Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp
35233 views
1
//===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the CriticalAntiDepBreaker class, which
10
// implements register anti-dependence breaking along a blocks
11
// critical path during post-RA scheduler.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "CriticalAntiDepBreaker.h"
16
#include "llvm/ADT/ArrayRef.h"
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/SmallVector.h"
19
#include "llvm/CodeGen/MachineBasicBlock.h"
20
#include "llvm/CodeGen/MachineFrameInfo.h"
21
#include "llvm/CodeGen/MachineFunction.h"
22
#include "llvm/CodeGen/MachineInstr.h"
23
#include "llvm/CodeGen/MachineOperand.h"
24
#include "llvm/CodeGen/MachineRegisterInfo.h"
25
#include "llvm/CodeGen/RegisterClassInfo.h"
26
#include "llvm/CodeGen/ScheduleDAG.h"
27
#include "llvm/CodeGen/TargetInstrInfo.h"
28
#include "llvm/CodeGen/TargetRegisterInfo.h"
29
#include "llvm/CodeGen/TargetSubtargetInfo.h"
30
#include "llvm/MC/MCInstrDesc.h"
31
#include "llvm/MC/MCRegisterInfo.h"
32
#include "llvm/Support/Debug.h"
33
#include "llvm/Support/raw_ostream.h"
34
#include <cassert>
35
#include <utility>
36
37
using namespace llvm;
38
39
#define DEBUG_TYPE "post-RA-sched"
40
41
CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
42
const RegisterClassInfo &RCI)
43
: MF(MFi), MRI(MF.getRegInfo()), TII(MF.getSubtarget().getInstrInfo()),
44
TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
45
Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
46
DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
47
48
CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default;
49
50
void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
51
const unsigned BBSize = BB->size();
52
for (unsigned i = 1, e = TRI->getNumRegs(); i != e; ++i) {
53
// Clear out the register class data.
54
Classes[i] = nullptr;
55
56
// Initialize the indices to indicate that no registers are live.
57
KillIndices[i] = ~0u;
58
DefIndices[i] = BBSize;
59
}
60
61
// Clear "do not change" set.
62
KeepRegs.reset();
63
64
bool IsReturnBlock = BB->isReturnBlock();
65
66
// Examine the live-in regs of all successors.
67
for (const MachineBasicBlock *Succ : BB->successors())
68
for (const auto &LI : Succ->liveins()) {
69
for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
70
unsigned Reg = *AI;
71
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
72
KillIndices[Reg] = BBSize;
73
DefIndices[Reg] = ~0u;
74
}
75
}
76
77
// Mark live-out callee-saved registers. In a return block this is
78
// all callee-saved registers. In non-return this is any
79
// callee-saved register that is not saved in the prolog.
80
const MachineFrameInfo &MFI = MF.getFrameInfo();
81
BitVector Pristine = MFI.getPristineRegs(MF);
82
for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
83
++I) {
84
unsigned Reg = *I;
85
if (!IsReturnBlock && !Pristine.test(Reg))
86
continue;
87
for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
88
unsigned Reg = *AI;
89
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
90
KillIndices[Reg] = BBSize;
91
DefIndices[Reg] = ~0u;
92
}
93
}
94
}
95
96
void CriticalAntiDepBreaker::FinishBlock() {
97
RegRefs.clear();
98
KeepRegs.reset();
99
}
100
101
void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
102
unsigned InsertPosIndex) {
103
// Kill instructions can define registers but are really nops, and there might
104
// be a real definition earlier that needs to be paired with uses dominated by
105
// this kill.
106
107
// FIXME: It may be possible to remove the isKill() restriction once PR18663
108
// has been properly fixed. There can be value in processing kills as seen in
109
// the AggressiveAntiDepBreaker class.
110
if (MI.isDebugInstr() || MI.isKill())
111
return;
112
assert(Count < InsertPosIndex && "Instruction index out of expected range!");
113
114
for (unsigned Reg = 1; Reg != TRI->getNumRegs(); ++Reg) {
115
if (KillIndices[Reg] != ~0u) {
116
// If Reg is currently live, then mark that it can't be renamed as
117
// we don't know the extent of its live-range anymore (now that it
118
// has been scheduled).
119
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
120
KillIndices[Reg] = Count;
121
} else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
122
// Any register which was defined within the previous scheduling region
123
// may have been rescheduled and its lifetime may overlap with registers
124
// in ways not reflected in our current liveness state. For each such
125
// register, adjust the liveness state to be conservatively correct.
126
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
127
128
// Move the def index to the end of the previous region, to reflect
129
// that the def could theoretically have been scheduled at the end.
130
DefIndices[Reg] = InsertPosIndex;
131
}
132
}
133
134
PrescanInstruction(MI);
135
ScanInstruction(MI, Count);
136
}
137
138
/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
139
/// critical path.
140
static const SDep *CriticalPathStep(const SUnit *SU) {
141
const SDep *Next = nullptr;
142
unsigned NextDepth = 0;
143
// Find the predecessor edge with the greatest depth.
144
for (const SDep &P : SU->Preds) {
145
const SUnit *PredSU = P.getSUnit();
146
unsigned PredLatency = P.getLatency();
147
unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
148
// In the case of a latency tie, prefer an anti-dependency edge over
149
// other types of edges.
150
if (NextDepth < PredTotalLatency ||
151
(NextDepth == PredTotalLatency && P.getKind() == SDep::Anti)) {
152
NextDepth = PredTotalLatency;
153
Next = &P;
154
}
155
}
156
return Next;
157
}
158
159
void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
160
// It's not safe to change register allocation for source operands of
161
// instructions that have special allocation requirements. Also assume all
162
// registers used in a call must not be changed (ABI).
163
// FIXME: The issue with predicated instruction is more complex. We are being
164
// conservative here because the kill markers cannot be trusted after
165
// if-conversion:
166
// %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
167
// ...
168
// STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
169
// %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
170
// STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
171
//
172
// The first R6 kill is not really a kill since it's killed by a predicated
173
// instruction which may not be executed. The second R6 def may or may not
174
// re-define R6 so it's not safe to change it since the last R6 use cannot be
175
// changed.
176
bool Special =
177
MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
178
179
// Scan the register operands for this instruction and update
180
// Classes and RegRefs.
181
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
182
MachineOperand &MO = MI.getOperand(i);
183
if (!MO.isReg()) continue;
184
Register Reg = MO.getReg();
185
if (Reg == 0) continue;
186
const TargetRegisterClass *NewRC = nullptr;
187
188
if (i < MI.getDesc().getNumOperands())
189
NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
190
191
// For now, only allow the register to be changed if its register
192
// class is consistent across all uses.
193
if (!Classes[Reg] && NewRC)
194
Classes[Reg] = NewRC;
195
else if (!NewRC || Classes[Reg] != NewRC)
196
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
197
198
// Now check for aliases.
199
for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
200
// If an alias of the reg is used during the live range, give up.
201
// Note that this allows us to skip checking if AntiDepReg
202
// overlaps with any of the aliases, among other things.
203
unsigned AliasReg = *AI;
204
if (Classes[AliasReg]) {
205
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
206
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
207
}
208
}
209
210
// If we're still willing to consider this register, note the reference.
211
if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
212
RegRefs.insert(std::make_pair(Reg, &MO));
213
214
if (MO.isUse() && Special) {
215
if (!KeepRegs.test(Reg)) {
216
for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg))
217
KeepRegs.set(SubReg);
218
}
219
}
220
}
221
222
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
223
const MachineOperand &MO = MI.getOperand(I);
224
if (!MO.isReg()) continue;
225
Register Reg = MO.getReg();
226
if (!Reg.isValid())
227
continue;
228
// If this reg is tied and live (Classes[Reg] is set to -1), we can't change
229
// it or any of its sub or super regs. We need to use KeepRegs to mark the
230
// reg because not all uses of the same reg within an instruction are
231
// necessarily tagged as tied.
232
// Example: an x86 "xor %eax, %eax" will have one source operand tied to the
233
// def register but not the second (see PR20020 for details).
234
// FIXME: can this check be relaxed to account for undef uses
235
// of a register? In the above 'xor' example, the uses of %eax are undef, so
236
// earlier instructions could still replace %eax even though the 'xor'
237
// itself can't be changed.
238
if (MI.isRegTiedToUseOperand(I) &&
239
Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
240
for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) {
241
KeepRegs.set(SubReg);
242
}
243
for (MCPhysReg SuperReg : TRI->superregs(Reg)) {
244
KeepRegs.set(SuperReg);
245
}
246
}
247
}
248
}
249
250
void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
251
// Update liveness.
252
// Proceeding upwards, registers that are defed but not used in this
253
// instruction are now dead.
254
assert(!MI.isKill() && "Attempting to scan a kill instruction");
255
256
if (!TII->isPredicated(MI)) {
257
// Predicated defs are modeled as read + write, i.e. similar to two
258
// address updates.
259
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
260
MachineOperand &MO = MI.getOperand(i);
261
262
if (MO.isRegMask()) {
263
auto ClobbersPhysRegAndSubRegs = [&](unsigned PhysReg) {
264
return all_of(TRI->subregs_inclusive(PhysReg),
265
[&](MCPhysReg SR) { return MO.clobbersPhysReg(SR); });
266
};
267
268
for (unsigned i = 1, e = TRI->getNumRegs(); i != e; ++i) {
269
if (ClobbersPhysRegAndSubRegs(i)) {
270
DefIndices[i] = Count;
271
KillIndices[i] = ~0u;
272
KeepRegs.reset(i);
273
Classes[i] = nullptr;
274
RegRefs.erase(i);
275
}
276
}
277
}
278
279
if (!MO.isReg()) continue;
280
Register Reg = MO.getReg();
281
if (Reg == 0) continue;
282
if (!MO.isDef()) continue;
283
284
// Ignore two-addr defs.
285
if (MI.isRegTiedToUseOperand(i))
286
continue;
287
288
// If we've already marked this reg as unchangeable, don't remove
289
// it or any of its subregs from KeepRegs.
290
bool Keep = KeepRegs.test(Reg);
291
292
// For the reg itself and all subregs: update the def to current;
293
// reset the kill state, any restrictions, and references.
294
for (MCPhysReg SubregReg : TRI->subregs_inclusive(Reg)) {
295
DefIndices[SubregReg] = Count;
296
KillIndices[SubregReg] = ~0u;
297
Classes[SubregReg] = nullptr;
298
RegRefs.erase(SubregReg);
299
if (!Keep)
300
KeepRegs.reset(SubregReg);
301
}
302
// Conservatively mark super-registers as unusable.
303
for (MCPhysReg SR : TRI->superregs(Reg))
304
Classes[SR] = reinterpret_cast<TargetRegisterClass *>(-1);
305
}
306
}
307
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
308
MachineOperand &MO = MI.getOperand(i);
309
if (!MO.isReg()) continue;
310
Register Reg = MO.getReg();
311
if (Reg == 0) continue;
312
if (!MO.isUse()) continue;
313
314
const TargetRegisterClass *NewRC = nullptr;
315
if (i < MI.getDesc().getNumOperands())
316
NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
317
318
// For now, only allow the register to be changed if its register
319
// class is consistent across all uses.
320
if (!Classes[Reg] && NewRC)
321
Classes[Reg] = NewRC;
322
else if (!NewRC || Classes[Reg] != NewRC)
323
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
324
325
RegRefs.insert(std::make_pair(Reg, &MO));
326
327
// It wasn't previously live but now it is, this is a kill.
328
// Repeat for all aliases.
329
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
330
unsigned AliasReg = *AI;
331
if (KillIndices[AliasReg] == ~0u) {
332
KillIndices[AliasReg] = Count;
333
DefIndices[AliasReg] = ~0u;
334
}
335
}
336
}
337
}
338
339
// Check all machine operands that reference the antidependent register and must
340
// be replaced by NewReg. Return true if any of their parent instructions may
341
// clobber the new register.
342
//
343
// Note: AntiDepReg may be referenced by a two-address instruction such that
344
// it's use operand is tied to a def operand. We guard against the case in which
345
// the two-address instruction also defines NewReg, as may happen with
346
// pre/postincrement loads. In this case, both the use and def operands are in
347
// RegRefs because the def is inserted by PrescanInstruction and not erased
348
// during ScanInstruction. So checking for an instruction with definitions of
349
// both NewReg and AntiDepReg covers it.
350
bool
351
CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
352
RegRefIter RegRefEnd,
353
unsigned NewReg) {
354
for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
355
MachineOperand *RefOper = I->second;
356
357
// Don't allow the instruction defining AntiDepReg to earlyclobber its
358
// operands, in case they may be assigned to NewReg. In this case antidep
359
// breaking must fail, but it's too rare to bother optimizing.
360
if (RefOper->isDef() && RefOper->isEarlyClobber())
361
return true;
362
363
// Handle cases in which this instruction defines NewReg.
364
MachineInstr *MI = RefOper->getParent();
365
for (const MachineOperand &CheckOper : MI->operands()) {
366
if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
367
return true;
368
369
if (!CheckOper.isReg() || !CheckOper.isDef() ||
370
CheckOper.getReg() != NewReg)
371
continue;
372
373
// Don't allow the instruction to define NewReg and AntiDepReg.
374
// When AntiDepReg is renamed it will be an illegal op.
375
if (RefOper->isDef())
376
return true;
377
378
// Don't allow an instruction using AntiDepReg to be earlyclobbered by
379
// NewReg.
380
if (CheckOper.isEarlyClobber())
381
return true;
382
383
// Don't allow inline asm to define NewReg at all. Who knows what it's
384
// doing with it.
385
if (MI->isInlineAsm())
386
return true;
387
}
388
}
389
return false;
390
}
391
392
unsigned CriticalAntiDepBreaker::
393
findSuitableFreeRegister(RegRefIter RegRefBegin,
394
RegRefIter RegRefEnd,
395
unsigned AntiDepReg,
396
unsigned LastNewReg,
397
const TargetRegisterClass *RC,
398
SmallVectorImpl<unsigned> &Forbid) {
399
ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
400
for (unsigned NewReg : Order) {
401
// Don't replace a register with itself.
402
if (NewReg == AntiDepReg) continue;
403
// Don't replace a register with one that was recently used to repair
404
// an anti-dependence with this AntiDepReg, because that would
405
// re-introduce that anti-dependence.
406
if (NewReg == LastNewReg) continue;
407
// If any instructions that define AntiDepReg also define the NewReg, it's
408
// not suitable. For example, Instruction with multiple definitions can
409
// result in this condition.
410
if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
411
// If NewReg is dead and NewReg's most recent def is not before
412
// AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
413
assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
414
&& "Kill and Def maps aren't consistent for AntiDepReg!");
415
assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
416
&& "Kill and Def maps aren't consistent for NewReg!");
417
if (KillIndices[NewReg] != ~0u ||
418
Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
419
KillIndices[AntiDepReg] > DefIndices[NewReg])
420
continue;
421
// If NewReg overlaps any of the forbidden registers, we can't use it.
422
bool Forbidden = false;
423
for (unsigned R : Forbid)
424
if (TRI->regsOverlap(NewReg, R)) {
425
Forbidden = true;
426
break;
427
}
428
if (Forbidden) continue;
429
return NewReg;
430
}
431
432
// No registers are free and available!
433
return 0;
434
}
435
436
unsigned CriticalAntiDepBreaker::
437
BreakAntiDependencies(const std::vector<SUnit> &SUnits,
438
MachineBasicBlock::iterator Begin,
439
MachineBasicBlock::iterator End,
440
unsigned InsertPosIndex,
441
DbgValueVector &DbgValues) {
442
// The code below assumes that there is at least one instruction,
443
// so just duck out immediately if the block is empty.
444
if (SUnits.empty()) return 0;
445
446
// Keep a map of the MachineInstr*'s back to the SUnit representing them.
447
// This is used for updating debug information.
448
//
449
// FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
450
DenseMap<MachineInstr *, const SUnit *> MISUnitMap;
451
452
// Find the node at the bottom of the critical path.
453
const SUnit *Max = nullptr;
454
for (const SUnit &SU : SUnits) {
455
MISUnitMap[SU.getInstr()] = &SU;
456
if (!Max || SU.getDepth() + SU.Latency > Max->getDepth() + Max->Latency)
457
Max = &SU;
458
}
459
assert(Max && "Failed to find bottom of the critical path");
460
461
#ifndef NDEBUG
462
{
463
LLVM_DEBUG(dbgs() << "Critical path has total latency "
464
<< (Max->getDepth() + Max->Latency) << "\n");
465
LLVM_DEBUG(dbgs() << "Available regs:");
466
for (unsigned Reg = 1; Reg < TRI->getNumRegs(); ++Reg) {
467
if (KillIndices[Reg] == ~0u)
468
LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
469
}
470
LLVM_DEBUG(dbgs() << '\n');
471
}
472
#endif
473
474
// Track progress along the critical path through the SUnit graph as we walk
475
// the instructions.
476
const SUnit *CriticalPathSU = Max;
477
MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
478
479
// Consider this pattern:
480
// A = ...
481
// ... = A
482
// A = ...
483
// ... = A
484
// A = ...
485
// ... = A
486
// A = ...
487
// ... = A
488
// There are three anti-dependencies here, and without special care,
489
// we'd break all of them using the same register:
490
// A = ...
491
// ... = A
492
// B = ...
493
// ... = B
494
// B = ...
495
// ... = B
496
// B = ...
497
// ... = B
498
// because at each anti-dependence, B is the first register that
499
// isn't A which is free. This re-introduces anti-dependencies
500
// at all but one of the original anti-dependencies that we were
501
// trying to break. To avoid this, keep track of the most recent
502
// register that each register was replaced with, avoid
503
// using it to repair an anti-dependence on the same register.
504
// This lets us produce this:
505
// A = ...
506
// ... = A
507
// B = ...
508
// ... = B
509
// C = ...
510
// ... = C
511
// B = ...
512
// ... = B
513
// This still has an anti-dependence on B, but at least it isn't on the
514
// original critical path.
515
//
516
// TODO: If we tracked more than one register here, we could potentially
517
// fix that remaining critical edge too. This is a little more involved,
518
// because unlike the most recent register, less recent registers should
519
// still be considered, though only if no other registers are available.
520
std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
521
522
// Attempt to break anti-dependence edges on the critical path. Walk the
523
// instructions from the bottom up, tracking information about liveness
524
// as we go to help determine which registers are available.
525
unsigned Broken = 0;
526
unsigned Count = InsertPosIndex - 1;
527
for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
528
MachineInstr &MI = *--I;
529
// Kill instructions can define registers but are really nops, and there
530
// might be a real definition earlier that needs to be paired with uses
531
// dominated by this kill.
532
533
// FIXME: It may be possible to remove the isKill() restriction once PR18663
534
// has been properly fixed. There can be value in processing kills as seen
535
// in the AggressiveAntiDepBreaker class.
536
if (MI.isDebugInstr() || MI.isKill())
537
continue;
538
539
// Check if this instruction has a dependence on the critical path that
540
// is an anti-dependence that we may be able to break. If it is, set
541
// AntiDepReg to the non-zero register associated with the anti-dependence.
542
//
543
// We limit our attention to the critical path as a heuristic to avoid
544
// breaking anti-dependence edges that aren't going to significantly
545
// impact the overall schedule. There are a limited number of registers
546
// and we want to save them for the important edges.
547
//
548
// TODO: Instructions with multiple defs could have multiple
549
// anti-dependencies. The current code here only knows how to break one
550
// edge per instruction. Note that we'd have to be able to break all of
551
// the anti-dependencies in an instruction in order to be effective.
552
unsigned AntiDepReg = 0;
553
if (&MI == CriticalPathMI) {
554
if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
555
const SUnit *NextSU = Edge->getSUnit();
556
557
// Only consider anti-dependence edges.
558
if (Edge->getKind() == SDep::Anti) {
559
AntiDepReg = Edge->getReg();
560
assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
561
if (!MRI.isAllocatable(AntiDepReg))
562
// Don't break anti-dependencies on non-allocatable registers.
563
AntiDepReg = 0;
564
else if (KeepRegs.test(AntiDepReg))
565
// Don't break anti-dependencies if a use down below requires
566
// this exact register.
567
AntiDepReg = 0;
568
else {
569
// If the SUnit has other dependencies on the SUnit that it
570
// anti-depends on, don't bother breaking the anti-dependency
571
// since those edges would prevent such units from being
572
// scheduled past each other regardless.
573
//
574
// Also, if there are dependencies on other SUnits with the
575
// same register as the anti-dependency, don't attempt to
576
// break it.
577
for (const SDep &P : CriticalPathSU->Preds)
578
if (P.getSUnit() == NextSU
579
? (P.getKind() != SDep::Anti || P.getReg() != AntiDepReg)
580
: (P.getKind() == SDep::Data &&
581
P.getReg() == AntiDepReg)) {
582
AntiDepReg = 0;
583
break;
584
}
585
}
586
}
587
CriticalPathSU = NextSU;
588
CriticalPathMI = CriticalPathSU->getInstr();
589
} else {
590
// We've reached the end of the critical path.
591
CriticalPathSU = nullptr;
592
CriticalPathMI = nullptr;
593
}
594
}
595
596
PrescanInstruction(MI);
597
598
SmallVector<unsigned, 2> ForbidRegs;
599
600
// If MI's defs have a special allocation requirement, don't allow
601
// any def registers to be changed. Also assume all registers
602
// defined in a call must not be changed (ABI).
603
if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
604
// If this instruction's defs have special allocation requirement, don't
605
// break this anti-dependency.
606
AntiDepReg = 0;
607
else if (AntiDepReg) {
608
// If this instruction has a use of AntiDepReg, breaking it
609
// is invalid. If the instruction defines other registers,
610
// save a list of them so that we don't pick a new register
611
// that overlaps any of them.
612
for (const MachineOperand &MO : MI.operands()) {
613
if (!MO.isReg()) continue;
614
Register Reg = MO.getReg();
615
if (Reg == 0) continue;
616
if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
617
AntiDepReg = 0;
618
break;
619
}
620
if (MO.isDef() && Reg != AntiDepReg)
621
ForbidRegs.push_back(Reg);
622
}
623
}
624
625
// Determine AntiDepReg's register class, if it is live and is
626
// consistently used within a single class.
627
const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
628
: nullptr;
629
assert((AntiDepReg == 0 || RC != nullptr) &&
630
"Register should be live if it's causing an anti-dependence!");
631
if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
632
AntiDepReg = 0;
633
634
// Look for a suitable register to use to break the anti-dependence.
635
//
636
// TODO: Instead of picking the first free register, consider which might
637
// be the best.
638
if (AntiDepReg != 0) {
639
std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
640
std::multimap<unsigned, MachineOperand *>::iterator>
641
Range = RegRefs.equal_range(AntiDepReg);
642
if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
643
AntiDepReg,
644
LastNewReg[AntiDepReg],
645
RC, ForbidRegs)) {
646
LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on "
647
<< printReg(AntiDepReg, TRI) << " with "
648
<< RegRefs.count(AntiDepReg) << " references"
649
<< " using " << printReg(NewReg, TRI) << "!\n");
650
651
// Update the references to the old register to refer to the new
652
// register.
653
for (std::multimap<unsigned, MachineOperand *>::iterator
654
Q = Range.first, QE = Range.second; Q != QE; ++Q) {
655
Q->second->setReg(NewReg);
656
// If the SU for the instruction being updated has debug information
657
// related to the anti-dependency register, make sure to update that
658
// as well.
659
const SUnit *SU = MISUnitMap[Q->second->getParent()];
660
if (!SU) continue;
661
UpdateDbgValues(DbgValues, Q->second->getParent(),
662
AntiDepReg, NewReg);
663
}
664
665
// We just went back in time and modified history; the
666
// liveness information for the anti-dependence reg is now
667
// inconsistent. Set the state as if it were dead.
668
Classes[NewReg] = Classes[AntiDepReg];
669
DefIndices[NewReg] = DefIndices[AntiDepReg];
670
KillIndices[NewReg] = KillIndices[AntiDepReg];
671
assert(((KillIndices[NewReg] == ~0u) !=
672
(DefIndices[NewReg] == ~0u)) &&
673
"Kill and Def maps aren't consistent for NewReg!");
674
675
Classes[AntiDepReg] = nullptr;
676
DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
677
KillIndices[AntiDepReg] = ~0u;
678
assert(((KillIndices[AntiDepReg] == ~0u) !=
679
(DefIndices[AntiDepReg] == ~0u)) &&
680
"Kill and Def maps aren't consistent for AntiDepReg!");
681
682
RegRefs.erase(AntiDepReg);
683
LastNewReg[AntiDepReg] = NewReg;
684
++Broken;
685
}
686
}
687
688
ScanInstruction(MI, Count);
689
}
690
691
return Broken;
692
}
693
694
AntiDepBreaker *
695
llvm::createCriticalAntiDepBreaker(MachineFunction &MFi,
696
const RegisterClassInfo &RCI) {
697
return new CriticalAntiDepBreaker(MFi, RCI);
698
}
699
700