3241
for (Use &U : Inst->uses()) {
3242
Instruction *UserI = cast<Instruction>(U.getUser());
3243
OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3244
}
3245
// Record the debug uses separately. They are not in the instruction's
3246
// use list, but they are replaced by RAUW.
3247
findDbgValues(DbgValues, Inst, &DbgVariableRecords);
3248
3249
// Now, we can replace the uses.
3250
Inst->replaceAllUsesWith(New);
3251
}
3252
3253
/// Reassign the original uses of Inst to Inst.
3254
void undo() override {
3255
LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3256
for (InstructionAndIdx &Use : OriginalUses)
3257
Use.Inst->setOperand(Use.Idx, Inst);
3258
// RAUW has replaced all original uses with references to the new value,
3259
// including the debug uses. Since we are undoing the replacements,
3260
// the original debug uses must also be reinstated to maintain the
3261
// correctness and utility of debug value instructions.
3262
for (auto *DVI : DbgValues)
3263
DVI->replaceVariableLocationOp(New, Inst);
3264
// Similar story with DbgVariableRecords, the non-instruction
3265
// representation of dbg.values.
3266
for (DbgVariableRecord *DVR : DbgVariableRecords)
3267
DVR->replaceVariableLocationOp(New, Inst);
3268
}
3269
};
3270
3271
/// Remove an instruction from the IR.
3272
class InstructionRemover : public TypePromotionAction {
3273
/// Original position of the instruction.
3274
InsertionHandler Inserter;
3275
3276
/// Helper structure to hide all the link to the instruction. In other
3277
/// words, this helps to do as if the instruction was removed.
3278
OperandsHider Hider;
3279
3280
/// Keep track of the uses replaced, if any.
3281
UsesReplacer *Replacer = nullptr;
3282
3283
/// Keep track of instructions removed.
3284
SetOfInstrs &RemovedInsts;
3285
3286
public:
3287
/// Remove all reference of \p Inst and optionally replace all its
3288
/// uses with New.
3289
/// \p RemovedInsts Keep track of the instructions removed by this Action.
3290
/// \pre If !Inst->use_empty(), then New != nullptr
3291
InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3292
Value *New = nullptr)
3293
: TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3294
RemovedInsts(RemovedInsts) {
3295
if (New)
3296
Replacer = new UsesReplacer(Inst, New);
3297
LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3298
RemovedInsts.insert(Inst);
3299
/// The instructions removed here will be freed after completing
3300
/// optimizeBlock() for all blocks as we need to keep track of the
3301
/// removed instructions during promotion.
3302
Inst->removeFromParent();
3303
}
3304
3305
~InstructionRemover() override { delete Replacer; }
3306
3307
InstructionRemover &operator=(const InstructionRemover &other) = delete;
3308
InstructionRemover(const InstructionRemover &other) = delete;
3309
3310
/// Resurrect the instruction and reassign it to the proper uses if
3311
/// new value was provided when build this action.
3312
void undo() override {
3313
LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3314
Inserter.insert(Inst);
3315
if (Replacer)
3316
Replacer->undo();
3317
Hider.undo();
3318
RemovedInsts.erase(Inst);
3319
}
3320
};
3321
3322
public:
3323
/// Restoration point.
3324
/// The restoration point is a pointer to an action instead of an iterator
3325
/// because the iterator may be invalidated but not the pointer.
3326
using ConstRestorationPt = const TypePromotionAction *;
3327
3328
TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3329
: RemovedInsts(RemovedInsts) {}
3330
3331
/// Advocate every changes made in that transaction. Return true if any change
3332
/// happen.
3333
bool commit();
3334
3335
/// Undo all the changes made after the given point.
3336
void rollback(ConstRestorationPt Point);
3337
3338
/// Get the current restoration point.
3339
ConstRestorationPt getRestorationPoint() const;
3340
3341
/// \name API for IR modification with state keeping to support rollback.
3342
/// @{
3343
/// Same as Instruction::setOperand.
3344
void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3345
3346
/// Same as Instruction::eraseFromParent.
3347
void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3348
3349
/// Same as Value::replaceAllUsesWith.
3350
void replaceAllUsesWith(Instruction *Inst, Value *New);
3351
3352
/// Same as Value::mutateType.
3353
void mutateType(Instruction *Inst, Type *NewTy);
3354
3355
/// Same as IRBuilder::createTrunc.
3356
Value *createTrunc(Instruction *Opnd, Type *Ty);
3357
3358
/// Same as IRBuilder::createSExt.
3359
Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3360
3361
/// Same as IRBuilder::createZExt.
3362
Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3363
3364
private:
3365
/// The ordered list of actions made so far.
3366
SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3367
3368
using CommitPt =
3369
SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3370
3371
SetOfInstrs &RemovedInsts;
3372
};
3373
3374
} // end anonymous namespace
3375
3376
void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3377
Value *NewVal) {
3378
Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3379
Inst, Idx, NewVal));
3380
}
3381
3382
void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3383
Value *NewVal) {
3384
Actions.push_back(
3385
std::make_unique<TypePromotionTransaction::InstructionRemover>(
3386
Inst, RemovedInsts, NewVal));
3387
}
3388
3389
void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3390
Value *New) {
3391
Actions.push_back(
3392
std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3393
}
3394
3395
void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3396
Actions.push_back(
3397
std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3398
}
3399
3400
Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, Type *Ty) {
3401
std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3402
Value *Val = Ptr->getBuiltValue();
3403
Actions.push_back(std::move(Ptr));
3404
return Val;
3405
}
3406
3407
Value *TypePromotionTransaction::createSExt(Instruction *Inst, Value *Opnd,
3408
Type *Ty) {
3409
std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3410
Value *Val = Ptr->getBuiltValue();
3411
Actions.push_back(std::move(Ptr));
3412
return Val;
3413
}
3414
3415
Value *TypePromotionTransaction::createZExt(Instruction *Inst, Value *Opnd,
3416
Type *Ty) {
3417
std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3418
Value *Val = Ptr->getBuiltValue();
3419
Actions.push_back(std::move(Ptr));
3420
return Val;
3421
}
3422
3423
TypePromotionTransaction::ConstRestorationPt
3424
TypePromotionTransaction::getRestorationPoint() const {
3425
return !Actions.empty() ? Actions.back().get() : nullptr;
3426
}
3427
3428
bool TypePromotionTransaction::commit() {
3429
for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3430
Action->commit();
3431
bool Modified = !Actions.empty();
3432
Actions.clear();
3433
return Modified;
3434
}
3435
3436
void TypePromotionTransaction::rollback(
3437
TypePromotionTransaction::ConstRestorationPt Point) {
3438
while (!Actions.empty() && Point != Actions.back().get()) {
3439
std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3440
Curr->undo();
3441
}
3442
}
3443
3444
namespace {
3445
3446
/// A helper class for matching addressing modes.
3447
///
3448
/// This encapsulates the logic for matching the target-legal addressing modes.
3449
class AddressingModeMatcher {
3450
SmallVectorImpl<Instruction *> &AddrModeInsts;
3451
const TargetLowering &TLI;
3452
const TargetRegisterInfo &TRI;
3453
const DataLayout &DL;
3454
const LoopInfo &LI;
3455
const std::function<const DominatorTree &()> getDTFn;
3456
3457
/// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3458
/// the memory instruction that we're computing this address for.
3459
Type *AccessTy;
3460
unsigned AddrSpace;
3461
Instruction *MemoryInst;
3462
3463
/// This is the addressing mode that we're building up. This is
3464
/// part of the return value of this addressing mode matching stuff.
3465
ExtAddrMode &AddrMode;
3466
3467
/// The instructions inserted by other CodeGenPrepare optimizations.
3468
const SetOfInstrs &InsertedInsts;
3469
3470
/// A map from the instructions to their type before promotion.
3471
InstrToOrigTy &PromotedInsts;
3472
3473
/// The ongoing transaction where every action should be registered.
3474
TypePromotionTransaction &TPT;
3475
3476
// A GEP which has too large offset to be folded into the addressing mode.
3477
std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3478
3479
/// This is set to true when we should not do profitability checks.
3480
/// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3481
bool IgnoreProfitability;
3482
3483
/// True if we are optimizing for size.
3484
bool OptSize = false;
3485
3486
ProfileSummaryInfo *PSI;
3487
BlockFrequencyInfo *BFI;
3488
3489
AddressingModeMatcher(
3490
SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3491
const TargetRegisterInfo &TRI, const LoopInfo &LI,
3492
const std::function<const DominatorTree &()> getDTFn, Type *AT,
3493
unsigned AS, Instruction *MI, ExtAddrMode &AM,
3494
const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3495
TypePromotionTransaction &TPT,
3496
std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3497
bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3498
: AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3499
DL(MI->getDataLayout()), LI(LI), getDTFn(getDTFn),
3500
AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3501
InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3502
LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3503
IgnoreProfitability = false;
3504
}
3505
3506
public:
3507
/// Find the maximal addressing mode that a load/store of V can fold,
3508
/// give an access type of AccessTy. This returns a list of involved
3509
/// instructions in AddrModeInsts.
3510
/// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3511
/// optimizations.
3512
/// \p PromotedInsts maps the instructions to their type before promotion.
3513
/// \p The ongoing transaction where every action should be registered.
3514
static ExtAddrMode
3515
Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3516
SmallVectorImpl<Instruction *> &AddrModeInsts,
3517
const TargetLowering &TLI, const LoopInfo &LI,
3518
const std::function<const DominatorTree &()> getDTFn,
3519
const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3520
InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3521
std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3522
bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3523
ExtAddrMode Result;
3524
3525
bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, LI, getDTFn,
3526
AccessTy, AS, MemoryInst, Result,
3527
InsertedInsts, PromotedInsts, TPT,
3528
LargeOffsetGEP, OptSize, PSI, BFI)
3529
.matchAddr(V, 0);
3530
(void)Success;
3531
assert(Success && "Couldn't select *anything*?");
3532
return Result;
3533
}
3534
3535
private:
3536
bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3537
bool matchAddr(Value *Addr, unsigned Depth);
3538
bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3539
bool *MovedAway = nullptr);
3540
bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3541
ExtAddrMode &AMBefore,
3542
ExtAddrMode &AMAfter);
3543
bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3544
bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3545
Value *PromotedOperand) const;
3546
};
3547
3548
class PhiNodeSet;
3549
3550
/// An iterator for PhiNodeSet.
3551
class PhiNodeSetIterator {
3552
PhiNodeSet *const Set;
3553
size_t CurrentIndex = 0;
3554
3555
public:
3556
/// The constructor. Start should point to either a valid element, or be equal
3557
/// to the size of the underlying SmallVector of the PhiNodeSet.
3558
PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start);
3559
PHINode *operator*() const;
3560
PhiNodeSetIterator &operator++();
3561
bool operator==(const PhiNodeSetIterator &RHS) const;
3562
bool operator!=(const PhiNodeSetIterator &RHS) const;
3563
};
3564
3565
/// Keeps a set of PHINodes.
3566
///
3567
/// This is a minimal set implementation for a specific use case:
3568
/// It is very fast when there are very few elements, but also provides good
3569
/// performance when there are many. It is similar to SmallPtrSet, but also
3570
/// provides iteration by insertion order, which is deterministic and stable
3571
/// across runs. It is also similar to SmallSetVector, but provides removing
3572
/// elements in O(1) time. This is achieved by not actually removing the element
3573
/// from the underlying vector, so comes at the cost of using more memory, but
3574
/// that is fine, since PhiNodeSets are used as short lived objects.
3575
class PhiNodeSet {
3576
friend class PhiNodeSetIterator;
3577
3578
using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3579
using iterator = PhiNodeSetIterator;
3580
3581
/// Keeps the elements in the order of their insertion in the underlying
3582
/// vector. To achieve constant time removal, it never deletes any element.
3583
SmallVector<PHINode *, 32> NodeList;
3584
3585
/// Keeps the elements in the underlying set implementation. This (and not the
3586
/// NodeList defined above) is the source of truth on whether an element
3587
/// is actually in the collection.
3588
MapType NodeMap;
3589
3590
/// Points to the first valid (not deleted) element when the set is not empty
3591
/// and the value is not zero. Equals to the size of the underlying vector
3592
/// when the set is empty. When the value is 0, as in the beginning, the
3593
/// first element may or may not be valid.
3594
size_t FirstValidElement = 0;
3595
3596
public:
3597
/// Inserts a new element to the collection.
3598
/// \returns true if the element is actually added, i.e. was not in the
3599
/// collection before the operation.
3600
bool insert(PHINode *Ptr) {
3601
if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3602
NodeList.push_back(Ptr);
3603
return true;
3604
}
3605
return false;
3606
}
3607
3608
/// Removes the element from the collection.
3609
/// \returns whether the element is actually removed, i.e. was in the
3610
/// collection before the operation.
3611
bool erase(PHINode *Ptr) {
3612
if (NodeMap.erase(Ptr)) {
3613
SkipRemovedElements(FirstValidElement);
3614
return true;
3615
}
3616
return false;
3617
}
3618
3619
/// Removes all elements and clears the collection.
3620
void clear() {
3621
NodeMap.clear();
3622
NodeList.clear();
3623
FirstValidElement = 0;
3624
}
3625
3626
/// \returns an iterator that will iterate the elements in the order of
3627
/// insertion.
3628
iterator begin() {
3629
if (FirstValidElement == 0)
3630
SkipRemovedElements(FirstValidElement);
3631
return PhiNodeSetIterator(this, FirstValidElement);
3632
}
3633
3634
/// \returns an iterator that points to the end of the collection.
3635
iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3636
3637
/// Returns the number of elements in the collection.
3638
size_t size() const { return NodeMap.size(); }
3639
3640
/// \returns 1 if the given element is in the collection, and 0 if otherwise.
3641
size_t count(PHINode *Ptr) const { return NodeMap.count(Ptr); }
3642
3643
private:
3644
/// Updates the CurrentIndex so that it will point to a valid element.
3645
///
3646
/// If the element of NodeList at CurrentIndex is valid, it does not
3647
/// change it. If there are no more valid elements, it updates CurrentIndex
3648
/// to point to the end of the NodeList.
3649
void SkipRemovedElements(size_t &CurrentIndex) {
3650
while (CurrentIndex < NodeList.size()) {
3651
auto it = NodeMap.find(NodeList[CurrentIndex]);
3652
// If the element has been deleted and added again later, NodeMap will
3653
// point to a different index, so CurrentIndex will still be invalid.
3654
if (it != NodeMap.end() && it->second == CurrentIndex)
3655
break;
3656
++CurrentIndex;
3657
}
3658
}
3659
};
3660
3661
PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3662
: Set(Set), CurrentIndex(Start) {}
3663
3664
PHINode *PhiNodeSetIterator::operator*() const {
3665
assert(CurrentIndex < Set->NodeList.size() &&
3666
"PhiNodeSet access out of range");
3667
return Set->NodeList[CurrentIndex];
3668
}
3669
3670
PhiNodeSetIterator &PhiNodeSetIterator::operator++() {
3671
assert(CurrentIndex < Set->NodeList.size() &&
3672
"PhiNodeSet access out of range");
3673
++CurrentIndex;
3674
Set->SkipRemovedElements(CurrentIndex);
3675
return *this;
3676
}
3677
3678
bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3679
return CurrentIndex == RHS.CurrentIndex;
3680
}
3681
3682
bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3683
return !((*this) == RHS);
3684
}
3685
3686
/// Keep track of simplification of Phi nodes.
3687
/// Accept the set of all phi nodes and erase phi node from this set
3688
/// if it is simplified.
3689
class SimplificationTracker {
3690
DenseMap<Value *, Value *> Storage;
3691
const SimplifyQuery &SQ;
3692
// Tracks newly created Phi nodes. The elements are iterated by insertion
3693
// order.
3694
PhiNodeSet AllPhiNodes;
3695
// Tracks newly created Select nodes.
3696
SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3697
3698
public:
3699
SimplificationTracker(const SimplifyQuery &sq) : SQ(sq) {}
3700
3701
Value *Get(Value *V) {
3702
do {
3703
auto SV = Storage.find(V);
3704
if (SV == Storage.end())
3705
return V;
3706
V = SV->second;
3707
} while (true);
3708
}
3709
3710
Value *Simplify(Value *Val) {
3711
SmallVector<Value *, 32> WorkList;
3712
SmallPtrSet<Value *, 32> Visited;
3713
WorkList.push_back(Val);
3714
while (!WorkList.empty()) {
3715
auto *P = WorkList.pop_back_val();
3716
if (!Visited.insert(P).second)
3717
continue;
3718
if (auto *PI = dyn_cast<Instruction>(P))
3719
if (Value *V = simplifyInstruction(cast<Instruction>(PI), SQ)) {
3720
for (auto *U : PI->users())
3721
WorkList.push_back(cast<Value>(U));
3722
Put(PI, V);
3723
PI->replaceAllUsesWith(V);
3724
if (auto *PHI = dyn_cast<PHINode>(PI))
3725
AllPhiNodes.erase(PHI);
3726
if (auto *Select = dyn_cast<SelectInst>(PI))
3727
AllSelectNodes.erase(Select);
3728
PI->eraseFromParent();
3729
}
3730
}
3731
return Get(Val);
3732
}
3733
3734
void Put(Value *From, Value *To) { Storage.insert({From, To}); }
3735
3736
void ReplacePhi(PHINode *From, PHINode *To) {
3737
Value *OldReplacement = Get(From);
3738
while (OldReplacement != From) {
3739
From = To;
3740
To = dyn_cast<PHINode>(OldReplacement);
3741
OldReplacement = Get(From);
3742
}
3743
assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3744
Put(From, To);
3745
From->replaceAllUsesWith(To);
3746
AllPhiNodes.erase(From);
3747
From->eraseFromParent();
3748
}
3749
3750
PhiNodeSet &newPhiNodes() { return AllPhiNodes; }
3751
3752
void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3753
3754
void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3755
3756
unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3757
3758
unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3759
3760
void destroyNewNodes(Type *CommonType) {
3761
// For safe erasing, replace the uses with dummy value first.
3762
auto *Dummy = PoisonValue::get(CommonType);
3763
for (auto *I : AllPhiNodes) {
3764
I->replaceAllUsesWith(Dummy);
3765
I->eraseFromParent();
3766
}
3767
AllPhiNodes.clear();
3768
for (auto *I : AllSelectNodes) {
3769
I->replaceAllUsesWith(Dummy);
3770
I->eraseFromParent();
3771
}
3772
AllSelectNodes.clear();
3773
}
3774
};
3775
3776
/// A helper class for combining addressing modes.
3777
class AddressingModeCombiner {
3778
typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3779
typedef std::pair<PHINode *, PHINode *> PHIPair;
3780
3781
private:
3782
/// The addressing modes we've collected.
3783
SmallVector<ExtAddrMode, 16> AddrModes;
3784
3785
/// The field in which the AddrModes differ, when we have more than one.
3786
ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3787
3788
/// Are the AddrModes that we have all just equal to their original values?
3789
bool AllAddrModesTrivial = true;
3790
3791
/// Common Type for all different fields in addressing modes.
3792
Type *CommonType = nullptr;
3793
3794
/// SimplifyQuery for simplifyInstruction utility.
3795
const SimplifyQuery &SQ;
3796
3797
/// Original Address.
3798
Value *Original;
3799
3800
/// Common value among addresses
3801
Value *CommonValue = nullptr;
3802
3803
public:
3804
AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3805
: SQ(_SQ), Original(OriginalValue) {}
3806
3807
~AddressingModeCombiner() { eraseCommonValueIfDead(); }
3808
3809
/// Get the combined AddrMode
3810
const ExtAddrMode &getAddrMode() const { return AddrModes[0]; }
3811
3812
/// Add a new AddrMode if it's compatible with the AddrModes we already
3813
/// have.
3814
/// \return True iff we succeeded in doing so.
3815
bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3816
// Take note of if we have any non-trivial AddrModes, as we need to detect
3817
// when all AddrModes are trivial as then we would introduce a phi or select
3818
// which just duplicates what's already there.
3819
AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3820
3821
// If this is the first addrmode then everything is fine.
3822
if (AddrModes.empty()) {
3823
AddrModes.emplace_back(NewAddrMode);
3824
return true;
3825
}
3826
3827
// Figure out how different this is from the other address modes, which we
3828
// can do just by comparing against the first one given that we only care
3829
// about the cumulative difference.
3830
ExtAddrMode::FieldName ThisDifferentField =
3831
AddrModes[0].compare(NewAddrMode);
3832
if (DifferentField == ExtAddrMode::NoField)
3833
DifferentField = ThisDifferentField;
3834
else if (DifferentField != ThisDifferentField)
3835
DifferentField = ExtAddrMode::MultipleFields;
3836
3837
// If NewAddrMode differs in more than one dimension we cannot handle it.
3838
bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3839
3840
// If Scale Field is different then we reject.
3841
CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3842
3843
// We also must reject the case when base offset is different and
3844
// scale reg is not null, we cannot handle this case due to merge of
3845
// different offsets will be used as ScaleReg.
3846
CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3847
!NewAddrMode.ScaledReg);
3848
3849
// We also must reject the case when GV is different and BaseReg installed
3850
// due to we want to use base reg as a merge of GV values.
3851
CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3852
!NewAddrMode.HasBaseReg);
3853
3854
// Even if NewAddMode is the same we still need to collect it due to
3855
// original value is different. And later we will need all original values
3856
// as anchors during finding the common Phi node.
3857
if (CanHandle)
3858
AddrModes.emplace_back(NewAddrMode);
3859
else
3860
AddrModes.clear();
3861
3862
return CanHandle;
3863
}
3864
3865
/// Combine the addressing modes we've collected into a single
3866
/// addressing mode.
3867
/// \return True iff we successfully combined them or we only had one so
3868
/// didn't need to combine them anyway.
3869
bool combineAddrModes() {
3870
// If we have no AddrModes then they can't be combined.
3871
if (AddrModes.size() == 0)
3872
return false;
3873
3874
// A single AddrMode can trivially be combined.
3875
if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3876
return true;
3877
3878
// If the AddrModes we collected are all just equal to the value they are
3879
// derived from then combining them wouldn't do anything useful.
3880
if (AllAddrModesTrivial)
3881
return false;
3882
3883
if (!addrModeCombiningAllowed())
3884
return false;
3885
3886
// Build a map between <original value, basic block where we saw it> to
3887
// value of base register.
3888
// Bail out if there is no common type.
3889
FoldAddrToValueMapping Map;
3890
if (!initializeMap(Map))
3891
return false;
3892
3893
CommonValue = findCommon(Map);
3894
if (CommonValue)
3895
AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3896
return CommonValue != nullptr;
3897
}
3898
3899
private:
3900
/// `CommonValue` may be a placeholder inserted by us.
3901
/// If the placeholder is not used, we should remove this dead instruction.
3902
void eraseCommonValueIfDead() {
3903
if (CommonValue && CommonValue->getNumUses() == 0)
3904
if (Instruction *CommonInst = dyn_cast<Instruction>(CommonValue))
3905
CommonInst->eraseFromParent();
3906
}
3907
3908
/// Initialize Map with anchor values. For address seen
3909
/// we set the value of different field saw in this address.
3910
/// At the same time we find a common type for different field we will
3911
/// use to create new Phi/Select nodes. Keep it in CommonType field.
3912
/// Return false if there is no common type found.
3913
bool initializeMap(FoldAddrToValueMapping &Map) {
3914
// Keep track of keys where the value is null. We will need to replace it
3915
// with constant null when we know the common type.
3916
SmallVector<Value *, 2> NullValue;
3917
Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3918
for (auto &AM : AddrModes) {
3919
Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3920
if (DV) {
3921
auto *Type = DV->getType();
3922
if (CommonType && CommonType != Type)
3923
return false;
3924
CommonType = Type;
3925
Map[AM.OriginalValue] = DV;
3926
} else {
3927
NullValue.push_back(AM.OriginalValue);
3928
}
3929
}
3930
assert(CommonType && "At least one non-null value must be!");
3931
for (auto *V : NullValue)
3932
Map[V] = Constant::getNullValue(CommonType);
3933
return true;
3934
}
3935
3936
/// We have mapping between value A and other value B where B was a field in
3937
/// addressing mode represented by A. Also we have an original value C
3938
/// representing an address we start with. Traversing from C through phi and
3939
/// selects we ended up with A's in a map. This utility function tries to find
3940
/// a value V which is a field in addressing mode C and traversing through phi
3941
/// nodes and selects we will end up in corresponded values B in a map.
3942
/// The utility will create a new Phi/Selects if needed.
3943
// The simple example looks as follows:
3944
// BB1:
3945
// p1 = b1 + 40
3946
// br cond BB2, BB3
3947
// BB2:
3948
// p2 = b2 + 40
3949
// br BB3
3950
// BB3:
3951
// p = phi [p1, BB1], [p2, BB2]
3952
// v = load p
3953
// Map is
3954
// p1 -> b1
3955
// p2 -> b2
3956
// Request is
3957
// p -> ?
3958
// The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3959
Value *findCommon(FoldAddrToValueMapping &Map) {
3960
// Tracks the simplification of newly created phi nodes. The reason we use
3961
// this mapping is because we will add new created Phi nodes in AddrToBase.
3962
// Simplification of Phi nodes is recursive, so some Phi node may
3963
// be simplified after we added it to AddrToBase. In reality this
3964
// simplification is possible only if original phi/selects were not
3965
// simplified yet.
3966
// Using this mapping we can find the current value in AddrToBase.
3967
SimplificationTracker ST(SQ);
3968
3969
// First step, DFS to create PHI nodes for all intermediate blocks.
3970
// Also fill traverse order for the second step.
3971
SmallVector<Value *, 32> TraverseOrder;
3972
InsertPlaceholders(Map, TraverseOrder, ST);
3973
3974
// Second Step, fill new nodes by merged values and simplify if possible.
3975
FillPlaceholders(Map, TraverseOrder, ST);
3976
3977
if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3978
ST.destroyNewNodes(CommonType);
3979
return nullptr;
3980
}
3981
3982
// Now we'd like to match New Phi nodes to existed ones.
3983
unsigned PhiNotMatchedCount = 0;
3984
if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3985
ST.destroyNewNodes(CommonType);
3986
return nullptr;
3987
}
3988
3989
auto *Result = ST.Get(Map.find(Original)->second);
3990
if (Result) {
3991
NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3992
NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3993
}
3994
return Result;
3995
}
3996
3997
/// Try to match PHI node to Candidate.
3998
/// Matcher tracks the matched Phi nodes.
3999
bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
4000
SmallSetVector<PHIPair, 8> &Matcher,
4001
PhiNodeSet &PhiNodesToMatch) {
4002
SmallVector<PHIPair, 8> WorkList;
4003
Matcher.insert({PHI, Candidate});
4004
SmallSet<PHINode *, 8> MatchedPHIs;
4005
MatchedPHIs.insert(PHI);
4006
WorkList.push_back({PHI, Candidate});
4007
SmallSet<PHIPair, 8> Visited;
4008
while (!WorkList.empty()) {
4009
auto Item = WorkList.pop_back_val();
4010
if (!Visited.insert(Item).second)
4011
continue;
4012
// We iterate over all incoming values to Phi to compare them.
4013
// If values are different and both of them Phi and the first one is a
4014
// Phi we added (subject to match) and both of them is in the same basic
4015
// block then we can match our pair if values match. So we state that
4016
// these values match and add it to work list to verify that.
4017
for (auto *B : Item.first->blocks()) {
4018
Value *FirstValue = Item.first->getIncomingValueForBlock(B);
4019
Value *SecondValue = Item.second->getIncomingValueForBlock(B);
4020
if (FirstValue == SecondValue)
4021
continue;
4022
4023
PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
4024
PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
4025
4026
// One of them is not Phi or
4027
// The first one is not Phi node from the set we'd like to match or
4028
// Phi nodes from different basic blocks then
4029
// we will not be able to match.
4030
if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
4031
FirstPhi->getParent() != SecondPhi->getParent())
4032
return false;
4033
4034
// If we already matched them then continue.
4035
if (Matcher.count({FirstPhi, SecondPhi}))
4036
continue;
4037
// So the values are different and does not match. So we need them to
4038
// match. (But we register no more than one match per PHI node, so that
4039
// we won't later try to replace them twice.)
4040
if (MatchedPHIs.insert(FirstPhi).second)
4041
Matcher.insert({FirstPhi, SecondPhi});
4042
// But me must check it.
4043
WorkList.push_back({FirstPhi, SecondPhi});
4044
}
4045
}
4046
return true;
4047
}
4048
4049
/// For the given set of PHI nodes (in the SimplificationTracker) try
4050
/// to find their equivalents.
4051
/// Returns false if this matching fails and creation of new Phi is disabled.
4052
bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
4053
unsigned &PhiNotMatchedCount) {
4054
// Matched and PhiNodesToMatch iterate their elements in a deterministic
4055
// order, so the replacements (ReplacePhi) are also done in a deterministic
4056
// order.
4057
SmallSetVector<PHIPair, 8> Matched;
4058
SmallPtrSet<PHINode *, 8> WillNotMatch;
4059
PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
4060
while (PhiNodesToMatch.size()) {
4061
PHINode *PHI = *PhiNodesToMatch.begin();
4062
4063
// Add us, if no Phi nodes in the basic block we do not match.
4064
WillNotMatch.clear();
4065
WillNotMatch.insert(PHI);
4066
4067
// Traverse all Phis until we found equivalent or fail to do that.
4068
bool IsMatched = false;
4069
for (auto &P : PHI->getParent()->phis()) {
4070
// Skip new Phi nodes.
4071
if (PhiNodesToMatch.count(&P))
4072
continue;
4073
if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
4074
break;
4075
// If it does not match, collect all Phi nodes from matcher.
4076
// if we end up with no match, them all these Phi nodes will not match
4077
// later.
4078
for (auto M : Matched)
4079
WillNotMatch.insert(M.first);
4080
Matched.clear();
4081
}
4082
if (IsMatched) {
4083
// Replace all matched values and erase them.
4084
for (auto MV : Matched)
4085
ST.ReplacePhi(MV.first, MV.second);
4086
Matched.clear();
4087
continue;
4088
}
4089
// If we are not allowed to create new nodes then bail out.
4090
if (!AllowNewPhiNodes)
4091
return false;
4092
// Just remove all seen values in matcher. They will not match anything.
4093
PhiNotMatchedCount += WillNotMatch.size();
4094
for (auto *P : WillNotMatch)
4095
PhiNodesToMatch.erase(P);
4096
}
4097
return true;
4098
}
4099
/// Fill the placeholders with values from predecessors and simplify them.
4100
void FillPlaceholders(FoldAddrToValueMapping &Map,
4101
SmallVectorImpl<Value *> &TraverseOrder,
4102
SimplificationTracker &ST) {
4103
while (!TraverseOrder.empty()) {
4104
Value *Current = TraverseOrder.pop_back_val();
4105
assert(Map.contains(Current) && "No node to fill!!!");
4106
Value *V = Map[Current];
4107
4108
if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
4109
// CurrentValue also must be Select.
4110
auto *CurrentSelect = cast<SelectInst>(Current);
4111
auto *TrueValue = CurrentSelect->getTrueValue();
4112
assert(Map.contains(TrueValue) && "No True Value!");
4113
Select->setTrueValue(ST.Get(Map[TrueValue]));
4114
auto *FalseValue = CurrentSelect->getFalseValue();
4115
assert(Map.contains(FalseValue) && "No False Value!");
4116
Select->setFalseValue(ST.Get(Map[FalseValue]));
4117
} else {
4118
// Must be a Phi node then.
4119
auto *PHI = cast<PHINode>(V);
4120
// Fill the Phi node with values from predecessors.
4121
for (auto *B : predecessors(PHI->getParent())) {
4122
Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
4123
assert(Map.contains(PV) && "No predecessor Value!");
4124
PHI->addIncoming(ST.Get(Map[PV]), B);
4125
}
4126
}
4127
Map[Current] = ST.Simplify(V);
4128
}
4129
}
4130
4131
/// Starting from original value recursively iterates over def-use chain up to
4132
/// known ending values represented in a map. For each traversed phi/select
4133
/// inserts a placeholder Phi or Select.
4134
/// Reports all new created Phi/Select nodes by adding them to set.
4135
/// Also reports and order in what values have been traversed.
4136
void InsertPlaceholders(FoldAddrToValueMapping &Map,
4137
SmallVectorImpl<Value *> &TraverseOrder,
4138
SimplificationTracker &ST) {
4139
SmallVector<Value *, 32> Worklist;
4140
assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
4141
"Address must be a Phi or Select node");
4142
auto *Dummy = PoisonValue::get(CommonType);
4143
Worklist.push_back(Original);
4144
while (!Worklist.empty()) {
4145
Value *Current = Worklist.pop_back_val();
4146
// if it is already visited or it is an ending value then skip it.
4147
if (Map.contains(Current))
4148
continue;
4149
TraverseOrder.push_back(Current);
4150
4151
// CurrentValue must be a Phi node or select. All others must be covered
4152
// by anchors.
4153
if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
4154
// Is it OK to get metadata from OrigSelect?!
4155
// Create a Select placeholder with dummy value.
4156
SelectInst *Select =
4157
SelectInst::Create(CurrentSelect->getCondition(), Dummy, Dummy,
4158
CurrentSelect->getName(),
4159
CurrentSelect->getIterator(), CurrentSelect);
4160
Map[Current] = Select;
4161
ST.insertNewSelect(Select);
4162
// We are interested in True and False values.
4163
Worklist.push_back(CurrentSelect->getTrueValue());
4164
Worklist.push_back(CurrentSelect->getFalseValue());
4165
} else {
4166
// It must be a Phi node then.
4167
PHINode *CurrentPhi = cast<PHINode>(Current);
4168
unsigned PredCount = CurrentPhi->getNumIncomingValues();
4169
PHINode *PHI =
4170
PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi->getIterator());
4171
Map[Current] = PHI;
4172
ST.insertNewPhi(PHI);
4173
append_range(Worklist, CurrentPhi->incoming_values());
4174
}
4175
}
4176
}
4177
4178
bool addrModeCombiningAllowed() {
4179
if (DisableComplexAddrModes)
4180
return false;
4181
switch (DifferentField) {
4182
default:
4183
return false;
4184
case ExtAddrMode::BaseRegField:
4185
return AddrSinkCombineBaseReg;
4186
case ExtAddrMode::BaseGVField:
4187
return AddrSinkCombineBaseGV;
4188
case ExtAddrMode::BaseOffsField:
4189
return AddrSinkCombineBaseOffs;
4190
case ExtAddrMode::ScaledRegField:
4191
return AddrSinkCombineScaledReg;
4192
}
4193
}
4194
};
4195
} // end anonymous namespace
4196
4197
/// Try adding ScaleReg*Scale to the current addressing mode.
4198
/// Return true and update AddrMode if this addr mode is legal for the target,
4199
/// false if not.
4200
bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
4201
unsigned Depth) {
4202
// If Scale is 1, then this is the same as adding ScaleReg to the addressing
4203
// mode. Just process that directly.
4204
if (Scale == 1)
4205
return matchAddr(ScaleReg, Depth);
4206
4207
// If the scale is 0, it takes nothing to add this.
4208
if (Scale == 0)
4209
return true;
4210
4211
// If we already have a scale of this value, we can add to it, otherwise, we
4212
// need an available scale field.
4213
if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
4214
return false;
4215
4216
ExtAddrMode TestAddrMode = AddrMode;
4217
4218
// Add scale to turn X*4+X*3 -> X*7. This could also do things like
4219
// [A+B + A*7] -> [B+A*8].
4220
TestAddrMode.Scale += Scale;
4221
TestAddrMode.ScaledReg = ScaleReg;
4222
4223
// If the new address isn't legal, bail out.
4224
if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
4225
return false;
4226
4227
// It was legal, so commit it.
4228
AddrMode = TestAddrMode;
4229
4230
// Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
4231
// to see if ScaleReg is actually X+C. If so, we can turn this into adding
4232
// X*Scale + C*Scale to addr mode. If we found available IV increment, do not
4233
// go any further: we can reuse it and cannot eliminate it.
4234
ConstantInt *CI = nullptr;
4235
Value *AddLHS = nullptr;
4236
if (isa<Instruction>(ScaleReg) && // not a constant expr.
4237
match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
4238
!isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
4239
TestAddrMode.InBounds = false;
4240
TestAddrMode.ScaledReg = AddLHS;
4241
TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
4242
4243
// If this addressing mode is legal, commit it and remember that we folded
4244
// this instruction.
4245
if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
4246
AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
4247
AddrMode = TestAddrMode;
4248
return true;
4249
}
4250
// Restore status quo.
4251
TestAddrMode = AddrMode;
4252
}
4253
4254
// If this is an add recurrence with a constant step, return the increment
4255
// instruction and the canonicalized step.
4256
auto GetConstantStep =
4257
[this](const Value *V) -> std::optional<std::pair<Instruction *, APInt>> {
4258
auto *PN = dyn_cast<PHINode>(V);
4259
if (!PN)
4260
return std::nullopt;
4261
auto IVInc = getIVIncrement(PN, &LI);
4262
if (!IVInc)
4263
return std::nullopt;
4264
// TODO: The result of the intrinsics above is two-complement. However when
4265
// IV inc is expressed as add or sub, iv.next is potentially a poison value.
4266
// If it has nuw or nsw flags, we need to make sure that these flags are
4267
// inferrable at the point of memory instruction. Otherwise we are replacing
4268
// well-defined two-complement computation with poison. Currently, to avoid
4269
// potentially complex analysis needed to prove this, we reject such cases.
4270
if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
4271
if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
4272
return std::nullopt;
4273
if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
4274
return std::make_pair(IVInc->first, ConstantStep->getValue());
4275
return std::nullopt;
4276
};
4277
4278
// Try to account for the following special case:
4279
// 1. ScaleReg is an inductive variable;
4280
// 2. We use it with non-zero offset;
4281
// 3. IV's increment is available at the point of memory instruction.
4282
//
4283
// In this case, we may reuse the IV increment instead of the IV Phi to
4284
// achieve the following advantages:
4285
// 1. If IV step matches the offset, we will have no need in the offset;
4286
// 2. Even if they don't match, we will reduce the overlap of living IV
4287
// and IV increment, that will potentially lead to better register
4288
// assignment.
4289
if (AddrMode.BaseOffs) {
4290
if (auto IVStep = GetConstantStep(ScaleReg)) {
4291
Instruction *IVInc = IVStep->first;
4292
// The following assert is important to ensure a lack of infinite loops.
4293
// This transforms is (intentionally) the inverse of the one just above.
4294
// If they don't agree on the definition of an increment, we'd alternate
4295
// back and forth indefinitely.
4296
assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
4297
APInt Step = IVStep->second;
4298
APInt Offset = Step * AddrMode.Scale;
4299
if (Offset.isSignedIntN(64)) {
4300
TestAddrMode.InBounds = false;
4301
TestAddrMode.ScaledReg = IVInc;
4302
TestAddrMode.BaseOffs -= Offset.getLimitedValue();
4303
// If this addressing mode is legal, commit it..
4304
// (Note that we defer the (expensive) domtree base legality check
4305
// to the very last possible point.)
4306
if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
4307
getDTFn().dominates(IVInc, MemoryInst)) {
4308
AddrModeInsts.push_back(cast<Instruction>(IVInc));
4309
AddrMode = TestAddrMode;
4310
return true;
4311
}
4312
// Restore status quo.
4313
TestAddrMode = AddrMode;
4314
}
4315
}
4316
}
4317
4318
// Otherwise, just return what we have.
4319
return true;
4320
}
4321
4322
/// This is a little filter, which returns true if an addressing computation
4323
/// involving I might be folded into a load/store accessing it.
4324
/// This doesn't need to be perfect, but needs to accept at least
4325
/// the set of instructions that MatchOperationAddr can.
4326
static bool MightBeFoldableInst(Instruction *I) {
4327
switch (I->getOpcode()) {
4328
case Instruction::BitCast:
4329
case Instruction::AddrSpaceCast:
4330
// Don't touch identity bitcasts.
4331
if (I->getType() == I->getOperand(0)->getType())
4332
return false;
4333
return I->getType()->isIntOrPtrTy();
4334
case Instruction::PtrToInt:
4335
// PtrToInt is always a noop, as we know that the int type is pointer sized.
4336
return true;
4337
case Instruction::IntToPtr:
4338
// We know the input is intptr_t, so this is foldable.
4339
return true;
4340
case Instruction::Add:
4341
return true;
4342
case Instruction::Mul:
4343
case Instruction::Shl:
4344
// Can only handle X*C and X << C.
4345
return isa<ConstantInt>(I->getOperand(1));
4346
case Instruction::GetElementPtr:
4347
return true;
4348
default:
4349
return false;
4350
}
4351
}
4352
4353
/// Check whether or not \p Val is a legal instruction for \p TLI.
4354
/// \note \p Val is assumed to be the product of some type promotion.
4355
/// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4356
/// to be legal, as the non-promoted value would have had the same state.
4357
static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4358
const DataLayout &DL, Value *Val) {
4359
Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4360
if (!PromotedInst)
4361
return false;
4362
int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4363
// If the ISDOpcode is undefined, it was undefined before the promotion.
4364
if (!ISDOpcode)
4365
return true;
4366
// Otherwise, check if the promoted instruction is legal or not.
4367
return TLI.isOperationLegalOrCustom(
4368
ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4369
}
4370
4371
namespace {
4372
4373
/// Hepler class to perform type promotion.
4374
class TypePromotionHelper {
4375
/// Utility function to add a promoted instruction \p ExtOpnd to
4376
/// \p PromotedInsts and record the type of extension we have seen.
4377
static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4378
Instruction *ExtOpnd, bool IsSExt) {
4379
ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4380
InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4381
if (It != PromotedInsts.end()) {
4382
// If the new extension is same as original, the information in
4383
// PromotedInsts[ExtOpnd] is still correct.
4384
if (It->second.getInt() == ExtTy)
4385
return;
4386
4387
// Now the new extension is different from old extension, we make
4388
// the type information invalid by setting extension type to
4389
// BothExtension.
4390
ExtTy = BothExtension;
4391
}
4392
PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4393
}
4394
4395
/// Utility function to query the original type of instruction \p Opnd
4396
/// with a matched extension type. If the extension doesn't match, we
4397
/// cannot use the information we had on the original type.
4398
/// BothExtension doesn't match any extension type.
4399
static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4400
Instruction *Opnd, bool IsSExt) {
4401
ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4402
InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4403
if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4404
return It->second.getPointer();
4405
return nullptr;
4406
}
4407
4408
/// Utility function to check whether or not a sign or zero extension
4409
/// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4410
/// either using the operands of \p Inst or promoting \p Inst.
4411
/// The type of the extension is defined by \p IsSExt.
4412
/// In other words, check if:
4413
/// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4414
/// #1 Promotion applies:
4415
/// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4416
/// #2 Operand reuses:
4417
/// ext opnd1 to ConsideredExtType.
4418
/// \p PromotedInsts maps the instructions to their type before promotion.
4419
static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4420
const InstrToOrigTy &PromotedInsts, bool IsSExt);
4421
4422
/// Utility function to determine if \p OpIdx should be promoted when
4423
/// promoting \p Inst.
4424
static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4425
return !(isa<SelectInst>(Inst) && OpIdx == 0);
4426
}
4427
4428
/// Utility function to promote the operand of \p Ext when this
4429
/// operand is a promotable trunc or sext or zext.
4430
/// \p PromotedInsts maps the instructions to their type before promotion.
4431
/// \p CreatedInstsCost[out] contains the cost of all instructions
4432
/// created to promote the operand of Ext.
4433
/// Newly added extensions are inserted in \p Exts.
4434
/// Newly added truncates are inserted in \p Truncs.
4435
/// Should never be called directly.
4436
/// \return The promoted value which is used instead of Ext.
4437
static Value *promoteOperandForTruncAndAnyExt(
4438
Instruction *Ext, TypePromotionTransaction &TPT,
4439
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4440
SmallVectorImpl<Instruction *> *Exts,
4441
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4442
4443
/// Utility function to promote the operand of \p Ext when this
4444
/// operand is promotable and is not a supported trunc or sext.
4445
/// \p PromotedInsts maps the instructions to their type before promotion.
4446
/// \p CreatedInstsCost[out] contains the cost of all the instructions
4447
/// created to promote the operand of Ext.
4448
/// Newly added extensions are inserted in \p Exts.
4449
/// Newly added truncates are inserted in \p Truncs.
4450
/// Should never be called directly.
4451
/// \return The promoted value which is used instead of Ext.
4452
static Value *promoteOperandForOther(Instruction *Ext,
4453
TypePromotionTransaction &TPT,
4454
InstrToOrigTy &PromotedInsts,
4455
unsigned &CreatedInstsCost,
4456
SmallVectorImpl<Instruction *> *Exts,
4457
SmallVectorImpl<Instruction *> *Truncs,
4458
const TargetLowering &TLI, bool IsSExt);
4459
4460
/// \see promoteOperandForOther.
4461
static Value *signExtendOperandForOther(
4462
Instruction *Ext, TypePromotionTransaction &TPT,
4463
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4464
SmallVectorImpl<Instruction *> *Exts,
4465
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4466
return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4467
Exts, Truncs, TLI, true);
4468
}
4469
4470
/// \see promoteOperandForOther.
4471
static Value *zeroExtendOperandForOther(
4472
Instruction *Ext, TypePromotionTransaction &TPT,
4473
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4474
SmallVectorImpl<Instruction *> *Exts,
4475
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4476
return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4477
Exts, Truncs, TLI, false);
4478
}
4479
4480
public:
4481
/// Type for the utility function that promotes the operand of Ext.
4482
using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4483
InstrToOrigTy &PromotedInsts,
4484
unsigned &CreatedInstsCost,
4485
SmallVectorImpl<Instruction *> *Exts,
4486
SmallVectorImpl<Instruction *> *Truncs,
4487
const TargetLowering &TLI);
4488
4489
/// Given a sign/zero extend instruction \p Ext, return the appropriate
4490
/// action to promote the operand of \p Ext instead of using Ext.
4491
/// \return NULL if no promotable action is possible with the current
4492
/// sign extension.
4493
/// \p InsertedInsts keeps track of all the instructions inserted by the
4494
/// other CodeGenPrepare optimizations. This information is important
4495
/// because we do not want to promote these instructions as CodeGenPrepare
4496
/// will reinsert them later. Thus creating an infinite loop: create/remove.
4497
/// \p PromotedInsts maps the instructions to their type before promotion.
4498
static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4499
const TargetLowering &TLI,
4500
const InstrToOrigTy &PromotedInsts);
4501
};
4502
4503
} // end anonymous namespace
4504
4505
bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4506
Type *ConsideredExtType,
4507
const InstrToOrigTy &PromotedInsts,
4508
bool IsSExt) {
4509
// The promotion helper does not know how to deal with vector types yet.
4510
// To be able to fix that, we would need to fix the places where we
4511
// statically extend, e.g., constants and such.
4512
if (Inst->getType()->isVectorTy())
4513
return false;
4514
4515
// We can always get through zext.
4516
if (isa<ZExtInst>(Inst))
4517
return true;
4518
4519
// sext(sext) is ok too.
4520
if (IsSExt && isa<SExtInst>(Inst))
4521
return true;
4522
4523
// We can get through binary operator, if it is legal. In other words, the
4524
// binary operator must have a nuw or nsw flag.
4525
if (const auto *BinOp = dyn_cast<BinaryOperator>(Inst))
4526
if (isa<OverflowingBinaryOperator>(BinOp) &&
4527
((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4528
(IsSExt && BinOp->hasNoSignedWrap())))
4529
return true;
4530
4531
// ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4532
if ((Inst->getOpcode() == Instruction::And ||
4533
Inst->getOpcode() == Instruction::Or))
4534
return true;
4535
4536
// ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4537
if (Inst->getOpcode() == Instruction::Xor) {
4538
// Make sure it is not a NOT.
4539
if (const auto *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)))
4540
if (!Cst->getValue().isAllOnes())
4541
return true;
4542
}
4543
4544
// zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4545
// It may change a poisoned value into a regular value, like
4546
// zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
4547
// poisoned value regular value
4548
// It should be OK since undef covers valid value.
4549
if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4550
return true;
4551
4552
// and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4553
// It may change a poisoned value into a regular value, like
4554
// zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
4555
// poisoned value regular value
4556
// It should be OK since undef covers valid value.
4557
if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4558
const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4559
if (ExtInst->hasOneUse()) {
4560
const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4561
if (AndInst && AndInst->getOpcode() == Instruction::And) {
4562
const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4563
if (Cst &&
4564
Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4565
return true;
4566
}
4567
}
4568
}
4569
4570
// Check if we can do the following simplification.
4571
// ext(trunc(opnd)) --> ext(opnd)
4572
if (!isa<TruncInst>(Inst))
4573
return false;
4574
4575
Value *OpndVal = Inst->getOperand(0);
4576
// Check if we can use this operand in the extension.
4577
// If the type is larger than the result type of the extension, we cannot.
4578
if (!OpndVal->getType()->isIntegerTy() ||
4579
OpndVal->getType()->getIntegerBitWidth() >
4580
ConsideredExtType->getIntegerBitWidth())
4581
return false;
4582
4583
// If the operand of the truncate is not an instruction, we will not have
4584
// any information on the dropped bits.
4585
// (Actually we could for constant but it is not worth the extra logic).
4586
Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4587
if (!Opnd)
4588
return false;
4589
4590
// Check if the source of the type is narrow enough.
4591
// I.e., check that trunc just drops extended bits of the same kind of
4592
// the extension.
4593
// #1 get the type of the operand and check the kind of the extended bits.
4594
const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4595
if (OpndType)
4596
;
4597
else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4598
OpndType = Opnd->getOperand(0)->getType();
4599
else
4600
return false;
4601
4602
// #2 check that the truncate just drops extended bits.
4603
return Inst->getType()->getIntegerBitWidth() >=
4604
OpndType->getIntegerBitWidth();
4605
}
4606
4607
TypePromotionHelper::Action TypePromotionHelper::getAction(
4608
Instruction *Ext, const SetOfInstrs &InsertedInsts,
4609
const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4610
assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4611
"Unexpected instruction type");
4612
Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4613
Type *ExtTy = Ext->getType();
4614
bool IsSExt = isa<SExtInst>(Ext);
4615
// If the operand of the extension is not an instruction, we cannot
4616
// get through.
4617
// If it, check we can get through.
4618
if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4619
return nullptr;
4620
4621
// Do not promote if the operand has been added by codegenprepare.
4622
// Otherwise, it means we are undoing an optimization that is likely to be
4623
// redone, thus causing potential infinite loop.
4624
if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4625
return nullptr;
4626
4627
// SExt or Trunc instructions.
4628
// Return the related handler.
4629
if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4630
isa<ZExtInst>(ExtOpnd))
4631
return promoteOperandForTruncAndAnyExt;
4632
4633
// Regular instruction.
4634
// Abort early if we will have to insert non-free instructions.
4635
if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4636
return nullptr;
4637
return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4638
}
4639
4640
Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4641
Instruction *SExt, TypePromotionTransaction &TPT,
4642
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4643
SmallVectorImpl<Instruction *> *Exts,
4644
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4645
// By construction, the operand of SExt is an instruction. Otherwise we cannot
4646
// get through it and this method should not be called.
4647
Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4648
Value *ExtVal = SExt;
4649
bool HasMergedNonFreeExt = false;
4650
if (isa<ZExtInst>(SExtOpnd)) {
4651
// Replace s|zext(zext(opnd))
4652
// => zext(opnd).
4653
HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4654
Value *ZExt =
4655
TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4656
TPT.replaceAllUsesWith(SExt, ZExt);
4657
TPT.eraseInstruction(SExt);
4658
ExtVal = ZExt;
4659
} else {
4660
// Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4661
// => z|sext(opnd).
4662
TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4663
}
4664
CreatedInstsCost = 0;
4665
4666
// Remove dead code.
4667
if (SExtOpnd->use_empty())
4668
TPT.eraseInstruction(SExtOpnd);
4669
4670
// Check if the extension is still needed.
4671
Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4672
if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4673
if (ExtInst) {
4674
if (Exts)
4675
Exts->push_back(ExtInst);
4676
CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4677
}
4678
return ExtVal;
4679
}
4680
4681
// At this point we have: ext ty opnd to ty.
4682
// Reassign the uses of ExtInst to the opnd and remove ExtInst.
4683
Value *NextVal = ExtInst->getOperand(0);
4684
TPT.eraseInstruction(ExtInst, NextVal);
4685
return NextVal;
4686
}
4687
4688
Value *TypePromotionHelper::promoteOperandForOther(
4689
Instruction *Ext, TypePromotionTransaction &TPT,
4690
InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4691
SmallVectorImpl<Instruction *> *Exts,
4692
SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4693
bool IsSExt) {
4694
// By construction, the operand of Ext is an instruction. Otherwise we cannot
4695
// get through it and this method should not be called.
4696
Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4697
CreatedInstsCost = 0;
4698
if (!ExtOpnd->hasOneUse()) {
4699
// ExtOpnd will be promoted.
4700
// All its uses, but Ext, will need to use a truncated value of the
4701
// promoted version.
4702
// Create the truncate now.
4703
Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4704
if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4705
// Insert it just after the definition.
4706
ITrunc->moveAfter(ExtOpnd);
4707
if (Truncs)
4708
Truncs->push_back(ITrunc);
4709
}
4710
4711
TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4712
// Restore the operand of Ext (which has been replaced by the previous call
4713
// to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4714
TPT.setOperand(Ext, 0, ExtOpnd);
4715
}
4716
4717
// Get through the Instruction:
4718
// 1. Update its type.
4719
// 2. Replace the uses of Ext by Inst.
4720
// 3. Extend each operand that needs to be extended.
4721
4722
// Remember the original type of the instruction before promotion.
4723
// This is useful to know that the high bits are sign extended bits.
4724
addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4725
// Step #1.
4726
TPT.mutateType(ExtOpnd, Ext->getType());
4727
// Step #2.
4728
TPT.replaceAllUsesWith(Ext, ExtOpnd);
4729
// Step #3.
4730
LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4731
for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4732
++OpIdx) {
4733
LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4734
if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4735
!shouldExtOperand(ExtOpnd, OpIdx)) {
4736
LLVM_DEBUG(dbgs() << "No need to propagate\n");
4737
continue;
4738
}
4739
// Check if we can statically extend the operand.
4740
Value *Opnd = ExtOpnd->getOperand(OpIdx);
4741
if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4742
LLVM_DEBUG(dbgs() << "Statically extend\n");
4743
unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4744
APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4745
: Cst->getValue().zext(BitWidth);
4746
TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4747
continue;
4748
}
4749
// UndefValue are typed, so we have to statically sign extend them.
4750
if (isa<UndefValue>(Opnd)) {
4751
LLVM_DEBUG(dbgs() << "Statically extend\n");
4752
TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4753
continue;
4754
}
4755
4756
// Otherwise we have to explicitly sign extend the operand.
4757
Value *ValForExtOpnd = IsSExt
4758
? TPT.createSExt(ExtOpnd, Opnd, Ext->getType())
4759
: TPT.createZExt(ExtOpnd, Opnd, Ext->getType());
4760
TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4761
Instruction *InstForExtOpnd = dyn_cast<Instruction>(ValForExtOpnd);
4762
if (!InstForExtOpnd)
4763
continue;
4764
4765
if (Exts)
4766
Exts->push_back(InstForExtOpnd);
4767
4768
CreatedInstsCost += !TLI.isExtFree(InstForExtOpnd);
4769
}
4770
LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4771
TPT.eraseInstruction(Ext);
4772
return ExtOpnd;
4773
}
4774
4775
/// Check whether or not promoting an instruction to a wider type is profitable.
4776
/// \p NewCost gives the cost of extension instructions created by the
4777
/// promotion.
4778
/// \p OldCost gives the cost of extension instructions before the promotion
4779
/// plus the number of instructions that have been
4780
/// matched in the addressing mode the promotion.
4781
/// \p PromotedOperand is the value that has been promoted.
4782
/// \return True if the promotion is profitable, false otherwise.
4783
bool AddressingModeMatcher::isPromotionProfitable(
4784
unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4785
LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4786
<< '\n');
4787
// The cost of the new extensions is greater than the cost of the
4788
// old extension plus what we folded.
4789
// This is not profitable.
4790
if (NewCost > OldCost)
4791
return false;
4792
if (NewCost < OldCost)
4793
return true;
4794
// The promotion is neutral but it may help folding the sign extension in
4795
// loads for instance.
4796
// Check that we did not create an illegal instruction.
4797
return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4798
}
4799
4800
/// Given an instruction or constant expr, see if we can fold the operation
4801
/// into the addressing mode. If so, update the addressing mode and return
4802
/// true, otherwise return false without modifying AddrMode.
4803
/// If \p MovedAway is not NULL, it contains the information of whether or
4804
/// not AddrInst has to be folded into the addressing mode on success.
4805
/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4806
/// because it has been moved away.
4807
/// Thus AddrInst must not be added in the matched instructions.
4808
/// This state can happen when AddrInst is a sext, since it may be moved away.
4809
/// Therefore, AddrInst may not be valid when MovedAway is true and it must
4810
/// not be referenced anymore.
4811
bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4812
unsigned Depth,
4813
bool *MovedAway) {
4814
// Avoid exponential behavior on extremely deep expression trees.
4815
if (Depth >= 5)
4816
return false;
4817
4818
// By default, all matched instructions stay in place.
4819
if (MovedAway)
4820
*MovedAway = false;
4821
4822
switch (Opcode) {
4823
case Instruction::PtrToInt:
4824
// PtrToInt is always a noop, as we know that the int type is pointer sized.
4825
return matchAddr(AddrInst->getOperand(0), Depth);
4826
case Instruction::IntToPtr: {
4827
auto AS = AddrInst->getType()->getPointerAddressSpace();
4828
auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4829
// This inttoptr is a no-op if the integer type is pointer sized.
4830
if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4831
return matchAddr(AddrInst->getOperand(0), Depth);
4832
return false;
4833
}
4834
case Instruction::BitCast:
4835
// BitCast is always a noop, and we can handle it as long as it is
4836
// int->int or pointer->pointer (we don't want int<->fp or something).
4837
if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4838
// Don't touch identity bitcasts. These were probably put here by LSR,
4839
// and we don't want to mess around with them. Assume it knows what it
4840
// is doing.
4841
AddrInst->getOperand(0)->getType() != AddrInst->getType())
4842
return matchAddr(AddrInst->getOperand(0), Depth);
4843
return false;
4844
case Instruction::AddrSpaceCast: {
4845
unsigned SrcAS =
4846
AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4847
unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4848
if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4849
return matchAddr(AddrInst->getOperand(0), Depth);
4850
return false;
4851
}
4852
case Instruction::Add: {
4853
// Check to see if we can merge in one operand, then the other. If so, we
4854
// win.
4855
ExtAddrMode BackupAddrMode = AddrMode;
4856
unsigned OldSize = AddrModeInsts.size();
4857
// Start a transaction at this point.
4858
// The LHS may match but not the RHS.
4859
// Therefore, we need a higher level restoration point to undo partially
4860
// matched operation.
4861
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4862
TPT.getRestorationPoint();
4863
4864
// Try to match an integer constant second to increase its chance of ending
4865
// up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`.
4866
int First = 0, Second = 1;
4867
if (isa<ConstantInt>(AddrInst->getOperand(First))
4868
&& !isa<ConstantInt>(AddrInst->getOperand(Second)))
4869
std::swap(First, Second);
4870
AddrMode.InBounds = false;
4871
if (matchAddr(AddrInst->getOperand(First), Depth + 1) &&
4872
matchAddr(AddrInst->getOperand(Second), Depth + 1))
4873
return true;
4874
4875
// Restore the old addr mode info.
4876
AddrMode = BackupAddrMode;
4877
AddrModeInsts.resize(OldSize);
4878
TPT.rollback(LastKnownGood);
4879
4880
// Otherwise this was over-aggressive. Try merging operands in the opposite
4881
// order.
4882
if (matchAddr(AddrInst->getOperand(Second), Depth + 1) &&
4883
matchAddr(AddrInst->getOperand(First), Depth + 1))
4884
return true;
4885
4886
// Otherwise we definitely can't merge the ADD in.
4887
AddrMode = BackupAddrMode;
4888
AddrModeInsts.resize(OldSize);
4889
TPT.rollback(LastKnownGood);
4890
break;
4891
}
4892
// case Instruction::Or:
4893
// TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4894
// break;
4895
case Instruction::Mul:
4896
case Instruction::Shl: {
4897
// Can only handle X*C and X << C.
4898
AddrMode.InBounds = false;
4899
ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4900
if (!RHS || RHS->getBitWidth() > 64)
4901
return false;
4902
int64_t Scale = Opcode == Instruction::Shl
4903
? 1LL << RHS->getLimitedValue(RHS->getBitWidth() - 1)
4904
: RHS->getSExtValue();
4905
4906
return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4907
}
4908
case Instruction::GetElementPtr: {
4909
// Scan the GEP. We check it if it contains constant offsets and at most
4910
// one variable offset.
4911
int VariableOperand = -1;
4912
unsigned VariableScale = 0;
4913
4914
int64_t ConstantOffset = 0;
4915
gep_type_iterator GTI = gep_type_begin(AddrInst);
4916
for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4917
if (StructType *STy = GTI.getStructTypeOrNull()) {
4918
const StructLayout *SL = DL.getStructLayout(STy);
4919
unsigned Idx =
4920
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4921
ConstantOffset += SL->getElementOffset(Idx);
4922
} else {
4923
TypeSize TS = GTI.getSequentialElementStride(DL);
4924
if (TS.isNonZero()) {
4925
// The optimisations below currently only work for fixed offsets.
4926
if (TS.isScalable())
4927
return false;
4928
int64_t TypeSize = TS.getFixedValue();
4929
if (ConstantInt *CI =
4930
dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4931
const APInt &CVal = CI->getValue();
4932
if (CVal.getSignificantBits() <= 64) {
4933
ConstantOffset += CVal.getSExtValue() * TypeSize;
4934
continue;
4935
}
4936
}
4937
// We only allow one variable index at the moment.
4938
if (VariableOperand != -1)
4939
return false;
4940
4941
// Remember the variable index.
4942
VariableOperand = i;
4943
VariableScale = TypeSize;
4944
}
4945
}
4946
}
4947
4948
// A common case is for the GEP to only do a constant offset. In this case,
4949
// just add it to the disp field and check validity.
4950
if (VariableOperand == -1) {
4951
AddrMode.BaseOffs += ConstantOffset;
4952
if (matchAddr(AddrInst->getOperand(0), Depth + 1)) {
4953
if (!cast<GEPOperator>(AddrInst)->isInBounds())
4954
AddrMode.InBounds = false;
4955
return true;
4956
}
4957
AddrMode.BaseOffs -= ConstantOffset;
4958
4959
if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4960
TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4961
ConstantOffset > 0) {
4962
// Record GEPs with non-zero offsets as candidates for splitting in
4963
// the event that the offset cannot fit into the r+i addressing mode.
4964
// Simple and common case that only one GEP is used in calculating the
4965
// address for the memory access.
4966
Value *Base = AddrInst->getOperand(0);
4967
auto *BaseI = dyn_cast<Instruction>(Base);
4968
auto *GEP = cast<GetElementPtrInst>(AddrInst);
4969
if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4970
(BaseI && !isa<CastInst>(BaseI) &&
4971
!isa<GetElementPtrInst>(BaseI))) {
4972
// Make sure the parent block allows inserting non-PHI instructions
4973
// before the terminator.
4974
BasicBlock *Parent = BaseI ? BaseI->getParent()
4975
: &GEP->getFunction()->getEntryBlock();
4976
if (!Parent->getTerminator()->isEHPad())
4977
LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4978
}
4979
}
4980
4981
return false;
4982
}
4983
4984
// Save the valid addressing mode in case we can't match.
4985
ExtAddrMode BackupAddrMode = AddrMode;
4986
unsigned OldSize = AddrModeInsts.size();
4987
4988
// See if the scale and offset amount is valid for this target.
4989
AddrMode.BaseOffs += ConstantOffset;
4990
if (!cast<GEPOperator>(AddrInst)->isInBounds())
4991
AddrMode.InBounds = false;
4992
4993
// Match the base operand of the GEP.
4994
if (!matchAddr(AddrInst->getOperand(0), Depth + 1)) {
4995
// If it couldn't be matched, just stuff the value in a register.
4996
if (AddrMode.HasBaseReg) {
4997
AddrMode = BackupAddrMode;
4998
AddrModeInsts.resize(OldSize);
4999
return false;
5000
}
5001
AddrMode.HasBaseReg = true;
5002
AddrMode.BaseReg = AddrInst->getOperand(0);
5003
}
5004
5005
// Match the remaining variable portion of the GEP.
5006
if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
5007
Depth)) {
5008
// If it couldn't be matched, try stuffing the base into a register
5009
// instead of matching it, and retrying the match of the scale.
5010
AddrMode = BackupAddrMode;
5011
AddrModeInsts.resize(OldSize);
5012
if (AddrMode.HasBaseReg)
5013
return false;
5014
AddrMode.HasBaseReg = true;
5015
AddrMode.BaseReg = AddrInst->getOperand(0);
5016
AddrMode.BaseOffs += ConstantOffset;
5017
if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
5018
VariableScale, Depth)) {
5019
// If even that didn't work, bail.
5020
AddrMode = BackupAddrMode;
5021
AddrModeInsts.resize(OldSize);
5022
return false;
5023
}
5024
}
5025
5026
return true;
5027
}
5028
case Instruction::SExt:
5029
case Instruction::ZExt: {
5030
Instruction *Ext = dyn_cast<Instruction>(AddrInst);
5031
if (!Ext)
5032
return false;
5033
5034
// Try to move this ext out of the way of the addressing mode.
5035
// Ask for a method for doing so.
5036
TypePromotionHelper::Action TPH =
5037
TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
5038
if (!TPH)
5039
return false;
5040
5041
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5042
TPT.getRestorationPoint();
5043
unsigned CreatedInstsCost = 0;
5044
unsigned ExtCost = !TLI.isExtFree(Ext);
5045
Value *PromotedOperand =
5046
TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
5047
// SExt has been moved away.
5048
// Thus either it will be rematched later in the recursive calls or it is
5049
// gone. Anyway, we must not fold it into the addressing mode at this point.
5050
// E.g.,
5051
// op = add opnd, 1
5052
// idx = ext op
5053
// addr = gep base, idx
5054
// is now:
5055
// promotedOpnd = ext opnd <- no match here
5056
// op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
5057
// addr = gep base, op <- match
5058
if (MovedAway)
5059
*MovedAway = true;
5060
5061
assert(PromotedOperand &&
5062
"TypePromotionHelper should have filtered out those cases");
5063
5064
ExtAddrMode BackupAddrMode = AddrMode;
5065
unsigned OldSize = AddrModeInsts.size();
5066
5067
if (!matchAddr(PromotedOperand, Depth) ||
5068
// The total of the new cost is equal to the cost of the created
5069
// instructions.
5070
// The total of the old cost is equal to the cost of the extension plus
5071
// what we have saved in the addressing mode.
5072
!isPromotionProfitable(CreatedInstsCost,
5073
ExtCost + (AddrModeInsts.size() - OldSize),
5074
PromotedOperand)) {
5075
AddrMode = BackupAddrMode;
5076
AddrModeInsts.resize(OldSize);
5077
LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
5078
TPT.rollback(LastKnownGood);
5079
return false;
5080
}
5081
return true;
5082
}
5083
case Instruction::Call:
5084
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(AddrInst)) {
5085
if (II->getIntrinsicID() == Intrinsic::threadlocal_address) {
5086
GlobalValue &GV = cast<GlobalValue>(*II->getArgOperand(0));
5087
if (TLI.addressingModeSupportsTLS(GV))
5088
return matchAddr(AddrInst->getOperand(0), Depth);
5089
}
5090
}
5091
break;
5092
}
5093
return false;
5094
}
5095
5096
/// If we can, try to add the value of 'Addr' into the current addressing mode.
5097
/// If Addr can't be added to AddrMode this returns false and leaves AddrMode
5098
/// unmodified. This assumes that Addr is either a pointer type or intptr_t
5099
/// for the target.
5100
///
5101
bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
5102
// Start a transaction at this point that we will rollback if the matching
5103
// fails.
5104
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5105
TPT.getRestorationPoint();
5106
if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
5107
if (CI->getValue().isSignedIntN(64)) {
5108
// Fold in immediates if legal for the target.
5109
AddrMode.BaseOffs += CI->getSExtValue();
5110
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5111
return true;
5112
AddrMode.BaseOffs -= CI->getSExtValue();
5113
}
5114
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
5115
// If this is a global variable, try to fold it into the addressing mode.
5116
if (!AddrMode.BaseGV) {
5117
AddrMode.BaseGV = GV;
5118
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5119
return true;
5120
AddrMode.BaseGV = nullptr;
5121
}
5122
} else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
5123
ExtAddrMode BackupAddrMode = AddrMode;
5124
unsigned OldSize = AddrModeInsts.size();
5125
5126
// Check to see if it is possible to fold this operation.
5127
bool MovedAway = false;
5128
if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
5129
// This instruction may have been moved away. If so, there is nothing
5130
// to check here.
5131
if (MovedAway)
5132
return true;
5133
// Okay, it's possible to fold this. Check to see if it is actually
5134
// *profitable* to do so. We use a simple cost model to avoid increasing
5135
// register pressure too much.
5136
if (I->hasOneUse() ||
5137
isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
5138
AddrModeInsts.push_back(I);
5139
return true;
5140
}
5141
5142
// It isn't profitable to do this, roll back.
5143
AddrMode = BackupAddrMode;
5144
AddrModeInsts.resize(OldSize);
5145
TPT.rollback(LastKnownGood);
5146
}
5147
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
5148
if (matchOperationAddr(CE, CE->getOpcode(), Depth))
5149
return true;
5150
TPT.rollback(LastKnownGood);
5151
} else if (isa<ConstantPointerNull>(Addr)) {
5152
// Null pointer gets folded without affecting the addressing mode.
5153
return true;
5154
}
5155
5156
// Worse case, the target should support [reg] addressing modes. :)
5157
if (!AddrMode.HasBaseReg) {
5158
AddrMode.HasBaseReg = true;
5159
AddrMode.BaseReg = Addr;
5160
// Still check for legality in case the target supports [imm] but not [i+r].
5161
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5162
return true;
5163
AddrMode.HasBaseReg = false;
5164
AddrMode.BaseReg = nullptr;
5165
}
5166
5167
// If the base register is already taken, see if we can do [r+r].
5168
if (AddrMode.Scale == 0) {
5169
AddrMode.Scale = 1;
5170
AddrMode.ScaledReg = Addr;
5171
if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
5172
return true;
5173
AddrMode.Scale = 0;
5174
AddrMode.ScaledReg = nullptr;
5175
}
5176
// Couldn't match.
5177
TPT.rollback(LastKnownGood);
5178
return false;
5179
}
5180
5181
/// Check to see if all uses of OpVal by the specified inline asm call are due
5182
/// to memory operands. If so, return true, otherwise return false.
5183
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
5184
const TargetLowering &TLI,
5185
const TargetRegisterInfo &TRI) {
5186
const Function *F = CI->getFunction();
5187
TargetLowering::AsmOperandInfoVector TargetConstraints =
5188
TLI.ParseConstraints(F->getDataLayout(), &TRI, *CI);
5189
5190
for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
5191
// Compute the constraint code and ConstraintType to use.
5192
TLI.ComputeConstraintToUse(OpInfo, SDValue());
5193
5194
// If this asm operand is our Value*, and if it isn't an indirect memory
5195
// operand, we can't fold it! TODO: Also handle C_Address?
5196
if (OpInfo.CallOperandVal == OpVal &&
5197
(OpInfo.ConstraintType != TargetLowering::C_Memory ||
5198
!OpInfo.isIndirect))
5199
return false;
5200
}
5201
5202
return true;
5203
}
5204
5205
/// Recursively walk all the uses of I until we find a memory use.
5206
/// If we find an obviously non-foldable instruction, return true.
5207
/// Add accessed addresses and types to MemoryUses.
5208
static bool FindAllMemoryUses(
5209
Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5210
SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
5211
const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
5212
BlockFrequencyInfo *BFI, unsigned &SeenInsts) {
5213
// If we already considered this instruction, we're done.
5214
if (!ConsideredInsts.insert(I).second)
5215
return false;
5216
5217
// If this is an obviously unfoldable instruction, bail out.
5218
if (!MightBeFoldableInst(I))
5219
return true;
5220
5221
// Loop over all the uses, recursively processing them.
5222
for (Use &U : I->uses()) {
5223
// Conservatively return true if we're seeing a large number or a deep chain
5224
// of users. This avoids excessive compilation times in pathological cases.
5225
if (SeenInsts++ >= MaxAddressUsersToScan)
5226
return true;
5227
5228
Instruction *UserI = cast<Instruction>(U.getUser());
5229
if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
5230
MemoryUses.push_back({&U, LI->getType()});
5231
continue;
5232
}
5233
5234
if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
5235
if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
5236
return true; // Storing addr, not into addr.
5237
MemoryUses.push_back({&U, SI->getValueOperand()->getType()});
5238
continue;
5239
}
5240
5241
if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
5242
if (U.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
5243
return true; // Storing addr, not into addr.
5244
MemoryUses.push_back({&U, RMW->getValOperand()->getType()});
5245
continue;
5246
}
5247
5248
if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
5249
if (U.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
5250
return true; // Storing addr, not into addr.
5251
MemoryUses.push_back({&U, CmpX->getCompareOperand()->getType()});
5252
continue;
5253
}
5254
5255
if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
5256
if (CI->hasFnAttr(Attribute::Cold)) {
5257
// If this is a cold call, we can sink the addressing calculation into
5258
// the cold path. See optimizeCallInst
5259
bool OptForSize =
5260
OptSize || llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
5261
if (!OptForSize)
5262
continue;
5263
}
5264
5265
InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
5266
if (!IA)
5267
return true;
5268
5269
// If this is a memory operand, we're cool, otherwise bail out.
5270
if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
5271
return true;
5272
continue;
5273
}
5274
5275
if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5276
PSI, BFI, SeenInsts))
5277
return true;
5278
}
5279
5280
return false;
5281
}
5282
5283
static bool FindAllMemoryUses(
5284
Instruction *I, SmallVectorImpl<std::pair<Use *, Type *>> &MemoryUses,
5285
const TargetLowering &TLI, const TargetRegisterInfo &TRI, bool OptSize,
5286
ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
5287
unsigned SeenInsts = 0;
5288
SmallPtrSet<Instruction *, 16> ConsideredInsts;
5289
return FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5290
PSI, BFI, SeenInsts);
5291
}
5292
5293
5294
/// Return true if Val is already known to be live at the use site that we're
5295
/// folding it into. If so, there is no cost to include it in the addressing
5296
/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
5297
/// instruction already.
5298
bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,
5299
Value *KnownLive1,
5300
Value *KnownLive2) {
5301
// If Val is either of the known-live values, we know it is live!
5302
if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
5303
return true;
5304
5305
// All values other than instructions and arguments (e.g. constants) are live.
5306
if (!isa<Instruction>(Val) && !isa<Argument>(Val))
5307
return true;
5308
5309
// If Val is a constant sized alloca in the entry block, it is live, this is
5310
// true because it is just a reference to the stack/frame pointer, which is
5311
// live for the whole function.
5312
if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
5313
if (AI->isStaticAlloca())
5314
return true;
5315
5316
// Check to see if this value is already used in the memory instruction's
5317
// block. If so, it's already live into the block at the very least, so we
5318
// can reasonably fold it.
5319
return Val->isUsedInBasicBlock(MemoryInst->getParent());
5320
}
5321
5322
/// It is possible for the addressing mode of the machine to fold the specified
5323
/// instruction into a load or store that ultimately uses it.
5324
/// However, the specified instruction has multiple uses.
5325
/// Given this, it may actually increase register pressure to fold it
5326
/// into the load. For example, consider this code:
5327
///
5328
/// X = ...
5329
/// Y = X+1
5330
/// use(Y) -> nonload/store
5331
/// Z = Y+1
5332
/// load Z
5333
///
5334
/// In this case, Y has multiple uses, and can be folded into the load of Z
5335
/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
5336
/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
5337
/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
5338
/// number of computations either.
5339
///
5340
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
5341
/// X was live across 'load Z' for other reasons, we actually *would* want to
5342
/// fold the addressing mode in the Z case. This would make Y die earlier.
5343
bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode(
5344
Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) {
5345
if (IgnoreProfitability)
5346
return true;
5347
5348
// AMBefore is the addressing mode before this instruction was folded into it,
5349
// and AMAfter is the addressing mode after the instruction was folded. Get
5350
// the set of registers referenced by AMAfter and subtract out those
5351
// referenced by AMBefore: this is the set of values which folding in this
5352
// address extends the lifetime of.
5353
//
5354
// Note that there are only two potential values being referenced here,
5355
// BaseReg and ScaleReg (global addresses are always available, as are any
5356
// folded immediates).
5357
Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
5358
5359
// If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5360
// lifetime wasn't extended by adding this instruction.
5361
if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5362
BaseReg = nullptr;
5363
if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5364
ScaledReg = nullptr;
5365
5366
// If folding this instruction (and it's subexprs) didn't extend any live
5367
// ranges, we're ok with it.
5368
if (!BaseReg && !ScaledReg)
5369
return true;
5370
5371
// If all uses of this instruction can have the address mode sunk into them,
5372
// we can remove the addressing mode and effectively trade one live register
5373
// for another (at worst.) In this context, folding an addressing mode into
5374
// the use is just a particularly nice way of sinking it.
5375
SmallVector<std::pair<Use *, Type *>, 16> MemoryUses;
5376
if (FindAllMemoryUses(I, MemoryUses, TLI, TRI, OptSize, PSI, BFI))
5377
return false; // Has a non-memory, non-foldable use!
5378
5379
// Now that we know that all uses of this instruction are part of a chain of
5380
// computation involving only operations that could theoretically be folded
5381
// into a memory use, loop over each of these memory operation uses and see
5382
// if they could *actually* fold the instruction. The assumption is that
5383
// addressing modes are cheap and that duplicating the computation involved
5384
// many times is worthwhile, even on a fastpath. For sinking candidates
5385
// (i.e. cold call sites), this serves as a way to prevent excessive code
5386
// growth since most architectures have some reasonable small and fast way to
5387
// compute an effective address. (i.e LEA on x86)
5388
SmallVector<Instruction *, 32> MatchedAddrModeInsts;
5389
for (const std::pair<Use *, Type *> &Pair : MemoryUses) {
5390
Value *Address = Pair.first->get();
5391
Instruction *UserI = cast<Instruction>(Pair.first->getUser());
5392
Type *AddressAccessTy = Pair.second;
5393
unsigned AS = Address->getType()->getPointerAddressSpace();
5394
5395
// Do a match against the root of this address, ignoring profitability. This
5396
// will tell us if the addressing mode for the memory operation will
5397
// *actually* cover the shared instruction.
5398
ExtAddrMode Result;
5399
std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5400
0);
5401
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5402
TPT.getRestorationPoint();
5403
AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5404
AddressAccessTy, AS, UserI, Result,
5405
InsertedInsts, PromotedInsts, TPT,
5406
LargeOffsetGEP, OptSize, PSI, BFI);
5407
Matcher.IgnoreProfitability = true;
5408
bool Success = Matcher.matchAddr(Address, 0);
5409
(void)Success;
5410
assert(Success && "Couldn't select *anything*?");
5411
5412
// The match was to check the profitability, the changes made are not
5413
// part of the original matcher. Therefore, they should be dropped
5414
// otherwise the original matcher will not present the right state.
5415
TPT.rollback(LastKnownGood);
5416
5417
// If the match didn't cover I, then it won't be shared by it.
5418
if (!is_contained(MatchedAddrModeInsts, I))
5419
return false;
5420
5421
MatchedAddrModeInsts.clear();
5422
}
5423
5424
return true;
5425
}
5426
5427
/// Return true if the specified values are defined in a
5428
/// different basic block than BB.
5429
static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5430
if (Instruction *I = dyn_cast<Instruction>(V))
5431
return I->getParent() != BB;
5432
return false;
5433
}
5434
5435
/// Sink addressing mode computation immediate before MemoryInst if doing so
5436
/// can be done without increasing register pressure. The need for the
5437
/// register pressure constraint means this can end up being an all or nothing
5438
/// decision for all uses of the same addressing computation.
5439
///
5440
/// Load and Store Instructions often have addressing modes that can do
5441
/// significant amounts of computation. As such, instruction selection will try
5442
/// to get the load or store to do as much computation as possible for the
5443
/// program. The problem is that isel can only see within a single block. As
5444
/// such, we sink as much legal addressing mode work into the block as possible.
5445
///
5446
/// This method is used to optimize both load/store and inline asms with memory
5447
/// operands. It's also used to sink addressing computations feeding into cold
5448
/// call sites into their (cold) basic block.
5449
///
5450
/// The motivation for handling sinking into cold blocks is that doing so can
5451
/// both enable other address mode sinking (by satisfying the register pressure
5452
/// constraint above), and reduce register pressure globally (by removing the
5453
/// addressing mode computation from the fast path entirely.).
5454
bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5455
Type *AccessTy, unsigned AddrSpace) {
5456
Value *Repl = Addr;
5457
5458
// Try to collapse single-value PHI nodes. This is necessary to undo
5459
// unprofitable PRE transformations.
5460
SmallVector<Value *, 8> worklist;
5461
SmallPtrSet<Value *, 16> Visited;
5462
worklist.push_back(Addr);
5463
5464
// Use a worklist to iteratively look through PHI and select nodes, and
5465
// ensure that the addressing mode obtained from the non-PHI/select roots of
5466
// the graph are compatible.
5467
bool PhiOrSelectSeen = false;
5468
SmallVector<Instruction *, 16> AddrModeInsts;
5469
const SimplifyQuery SQ(*DL, TLInfo);
5470
AddressingModeCombiner AddrModes(SQ, Addr);
5471
TypePromotionTransaction TPT(RemovedInsts);
5472
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5473
TPT.getRestorationPoint();
5474
while (!worklist.empty()) {
5475
Value *V = worklist.pop_back_val();
5476
5477
// We allow traversing cyclic Phi nodes.
5478
// In case of success after this loop we ensure that traversing through
5479
// Phi nodes ends up with all cases to compute address of the form
5480
// BaseGV + Base + Scale * Index + Offset
5481
// where Scale and Offset are constans and BaseGV, Base and Index
5482
// are exactly the same Values in all cases.
5483
// It means that BaseGV, Scale and Offset dominate our memory instruction
5484
// and have the same value as they had in address computation represented
5485
// as Phi. So we can safely sink address computation to memory instruction.
5486
if (!Visited.insert(V).second)
5487
continue;
5488
5489
// For a PHI node, push all of its incoming values.
5490
if (PHINode *P = dyn_cast<PHINode>(V)) {
5491
append_range(worklist, P->incoming_values());
5492
PhiOrSelectSeen = true;
5493
continue;
5494
}
5495
// Similar for select.
5496
if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5497
worklist.push_back(SI->getFalseValue());
5498
worklist.push_back(SI->getTrueValue());
5499
PhiOrSelectSeen = true;
5500
continue;
5501
}
5502
5503
// For non-PHIs, determine the addressing mode being computed. Note that
5504
// the result may differ depending on what other uses our candidate
5505
// addressing instructions might have.
5506
AddrModeInsts.clear();
5507
std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5508
0);
5509
// Defer the query (and possible computation of) the dom tree to point of
5510
// actual use. It's expected that most address matches don't actually need
5511
// the domtree.
5512
auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5513
Function *F = MemoryInst->getParent()->getParent();
5514
return this->getDT(*F);
5515
};
5516
ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5517
V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5518
*TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5519
BFI.get());
5520
5521
GetElementPtrInst *GEP = LargeOffsetGEP.first;
5522
if (GEP && !NewGEPBases.count(GEP)) {
5523
// If splitting the underlying data structure can reduce the offset of a
5524
// GEP, collect the GEP. Skip the GEPs that are the new bases of
5525
// previously split data structures.
5526
LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5527
LargeOffsetGEPID.insert(std::make_pair(GEP, LargeOffsetGEPID.size()));
5528
}
5529
5530
NewAddrMode.OriginalValue = V;
5531
if (!AddrModes.addNewAddrMode(NewAddrMode))
5532
break;
5533
}
5534
5535
// Try to combine the AddrModes we've collected. If we couldn't collect any,
5536
// or we have multiple but either couldn't combine them or combining them
5537
// wouldn't do anything useful, bail out now.
5538
if (!AddrModes.combineAddrModes()) {
5539
TPT.rollback(LastKnownGood);
5540
return false;
5541
}
5542
bool Modified = TPT.commit();
5543
5544
// Get the combined AddrMode (or the only AddrMode, if we only had one).
5545
ExtAddrMode AddrMode = AddrModes.getAddrMode();
5546
5547
// If all the instructions matched are already in this BB, don't do anything.
5548
// If we saw a Phi node then it is not local definitely, and if we saw a
5549
// select then we want to push the address calculation past it even if it's
5550
// already in this BB.
5551
if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5552
return IsNonLocalValue(V, MemoryInst->getParent());
5553
})) {
5554
LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
5555
<< "\n");
5556
return Modified;
5557
}
5558
5559
// Insert this computation right after this user. Since our caller is
5560
// scanning from the top of the BB to the bottom, reuse of the expr are
5561
// guaranteed to happen later.
5562
IRBuilder<> Builder(MemoryInst);
5563
5564
// Now that we determined the addressing expression we want to use and know
5565
// that we have to sink it into this block. Check to see if we have already
5566
// done this for some other load/store instr in this block. If so, reuse
5567
// the computation. Before attempting reuse, check if the address is valid
5568
// as it may have been erased.
5569
5570
WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5571
5572
Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5573
Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5574
if (SunkAddr) {
5575
LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5576
<< " for " << *MemoryInst << "\n");
5577
if (SunkAddr->getType() != Addr->getType()) {
5578
if (SunkAddr->getType()->getPointerAddressSpace() !=
5579
Addr->getType()->getPointerAddressSpace() &&
5580
!DL->isNonIntegralPointerType(Addr->getType())) {
5581
// There are two reasons the address spaces might not match: a no-op
5582
// addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5583
// ptrtoint/inttoptr pair to ensure we match the original semantics.
5584
// TODO: allow bitcast between different address space pointers with the
5585
// same size.
5586
SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5587
SunkAddr =
5588
Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5589
} else
5590
SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5591
}
5592
} else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5593
SubtargetInfo->addrSinkUsingGEPs())) {
5594
// By default, we use the GEP-based method when AA is used later. This
5595
// prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5596
LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5597
<< " for " << *MemoryInst << "\n");
5598
Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5599
5600
// First, find the pointer.
5601
if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5602
ResultPtr = AddrMode.BaseReg;
5603
AddrMode.BaseReg = nullptr;
5604
}
5605
5606
if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5607
// We can't add more than one pointer together, nor can we scale a
5608
// pointer (both of which seem meaningless).
5609
if (ResultPtr || AddrMode.Scale != 1)
5610
return Modified;
5611
5612
ResultPtr = AddrMode.ScaledReg;
5613
AddrMode.Scale = 0;
5614
}
5615
5616
// It is only safe to sign extend the BaseReg if we know that the math
5617
// required to create it did not overflow before we extend it. Since
5618
// the original IR value was tossed in favor of a constant back when
5619
// the AddrMode was created we need to bail out gracefully if widths
5620
// do not match instead of extending it.
5621
//
5622
// (See below for code to add the scale.)
5623
if (AddrMode.Scale) {
5624
Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5625
if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5626
cast<IntegerType>(ScaledRegTy)->getBitWidth())
5627
return Modified;
5628
}
5629
5630
GlobalValue *BaseGV = AddrMode.BaseGV;
5631
if (BaseGV != nullptr) {
5632
if (ResultPtr)
5633
return Modified;
5634
5635
if (BaseGV->isThreadLocal()) {
5636
ResultPtr = Builder.CreateThreadLocalAddress(BaseGV);
5637
} else {
5638
ResultPtr = BaseGV;
5639
}
5640
}
5641
5642
// If the real base value actually came from an inttoptr, then the matcher
5643
// will look through it and provide only the integer value. In that case,
5644
// use it here.
5645
if (!DL->isNonIntegralPointerType(Addr->getType())) {
5646
if (!ResultPtr && AddrMode.BaseReg) {
5647
ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5648
"sunkaddr");
5649
AddrMode.BaseReg = nullptr;
5650
} else if (!ResultPtr && AddrMode.Scale == 1) {
5651
ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5652
"sunkaddr");
5653
AddrMode.Scale = 0;
5654
}
5655
}
5656
5657
if (!ResultPtr && !AddrMode.BaseReg && !AddrMode.Scale &&
5658
!AddrMode.BaseOffs) {
5659
SunkAddr = Constant::getNullValue(Addr->getType());
5660
} else if (!ResultPtr) {
5661
return Modified;
5662
} else {
5663
Type *I8PtrTy =
5664
Builder.getPtrTy(Addr->getType()->getPointerAddressSpace());
5665
5666
// Start with the base register. Do this first so that subsequent address
5667
// matching finds it last, which will prevent it from trying to match it
5668
// as the scaled value in case it happens to be a mul. That would be
5669
// problematic if we've sunk a different mul for the scale, because then
5670
// we'd end up sinking both muls.
5671
if (AddrMode.BaseReg) {
5672
Value *V = AddrMode.BaseReg;
5673
if (V->getType() != IntPtrTy)
5674
V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5675
5676
ResultIndex = V;
5677
}
5678
5679
// Add the scale value.
5680
if (AddrMode.Scale) {
5681
Value *V = AddrMode.ScaledReg;
5682
if (V->getType() == IntPtrTy) {
5683
// done.
5684
} else {
5685
assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5686
cast<IntegerType>(V->getType())->getBitWidth() &&
5687
"We can't transform if ScaledReg is too narrow");
5688
V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5689
}
5690
5691
if (AddrMode.Scale != 1)
5692
V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5693
"sunkaddr");
5694
if (ResultIndex)
5695
ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5696
else
5697
ResultIndex = V;
5698
}
5699
5700
// Add in the Base Offset if present.
5701
if (AddrMode.BaseOffs) {
5702
Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5703
if (ResultIndex) {
5704
// We need to add this separately from the scale above to help with
5705
// SDAG consecutive load/store merging.
5706
if (ResultPtr->getType() != I8PtrTy)
5707
ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5708
ResultPtr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
5709
AddrMode.InBounds);
5710
}
5711
5712
ResultIndex = V;
5713
}
5714
5715
if (!ResultIndex) {
5716
SunkAddr = ResultPtr;
5717
} else {
5718
if (ResultPtr->getType() != I8PtrTy)
5719
ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5720
SunkAddr = Builder.CreatePtrAdd(ResultPtr, ResultIndex, "sunkaddr",
5721
AddrMode.InBounds);
5722
}
5723
5724
if (SunkAddr->getType() != Addr->getType()) {
5725
if (SunkAddr->getType()->getPointerAddressSpace() !=
5726
Addr->getType()->getPointerAddressSpace() &&
5727
!DL->isNonIntegralPointerType(Addr->getType())) {
5728
// There are two reasons the address spaces might not match: a no-op
5729
// addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5730
// ptrtoint/inttoptr pair to ensure we match the original semantics.
5731
// TODO: allow bitcast between different address space pointers with
5732
// the same size.
5733
SunkAddr = Builder.CreatePtrToInt(SunkAddr, IntPtrTy, "sunkaddr");
5734
SunkAddr =
5735
Builder.CreateIntToPtr(SunkAddr, Addr->getType(), "sunkaddr");
5736
} else
5737
SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5738
}
5739
}
5740
} else {
5741
// We'd require a ptrtoint/inttoptr down the line, which we can't do for
5742
// non-integral pointers, so in that case bail out now.
5743
Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5744
Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5745
PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5746
PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5747
if (DL->isNonIntegralPointerType(Addr->getType()) ||
5748
(BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5749
(ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5750
(AddrMode.BaseGV &&
5751
DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5752
return Modified;
5753
5754
LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5755
<< " for " << *MemoryInst << "\n");
5756
Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5757
Value *Result = nullptr;
5758
5759
// Start with the base register. Do this first so that subsequent address
5760
// matching finds it last, which will prevent it from trying to match it
5761
// as the scaled value in case it happens to be a mul. That would be
5762
// problematic if we've sunk a different mul for the scale, because then
5763
// we'd end up sinking both muls.
5764
if (AddrMode.BaseReg) {
5765
Value *V = AddrMode.BaseReg;
5766
if (V->getType()->isPointerTy())
5767
V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5768
if (V->getType() != IntPtrTy)
5769
V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5770
Result = V;
5771
}
5772
5773
// Add the scale value.
5774
if (AddrMode.Scale) {
5775
Value *V = AddrMode.ScaledReg;
5776
if (V->getType() == IntPtrTy) {
5777
// done.
5778
} else if (V->getType()->isPointerTy()) {
5779
V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5780
} else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5781
cast<IntegerType>(V->getType())->getBitWidth()) {
5782
V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5783
} else {
5784
// It is only safe to sign extend the BaseReg if we know that the math
5785
// required to create it did not overflow before we extend it. Since
5786
// the original IR value was tossed in favor of a constant back when
5787
// the AddrMode was created we need to bail out gracefully if widths
5788
// do not match instead of extending it.
5789
Instruction *I = dyn_cast_or_null<Instruction>(Result);
5790
if (I && (Result != AddrMode.BaseReg))
5791
I->eraseFromParent();
5792
return Modified;
5793
}
5794
if (AddrMode.Scale != 1)
5795
V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5796
"sunkaddr");
5797
if (Result)
5798
Result = Builder.CreateAdd(Result, V, "sunkaddr");
5799
else
5800
Result = V;
5801
}
5802
5803
// Add in the BaseGV if present.
5804
GlobalValue *BaseGV = AddrMode.BaseGV;
5805
if (BaseGV != nullptr) {
5806
Value *BaseGVPtr;
5807
if (BaseGV->isThreadLocal()) {
5808
BaseGVPtr = Builder.CreateThreadLocalAddress(BaseGV);
5809
} else {
5810
BaseGVPtr = BaseGV;
5811
}
5812
Value *V = Builder.CreatePtrToInt(BaseGVPtr, IntPtrTy, "sunkaddr");
5813
if (Result)
5814
Result = Builder.CreateAdd(Result, V, "sunkaddr");
5815
else
5816
Result = V;
5817
}
5818
5819
// Add in the Base Offset if present.
5820
if (AddrMode.BaseOffs) {
5821
Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5822
if (Result)
5823
Result = Builder.CreateAdd(Result, V, "sunkaddr");
5824
else
5825
Result = V;
5826
}
5827
5828
if (!Result)
5829
SunkAddr = Constant::getNullValue(Addr->getType());
5830
else
5831
SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5832
}
5833
5834
MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5835
// Store the newly computed address into the cache. In the case we reused a
5836
// value, this should be idempotent.
5837
SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5838
5839
// If we have no uses, recursively delete the value and all dead instructions
5840
// using it.
5841
if (Repl->use_empty()) {
5842
resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5843
RecursivelyDeleteTriviallyDeadInstructions(
5844
Repl, TLInfo, nullptr,
5845
[&](Value *V) { removeAllAssertingVHReferences(V); });
5846
});
5847
}
5848
++NumMemoryInsts;
5849
return true;
5850
}
5851
5852
/// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5853
/// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5854
/// only handle a 2 operand GEP in the same basic block or a splat constant
5855
/// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5856
/// index.
5857
///
5858
/// If the existing GEP has a vector base pointer that is splat, we can look
5859
/// through the splat to find the scalar pointer. If we can't find a scalar
5860
/// pointer there's nothing we can do.
5861
///
5862
/// If we have a GEP with more than 2 indices where the middle indices are all
5863
/// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5864
///
5865
/// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5866
/// followed by a GEP with an all zeroes vector index. This will enable
5867
/// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5868
/// zero index.
5869
bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5870
Value *Ptr) {
5871
Value *NewAddr;
5872
5873
if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5874
// Don't optimize GEPs that don't have indices.
5875
if (!GEP->hasIndices())
5876
return false;
5877
5878
// If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5879
// FIXME: We should support this by sinking the GEP.
5880
if (MemoryInst->getParent() != GEP->getParent())
5881
return false;
5882
5883
SmallVector<Value *, 2> Ops(GEP->operands());
5884
5885
bool RewriteGEP = false;
5886
5887
if (Ops[0]->getType()->isVectorTy()) {
5888
Ops[0] = getSplatValue(Ops[0]);
5889
if (!Ops[0])
5890
return false;
5891
RewriteGEP = true;
5892
}
5893
5894
unsigned FinalIndex = Ops.size() - 1;
5895
5896
// Ensure all but the last index is 0.
5897
// FIXME: This isn't strictly required. All that's required is that they are
5898
// all scalars or splats.
5899
for (unsigned i = 1; i < FinalIndex; ++i) {
5900
auto *C = dyn_cast<Constant>(Ops[i]);
5901
if (!C)
5902
return false;
5903
if (isa<VectorType>(C->getType()))
5904
C = C->getSplatValue();
5905
auto *CI = dyn_cast_or_null<ConstantInt>(C);
5906
if (!CI || !CI->isZero())
5907
return false;
5908
// Scalarize the index if needed.
5909
Ops[i] = CI;
5910
}
5911
5912
// Try to scalarize the final index.
5913
if (Ops[FinalIndex]->getType()->isVectorTy()) {
5914
if (Value *V = getSplatValue(Ops[FinalIndex])) {
5915
auto *C = dyn_cast<ConstantInt>(V);
5916
// Don't scalarize all zeros vector.
5917
if (!C || !C->isZero()) {
5918
Ops[FinalIndex] = V;
5919
RewriteGEP = true;
5920
}
5921
}
5922
}
5923
5924
// If we made any changes or the we have extra operands, we need to generate
5925
// new instructions.
5926
if (!RewriteGEP && Ops.size() == 2)
5927
return false;
5928
5929
auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5930
5931
IRBuilder<> Builder(MemoryInst);
5932
5933
Type *SourceTy = GEP->getSourceElementType();
5934
Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5935
5936
// If the final index isn't a vector, emit a scalar GEP containing all ops
5937
// and a vector GEP with all zeroes final index.
5938
if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5939
NewAddr = Builder.CreateGEP(SourceTy, Ops[0], ArrayRef(Ops).drop_front());
5940
auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5941
auto *SecondTy = GetElementPtrInst::getIndexedType(
5942
SourceTy, ArrayRef(Ops).drop_front());
5943
NewAddr =
5944
Builder.CreateGEP(SecondTy, NewAddr, Constant::getNullValue(IndexTy));
5945
} else {
5946
Value *Base = Ops[0];
5947
Value *Index = Ops[FinalIndex];
5948
5949
// Create a scalar GEP if there are more than 2 operands.
5950
if (Ops.size() != 2) {
5951
// Replace the last index with 0.
5952
Ops[FinalIndex] =
5953
Constant::getNullValue(Ops[FinalIndex]->getType()->getScalarType());
5954
Base = Builder.CreateGEP(SourceTy, Base, ArrayRef(Ops).drop_front());
5955
SourceTy = GetElementPtrInst::getIndexedType(
5956
SourceTy, ArrayRef(Ops).drop_front());
5957
}
5958
5959
// Now create the GEP with scalar pointer and vector index.
5960
NewAddr = Builder.CreateGEP(SourceTy, Base, Index);
5961
}
5962
} else if (!isa<Constant>(Ptr)) {
5963
// Not a GEP, maybe its a splat and we can create a GEP to enable
5964
// SelectionDAGBuilder to use it as a uniform base.
5965
Value *V = getSplatValue(Ptr);
5966
if (!V)
5967
return false;
5968
5969
auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5970
5971
IRBuilder<> Builder(MemoryInst);
5972
5973
// Emit a vector GEP with a scalar pointer and all 0s vector index.
5974
Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5975
auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5976
Type *ScalarTy;
5977
if (cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5978
Intrinsic::masked_gather) {
5979
ScalarTy = MemoryInst->getType()->getScalarType();
5980
} else {
5981
assert(cast<IntrinsicInst>(MemoryInst)->getIntrinsicID() ==
5982
Intrinsic::masked_scatter);
5983
ScalarTy = MemoryInst->getOperand(0)->getType()->getScalarType();
5984
}
5985
NewAddr = Builder.CreateGEP(ScalarTy, V, Constant::getNullValue(IndexTy));
5986
} else {
5987
// Constant, SelectionDAGBuilder knows to check if its a splat.
5988
return false;
5989
}
5990
5991
MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5992
5993
// If we have no uses, recursively delete the value and all dead instructions
5994
// using it.
5995
if (Ptr->use_empty())
5996
RecursivelyDeleteTriviallyDeadInstructions(
5997
Ptr, TLInfo, nullptr,
5998
[&](Value *V) { removeAllAssertingVHReferences(V); });
5999
6000
return true;
6001
}
6002
6003
/// If there are any memory operands, use OptimizeMemoryInst to sink their
6004
/// address computing into the block when possible / profitable.
6005
bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
6006
bool MadeChange = false;
6007
6008
const TargetRegisterInfo *TRI =
6009
TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
6010
TargetLowering::AsmOperandInfoVector TargetConstraints =
6011
TLI->ParseConstraints(*DL, TRI, *CS);
6012
unsigned ArgNo = 0;
6013
for (TargetLowering::AsmOperandInfo &OpInfo : TargetConstraints) {
6014
// Compute the constraint code and ConstraintType to use.
6015
TLI->ComputeConstraintToUse(OpInfo, SDValue());
6016
6017
// TODO: Also handle C_Address?
6018
if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6019
OpInfo.isIndirect) {
6020
Value *OpVal = CS->getArgOperand(ArgNo++);
6021
MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
6022
} else if (OpInfo.Type == InlineAsm::isInput)
6023
ArgNo++;
6024
}
6025
6026
return MadeChange;
6027
}
6028
6029
/// Check if all the uses of \p Val are equivalent (or free) zero or
6030
/// sign extensions.
6031
static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
6032
assert(!Val->use_empty() && "Input must have at least one use");
6033
const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
6034
bool IsSExt = isa<SExtInst>(FirstUser);
6035
Type *ExtTy = FirstUser->getType();
6036
for (const User *U : Val->users()) {
6037
const Instruction *UI = cast<Instruction>(U);
6038
if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
6039
return false;
6040
Type *CurTy = UI->getType();
6041
// Same input and output types: Same instruction after CSE.
6042
if (CurTy == ExtTy)
6043
continue;
6044
6045
// If IsSExt is true, we are in this situation:
6046
// a = Val
6047
// b = sext ty1 a to ty2
6048
// c = sext ty1 a to ty3
6049
// Assuming ty2 is shorter than ty3, this could be turned into:
6050
// a = Val
6051
// b = sext ty1 a to ty2
6052
// c = sext ty2 b to ty3
6053
// However, the last sext is not free.
6054
if (IsSExt)
6055
return false;
6056
6057
// This is a ZExt, maybe this is free to extend from one type to another.
6058
// In that case, we would not account for a different use.
6059
Type *NarrowTy;
6060
Type *LargeTy;
6061
if (ExtTy->getScalarType()->getIntegerBitWidth() >
6062
CurTy->getScalarType()->getIntegerBitWidth()) {
6063
NarrowTy = CurTy;
6064
LargeTy = ExtTy;
6065
} else {
6066
NarrowTy = ExtTy;
6067
LargeTy = CurTy;
6068
}
6069
6070
if (!TLI.isZExtFree(NarrowTy, LargeTy))
6071
return false;
6072
}
6073
// All uses are the same or can be derived from one another for free.
6074
return true;
6075
}
6076
6077
/// Try to speculatively promote extensions in \p Exts and continue
6078
/// promoting through newly promoted operands recursively as far as doing so is
6079
/// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
6080
/// When some promotion happened, \p TPT contains the proper state to revert
6081
/// them.
6082
///
6083
/// \return true if some promotion happened, false otherwise.
6084
bool CodeGenPrepare::tryToPromoteExts(
6085
TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
6086
SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
6087
unsigned CreatedInstsCost) {
6088
bool Promoted = false;
6089
6090
// Iterate over all the extensions to try to promote them.
6091
for (auto *I : Exts) {
6092
// Early check if we directly have ext(load).
6093
if (isa<LoadInst>(I->getOperand(0))) {
6094
ProfitablyMovedExts.push_back(I);
6095
continue;
6096
}
6097
6098
// Check whether or not we want to do any promotion. The reason we have
6099
// this check inside the for loop is to catch the case where an extension
6100
// is directly fed by a load because in such case the extension can be moved
6101
// up without any promotion on its operands.
6102
if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
6103
return false;
6104
6105
// Get the action to perform the promotion.
6106
TypePromotionHelper::Action TPH =
6107
TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
6108
// Check if we can promote.
6109
if (!TPH) {
6110
// Save the current extension as we cannot move up through its operand.
6111
ProfitablyMovedExts.push_back(I);
6112
continue;
6113
}
6114
6115
// Save the current state.
6116
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6117
TPT.getRestorationPoint();
6118
SmallVector<Instruction *, 4> NewExts;
6119
unsigned NewCreatedInstsCost = 0;
6120
unsigned ExtCost = !TLI->isExtFree(I);
6121
// Promote.
6122
Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
6123
&NewExts, nullptr, *TLI);
6124
assert(PromotedVal &&
6125
"TypePromotionHelper should have filtered out those cases");
6126
6127
// We would be able to merge only one extension in a load.
6128
// Therefore, if we have more than 1 new extension we heuristically
6129
// cut this search path, because it means we degrade the code quality.
6130
// With exactly 2, the transformation is neutral, because we will merge
6131
// one extension but leave one. However, we optimistically keep going,
6132
// because the new extension may be removed too. Also avoid replacing a
6133
// single free extension with multiple extensions, as this increases the
6134
// number of IR instructions while not providing any savings.
6135
long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
6136
// FIXME: It would be possible to propagate a negative value instead of
6137
// conservatively ceiling it to 0.
6138
TotalCreatedInstsCost =
6139
std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
6140
if (!StressExtLdPromotion &&
6141
(TotalCreatedInstsCost > 1 ||
6142
!isPromotedInstructionLegal(*TLI, *DL, PromotedVal) ||
6143
(ExtCost == 0 && NewExts.size() > 1))) {
6144
// This promotion is not profitable, rollback to the previous state, and
6145
// save the current extension in ProfitablyMovedExts as the latest
6146
// speculative promotion turned out to be unprofitable.
6147
TPT.rollback(LastKnownGood);
6148
ProfitablyMovedExts.push_back(I);
6149
continue;
6150
}
6151
// Continue promoting NewExts as far as doing so is profitable.
6152
SmallVector<Instruction *, 2> NewlyMovedExts;
6153
(void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
6154
bool NewPromoted = false;
6155
for (auto *ExtInst : NewlyMovedExts) {
6156
Instruction *MovedExt = cast<Instruction>(ExtInst);
6157
Value *ExtOperand = MovedExt->getOperand(0);
6158
// If we have reached to a load, we need this extra profitability check
6159
// as it could potentially be merged into an ext(load).
6160
if (isa<LoadInst>(ExtOperand) &&
6161
!(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
6162
(ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
6163
continue;
6164
6165
ProfitablyMovedExts.push_back(MovedExt);
6166
NewPromoted = true;
6167
}
6168
6169
// If none of speculative promotions for NewExts is profitable, rollback
6170
// and save the current extension (I) as the last profitable extension.
6171
if (!NewPromoted) {
6172
TPT.rollback(LastKnownGood);
6173
ProfitablyMovedExts.push_back(I);
6174
continue;
6175
}
6176
// The promotion is profitable.
6177
Promoted = true;
6178
}
6179
return Promoted;
6180
}
6181
6182
/// Merging redundant sexts when one is dominating the other.
6183
bool CodeGenPrepare::mergeSExts(Function &F) {
6184
bool Changed = false;
6185
for (auto &Entry : ValToSExtendedUses) {
6186
SExts &Insts = Entry.second;
6187
SExts CurPts;
6188
for (Instruction *Inst : Insts) {
6189
if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
6190
Inst->getOperand(0) != Entry.first)
6191
continue;
6192
bool inserted = false;
6193
for (auto &Pt : CurPts) {
6194
if (getDT(F).dominates(Inst, Pt)) {
6195
replaceAllUsesWith(Pt, Inst, FreshBBs, IsHugeFunc);
6196
RemovedInsts.insert(Pt);
6197
Pt->removeFromParent();
6198
Pt = Inst;
6199
inserted = true;
6200
Changed = true;
6201
break;
6202
}
6203
if (!getDT(F).dominates(Pt, Inst))
6204
// Give up if we need to merge in a common dominator as the
6205
// experiments show it is not profitable.
6206
continue;
6207
replaceAllUsesWith(Inst, Pt, FreshBBs, IsHugeFunc);
6208
RemovedInsts.insert(Inst);
6209
Inst->removeFromParent();
6210
inserted = true;
6211
Changed = true;
6212
break;
6213
}
6214
if (!inserted)
6215
CurPts.push_back(Inst);
6216
}
6217
}
6218
return Changed;
6219
}
6220
6221
// Splitting large data structures so that the GEPs accessing them can have
6222
// smaller offsets so that they can be sunk to the same blocks as their users.
6223
// For example, a large struct starting from %base is split into two parts
6224
// where the second part starts from %new_base.
6225
//
6226
// Before:
6227
// BB0:
6228
// %base =
6229
//
6230
// BB1:
6231
// %gep0 = gep %base, off0
6232
// %gep1 = gep %base, off1
6233
// %gep2 = gep %base, off2
6234
//
6235
// BB2:
6236
// %load1 = load %gep0
6237
// %load2 = load %gep1
6238
// %load3 = load %gep2
6239
//
6240
// After:
6241
// BB0:
6242
// %base =
6243
// %new_base = gep %base, off0
6244
//
6245
// BB1:
6246
// %new_gep0 = %new_base
6247
// %new_gep1 = gep %new_base, off1 - off0
6248
// %new_gep2 = gep %new_base, off2 - off0
6249
//
6250
// BB2:
6251
// %load1 = load i32, i32* %new_gep0
6252
// %load2 = load i32, i32* %new_gep1
6253
// %load3 = load i32, i32* %new_gep2
6254
//
6255
// %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
6256
// their offsets are smaller enough to fit into the addressing mode.
6257
bool CodeGenPrepare::splitLargeGEPOffsets() {
6258
bool Changed = false;
6259
for (auto &Entry : LargeOffsetGEPMap) {
6260
Value *OldBase = Entry.first;
6261
SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
6262
&LargeOffsetGEPs = Entry.second;
6263
auto compareGEPOffset =
6264
[&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
6265
const std::pair<GetElementPtrInst *, int64_t> &RHS) {
6266
if (LHS.first == RHS.first)
6267
return false;
6268
if (LHS.second != RHS.second)
6269
return LHS.second < RHS.second;
6270
return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
6271
};
6272
// Sorting all the GEPs of the same data structures based on the offsets.
6273
llvm::sort(LargeOffsetGEPs, compareGEPOffset);
6274
LargeOffsetGEPs.erase(llvm::unique(LargeOffsetGEPs), LargeOffsetGEPs.end());
6275
// Skip if all the GEPs have the same offsets.
6276
if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
6277
continue;
6278
GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
6279
int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
6280
Value *NewBaseGEP = nullptr;
6281
6282
auto createNewBase = [&](int64_t BaseOffset, Value *OldBase,
6283
GetElementPtrInst *GEP) {
6284
LLVMContext &Ctx = GEP->getContext();
6285
Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6286
Type *I8PtrTy =
6287
PointerType::get(Ctx, GEP->getType()->getPointerAddressSpace());
6288
6289
BasicBlock::iterator NewBaseInsertPt;
6290
BasicBlock *NewBaseInsertBB;
6291
if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
6292
// If the base of the struct is an instruction, the new base will be
6293
// inserted close to it.
6294
NewBaseInsertBB = BaseI->getParent();
6295
if (isa<PHINode>(BaseI))
6296
NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6297
else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
6298
NewBaseInsertBB =
6299
SplitEdge(NewBaseInsertBB, Invoke->getNormalDest(), DT.get(), LI);
6300
NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6301
} else
6302
NewBaseInsertPt = std::next(BaseI->getIterator());
6303
} else {
6304
// If the current base is an argument or global value, the new base
6305
// will be inserted to the entry block.
6306
NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
6307
NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
6308
}
6309
IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
6310
// Create a new base.
6311
Value *BaseIndex = ConstantInt::get(PtrIdxTy, BaseOffset);
6312
NewBaseGEP = OldBase;
6313
if (NewBaseGEP->getType() != I8PtrTy)
6314
NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
6315
NewBaseGEP =
6316
NewBaseBuilder.CreatePtrAdd(NewBaseGEP, BaseIndex, "splitgep");
6317
NewGEPBases.insert(NewBaseGEP);
6318
return;
6319
};
6320
6321
// Check whether all the offsets can be encoded with prefered common base.
6322
if (int64_t PreferBase = TLI->getPreferredLargeGEPBaseOffset(
6323
LargeOffsetGEPs.front().second, LargeOffsetGEPs.back().second)) {
6324
BaseOffset = PreferBase;
6325
// Create a new base if the offset of the BaseGEP can be decoded with one
6326
// instruction.
6327
createNewBase(BaseOffset, OldBase, BaseGEP);
6328
}
6329
6330
auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
6331
while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
6332
GetElementPtrInst *GEP = LargeOffsetGEP->first;
6333
int64_t Offset = LargeOffsetGEP->second;
6334
if (Offset != BaseOffset) {
6335
TargetLowering::AddrMode AddrMode;
6336
AddrMode.HasBaseReg = true;
6337
AddrMode.BaseOffs = Offset - BaseOffset;
6338
// The result type of the GEP might not be the type of the memory
6339
// access.
6340
if (!TLI->isLegalAddressingMode(*DL, AddrMode,
6341
GEP->getResultElementType(),
6342
GEP->getAddressSpace())) {
6343
// We need to create a new base if the offset to the current base is
6344
// too large to fit into the addressing mode. So, a very large struct
6345
// may be split into several parts.
6346
BaseGEP = GEP;
6347
BaseOffset = Offset;
6348
NewBaseGEP = nullptr;
6349
}
6350
}
6351
6352
// Generate a new GEP to replace the current one.
6353
Type *PtrIdxTy = DL->getIndexType(GEP->getType());
6354
6355
if (!NewBaseGEP) {
6356
// Create a new base if we don't have one yet. Find the insertion
6357
// pointer for the new base first.
6358
createNewBase(BaseOffset, OldBase, GEP);
6359
}
6360
6361
IRBuilder<> Builder(GEP);
6362
Value *NewGEP = NewBaseGEP;
6363
if (Offset != BaseOffset) {
6364
// Calculate the new offset for the new GEP.
6365
Value *Index = ConstantInt::get(PtrIdxTy, Offset - BaseOffset);
6366
NewGEP = Builder.CreatePtrAdd(NewBaseGEP, Index);
6367
}
6368
replaceAllUsesWith(GEP, NewGEP, FreshBBs, IsHugeFunc);
6369
LargeOffsetGEPID.erase(GEP);
6370
LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
6371
GEP->eraseFromParent();
6372
Changed = true;
6373
}
6374
}
6375
return Changed;
6376
}
6377
6378
bool CodeGenPrepare::optimizePhiType(
6379
PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
6380
SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
6381
// We are looking for a collection on interconnected phi nodes that together
6382
// only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6383
// are of the same type. Convert the whole set of nodes to the type of the
6384
// bitcast.
6385
Type *PhiTy = I->getType();
6386
Type *ConvertTy = nullptr;
6387
if (Visited.count(I) ||
6388
(!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
6389
return false;
6390
6391
SmallVector<Instruction *, 4> Worklist;
6392
Worklist.push_back(cast<Instruction>(I));
6393
SmallPtrSet<PHINode *, 4> PhiNodes;
6394
SmallPtrSet<ConstantData *, 4> Constants;
6395
PhiNodes.insert(I);
6396
Visited.insert(I);
6397
SmallPtrSet<Instruction *, 4> Defs;
6398
SmallPtrSet<Instruction *, 4> Uses;
6399
// This works by adding extra bitcasts between load/stores and removing
6400
// existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6401
// we can get in the situation where we remove a bitcast in one iteration
6402
// just to add it again in the next. We need to ensure that at least one
6403
// bitcast we remove are anchored to something that will not change back.
6404
bool AnyAnchored = false;
6405
6406
while (!Worklist.empty()) {
6407
Instruction *II = Worklist.pop_back_val();
6408
6409
if (auto *Phi = dyn_cast<PHINode>(II)) {
6410
// Handle Defs, which might also be PHI's
6411
for (Value *V : Phi->incoming_values()) {
6412
if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6413
if (!PhiNodes.count(OpPhi)) {
6414
if (!Visited.insert(OpPhi).second)
6415
return false;
6416
PhiNodes.insert(OpPhi);
6417
Worklist.push_back(OpPhi);
6418
}
6419
} else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6420
if (!OpLoad->isSimple())
6421
return false;
6422
if (Defs.insert(OpLoad).second)
6423
Worklist.push_back(OpLoad);
6424
} else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6425
if (Defs.insert(OpEx).second)
6426
Worklist.push_back(OpEx);
6427
} else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6428
if (!ConvertTy)
6429
ConvertTy = OpBC->getOperand(0)->getType();
6430
if (OpBC->getOperand(0)->getType() != ConvertTy)
6431
return false;
6432
if (Defs.insert(OpBC).second) {
6433
Worklist.push_back(OpBC);
6434
AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6435
!isa<ExtractElementInst>(OpBC->getOperand(0));
6436
}
6437
} else if (auto *OpC = dyn_cast<ConstantData>(V))
6438
Constants.insert(OpC);
6439
else
6440
return false;
6441
}
6442
}
6443
6444
// Handle uses which might also be phi's
6445
for (User *V : II->users()) {
6446
if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6447
if (!PhiNodes.count(OpPhi)) {
6448
if (Visited.count(OpPhi))
6449
return false;
6450
PhiNodes.insert(OpPhi);
6451
Visited.insert(OpPhi);
6452
Worklist.push_back(OpPhi);
6453
}
6454
} else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6455
if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6456
return false;
6457
Uses.insert(OpStore);
6458
} else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6459
if (!ConvertTy)
6460
ConvertTy = OpBC->getType();
6461
if (OpBC->getType() != ConvertTy)
6462
return false;
6463
Uses.insert(OpBC);
6464
AnyAnchored |=
6465
any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6466
} else {
6467
return false;
6468
}
6469
}
6470
}
6471
6472
if (!ConvertTy || !AnyAnchored ||
6473
!TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6474
return false;
6475
6476
LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to "
6477
<< *ConvertTy << "\n");
6478
6479
// Create all the new phi nodes of the new type, and bitcast any loads to the
6480
// correct type.
6481
ValueToValueMap ValMap;
6482
for (ConstantData *C : Constants)
6483
ValMap[C] = ConstantExpr::getBitCast(C, ConvertTy);
6484
for (Instruction *D : Defs) {
6485
if (isa<BitCastInst>(D)) {
6486
ValMap[D] = D->getOperand(0);
6487
DeletedInstrs.insert(D);
6488
} else {
6489
BasicBlock::iterator insertPt = std::next(D->getIterator());
6490
ValMap[D] = new BitCastInst(D, ConvertTy, D->getName() + ".bc", insertPt);
6491
}
6492
}
6493
for (PHINode *Phi : PhiNodes)
6494
ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6495
Phi->getName() + ".tc", Phi->getIterator());
6496
// Pipe together all the PhiNodes.
6497
for (PHINode *Phi : PhiNodes) {
6498
PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6499
for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6500
NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6501
Phi->getIncomingBlock(i));
6502
Visited.insert(NewPhi);
6503
}
6504
// And finally pipe up the stores and bitcasts
6505
for (Instruction *U : Uses) {
6506
if (isa<BitCastInst>(U)) {
6507
DeletedInstrs.insert(U);
6508
replaceAllUsesWith(U, ValMap[U->getOperand(0)], FreshBBs, IsHugeFunc);
6509
} else {
6510
U->setOperand(0, new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc",
6511
U->getIterator()));
6512
}
6513
}
6514
6515
// Save the removed phis to be deleted later.
6516
for (PHINode *Phi : PhiNodes)
6517
DeletedInstrs.insert(Phi);
6518
return true;
6519
}
6520
6521
bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6522
if (!OptimizePhiTypes)
6523
return false;
6524
6525
bool Changed = false;
6526
SmallPtrSet<PHINode *, 4> Visited;
6527
SmallPtrSet<Instruction *, 4> DeletedInstrs;
6528
6529
// Attempt to optimize all the phis in the functions to the correct type.
6530
for (auto &BB : F)
6531
for (auto &Phi : BB.phis())
6532
Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6533
6534
// Remove any old phi's that have been converted.
6535
for (auto *I : DeletedInstrs) {
6536
replaceAllUsesWith(I, PoisonValue::get(I->getType()), FreshBBs, IsHugeFunc);
6537
I->eraseFromParent();
6538
}
6539
6540
return Changed;
6541
}
6542
6543
/// Return true, if an ext(load) can be formed from an extension in
6544
/// \p MovedExts.
6545
bool CodeGenPrepare::canFormExtLd(
6546
const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6547
Instruction *&Inst, bool HasPromoted) {
6548
for (auto *MovedExtInst : MovedExts) {
6549
if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6550
LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6551
Inst = MovedExtInst;
6552
break;
6553
}
6554
}
6555
if (!LI)
6556
return false;
6557
6558
// If they're already in the same block, there's nothing to do.
6559
// Make the cheap checks first if we did not promote.
6560
// If we promoted, we need to check if it is indeed profitable.
6561
if (!HasPromoted && LI->getParent() == Inst->getParent())
6562
return false;
6563
6564
return TLI->isExtLoad(LI, Inst, *DL);
6565
}
6566
6567
/// Move a zext or sext fed by a load into the same basic block as the load,
6568
/// unless conditions are unfavorable. This allows SelectionDAG to fold the
6569
/// extend into the load.
6570
///
6571
/// E.g.,
6572
/// \code
6573
/// %ld = load i32* %addr
6574
/// %add = add nuw i32 %ld, 4
6575
/// %zext = zext i32 %add to i64
6576
// \endcode
6577
/// =>
6578
/// \code
6579
/// %ld = load i32* %addr
6580
/// %zext = zext i32 %ld to i64
6581
/// %add = add nuw i64 %zext, 4
6582
/// \encode
6583
/// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6584
/// allow us to match zext(load i32*) to i64.
6585
///
6586
/// Also, try to promote the computations used to obtain a sign extended
6587
/// value used into memory accesses.
6588
/// E.g.,
6589
/// \code
6590
/// a = add nsw i32 b, 3
6591
/// d = sext i32 a to i64
6592
/// e = getelementptr ..., i64 d
6593
/// \endcode
6594
/// =>
6595
/// \code
6596
/// f = sext i32 b to i64
6597
/// a = add nsw i64 f, 3
6598
/// e = getelementptr ..., i64 a
6599
/// \endcode
6600
///
6601
/// \p Inst[in/out] the extension may be modified during the process if some
6602
/// promotions apply.
6603
bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6604
bool AllowPromotionWithoutCommonHeader = false;
6605
/// See if it is an interesting sext operations for the address type
6606
/// promotion before trying to promote it, e.g., the ones with the right
6607
/// type and used in memory accesses.
6608
bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6609
*Inst, AllowPromotionWithoutCommonHeader);
6610
TypePromotionTransaction TPT(RemovedInsts);
6611
TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6612
TPT.getRestorationPoint();
6613
SmallVector<Instruction *, 1> Exts;
6614
SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6615
Exts.push_back(Inst);
6616
6617
bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6618
6619
// Look for a load being extended.
6620
LoadInst *LI = nullptr;
6621
Instruction *ExtFedByLoad;
6622
6623
// Try to promote a chain of computation if it allows to form an extended
6624
// load.
6625
if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6626
assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6627
TPT.commit();
6628
// Move the extend into the same block as the load.
6629
ExtFedByLoad->moveAfter(LI);
6630
++NumExtsMoved;
6631
Inst = ExtFedByLoad;
6632
return true;
6633
}
6634
6635
// Continue promoting SExts if known as considerable depending on targets.
6636
if (ATPConsiderable &&
6637
performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6638
HasPromoted, TPT, SpeculativelyMovedExts))
6639
return true;
6640
6641
TPT.rollback(LastKnownGood);
6642
return false;
6643
}
6644
6645
// Perform address type promotion if doing so is profitable.
6646
// If AllowPromotionWithoutCommonHeader == false, we should find other sext
6647
// instructions that sign extended the same initial value. However, if
6648
// AllowPromotionWithoutCommonHeader == true, we expect promoting the
6649
// extension is just profitable.
6650
bool CodeGenPrepare::performAddressTypePromotion(
6651
Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6652
bool HasPromoted, TypePromotionTransaction &TPT,
6653
SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6654
bool Promoted = false;
6655
SmallPtrSet<Instruction *, 1> UnhandledExts;
6656
bool AllSeenFirst = true;
6657
for (auto *I : SpeculativelyMovedExts) {
6658
Value *HeadOfChain = I->getOperand(0);
6659
DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6660
SeenChainsForSExt.find(HeadOfChain);
6661
// If there is an unhandled SExt which has the same header, try to promote
6662
// it as well.
6663
if (AlreadySeen != SeenChainsForSExt.end()) {
6664
if (AlreadySeen->second != nullptr)
6665
UnhandledExts.insert(AlreadySeen->second);
6666
AllSeenFirst = false;
6667
}
6668
}
6669
6670
if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6671
SpeculativelyMovedExts.size() == 1)) {
6672
TPT.commit();
6673
if (HasPromoted)
6674
Promoted = true;
6675
for (auto *I : SpeculativelyMovedExts) {
6676
Value *HeadOfChain = I->getOperand(0);
6677
SeenChainsForSExt[HeadOfChain] = nullptr;
6678
ValToSExtendedUses[HeadOfChain].push_back(I);
6679
}
6680
// Update Inst as promotion happen.
6681
Inst = SpeculativelyMovedExts.pop_back_val();
6682
} else {
6683
// This is the first chain visited from the header, keep the current chain
6684
// as unhandled. Defer to promote this until we encounter another SExt
6685
// chain derived from the same header.
6686
for (auto *I : SpeculativelyMovedExts) {
6687
Value *HeadOfChain = I->getOperand(0);
6688
SeenChainsForSExt[HeadOfChain] = Inst;
6689
}
6690
return false;
6691
}
6692
6693
if (!AllSeenFirst && !UnhandledExts.empty())
6694
for (auto *VisitedSExt : UnhandledExts) {
6695
if (RemovedInsts.count(VisitedSExt))
6696
continue;
6697
TypePromotionTransaction TPT(RemovedInsts);
6698
SmallVector<Instruction *, 1> Exts;
6699
SmallVector<Instruction *, 2> Chains;
6700
Exts.push_back(VisitedSExt);
6701
bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6702
TPT.commit();
6703
if (HasPromoted)
6704
Promoted = true;
6705
for (auto *I : Chains) {
6706
Value *HeadOfChain = I->getOperand(0);
6707
// Mark this as handled.
6708
SeenChainsForSExt[HeadOfChain] = nullptr;
6709
ValToSExtendedUses[HeadOfChain].push_back(I);
6710
}
6711
}
6712
return Promoted;
6713
}
6714
6715
bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6716
BasicBlock *DefBB = I->getParent();
6717
6718
// If the result of a {s|z}ext and its source are both live out, rewrite all
6719
// other uses of the source with result of extension.
6720
Value *Src = I->getOperand(0);
6721
if (Src->hasOneUse())
6722
return false;
6723
6724
// Only do this xform if truncating is free.
6725
if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6726
return false;
6727
6728
// Only safe to perform the optimization if the source is also defined in
6729
// this block.
6730
if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6731
return false;
6732
6733
bool DefIsLiveOut = false;
6734
for (User *U : I->users()) {
6735
Instruction *UI = cast<Instruction>(U);
6736
6737
// Figure out which BB this ext is used in.
6738
BasicBlock *UserBB = UI->getParent();
6739
if (UserBB == DefBB)
6740
continue;
6741
DefIsLiveOut = true;
6742
break;
6743
}
6744
if (!DefIsLiveOut)
6745
return false;
6746
6747
// Make sure none of the uses are PHI nodes.
6748
for (User *U : Src->users()) {
6749
Instruction *UI = cast<Instruction>(U);
6750
BasicBlock *UserBB = UI->getParent();
6751
if (UserBB == DefBB)
6752
continue;
6753
// Be conservative. We don't want this xform to end up introducing
6754
// reloads just before load / store instructions.
6755
if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6756
return false;
6757
}
6758
6759
// InsertedTruncs - Only insert one trunc in each block once.
6760
DenseMap<BasicBlock *, Instruction *> InsertedTruncs;
6761
6762
bool MadeChange = false;
6763
for (Use &U : Src->uses()) {
6764
Instruction *User = cast<Instruction>(U.getUser());
6765
6766
// Figure out which BB this ext is used in.
6767
BasicBlock *UserBB = User->getParent();
6768
if (UserBB == DefBB)
6769
continue;
6770
6771
// Both src and def are live in this block. Rewrite the use.
6772
Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6773
6774
if (!InsertedTrunc) {
6775
BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6776
assert(InsertPt != UserBB->end());
6777
InsertedTrunc = new TruncInst(I, Src->getType(), "");
6778
InsertedTrunc->insertBefore(*UserBB, InsertPt);
6779
InsertedInsts.insert(InsertedTrunc);
6780
}
6781
6782
// Replace a use of the {s|z}ext source with a use of the result.
6783
U = InsertedTrunc;
6784
++NumExtUses;
6785
MadeChange = true;
6786
}
6787
6788
return MadeChange;
6789
}
6790
6791
// Find loads whose uses only use some of the loaded value's bits. Add an "and"
6792
// just after the load if the target can fold this into one extload instruction,
6793
// with the hope of eliminating some of the other later "and" instructions using
6794
// the loaded value. "and"s that are made trivially redundant by the insertion
6795
// of the new "and" are removed by this function, while others (e.g. those whose
6796
// path from the load goes through a phi) are left for isel to potentially
6797
// remove.
6798
//
6799
// For example:
6800
//
6801
// b0:
6802
// x = load i32
6803
// ...
6804
// b1:
6805
// y = and x, 0xff
6806
// z = use y
6807
//
6808
// becomes:
6809
//
6810
// b0:
6811
// x = load i32
6812
// x' = and x, 0xff
6813
// ...
6814
// b1:
6815
// z = use x'
6816
//
6817
// whereas:
6818
//
6819
// b0:
6820
// x1 = load i32
6821
// ...
6822
// b1:
6823
// x2 = load i32
6824
// ...
6825
// b2:
6826
// x = phi x1, x2
6827
// y = and x, 0xff
6828
//
6829
// becomes (after a call to optimizeLoadExt for each load):
6830
//
6831
// b0:
6832
// x1 = load i32
6833
// x1' = and x1, 0xff
6834
// ...
6835
// b1:
6836
// x2 = load i32
6837
// x2' = and x2, 0xff
6838
// ...
6839
// b2:
6840
// x = phi x1', x2'
6841
// y = and x, 0xff
6842
bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6843
if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6844
return false;
6845
6846
// Skip loads we've already transformed.
6847
if (Load->hasOneUse() &&
6848
InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6849
return false;
6850
6851
// Look at all uses of Load, looking through phis, to determine how many bits
6852
// of the loaded value are needed.
6853
SmallVector<Instruction *, 8> WorkList;
6854
SmallPtrSet<Instruction *, 16> Visited;
6855
SmallVector<Instruction *, 8> AndsToMaybeRemove;
6856
for (auto *U : Load->users())
6857
WorkList.push_back(cast<Instruction>(U));
6858
6859
EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6860
unsigned BitWidth = LoadResultVT.getSizeInBits();
6861
// If the BitWidth is 0, do not try to optimize the type
6862
if (BitWidth == 0)
6863
return false;
6864
6865
APInt DemandBits(BitWidth, 0);
6866
APInt WidestAndBits(BitWidth, 0);
6867
6868
while (!WorkList.empty()) {
6869
Instruction *I = WorkList.pop_back_val();
6870
6871
// Break use-def graph loops.
6872
if (!Visited.insert(I).second)
6873
continue;
6874
6875
// For a PHI node, push all of its users.
6876
if (auto *Phi = dyn_cast<PHINode>(I)) {
6877
for (auto *U : Phi->users())
6878
WorkList.push_back(cast<Instruction>(U));
6879
continue;
6880
}
6881
6882
switch (I->getOpcode()) {
6883
case Instruction::And: {
6884
auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6885
if (!AndC)
6886
return false;
6887
APInt AndBits = AndC->getValue();
6888
DemandBits |= AndBits;
6889
// Keep track of the widest and mask we see.
6890
if (AndBits.ugt(WidestAndBits))
6891
WidestAndBits = AndBits;
6892
if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6893
AndsToMaybeRemove.push_back(I);
6894
break;
6895
}
6896
6897
case Instruction::Shl: {
6898
auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6899
if (!ShlC)
6900
return false;
6901
uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6902
DemandBits.setLowBits(BitWidth - ShiftAmt);
6903
break;
6904
}
6905
6906
case Instruction::Trunc: {
6907
EVT TruncVT = TLI->getValueType(*DL, I->getType());
6908
unsigned TruncBitWidth = TruncVT.getSizeInBits();
6909
DemandBits.setLowBits(TruncBitWidth);
6910
break;
6911
}
6912
6913
default:
6914
return false;
6915
}
6916
}
6917
6918
uint32_t ActiveBits = DemandBits.getActiveBits();
6919
// Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6920
// target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
6921
// for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6922
// (and (load x) 1) is not matched as a single instruction, rather as a LDR
6923
// followed by an AND.
6924
// TODO: Look into removing this restriction by fixing backends to either
6925
// return false for isLoadExtLegal for i1 or have them select this pattern to
6926
// a single instruction.
6927
//
6928
// Also avoid hoisting if we didn't see any ands with the exact DemandBits
6929
// mask, since these are the only ands that will be removed by isel.
6930
if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6931
WidestAndBits != DemandBits)
6932
return false;
6933
6934
LLVMContext &Ctx = Load->getType()->getContext();
6935
Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6936
EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6937
6938
// Reject cases that won't be matched as extloads.
6939
if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6940
!TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6941
return false;
6942
6943
IRBuilder<> Builder(Load->getNextNonDebugInstruction());
6944
auto *NewAnd = cast<Instruction>(
6945
Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6946
// Mark this instruction as "inserted by CGP", so that other
6947
// optimizations don't touch it.
6948
InsertedInsts.insert(NewAnd);
6949
6950
// Replace all uses of load with new and (except for the use of load in the
6951
// new and itself).
6952
replaceAllUsesWith(Load, NewAnd, FreshBBs, IsHugeFunc);
6953
NewAnd->setOperand(0, Load);
6954
6955
// Remove any and instructions that are now redundant.
6956
for (auto *And : AndsToMaybeRemove)
6957
// Check that the and mask is the same as the one we decided to put on the
6958
// new and.
6959
if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6960
replaceAllUsesWith(And, NewAnd, FreshBBs, IsHugeFunc);
6961
if (&*CurInstIterator == And)
6962
CurInstIterator = std::next(And->getIterator());
6963
And->eraseFromParent();
6964
++NumAndUses;
6965
}
6966
6967
++NumAndsAdded;
6968
return true;
6969
}
6970
6971
/// Check if V (an operand of a select instruction) is an expensive instruction
6972
/// that is only used once.
6973
static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6974
auto *I = dyn_cast<Instruction>(V);
6975
// If it's safe to speculatively execute, then it should not have side
6976
// effects; therefore, it's safe to sink and possibly *not* execute.
6977
return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6978
TTI->isExpensiveToSpeculativelyExecute(I);
6979
}
6980
6981
/// Returns true if a SelectInst should be turned into an explicit branch.
6982
static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6983
const TargetLowering *TLI,
6984
SelectInst *SI) {
6985
// If even a predictable select is cheap, then a branch can't be cheaper.
6986
if (!TLI->isPredictableSelectExpensive())
6987
return false;
6988
6989
// FIXME: This should use the same heuristics as IfConversion to determine
6990
// whether a select is better represented as a branch.
6991
6992
// If metadata tells us that the select condition is obviously predictable,
6993
// then we want to replace the select with a branch.
6994
uint64_t TrueWeight, FalseWeight;
6995
if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
6996
uint64_t Max = std::max(TrueWeight, FalseWeight);
6997
uint64_t Sum = TrueWeight + FalseWeight;
6998
if (Sum != 0) {
6999
auto Probability = BranchProbability::getBranchProbability(Max, Sum);
7000
if (Probability > TTI->getPredictableBranchThreshold())
7001
return true;
7002
}
7003
}
7004
7005
CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
7006
7007
// If a branch is predictable, an out-of-order CPU can avoid blocking on its
7008
// comparison condition. If the compare has more than one use, there's
7009
// probably another cmov or setcc around, so it's not worth emitting a branch.
7010
if (!Cmp || !Cmp->hasOneUse())
7011
return false;
7012
7013
// If either operand of the select is expensive and only needed on one side
7014
// of the select, we should form a branch.
7015
if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
7016
sinkSelectOperand(TTI, SI->getFalseValue()))
7017
return true;
7018
7019
return false;
7020
}
7021
7022
/// If \p isTrue is true, return the true value of \p SI, otherwise return
7023
/// false value of \p SI. If the true/false value of \p SI is defined by any
7024
/// select instructions in \p Selects, look through the defining select
7025
/// instruction until the true/false value is not defined in \p Selects.
7026
static Value *
7027
getTrueOrFalseValue(SelectInst *SI, bool isTrue,
7028
const SmallPtrSet<const Instruction *, 2> &Selects) {
7029
Value *V = nullptr;
7030
7031
for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
7032
DefSI = dyn_cast<SelectInst>(V)) {
7033
assert(DefSI->getCondition() == SI->getCondition() &&
7034
"The condition of DefSI does not match with SI");
7035
V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
7036
}
7037
7038
assert(V && "Failed to get select true/false value");
7039
return V;
7040
}
7041
7042
bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
7043
assert(Shift->isShift() && "Expected a shift");
7044
7045
// If this is (1) a vector shift, (2) shifts by scalars are cheaper than
7046
// general vector shifts, and (3) the shift amount is a select-of-splatted
7047
// values, hoist the shifts before the select:
7048
// shift Op0, (select Cond, TVal, FVal) -->
7049
// select Cond, (shift Op0, TVal), (shift Op0, FVal)
7050
//
7051
// This is inverting a generic IR transform when we know that the cost of a
7052
// general vector shift is more than the cost of 2 shift-by-scalars.
7053
// We can't do this effectively in SDAG because we may not be able to
7054
// determine if the select operands are splats from within a basic block.
7055
Type *Ty = Shift->getType();
7056
if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
7057
return false;
7058
Value *Cond, *TVal, *FVal;
7059
if (!match(Shift->getOperand(1),
7060
m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
7061
return false;
7062
if (!isSplatValue(TVal) || !isSplatValue(FVal))
7063
return false;
7064
7065
IRBuilder<> Builder(Shift);
7066
BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
7067
Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
7068
Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
7069
Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
7070
replaceAllUsesWith(Shift, NewSel, FreshBBs, IsHugeFunc);
7071
Shift->eraseFromParent();
7072
return true;
7073
}
7074
7075
bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
7076
Intrinsic::ID Opcode = Fsh->getIntrinsicID();
7077
assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
7078
"Expected a funnel shift");
7079
7080
// If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
7081
// than general vector shifts, and (3) the shift amount is select-of-splatted
7082
// values, hoist the funnel shifts before the select:
7083
// fsh Op0, Op1, (select Cond, TVal, FVal) -->
7084
// select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
7085
//
7086
// This is inverting a generic IR transform when we know that the cost of a
7087
// general vector shift is more than the cost of 2 shift-by-scalars.
7088
// We can't do this effectively in SDAG because we may not be able to
7089
// determine if the select operands are splats from within a basic block.
7090
Type *Ty = Fsh->getType();
7091
if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
7092
return false;
7093
Value *Cond, *TVal, *FVal;
7094
if (!match(Fsh->getOperand(2),
7095
m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
7096
return false;
7097
if (!isSplatValue(TVal) || !isSplatValue(FVal))
7098
return false;
7099
7100
IRBuilder<> Builder(Fsh);
7101
Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
7102
Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, TVal});
7103
Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, {X, Y, FVal});
7104
Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
7105
replaceAllUsesWith(Fsh, NewSel, FreshBBs, IsHugeFunc);
7106
Fsh->eraseFromParent();
7107
return true;
7108
}
7109
7110
/// If we have a SelectInst that will likely profit from branch prediction,
7111
/// turn it into a branch.
7112
bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
7113
if (DisableSelectToBranch)
7114
return false;
7115
7116
// If the SelectOptimize pass is enabled, selects have already been optimized.
7117
if (!getCGPassBuilderOption().DisableSelectOptimize)
7118
return false;
7119
7120
// Find all consecutive select instructions that share the same condition.
7121
SmallVector<SelectInst *, 2> ASI;
7122
ASI.push_back(SI);
7123
for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
7124
It != SI->getParent()->end(); ++It) {
7125
SelectInst *I = dyn_cast<SelectInst>(&*It);
7126
if (I && SI->getCondition() == I->getCondition()) {
7127
ASI.push_back(I);
7128
} else {
7129
break;
7130
}
7131
}
7132
7133
SelectInst *LastSI = ASI.back();
7134
// Increment the current iterator to skip all the rest of select instructions
7135
// because they will be either "not lowered" or "all lowered" to branch.
7136
CurInstIterator = std::next(LastSI->getIterator());
7137
// Examine debug-info attached to the consecutive select instructions. They
7138
// won't be individually optimised by optimizeInst, so we need to perform
7139
// DbgVariableRecord maintenence here instead.
7140
for (SelectInst *SI : ArrayRef(ASI).drop_front())
7141
fixupDbgVariableRecordsOnInst(*SI);
7142
7143
bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
7144
7145
// Can we convert the 'select' to CF ?
7146
if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
7147
return false;
7148
7149
TargetLowering::SelectSupportKind SelectKind;
7150
if (SI->getType()->isVectorTy())
7151
SelectKind = TargetLowering::ScalarCondVectorVal;
7152
else
7153
SelectKind = TargetLowering::ScalarValSelect;
7154
7155
if (TLI->isSelectSupported(SelectKind) &&
7156
(!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
7157
llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
7158
return false;
7159
7160
// The DominatorTree needs to be rebuilt by any consumers after this
7161
// transformation. We simply reset here rather than setting the ModifiedDT
7162
// flag to avoid restarting the function walk in runOnFunction for each
7163
// select optimized.
7164
DT.reset();
7165
7166
// Transform a sequence like this:
7167
// start:
7168
// %cmp = cmp uge i32 %a, %b
7169
// %sel = select i1 %cmp, i32 %c, i32 %d
7170
//
7171
// Into:
7172
// start:
7173
// %cmp = cmp uge i32 %a, %b
7174
// %cmp.frozen = freeze %cmp
7175
// br i1 %cmp.frozen, label %select.true, label %select.false
7176
// select.true:
7177
// br label %select.end
7178
// select.false:
7179
// br label %select.end
7180
// select.end:
7181
// %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
7182
//
7183
// %cmp should be frozen, otherwise it may introduce undefined behavior.
7184
// In addition, we may sink instructions that produce %c or %d from
7185
// the entry block into the destination(s) of the new branch.
7186
// If the true or false blocks do not contain a sunken instruction, that
7187
// block and its branch may be optimized away. In that case, one side of the
7188
// first branch will point directly to select.end, and the corresponding PHI
7189
// predecessor block will be the start block.
7190
7191
// Collect values that go on the true side and the values that go on the false
7192
// side.
7193
SmallVector<Instruction *> TrueInstrs, FalseInstrs;
7194
for (SelectInst *SI : ASI) {
7195
if (Value *V = SI->getTrueValue(); sinkSelectOperand(TTI, V))
7196
TrueInstrs.push_back(cast<Instruction>(V));
7197
if (Value *V = SI->getFalseValue(); sinkSelectOperand(TTI, V))
7198
FalseInstrs.push_back(cast<Instruction>(V));
7199
}
7200
7201
// Split the select block, according to how many (if any) values go on each
7202
// side.
7203
BasicBlock *StartBlock = SI->getParent();
7204
BasicBlock::iterator SplitPt = std::next(BasicBlock::iterator(LastSI));
7205
// We should split before any debug-info.
7206
SplitPt.setHeadBit(true);
7207
7208
IRBuilder<> IB(SI);
7209
auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
7210
7211
BasicBlock *TrueBlock = nullptr;
7212
BasicBlock *FalseBlock = nullptr;
7213
BasicBlock *EndBlock = nullptr;
7214
BranchInst *TrueBranch = nullptr;
7215
BranchInst *FalseBranch = nullptr;
7216
if (TrueInstrs.size() == 0) {
7217
FalseBranch = cast<BranchInst>(SplitBlockAndInsertIfElse(
7218
CondFr, SplitPt, false, nullptr, nullptr, LI));
7219
FalseBlock = FalseBranch->getParent();
7220
EndBlock = cast<BasicBlock>(FalseBranch->getOperand(0));
7221
} else if (FalseInstrs.size() == 0) {
7222
TrueBranch = cast<BranchInst>(SplitBlockAndInsertIfThen(
7223
CondFr, SplitPt, false, nullptr, nullptr, LI));
7224
TrueBlock = TrueBranch->getParent();
7225
EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7226
} else {
7227
Instruction *ThenTerm = nullptr;
7228
Instruction *ElseTerm = nullptr;
7229
SplitBlockAndInsertIfThenElse(CondFr, SplitPt, &ThenTerm, &ElseTerm,
7230
nullptr, nullptr, LI);
7231
TrueBranch = cast<BranchInst>(ThenTerm);
7232
FalseBranch = cast<BranchInst>(ElseTerm);
7233
TrueBlock = TrueBranch->getParent();
7234
FalseBlock = FalseBranch->getParent();
7235
EndBlock = cast<BasicBlock>(TrueBranch->getOperand(0));
7236
}
7237
7238
EndBlock->setName("select.end");
7239
if (TrueBlock)
7240
TrueBlock->setName("select.true.sink");
7241
if (FalseBlock)
7242
FalseBlock->setName(FalseInstrs.size() == 0 ? "select.false"
7243
: "select.false.sink");
7244
7245
if (IsHugeFunc) {
7246
if (TrueBlock)
7247
FreshBBs.insert(TrueBlock);
7248
if (FalseBlock)
7249
FreshBBs.insert(FalseBlock);
7250
FreshBBs.insert(EndBlock);
7251
}
7252
7253
BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
7254
7255
static const unsigned MD[] = {
7256
LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
7257
LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
7258
StartBlock->getTerminator()->copyMetadata(*SI, MD);
7259
7260
// Sink expensive instructions into the conditional blocks to avoid executing
7261
// them speculatively.
7262
for (Instruction *I : TrueInstrs)
7263
I->moveBefore(TrueBranch);
7264
for (Instruction *I : FalseInstrs)
7265
I->moveBefore(FalseBranch);
7266
7267
// If we did not create a new block for one of the 'true' or 'false' paths
7268
// of the condition, it means that side of the branch goes to the end block
7269
// directly and the path originates from the start block from the point of
7270
// view of the new PHI.
7271
if (TrueBlock == nullptr)
7272
TrueBlock = StartBlock;
7273
else if (FalseBlock == nullptr)
7274
FalseBlock = StartBlock;
7275
7276
SmallPtrSet<const Instruction *, 2> INS;
7277
INS.insert(ASI.begin(), ASI.end());
7278
// Use reverse iterator because later select may use the value of the
7279
// earlier select, and we need to propagate value through earlier select
7280
// to get the PHI operand.
7281
for (SelectInst *SI : llvm::reverse(ASI)) {
7282
// The select itself is replaced with a PHI Node.
7283
PHINode *PN = PHINode::Create(SI->getType(), 2, "");
7284
PN->insertBefore(EndBlock->begin());
7285
PN->takeName(SI);
7286
PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
7287
PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
7288
PN->setDebugLoc(SI->getDebugLoc());
7289
7290
replaceAllUsesWith(SI, PN, FreshBBs, IsHugeFunc);
7291
SI->eraseFromParent();
7292
INS.erase(SI);
7293
++NumSelectsExpanded;
7294
}
7295
7296
// Instruct OptimizeBlock to skip to the next block.
7297
CurInstIterator = StartBlock->end();
7298
return true;
7299
}
7300
7301
/// Some targets only accept certain types for splat inputs. For example a VDUP
7302
/// in MVE takes a GPR (integer) register, and the instruction that incorporate
7303
/// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
7304
bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
7305
// Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
7306
if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
7307
m_Undef(), m_ZeroMask())))
7308
return false;
7309
Type *NewType = TLI->shouldConvertSplatType(SVI);
7310
if (!NewType)
7311
return false;
7312
7313
auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
7314
assert(!NewType->isVectorTy() && "Expected a scalar type!");
7315
assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
7316
"Expected a type of the same size!");
7317
auto *NewVecType =
7318
FixedVectorType::get(NewType, SVIVecType->getNumElements());
7319
7320
// Create a bitcast (shuffle (insert (bitcast(..))))
7321
IRBuilder<> Builder(SVI->getContext());
7322
Builder.SetInsertPoint(SVI);
7323
Value *BC1 = Builder.CreateBitCast(
7324
cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
7325
Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
7326
Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
7327
7328
replaceAllUsesWith(SVI, BC2, FreshBBs, IsHugeFunc);
7329
RecursivelyDeleteTriviallyDeadInstructions(
7330
SVI, TLInfo, nullptr,
7331
[&](Value *V) { removeAllAssertingVHReferences(V); });
7332
7333
// Also hoist the bitcast up to its operand if it they are not in the same
7334
// block.
7335
if (auto *BCI = dyn_cast<Instruction>(BC1))
7336
if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
7337
if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
7338
!Op->isTerminator() && !Op->isEHPad())
7339
BCI->moveAfter(Op);
7340
7341
return true;
7342
}
7343
7344
bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
7345
// If the operands of I can be folded into a target instruction together with
7346
// I, duplicate and sink them.
7347
SmallVector<Use *, 4> OpsToSink;
7348
if (!TLI->shouldSinkOperands(I, OpsToSink))
7349
return false;
7350
7351
// OpsToSink can contain multiple uses in a use chain (e.g.
7352
// (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
7353
// uses must come first, so we process the ops in reverse order so as to not
7354
// create invalid IR.
7355
BasicBlock *TargetBB = I->getParent();
7356
bool Changed = false;
7357
SmallVector<Use *, 4> ToReplace;
7358
Instruction *InsertPoint = I;
7359
DenseMap<const Instruction *, unsigned long> InstOrdering;
7360
unsigned long InstNumber = 0;
7361
for (const auto &I : *TargetBB)
7362
InstOrdering[&I] = InstNumber++;
7363
7364
for (Use *U : reverse(OpsToSink)) {
7365
auto *UI = cast<Instruction>(U->get());
7366
if (isa<PHINode>(UI))
7367
continue;
7368
if (UI->getParent() == TargetBB) {
7369
if (InstOrdering[UI] < InstOrdering[InsertPoint])
7370
InsertPoint = UI;
7371
continue;
7372
}
7373
ToReplace.push_back(U);
7374
}
7375
7376
SetVector<Instruction *> MaybeDead;
7377
DenseMap<Instruction *, Instruction *> NewInstructions;
7378
for (Use *U : ToReplace) {
7379
auto *UI = cast<Instruction>(U->get());
7380
Instruction *NI = UI->clone();
7381
7382
if (IsHugeFunc) {
7383
// Now we clone an instruction, its operands' defs may sink to this BB
7384
// now. So we put the operands defs' BBs into FreshBBs to do optimization.
7385
for (unsigned I = 0; I < NI->getNumOperands(); ++I) {
7386
auto *OpDef = dyn_cast<Instruction>(NI->getOperand(I));
7387
if (!OpDef)
7388
continue;
7389
FreshBBs.insert(OpDef->getParent());
7390
}
7391
}
7392
7393
NewInstructions[UI] = NI;
7394
MaybeDead.insert(UI);
7395
LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
7396
NI->insertBefore(InsertPoint);
7397
InsertPoint = NI;
7398
InsertedInsts.insert(NI);
7399
7400
// Update the use for the new instruction, making sure that we update the
7401
// sunk instruction uses, if it is part of a chain that has already been
7402
// sunk.
7403
Instruction *OldI = cast<Instruction>(U->getUser());
7404
if (NewInstructions.count(OldI))
7405
NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
7406
else
7407
U->set(NI);
7408
Changed = true;
7409
}
7410
7411
// Remove instructions that are dead after sinking.
7412
for (auto *I : MaybeDead) {
7413
if (!I->hasNUsesOrMore(1)) {
7414
LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
7415
I->eraseFromParent();
7416
}
7417
}
7418
7419
return Changed;
7420
}
7421
7422
bool CodeGenPrepare::optimizeSwitchType(SwitchInst *SI) {
7423
Value *Cond = SI->getCondition();
7424
Type *OldType = Cond->getType();
7425
LLVMContext &Context = Cond->getContext();
7426
EVT OldVT = TLI->getValueType(*DL, OldType);
7427
MVT RegType = TLI->getPreferredSwitchConditionType(Context, OldVT);
7428
unsigned RegWidth = RegType.getSizeInBits();
7429
7430
if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
7431
return false;
7432
7433
// If the register width is greater than the type width, expand the condition
7434
// of the switch instruction and each case constant to the width of the
7435
// register. By widening the type of the switch condition, subsequent
7436
// comparisons (for case comparisons) will not need to be extended to the
7437
// preferred register width, so we will potentially eliminate N-1 extends,
7438
// where N is the number of cases in the switch.
7439
auto *NewType = Type::getIntNTy(Context, RegWidth);
7440
7441
// Extend the switch condition and case constants using the target preferred
7442
// extend unless the switch condition is a function argument with an extend
7443
// attribute. In that case, we can avoid an unnecessary mask/extension by
7444
// matching the argument extension instead.
7445
Instruction::CastOps ExtType = Instruction::ZExt;
7446
// Some targets prefer SExt over ZExt.
7447
if (TLI->isSExtCheaperThanZExt(OldVT, RegType))
7448
ExtType = Instruction::SExt;
7449
7450
if (auto *Arg = dyn_cast<Argument>(Cond)) {
7451
if (Arg->hasSExtAttr())
7452
ExtType = Instruction::SExt;
7453
if (Arg->hasZExtAttr())
7454
ExtType = Instruction::ZExt;
7455
}
7456
7457
auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7458
ExtInst->insertBefore(SI);
7459
ExtInst->setDebugLoc(SI->getDebugLoc());
7460
SI->setCondition(ExtInst);
7461
for (auto Case : SI->cases()) {
7462
const APInt &NarrowConst = Case.getCaseValue()->getValue();
7463
APInt WideConst = (ExtType == Instruction::ZExt)
7464
? NarrowConst.zext(RegWidth)
7465
: NarrowConst.sext(RegWidth);
7466
Case.setValue(ConstantInt::get(Context, WideConst));
7467
}
7468
7469
return true;
7470
}
7471
7472
bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst *SI) {
7473
// The SCCP optimization tends to produce code like this:
7474
// switch(x) { case 42: phi(42, ...) }
7475
// Materializing the constant for the phi-argument needs instructions; So we
7476
// change the code to:
7477
// switch(x) { case 42: phi(x, ...) }
7478
7479
Value *Condition = SI->getCondition();
7480
// Avoid endless loop in degenerate case.
7481
if (isa<ConstantInt>(*Condition))
7482
return false;
7483
7484
bool Changed = false;
7485
BasicBlock *SwitchBB = SI->getParent();
7486
Type *ConditionType = Condition->getType();
7487
7488
for (const SwitchInst::CaseHandle &Case : SI->cases()) {
7489
ConstantInt *CaseValue = Case.getCaseValue();
7490
BasicBlock *CaseBB = Case.getCaseSuccessor();
7491
// Set to true if we previously checked that `CaseBB` is only reached by
7492
// a single case from this switch.
7493
bool CheckedForSinglePred = false;
7494
for (PHINode &PHI : CaseBB->phis()) {
7495
Type *PHIType = PHI.getType();
7496
// If ZExt is free then we can also catch patterns like this:
7497
// switch((i32)x) { case 42: phi((i64)42, ...); }
7498
// and replace `(i64)42` with `zext i32 %x to i64`.
7499
bool TryZExt =
7500
PHIType->isIntegerTy() &&
7501
PHIType->getIntegerBitWidth() > ConditionType->getIntegerBitWidth() &&
7502
TLI->isZExtFree(ConditionType, PHIType);
7503
if (PHIType == ConditionType || TryZExt) {
7504
// Set to true to skip this case because of multiple preds.
7505
bool SkipCase = false;
7506
Value *Replacement = nullptr;
7507
for (unsigned I = 0, E = PHI.getNumIncomingValues(); I != E; I++) {
7508
Value *PHIValue = PHI.getIncomingValue(I);
7509
if (PHIValue != CaseValue) {
7510
if (!TryZExt)
7511
continue;
7512
ConstantInt *PHIValueInt = dyn_cast<ConstantInt>(PHIValue);
7513
if (!PHIValueInt ||
7514
PHIValueInt->getValue() !=
7515
CaseValue->getValue().zext(PHIType->getIntegerBitWidth()))
7516
continue;
7517
}
7518
if (PHI.getIncomingBlock(I) != SwitchBB)
7519
continue;
7520
// We cannot optimize if there are multiple case labels jumping to
7521
// this block. This check may get expensive when there are many
7522
// case labels so we test for it last.
7523
if (!CheckedForSinglePred) {
7524
CheckedForSinglePred = true;
7525
if (SI->findCaseDest(CaseBB) == nullptr) {
7526
SkipCase = true;
7527
break;
7528
}
7529
}
7530
7531
if (Replacement == nullptr) {
7532
if (PHIValue == CaseValue) {
7533
Replacement = Condition;
7534
} else {
7535
IRBuilder<> Builder(SI);
7536
Replacement = Builder.CreateZExt(Condition, PHIType);
7537
}
7538
}
7539
PHI.setIncomingValue(I, Replacement);
7540
Changed = true;
7541
}
7542
if (SkipCase)
7543
break;
7544
}
7545
}
7546
}
7547
return Changed;
7548
}
7549
7550
bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
7551
bool Changed = optimizeSwitchType(SI);
7552
Changed |= optimizeSwitchPhiConstants(SI);
7553
return Changed;
7554
}
7555
7556
namespace {
7557
7558
/// Helper class to promote a scalar operation to a vector one.
7559
/// This class is used to move downward extractelement transition.
7560
/// E.g.,
7561
/// a = vector_op <2 x i32>
7562
/// b = extractelement <2 x i32> a, i32 0
7563
/// c = scalar_op b
7564
/// store c
7565
///
7566
/// =>
7567
/// a = vector_op <2 x i32>
7568
/// c = vector_op a (equivalent to scalar_op on the related lane)
7569
/// * d = extractelement <2 x i32> c, i32 0
7570
/// * store d
7571
/// Assuming both extractelement and store can be combine, we get rid of the
7572
/// transition.
7573
class VectorPromoteHelper {
7574
/// DataLayout associated with the current module.
7575
const DataLayout &DL;
7576
7577
/// Used to perform some checks on the legality of vector operations.
7578
const TargetLowering &TLI;
7579
7580
/// Used to estimated the cost of the promoted chain.
7581
const TargetTransformInfo &TTI;
7582
7583
/// The transition being moved downwards.
7584
Instruction *Transition;
7585
7586
/// The sequence of instructions to be promoted.
7587
SmallVector<Instruction *, 4> InstsToBePromoted;
7588
7589
/// Cost of combining a store and an extract.
7590
unsigned StoreExtractCombineCost;
7591
7592
/// Instruction that will be combined with the transition.
7593
Instruction *CombineInst = nullptr;
7594
7595
/// The instruction that represents the current end of the transition.
7596
/// Since we are faking the promotion until we reach the end of the chain
7597
/// of computation, we need a way to get the current end of the transition.
7598
Instruction *getEndOfTransition() const {
7599
if (InstsToBePromoted.empty())
7600
return Transition;
7601
return InstsToBePromoted.back();
7602
}
7603
7604
/// Return the index of the original value in the transition.
7605
/// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7606
/// c, is at index 0.
7607
unsigned getTransitionOriginalValueIdx() const {
7608
assert(isa<ExtractElementInst>(Transition) &&
7609
"Other kind of transitions are not supported yet");
7610
return 0;
7611
}
7612
7613
/// Return the index of the index in the transition.
7614
/// E.g., for "extractelement <2 x i32> c, i32 0" the index
7615
/// is at index 1.
7616
unsigned getTransitionIdx() const {
7617
assert(isa<ExtractElementInst>(Transition) &&
7618
"Other kind of transitions are not supported yet");
7619
return 1;
7620
}
7621
7622
/// Get the type of the transition.
7623
/// This is the type of the original value.
7624
/// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7625
/// transition is <2 x i32>.
7626
Type *getTransitionType() const {
7627
return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7628
}
7629
7630
/// Promote \p ToBePromoted by moving \p Def downward through.
7631
/// I.e., we have the following sequence:
7632
/// Def = Transition <ty1> a to <ty2>
7633
/// b = ToBePromoted <ty2> Def, ...
7634
/// =>
7635
/// b = ToBePromoted <ty1> a, ...
7636
/// Def = Transition <ty1> ToBePromoted to <ty2>
7637
void promoteImpl(Instruction *ToBePromoted);
7638
7639
/// Check whether or not it is profitable to promote all the
7640
/// instructions enqueued to be promoted.
7641
bool isProfitableToPromote() {
7642
Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7643
unsigned Index = isa<ConstantInt>(ValIdx)
7644
? cast<ConstantInt>(ValIdx)->getZExtValue()
7645
: -1;
7646
Type *PromotedType = getTransitionType();
7647
7648
StoreInst *ST = cast<StoreInst>(CombineInst);
7649
unsigned AS = ST->getPointerAddressSpace();
7650
// Check if this store is supported.
7651
if (!TLI.allowsMisalignedMemoryAccesses(
7652
TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7653
ST->getAlign())) {
7654
// If this is not supported, there is no way we can combine
7655
// the extract with the store.
7656
return false;
7657
}
7658
7659
// The scalar chain of computation has to pay for the transition
7660
// scalar to vector.
7661
// The vector chain has to account for the combining cost.
7662
enum TargetTransformInfo::TargetCostKind CostKind =
7663
TargetTransformInfo::TCK_RecipThroughput;
7664
InstructionCost ScalarCost =
7665
TTI.getVectorInstrCost(*Transition, PromotedType, CostKind, Index);
7666
InstructionCost VectorCost = StoreExtractCombineCost;
7667
for (const auto &Inst : InstsToBePromoted) {
7668
// Compute the cost.
7669
// By construction, all instructions being promoted are arithmetic ones.
7670
// Moreover, one argument is a constant that can be viewed as a splat
7671
// constant.
7672
Value *Arg0 = Inst->getOperand(0);
7673
bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7674
isa<ConstantFP>(Arg0);
7675
TargetTransformInfo::OperandValueInfo Arg0Info, Arg1Info;
7676
if (IsArg0Constant)
7677
Arg0Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7678
else
7679
Arg1Info.Kind = TargetTransformInfo::OK_UniformConstantValue;
7680
7681
ScalarCost += TTI.getArithmeticInstrCost(
7682
Inst->getOpcode(), Inst->getType(), CostKind, Arg0Info, Arg1Info);
7683
VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7684
CostKind, Arg0Info, Arg1Info);
7685
}
7686
LLVM_DEBUG(
7687
dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7688
<< ScalarCost << "\nVector: " << VectorCost << '\n');
7689
return ScalarCost > VectorCost;
7690
}
7691
7692
/// Generate a constant vector with \p Val with the same
7693
/// number of elements as the transition.
7694
/// \p UseSplat defines whether or not \p Val should be replicated
7695
/// across the whole vector.
7696
/// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7697
/// otherwise we generate a vector with as many undef as possible:
7698
/// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7699
/// used at the index of the extract.
7700
Value *getConstantVector(Constant *Val, bool UseSplat) const {
7701
unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7702
if (!UseSplat) {
7703
// If we cannot determine where the constant must be, we have to
7704
// use a splat constant.
7705
Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7706
if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7707
ExtractIdx = CstVal->getSExtValue();
7708
else
7709
UseSplat = true;
7710
}
7711
7712
ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7713
if (UseSplat)
7714
return ConstantVector::getSplat(EC, Val);
7715
7716
if (!EC.isScalable()) {
7717
SmallVector<Constant *, 4> ConstVec;
7718
UndefValue *UndefVal = UndefValue::get(Val->getType());
7719
for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7720
if (Idx == ExtractIdx)
7721
ConstVec.push_back(Val);
7722
else
7723
ConstVec.push_back(UndefVal);
7724
}
7725
return ConstantVector::get(ConstVec);
7726
} else
7727
llvm_unreachable(
7728
"Generate scalable vector for non-splat is unimplemented");
7729
}
7730
7731
/// Check if promoting to a vector type an operand at \p OperandIdx
7732
/// in \p Use can trigger undefined behavior.
7733
static bool canCauseUndefinedBehavior(const Instruction *Use,
7734
unsigned OperandIdx) {
7735
// This is not safe to introduce undef when the operand is on
7736
// the right hand side of a division-like instruction.
7737
if (OperandIdx != 1)
7738
return false;
7739
switch (Use->getOpcode()) {
7740
default:
7741
return false;
7742
case Instruction::SDiv:
7743
case Instruction::UDiv:
7744
case Instruction::SRem:
7745
case Instruction::URem:
7746
return true;
7747
case Instruction::FDiv:
7748
case Instruction::FRem:
7749
return !Use->hasNoNaNs();
7750
}
7751
llvm_unreachable(nullptr);
7752
}
7753
7754
public:
7755
VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7756
const TargetTransformInfo &TTI, Instruction *Transition,
7757
unsigned CombineCost)
7758
: DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7759
StoreExtractCombineCost(CombineCost) {
7760
assert(Transition && "Do not know how to promote null");
7761
}
7762
7763
/// Check if we can promote \p ToBePromoted to \p Type.
7764
bool canPromote(const Instruction *ToBePromoted) const {
7765
// We could support CastInst too.
7766
return isa<BinaryOperator>(ToBePromoted);
7767
}
7768
7769
/// Check if it is profitable to promote \p ToBePromoted
7770
/// by moving downward the transition through.
7771
bool shouldPromote(const Instruction *ToBePromoted) const {
7772
// Promote only if all the operands can be statically expanded.
7773
// Indeed, we do not want to introduce any new kind of transitions.
7774
for (const Use &U : ToBePromoted->operands()) {
7775
const Value *Val = U.get();
7776
if (Val == getEndOfTransition()) {
7777
// If the use is a division and the transition is on the rhs,
7778
// we cannot promote the operation, otherwise we may create a
7779
// division by zero.
7780
if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7781
return false;
7782
continue;
7783
}
7784
if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7785
!isa<ConstantFP>(Val))
7786
return false;
7787
}
7788
// Check that the resulting operation is legal.
7789
int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7790
if (!ISDOpcode)
7791
return false;
7792
return StressStoreExtract ||
7793
TLI.isOperationLegalOrCustom(
7794
ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7795
}
7796
7797
/// Check whether or not \p Use can be combined
7798
/// with the transition.
7799
/// I.e., is it possible to do Use(Transition) => AnotherUse?
7800
bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7801
7802
/// Record \p ToBePromoted as part of the chain to be promoted.
7803
void enqueueForPromotion(Instruction *ToBePromoted) {
7804
InstsToBePromoted.push_back(ToBePromoted);
7805
}
7806
7807
/// Set the instruction that will be combined with the transition.
7808
void recordCombineInstruction(Instruction *ToBeCombined) {
7809
assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7810
CombineInst = ToBeCombined;
7811
}
7812
7813
/// Promote all the instructions enqueued for promotion if it is
7814
/// is profitable.
7815
/// \return True if the promotion happened, false otherwise.
7816
bool promote() {
7817
// Check if there is something to promote.
7818
// Right now, if we do not have anything to combine with,
7819
// we assume the promotion is not profitable.
7820
if (InstsToBePromoted.empty() || !CombineInst)
7821
return false;
7822
7823
// Check cost.
7824
if (!StressStoreExtract && !isProfitableToPromote())
7825
return false;
7826
7827
// Promote.
7828
for (auto &ToBePromoted : InstsToBePromoted)
7829
promoteImpl(ToBePromoted);
7830
InstsToBePromoted.clear();
7831
return true;
7832
}
7833
};
7834
7835
} // end anonymous namespace
7836
7837
void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7838
// At this point, we know that all the operands of ToBePromoted but Def
7839
// can be statically promoted.
7840
// For Def, we need to use its parameter in ToBePromoted:
7841
// b = ToBePromoted ty1 a
7842
// Def = Transition ty1 b to ty2
7843
// Move the transition down.
7844
// 1. Replace all uses of the promoted operation by the transition.
7845
// = ... b => = ... Def.
7846
assert(ToBePromoted->getType() == Transition->getType() &&
7847
"The type of the result of the transition does not match "
7848
"the final type");
7849
ToBePromoted->replaceAllUsesWith(Transition);
7850
// 2. Update the type of the uses.
7851
// b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7852
Type *TransitionTy = getTransitionType();
7853
ToBePromoted->mutateType(TransitionTy);
7854
// 3. Update all the operands of the promoted operation with promoted
7855
// operands.
7856
// b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7857
for (Use &U : ToBePromoted->operands()) {
7858
Value *Val = U.get();
7859
Value *NewVal = nullptr;
7860
if (Val == Transition)
7861
NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7862
else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7863
isa<ConstantFP>(Val)) {
7864
// Use a splat constant if it is not safe to use undef.
7865
NewVal = getConstantVector(
7866
cast<Constant>(Val),
7867
isa<UndefValue>(Val) ||
7868
canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7869
} else
7870
llvm_unreachable("Did you modified shouldPromote and forgot to update "
7871
"this?");
7872
ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7873
}
7874
Transition->moveAfter(ToBePromoted);
7875
Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7876
}
7877
7878
/// Some targets can do store(extractelement) with one instruction.
7879
/// Try to push the extractelement towards the stores when the target
7880
/// has this feature and this is profitable.
7881
bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7882
unsigned CombineCost = std::numeric_limits<unsigned>::max();
7883
if (DisableStoreExtract ||
7884
(!StressStoreExtract &&
7885
!TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7886
Inst->getOperand(1), CombineCost)))
7887
return false;
7888
7889
// At this point we know that Inst is a vector to scalar transition.
7890
// Try to move it down the def-use chain, until:
7891
// - We can combine the transition with its single use
7892
// => we got rid of the transition.
7893
// - We escape the current basic block
7894
// => we would need to check that we are moving it at a cheaper place and
7895
// we do not do that for now.
7896
BasicBlock *Parent = Inst->getParent();
7897
LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7898
VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7899
// If the transition has more than one use, assume this is not going to be
7900
// beneficial.
7901
while (Inst->hasOneUse()) {
7902
Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7903
LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7904
7905
if (ToBePromoted->getParent() != Parent) {
7906
LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7907
<< ToBePromoted->getParent()->getName()
7908
<< ") than the transition (" << Parent->getName()
7909
<< ").\n");
7910
return false;
7911
}
7912
7913
if (VPH.canCombine(ToBePromoted)) {
7914
LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7915
<< "will be combined with: " << *ToBePromoted << '\n');
7916
VPH.recordCombineInstruction(ToBePromoted);
7917
bool Changed = VPH.promote();
7918
NumStoreExtractExposed += Changed;
7919
return Changed;
7920
}
7921
7922
LLVM_DEBUG(dbgs() << "Try promoting.\n");
7923
if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7924
return false;
7925
7926
LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7927
7928
VPH.enqueueForPromotion(ToBePromoted);
7929
Inst = ToBePromoted;
7930
}
7931
return false;
7932
}
7933
7934
/// For the instruction sequence of store below, F and I values
7935
/// are bundled together as an i64 value before being stored into memory.
7936
/// Sometimes it is more efficient to generate separate stores for F and I,
7937
/// which can remove the bitwise instructions or sink them to colder places.
7938
///
7939
/// (store (or (zext (bitcast F to i32) to i64),
7940
/// (shl (zext I to i64), 32)), addr) -->
7941
/// (store F, addr) and (store I, addr+4)
7942
///
7943
/// Similarly, splitting for other merged store can also be beneficial, like:
7944
/// For pair of {i32, i32}, i64 store --> two i32 stores.
7945
/// For pair of {i32, i16}, i64 store --> two i32 stores.
7946
/// For pair of {i16, i16}, i32 store --> two i16 stores.
7947
/// For pair of {i16, i8}, i32 store --> two i16 stores.
7948
/// For pair of {i8, i8}, i16 store --> two i8 stores.
7949
///
7950
/// We allow each target to determine specifically which kind of splitting is
7951
/// supported.
7952
///
7953
/// The store patterns are commonly seen from the simple code snippet below
7954
/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7955
/// void goo(const std::pair<int, float> &);
7956
/// hoo() {
7957
/// ...
7958
/// goo(std::make_pair(tmp, ftmp));
7959
/// ...
7960
/// }
7961
///
7962
/// Although we already have similar splitting in DAG Combine, we duplicate
7963
/// it in CodeGenPrepare to catch the case in which pattern is across
7964
/// multiple BBs. The logic in DAG Combine is kept to catch case generated
7965
/// during code expansion.
7966
static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7967
const TargetLowering &TLI) {
7968
// Handle simple but common cases only.
7969
Type *StoreType = SI.getValueOperand()->getType();
7970
7971
// The code below assumes shifting a value by <number of bits>,
7972
// whereas scalable vectors would have to be shifted by
7973
// <2log(vscale) + number of bits> in order to store the
7974
// low/high parts. Bailing out for now.
7975
if (StoreType->isScalableTy())
7976
return false;
7977
7978
if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7979
DL.getTypeSizeInBits(StoreType) == 0)
7980
return false;
7981
7982
unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7983
Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7984
if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7985
return false;
7986
7987
// Don't split the store if it is volatile.
7988
if (SI.isVolatile())
7989
return false;
7990
7991
// Match the following patterns:
7992
// (store (or (zext LValue to i64),
7993
// (shl (zext HValue to i64), 32)), HalfValBitSize)
7994
// or
7995
// (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7996
// (zext LValue to i64),
7997
// Expect both operands of OR and the first operand of SHL have only
7998
// one use.
7999
Value *LValue, *HValue;
8000
if (!match(SI.getValueOperand(),
8001
m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
8002
m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
8003
m_SpecificInt(HalfValBitSize))))))
8004
return false;
8005
8006
// Check LValue and HValue are int with size less or equal than 32.
8007
if (!LValue->getType()->isIntegerTy() ||
8008
DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
8009
!HValue->getType()->isIntegerTy() ||
8010
DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
8011
return false;
8012
8013
// If LValue/HValue is a bitcast instruction, use the EVT before bitcast
8014
// as the input of target query.
8015
auto *LBC = dyn_cast<BitCastInst>(LValue);
8016
auto *HBC = dyn_cast<BitCastInst>(HValue);
8017
EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
8018
: EVT::getEVT(LValue->getType());
8019
EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
8020
: EVT::getEVT(HValue->getType());
8021
if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
8022
return false;
8023
8024
// Start to split store.
8025
IRBuilder<> Builder(SI.getContext());
8026
Builder.SetInsertPoint(&SI);
8027
8028
// If LValue/HValue is a bitcast in another BB, create a new one in current
8029
// BB so it may be merged with the splitted stores by dag combiner.
8030
if (LBC && LBC->getParent() != SI.getParent())
8031
LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
8032
if (HBC && HBC->getParent() != SI.getParent())
8033
HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
8034
8035
bool IsLE = SI.getDataLayout().isLittleEndian();
8036
auto CreateSplitStore = [&](Value *V, bool Upper) {
8037
V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
8038
Value *Addr = SI.getPointerOperand();
8039
Align Alignment = SI.getAlign();
8040
const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
8041
if (IsOffsetStore) {
8042
Addr = Builder.CreateGEP(
8043
SplitStoreType, Addr,
8044
ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
8045
8046
// When splitting the store in half, naturally one half will retain the
8047
// alignment of the original wider store, regardless of whether it was
8048
// over-aligned or not, while the other will require adjustment.
8049
Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
8050
}
8051
Builder.CreateAlignedStore(V, Addr, Alignment);
8052
};
8053
8054
CreateSplitStore(LValue, false);
8055
CreateSplitStore(HValue, true);
8056
8057
// Delete the old store.
8058
SI.eraseFromParent();
8059
return true;
8060
}
8061
8062
// Return true if the GEP has two operands, the first operand is of a sequential
8063
// type, and the second operand is a constant.
8064
static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
8065
gep_type_iterator I = gep_type_begin(*GEP);
8066
return GEP->getNumOperands() == 2 && I.isSequential() &&
8067
isa<ConstantInt>(GEP->getOperand(1));
8068
}
8069
8070
// Try unmerging GEPs to reduce liveness interference (register pressure) across
8071
// IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
8072
// reducing liveness interference across those edges benefits global register
8073
// allocation. Currently handles only certain cases.
8074
//
8075
// For example, unmerge %GEPI and %UGEPI as below.
8076
//
8077
// ---------- BEFORE ----------
8078
// SrcBlock:
8079
// ...
8080
// %GEPIOp = ...
8081
// ...
8082
// %GEPI = gep %GEPIOp, Idx
8083
// ...
8084
// indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
8085
// (* %GEPI is alive on the indirectbr edges due to other uses ahead)
8086
// (* %GEPIOp is alive on the indirectbr edges only because of it's used by
8087
// %UGEPI)
8088
//
8089
// DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
8090
// DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
8091
// ...
8092
//
8093
// DstBi:
8094
// ...
8095
// %UGEPI = gep %GEPIOp, UIdx
8096
// ...
8097
// ---------------------------
8098
//
8099
// ---------- AFTER ----------
8100
// SrcBlock:
8101
// ... (same as above)
8102
// (* %GEPI is still alive on the indirectbr edges)
8103
// (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
8104
// unmerging)
8105
// ...
8106
//
8107
// DstBi:
8108
// ...
8109
// %UGEPI = gep %GEPI, (UIdx-Idx)
8110
// ...
8111
// ---------------------------
8112
//
8113
// The register pressure on the IndirectBr edges is reduced because %GEPIOp is
8114
// no longer alive on them.
8115
//
8116
// We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
8117
// of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
8118
// not to disable further simplications and optimizations as a result of GEP
8119
// merging.
8120
//
8121
// Note this unmerging may increase the length of the data flow critical path
8122
// (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
8123
// between the register pressure and the length of data-flow critical
8124
// path. Restricting this to the uncommon IndirectBr case would minimize the
8125
// impact of potentially longer critical path, if any, and the impact on compile
8126
// time.
8127
static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
8128
const TargetTransformInfo *TTI) {
8129
BasicBlock *SrcBlock = GEPI->getParent();
8130
// Check that SrcBlock ends with an IndirectBr. If not, give up. The common
8131
// (non-IndirectBr) cases exit early here.
8132
if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
8133
return false;
8134
// Check that GEPI is a simple gep with a single constant index.
8135
if (!GEPSequentialConstIndexed(GEPI))
8136
return false;
8137
ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
8138
// Check that GEPI is a cheap one.
8139
if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
8140
TargetTransformInfo::TCK_SizeAndLatency) >
8141
TargetTransformInfo::TCC_Basic)
8142
return false;
8143
Value *GEPIOp = GEPI->getOperand(0);
8144
// Check that GEPIOp is an instruction that's also defined in SrcBlock.
8145
if (!isa<Instruction>(GEPIOp))
8146
return false;
8147
auto *GEPIOpI = cast<Instruction>(GEPIOp);
8148
if (GEPIOpI->getParent() != SrcBlock)
8149
return false;
8150
// Check that GEP is used outside the block, meaning it's alive on the
8151
// IndirectBr edge(s).
8152
if (llvm::none_of(GEPI->users(), [&](User *Usr) {
8153
if (auto *I = dyn_cast<Instruction>(Usr)) {
8154
if (I->getParent() != SrcBlock) {
8155
return true;
8156
}
8157
}
8158
return false;
8159
}))
8160
return false;
8161
// The second elements of the GEP chains to be unmerged.
8162
std::vector<GetElementPtrInst *> UGEPIs;
8163
// Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
8164
// on IndirectBr edges.
8165
for (User *Usr : GEPIOp->users()) {
8166
if (Usr == GEPI)
8167
continue;
8168
// Check if Usr is an Instruction. If not, give up.
8169
if (!isa<Instruction>(Usr))
8170
return false;
8171
auto *UI = cast<Instruction>(Usr);
8172
// Check if Usr in the same block as GEPIOp, which is fine, skip.
8173
if (UI->getParent() == SrcBlock)
8174
continue;
8175
// Check if Usr is a GEP. If not, give up.
8176
if (!isa<GetElementPtrInst>(Usr))
8177
return false;
8178
auto *UGEPI = cast<GetElementPtrInst>(Usr);
8179
// Check if UGEPI is a simple gep with a single constant index and GEPIOp is
8180
// the pointer operand to it. If so, record it in the vector. If not, give
8181
// up.
8182
if (!GEPSequentialConstIndexed(UGEPI))
8183
return false;
8184
if (UGEPI->getOperand(0) != GEPIOp)
8185
return false;
8186
if (UGEPI->getSourceElementType() != GEPI->getSourceElementType())
8187
return false;
8188
if (GEPIIdx->getType() !=
8189
cast<ConstantInt>(UGEPI->getOperand(1))->getType())
8190
return false;
8191
ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8192
if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
8193
TargetTransformInfo::TCK_SizeAndLatency) >
8194
TargetTransformInfo::TCC_Basic)
8195
return false;
8196
UGEPIs.push_back(UGEPI);
8197
}
8198
if (UGEPIs.size() == 0)
8199
return false;
8200
// Check the materializing cost of (Uidx-Idx).
8201
for (GetElementPtrInst *UGEPI : UGEPIs) {
8202
ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8203
APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
8204
InstructionCost ImmCost = TTI->getIntImmCost(
8205
NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
8206
if (ImmCost > TargetTransformInfo::TCC_Basic)
8207
return false;
8208
}
8209
// Now unmerge between GEPI and UGEPIs.
8210
for (GetElementPtrInst *UGEPI : UGEPIs) {
8211
UGEPI->setOperand(0, GEPI);
8212
ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
8213
Constant *NewUGEPIIdx = ConstantInt::get(
8214
GEPIIdx->getType(), UGEPIIdx->getValue() - GEPIIdx->getValue());
8215
UGEPI->setOperand(1, NewUGEPIIdx);
8216
// If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
8217
// inbounds to avoid UB.
8218
if (!GEPI->isInBounds()) {
8219
UGEPI->setIsInBounds(false);
8220
}
8221
}
8222
// After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
8223
// alive on IndirectBr edges).
8224
assert(llvm::none_of(GEPIOp->users(),
8225
[&](User *Usr) {
8226
return cast<Instruction>(Usr)->getParent() != SrcBlock;
8227
}) &&
8228
"GEPIOp is used outside SrcBlock");
8229
return true;
8230
}
8231
8232
static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI,
8233
SmallSet<BasicBlock *, 32> &FreshBBs,
8234
bool IsHugeFunc) {
8235
// Try and convert
8236
// %c = icmp ult %x, 8
8237
// br %c, bla, blb
8238
// %tc = lshr %x, 3
8239
// to
8240
// %tc = lshr %x, 3
8241
// %c = icmp eq %tc, 0
8242
// br %c, bla, blb
8243
// Creating the cmp to zero can be better for the backend, especially if the
8244
// lshr produces flags that can be used automatically.
8245
if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
8246
return false;
8247
8248
ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
8249
if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
8250
return false;
8251
8252
Value *X = Cmp->getOperand(0);
8253
APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
8254
8255
for (auto *U : X->users()) {
8256
Instruction *UI = dyn_cast<Instruction>(U);
8257
// A quick dominance check
8258
if (!UI ||
8259
(UI->getParent() != Branch->getParent() &&
8260
UI->getParent() != Branch->getSuccessor(0) &&
8261
UI->getParent() != Branch->getSuccessor(1)) ||
8262
(UI->getParent() != Branch->getParent() &&
8263
!UI->getParent()->getSinglePredecessor()))
8264
continue;
8265
8266
if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
8267
match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
8268
IRBuilder<> Builder(Branch);
8269
if (UI->getParent() != Branch->getParent())
8270
UI->moveBefore(Branch);
8271
UI->dropPoisonGeneratingFlags();
8272
Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
8273
ConstantInt::get(UI->getType(), 0));
8274
LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8275
LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8276
replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8277
return true;
8278
}
8279
if (Cmp->isEquality() &&
8280
(match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
8281
match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
8282
IRBuilder<> Builder(Branch);
8283
if (UI->getParent() != Branch->getParent())
8284
UI->moveBefore(Branch);
8285
UI->dropPoisonGeneratingFlags();
8286
Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
8287
ConstantInt::get(UI->getType(), 0));
8288
LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
8289
LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
8290
replaceAllUsesWith(Cmp, NewCmp, FreshBBs, IsHugeFunc);
8291
return true;
8292
}
8293
}
8294
return false;
8295
}
8296
8297
bool CodeGenPrepare::optimizeInst(Instruction *I, ModifyDT &ModifiedDT) {
8298
bool AnyChange = false;
8299
AnyChange = fixupDbgVariableRecordsOnInst(*I);
8300
8301
// Bail out if we inserted the instruction to prevent optimizations from
8302
// stepping on each other's toes.
8303
if (InsertedInsts.count(I))
8304
return AnyChange;
8305
8306
// TODO: Move into the switch on opcode below here.
8307
if (PHINode *P = dyn_cast<PHINode>(I)) {
8308
// It is possible for very late stage optimizations (such as SimplifyCFG)
8309
// to introduce PHI nodes too late to be cleaned up. If we detect such a
8310
// trivial PHI, go ahead and zap it here.
8311
if (Value *V = simplifyInstruction(P, {*DL, TLInfo})) {
8312
LargeOffsetGEPMap.erase(P);
8313
replaceAllUsesWith(P, V, FreshBBs, IsHugeFunc);
8314
P->eraseFromParent();
8315
++NumPHIsElim;
8316
return true;
8317
}
8318
return AnyChange;
8319
}
8320
8321
if (CastInst *CI = dyn_cast<CastInst>(I)) {
8322
// If the source of the cast is a constant, then this should have
8323
// already been constant folded. The only reason NOT to constant fold
8324
// it is if something (e.g. LSR) was careful to place the constant
8325
// evaluation in a block other than then one that uses it (e.g. to hoist
8326
// the address of globals out of a loop). If this is the case, we don't
8327
// want to forward-subst the cast.
8328
if (isa<Constant>(CI->getOperand(0)))
8329
return AnyChange;
8330
8331
if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
8332
return true;
8333
8334
if ((isa<UIToFPInst>(I) || isa<SIToFPInst>(I) || isa<FPToUIInst>(I) ||
8335
isa<TruncInst>(I)) &&
8336
TLI->optimizeExtendOrTruncateConversion(
8337
I, LI->getLoopFor(I->getParent()), *TTI))
8338
return true;
8339
8340
if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
8341
/// Sink a zext or sext into its user blocks if the target type doesn't
8342
/// fit in one register
8343
if (TLI->getTypeAction(CI->getContext(),
8344
TLI->getValueType(*DL, CI->getType())) ==
8345
TargetLowering::TypeExpandInteger) {
8346
return SinkCast(CI);
8347
} else {
8348
if (TLI->optimizeExtendOrTruncateConversion(
8349
I, LI->getLoopFor(I->getParent()), *TTI))
8350
return true;
8351
8352
bool MadeChange = optimizeExt(I);
8353
return MadeChange | optimizeExtUses(I);
8354
}
8355
}
8356
return AnyChange;
8357
}
8358
8359
if (auto *Cmp = dyn_cast<CmpInst>(I))
8360
if (optimizeCmp(Cmp, ModifiedDT))
8361
return true;
8362
8363
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8364
LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8365
bool Modified = optimizeLoadExt(LI);
8366
unsigned AS = LI->getPointerAddressSpace();
8367
Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
8368
return Modified;
8369
}
8370
8371
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
8372
if (splitMergedValStore(*SI, *DL, *TLI))
8373
return true;
8374
SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
8375
unsigned AS = SI->getPointerAddressSpace();
8376
return optimizeMemoryInst(I, SI->getOperand(1),
8377
SI->getOperand(0)->getType(), AS);
8378
}
8379
8380
if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
8381
unsigned AS = RMW->getPointerAddressSpace();
8382
return optimizeMemoryInst(I, RMW->getPointerOperand(), RMW->getType(), AS);
8383
}
8384
8385
if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
8386
unsigned AS = CmpX->getPointerAddressSpace();
8387
return optimizeMemoryInst(I, CmpX->getPointerOperand(),
8388
CmpX->getCompareOperand()->getType(), AS);
8389
}
8390
8391
BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
8392
8393
if (BinOp && BinOp->getOpcode() == Instruction::And && EnableAndCmpSinking &&
8394
sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts))
8395
return true;
8396
8397
// TODO: Move this into the switch on opcode - it handles shifts already.
8398
if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
8399
BinOp->getOpcode() == Instruction::LShr)) {
8400
ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
8401
if (CI && TLI->hasExtractBitsInsn())
8402
if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
8403
return true;
8404
}
8405
8406
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
8407
if (GEPI->hasAllZeroIndices()) {
8408
/// The GEP operand must be a pointer, so must its result -> BitCast
8409
Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
8410
GEPI->getName(), GEPI->getIterator());
8411
NC->setDebugLoc(GEPI->getDebugLoc());
8412
replaceAllUsesWith(GEPI, NC, FreshBBs, IsHugeFunc);
8413
RecursivelyDeleteTriviallyDeadInstructions(
8414
GEPI, TLInfo, nullptr,
8415
[&](Value *V) { removeAllAssertingVHReferences(V); });
8416
++NumGEPsElim;
8417
optimizeInst(NC, ModifiedDT);
8418
return true;
8419
}
8420
if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
8421
return true;
8422
}
8423
}
8424
8425
if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
8426
// freeze(icmp a, const)) -> icmp (freeze a), const
8427
// This helps generate efficient conditional jumps.
8428
Instruction *CmpI = nullptr;
8429
if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
8430
CmpI = II;
8431
else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
8432
CmpI = F->getFastMathFlags().none() ? F : nullptr;
8433
8434
if (CmpI && CmpI->hasOneUse()) {
8435
auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
8436
bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
8437
isa<ConstantPointerNull>(Op0);
8438
bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
8439
isa<ConstantPointerNull>(Op1);
8440
if (Const0 || Const1) {
8441
if (!Const0 || !Const1) {
8442
auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI->getIterator());
8443
F->takeName(FI);
8444
CmpI->setOperand(Const0 ? 1 : 0, F);
8445
}
8446
replaceAllUsesWith(FI, CmpI, FreshBBs, IsHugeFunc);
8447
FI->eraseFromParent();
8448
return true;
8449
}
8450
}
8451
return AnyChange;
8452
}
8453
8454
if (tryToSinkFreeOperands(I))
8455
return true;
8456
8457
switch (I->getOpcode()) {
8458
case Instruction::Shl:
8459
case Instruction::LShr:
8460
case Instruction::AShr:
8461
return optimizeShiftInst(cast<BinaryOperator>(I));
8462
case Instruction::Call:
8463
return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
8464
case Instruction::Select:
8465
return optimizeSelectInst(cast<SelectInst>(I));
8466
case Instruction::ShuffleVector:
8467
return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
8468
case Instruction::Switch:
8469
return optimizeSwitchInst(cast<SwitchInst>(I));
8470
case Instruction::ExtractElement:
8471
return optimizeExtractElementInst(cast<ExtractElementInst>(I));
8472
case Instruction::Br:
8473
return optimizeBranch(cast<BranchInst>(I), *TLI, FreshBBs, IsHugeFunc);
8474
}
8475
8476
return AnyChange;
8477
}
8478
8479
/// Given an OR instruction, check to see if this is a bitreverse
8480
/// idiom. If so, insert the new intrinsic and return true.
8481
bool CodeGenPrepare::makeBitReverse(Instruction &I) {
8482
if (!I.getType()->isIntegerTy() ||
8483
!TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
8484
TLI->getValueType(*DL, I.getType(), true)))
8485
return false;
8486
8487
SmallVector<Instruction *, 4> Insts;
8488
if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
8489
return false;
8490
Instruction *LastInst = Insts.back();
8491
replaceAllUsesWith(&I, LastInst, FreshBBs, IsHugeFunc);
8492
RecursivelyDeleteTriviallyDeadInstructions(
8493
&I, TLInfo, nullptr,
8494
[&](Value *V) { removeAllAssertingVHReferences(V); });
8495
return true;
8496
}
8497
8498
// In this pass we look for GEP and cast instructions that are used
8499
// across basic blocks and rewrite them to improve basic-block-at-a-time
8500
// selection.
8501
bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, ModifyDT &ModifiedDT) {
8502
SunkAddrs.clear();
8503
bool MadeChange = false;
8504
8505
do {
8506
CurInstIterator = BB.begin();
8507
ModifiedDT = ModifyDT::NotModifyDT;
8508
while (CurInstIterator != BB.end()) {
8509
MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
8510
if (ModifiedDT != ModifyDT::NotModifyDT) {
8511
// For huge function we tend to quickly go though the inner optmization
8512
// opportunities in the BB. So we go back to the BB head to re-optimize
8513
// each instruction instead of go back to the function head.
8514
if (IsHugeFunc) {
8515
DT.reset();
8516
getDT(*BB.getParent());
8517
break;
8518
} else {
8519
return true;
8520
}
8521
}
8522
}
8523
} while (ModifiedDT == ModifyDT::ModifyInstDT);
8524
8525
bool MadeBitReverse = true;
8526
while (MadeBitReverse) {
8527
MadeBitReverse = false;
8528
for (auto &I : reverse(BB)) {
8529
if (makeBitReverse(I)) {
8530
MadeBitReverse = MadeChange = true;
8531
break;
8532
}
8533
}
8534
}
8535
MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
8536
8537
return MadeChange;
8538
}
8539
8540
// Some CGP optimizations may move or alter what's computed in a block. Check
8541
// whether a dbg.value intrinsic could be pointed at a more appropriate operand.
8542
bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
8543
assert(isa<DbgValueInst>(I));
8544
DbgValueInst &DVI = *cast<DbgValueInst>(I);
8545
8546
// Does this dbg.value refer to a sunk address calculation?
8547
bool AnyChange = false;
8548
SmallDenseSet<Value *> LocationOps(DVI.location_ops().begin(),
8549
DVI.location_ops().end());
8550
for (Value *Location : LocationOps) {
8551
WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8552
Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8553
if (SunkAddr) {
8554
// Point dbg.value at locally computed address, which should give the best
8555
// opportunity to be accurately lowered. This update may change the type
8556
// of pointer being referred to; however this makes no difference to
8557
// debugging information, and we can't generate bitcasts that may affect
8558
// codegen.
8559
DVI.replaceVariableLocationOp(Location, SunkAddr);
8560
AnyChange = true;
8561
}
8562
}
8563
return AnyChange;
8564
}
8565
8566
bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction &I) {
8567
bool AnyChange = false;
8568
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
8569
AnyChange |= fixupDbgVariableRecord(DVR);
8570
return AnyChange;
8571
}
8572
8573
// FIXME: should updating debug-info really cause the "changed" flag to fire,
8574
// which can cause a function to be reprocessed?
8575
bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord &DVR) {
8576
if (DVR.Type != DbgVariableRecord::LocationType::Value &&
8577
DVR.Type != DbgVariableRecord::LocationType::Assign)
8578
return false;
8579
8580
// Does this DbgVariableRecord refer to a sunk address calculation?
8581
bool AnyChange = false;
8582
SmallDenseSet<Value *> LocationOps(DVR.location_ops().begin(),
8583
DVR.location_ops().end());
8584
for (Value *Location : LocationOps) {
8585
WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
8586
Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
8587
if (SunkAddr) {
8588
// Point dbg.value at locally computed address, which should give the best
8589
// opportunity to be accurately lowered. This update may change the type
8590
// of pointer being referred to; however this makes no difference to
8591
// debugging information, and we can't generate bitcasts that may affect
8592
// codegen.
8593
DVR.replaceVariableLocationOp(Location, SunkAddr);
8594
AnyChange = true;
8595
}
8596
}
8597
return AnyChange;
8598
}
8599
8600
static void DbgInserterHelper(DbgValueInst *DVI, Instruction *VI) {
8601
DVI->removeFromParent();
8602
if (isa<PHINode>(VI))
8603
DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8604
else
8605
DVI->insertAfter(VI);
8606
}
8607
8608
static void DbgInserterHelper(DbgVariableRecord *DVR, Instruction *VI) {
8609
DVR->removeFromParent();
8610
BasicBlock *VIBB = VI->getParent();
8611
if (isa<PHINode>(VI))
8612
VIBB->insertDbgRecordBefore(DVR, VIBB->getFirstInsertionPt());
8613
else
8614
VIBB->insertDbgRecordAfter(DVR, VI);
8615
}
8616
8617
// A llvm.dbg.value may be using a value before its definition, due to
8618
// optimizations in this pass and others. Scan for such dbg.values, and rescue
8619
// them by moving the dbg.value to immediately after the value definition.
8620
// FIXME: Ideally this should never be necessary, and this has the potential
8621
// to re-order dbg.value intrinsics.
8622
bool CodeGenPrepare::placeDbgValues(Function &F) {
8623
bool MadeChange = false;
8624
DominatorTree DT(F);
8625
8626
auto DbgProcessor = [&](auto *DbgItem, Instruction *Position) {
8627
SmallVector<Instruction *, 4> VIs;
8628
for (Value *V : DbgItem->location_ops())
8629
if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8630
VIs.push_back(VI);
8631
8632
// This item may depend on multiple instructions, complicating any
8633
// potential sink. This block takes the defensive approach, opting to
8634
// "undef" the item if it has more than one instruction and any of them do
8635
// not dominate iem.
8636
for (Instruction *VI : VIs) {
8637
if (VI->isTerminator())
8638
continue;
8639
8640
// If VI is a phi in a block with an EHPad terminator, we can't insert
8641
// after it.
8642
if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8643
continue;
8644
8645
// If the defining instruction dominates the dbg.value, we do not need
8646
// to move the dbg.value.
8647
if (DT.dominates(VI, Position))
8648
continue;
8649
8650
// If we depend on multiple instructions and any of them doesn't
8651
// dominate this DVI, we probably can't salvage it: moving it to
8652
// after any of the instructions could cause us to lose the others.
8653
if (VIs.size() > 1) {
8654
LLVM_DEBUG(
8655
dbgs()
8656
<< "Unable to find valid location for Debug Value, undefing:\n"
8657
<< *DbgItem);
8658
DbgItem->setKillLocation();
8659
break;
8660
}
8661
8662
LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8663
<< *DbgItem << ' ' << *VI);
8664
DbgInserterHelper(DbgItem, VI);
8665
MadeChange = true;
8666
++NumDbgValueMoved;
8667
}
8668
};
8669
8670
for (BasicBlock &BB : F) {
8671
for (Instruction &Insn : llvm::make_early_inc_range(BB)) {
8672
// Process dbg.value intrinsics.
8673
DbgValueInst *DVI = dyn_cast<DbgValueInst>(&Insn);
8674
if (DVI) {
8675
DbgProcessor(DVI, DVI);
8676
continue;
8677
}
8678
8679
// If this isn't a dbg.value, process any attached DbgVariableRecord
8680
// records attached to this instruction.
8681
for (DbgVariableRecord &DVR : llvm::make_early_inc_range(
8682
filterDbgVars(Insn.getDbgRecordRange()))) {
8683
if (DVR.Type != DbgVariableRecord::LocationType::Value)
8684
continue;
8685
DbgProcessor(&DVR, &Insn);
8686
}
8687
}
8688
}
8689
8690
return MadeChange;
8691
}
8692
8693
// Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8694
// probes can be chained dependencies of other regular DAG nodes and block DAG
8695
// combine optimizations.
8696
bool CodeGenPrepare::placePseudoProbes(Function &F) {
8697
bool MadeChange = false;
8698
for (auto &Block : F) {
8699
// Move the rest probes to the beginning of the block.
8700
auto FirstInst = Block.getFirstInsertionPt();
8701
while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8702
++FirstInst;
8703
BasicBlock::iterator I(FirstInst);
8704
I++;
8705
while (I != Block.end()) {
8706
if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8707
II->moveBefore(&*FirstInst);
8708
MadeChange = true;
8709
}
8710
}
8711
}
8712
return MadeChange;
8713
}
8714
8715
/// Scale down both weights to fit into uint32_t.
8716
static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
8717
uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
8718
uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
8719
NewTrue = NewTrue / Scale;
8720
NewFalse = NewFalse / Scale;
8721
}
8722
8723
/// Some targets prefer to split a conditional branch like:
8724
/// \code
8725
/// %0 = icmp ne i32 %a, 0
8726
/// %1 = icmp ne i32 %b, 0
8727
/// %or.cond = or i1 %0, %1
8728
/// br i1 %or.cond, label %TrueBB, label %FalseBB
8729
/// \endcode
8730
/// into multiple branch instructions like:
8731
/// \code
8732
/// bb1:
8733
/// %0 = icmp ne i32 %a, 0
8734
/// br i1 %0, label %TrueBB, label %bb2
8735
/// bb2:
8736
/// %1 = icmp ne i32 %b, 0
8737
/// br i1 %1, label %TrueBB, label %FalseBB
8738
/// \endcode
8739
/// This usually allows instruction selection to do even further optimizations
8740
/// and combine the compare with the branch instruction. Currently this is
8741
/// applied for targets which have "cheap" jump instructions.
8742
///
8743
/// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8744
///
8745
bool CodeGenPrepare::splitBranchCondition(Function &F, ModifyDT &ModifiedDT) {
8746
if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
8747
return false;
8748
8749
bool MadeChange = false;
8750
for (auto &BB : F) {
8751
// Does this BB end with the following?
8752
// %cond1 = icmp|fcmp|binary instruction ...
8753
// %cond2 = icmp|fcmp|binary instruction ...
8754
// %cond.or = or|and i1 %cond1, cond2
8755
// br i1 %cond.or label %dest1, label %dest2"
8756
Instruction *LogicOp;
8757
BasicBlock *TBB, *FBB;
8758
if (!match(BB.getTerminator(),
8759
m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
8760
continue;
8761
8762
auto *Br1 = cast<BranchInst>(BB.getTerminator());
8763
if (Br1->getMetadata(LLVMContext::MD_unpredictable))
8764
continue;
8765
8766
// The merging of mostly empty BB can cause a degenerate branch.
8767
if (TBB == FBB)
8768
continue;
8769
8770
unsigned Opc;
8771
Value *Cond1, *Cond2;
8772
if (match(LogicOp,
8773
m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
8774
Opc = Instruction::And;
8775
else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
8776
m_OneUse(m_Value(Cond2)))))
8777
Opc = Instruction::Or;
8778
else
8779
continue;
8780
8781
auto IsGoodCond = [](Value *Cond) {
8782
return match(
8783
Cond,
8784
m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8785
m_LogicalOr(m_Value(), m_Value()))));
8786
};
8787
if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
8788
continue;
8789
8790
LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
8791
8792
// Create a new BB.
8793
auto *TmpBB =
8794
BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
8795
BB.getParent(), BB.getNextNode());
8796
if (IsHugeFunc)
8797
FreshBBs.insert(TmpBB);
8798
8799
// Update original basic block by using the first condition directly by the
8800
// branch instruction and removing the no longer needed and/or instruction.
8801
Br1->setCondition(Cond1);
8802
LogicOp->eraseFromParent();
8803
8804
// Depending on the condition we have to either replace the true or the
8805
// false successor of the original branch instruction.
8806
if (Opc == Instruction::And)
8807
Br1->setSuccessor(0, TmpBB);
8808
else
8809
Br1->setSuccessor(1, TmpBB);
8810
8811
// Fill in the new basic block.
8812
auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
8813
if (auto *I = dyn_cast<Instruction>(Cond2)) {
8814
I->removeFromParent();
8815
I->insertBefore(Br2);
8816
}
8817
8818
// Update PHI nodes in both successors. The original BB needs to be
8819
// replaced in one successor's PHI nodes, because the branch comes now from
8820
// the newly generated BB (NewBB). In the other successor we need to add one
8821
// incoming edge to the PHI nodes, because both branch instructions target
8822
// now the same successor. Depending on the original branch condition
8823
// (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8824
// we perform the correct update for the PHI nodes.
8825
// This doesn't change the successor order of the just created branch
8826
// instruction (or any other instruction).
8827
if (Opc == Instruction::Or)
8828
std::swap(TBB, FBB);
8829
8830
// Replace the old BB with the new BB.
8831
TBB->replacePhiUsesWith(&BB, TmpBB);
8832
8833
// Add another incoming edge from the new BB.
8834
for (PHINode &PN : FBB->phis()) {
8835
auto *Val = PN.getIncomingValueForBlock(&BB);
8836
PN.addIncoming(Val, TmpBB);
8837
}
8838
8839
// Update the branch weights (from SelectionDAGBuilder::
8840
// FindMergedConditions).
8841
if (Opc == Instruction::Or) {
8842
// Codegen X | Y as:
8843
// BB1:
8844
// jmp_if_X TBB
8845
// jmp TmpBB
8846
// TmpBB:
8847
// jmp_if_Y TBB
8848
// jmp FBB
8849
//
8850
8851
// We have flexibility in setting Prob for BB1 and Prob for NewBB.
8852
// The requirement is that
8853
// TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8854
// = TrueProb for original BB.
8855
// Assuming the original weights are A and B, one choice is to set BB1's
8856
// weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8857
// assumes that
8858
// TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8859
// Another choice is to assume TrueProb for BB1 equals to TrueProb for
8860
// TmpBB, but the math is more complicated.
8861
uint64_t TrueWeight, FalseWeight;
8862
if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
8863
uint64_t NewTrueWeight = TrueWeight;
8864
uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
8865
scaleWeights(NewTrueWeight, NewFalseWeight);
8866
Br1->setMetadata(LLVMContext::MD_prof,
8867
MDBuilder(Br1->getContext())
8868
.createBranchWeights(TrueWeight, FalseWeight,
8869
hasBranchWeightOrigin(*Br1)));
8870
8871
NewTrueWeight = TrueWeight;
8872
NewFalseWeight = 2 * FalseWeight;
8873
scaleWeights(NewTrueWeight, NewFalseWeight);
8874
Br2->setMetadata(LLVMContext::MD_prof,
8875
MDBuilder(Br2->getContext())
8876
.createBranchWeights(TrueWeight, FalseWeight));
8877
}
8878
} else {
8879
// Codegen X & Y as:
8880
// BB1:
8881
// jmp_if_X TmpBB
8882
// jmp FBB
8883
// TmpBB:
8884
// jmp_if_Y TBB
8885
// jmp FBB
8886
//
8887
// This requires creation of TmpBB after CurBB.
8888
8889
// We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8890
// The requirement is that
8891
// FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8892
// = FalseProb for original BB.
8893
// Assuming the original weights are A and B, one choice is to set BB1's
8894
// weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8895
// assumes that
8896
// FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8897
uint64_t TrueWeight, FalseWeight;
8898
if (extractBranchWeights(*Br1, TrueWeight, FalseWeight)) {
8899
uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
8900
uint64_t NewFalseWeight = FalseWeight;
8901
scaleWeights(NewTrueWeight, NewFalseWeight);
8902
Br1->setMetadata(LLVMContext::MD_prof,
8903
MDBuilder(Br1->getContext())
8904
.createBranchWeights(TrueWeight, FalseWeight));
8905
8906
NewTrueWeight = 2 * TrueWeight;
8907
NewFalseWeight = FalseWeight;
8908
scaleWeights(NewTrueWeight, NewFalseWeight);
8909
Br2->setMetadata(LLVMContext::MD_prof,
8910
MDBuilder(Br2->getContext())
8911
.createBranchWeights(TrueWeight, FalseWeight));
8912
}
8913
}
8914
8915
ModifiedDT = ModifyDT::ModifyBBDT;
8916
MadeChange = true;
8917
8918
LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
8919
TmpBB->dump());
8920
}
8921
return MadeChange;
8922
}
8923
8924