Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/DWARFLinker/Classic/DWARFLinker.cpp
35292 views
1
//=== DWARFLinker.cpp -----------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "llvm/DWARFLinker/Classic/DWARFLinker.h"
10
#include "llvm/ADT/ArrayRef.h"
11
#include "llvm/ADT/BitVector.h"
12
#include "llvm/ADT/STLExtras.h"
13
#include "llvm/ADT/StringExtras.h"
14
#include "llvm/CodeGen/NonRelocatableStringpool.h"
15
#include "llvm/DWARFLinker/Classic/DWARFLinkerDeclContext.h"
16
#include "llvm/DWARFLinker/Classic/DWARFStreamer.h"
17
#include "llvm/DWARFLinker/Utils.h"
18
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
19
#include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
20
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
21
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
22
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
23
#include "llvm/DebugInfo/DWARF/DWARFDebugMacro.h"
24
#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
25
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
26
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
27
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
28
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
29
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
30
#include "llvm/MC/MCDwarf.h"
31
#include "llvm/Support/DataExtractor.h"
32
#include "llvm/Support/Error.h"
33
#include "llvm/Support/ErrorHandling.h"
34
#include "llvm/Support/ErrorOr.h"
35
#include "llvm/Support/FormatVariadic.h"
36
#include "llvm/Support/LEB128.h"
37
#include "llvm/Support/Path.h"
38
#include "llvm/Support/ThreadPool.h"
39
#include <vector>
40
41
namespace llvm {
42
43
using namespace dwarf_linker;
44
using namespace dwarf_linker::classic;
45
46
/// Hold the input and output of the debug info size in bytes.
47
struct DebugInfoSize {
48
uint64_t Input;
49
uint64_t Output;
50
};
51
52
/// Compute the total size of the debug info.
53
static uint64_t getDebugInfoSize(DWARFContext &Dwarf) {
54
uint64_t Size = 0;
55
for (auto &Unit : Dwarf.compile_units()) {
56
Size += Unit->getLength();
57
}
58
return Size;
59
}
60
61
/// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
62
/// CompileUnit object instead.
63
static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
64
auto CU = llvm::upper_bound(
65
Units, Offset, [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
66
return LHS < RHS->getOrigUnit().getNextUnitOffset();
67
});
68
return CU != Units.end() ? CU->get() : nullptr;
69
}
70
71
/// Resolve the DIE attribute reference that has been extracted in \p RefValue.
72
/// The resulting DIE might be in another CompileUnit which is stored into \p
73
/// ReferencedCU. \returns null if resolving fails for any reason.
74
DWARFDie DWARFLinker::resolveDIEReference(const DWARFFile &File,
75
const UnitListTy &Units,
76
const DWARFFormValue &RefValue,
77
const DWARFDie &DIE,
78
CompileUnit *&RefCU) {
79
assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
80
uint64_t RefOffset;
81
if (std::optional<uint64_t> Off = RefValue.getAsRelativeReference()) {
82
RefOffset = RefValue.getUnit()->getOffset() + *Off;
83
} else if (Off = RefValue.getAsDebugInfoReference(); Off) {
84
RefOffset = *Off;
85
} else {
86
reportWarning("Unsupported reference type", File, &DIE);
87
return DWARFDie();
88
}
89
if ((RefCU = getUnitForOffset(Units, RefOffset)))
90
if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
91
// In a file with broken references, an attribute might point to a NULL
92
// DIE.
93
if (!RefDie.isNULL())
94
return RefDie;
95
}
96
97
reportWarning("could not find referenced DIE", File, &DIE);
98
return DWARFDie();
99
}
100
101
/// \returns whether the passed \a Attr type might contain a DIE reference
102
/// suitable for ODR uniquing.
103
static bool isODRAttribute(uint16_t Attr) {
104
switch (Attr) {
105
default:
106
return false;
107
case dwarf::DW_AT_type:
108
case dwarf::DW_AT_containing_type:
109
case dwarf::DW_AT_specification:
110
case dwarf::DW_AT_abstract_origin:
111
case dwarf::DW_AT_import:
112
return true;
113
}
114
llvm_unreachable("Improper attribute.");
115
}
116
117
static bool isTypeTag(uint16_t Tag) {
118
switch (Tag) {
119
case dwarf::DW_TAG_array_type:
120
case dwarf::DW_TAG_class_type:
121
case dwarf::DW_TAG_enumeration_type:
122
case dwarf::DW_TAG_pointer_type:
123
case dwarf::DW_TAG_reference_type:
124
case dwarf::DW_TAG_string_type:
125
case dwarf::DW_TAG_structure_type:
126
case dwarf::DW_TAG_subroutine_type:
127
case dwarf::DW_TAG_template_alias:
128
case dwarf::DW_TAG_typedef:
129
case dwarf::DW_TAG_union_type:
130
case dwarf::DW_TAG_ptr_to_member_type:
131
case dwarf::DW_TAG_set_type:
132
case dwarf::DW_TAG_subrange_type:
133
case dwarf::DW_TAG_base_type:
134
case dwarf::DW_TAG_const_type:
135
case dwarf::DW_TAG_constant:
136
case dwarf::DW_TAG_file_type:
137
case dwarf::DW_TAG_namelist:
138
case dwarf::DW_TAG_packed_type:
139
case dwarf::DW_TAG_volatile_type:
140
case dwarf::DW_TAG_restrict_type:
141
case dwarf::DW_TAG_atomic_type:
142
case dwarf::DW_TAG_interface_type:
143
case dwarf::DW_TAG_unspecified_type:
144
case dwarf::DW_TAG_shared_type:
145
case dwarf::DW_TAG_immutable_type:
146
return true;
147
default:
148
break;
149
}
150
return false;
151
}
152
153
bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die,
154
AttributesInfo &Info,
155
OffsetsStringPool &StringPool,
156
bool StripTemplate) {
157
// This function will be called on DIEs having low_pcs and
158
// ranges. As getting the name might be more expansive, filter out
159
// blocks directly.
160
if (Die.getTag() == dwarf::DW_TAG_lexical_block)
161
return false;
162
163
if (!Info.MangledName)
164
if (const char *MangledName = Die.getLinkageName())
165
Info.MangledName = StringPool.getEntry(MangledName);
166
167
if (!Info.Name)
168
if (const char *Name = Die.getShortName())
169
Info.Name = StringPool.getEntry(Name);
170
171
if (!Info.MangledName)
172
Info.MangledName = Info.Name;
173
174
if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
175
StringRef Name = Info.Name.getString();
176
if (std::optional<StringRef> StrippedName = StripTemplateParameters(Name))
177
Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName);
178
}
179
180
return Info.Name || Info.MangledName;
181
}
182
183
/// Resolve the relative path to a build artifact referenced by DWARF by
184
/// applying DW_AT_comp_dir.
185
static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
186
sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
187
}
188
189
/// Collect references to parseable Swift interfaces in imported
190
/// DW_TAG_module blocks.
191
static void analyzeImportedModule(
192
const DWARFDie &DIE, CompileUnit &CU,
193
DWARFLinkerBase::SwiftInterfacesMapTy *ParseableSwiftInterfaces,
194
std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
195
if (CU.getLanguage() != dwarf::DW_LANG_Swift)
196
return;
197
198
if (!ParseableSwiftInterfaces)
199
return;
200
201
StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
202
if (!Path.ends_with(".swiftinterface"))
203
return;
204
// Don't track interfaces that are part of the SDK.
205
StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot));
206
if (SysRoot.empty())
207
SysRoot = CU.getSysRoot();
208
if (!SysRoot.empty() && Path.starts_with(SysRoot))
209
return;
210
// Don't track interfaces that are part of the toolchain.
211
// For example: Swift, _Concurrency, ...
212
StringRef DeveloperDir = guessDeveloperDir(SysRoot);
213
if (!DeveloperDir.empty() && Path.starts_with(DeveloperDir))
214
return;
215
if (isInToolchainDir(Path))
216
return;
217
std::optional<const char *> Name =
218
dwarf::toString(DIE.find(dwarf::DW_AT_name));
219
if (!Name)
220
return;
221
auto &Entry = (*ParseableSwiftInterfaces)[*Name];
222
// The prepend path is applied later when copying.
223
DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
224
SmallString<128> ResolvedPath;
225
if (sys::path::is_relative(Path))
226
resolveRelativeObjectPath(ResolvedPath, CUDie);
227
sys::path::append(ResolvedPath, Path);
228
if (!Entry.empty() && Entry != ResolvedPath)
229
ReportWarning(Twine("Conflicting parseable interfaces for Swift Module ") +
230
*Name + ": " + Entry + " and " + Path,
231
DIE);
232
Entry = std::string(ResolvedPath);
233
}
234
235
/// The distinct types of work performed by the work loop in
236
/// analyzeContextInfo.
237
enum class ContextWorklistItemType : uint8_t {
238
AnalyzeContextInfo,
239
UpdateChildPruning,
240
UpdatePruning,
241
};
242
243
/// This class represents an item in the work list. The type defines what kind
244
/// of work needs to be performed when processing the current item. Everything
245
/// but the Type and Die fields are optional based on the type.
246
struct ContextWorklistItem {
247
DWARFDie Die;
248
unsigned ParentIdx;
249
union {
250
CompileUnit::DIEInfo *OtherInfo;
251
DeclContext *Context;
252
};
253
ContextWorklistItemType Type;
254
bool InImportedModule;
255
256
ContextWorklistItem(DWARFDie Die, ContextWorklistItemType T,
257
CompileUnit::DIEInfo *OtherInfo = nullptr)
258
: Die(Die), ParentIdx(0), OtherInfo(OtherInfo), Type(T),
259
InImportedModule(false) {}
260
261
ContextWorklistItem(DWARFDie Die, DeclContext *Context, unsigned ParentIdx,
262
bool InImportedModule)
263
: Die(Die), ParentIdx(ParentIdx), Context(Context),
264
Type(ContextWorklistItemType::AnalyzeContextInfo),
265
InImportedModule(InImportedModule) {}
266
};
267
268
static bool updatePruning(const DWARFDie &Die, CompileUnit &CU,
269
uint64_t ModulesEndOffset) {
270
CompileUnit::DIEInfo &Info = CU.getInfo(Die);
271
272
// Prune this DIE if it is either a forward declaration inside a
273
// DW_TAG_module or a DW_TAG_module that contains nothing but
274
// forward declarations.
275
Info.Prune &= (Die.getTag() == dwarf::DW_TAG_module) ||
276
(isTypeTag(Die.getTag()) &&
277
dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0));
278
279
// Only prune forward declarations inside a DW_TAG_module for which a
280
// definition exists elsewhere.
281
if (ModulesEndOffset == 0)
282
Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
283
else
284
Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
285
Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
286
287
return Info.Prune;
288
}
289
290
static void updateChildPruning(const DWARFDie &Die, CompileUnit &CU,
291
CompileUnit::DIEInfo &ChildInfo) {
292
CompileUnit::DIEInfo &Info = CU.getInfo(Die);
293
Info.Prune &= ChildInfo.Prune;
294
}
295
296
/// Recursive helper to build the global DeclContext information and
297
/// gather the child->parent relationships in the original compile unit.
298
///
299
/// This function uses the same work list approach as lookForDIEsToKeep.
300
///
301
/// \return true when this DIE and all of its children are only
302
/// forward declarations to types defined in external clang modules
303
/// (i.e., forward declarations that are children of a DW_TAG_module).
304
static void analyzeContextInfo(
305
const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
306
DeclContext *CurrentDeclContext, DeclContextTree &Contexts,
307
uint64_t ModulesEndOffset,
308
DWARFLinkerBase::SwiftInterfacesMapTy *ParseableSwiftInterfaces,
309
std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
310
// LIFO work list.
311
std::vector<ContextWorklistItem> Worklist;
312
Worklist.emplace_back(DIE, CurrentDeclContext, ParentIdx, false);
313
314
while (!Worklist.empty()) {
315
ContextWorklistItem Current = Worklist.back();
316
Worklist.pop_back();
317
318
switch (Current.Type) {
319
case ContextWorklistItemType::UpdatePruning:
320
updatePruning(Current.Die, CU, ModulesEndOffset);
321
continue;
322
case ContextWorklistItemType::UpdateChildPruning:
323
updateChildPruning(Current.Die, CU, *Current.OtherInfo);
324
continue;
325
case ContextWorklistItemType::AnalyzeContextInfo:
326
break;
327
}
328
329
unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die);
330
CompileUnit::DIEInfo &Info = CU.getInfo(Idx);
331
332
// Clang imposes an ODR on modules(!) regardless of the language:
333
// "The module-id should consist of only a single identifier,
334
// which provides the name of the module being defined. Each
335
// module shall have a single definition."
336
//
337
// This does not extend to the types inside the modules:
338
// "[I]n C, this implies that if two structs are defined in
339
// different submodules with the same name, those two types are
340
// distinct types (but may be compatible types if their
341
// definitions match)."
342
//
343
// We treat non-C++ modules like namespaces for this reason.
344
if (Current.Die.getTag() == dwarf::DW_TAG_module &&
345
Current.ParentIdx == 0 &&
346
dwarf::toString(Current.Die.find(dwarf::DW_AT_name), "") !=
347
CU.getClangModuleName()) {
348
Current.InImportedModule = true;
349
analyzeImportedModule(Current.Die, CU, ParseableSwiftInterfaces,
350
ReportWarning);
351
}
352
353
Info.ParentIdx = Current.ParentIdx;
354
Info.InModuleScope = CU.isClangModule() || Current.InImportedModule;
355
if (CU.hasODR() || Info.InModuleScope) {
356
if (Current.Context) {
357
auto PtrInvalidPair = Contexts.getChildDeclContext(
358
*Current.Context, Current.Die, CU, Info.InModuleScope);
359
Current.Context = PtrInvalidPair.getPointer();
360
Info.Ctxt =
361
PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
362
if (Info.Ctxt)
363
Info.Ctxt->setDefinedInClangModule(Info.InModuleScope);
364
} else
365
Info.Ctxt = Current.Context = nullptr;
366
}
367
368
Info.Prune = Current.InImportedModule;
369
// Add children in reverse order to the worklist to effectively process
370
// them in order.
371
Worklist.emplace_back(Current.Die, ContextWorklistItemType::UpdatePruning);
372
for (auto Child : reverse(Current.Die.children())) {
373
CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
374
Worklist.emplace_back(
375
Current.Die, ContextWorklistItemType::UpdateChildPruning, &ChildInfo);
376
Worklist.emplace_back(Child, Current.Context, Idx,
377
Current.InImportedModule);
378
}
379
}
380
}
381
382
static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
383
switch (Tag) {
384
default:
385
return false;
386
case dwarf::DW_TAG_class_type:
387
case dwarf::DW_TAG_common_block:
388
case dwarf::DW_TAG_lexical_block:
389
case dwarf::DW_TAG_structure_type:
390
case dwarf::DW_TAG_subprogram:
391
case dwarf::DW_TAG_subroutine_type:
392
case dwarf::DW_TAG_union_type:
393
return true;
394
}
395
llvm_unreachable("Invalid Tag");
396
}
397
398
void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) {
399
Context.clear();
400
401
for (DIEBlock *I : DIEBlocks)
402
I->~DIEBlock();
403
for (DIELoc *I : DIELocs)
404
I->~DIELoc();
405
406
DIEBlocks.clear();
407
DIELocs.clear();
408
DIEAlloc.Reset();
409
}
410
411
static bool isTlsAddressCode(uint8_t DW_OP_Code) {
412
return DW_OP_Code == dwarf::DW_OP_form_tls_address ||
413
DW_OP_Code == dwarf::DW_OP_GNU_push_tls_address;
414
}
415
416
std::pair<bool, std::optional<int64_t>>
417
DWARFLinker::getVariableRelocAdjustment(AddressesMap &RelocMgr,
418
const DWARFDie &DIE) {
419
assert((DIE.getTag() == dwarf::DW_TAG_variable ||
420
DIE.getTag() == dwarf::DW_TAG_constant) &&
421
"Wrong type of input die");
422
423
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
424
425
// Check if DIE has DW_AT_location attribute.
426
DWARFUnit *U = DIE.getDwarfUnit();
427
std::optional<uint32_t> LocationIdx =
428
Abbrev->findAttributeIndex(dwarf::DW_AT_location);
429
if (!LocationIdx)
430
return std::make_pair(false, std::nullopt);
431
432
// Get offset to the DW_AT_location attribute.
433
uint64_t AttrOffset =
434
Abbrev->getAttributeOffsetFromIndex(*LocationIdx, DIE.getOffset(), *U);
435
436
// Get value of the DW_AT_location attribute.
437
std::optional<DWARFFormValue> LocationValue =
438
Abbrev->getAttributeValueFromOffset(*LocationIdx, AttrOffset, *U);
439
if (!LocationValue)
440
return std::make_pair(false, std::nullopt);
441
442
// Check that DW_AT_location attribute is of 'exprloc' class.
443
// Handling value of location expressions for attributes of 'loclist'
444
// class is not implemented yet.
445
std::optional<ArrayRef<uint8_t>> Expr = LocationValue->getAsBlock();
446
if (!Expr)
447
return std::make_pair(false, std::nullopt);
448
449
// Parse 'exprloc' expression.
450
DataExtractor Data(toStringRef(*Expr), U->getContext().isLittleEndian(),
451
U->getAddressByteSize());
452
DWARFExpression Expression(Data, U->getAddressByteSize(),
453
U->getFormParams().Format);
454
455
bool HasLocationAddress = false;
456
uint64_t CurExprOffset = 0;
457
for (DWARFExpression::iterator It = Expression.begin();
458
It != Expression.end(); ++It) {
459
DWARFExpression::iterator NextIt = It;
460
++NextIt;
461
462
const DWARFExpression::Operation &Op = *It;
463
switch (Op.getCode()) {
464
case dwarf::DW_OP_const2u:
465
case dwarf::DW_OP_const4u:
466
case dwarf::DW_OP_const8u:
467
case dwarf::DW_OP_const2s:
468
case dwarf::DW_OP_const4s:
469
case dwarf::DW_OP_const8s:
470
if (NextIt == Expression.end() || !isTlsAddressCode(NextIt->getCode()))
471
break;
472
[[fallthrough]];
473
case dwarf::DW_OP_addr: {
474
HasLocationAddress = true;
475
// Check relocation for the address.
476
if (std::optional<int64_t> RelocAdjustment =
477
RelocMgr.getExprOpAddressRelocAdjustment(
478
*U, Op, AttrOffset + CurExprOffset,
479
AttrOffset + Op.getEndOffset(), Options.Verbose))
480
return std::make_pair(HasLocationAddress, *RelocAdjustment);
481
} break;
482
case dwarf::DW_OP_constx:
483
case dwarf::DW_OP_addrx: {
484
HasLocationAddress = true;
485
if (std::optional<uint64_t> AddressOffset =
486
DIE.getDwarfUnit()->getIndexedAddressOffset(
487
Op.getRawOperand(0))) {
488
// Check relocation for the address.
489
if (std::optional<int64_t> RelocAdjustment =
490
RelocMgr.getExprOpAddressRelocAdjustment(
491
*U, Op, *AddressOffset,
492
*AddressOffset + DIE.getDwarfUnit()->getAddressByteSize(),
493
Options.Verbose))
494
return std::make_pair(HasLocationAddress, *RelocAdjustment);
495
}
496
} break;
497
default: {
498
// Nothing to do.
499
} break;
500
}
501
CurExprOffset = Op.getEndOffset();
502
}
503
504
return std::make_pair(HasLocationAddress, std::nullopt);
505
}
506
507
/// Check if a variable describing DIE should be kept.
508
/// \returns updated TraversalFlags.
509
unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr,
510
const DWARFDie &DIE,
511
CompileUnit::DIEInfo &MyInfo,
512
unsigned Flags) {
513
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
514
515
// Global variables with constant value can always be kept.
516
if (!(Flags & TF_InFunctionScope) &&
517
Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
518
MyInfo.InDebugMap = true;
519
return Flags | TF_Keep;
520
}
521
522
// See if there is a relocation to a valid debug map entry inside this
523
// variable's location. The order is important here. We want to always check
524
// if the variable has a valid relocation, so that the DIEInfo is filled.
525
// However, we don't want a static variable in a function to force us to keep
526
// the enclosing function, unless requested explicitly.
527
std::pair<bool, std::optional<int64_t>> LocExprAddrAndRelocAdjustment =
528
getVariableRelocAdjustment(RelocMgr, DIE);
529
530
if (LocExprAddrAndRelocAdjustment.first)
531
MyInfo.HasLocationExpressionAddr = true;
532
533
if (!LocExprAddrAndRelocAdjustment.second)
534
return Flags;
535
536
MyInfo.AddrAdjust = *LocExprAddrAndRelocAdjustment.second;
537
MyInfo.InDebugMap = true;
538
539
if (((Flags & TF_InFunctionScope) &&
540
!LLVM_UNLIKELY(Options.KeepFunctionForStatic)))
541
return Flags;
542
543
if (Options.Verbose) {
544
outs() << "Keeping variable DIE:";
545
DIDumpOptions DumpOpts;
546
DumpOpts.ChildRecurseDepth = 0;
547
DumpOpts.Verbose = Options.Verbose;
548
DIE.dump(outs(), 8 /* Indent */, DumpOpts);
549
}
550
551
return Flags | TF_Keep;
552
}
553
554
/// Check if a function describing DIE should be kept.
555
/// \returns updated TraversalFlags.
556
unsigned DWARFLinker::shouldKeepSubprogramDIE(
557
AddressesMap &RelocMgr, const DWARFDie &DIE, const DWARFFile &File,
558
CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
559
Flags |= TF_InFunctionScope;
560
561
auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
562
if (!LowPc)
563
return Flags;
564
565
assert(LowPc && "low_pc attribute is not an address.");
566
std::optional<int64_t> RelocAdjustment =
567
RelocMgr.getSubprogramRelocAdjustment(DIE, Options.Verbose);
568
if (!RelocAdjustment)
569
return Flags;
570
571
MyInfo.AddrAdjust = *RelocAdjustment;
572
MyInfo.InDebugMap = true;
573
574
if (Options.Verbose) {
575
outs() << "Keeping subprogram DIE:";
576
DIDumpOptions DumpOpts;
577
DumpOpts.ChildRecurseDepth = 0;
578
DumpOpts.Verbose = Options.Verbose;
579
DIE.dump(outs(), 8 /* Indent */, DumpOpts);
580
}
581
582
if (DIE.getTag() == dwarf::DW_TAG_label) {
583
if (Unit.hasLabelAt(*LowPc))
584
return Flags;
585
586
DWARFUnit &OrigUnit = Unit.getOrigUnit();
587
// FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
588
// that don't fall into the CU's aranges. This is wrong IMO. Debug info
589
// generation bugs aside, this is really wrong in the case of labels, where
590
// a label marking the end of a function will have a PC == CU's high_pc.
591
if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
592
.value_or(UINT64_MAX) <= LowPc)
593
return Flags;
594
Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
595
return Flags | TF_Keep;
596
}
597
598
Flags |= TF_Keep;
599
600
std::optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
601
if (!HighPc) {
602
reportWarning("Function without high_pc. Range will be discarded.\n", File,
603
&DIE);
604
return Flags;
605
}
606
if (*LowPc > *HighPc) {
607
reportWarning("low_pc greater than high_pc. Range will be discarded.\n",
608
File, &DIE);
609
return Flags;
610
}
611
612
// Replace the debug map range with a more accurate one.
613
Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
614
return Flags;
615
}
616
617
/// Check if a DIE should be kept.
618
/// \returns updated TraversalFlags.
619
unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, const DWARFDie &DIE,
620
const DWARFFile &File, CompileUnit &Unit,
621
CompileUnit::DIEInfo &MyInfo,
622
unsigned Flags) {
623
switch (DIE.getTag()) {
624
case dwarf::DW_TAG_constant:
625
case dwarf::DW_TAG_variable:
626
return shouldKeepVariableDIE(RelocMgr, DIE, MyInfo, Flags);
627
case dwarf::DW_TAG_subprogram:
628
case dwarf::DW_TAG_label:
629
return shouldKeepSubprogramDIE(RelocMgr, DIE, File, Unit, MyInfo, Flags);
630
case dwarf::DW_TAG_base_type:
631
// DWARF Expressions may reference basic types, but scanning them
632
// is expensive. Basic types are tiny, so just keep all of them.
633
case dwarf::DW_TAG_imported_module:
634
case dwarf::DW_TAG_imported_declaration:
635
case dwarf::DW_TAG_imported_unit:
636
// We always want to keep these.
637
return Flags | TF_Keep;
638
default:
639
break;
640
}
641
642
return Flags;
643
}
644
645
/// Helper that updates the completeness of the current DIE based on the
646
/// completeness of one of its children. It depends on the incompleteness of
647
/// the children already being computed.
648
static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
649
CompileUnit::DIEInfo &ChildInfo) {
650
switch (Die.getTag()) {
651
case dwarf::DW_TAG_structure_type:
652
case dwarf::DW_TAG_class_type:
653
case dwarf::DW_TAG_union_type:
654
break;
655
default:
656
return;
657
}
658
659
CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
660
661
if (ChildInfo.Incomplete || ChildInfo.Prune)
662
MyInfo.Incomplete = true;
663
}
664
665
/// Helper that updates the completeness of the current DIE based on the
666
/// completeness of the DIEs it references. It depends on the incompleteness of
667
/// the referenced DIE already being computed.
668
static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
669
CompileUnit::DIEInfo &RefInfo) {
670
switch (Die.getTag()) {
671
case dwarf::DW_TAG_typedef:
672
case dwarf::DW_TAG_member:
673
case dwarf::DW_TAG_reference_type:
674
case dwarf::DW_TAG_ptr_to_member_type:
675
case dwarf::DW_TAG_pointer_type:
676
break;
677
default:
678
return;
679
}
680
681
CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
682
683
if (MyInfo.Incomplete)
684
return;
685
686
if (RefInfo.Incomplete)
687
MyInfo.Incomplete = true;
688
}
689
690
/// Look at the children of the given DIE and decide whether they should be
691
/// kept.
692
void DWARFLinker::lookForChildDIEsToKeep(
693
const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
694
SmallVectorImpl<WorklistItem> &Worklist) {
695
// The TF_ParentWalk flag tells us that we are currently walking up the
696
// parent chain of a required DIE, and we don't want to mark all the children
697
// of the parents as kept (consider for example a DW_TAG_namespace node in
698
// the parent chain). There are however a set of DIE types for which we want
699
// to ignore that directive and still walk their children.
700
if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
701
Flags &= ~DWARFLinker::TF_ParentWalk;
702
703
// We're finished if this DIE has no children or we're walking the parent
704
// chain.
705
if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk))
706
return;
707
708
// Add children in reverse order to the worklist to effectively process them
709
// in order.
710
for (auto Child : reverse(Die.children())) {
711
// Add a worklist item before every child to calculate incompleteness right
712
// after the current child is processed.
713
CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
714
Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
715
&ChildInfo);
716
Worklist.emplace_back(Child, CU, Flags);
717
}
718
}
719
720
static bool isODRCanonicalCandidate(const DWARFDie &Die, CompileUnit &CU) {
721
CompileUnit::DIEInfo &Info = CU.getInfo(Die);
722
723
if (!Info.Ctxt || (Die.getTag() == dwarf::DW_TAG_namespace))
724
return false;
725
726
if (!CU.hasODR() && !Info.InModuleScope)
727
return false;
728
729
return !Info.Incomplete && Info.Ctxt != CU.getInfo(Info.ParentIdx).Ctxt;
730
}
731
732
void DWARFLinker::markODRCanonicalDie(const DWARFDie &Die, CompileUnit &CU) {
733
CompileUnit::DIEInfo &Info = CU.getInfo(Die);
734
735
Info.ODRMarkingDone = true;
736
if (Info.Keep && isODRCanonicalCandidate(Die, CU) &&
737
!Info.Ctxt->hasCanonicalDIE())
738
Info.Ctxt->setHasCanonicalDIE();
739
}
740
741
/// Look at DIEs referenced by the given DIE and decide whether they should be
742
/// kept. All DIEs referenced though attributes should be kept.
743
void DWARFLinker::lookForRefDIEsToKeep(
744
const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
745
const UnitListTy &Units, const DWARFFile &File,
746
SmallVectorImpl<WorklistItem> &Worklist) {
747
bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk)
748
? (Flags & DWARFLinker::TF_ODR)
749
: CU.hasODR();
750
DWARFUnit &Unit = CU.getOrigUnit();
751
DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
752
const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
753
uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
754
755
SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
756
for (const auto &AttrSpec : Abbrev->attributes()) {
757
DWARFFormValue Val(AttrSpec.Form);
758
if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
759
AttrSpec.Attr == dwarf::DW_AT_sibling) {
760
DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
761
Unit.getFormParams());
762
continue;
763
}
764
765
Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
766
CompileUnit *ReferencedCU;
767
if (auto RefDie =
768
resolveDIEReference(File, Units, Val, Die, ReferencedCU)) {
769
CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefDie);
770
// If the referenced DIE has a DeclContext that has already been
771
// emitted, then do not keep the one in this CU. We'll link to
772
// the canonical DIE in cloneDieReferenceAttribute.
773
//
774
// FIXME: compatibility with dsymutil-classic. UseODR shouldn't
775
// be necessary and could be advantageously replaced by
776
// ReferencedCU->hasODR() && CU.hasODR().
777
//
778
// FIXME: compatibility with dsymutil-classic. There is no
779
// reason not to unique ref_addr references.
780
if (AttrSpec.Form != dwarf::DW_FORM_ref_addr &&
781
isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
782
Info.Ctxt->hasCanonicalDIE())
783
continue;
784
785
// Keep a module forward declaration if there is no definition.
786
if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
787
Info.Ctxt->hasCanonicalDIE()))
788
Info.Prune = false;
789
ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
790
}
791
}
792
793
unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0;
794
795
// Add referenced DIEs in reverse order to the worklist to effectively
796
// process them in order.
797
for (auto &P : reverse(ReferencedDIEs)) {
798
// Add a worklist item before every child to calculate incompleteness right
799
// after the current child is processed.
800
CompileUnit::DIEInfo &Info = P.second.getInfo(P.first);
801
Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
802
&Info);
803
Worklist.emplace_back(P.first, P.second,
804
DWARFLinker::TF_Keep |
805
DWARFLinker::TF_DependencyWalk | ODRFlag);
806
}
807
}
808
809
/// Look at the parent of the given DIE and decide whether they should be kept.
810
void DWARFLinker::lookForParentDIEsToKeep(
811
unsigned AncestorIdx, CompileUnit &CU, unsigned Flags,
812
SmallVectorImpl<WorklistItem> &Worklist) {
813
// Stop if we encounter an ancestor that's already marked as kept.
814
if (CU.getInfo(AncestorIdx).Keep)
815
return;
816
817
DWARFUnit &Unit = CU.getOrigUnit();
818
DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
819
Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
820
Worklist.emplace_back(ParentDIE, CU, Flags);
821
}
822
823
/// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
824
/// information in \p CU's DIEInfo.
825
///
826
/// This function is the entry point of the DIE selection algorithm. It is
827
/// expected to walk the DIE tree in file order and (though the mediation of
828
/// its helper) call hasValidRelocation() on each DIE that might be a 'root
829
/// DIE' (See DwarfLinker class comment).
830
///
831
/// While walking the dependencies of root DIEs, this function is also called,
832
/// but during these dependency walks the file order is not respected. The
833
/// TF_DependencyWalk flag tells us which kind of traversal we are currently
834
/// doing.
835
///
836
/// The recursive algorithm is implemented iteratively as a work list because
837
/// very deep recursion could exhaust the stack for large projects. The work
838
/// list acts as a scheduler for different types of work that need to be
839
/// performed.
840
///
841
/// The recursive nature of the algorithm is simulated by running the "main"
842
/// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
843
/// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
844
/// fixing up a computed property (UpdateChildIncompleteness,
845
/// UpdateRefIncompleteness).
846
///
847
/// The return value indicates whether the DIE is incomplete.
848
void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap,
849
const UnitListTy &Units,
850
const DWARFDie &Die, const DWARFFile &File,
851
CompileUnit &Cu, unsigned Flags) {
852
// LIFO work list.
853
SmallVector<WorklistItem, 4> Worklist;
854
Worklist.emplace_back(Die, Cu, Flags);
855
856
while (!Worklist.empty()) {
857
WorklistItem Current = Worklist.pop_back_val();
858
859
// Look at the worklist type to decide what kind of work to perform.
860
switch (Current.Type) {
861
case WorklistItemType::UpdateChildIncompleteness:
862
updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
863
continue;
864
case WorklistItemType::UpdateRefIncompleteness:
865
updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
866
continue;
867
case WorklistItemType::LookForChildDIEsToKeep:
868
lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
869
continue;
870
case WorklistItemType::LookForRefDIEsToKeep:
871
lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File,
872
Worklist);
873
continue;
874
case WorklistItemType::LookForParentDIEsToKeep:
875
lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
876
Worklist);
877
continue;
878
case WorklistItemType::MarkODRCanonicalDie:
879
markODRCanonicalDie(Current.Die, Current.CU);
880
continue;
881
case WorklistItemType::LookForDIEsToKeep:
882
break;
883
}
884
885
unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
886
CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);
887
888
if (MyInfo.Prune) {
889
// We're walking the dependencies of a module forward declaration that was
890
// kept because there is no definition.
891
if (Current.Flags & TF_DependencyWalk)
892
MyInfo.Prune = false;
893
else
894
continue;
895
}
896
897
// If the Keep flag is set, we are marking a required DIE's dependencies.
898
// If our target is already marked as kept, we're all set.
899
bool AlreadyKept = MyInfo.Keep;
900
if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
901
continue;
902
903
if (!(Current.Flags & TF_DependencyWalk))
904
Current.Flags = shouldKeepDIE(AddressesMap, Current.Die, File, Current.CU,
905
MyInfo, Current.Flags);
906
907
// We need to mark context for the canonical die in the end of normal
908
// traversing(not TF_DependencyWalk) or after normal traversing if die
909
// was not marked as kept.
910
if (!(Current.Flags & TF_DependencyWalk) ||
911
(MyInfo.ODRMarkingDone && !MyInfo.Keep)) {
912
if (Current.CU.hasODR() || MyInfo.InModuleScope)
913
Worklist.emplace_back(Current.Die, Current.CU,
914
WorklistItemType::MarkODRCanonicalDie);
915
}
916
917
// Finish by looking for child DIEs. Because of the LIFO worklist we need
918
// to schedule that work before any subsequent items are added to the
919
// worklist.
920
Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
921
WorklistItemType::LookForChildDIEsToKeep);
922
923
if (AlreadyKept || !(Current.Flags & TF_Keep))
924
continue;
925
926
// If it is a newly kept DIE mark it as well as all its dependencies as
927
// kept.
928
MyInfo.Keep = true;
929
930
// We're looking for incomplete types.
931
MyInfo.Incomplete =
932
Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
933
Current.Die.getTag() != dwarf::DW_TAG_member &&
934
dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);
935
936
// After looking at the parent chain, look for referenced DIEs. Because of
937
// the LIFO worklist we need to schedule that work before any subsequent
938
// items are added to the worklist.
939
Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
940
WorklistItemType::LookForRefDIEsToKeep);
941
942
bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
943
: Current.CU.hasODR();
944
unsigned ODRFlag = UseOdr ? TF_ODR : 0;
945
unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;
946
947
// Now schedule the parent walk.
948
Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
949
}
950
}
951
952
#ifndef NDEBUG
953
/// A broken link in the keep chain. By recording both the parent and the child
954
/// we can show only broken links for DIEs with multiple children.
955
struct BrokenLink {
956
BrokenLink(DWARFDie Parent, DWARFDie Child) : Parent(Parent), Child(Child) {}
957
DWARFDie Parent;
958
DWARFDie Child;
959
};
960
961
/// Verify the keep chain by looking for DIEs that are kept but who's parent
962
/// isn't.
963
static void verifyKeepChain(CompileUnit &CU) {
964
std::vector<DWARFDie> Worklist;
965
Worklist.push_back(CU.getOrigUnit().getUnitDIE());
966
967
// List of broken links.
968
std::vector<BrokenLink> BrokenLinks;
969
970
while (!Worklist.empty()) {
971
const DWARFDie Current = Worklist.back();
972
Worklist.pop_back();
973
974
const bool CurrentDieIsKept = CU.getInfo(Current).Keep;
975
976
for (DWARFDie Child : reverse(Current.children())) {
977
Worklist.push_back(Child);
978
979
const bool ChildDieIsKept = CU.getInfo(Child).Keep;
980
if (!CurrentDieIsKept && ChildDieIsKept)
981
BrokenLinks.emplace_back(Current, Child);
982
}
983
}
984
985
if (!BrokenLinks.empty()) {
986
for (BrokenLink Link : BrokenLinks) {
987
WithColor::error() << formatv(
988
"Found invalid link in keep chain between {0:x} and {1:x}\n",
989
Link.Parent.getOffset(), Link.Child.getOffset());
990
991
errs() << "Parent:";
992
Link.Parent.dump(errs(), 0, {});
993
CU.getInfo(Link.Parent).dump();
994
995
errs() << "Child:";
996
Link.Child.dump(errs(), 2, {});
997
CU.getInfo(Link.Child).dump();
998
}
999
report_fatal_error("invalid keep chain");
1000
}
1001
}
1002
#endif
1003
1004
/// Assign an abbreviation number to \p Abbrev.
1005
///
1006
/// Our DIEs get freed after every DebugMapObject has been processed,
1007
/// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
1008
/// the instances hold by the DIEs. When we encounter an abbreviation
1009
/// that we don't know, we create a permanent copy of it.
1010
void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) {
1011
// Check the set for priors.
1012
FoldingSetNodeID ID;
1013
Abbrev.Profile(ID);
1014
void *InsertToken;
1015
DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
1016
1017
// If it's newly added.
1018
if (InSet) {
1019
// Assign existing abbreviation number.
1020
Abbrev.setNumber(InSet->getNumber());
1021
} else {
1022
// Add to abbreviation list.
1023
Abbreviations.push_back(
1024
std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
1025
for (const auto &Attr : Abbrev.getData())
1026
Abbreviations.back()->AddAttribute(Attr);
1027
AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
1028
// Assign the unique abbreviation number.
1029
Abbrev.setNumber(Abbreviations.size());
1030
Abbreviations.back()->setNumber(Abbreviations.size());
1031
}
1032
}
1033
1034
unsigned DWARFLinker::DIECloner::cloneStringAttribute(DIE &Die,
1035
AttributeSpec AttrSpec,
1036
const DWARFFormValue &Val,
1037
const DWARFUnit &U,
1038
AttributesInfo &Info) {
1039
std::optional<const char *> String = dwarf::toString(Val);
1040
if (!String)
1041
return 0;
1042
DwarfStringPoolEntryRef StringEntry;
1043
if (AttrSpec.Form == dwarf::DW_FORM_line_strp) {
1044
StringEntry = DebugLineStrPool.getEntry(*String);
1045
} else {
1046
StringEntry = DebugStrPool.getEntry(*String);
1047
1048
if (AttrSpec.Attr == dwarf::DW_AT_APPLE_origin) {
1049
Info.HasAppleOrigin = true;
1050
if (std::optional<StringRef> FileName =
1051
ObjFile.Addresses->getLibraryInstallName()) {
1052
StringEntry = DebugStrPool.getEntry(*FileName);
1053
}
1054
}
1055
1056
// Update attributes info.
1057
if (AttrSpec.Attr == dwarf::DW_AT_name)
1058
Info.Name = StringEntry;
1059
else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
1060
AttrSpec.Attr == dwarf::DW_AT_linkage_name)
1061
Info.MangledName = StringEntry;
1062
if (U.getVersion() >= 5) {
1063
// Switch everything to DW_FORM_strx strings.
1064
auto StringOffsetIndex =
1065
StringOffsetPool.getValueIndex(StringEntry.getOffset());
1066
return Die
1067
.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1068
dwarf::DW_FORM_strx, DIEInteger(StringOffsetIndex))
1069
->sizeOf(U.getFormParams());
1070
}
1071
// Switch everything to out of line strings.
1072
AttrSpec.Form = dwarf::DW_FORM_strp;
1073
}
1074
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), AttrSpec.Form,
1075
DIEInteger(StringEntry.getOffset()));
1076
return 4;
1077
}
1078
1079
unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute(
1080
DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
1081
unsigned AttrSize, const DWARFFormValue &Val, const DWARFFile &File,
1082
CompileUnit &Unit) {
1083
const DWARFUnit &U = Unit.getOrigUnit();
1084
uint64_t Ref;
1085
if (std::optional<uint64_t> Off = Val.getAsRelativeReference())
1086
Ref = Val.getUnit()->getOffset() + *Off;
1087
else if (Off = Val.getAsDebugInfoReference(); Off)
1088
Ref = *Off;
1089
else
1090
return 0;
1091
1092
DIE *NewRefDie = nullptr;
1093
CompileUnit *RefUnit = nullptr;
1094
1095
DWARFDie RefDie =
1096
Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit);
1097
1098
// If the referenced DIE is not found, drop the attribute.
1099
if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
1100
return 0;
1101
1102
CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(RefDie);
1103
1104
// If we already have emitted an equivalent DeclContext, just point
1105
// at it.
1106
if (isODRAttribute(AttrSpec.Attr) && RefInfo.Ctxt &&
1107
RefInfo.Ctxt->getCanonicalDIEOffset()) {
1108
assert(RefInfo.Ctxt->hasCanonicalDIE() &&
1109
"Offset to canonical die is set, but context is not marked");
1110
DIEInteger Attr(RefInfo.Ctxt->getCanonicalDIEOffset());
1111
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1112
dwarf::DW_FORM_ref_addr, Attr);
1113
return U.getRefAddrByteSize();
1114
}
1115
1116
if (!RefInfo.Clone) {
1117
// We haven't cloned this DIE yet. Just create an empty one and
1118
// store it. It'll get really cloned when we process it.
1119
RefInfo.UnclonedReference = true;
1120
RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
1121
}
1122
NewRefDie = RefInfo.Clone;
1123
1124
if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
1125
(Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
1126
// We cannot currently rely on a DIEEntry to emit ref_addr
1127
// references, because the implementation calls back to DwarfDebug
1128
// to find the unit offset. (We don't have a DwarfDebug)
1129
// FIXME: we should be able to design DIEEntry reliance on
1130
// DwarfDebug away.
1131
uint64_t Attr;
1132
if (Ref < InputDIE.getOffset() && !RefInfo.UnclonedReference) {
1133
// We have already cloned that DIE.
1134
uint32_t NewRefOffset =
1135
RefUnit->getStartOffset() + NewRefDie->getOffset();
1136
Attr = NewRefOffset;
1137
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1138
dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
1139
} else {
1140
// A forward reference. Note and fixup later.
1141
Attr = 0xBADDEF;
1142
Unit.noteForwardReference(
1143
NewRefDie, RefUnit, RefInfo.Ctxt,
1144
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1145
dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
1146
}
1147
return U.getRefAddrByteSize();
1148
}
1149
1150
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1151
dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
1152
1153
return AttrSize;
1154
}
1155
1156
void DWARFLinker::DIECloner::cloneExpression(
1157
DataExtractor &Data, DWARFExpression Expression, const DWARFFile &File,
1158
CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer,
1159
int64_t AddrRelocAdjustment, bool IsLittleEndian) {
1160
using Encoding = DWARFExpression::Operation::Encoding;
1161
1162
uint8_t OrigAddressByteSize = Unit.getOrigUnit().getAddressByteSize();
1163
1164
uint64_t OpOffset = 0;
1165
for (auto &Op : Expression) {
1166
auto Desc = Op.getDescription();
1167
// DW_OP_const_type is variable-length and has 3
1168
// operands. Thus far we only support 2.
1169
if ((Desc.Op.size() == 2 && Desc.Op[0] == Encoding::BaseTypeRef) ||
1170
(Desc.Op.size() == 2 && Desc.Op[1] == Encoding::BaseTypeRef &&
1171
Desc.Op[0] != Encoding::Size1))
1172
Linker.reportWarning("Unsupported DW_OP encoding.", File);
1173
1174
if ((Desc.Op.size() == 1 && Desc.Op[0] == Encoding::BaseTypeRef) ||
1175
(Desc.Op.size() == 2 && Desc.Op[1] == Encoding::BaseTypeRef &&
1176
Desc.Op[0] == Encoding::Size1)) {
1177
// This code assumes that the other non-typeref operand fits into 1 byte.
1178
assert(OpOffset < Op.getEndOffset());
1179
uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
1180
assert(ULEBsize <= 16);
1181
1182
// Copy over the operation.
1183
assert(!Op.getSubCode() && "SubOps not yet supported");
1184
OutputBuffer.push_back(Op.getCode());
1185
uint64_t RefOffset;
1186
if (Desc.Op.size() == 1) {
1187
RefOffset = Op.getRawOperand(0);
1188
} else {
1189
OutputBuffer.push_back(Op.getRawOperand(0));
1190
RefOffset = Op.getRawOperand(1);
1191
}
1192
uint32_t Offset = 0;
1193
// Look up the base type. For DW_OP_convert, the operand may be 0 to
1194
// instead indicate the generic type. The same holds for
1195
// DW_OP_reinterpret, which is currently not supported.
1196
if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) {
1197
RefOffset += Unit.getOrigUnit().getOffset();
1198
auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
1199
CompileUnit::DIEInfo &Info = Unit.getInfo(RefDie);
1200
if (DIE *Clone = Info.Clone)
1201
Offset = Clone->getOffset();
1202
else
1203
Linker.reportWarning(
1204
"base type ref doesn't point to DW_TAG_base_type.", File);
1205
}
1206
uint8_t ULEB[16];
1207
unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
1208
if (RealSize > ULEBsize) {
1209
// Emit the generic type as a fallback.
1210
RealSize = encodeULEB128(0, ULEB, ULEBsize);
1211
Linker.reportWarning("base type ref doesn't fit.", File);
1212
}
1213
assert(RealSize == ULEBsize && "padding failed");
1214
ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
1215
OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
1216
} else if (!Linker.Options.Update && Op.getCode() == dwarf::DW_OP_addrx) {
1217
if (std::optional<object::SectionedAddress> SA =
1218
Unit.getOrigUnit().getAddrOffsetSectionItem(
1219
Op.getRawOperand(0))) {
1220
// DWARFLinker does not use addrx forms since it generates relocated
1221
// addresses. Replace DW_OP_addrx with DW_OP_addr here.
1222
// Argument of DW_OP_addrx should be relocated here as it is not
1223
// processed by applyValidRelocs.
1224
OutputBuffer.push_back(dwarf::DW_OP_addr);
1225
uint64_t LinkedAddress = SA->Address + AddrRelocAdjustment;
1226
if (IsLittleEndian != sys::IsLittleEndianHost)
1227
sys::swapByteOrder(LinkedAddress);
1228
ArrayRef<uint8_t> AddressBytes(
1229
reinterpret_cast<const uint8_t *>(&LinkedAddress),
1230
OrigAddressByteSize);
1231
OutputBuffer.append(AddressBytes.begin(), AddressBytes.end());
1232
} else
1233
Linker.reportWarning("cannot read DW_OP_addrx operand.", File);
1234
} else if (!Linker.Options.Update && Op.getCode() == dwarf::DW_OP_constx) {
1235
if (std::optional<object::SectionedAddress> SA =
1236
Unit.getOrigUnit().getAddrOffsetSectionItem(
1237
Op.getRawOperand(0))) {
1238
// DWARFLinker does not use constx forms since it generates relocated
1239
// addresses. Replace DW_OP_constx with DW_OP_const[*]u here.
1240
// Argument of DW_OP_constx should be relocated here as it is not
1241
// processed by applyValidRelocs.
1242
std::optional<uint8_t> OutOperandKind;
1243
switch (OrigAddressByteSize) {
1244
case 4:
1245
OutOperandKind = dwarf::DW_OP_const4u;
1246
break;
1247
case 8:
1248
OutOperandKind = dwarf::DW_OP_const8u;
1249
break;
1250
default:
1251
Linker.reportWarning(
1252
formatv(("unsupported address size: {0}."), OrigAddressByteSize),
1253
File);
1254
break;
1255
}
1256
1257
if (OutOperandKind) {
1258
OutputBuffer.push_back(*OutOperandKind);
1259
uint64_t LinkedAddress = SA->Address + AddrRelocAdjustment;
1260
if (IsLittleEndian != sys::IsLittleEndianHost)
1261
sys::swapByteOrder(LinkedAddress);
1262
ArrayRef<uint8_t> AddressBytes(
1263
reinterpret_cast<const uint8_t *>(&LinkedAddress),
1264
OrigAddressByteSize);
1265
OutputBuffer.append(AddressBytes.begin(), AddressBytes.end());
1266
}
1267
} else
1268
Linker.reportWarning("cannot read DW_OP_constx operand.", File);
1269
} else {
1270
// Copy over everything else unmodified.
1271
StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
1272
OutputBuffer.append(Bytes.begin(), Bytes.end());
1273
}
1274
OpOffset = Op.getEndOffset();
1275
}
1276
}
1277
1278
unsigned DWARFLinker::DIECloner::cloneBlockAttribute(
1279
DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1280
CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1281
bool IsLittleEndian) {
1282
DIEValueList *Attr;
1283
DIEValue Value;
1284
DIELoc *Loc = nullptr;
1285
DIEBlock *Block = nullptr;
1286
if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
1287
Loc = new (DIEAlloc) DIELoc;
1288
Linker.DIELocs.push_back(Loc);
1289
} else {
1290
Block = new (DIEAlloc) DIEBlock;
1291
Linker.DIEBlocks.push_back(Block);
1292
}
1293
Attr = Loc ? static_cast<DIEValueList *>(Loc)
1294
: static_cast<DIEValueList *>(Block);
1295
1296
DWARFUnit &OrigUnit = Unit.getOrigUnit();
1297
// If the block is a DWARF Expression, clone it into the temporary
1298
// buffer using cloneExpression(), otherwise copy the data directly.
1299
SmallVector<uint8_t, 32> Buffer;
1300
ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
1301
if (DWARFAttribute::mayHaveLocationExpr(AttrSpec.Attr) &&
1302
(Val.isFormClass(DWARFFormValue::FC_Block) ||
1303
Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
1304
DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
1305
IsLittleEndian, OrigUnit.getAddressByteSize());
1306
DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(),
1307
OrigUnit.getFormParams().Format);
1308
cloneExpression(Data, Expr, File, Unit, Buffer,
1309
Unit.getInfo(InputDIE).AddrAdjust, IsLittleEndian);
1310
Bytes = Buffer;
1311
}
1312
for (auto Byte : Bytes)
1313
Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
1314
dwarf::DW_FORM_data1, DIEInteger(Byte));
1315
1316
// FIXME: If DIEBlock and DIELoc just reuses the Size field of
1317
// the DIE class, this "if" could be replaced by
1318
// Attr->setSize(Bytes.size()).
1319
if (Loc)
1320
Loc->setSize(Bytes.size());
1321
else
1322
Block->setSize(Bytes.size());
1323
1324
if (Loc)
1325
Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1326
dwarf::Form(AttrSpec.Form), Loc);
1327
else {
1328
// The expression location data might be updated and exceed the original
1329
// size. Check whether the new data fits into the original form.
1330
if ((AttrSpec.Form == dwarf::DW_FORM_block1 &&
1331
(Bytes.size() > UINT8_MAX)) ||
1332
(AttrSpec.Form == dwarf::DW_FORM_block2 &&
1333
(Bytes.size() > UINT16_MAX)) ||
1334
(AttrSpec.Form == dwarf::DW_FORM_block4 && (Bytes.size() > UINT32_MAX)))
1335
AttrSpec.Form = dwarf::DW_FORM_block;
1336
1337
Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1338
dwarf::Form(AttrSpec.Form), Block);
1339
}
1340
1341
return Die.addValue(DIEAlloc, Value)->sizeOf(OrigUnit.getFormParams());
1342
}
1343
1344
unsigned DWARFLinker::DIECloner::cloneAddressAttribute(
1345
DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
1346
unsigned AttrSize, const DWARFFormValue &Val, const CompileUnit &Unit,
1347
AttributesInfo &Info) {
1348
if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
1349
Info.HasLowPc = true;
1350
1351
if (LLVM_UNLIKELY(Linker.Options.Update)) {
1352
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1353
dwarf::Form(AttrSpec.Form), DIEInteger(Val.getRawUValue()));
1354
return AttrSize;
1355
}
1356
1357
// Cloned Die may have address attributes relocated to a
1358
// totally unrelated value. This can happen:
1359
// - If high_pc is an address (Dwarf version == 2), then it might have been
1360
// relocated to a totally unrelated value (because the end address in the
1361
// object file might be start address of another function which got moved
1362
// independently by the linker).
1363
// - If address relocated in an inline_subprogram that happens at the
1364
// beginning of its inlining function.
1365
// To avoid above cases and to not apply relocation twice (in
1366
// applyValidRelocs and here), read address attribute from InputDIE and apply
1367
// Info.PCOffset here.
1368
1369
std::optional<DWARFFormValue> AddrAttribute = InputDIE.find(AttrSpec.Attr);
1370
if (!AddrAttribute)
1371
llvm_unreachable("Cann't find attribute.");
1372
1373
std::optional<uint64_t> Addr = AddrAttribute->getAsAddress();
1374
if (!Addr) {
1375
Linker.reportWarning("Cann't read address attribute value.", ObjFile);
1376
return 0;
1377
}
1378
1379
if (InputDIE.getTag() == dwarf::DW_TAG_compile_unit &&
1380
AttrSpec.Attr == dwarf::DW_AT_low_pc) {
1381
if (std::optional<uint64_t> LowPC = Unit.getLowPc())
1382
Addr = *LowPC;
1383
else
1384
return 0;
1385
} else if (InputDIE.getTag() == dwarf::DW_TAG_compile_unit &&
1386
AttrSpec.Attr == dwarf::DW_AT_high_pc) {
1387
if (uint64_t HighPc = Unit.getHighPc())
1388
Addr = HighPc;
1389
else
1390
return 0;
1391
} else {
1392
*Addr += Info.PCOffset;
1393
}
1394
1395
if (AttrSpec.Form == dwarf::DW_FORM_addr) {
1396
Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
1397
AttrSpec.Form, DIEInteger(*Addr));
1398
return Unit.getOrigUnit().getAddressByteSize();
1399
}
1400
1401
auto AddrIndex = AddrPool.getValueIndex(*Addr);
1402
1403
return Die
1404
.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
1405
dwarf::Form::DW_FORM_addrx, DIEInteger(AddrIndex))
1406
->sizeOf(Unit.getOrigUnit().getFormParams());
1407
}
1408
1409
unsigned DWARFLinker::DIECloner::cloneScalarAttribute(
1410
DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1411
CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1412
unsigned AttrSize, AttributesInfo &Info) {
1413
uint64_t Value;
1414
1415
// Check for the offset to the macro table. If offset is incorrect then we
1416
// need to remove the attribute.
1417
if (AttrSpec.Attr == dwarf::DW_AT_macro_info) {
1418
if (std::optional<uint64_t> Offset = Val.getAsSectionOffset()) {
1419
const llvm::DWARFDebugMacro *Macro = File.Dwarf->getDebugMacinfo();
1420
if (Macro == nullptr || !Macro->hasEntryForOffset(*Offset))
1421
return 0;
1422
}
1423
}
1424
1425
if (AttrSpec.Attr == dwarf::DW_AT_macros) {
1426
if (std::optional<uint64_t> Offset = Val.getAsSectionOffset()) {
1427
const llvm::DWARFDebugMacro *Macro = File.Dwarf->getDebugMacro();
1428
if (Macro == nullptr || !Macro->hasEntryForOffset(*Offset))
1429
return 0;
1430
}
1431
}
1432
1433
if (AttrSpec.Attr == dwarf::DW_AT_str_offsets_base) {
1434
// DWARFLinker generates common .debug_str_offsets table used for all
1435
// compile units. The offset to the common .debug_str_offsets table is 8 on
1436
// DWARF32.
1437
Info.AttrStrOffsetBaseSeen = true;
1438
return Die
1439
.addValue(DIEAlloc, dwarf::DW_AT_str_offsets_base,
1440
dwarf::DW_FORM_sec_offset, DIEInteger(8))
1441
->sizeOf(Unit.getOrigUnit().getFormParams());
1442
}
1443
1444
if (LLVM_UNLIKELY(Linker.Options.Update)) {
1445
if (auto OptionalValue = Val.getAsUnsignedConstant())
1446
Value = *OptionalValue;
1447
else if (auto OptionalValue = Val.getAsSignedConstant())
1448
Value = *OptionalValue;
1449
else if (auto OptionalValue = Val.getAsSectionOffset())
1450
Value = *OptionalValue;
1451
else {
1452
Linker.reportWarning(
1453
"Unsupported scalar attribute form. Dropping attribute.", File,
1454
&InputDIE);
1455
return 0;
1456
}
1457
if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1458
Info.IsDeclaration = true;
1459
1460
if (AttrSpec.Form == dwarf::DW_FORM_loclistx)
1461
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1462
dwarf::Form(AttrSpec.Form), DIELocList(Value));
1463
else
1464
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1465
dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1466
return AttrSize;
1467
}
1468
1469
[[maybe_unused]] dwarf::Form OriginalForm = AttrSpec.Form;
1470
if (AttrSpec.Form == dwarf::DW_FORM_rnglistx) {
1471
// DWARFLinker does not generate .debug_addr table. Thus we need to change
1472
// all "addrx" related forms to "addr" version. Change DW_FORM_rnglistx
1473
// to DW_FORM_sec_offset here.
1474
std::optional<uint64_t> Index = Val.getAsSectionOffset();
1475
if (!Index) {
1476
Linker.reportWarning("Cannot read the attribute. Dropping.", File,
1477
&InputDIE);
1478
return 0;
1479
}
1480
std::optional<uint64_t> Offset =
1481
Unit.getOrigUnit().getRnglistOffset(*Index);
1482
if (!Offset) {
1483
Linker.reportWarning("Cannot read the attribute. Dropping.", File,
1484
&InputDIE);
1485
return 0;
1486
}
1487
1488
Value = *Offset;
1489
AttrSpec.Form = dwarf::DW_FORM_sec_offset;
1490
AttrSize = Unit.getOrigUnit().getFormParams().getDwarfOffsetByteSize();
1491
} else if (AttrSpec.Form == dwarf::DW_FORM_loclistx) {
1492
// DWARFLinker does not generate .debug_addr table. Thus we need to change
1493
// all "addrx" related forms to "addr" version. Change DW_FORM_loclistx
1494
// to DW_FORM_sec_offset here.
1495
std::optional<uint64_t> Index = Val.getAsSectionOffset();
1496
if (!Index) {
1497
Linker.reportWarning("Cannot read the attribute. Dropping.", File,
1498
&InputDIE);
1499
return 0;
1500
}
1501
std::optional<uint64_t> Offset =
1502
Unit.getOrigUnit().getLoclistOffset(*Index);
1503
if (!Offset) {
1504
Linker.reportWarning("Cannot read the attribute. Dropping.", File,
1505
&InputDIE);
1506
return 0;
1507
}
1508
1509
Value = *Offset;
1510
AttrSpec.Form = dwarf::DW_FORM_sec_offset;
1511
AttrSize = Unit.getOrigUnit().getFormParams().getDwarfOffsetByteSize();
1512
} else if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
1513
Die.getTag() == dwarf::DW_TAG_compile_unit) {
1514
std::optional<uint64_t> LowPC = Unit.getLowPc();
1515
if (!LowPC)
1516
return 0;
1517
// Dwarf >= 4 high_pc is an size, not an address.
1518
Value = Unit.getHighPc() - *LowPC;
1519
} else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
1520
Value = *Val.getAsSectionOffset();
1521
else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
1522
Value = *Val.getAsSignedConstant();
1523
else if (auto OptionalValue = Val.getAsUnsignedConstant())
1524
Value = *OptionalValue;
1525
else {
1526
Linker.reportWarning(
1527
"Unsupported scalar attribute form. Dropping attribute.", File,
1528
&InputDIE);
1529
return 0;
1530
}
1531
1532
DIE::value_iterator Patch =
1533
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1534
dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1535
if (AttrSpec.Attr == dwarf::DW_AT_ranges ||
1536
AttrSpec.Attr == dwarf::DW_AT_start_scope) {
1537
Unit.noteRangeAttribute(Die, Patch);
1538
Info.HasRanges = true;
1539
} else if (DWARFAttribute::mayHaveLocationList(AttrSpec.Attr) &&
1540
dwarf::doesFormBelongToClass(AttrSpec.Form,
1541
DWARFFormValue::FC_SectionOffset,
1542
Unit.getOrigUnit().getVersion())) {
1543
1544
CompileUnit::DIEInfo &LocationDieInfo = Unit.getInfo(InputDIE);
1545
Unit.noteLocationAttribute({Patch, LocationDieInfo.InDebugMap
1546
? LocationDieInfo.AddrAdjust
1547
: Info.PCOffset});
1548
} else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1549
Info.IsDeclaration = true;
1550
1551
// check that all dwarf::DW_FORM_rnglistx are handled previously.
1552
assert((Info.HasRanges || (OriginalForm != dwarf::DW_FORM_rnglistx)) &&
1553
"Unhandled DW_FORM_rnglistx attribute");
1554
1555
return AttrSize;
1556
}
1557
1558
/// Clone \p InputDIE's attribute described by \p AttrSpec with
1559
/// value \p Val, and add it to \p Die.
1560
/// \returns the size of the cloned attribute.
1561
unsigned DWARFLinker::DIECloner::cloneAttribute(
1562
DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1563
CompileUnit &Unit, const DWARFFormValue &Val, const AttributeSpec AttrSpec,
1564
unsigned AttrSize, AttributesInfo &Info, bool IsLittleEndian) {
1565
const DWARFUnit &U = Unit.getOrigUnit();
1566
1567
switch (AttrSpec.Form) {
1568
case dwarf::DW_FORM_strp:
1569
case dwarf::DW_FORM_line_strp:
1570
case dwarf::DW_FORM_string:
1571
case dwarf::DW_FORM_strx:
1572
case dwarf::DW_FORM_strx1:
1573
case dwarf::DW_FORM_strx2:
1574
case dwarf::DW_FORM_strx3:
1575
case dwarf::DW_FORM_strx4:
1576
return cloneStringAttribute(Die, AttrSpec, Val, U, Info);
1577
case dwarf::DW_FORM_ref_addr:
1578
case dwarf::DW_FORM_ref1:
1579
case dwarf::DW_FORM_ref2:
1580
case dwarf::DW_FORM_ref4:
1581
case dwarf::DW_FORM_ref8:
1582
return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
1583
File, Unit);
1584
case dwarf::DW_FORM_block:
1585
case dwarf::DW_FORM_block1:
1586
case dwarf::DW_FORM_block2:
1587
case dwarf::DW_FORM_block4:
1588
case dwarf::DW_FORM_exprloc:
1589
return cloneBlockAttribute(Die, InputDIE, File, Unit, AttrSpec, Val,
1590
IsLittleEndian);
1591
case dwarf::DW_FORM_addr:
1592
case dwarf::DW_FORM_addrx:
1593
case dwarf::DW_FORM_addrx1:
1594
case dwarf::DW_FORM_addrx2:
1595
case dwarf::DW_FORM_addrx3:
1596
case dwarf::DW_FORM_addrx4:
1597
return cloneAddressAttribute(Die, InputDIE, AttrSpec, AttrSize, Val, Unit,
1598
Info);
1599
case dwarf::DW_FORM_data1:
1600
case dwarf::DW_FORM_data2:
1601
case dwarf::DW_FORM_data4:
1602
case dwarf::DW_FORM_data8:
1603
case dwarf::DW_FORM_udata:
1604
case dwarf::DW_FORM_sdata:
1605
case dwarf::DW_FORM_sec_offset:
1606
case dwarf::DW_FORM_flag:
1607
case dwarf::DW_FORM_flag_present:
1608
case dwarf::DW_FORM_rnglistx:
1609
case dwarf::DW_FORM_loclistx:
1610
case dwarf::DW_FORM_implicit_const:
1611
return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val,
1612
AttrSize, Info);
1613
default:
1614
Linker.reportWarning("Unsupported attribute form " +
1615
dwarf::FormEncodingString(AttrSpec.Form) +
1616
" in cloneAttribute. Dropping.",
1617
File, &InputDIE);
1618
}
1619
1620
return 0;
1621
}
1622
1623
void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit,
1624
const DIE *Die,
1625
DwarfStringPoolEntryRef Name,
1626
OffsetsStringPool &StringPool,
1627
bool SkipPubSection) {
1628
std::optional<ObjCSelectorNames> Names =
1629
getObjCNamesIfSelector(Name.getString());
1630
if (!Names)
1631
return;
1632
Unit.addNameAccelerator(Die, StringPool.getEntry(Names->Selector),
1633
SkipPubSection);
1634
Unit.addObjCAccelerator(Die, StringPool.getEntry(Names->ClassName),
1635
SkipPubSection);
1636
if (Names->ClassNameNoCategory)
1637
Unit.addObjCAccelerator(
1638
Die, StringPool.getEntry(*Names->ClassNameNoCategory), SkipPubSection);
1639
if (Names->MethodNameNoCategory)
1640
Unit.addNameAccelerator(
1641
Die, StringPool.getEntry(*Names->MethodNameNoCategory), SkipPubSection);
1642
}
1643
1644
static bool
1645
shouldSkipAttribute(bool Update,
1646
DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
1647
bool SkipPC) {
1648
switch (AttrSpec.Attr) {
1649
default:
1650
return false;
1651
case dwarf::DW_AT_low_pc:
1652
case dwarf::DW_AT_high_pc:
1653
case dwarf::DW_AT_ranges:
1654
return !Update && SkipPC;
1655
case dwarf::DW_AT_rnglists_base:
1656
// In case !Update the .debug_addr table is not generated/preserved.
1657
// Thus instead of DW_FORM_rnglistx the DW_FORM_sec_offset is used.
1658
// Since DW_AT_rnglists_base is used for only DW_FORM_rnglistx the
1659
// DW_AT_rnglists_base is removed.
1660
return !Update;
1661
case dwarf::DW_AT_loclists_base:
1662
// In case !Update the .debug_addr table is not generated/preserved.
1663
// Thus instead of DW_FORM_loclistx the DW_FORM_sec_offset is used.
1664
// Since DW_AT_loclists_base is used for only DW_FORM_loclistx the
1665
// DW_AT_loclists_base is removed.
1666
return !Update;
1667
case dwarf::DW_AT_location:
1668
case dwarf::DW_AT_frame_base:
1669
return !Update && SkipPC;
1670
}
1671
}
1672
1673
struct AttributeLinkedOffsetFixup {
1674
int64_t LinkedOffsetFixupVal;
1675
uint64_t InputAttrStartOffset;
1676
uint64_t InputAttrEndOffset;
1677
};
1678
1679
DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE,
1680
const DWARFFile &File, CompileUnit &Unit,
1681
int64_t PCOffset, uint32_t OutOffset,
1682
unsigned Flags, bool IsLittleEndian,
1683
DIE *Die) {
1684
DWARFUnit &U = Unit.getOrigUnit();
1685
unsigned Idx = U.getDIEIndex(InputDIE);
1686
CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
1687
1688
// Should the DIE appear in the output?
1689
if (!Unit.getInfo(Idx).Keep)
1690
return nullptr;
1691
1692
uint64_t Offset = InputDIE.getOffset();
1693
assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
1694
if (!Die) {
1695
// The DIE might have been already created by a forward reference
1696
// (see cloneDieReferenceAttribute()).
1697
if (!Info.Clone)
1698
Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
1699
Die = Info.Clone;
1700
}
1701
1702
assert(Die->getTag() == InputDIE.getTag());
1703
Die->setOffset(OutOffset);
1704
if (isODRCanonicalCandidate(InputDIE, Unit) && Info.Ctxt &&
1705
(Info.Ctxt->getCanonicalDIEOffset() == 0)) {
1706
if (!Info.Ctxt->hasCanonicalDIE())
1707
Info.Ctxt->setHasCanonicalDIE();
1708
// We are about to emit a DIE that is the root of its own valid
1709
// DeclContext tree. Make the current offset the canonical offset
1710
// for this context.
1711
Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
1712
}
1713
1714
// Extract and clone every attribute.
1715
DWARFDataExtractor Data = U.getDebugInfoExtractor();
1716
// Point to the next DIE (generally there is always at least a NULL
1717
// entry after the current one). If this is a lone
1718
// DW_TAG_compile_unit without any children, point to the next unit.
1719
uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
1720
? U.getDIEAtIndex(Idx + 1).getOffset()
1721
: U.getNextUnitOffset();
1722
AttributesInfo AttrInfo;
1723
1724
// We could copy the data only if we need to apply a relocation to it. After
1725
// testing, it seems there is no performance downside to doing the copy
1726
// unconditionally, and it makes the code simpler.
1727
SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
1728
Data =
1729
DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
1730
1731
// Modify the copy with relocated addresses.
1732
ObjFile.Addresses->applyValidRelocs(DIECopy, Offset, Data.isLittleEndian());
1733
1734
// Reset the Offset to 0 as we will be working on the local copy of
1735
// the data.
1736
Offset = 0;
1737
1738
const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
1739
Offset += getULEB128Size(Abbrev->getCode());
1740
1741
// We are entering a subprogram. Get and propagate the PCOffset.
1742
if (Die->getTag() == dwarf::DW_TAG_subprogram)
1743
PCOffset = Info.AddrAdjust;
1744
AttrInfo.PCOffset = PCOffset;
1745
1746
if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
1747
Flags |= TF_InFunctionScope;
1748
if (!Info.InDebugMap && LLVM_LIKELY(!Update))
1749
Flags |= TF_SkipPC;
1750
} else if (Abbrev->getTag() == dwarf::DW_TAG_variable) {
1751
// Function-local globals could be in the debug map even when the function
1752
// is not, e.g., inlined functions.
1753
if ((Flags & TF_InFunctionScope) && Info.InDebugMap)
1754
Flags &= ~TF_SkipPC;
1755
// Location expressions referencing an address which is not in debug map
1756
// should be deleted.
1757
else if (!Info.InDebugMap && Info.HasLocationExpressionAddr &&
1758
LLVM_LIKELY(!Update))
1759
Flags |= TF_SkipPC;
1760
}
1761
1762
std::optional<StringRef> LibraryInstallName =
1763
ObjFile.Addresses->getLibraryInstallName();
1764
SmallVector<AttributeLinkedOffsetFixup> AttributesFixups;
1765
for (const auto &AttrSpec : Abbrev->attributes()) {
1766
if (shouldSkipAttribute(Update, AttrSpec, Flags & TF_SkipPC)) {
1767
DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
1768
U.getFormParams());
1769
continue;
1770
}
1771
1772
AttributeLinkedOffsetFixup CurAttrFixup;
1773
CurAttrFixup.InputAttrStartOffset = InputDIE.getOffset() + Offset;
1774
CurAttrFixup.LinkedOffsetFixupVal =
1775
Unit.getStartOffset() + OutOffset - CurAttrFixup.InputAttrStartOffset;
1776
1777
DWARFFormValue Val = AttrSpec.getFormValue();
1778
uint64_t AttrSize = Offset;
1779
Val.extractValue(Data, &Offset, U.getFormParams(), &U);
1780
CurAttrFixup.InputAttrEndOffset = InputDIE.getOffset() + Offset;
1781
AttrSize = Offset - AttrSize;
1782
1783
uint64_t FinalAttrSize =
1784
cloneAttribute(*Die, InputDIE, File, Unit, Val, AttrSpec, AttrSize,
1785
AttrInfo, IsLittleEndian);
1786
if (FinalAttrSize != 0 && ObjFile.Addresses->needToSaveValidRelocs())
1787
AttributesFixups.push_back(CurAttrFixup);
1788
1789
OutOffset += FinalAttrSize;
1790
}
1791
1792
uint16_t Tag = InputDIE.getTag();
1793
// Add the DW_AT_APPLE_origin attribute to Compile Unit die if we have
1794
// an install name and the DWARF doesn't have the attribute yet.
1795
const bool NeedsAppleOrigin = (Tag == dwarf::DW_TAG_compile_unit) &&
1796
LibraryInstallName.has_value() &&
1797
!AttrInfo.HasAppleOrigin;
1798
if (NeedsAppleOrigin) {
1799
auto StringEntry = DebugStrPool.getEntry(LibraryInstallName.value());
1800
Die->addValue(DIEAlloc, dwarf::Attribute(dwarf::DW_AT_APPLE_origin),
1801
dwarf::DW_FORM_strp, DIEInteger(StringEntry.getOffset()));
1802
AttrInfo.Name = StringEntry;
1803
OutOffset += 4;
1804
}
1805
1806
// Look for accelerator entries.
1807
// FIXME: This is slightly wrong. An inline_subroutine without a
1808
// low_pc, but with AT_ranges might be interesting to get into the
1809
// accelerator tables too. For now stick with dsymutil's behavior.
1810
if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
1811
Tag != dwarf::DW_TAG_compile_unit &&
1812
getDIENames(InputDIE, AttrInfo, DebugStrPool,
1813
Tag != dwarf::DW_TAG_inlined_subroutine)) {
1814
if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
1815
Unit.addNameAccelerator(Die, AttrInfo.MangledName,
1816
Tag == dwarf::DW_TAG_inlined_subroutine);
1817
if (AttrInfo.Name) {
1818
if (AttrInfo.NameWithoutTemplate)
1819
Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
1820
/* SkipPubSection */ true);
1821
Unit.addNameAccelerator(Die, AttrInfo.Name,
1822
Tag == dwarf::DW_TAG_inlined_subroutine);
1823
}
1824
if (AttrInfo.Name)
1825
addObjCAccelerator(Unit, Die, AttrInfo.Name, DebugStrPool,
1826
/* SkipPubSection =*/true);
1827
1828
} else if (Tag == dwarf::DW_TAG_namespace) {
1829
if (!AttrInfo.Name)
1830
AttrInfo.Name = DebugStrPool.getEntry("(anonymous namespace)");
1831
Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
1832
} else if (Tag == dwarf::DW_TAG_imported_declaration && AttrInfo.Name) {
1833
Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
1834
} else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
1835
getDIENames(InputDIE, AttrInfo, DebugStrPool) && AttrInfo.Name &&
1836
AttrInfo.Name.getString()[0]) {
1837
uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File);
1838
uint64_t RuntimeLang =
1839
dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
1840
.value_or(0);
1841
bool ObjCClassIsImplementation =
1842
(RuntimeLang == dwarf::DW_LANG_ObjC ||
1843
RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
1844
dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
1845
.value_or(0);
1846
Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
1847
Hash);
1848
}
1849
1850
// Determine whether there are any children that we want to keep.
1851
bool HasChildren = false;
1852
for (auto Child : InputDIE.children()) {
1853
unsigned Idx = U.getDIEIndex(Child);
1854
if (Unit.getInfo(Idx).Keep) {
1855
HasChildren = true;
1856
break;
1857
}
1858
}
1859
1860
if (Unit.getOrigUnit().getVersion() >= 5 && !AttrInfo.AttrStrOffsetBaseSeen &&
1861
Die->getTag() == dwarf::DW_TAG_compile_unit) {
1862
// No DW_AT_str_offsets_base seen, add it to the DIE.
1863
Die->addValue(DIEAlloc, dwarf::DW_AT_str_offsets_base,
1864
dwarf::DW_FORM_sec_offset, DIEInteger(8));
1865
OutOffset += 4;
1866
}
1867
1868
DIEAbbrev NewAbbrev = Die->generateAbbrev();
1869
if (HasChildren)
1870
NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
1871
// Assign a permanent abbrev number
1872
Linker.assignAbbrev(NewAbbrev);
1873
Die->setAbbrevNumber(NewAbbrev.getNumber());
1874
1875
uint64_t AbbrevNumberSize = getULEB128Size(Die->getAbbrevNumber());
1876
1877
// Add the size of the abbreviation number to the output offset.
1878
OutOffset += AbbrevNumberSize;
1879
1880
// Update fixups with the size of the abbreviation number
1881
for (AttributeLinkedOffsetFixup &F : AttributesFixups)
1882
F.LinkedOffsetFixupVal += AbbrevNumberSize;
1883
1884
for (AttributeLinkedOffsetFixup &F : AttributesFixups)
1885
ObjFile.Addresses->updateAndSaveValidRelocs(
1886
Unit.getOrigUnit().getVersion() >= 5, Unit.getOrigUnit().getOffset(),
1887
F.LinkedOffsetFixupVal, F.InputAttrStartOffset, F.InputAttrEndOffset);
1888
1889
if (!HasChildren) {
1890
// Update our size.
1891
Die->setSize(OutOffset - Die->getOffset());
1892
return Die;
1893
}
1894
1895
// Recursively clone children.
1896
for (auto Child : InputDIE.children()) {
1897
if (DIE *Clone = cloneDIE(Child, File, Unit, PCOffset, OutOffset, Flags,
1898
IsLittleEndian)) {
1899
Die->addChild(Clone);
1900
OutOffset = Clone->getOffset() + Clone->getSize();
1901
}
1902
}
1903
1904
// Account for the end of children marker.
1905
OutOffset += sizeof(int8_t);
1906
// Update our size.
1907
Die->setSize(OutOffset - Die->getOffset());
1908
return Die;
1909
}
1910
1911
/// Patch the input object file relevant debug_ranges or debug_rnglists
1912
/// entries and emit them in the output file. Update the relevant attributes
1913
/// to point at the new entries.
1914
void DWARFLinker::generateUnitRanges(CompileUnit &Unit, const DWARFFile &File,
1915
DebugDieValuePool &AddrPool) const {
1916
if (LLVM_UNLIKELY(Options.Update))
1917
return;
1918
1919
const auto &FunctionRanges = Unit.getFunctionRanges();
1920
1921
// Build set of linked address ranges for unit function ranges.
1922
AddressRanges LinkedFunctionRanges;
1923
for (const AddressRangeValuePair &Range : FunctionRanges)
1924
LinkedFunctionRanges.insert(
1925
{Range.Range.start() + Range.Value, Range.Range.end() + Range.Value});
1926
1927
// Emit LinkedFunctionRanges into .debug_aranges
1928
if (!LinkedFunctionRanges.empty())
1929
TheDwarfEmitter->emitDwarfDebugArangesTable(Unit, LinkedFunctionRanges);
1930
1931
RngListAttributesTy AllRngListAttributes = Unit.getRangesAttributes();
1932
std::optional<PatchLocation> UnitRngListAttribute =
1933
Unit.getUnitRangesAttribute();
1934
1935
if (!AllRngListAttributes.empty() || UnitRngListAttribute) {
1936
std::optional<AddressRangeValuePair> CachedRange;
1937
MCSymbol *EndLabel = TheDwarfEmitter->emitDwarfDebugRangeListHeader(Unit);
1938
1939
// Read original address ranges, apply relocation value, emit linked address
1940
// ranges.
1941
for (PatchLocation &AttributePatch : AllRngListAttributes) {
1942
// Get ranges from the source DWARF corresponding to the current
1943
// attribute.
1944
AddressRanges LinkedRanges;
1945
if (Expected<DWARFAddressRangesVector> OriginalRanges =
1946
Unit.getOrigUnit().findRnglistFromOffset(AttributePatch.get())) {
1947
// Apply relocation adjustment.
1948
for (const auto &Range : *OriginalRanges) {
1949
if (!CachedRange || !CachedRange->Range.contains(Range.LowPC))
1950
CachedRange = FunctionRanges.getRangeThatContains(Range.LowPC);
1951
1952
// All range entries should lie in the function range.
1953
if (!CachedRange) {
1954
reportWarning("inconsistent range data.", File);
1955
continue;
1956
}
1957
1958
// Store range for emiting.
1959
LinkedRanges.insert({Range.LowPC + CachedRange->Value,
1960
Range.HighPC + CachedRange->Value});
1961
}
1962
} else {
1963
llvm::consumeError(OriginalRanges.takeError());
1964
reportWarning("invalid range list ignored.", File);
1965
}
1966
1967
// Emit linked ranges.
1968
TheDwarfEmitter->emitDwarfDebugRangeListFragment(
1969
Unit, LinkedRanges, AttributePatch, AddrPool);
1970
}
1971
1972
// Emit ranges for Unit AT_ranges attribute.
1973
if (UnitRngListAttribute.has_value())
1974
TheDwarfEmitter->emitDwarfDebugRangeListFragment(
1975
Unit, LinkedFunctionRanges, *UnitRngListAttribute, AddrPool);
1976
1977
// Emit ranges footer.
1978
TheDwarfEmitter->emitDwarfDebugRangeListFooter(Unit, EndLabel);
1979
}
1980
}
1981
1982
void DWARFLinker::DIECloner::generateUnitLocations(
1983
CompileUnit &Unit, const DWARFFile &File,
1984
ExpressionHandlerRef ExprHandler) {
1985
if (LLVM_UNLIKELY(Linker.Options.Update))
1986
return;
1987
1988
const LocListAttributesTy &AllLocListAttributes =
1989
Unit.getLocationAttributes();
1990
1991
if (AllLocListAttributes.empty())
1992
return;
1993
1994
// Emit locations list table header.
1995
MCSymbol *EndLabel = Emitter->emitDwarfDebugLocListHeader(Unit);
1996
1997
for (auto &CurLocAttr : AllLocListAttributes) {
1998
// Get location expressions vector corresponding to the current attribute
1999
// from the source DWARF.
2000
Expected<DWARFLocationExpressionsVector> OriginalLocations =
2001
Unit.getOrigUnit().findLoclistFromOffset(CurLocAttr.get());
2002
2003
if (!OriginalLocations) {
2004
llvm::consumeError(OriginalLocations.takeError());
2005
Linker.reportWarning("Invalid location attribute ignored.", File);
2006
continue;
2007
}
2008
2009
DWARFLocationExpressionsVector LinkedLocationExpressions;
2010
for (DWARFLocationExpression &CurExpression : *OriginalLocations) {
2011
DWARFLocationExpression LinkedExpression;
2012
2013
if (CurExpression.Range) {
2014
// Relocate address range.
2015
LinkedExpression.Range = {
2016
CurExpression.Range->LowPC + CurLocAttr.RelocAdjustment,
2017
CurExpression.Range->HighPC + CurLocAttr.RelocAdjustment};
2018
}
2019
2020
// Clone expression.
2021
LinkedExpression.Expr.reserve(CurExpression.Expr.size());
2022
ExprHandler(CurExpression.Expr, LinkedExpression.Expr,
2023
CurLocAttr.RelocAdjustment);
2024
2025
LinkedLocationExpressions.push_back(LinkedExpression);
2026
}
2027
2028
// Emit locations list table fragment corresponding to the CurLocAttr.
2029
Emitter->emitDwarfDebugLocListFragment(Unit, LinkedLocationExpressions,
2030
CurLocAttr, AddrPool);
2031
}
2032
2033
// Emit locations list table footer.
2034
Emitter->emitDwarfDebugLocListFooter(Unit, EndLabel);
2035
}
2036
2037
static void patchAddrBase(DIE &Die, DIEInteger Offset) {
2038
for (auto &V : Die.values())
2039
if (V.getAttribute() == dwarf::DW_AT_addr_base) {
2040
V = DIEValue(V.getAttribute(), V.getForm(), Offset);
2041
return;
2042
}
2043
2044
llvm_unreachable("Didn't find a DW_AT_addr_base in cloned DIE!");
2045
}
2046
2047
void DWARFLinker::DIECloner::emitDebugAddrSection(
2048
CompileUnit &Unit, const uint16_t DwarfVersion) const {
2049
2050
if (LLVM_UNLIKELY(Linker.Options.Update))
2051
return;
2052
2053
if (DwarfVersion < 5)
2054
return;
2055
2056
if (AddrPool.getValues().empty())
2057
return;
2058
2059
MCSymbol *EndLabel = Emitter->emitDwarfDebugAddrsHeader(Unit);
2060
patchAddrBase(*Unit.getOutputUnitDIE(),
2061
DIEInteger(Emitter->getDebugAddrSectionSize()));
2062
Emitter->emitDwarfDebugAddrs(AddrPool.getValues(),
2063
Unit.getOrigUnit().getAddressByteSize());
2064
Emitter->emitDwarfDebugAddrsFooter(Unit, EndLabel);
2065
}
2066
2067
/// Insert the new line info sequence \p Seq into the current
2068
/// set of already linked line info \p Rows.
2069
static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
2070
std::vector<DWARFDebugLine::Row> &Rows) {
2071
if (Seq.empty())
2072
return;
2073
2074
if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
2075
llvm::append_range(Rows, Seq);
2076
Seq.clear();
2077
return;
2078
}
2079
2080
object::SectionedAddress Front = Seq.front().Address;
2081
auto InsertPoint = partition_point(
2082
Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });
2083
2084
// FIXME: this only removes the unneeded end_sequence if the
2085
// sequences have been inserted in order. Using a global sort like
2086
// described in generateLineTableForUnit() and delaying the end_sequene
2087
// elimination to emitLineTableForUnit() we can get rid of all of them.
2088
if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
2089
InsertPoint->EndSequence) {
2090
*InsertPoint = Seq.front();
2091
Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
2092
} else {
2093
Rows.insert(InsertPoint, Seq.begin(), Seq.end());
2094
}
2095
2096
Seq.clear();
2097
}
2098
2099
static void patchStmtList(DIE &Die, DIEInteger Offset) {
2100
for (auto &V : Die.values())
2101
if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
2102
V = DIEValue(V.getAttribute(), V.getForm(), Offset);
2103
return;
2104
}
2105
2106
llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
2107
}
2108
2109
void DWARFLinker::DIECloner::rememberUnitForMacroOffset(CompileUnit &Unit) {
2110
DWARFUnit &OrigUnit = Unit.getOrigUnit();
2111
DWARFDie OrigUnitDie = OrigUnit.getUnitDIE();
2112
2113
if (std::optional<uint64_t> MacroAttr =
2114
dwarf::toSectionOffset(OrigUnitDie.find(dwarf::DW_AT_macros))) {
2115
UnitMacroMap.insert(std::make_pair(*MacroAttr, &Unit));
2116
return;
2117
}
2118
2119
if (std::optional<uint64_t> MacroAttr =
2120
dwarf::toSectionOffset(OrigUnitDie.find(dwarf::DW_AT_macro_info))) {
2121
UnitMacroMap.insert(std::make_pair(*MacroAttr, &Unit));
2122
return;
2123
}
2124
}
2125
2126
void DWARFLinker::DIECloner::generateLineTableForUnit(CompileUnit &Unit) {
2127
if (LLVM_UNLIKELY(Emitter == nullptr))
2128
return;
2129
2130
// Check whether DW_AT_stmt_list attribute is presented.
2131
DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
2132
auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
2133
if (!StmtList)
2134
return;
2135
2136
// Update the cloned DW_AT_stmt_list with the correct debug_line offset.
2137
if (auto *OutputDIE = Unit.getOutputUnitDIE())
2138
patchStmtList(*OutputDIE, DIEInteger(Emitter->getLineSectionSize()));
2139
2140
if (const DWARFDebugLine::LineTable *LT =
2141
ObjFile.Dwarf->getLineTableForUnit(&Unit.getOrigUnit())) {
2142
2143
DWARFDebugLine::LineTable LineTable;
2144
2145
// Set Line Table header.
2146
LineTable.Prologue = LT->Prologue;
2147
2148
// Set Line Table Rows.
2149
if (Linker.Options.Update) {
2150
LineTable.Rows = LT->Rows;
2151
// If all the line table contains is a DW_LNE_end_sequence, clear the line
2152
// table rows, it will be inserted again in the DWARFStreamer.
2153
if (LineTable.Rows.size() == 1 && LineTable.Rows[0].EndSequence)
2154
LineTable.Rows.clear();
2155
2156
LineTable.Sequences = LT->Sequences;
2157
} else {
2158
// This vector is the output line table.
2159
std::vector<DWARFDebugLine::Row> NewRows;
2160
NewRows.reserve(LT->Rows.size());
2161
2162
// Current sequence of rows being extracted, before being inserted
2163
// in NewRows.
2164
std::vector<DWARFDebugLine::Row> Seq;
2165
2166
const auto &FunctionRanges = Unit.getFunctionRanges();
2167
std::optional<AddressRangeValuePair> CurrRange;
2168
2169
// FIXME: This logic is meant to generate exactly the same output as
2170
// Darwin's classic dsymutil. There is a nicer way to implement this
2171
// by simply putting all the relocated line info in NewRows and simply
2172
// sorting NewRows before passing it to emitLineTableForUnit. This
2173
// should be correct as sequences for a function should stay
2174
// together in the sorted output. There are a few corner cases that
2175
// look suspicious though, and that required to implement the logic
2176
// this way. Revisit that once initial validation is finished.
2177
2178
// Iterate over the object file line info and extract the sequences
2179
// that correspond to linked functions.
2180
for (DWARFDebugLine::Row Row : LT->Rows) {
2181
// Check whether we stepped out of the range. The range is
2182
// half-open, but consider accept the end address of the range if
2183
// it is marked as end_sequence in the input (because in that
2184
// case, the relocation offset is accurate and that entry won't
2185
// serve as the start of another function).
2186
if (!CurrRange || !CurrRange->Range.contains(Row.Address.Address)) {
2187
// We just stepped out of a known range. Insert a end_sequence
2188
// corresponding to the end of the range.
2189
uint64_t StopAddress =
2190
CurrRange ? CurrRange->Range.end() + CurrRange->Value : -1ULL;
2191
CurrRange = FunctionRanges.getRangeThatContains(Row.Address.Address);
2192
if (StopAddress != -1ULL && !Seq.empty()) {
2193
// Insert end sequence row with the computed end address, but
2194
// the same line as the previous one.
2195
auto NextLine = Seq.back();
2196
NextLine.Address.Address = StopAddress;
2197
NextLine.EndSequence = 1;
2198
NextLine.PrologueEnd = 0;
2199
NextLine.BasicBlock = 0;
2200
NextLine.EpilogueBegin = 0;
2201
Seq.push_back(NextLine);
2202
insertLineSequence(Seq, NewRows);
2203
}
2204
2205
if (!CurrRange)
2206
continue;
2207
}
2208
2209
// Ignore empty sequences.
2210
if (Row.EndSequence && Seq.empty())
2211
continue;
2212
2213
// Relocate row address and add it to the current sequence.
2214
Row.Address.Address += CurrRange->Value;
2215
Seq.emplace_back(Row);
2216
2217
if (Row.EndSequence)
2218
insertLineSequence(Seq, NewRows);
2219
}
2220
2221
LineTable.Rows = std::move(NewRows);
2222
}
2223
2224
Emitter->emitLineTableForUnit(LineTable, Unit, DebugStrPool,
2225
DebugLineStrPool);
2226
} else
2227
Linker.reportWarning("Cann't load line table.", ObjFile);
2228
}
2229
2230
void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
2231
for (AccelTableKind AccelTableKind : Options.AccelTables) {
2232
switch (AccelTableKind) {
2233
case AccelTableKind::Apple: {
2234
// Add namespaces.
2235
for (const auto &Namespace : Unit.getNamespaces())
2236
AppleNamespaces.addName(Namespace.Name, Namespace.Die->getOffset() +
2237
Unit.getStartOffset());
2238
// Add names.
2239
for (const auto &Pubname : Unit.getPubnames())
2240
AppleNames.addName(Pubname.Name,
2241
Pubname.Die->getOffset() + Unit.getStartOffset());
2242
// Add types.
2243
for (const auto &Pubtype : Unit.getPubtypes())
2244
AppleTypes.addName(
2245
Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
2246
Pubtype.Die->getTag(),
2247
Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
2248
: 0,
2249
Pubtype.QualifiedNameHash);
2250
// Add ObjC names.
2251
for (const auto &ObjC : Unit.getObjC())
2252
AppleObjc.addName(ObjC.Name,
2253
ObjC.Die->getOffset() + Unit.getStartOffset());
2254
} break;
2255
case AccelTableKind::Pub: {
2256
TheDwarfEmitter->emitPubNamesForUnit(Unit);
2257
TheDwarfEmitter->emitPubTypesForUnit(Unit);
2258
} break;
2259
case AccelTableKind::DebugNames: {
2260
for (const auto &Namespace : Unit.getNamespaces())
2261
DebugNames.addName(
2262
Namespace.Name, Namespace.Die->getOffset(),
2263
DWARF5AccelTableData::getDefiningParentDieOffset(*Namespace.Die),
2264
Namespace.Die->getTag(), Unit.getUniqueID(),
2265
Unit.getTag() == dwarf::DW_TAG_type_unit);
2266
for (const auto &Pubname : Unit.getPubnames())
2267
DebugNames.addName(
2268
Pubname.Name, Pubname.Die->getOffset(),
2269
DWARF5AccelTableData::getDefiningParentDieOffset(*Pubname.Die),
2270
Pubname.Die->getTag(), Unit.getUniqueID(),
2271
Unit.getTag() == dwarf::DW_TAG_type_unit);
2272
for (const auto &Pubtype : Unit.getPubtypes())
2273
DebugNames.addName(
2274
Pubtype.Name, Pubtype.Die->getOffset(),
2275
DWARF5AccelTableData::getDefiningParentDieOffset(*Pubtype.Die),
2276
Pubtype.Die->getTag(), Unit.getUniqueID(),
2277
Unit.getTag() == dwarf::DW_TAG_type_unit);
2278
} break;
2279
}
2280
}
2281
}
2282
2283
/// Read the frame info stored in the object, and emit the
2284
/// patched frame descriptions for the resulting file.
2285
///
2286
/// This is actually pretty easy as the data of the CIEs and FDEs can
2287
/// be considered as black boxes and moved as is. The only thing to do
2288
/// is to patch the addresses in the headers.
2289
void DWARFLinker::patchFrameInfoForObject(LinkContext &Context) {
2290
DWARFContext &OrigDwarf = *Context.File.Dwarf;
2291
unsigned SrcAddrSize = OrigDwarf.getDWARFObj().getAddressSize();
2292
2293
StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
2294
if (FrameData.empty())
2295
return;
2296
2297
RangesTy AllUnitsRanges;
2298
for (std::unique_ptr<CompileUnit> &Unit : Context.CompileUnits) {
2299
for (auto CurRange : Unit->getFunctionRanges())
2300
AllUnitsRanges.insert(CurRange.Range, CurRange.Value);
2301
}
2302
2303
DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
2304
uint64_t InputOffset = 0;
2305
2306
// Store the data of the CIEs defined in this object, keyed by their
2307
// offsets.
2308
DenseMap<uint64_t, StringRef> LocalCIES;
2309
2310
while (Data.isValidOffset(InputOffset)) {
2311
uint64_t EntryOffset = InputOffset;
2312
uint32_t InitialLength = Data.getU32(&InputOffset);
2313
if (InitialLength == 0xFFFFFFFF)
2314
return reportWarning("Dwarf64 bits no supported", Context.File);
2315
2316
uint32_t CIEId = Data.getU32(&InputOffset);
2317
if (CIEId == 0xFFFFFFFF) {
2318
// This is a CIE, store it.
2319
StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
2320
LocalCIES[EntryOffset] = CIEData;
2321
// The -4 is to account for the CIEId we just read.
2322
InputOffset += InitialLength - 4;
2323
continue;
2324
}
2325
2326
uint64_t Loc = Data.getUnsigned(&InputOffset, SrcAddrSize);
2327
2328
// Some compilers seem to emit frame info that doesn't start at
2329
// the function entry point, thus we can't just lookup the address
2330
// in the debug map. Use the AddressInfo's range map to see if the FDE
2331
// describes something that we can relocate.
2332
std::optional<AddressRangeValuePair> Range =
2333
AllUnitsRanges.getRangeThatContains(Loc);
2334
if (!Range) {
2335
// The +4 is to account for the size of the InitialLength field itself.
2336
InputOffset = EntryOffset + InitialLength + 4;
2337
continue;
2338
}
2339
2340
// This is an FDE, and we have a mapping.
2341
// Have we already emitted a corresponding CIE?
2342
StringRef CIEData = LocalCIES[CIEId];
2343
if (CIEData.empty())
2344
return reportWarning("Inconsistent debug_frame content. Dropping.",
2345
Context.File);
2346
2347
// Look if we already emitted a CIE that corresponds to the
2348
// referenced one (the CIE data is the key of that lookup).
2349
auto IteratorInserted = EmittedCIEs.insert(
2350
std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize()));
2351
// If there is no CIE yet for this ID, emit it.
2352
if (IteratorInserted.second) {
2353
LastCIEOffset = TheDwarfEmitter->getFrameSectionSize();
2354
IteratorInserted.first->getValue() = LastCIEOffset;
2355
TheDwarfEmitter->emitCIE(CIEData);
2356
}
2357
2358
// Emit the FDE with updated address and CIE pointer.
2359
// (4 + AddrSize) is the size of the CIEId + initial_location
2360
// fields that will get reconstructed by emitFDE().
2361
unsigned FDERemainingBytes = InitialLength - (4 + SrcAddrSize);
2362
TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), SrcAddrSize,
2363
Loc + Range->Value,
2364
FrameData.substr(InputOffset, FDERemainingBytes));
2365
InputOffset += FDERemainingBytes;
2366
}
2367
}
2368
2369
uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE,
2370
CompileUnit &U,
2371
const DWARFFile &File,
2372
int ChildRecurseDepth) {
2373
const char *Name = nullptr;
2374
DWARFUnit *OrigUnit = &U.getOrigUnit();
2375
CompileUnit *CU = &U;
2376
std::optional<DWARFFormValue> Ref;
2377
2378
while (true) {
2379
if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
2380
Name = CurrentName;
2381
2382
if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
2383
!(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
2384
break;
2385
2386
if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
2387
break;
2388
2389
CompileUnit *RefCU;
2390
if (auto RefDIE =
2391
Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) {
2392
CU = RefCU;
2393
OrigUnit = &RefCU->getOrigUnit();
2394
DIE = RefDIE;
2395
}
2396
}
2397
2398
unsigned Idx = OrigUnit->getDIEIndex(DIE);
2399
if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
2400
Name = "(anonymous namespace)";
2401
2402
if (CU->getInfo(Idx).ParentIdx == 0 ||
2403
// FIXME: dsymutil-classic compatibility. Ignore modules.
2404
CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
2405
dwarf::DW_TAG_module)
2406
return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));
2407
2408
DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
2409
return djbHash(
2410
(Name ? Name : ""),
2411
djbHash((Name ? "::" : ""),
2412
hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth)));
2413
}
2414
2415
static uint64_t getDwoId(const DWARFDie &CUDie) {
2416
auto DwoId = dwarf::toUnsigned(
2417
CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
2418
if (DwoId)
2419
return *DwoId;
2420
return 0;
2421
}
2422
2423
static std::string
2424
remapPath(StringRef Path,
2425
const DWARFLinkerBase::ObjectPrefixMapTy &ObjectPrefixMap) {
2426
if (ObjectPrefixMap.empty())
2427
return Path.str();
2428
2429
SmallString<256> p = Path;
2430
for (const auto &Entry : ObjectPrefixMap)
2431
if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second))
2432
break;
2433
return p.str().str();
2434
}
2435
2436
static std::string
2437
getPCMFile(const DWARFDie &CUDie,
2438
const DWARFLinkerBase::ObjectPrefixMapTy *ObjectPrefixMap) {
2439
std::string PCMFile = dwarf::toString(
2440
CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
2441
2442
if (PCMFile.empty())
2443
return PCMFile;
2444
2445
if (ObjectPrefixMap)
2446
PCMFile = remapPath(PCMFile, *ObjectPrefixMap);
2447
2448
return PCMFile;
2449
}
2450
2451
std::pair<bool, bool> DWARFLinker::isClangModuleRef(const DWARFDie &CUDie,
2452
std::string &PCMFile,
2453
LinkContext &Context,
2454
unsigned Indent,
2455
bool Quiet) {
2456
if (PCMFile.empty())
2457
return std::make_pair(false, false);
2458
2459
// Clang module DWARF skeleton CUs abuse this for the path to the module.
2460
uint64_t DwoId = getDwoId(CUDie);
2461
2462
std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
2463
if (Name.empty()) {
2464
if (!Quiet)
2465
reportWarning("Anonymous module skeleton CU for " + PCMFile,
2466
Context.File);
2467
return std::make_pair(true, true);
2468
}
2469
2470
if (!Quiet && Options.Verbose) {
2471
outs().indent(Indent);
2472
outs() << "Found clang module reference " << PCMFile;
2473
}
2474
2475
auto Cached = ClangModules.find(PCMFile);
2476
if (Cached != ClangModules.end()) {
2477
// FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2478
// fixed in clang, only warn about DWO_id mismatches in verbose mode.
2479
// ASTFileSignatures will change randomly when a module is rebuilt.
2480
if (!Quiet && Options.Verbose && (Cached->second != DwoId))
2481
reportWarning(Twine("hash mismatch: this object file was built against a "
2482
"different version of the module ") +
2483
PCMFile,
2484
Context.File);
2485
if (!Quiet && Options.Verbose)
2486
outs() << " [cached].\n";
2487
return std::make_pair(true, true);
2488
}
2489
2490
return std::make_pair(true, false);
2491
}
2492
2493
bool DWARFLinker::registerModuleReference(const DWARFDie &CUDie,
2494
LinkContext &Context,
2495
ObjFileLoaderTy Loader,
2496
CompileUnitHandlerTy OnCUDieLoaded,
2497
unsigned Indent) {
2498
std::string PCMFile = getPCMFile(CUDie, Options.ObjectPrefixMap);
2499
std::pair<bool, bool> IsClangModuleRef =
2500
isClangModuleRef(CUDie, PCMFile, Context, Indent, false);
2501
2502
if (!IsClangModuleRef.first)
2503
return false;
2504
2505
if (IsClangModuleRef.second)
2506
return true;
2507
2508
if (Options.Verbose)
2509
outs() << " ...\n";
2510
2511
// Cyclic dependencies are disallowed by Clang, but we still
2512
// shouldn't run into an infinite loop, so mark it as processed now.
2513
ClangModules.insert({PCMFile, getDwoId(CUDie)});
2514
2515
if (Error E = loadClangModule(Loader, CUDie, PCMFile, Context, OnCUDieLoaded,
2516
Indent + 2)) {
2517
consumeError(std::move(E));
2518
return false;
2519
}
2520
return true;
2521
}
2522
2523
Error DWARFLinker::loadClangModule(
2524
ObjFileLoaderTy Loader, const DWARFDie &CUDie, const std::string &PCMFile,
2525
LinkContext &Context, CompileUnitHandlerTy OnCUDieLoaded, unsigned Indent) {
2526
2527
uint64_t DwoId = getDwoId(CUDie);
2528
std::string ModuleName = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
2529
2530
/// Using a SmallString<0> because loadClangModule() is recursive.
2531
SmallString<0> Path(Options.PrependPath);
2532
if (sys::path::is_relative(PCMFile))
2533
resolveRelativeObjectPath(Path, CUDie);
2534
sys::path::append(Path, PCMFile);
2535
// Don't use the cached binary holder because we have no thread-safety
2536
// guarantee and the lifetime is limited.
2537
2538
if (Loader == nullptr) {
2539
reportError("Could not load clang module: loader is not specified.\n",
2540
Context.File);
2541
return Error::success();
2542
}
2543
2544
auto ErrOrObj = Loader(Context.File.FileName, Path);
2545
if (!ErrOrObj)
2546
return Error::success();
2547
2548
std::unique_ptr<CompileUnit> Unit;
2549
for (const auto &CU : ErrOrObj->Dwarf->compile_units()) {
2550
OnCUDieLoaded(*CU);
2551
// Recursively get all modules imported by this one.
2552
auto ChildCUDie = CU->getUnitDIE();
2553
if (!ChildCUDie)
2554
continue;
2555
if (!registerModuleReference(ChildCUDie, Context, Loader, OnCUDieLoaded,
2556
Indent)) {
2557
if (Unit) {
2558
std::string Err =
2559
(PCMFile +
2560
": Clang modules are expected to have exactly 1 compile unit.\n");
2561
reportError(Err, Context.File);
2562
return make_error<StringError>(Err, inconvertibleErrorCode());
2563
}
2564
// FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2565
// fixed in clang, only warn about DWO_id mismatches in verbose mode.
2566
// ASTFileSignatures will change randomly when a module is rebuilt.
2567
uint64_t PCMDwoId = getDwoId(ChildCUDie);
2568
if (PCMDwoId != DwoId) {
2569
if (Options.Verbose)
2570
reportWarning(
2571
Twine("hash mismatch: this object file was built against a "
2572
"different version of the module ") +
2573
PCMFile,
2574
Context.File);
2575
// Update the cache entry with the DwoId of the module loaded from disk.
2576
ClangModules[PCMFile] = PCMDwoId;
2577
}
2578
2579
// Add this module.
2580
Unit = std::make_unique<CompileUnit>(*CU, UniqueUnitID++, !Options.NoODR,
2581
ModuleName);
2582
}
2583
}
2584
2585
if (Unit)
2586
Context.ModuleUnits.emplace_back(RefModuleUnit{*ErrOrObj, std::move(Unit)});
2587
2588
return Error::success();
2589
}
2590
2591
uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits(
2592
DWARFContext &DwarfContext, const DWARFFile &File, bool IsLittleEndian) {
2593
uint64_t OutputDebugInfoSize =
2594
(Emitter == nullptr) ? 0 : Emitter->getDebugInfoSectionSize();
2595
const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize;
2596
2597
for (auto &CurrentUnit : CompileUnits) {
2598
const uint16_t DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
2599
const uint32_t UnitHeaderSize = DwarfVersion >= 5 ? 12 : 11;
2600
auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
2601
CurrentUnit->setStartOffset(OutputDebugInfoSize);
2602
if (!InputDIE) {
2603
OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
2604
continue;
2605
}
2606
if (CurrentUnit->getInfo(0).Keep) {
2607
// Clone the InputDIE into your Unit DIE in our compile unit since it
2608
// already has a DIE inside of it.
2609
CurrentUnit->createOutputDIE();
2610
rememberUnitForMacroOffset(*CurrentUnit);
2611
cloneDIE(InputDIE, File, *CurrentUnit, 0 /* PC offset */, UnitHeaderSize,
2612
0, IsLittleEndian, CurrentUnit->getOutputUnitDIE());
2613
}
2614
2615
OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
2616
2617
if (Emitter != nullptr) {
2618
2619
generateLineTableForUnit(*CurrentUnit);
2620
2621
Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
2622
2623
if (LLVM_UNLIKELY(Linker.Options.Update))
2624
continue;
2625
2626
Linker.generateUnitRanges(*CurrentUnit, File, AddrPool);
2627
2628
auto ProcessExpr = [&](SmallVectorImpl<uint8_t> &SrcBytes,
2629
SmallVectorImpl<uint8_t> &OutBytes,
2630
int64_t RelocAdjustment) {
2631
DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
2632
DataExtractor Data(SrcBytes, IsLittleEndian,
2633
OrigUnit.getAddressByteSize());
2634
cloneExpression(Data,
2635
DWARFExpression(Data, OrigUnit.getAddressByteSize(),
2636
OrigUnit.getFormParams().Format),
2637
File, *CurrentUnit, OutBytes, RelocAdjustment,
2638
IsLittleEndian);
2639
};
2640
generateUnitLocations(*CurrentUnit, File, ProcessExpr);
2641
emitDebugAddrSection(*CurrentUnit, DwarfVersion);
2642
}
2643
AddrPool.clear();
2644
}
2645
2646
if (Emitter != nullptr) {
2647
assert(Emitter);
2648
// Emit macro tables.
2649
Emitter->emitMacroTables(File.Dwarf.get(), UnitMacroMap, DebugStrPool);
2650
2651
// Emit all the compile unit's debug information.
2652
for (auto &CurrentUnit : CompileUnits) {
2653
CurrentUnit->fixupForwardReferences();
2654
2655
if (!CurrentUnit->getOutputUnitDIE())
2656
continue;
2657
2658
unsigned DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
2659
2660
assert(Emitter->getDebugInfoSectionSize() ==
2661
CurrentUnit->getStartOffset());
2662
Emitter->emitCompileUnitHeader(*CurrentUnit, DwarfVersion);
2663
Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE());
2664
assert(Emitter->getDebugInfoSectionSize() ==
2665
CurrentUnit->computeNextUnitOffset(DwarfVersion));
2666
}
2667
}
2668
2669
return OutputDebugInfoSize - StartOutputDebugInfoSize;
2670
}
2671
2672
void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) {
2673
TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data,
2674
DebugSectionKind::DebugLoc);
2675
TheDwarfEmitter->emitSectionContents(
2676
Dwarf.getDWARFObj().getRangesSection().Data,
2677
DebugSectionKind::DebugRange);
2678
TheDwarfEmitter->emitSectionContents(
2679
Dwarf.getDWARFObj().getFrameSection().Data, DebugSectionKind::DebugFrame);
2680
TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(),
2681
DebugSectionKind::DebugARanges);
2682
TheDwarfEmitter->emitSectionContents(
2683
Dwarf.getDWARFObj().getAddrSection().Data, DebugSectionKind::DebugAddr);
2684
TheDwarfEmitter->emitSectionContents(
2685
Dwarf.getDWARFObj().getRnglistsSection().Data,
2686
DebugSectionKind::DebugRngLists);
2687
TheDwarfEmitter->emitSectionContents(
2688
Dwarf.getDWARFObj().getLoclistsSection().Data,
2689
DebugSectionKind::DebugLocLists);
2690
}
2691
2692
void DWARFLinker::addObjectFile(DWARFFile &File, ObjFileLoaderTy Loader,
2693
CompileUnitHandlerTy OnCUDieLoaded) {
2694
ObjectContexts.emplace_back(LinkContext(File));
2695
2696
if (ObjectContexts.back().File.Dwarf) {
2697
for (const std::unique_ptr<DWARFUnit> &CU :
2698
ObjectContexts.back().File.Dwarf->compile_units()) {
2699
DWARFDie CUDie = CU->getUnitDIE();
2700
2701
if (!CUDie)
2702
continue;
2703
2704
OnCUDieLoaded(*CU);
2705
2706
if (!LLVM_UNLIKELY(Options.Update))
2707
registerModuleReference(CUDie, ObjectContexts.back(), Loader,
2708
OnCUDieLoaded);
2709
}
2710
}
2711
}
2712
2713
Error DWARFLinker::link() {
2714
assert((Options.TargetDWARFVersion != 0) &&
2715
"TargetDWARFVersion should be set");
2716
2717
// First populate the data structure we need for each iteration of the
2718
// parallel loop.
2719
unsigned NumObjects = ObjectContexts.size();
2720
2721
// This Dwarf string pool which is used for emission. It must be used
2722
// serially as the order of calling getStringOffset matters for
2723
// reproducibility.
2724
OffsetsStringPool DebugStrPool(true);
2725
OffsetsStringPool DebugLineStrPool(false);
2726
DebugDieValuePool StringOffsetPool;
2727
2728
// ODR Contexts for the optimize.
2729
DeclContextTree ODRContexts;
2730
2731
for (LinkContext &OptContext : ObjectContexts) {
2732
if (Options.Verbose)
2733
outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n";
2734
2735
if (!OptContext.File.Dwarf)
2736
continue;
2737
2738
if (Options.VerifyInputDWARF)
2739
verifyInput(OptContext.File);
2740
2741
// Look for relocations that correspond to address map entries.
2742
2743
// there was findvalidrelocations previously ... probably we need to gather
2744
// info here
2745
if (LLVM_LIKELY(!Options.Update) &&
2746
!OptContext.File.Addresses->hasValidRelocs()) {
2747
if (Options.Verbose)
2748
outs() << "No valid relocations found. Skipping.\n";
2749
2750
// Set "Skip" flag as a signal to other loops that we should not
2751
// process this iteration.
2752
OptContext.Skip = true;
2753
continue;
2754
}
2755
2756
// Setup access to the debug info.
2757
if (!OptContext.File.Dwarf)
2758
continue;
2759
2760
// Check whether type units are presented.
2761
if (!OptContext.File.Dwarf->types_section_units().empty()) {
2762
reportWarning("type units are not currently supported: file will "
2763
"be skipped",
2764
OptContext.File);
2765
OptContext.Skip = true;
2766
continue;
2767
}
2768
2769
// Clone all the clang modules with requires extracting the DIE units. We
2770
// don't need the full debug info until the Analyze phase.
2771
OptContext.CompileUnits.reserve(
2772
OptContext.File.Dwarf->getNumCompileUnits());
2773
for (const auto &CU : OptContext.File.Dwarf->compile_units()) {
2774
auto CUDie = CU->getUnitDIE(/*ExtractUnitDIEOnly=*/true);
2775
if (Options.Verbose) {
2776
outs() << "Input compilation unit:";
2777
DIDumpOptions DumpOpts;
2778
DumpOpts.ChildRecurseDepth = 0;
2779
DumpOpts.Verbose = Options.Verbose;
2780
CUDie.dump(outs(), 0, DumpOpts);
2781
}
2782
}
2783
2784
for (auto &CU : OptContext.ModuleUnits) {
2785
if (Error Err = cloneModuleUnit(OptContext, CU, ODRContexts, DebugStrPool,
2786
DebugLineStrPool, StringOffsetPool))
2787
reportWarning(toString(std::move(Err)), CU.File);
2788
}
2789
}
2790
2791
// At this point we know how much data we have emitted. We use this value to
2792
// compare canonical DIE offsets in analyzeContextInfo to see if a definition
2793
// is already emitted, without being affected by canonical die offsets set
2794
// later. This prevents undeterminism when analyze and clone execute
2795
// concurrently, as clone set the canonical DIE offset and analyze reads it.
2796
const uint64_t ModulesEndOffset =
2797
(TheDwarfEmitter == nullptr) ? 0
2798
: TheDwarfEmitter->getDebugInfoSectionSize();
2799
2800
// These variables manage the list of processed object files.
2801
// The mutex and condition variable are to ensure that this is thread safe.
2802
std::mutex ProcessedFilesMutex;
2803
std::condition_variable ProcessedFilesConditionVariable;
2804
BitVector ProcessedFiles(NumObjects, false);
2805
2806
// Analyzing the context info is particularly expensive so it is executed in
2807
// parallel with emitting the previous compile unit.
2808
auto AnalyzeLambda = [&](size_t I) {
2809
auto &Context = ObjectContexts[I];
2810
2811
if (Context.Skip || !Context.File.Dwarf)
2812
return;
2813
2814
for (const auto &CU : Context.File.Dwarf->compile_units()) {
2815
// Previously we only extracted the unit DIEs. We need the full debug info
2816
// now.
2817
auto CUDie = CU->getUnitDIE(/*ExtractUnitDIEOnly=*/false);
2818
std::string PCMFile = getPCMFile(CUDie, Options.ObjectPrefixMap);
2819
2820
if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
2821
!isClangModuleRef(CUDie, PCMFile, Context, 0, true).first) {
2822
Context.CompileUnits.push_back(std::make_unique<CompileUnit>(
2823
*CU, UniqueUnitID++, !Options.NoODR && !Options.Update, ""));
2824
}
2825
}
2826
2827
// Now build the DIE parent links that we will use during the next phase.
2828
for (auto &CurrentUnit : Context.CompileUnits) {
2829
auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
2830
if (!CUDie)
2831
continue;
2832
analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
2833
*CurrentUnit, &ODRContexts.getRoot(), ODRContexts,
2834
ModulesEndOffset, Options.ParseableSwiftInterfaces,
2835
[&](const Twine &Warning, const DWARFDie &DIE) {
2836
reportWarning(Warning, Context.File, &DIE);
2837
});
2838
}
2839
};
2840
2841
// For each object file map how many bytes were emitted.
2842
StringMap<DebugInfoSize> SizeByObject;
2843
2844
// And then the remaining work in serial again.
2845
// Note, although this loop runs in serial, it can run in parallel with
2846
// the analyzeContextInfo loop so long as we process files with indices >=
2847
// than those processed by analyzeContextInfo.
2848
auto CloneLambda = [&](size_t I) {
2849
auto &OptContext = ObjectContexts[I];
2850
if (OptContext.Skip || !OptContext.File.Dwarf)
2851
return;
2852
2853
// Then mark all the DIEs that need to be present in the generated output
2854
// and collect some information about them.
2855
// Note that this loop can not be merged with the previous one because
2856
// cross-cu references require the ParentIdx to be setup for every CU in
2857
// the object file before calling this.
2858
if (LLVM_UNLIKELY(Options.Update)) {
2859
for (auto &CurrentUnit : OptContext.CompileUnits)
2860
CurrentUnit->markEverythingAsKept();
2861
copyInvariantDebugSection(*OptContext.File.Dwarf);
2862
} else {
2863
for (auto &CurrentUnit : OptContext.CompileUnits) {
2864
lookForDIEsToKeep(*OptContext.File.Addresses, OptContext.CompileUnits,
2865
CurrentUnit->getOrigUnit().getUnitDIE(),
2866
OptContext.File, *CurrentUnit, 0);
2867
#ifndef NDEBUG
2868
verifyKeepChain(*CurrentUnit);
2869
#endif
2870
}
2871
}
2872
2873
// The calls to applyValidRelocs inside cloneDIE will walk the reloc
2874
// array again (in the same way findValidRelocsInDebugInfo() did). We
2875
// need to reset the NextValidReloc index to the beginning.
2876
if (OptContext.File.Addresses->hasValidRelocs() ||
2877
LLVM_UNLIKELY(Options.Update)) {
2878
SizeByObject[OptContext.File.FileName].Input =
2879
getDebugInfoSize(*OptContext.File.Dwarf);
2880
SizeByObject[OptContext.File.FileName].Output =
2881
DIECloner(*this, TheDwarfEmitter, OptContext.File, DIEAlloc,
2882
OptContext.CompileUnits, Options.Update, DebugStrPool,
2883
DebugLineStrPool, StringOffsetPool)
2884
.cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File,
2885
OptContext.File.Dwarf->isLittleEndian());
2886
}
2887
if ((TheDwarfEmitter != nullptr) && !OptContext.CompileUnits.empty() &&
2888
LLVM_LIKELY(!Options.Update))
2889
patchFrameInfoForObject(OptContext);
2890
2891
// Clean-up before starting working on the next object.
2892
cleanupAuxiliarryData(OptContext);
2893
};
2894
2895
auto EmitLambda = [&]() {
2896
// Emit everything that's global.
2897
if (TheDwarfEmitter != nullptr) {
2898
TheDwarfEmitter->emitAbbrevs(Abbreviations, Options.TargetDWARFVersion);
2899
TheDwarfEmitter->emitStrings(DebugStrPool);
2900
TheDwarfEmitter->emitStringOffsets(StringOffsetPool.getValues(),
2901
Options.TargetDWARFVersion);
2902
TheDwarfEmitter->emitLineStrings(DebugLineStrPool);
2903
for (AccelTableKind TableKind : Options.AccelTables) {
2904
switch (TableKind) {
2905
case AccelTableKind::Apple:
2906
TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces);
2907
TheDwarfEmitter->emitAppleNames(AppleNames);
2908
TheDwarfEmitter->emitAppleTypes(AppleTypes);
2909
TheDwarfEmitter->emitAppleObjc(AppleObjc);
2910
break;
2911
case AccelTableKind::Pub:
2912
// Already emitted by emitAcceleratorEntriesForUnit.
2913
// Already emitted by emitAcceleratorEntriesForUnit.
2914
break;
2915
case AccelTableKind::DebugNames:
2916
TheDwarfEmitter->emitDebugNames(DebugNames);
2917
break;
2918
}
2919
}
2920
}
2921
};
2922
2923
auto AnalyzeAll = [&]() {
2924
for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2925
AnalyzeLambda(I);
2926
2927
std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2928
ProcessedFiles.set(I);
2929
ProcessedFilesConditionVariable.notify_one();
2930
}
2931
};
2932
2933
auto CloneAll = [&]() {
2934
for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2935
{
2936
std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2937
if (!ProcessedFiles[I]) {
2938
ProcessedFilesConditionVariable.wait(
2939
LockGuard, [&]() { return ProcessedFiles[I]; });
2940
}
2941
}
2942
2943
CloneLambda(I);
2944
}
2945
EmitLambda();
2946
};
2947
2948
// To limit memory usage in the single threaded case, analyze and clone are
2949
// run sequentially so the OptContext is freed after processing each object
2950
// in endDebugObject.
2951
if (Options.Threads == 1) {
2952
for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2953
AnalyzeLambda(I);
2954
CloneLambda(I);
2955
}
2956
EmitLambda();
2957
} else {
2958
DefaultThreadPool Pool(hardware_concurrency(2));
2959
Pool.async(AnalyzeAll);
2960
Pool.async(CloneAll);
2961
Pool.wait();
2962
}
2963
2964
if (Options.Statistics) {
2965
// Create a vector sorted in descending order by output size.
2966
std::vector<std::pair<StringRef, DebugInfoSize>> Sorted;
2967
for (auto &E : SizeByObject)
2968
Sorted.emplace_back(E.first(), E.second);
2969
llvm::sort(Sorted, [](auto &LHS, auto &RHS) {
2970
return LHS.second.Output > RHS.second.Output;
2971
});
2972
2973
auto ComputePercentange = [](int64_t Input, int64_t Output) -> float {
2974
const float Difference = Output - Input;
2975
const float Sum = Input + Output;
2976
if (Sum == 0)
2977
return 0;
2978
return (Difference / (Sum / 2));
2979
};
2980
2981
int64_t InputTotal = 0;
2982
int64_t OutputTotal = 0;
2983
const char *FormatStr = "{0,-45} {1,10}b {2,10}b {3,8:P}\n";
2984
2985
// Print header.
2986
outs() << ".debug_info section size (in bytes)\n";
2987
outs() << "----------------------------------------------------------------"
2988
"---------------\n";
2989
outs() << "Filename Object "
2990
" dSYM Change\n";
2991
outs() << "----------------------------------------------------------------"
2992
"---------------\n";
2993
2994
// Print body.
2995
for (auto &E : Sorted) {
2996
InputTotal += E.second.Input;
2997
OutputTotal += E.second.Output;
2998
llvm::outs() << formatv(
2999
FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input,
3000
E.second.Output, ComputePercentange(E.second.Input, E.second.Output));
3001
}
3002
// Print total and footer.
3003
outs() << "----------------------------------------------------------------"
3004
"---------------\n";
3005
llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal,
3006
ComputePercentange(InputTotal, OutputTotal));
3007
outs() << "----------------------------------------------------------------"
3008
"---------------\n\n";
3009
}
3010
3011
return Error::success();
3012
}
3013
3014
Error DWARFLinker::cloneModuleUnit(LinkContext &Context, RefModuleUnit &Unit,
3015
DeclContextTree &ODRContexts,
3016
OffsetsStringPool &DebugStrPool,
3017
OffsetsStringPool &DebugLineStrPool,
3018
DebugDieValuePool &StringOffsetPool,
3019
unsigned Indent) {
3020
assert(Unit.Unit.get() != nullptr);
3021
3022
if (!Unit.Unit->getOrigUnit().getUnitDIE().hasChildren())
3023
return Error::success();
3024
3025
if (Options.Verbose) {
3026
outs().indent(Indent);
3027
outs() << "cloning .debug_info from " << Unit.File.FileName << "\n";
3028
}
3029
3030
// Analyze context for the module.
3031
analyzeContextInfo(Unit.Unit->getOrigUnit().getUnitDIE(), 0, *(Unit.Unit),
3032
&ODRContexts.getRoot(), ODRContexts, 0,
3033
Options.ParseableSwiftInterfaces,
3034
[&](const Twine &Warning, const DWARFDie &DIE) {
3035
reportWarning(Warning, Context.File, &DIE);
3036
});
3037
// Keep everything.
3038
Unit.Unit->markEverythingAsKept();
3039
3040
// Clone unit.
3041
UnitListTy CompileUnits;
3042
CompileUnits.emplace_back(std::move(Unit.Unit));
3043
assert(TheDwarfEmitter);
3044
DIECloner(*this, TheDwarfEmitter, Unit.File, DIEAlloc, CompileUnits,
3045
Options.Update, DebugStrPool, DebugLineStrPool, StringOffsetPool)
3046
.cloneAllCompileUnits(*Unit.File.Dwarf, Unit.File,
3047
Unit.File.Dwarf->isLittleEndian());
3048
return Error::success();
3049
}
3050
3051
void DWARFLinker::verifyInput(const DWARFFile &File) {
3052
assert(File.Dwarf);
3053
3054
std::string Buffer;
3055
raw_string_ostream OS(Buffer);
3056
DIDumpOptions DumpOpts;
3057
if (!File.Dwarf->verify(OS, DumpOpts.noImplicitRecursion())) {
3058
if (Options.InputVerificationHandler)
3059
Options.InputVerificationHandler(File, OS.str());
3060
}
3061
}
3062
3063
} // namespace llvm
3064
3065