Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/ExecutionEngine/ExecutionEngine.cpp
35232 views
1
//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the common interface used by the various execution engine
10
// subclasses.
11
//
12
// FIXME: This file needs to be updated to support scalable vectors
13
//
14
//===----------------------------------------------------------------------===//
15
16
#include "llvm/ExecutionEngine/ExecutionEngine.h"
17
#include "llvm/ADT/STLExtras.h"
18
#include "llvm/ADT/SmallString.h"
19
#include "llvm/ADT/Statistic.h"
20
#include "llvm/ExecutionEngine/GenericValue.h"
21
#include "llvm/ExecutionEngine/JITEventListener.h"
22
#include "llvm/ExecutionEngine/ObjectCache.h"
23
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
24
#include "llvm/IR/Constants.h"
25
#include "llvm/IR/DataLayout.h"
26
#include "llvm/IR/DerivedTypes.h"
27
#include "llvm/IR/Mangler.h"
28
#include "llvm/IR/Module.h"
29
#include "llvm/IR/Operator.h"
30
#include "llvm/IR/ValueHandle.h"
31
#include "llvm/MC/TargetRegistry.h"
32
#include "llvm/Object/Archive.h"
33
#include "llvm/Object/ObjectFile.h"
34
#include "llvm/Support/Debug.h"
35
#include "llvm/Support/DynamicLibrary.h"
36
#include "llvm/Support/ErrorHandling.h"
37
#include "llvm/Support/raw_ostream.h"
38
#include "llvm/Target/TargetMachine.h"
39
#include "llvm/TargetParser/Host.h"
40
#include <cmath>
41
#include <cstring>
42
#include <mutex>
43
using namespace llvm;
44
45
#define DEBUG_TYPE "jit"
46
47
STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
48
STATISTIC(NumGlobals , "Number of global vars initialized");
49
50
ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
51
std::unique_ptr<Module> M, std::string *ErrorStr,
52
std::shared_ptr<MCJITMemoryManager> MemMgr,
53
std::shared_ptr<LegacyJITSymbolResolver> Resolver,
54
std::unique_ptr<TargetMachine> TM) = nullptr;
55
56
ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
57
std::string *ErrorStr) =nullptr;
58
59
void JITEventListener::anchor() {}
60
61
void ObjectCache::anchor() {}
62
63
void ExecutionEngine::Init(std::unique_ptr<Module> M) {
64
CompilingLazily = false;
65
GVCompilationDisabled = false;
66
SymbolSearchingDisabled = false;
67
68
// IR module verification is enabled by default in debug builds, and disabled
69
// by default in release builds.
70
#ifndef NDEBUG
71
VerifyModules = true;
72
#else
73
VerifyModules = false;
74
#endif
75
76
assert(M && "Module is null?");
77
Modules.push_back(std::move(M));
78
}
79
80
ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
81
: DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
82
Init(std::move(M));
83
}
84
85
ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
86
: DL(std::move(DL)), LazyFunctionCreator(nullptr) {
87
Init(std::move(M));
88
}
89
90
ExecutionEngine::~ExecutionEngine() {
91
clearAllGlobalMappings();
92
}
93
94
namespace {
95
/// Helper class which uses a value handler to automatically deletes the
96
/// memory block when the GlobalVariable is destroyed.
97
class GVMemoryBlock final : public CallbackVH {
98
GVMemoryBlock(const GlobalVariable *GV)
99
: CallbackVH(const_cast<GlobalVariable*>(GV)) {}
100
101
public:
102
/// Returns the address the GlobalVariable should be written into. The
103
/// GVMemoryBlock object prefixes that.
104
static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
105
Type *ElTy = GV->getValueType();
106
size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
107
void *RawMemory = ::operator new(
108
alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlign(GV)) + GVSize);
109
new(RawMemory) GVMemoryBlock(GV);
110
return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
111
}
112
113
void deleted() override {
114
// We allocated with operator new and with some extra memory hanging off the
115
// end, so don't just delete this. I'm not sure if this is actually
116
// required.
117
this->~GVMemoryBlock();
118
::operator delete(this);
119
}
120
};
121
} // anonymous namespace
122
123
char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
124
return GVMemoryBlock::Create(GV, getDataLayout());
125
}
126
127
void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
128
llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
129
}
130
131
void
132
ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
133
llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
134
}
135
136
void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
137
llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
138
}
139
140
bool ExecutionEngine::removeModule(Module *M) {
141
for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
142
Module *Found = I->get();
143
if (Found == M) {
144
I->release();
145
Modules.erase(I);
146
clearGlobalMappingsFromModule(M);
147
return true;
148
}
149
}
150
return false;
151
}
152
153
Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
154
for (const auto &M : Modules) {
155
Function *F = M->getFunction(FnName);
156
if (F && !F->isDeclaration())
157
return F;
158
}
159
return nullptr;
160
}
161
162
GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
163
for (const auto &M : Modules) {
164
GlobalVariable *GV = M->getGlobalVariable(Name, AllowInternal);
165
if (GV && !GV->isDeclaration())
166
return GV;
167
}
168
return nullptr;
169
}
170
171
uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
172
GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
173
uint64_t OldVal;
174
175
// FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
176
// GlobalAddressMap.
177
if (I == GlobalAddressMap.end())
178
OldVal = 0;
179
else {
180
GlobalAddressReverseMap.erase(I->second);
181
OldVal = I->second;
182
GlobalAddressMap.erase(I);
183
}
184
185
return OldVal;
186
}
187
188
std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
189
assert(GV->hasName() && "Global must have name.");
190
191
std::lock_guard<sys::Mutex> locked(lock);
192
SmallString<128> FullName;
193
194
const DataLayout &DL =
195
GV->getDataLayout().isDefault()
196
? getDataLayout()
197
: GV->getDataLayout();
198
199
Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
200
return std::string(FullName);
201
}
202
203
void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
204
std::lock_guard<sys::Mutex> locked(lock);
205
addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
206
}
207
208
void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
209
std::lock_guard<sys::Mutex> locked(lock);
210
211
assert(!Name.empty() && "Empty GlobalMapping symbol name!");
212
213
LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
214
uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
215
assert((!CurVal || !Addr) && "GlobalMapping already established!");
216
CurVal = Addr;
217
218
// If we are using the reverse mapping, add it too.
219
if (!EEState.getGlobalAddressReverseMap().empty()) {
220
std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
221
assert((!V.empty() || !Name.empty()) &&
222
"GlobalMapping already established!");
223
V = std::string(Name);
224
}
225
}
226
227
void ExecutionEngine::clearAllGlobalMappings() {
228
std::lock_guard<sys::Mutex> locked(lock);
229
230
EEState.getGlobalAddressMap().clear();
231
EEState.getGlobalAddressReverseMap().clear();
232
}
233
234
void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
235
std::lock_guard<sys::Mutex> locked(lock);
236
237
for (GlobalObject &GO : M->global_objects())
238
EEState.RemoveMapping(getMangledName(&GO));
239
}
240
241
uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
242
void *Addr) {
243
std::lock_guard<sys::Mutex> locked(lock);
244
return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
245
}
246
247
uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
248
std::lock_guard<sys::Mutex> locked(lock);
249
250
ExecutionEngineState::GlobalAddressMapTy &Map =
251
EEState.getGlobalAddressMap();
252
253
// Deleting from the mapping?
254
if (!Addr)
255
return EEState.RemoveMapping(Name);
256
257
uint64_t &CurVal = Map[Name];
258
uint64_t OldVal = CurVal;
259
260
if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
261
EEState.getGlobalAddressReverseMap().erase(CurVal);
262
CurVal = Addr;
263
264
// If we are using the reverse mapping, add it too.
265
if (!EEState.getGlobalAddressReverseMap().empty()) {
266
std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
267
assert((!V.empty() || !Name.empty()) &&
268
"GlobalMapping already established!");
269
V = std::string(Name);
270
}
271
return OldVal;
272
}
273
274
uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
275
std::lock_guard<sys::Mutex> locked(lock);
276
uint64_t Address = 0;
277
ExecutionEngineState::GlobalAddressMapTy::iterator I =
278
EEState.getGlobalAddressMap().find(S);
279
if (I != EEState.getGlobalAddressMap().end())
280
Address = I->second;
281
return Address;
282
}
283
284
285
void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
286
std::lock_guard<sys::Mutex> locked(lock);
287
if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
288
return Address;
289
return nullptr;
290
}
291
292
void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
293
std::lock_guard<sys::Mutex> locked(lock);
294
return getPointerToGlobalIfAvailable(getMangledName(GV));
295
}
296
297
const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
298
std::lock_guard<sys::Mutex> locked(lock);
299
300
// If we haven't computed the reverse mapping yet, do so first.
301
if (EEState.getGlobalAddressReverseMap().empty()) {
302
for (ExecutionEngineState::GlobalAddressMapTy::iterator
303
I = EEState.getGlobalAddressMap().begin(),
304
E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
305
StringRef Name = I->first();
306
uint64_t Addr = I->second;
307
EEState.getGlobalAddressReverseMap().insert(
308
std::make_pair(Addr, std::string(Name)));
309
}
310
}
311
312
std::map<uint64_t, std::string>::iterator I =
313
EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
314
315
if (I != EEState.getGlobalAddressReverseMap().end()) {
316
StringRef Name = I->second;
317
for (const auto &M : Modules)
318
if (GlobalValue *GV = M->getNamedValue(Name))
319
return GV;
320
}
321
return nullptr;
322
}
323
324
namespace {
325
class ArgvArray {
326
std::unique_ptr<char[]> Array;
327
std::vector<std::unique_ptr<char[]>> Values;
328
public:
329
/// Turn a vector of strings into a nice argv style array of pointers to null
330
/// terminated strings.
331
void *reset(LLVMContext &C, ExecutionEngine *EE,
332
const std::vector<std::string> &InputArgv);
333
};
334
} // anonymous namespace
335
void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
336
const std::vector<std::string> &InputArgv) {
337
Values.clear(); // Free the old contents.
338
Values.reserve(InputArgv.size());
339
unsigned PtrSize = EE->getDataLayout().getPointerSize();
340
Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize);
341
342
LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
343
Type *SBytePtr = PointerType::getUnqual(C);
344
345
for (unsigned i = 0; i != InputArgv.size(); ++i) {
346
unsigned Size = InputArgv[i].size()+1;
347
auto Dest = std::make_unique<char[]>(Size);
348
LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
349
<< "\n");
350
351
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
352
Dest[Size-1] = 0;
353
354
// Endian safe: Array[i] = (PointerTy)Dest;
355
EE->StoreValueToMemory(PTOGV(Dest.get()),
356
(GenericValue*)(&Array[i*PtrSize]), SBytePtr);
357
Values.push_back(std::move(Dest));
358
}
359
360
// Null terminate it
361
EE->StoreValueToMemory(PTOGV(nullptr),
362
(GenericValue*)(&Array[InputArgv.size()*PtrSize]),
363
SBytePtr);
364
return Array.get();
365
}
366
367
void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
368
bool isDtors) {
369
StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
370
GlobalVariable *GV = module.getNamedGlobal(Name);
371
372
// If this global has internal linkage, or if it has a use, then it must be
373
// an old-style (llvmgcc3) static ctor with __main linked in and in use. If
374
// this is the case, don't execute any of the global ctors, __main will do
375
// it.
376
if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
377
378
// Should be an array of '{ i32, void ()* }' structs. The first value is
379
// the init priority, which we ignore.
380
ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
381
if (!InitList)
382
return;
383
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
384
ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
385
if (!CS) continue;
386
387
Constant *FP = CS->getOperand(1);
388
if (FP->isNullValue())
389
continue; // Found a sentinel value, ignore.
390
391
// Strip off constant expression casts.
392
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
393
if (CE->isCast())
394
FP = CE->getOperand(0);
395
396
// Execute the ctor/dtor function!
397
if (Function *F = dyn_cast<Function>(FP))
398
runFunction(F, std::nullopt);
399
400
// FIXME: It is marginally lame that we just do nothing here if we see an
401
// entry we don't recognize. It might not be unreasonable for the verifier
402
// to not even allow this and just assert here.
403
}
404
}
405
406
void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
407
// Execute global ctors/dtors for each module in the program.
408
for (std::unique_ptr<Module> &M : Modules)
409
runStaticConstructorsDestructors(*M, isDtors);
410
}
411
412
#ifndef NDEBUG
413
/// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
414
static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
415
unsigned PtrSize = EE->getDataLayout().getPointerSize();
416
for (unsigned i = 0; i < PtrSize; ++i)
417
if (*(i + (uint8_t*)Loc))
418
return false;
419
return true;
420
}
421
#endif
422
423
int ExecutionEngine::runFunctionAsMain(Function *Fn,
424
const std::vector<std::string> &argv,
425
const char * const * envp) {
426
std::vector<GenericValue> GVArgs;
427
GenericValue GVArgc;
428
GVArgc.IntVal = APInt(32, argv.size());
429
430
// Check main() type
431
unsigned NumArgs = Fn->getFunctionType()->getNumParams();
432
FunctionType *FTy = Fn->getFunctionType();
433
Type *PPInt8Ty = PointerType::get(Fn->getContext(), 0);
434
435
// Check the argument types.
436
if (NumArgs > 3)
437
report_fatal_error("Invalid number of arguments of main() supplied");
438
if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
439
report_fatal_error("Invalid type for third argument of main() supplied");
440
if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
441
report_fatal_error("Invalid type for second argument of main() supplied");
442
if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
443
report_fatal_error("Invalid type for first argument of main() supplied");
444
if (!FTy->getReturnType()->isIntegerTy() &&
445
!FTy->getReturnType()->isVoidTy())
446
report_fatal_error("Invalid return type of main() supplied");
447
448
ArgvArray CArgv;
449
ArgvArray CEnv;
450
if (NumArgs) {
451
GVArgs.push_back(GVArgc); // Arg #0 = argc.
452
if (NumArgs > 1) {
453
// Arg #1 = argv.
454
GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
455
assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
456
"argv[0] was null after CreateArgv");
457
if (NumArgs > 2) {
458
std::vector<std::string> EnvVars;
459
for (unsigned i = 0; envp[i]; ++i)
460
EnvVars.emplace_back(envp[i]);
461
// Arg #2 = envp.
462
GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
463
}
464
}
465
}
466
467
return runFunction(Fn, GVArgs).IntVal.getZExtValue();
468
}
469
470
EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
471
472
EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
473
: M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
474
OptLevel(CodeGenOptLevel::Default), MemMgr(nullptr), Resolver(nullptr) {
475
// IR module verification is enabled by default in debug builds, and disabled
476
// by default in release builds.
477
#ifndef NDEBUG
478
VerifyModules = true;
479
#else
480
VerifyModules = false;
481
#endif
482
}
483
484
EngineBuilder::~EngineBuilder() = default;
485
486
EngineBuilder &EngineBuilder::setMCJITMemoryManager(
487
std::unique_ptr<RTDyldMemoryManager> mcjmm) {
488
auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
489
MemMgr = SharedMM;
490
Resolver = SharedMM;
491
return *this;
492
}
493
494
EngineBuilder&
495
EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
496
MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
497
return *this;
498
}
499
500
EngineBuilder &
501
EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
502
Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
503
return *this;
504
}
505
506
ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
507
std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
508
509
// Make sure we can resolve symbols in the program as well. The zero arg
510
// to the function tells DynamicLibrary to load the program, not a library.
511
if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
512
return nullptr;
513
514
// If the user specified a memory manager but didn't specify which engine to
515
// create, we assume they only want the JIT, and we fail if they only want
516
// the interpreter.
517
if (MemMgr) {
518
if (WhichEngine & EngineKind::JIT)
519
WhichEngine = EngineKind::JIT;
520
else {
521
if (ErrorStr)
522
*ErrorStr = "Cannot create an interpreter with a memory manager.";
523
return nullptr;
524
}
525
}
526
527
// Unless the interpreter was explicitly selected or the JIT is not linked,
528
// try making a JIT.
529
if ((WhichEngine & EngineKind::JIT) && TheTM) {
530
if (!TM->getTarget().hasJIT()) {
531
errs() << "WARNING: This target JIT is not designed for the host"
532
<< " you are running. If bad things happen, please choose"
533
<< " a different -march switch.\n";
534
}
535
536
ExecutionEngine *EE = nullptr;
537
if (ExecutionEngine::MCJITCtor)
538
EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
539
std::move(Resolver), std::move(TheTM));
540
541
if (EE) {
542
EE->setVerifyModules(VerifyModules);
543
return EE;
544
}
545
}
546
547
// If we can't make a JIT and we didn't request one specifically, try making
548
// an interpreter instead.
549
if (WhichEngine & EngineKind::Interpreter) {
550
if (ExecutionEngine::InterpCtor)
551
return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
552
if (ErrorStr)
553
*ErrorStr = "Interpreter has not been linked in.";
554
return nullptr;
555
}
556
557
if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
558
if (ErrorStr)
559
*ErrorStr = "JIT has not been linked in.";
560
}
561
562
return nullptr;
563
}
564
565
void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
566
if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
567
return getPointerToFunction(F);
568
569
std::lock_guard<sys::Mutex> locked(lock);
570
if (void* P = getPointerToGlobalIfAvailable(GV))
571
return P;
572
573
// Global variable might have been added since interpreter started.
574
if (GlobalVariable *GVar =
575
const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
576
emitGlobalVariable(GVar);
577
else
578
llvm_unreachable("Global hasn't had an address allocated yet!");
579
580
return getPointerToGlobalIfAvailable(GV);
581
}
582
583
/// Converts a Constant* into a GenericValue, including handling of
584
/// ConstantExpr values.
585
GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
586
// If its undefined, return the garbage.
587
if (isa<UndefValue>(C)) {
588
GenericValue Result;
589
switch (C->getType()->getTypeID()) {
590
default:
591
break;
592
case Type::IntegerTyID:
593
case Type::X86_FP80TyID:
594
case Type::FP128TyID:
595
case Type::PPC_FP128TyID:
596
// Although the value is undefined, we still have to construct an APInt
597
// with the correct bit width.
598
Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
599
break;
600
case Type::StructTyID: {
601
// if the whole struct is 'undef' just reserve memory for the value.
602
if(StructType *STy = dyn_cast<StructType>(C->getType())) {
603
unsigned int elemNum = STy->getNumElements();
604
Result.AggregateVal.resize(elemNum);
605
for (unsigned int i = 0; i < elemNum; ++i) {
606
Type *ElemTy = STy->getElementType(i);
607
if (ElemTy->isIntegerTy())
608
Result.AggregateVal[i].IntVal =
609
APInt(ElemTy->getPrimitiveSizeInBits(), 0);
610
else if (ElemTy->isAggregateType()) {
611
const Constant *ElemUndef = UndefValue::get(ElemTy);
612
Result.AggregateVal[i] = getConstantValue(ElemUndef);
613
}
614
}
615
}
616
}
617
break;
618
case Type::ScalableVectorTyID:
619
report_fatal_error(
620
"Scalable vector support not yet implemented in ExecutionEngine");
621
case Type::ArrayTyID: {
622
auto *ArrTy = cast<ArrayType>(C->getType());
623
Type *ElemTy = ArrTy->getElementType();
624
unsigned int elemNum = ArrTy->getNumElements();
625
Result.AggregateVal.resize(elemNum);
626
if (ElemTy->isIntegerTy())
627
for (unsigned int i = 0; i < elemNum; ++i)
628
Result.AggregateVal[i].IntVal =
629
APInt(ElemTy->getPrimitiveSizeInBits(), 0);
630
break;
631
}
632
case Type::FixedVectorTyID: {
633
// if the whole vector is 'undef' just reserve memory for the value.
634
auto *VTy = cast<FixedVectorType>(C->getType());
635
Type *ElemTy = VTy->getElementType();
636
unsigned int elemNum = VTy->getNumElements();
637
Result.AggregateVal.resize(elemNum);
638
if (ElemTy->isIntegerTy())
639
for (unsigned int i = 0; i < elemNum; ++i)
640
Result.AggregateVal[i].IntVal =
641
APInt(ElemTy->getPrimitiveSizeInBits(), 0);
642
break;
643
}
644
}
645
return Result;
646
}
647
648
// Otherwise, if the value is a ConstantExpr...
649
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
650
Constant *Op0 = CE->getOperand(0);
651
switch (CE->getOpcode()) {
652
case Instruction::GetElementPtr: {
653
// Compute the index
654
GenericValue Result = getConstantValue(Op0);
655
APInt Offset(DL.getPointerSizeInBits(), 0);
656
cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
657
658
char* tmp = (char*) Result.PointerVal;
659
Result = PTOGV(tmp + Offset.getSExtValue());
660
return Result;
661
}
662
case Instruction::Trunc: {
663
GenericValue GV = getConstantValue(Op0);
664
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
665
GV.IntVal = GV.IntVal.trunc(BitWidth);
666
return GV;
667
}
668
case Instruction::ZExt: {
669
GenericValue GV = getConstantValue(Op0);
670
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
671
GV.IntVal = GV.IntVal.zext(BitWidth);
672
return GV;
673
}
674
case Instruction::SExt: {
675
GenericValue GV = getConstantValue(Op0);
676
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
677
GV.IntVal = GV.IntVal.sext(BitWidth);
678
return GV;
679
}
680
case Instruction::FPTrunc: {
681
// FIXME long double
682
GenericValue GV = getConstantValue(Op0);
683
GV.FloatVal = float(GV.DoubleVal);
684
return GV;
685
}
686
case Instruction::FPExt:{
687
// FIXME long double
688
GenericValue GV = getConstantValue(Op0);
689
GV.DoubleVal = double(GV.FloatVal);
690
return GV;
691
}
692
case Instruction::UIToFP: {
693
GenericValue GV = getConstantValue(Op0);
694
if (CE->getType()->isFloatTy())
695
GV.FloatVal = float(GV.IntVal.roundToDouble());
696
else if (CE->getType()->isDoubleTy())
697
GV.DoubleVal = GV.IntVal.roundToDouble();
698
else if (CE->getType()->isX86_FP80Ty()) {
699
APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
700
(void)apf.convertFromAPInt(GV.IntVal,
701
false,
702
APFloat::rmNearestTiesToEven);
703
GV.IntVal = apf.bitcastToAPInt();
704
}
705
return GV;
706
}
707
case Instruction::SIToFP: {
708
GenericValue GV = getConstantValue(Op0);
709
if (CE->getType()->isFloatTy())
710
GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
711
else if (CE->getType()->isDoubleTy())
712
GV.DoubleVal = GV.IntVal.signedRoundToDouble();
713
else if (CE->getType()->isX86_FP80Ty()) {
714
APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
715
(void)apf.convertFromAPInt(GV.IntVal,
716
true,
717
APFloat::rmNearestTiesToEven);
718
GV.IntVal = apf.bitcastToAPInt();
719
}
720
return GV;
721
}
722
case Instruction::FPToUI: // double->APInt conversion handles sign
723
case Instruction::FPToSI: {
724
GenericValue GV = getConstantValue(Op0);
725
uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
726
if (Op0->getType()->isFloatTy())
727
GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
728
else if (Op0->getType()->isDoubleTy())
729
GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
730
else if (Op0->getType()->isX86_FP80Ty()) {
731
APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
732
uint64_t v;
733
bool ignored;
734
(void)apf.convertToInteger(MutableArrayRef(v), BitWidth,
735
CE->getOpcode()==Instruction::FPToSI,
736
APFloat::rmTowardZero, &ignored);
737
GV.IntVal = v; // endian?
738
}
739
return GV;
740
}
741
case Instruction::PtrToInt: {
742
GenericValue GV = getConstantValue(Op0);
743
uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
744
assert(PtrWidth <= 64 && "Bad pointer width");
745
GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
746
uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
747
GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
748
return GV;
749
}
750
case Instruction::IntToPtr: {
751
GenericValue GV = getConstantValue(Op0);
752
uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
753
GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
754
assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
755
GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
756
return GV;
757
}
758
case Instruction::BitCast: {
759
GenericValue GV = getConstantValue(Op0);
760
Type* DestTy = CE->getType();
761
switch (Op0->getType()->getTypeID()) {
762
default: llvm_unreachable("Invalid bitcast operand");
763
case Type::IntegerTyID:
764
assert(DestTy->isFloatingPointTy() && "invalid bitcast");
765
if (DestTy->isFloatTy())
766
GV.FloatVal = GV.IntVal.bitsToFloat();
767
else if (DestTy->isDoubleTy())
768
GV.DoubleVal = GV.IntVal.bitsToDouble();
769
break;
770
case Type::FloatTyID:
771
assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
772
GV.IntVal = APInt::floatToBits(GV.FloatVal);
773
break;
774
case Type::DoubleTyID:
775
assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
776
GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
777
break;
778
case Type::PointerTyID:
779
assert(DestTy->isPointerTy() && "Invalid bitcast");
780
break; // getConstantValue(Op0) above already converted it
781
}
782
return GV;
783
}
784
case Instruction::Add:
785
case Instruction::FAdd:
786
case Instruction::Sub:
787
case Instruction::FSub:
788
case Instruction::Mul:
789
case Instruction::FMul:
790
case Instruction::UDiv:
791
case Instruction::SDiv:
792
case Instruction::URem:
793
case Instruction::SRem:
794
case Instruction::And:
795
case Instruction::Or:
796
case Instruction::Xor: {
797
GenericValue LHS = getConstantValue(Op0);
798
GenericValue RHS = getConstantValue(CE->getOperand(1));
799
GenericValue GV;
800
switch (CE->getOperand(0)->getType()->getTypeID()) {
801
default: llvm_unreachable("Bad add type!");
802
case Type::IntegerTyID:
803
switch (CE->getOpcode()) {
804
default: llvm_unreachable("Invalid integer opcode");
805
case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
806
case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
807
case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
808
case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
809
case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
810
case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
811
case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
812
case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
813
case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
814
case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
815
}
816
break;
817
case Type::FloatTyID:
818
switch (CE->getOpcode()) {
819
default: llvm_unreachable("Invalid float opcode");
820
case Instruction::FAdd:
821
GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
822
case Instruction::FSub:
823
GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
824
case Instruction::FMul:
825
GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
826
case Instruction::FDiv:
827
GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
828
case Instruction::FRem:
829
GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
830
}
831
break;
832
case Type::DoubleTyID:
833
switch (CE->getOpcode()) {
834
default: llvm_unreachable("Invalid double opcode");
835
case Instruction::FAdd:
836
GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
837
case Instruction::FSub:
838
GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
839
case Instruction::FMul:
840
GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
841
case Instruction::FDiv:
842
GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
843
case Instruction::FRem:
844
GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
845
}
846
break;
847
case Type::X86_FP80TyID:
848
case Type::PPC_FP128TyID:
849
case Type::FP128TyID: {
850
const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
851
APFloat apfLHS = APFloat(Sem, LHS.IntVal);
852
switch (CE->getOpcode()) {
853
default: llvm_unreachable("Invalid long double opcode");
854
case Instruction::FAdd:
855
apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
856
GV.IntVal = apfLHS.bitcastToAPInt();
857
break;
858
case Instruction::FSub:
859
apfLHS.subtract(APFloat(Sem, RHS.IntVal),
860
APFloat::rmNearestTiesToEven);
861
GV.IntVal = apfLHS.bitcastToAPInt();
862
break;
863
case Instruction::FMul:
864
apfLHS.multiply(APFloat(Sem, RHS.IntVal),
865
APFloat::rmNearestTiesToEven);
866
GV.IntVal = apfLHS.bitcastToAPInt();
867
break;
868
case Instruction::FDiv:
869
apfLHS.divide(APFloat(Sem, RHS.IntVal),
870
APFloat::rmNearestTiesToEven);
871
GV.IntVal = apfLHS.bitcastToAPInt();
872
break;
873
case Instruction::FRem:
874
apfLHS.mod(APFloat(Sem, RHS.IntVal));
875
GV.IntVal = apfLHS.bitcastToAPInt();
876
break;
877
}
878
}
879
break;
880
}
881
return GV;
882
}
883
default:
884
break;
885
}
886
887
SmallString<256> Msg;
888
raw_svector_ostream OS(Msg);
889
OS << "ConstantExpr not handled: " << *CE;
890
report_fatal_error(OS.str());
891
}
892
893
if (auto *TETy = dyn_cast<TargetExtType>(C->getType())) {
894
assert(TETy->hasProperty(TargetExtType::HasZeroInit) && C->isNullValue() &&
895
"TargetExtType only supports null constant value");
896
C = Constant::getNullValue(TETy->getLayoutType());
897
}
898
899
// Otherwise, we have a simple constant.
900
GenericValue Result;
901
switch (C->getType()->getTypeID()) {
902
case Type::FloatTyID:
903
Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
904
break;
905
case Type::DoubleTyID:
906
Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
907
break;
908
case Type::X86_FP80TyID:
909
case Type::FP128TyID:
910
case Type::PPC_FP128TyID:
911
Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
912
break;
913
case Type::IntegerTyID:
914
Result.IntVal = cast<ConstantInt>(C)->getValue();
915
break;
916
case Type::PointerTyID:
917
while (auto *A = dyn_cast<GlobalAlias>(C)) {
918
C = A->getAliasee();
919
}
920
if (isa<ConstantPointerNull>(C))
921
Result.PointerVal = nullptr;
922
else if (const Function *F = dyn_cast<Function>(C))
923
Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
924
else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
925
Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
926
else
927
llvm_unreachable("Unknown constant pointer type!");
928
break;
929
case Type::ScalableVectorTyID:
930
report_fatal_error(
931
"Scalable vector support not yet implemented in ExecutionEngine");
932
case Type::FixedVectorTyID: {
933
unsigned elemNum;
934
Type* ElemTy;
935
const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
936
const ConstantVector *CV = dyn_cast<ConstantVector>(C);
937
const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
938
939
if (CDV) {
940
elemNum = CDV->getNumElements();
941
ElemTy = CDV->getElementType();
942
} else if (CV || CAZ) {
943
auto *VTy = cast<FixedVectorType>(C->getType());
944
elemNum = VTy->getNumElements();
945
ElemTy = VTy->getElementType();
946
} else {
947
llvm_unreachable("Unknown constant vector type!");
948
}
949
950
Result.AggregateVal.resize(elemNum);
951
// Check if vector holds floats.
952
if(ElemTy->isFloatTy()) {
953
if (CAZ) {
954
GenericValue floatZero;
955
floatZero.FloatVal = 0.f;
956
std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
957
floatZero);
958
break;
959
}
960
if(CV) {
961
for (unsigned i = 0; i < elemNum; ++i)
962
if (!isa<UndefValue>(CV->getOperand(i)))
963
Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
964
CV->getOperand(i))->getValueAPF().convertToFloat();
965
break;
966
}
967
if(CDV)
968
for (unsigned i = 0; i < elemNum; ++i)
969
Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
970
971
break;
972
}
973
// Check if vector holds doubles.
974
if (ElemTy->isDoubleTy()) {
975
if (CAZ) {
976
GenericValue doubleZero;
977
doubleZero.DoubleVal = 0.0;
978
std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
979
doubleZero);
980
break;
981
}
982
if(CV) {
983
for (unsigned i = 0; i < elemNum; ++i)
984
if (!isa<UndefValue>(CV->getOperand(i)))
985
Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
986
CV->getOperand(i))->getValueAPF().convertToDouble();
987
break;
988
}
989
if(CDV)
990
for (unsigned i = 0; i < elemNum; ++i)
991
Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
992
993
break;
994
}
995
// Check if vector holds integers.
996
if (ElemTy->isIntegerTy()) {
997
if (CAZ) {
998
GenericValue intZero;
999
intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
1000
std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
1001
intZero);
1002
break;
1003
}
1004
if(CV) {
1005
for (unsigned i = 0; i < elemNum; ++i)
1006
if (!isa<UndefValue>(CV->getOperand(i)))
1007
Result.AggregateVal[i].IntVal = cast<ConstantInt>(
1008
CV->getOperand(i))->getValue();
1009
else {
1010
Result.AggregateVal[i].IntVal =
1011
APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
1012
}
1013
break;
1014
}
1015
if(CDV)
1016
for (unsigned i = 0; i < elemNum; ++i)
1017
Result.AggregateVal[i].IntVal = APInt(
1018
CDV->getElementType()->getPrimitiveSizeInBits(),
1019
CDV->getElementAsInteger(i));
1020
1021
break;
1022
}
1023
llvm_unreachable("Unknown constant pointer type!");
1024
} break;
1025
1026
default:
1027
SmallString<256> Msg;
1028
raw_svector_ostream OS(Msg);
1029
OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1030
report_fatal_error(OS.str());
1031
}
1032
1033
return Result;
1034
}
1035
1036
void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1037
GenericValue *Ptr, Type *Ty) {
1038
// It is safe to treat TargetExtType as its layout type since the underlying
1039
// bits are only copied and are not inspected.
1040
if (auto *TETy = dyn_cast<TargetExtType>(Ty))
1041
Ty = TETy->getLayoutType();
1042
1043
const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1044
1045
switch (Ty->getTypeID()) {
1046
default:
1047
dbgs() << "Cannot store value of type " << *Ty << "!\n";
1048
break;
1049
case Type::IntegerTyID:
1050
StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
1051
break;
1052
case Type::FloatTyID:
1053
*((float*)Ptr) = Val.FloatVal;
1054
break;
1055
case Type::DoubleTyID:
1056
*((double*)Ptr) = Val.DoubleVal;
1057
break;
1058
case Type::X86_FP80TyID:
1059
memcpy(Ptr, Val.IntVal.getRawData(), 10);
1060
break;
1061
case Type::PointerTyID:
1062
// Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1063
if (StoreBytes != sizeof(PointerTy))
1064
memset(&(Ptr->PointerVal), 0, StoreBytes);
1065
1066
*((PointerTy*)Ptr) = Val.PointerVal;
1067
break;
1068
case Type::FixedVectorTyID:
1069
case Type::ScalableVectorTyID:
1070
for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1071
if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
1072
*(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1073
if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
1074
*(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1075
if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
1076
unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1077
StoreIntToMemory(Val.AggregateVal[i].IntVal,
1078
(uint8_t*)Ptr + numOfBytes*i, numOfBytes);
1079
}
1080
}
1081
break;
1082
}
1083
1084
if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1085
// Host and target are different endian - reverse the stored bytes.
1086
std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
1087
}
1088
1089
/// FIXME: document
1090
///
1091
void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1092
GenericValue *Ptr,
1093
Type *Ty) {
1094
if (auto *TETy = dyn_cast<TargetExtType>(Ty))
1095
Ty = TETy->getLayoutType();
1096
1097
const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1098
1099
switch (Ty->getTypeID()) {
1100
case Type::IntegerTyID:
1101
// An APInt with all words initially zero.
1102
Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
1103
LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
1104
break;
1105
case Type::FloatTyID:
1106
Result.FloatVal = *((float*)Ptr);
1107
break;
1108
case Type::DoubleTyID:
1109
Result.DoubleVal = *((double*)Ptr);
1110
break;
1111
case Type::PointerTyID:
1112
Result.PointerVal = *((PointerTy*)Ptr);
1113
break;
1114
case Type::X86_FP80TyID: {
1115
// This is endian dependent, but it will only work on x86 anyway.
1116
// FIXME: Will not trap if loading a signaling NaN.
1117
uint64_t y[2];
1118
memcpy(y, Ptr, 10);
1119
Result.IntVal = APInt(80, y);
1120
break;
1121
}
1122
case Type::ScalableVectorTyID:
1123
report_fatal_error(
1124
"Scalable vector support not yet implemented in ExecutionEngine");
1125
case Type::FixedVectorTyID: {
1126
auto *VT = cast<FixedVectorType>(Ty);
1127
Type *ElemT = VT->getElementType();
1128
const unsigned numElems = VT->getNumElements();
1129
if (ElemT->isFloatTy()) {
1130
Result.AggregateVal.resize(numElems);
1131
for (unsigned i = 0; i < numElems; ++i)
1132
Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1133
}
1134
if (ElemT->isDoubleTy()) {
1135
Result.AggregateVal.resize(numElems);
1136
for (unsigned i = 0; i < numElems; ++i)
1137
Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1138
}
1139
if (ElemT->isIntegerTy()) {
1140
GenericValue intZero;
1141
const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
1142
intZero.IntVal = APInt(elemBitWidth, 0);
1143
Result.AggregateVal.resize(numElems, intZero);
1144
for (unsigned i = 0; i < numElems; ++i)
1145
LoadIntFromMemory(Result.AggregateVal[i].IntVal,
1146
(uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
1147
}
1148
break;
1149
}
1150
default:
1151
SmallString<256> Msg;
1152
raw_svector_ostream OS(Msg);
1153
OS << "Cannot load value of type " << *Ty << "!";
1154
report_fatal_error(OS.str());
1155
}
1156
}
1157
1158
void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1159
LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1160
LLVM_DEBUG(Init->dump());
1161
if (isa<UndefValue>(Init))
1162
return;
1163
1164
if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
1165
unsigned ElementSize =
1166
getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
1167
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1168
InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
1169
return;
1170
}
1171
1172
if (isa<ConstantAggregateZero>(Init)) {
1173
memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
1174
return;
1175
}
1176
1177
if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
1178
unsigned ElementSize =
1179
getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
1180
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1181
InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
1182
return;
1183
}
1184
1185
if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
1186
const StructLayout *SL =
1187
getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
1188
for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1189
InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
1190
return;
1191
}
1192
1193
if (const ConstantDataSequential *CDS =
1194
dyn_cast<ConstantDataSequential>(Init)) {
1195
// CDS is already laid out in host memory order.
1196
StringRef Data = CDS->getRawDataValues();
1197
memcpy(Addr, Data.data(), Data.size());
1198
return;
1199
}
1200
1201
if (Init->getType()->isFirstClassType()) {
1202
GenericValue Val = getConstantValue(Init);
1203
StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1204
return;
1205
}
1206
1207
LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1208
llvm_unreachable("Unknown constant type to initialize memory with!");
1209
}
1210
1211
/// EmitGlobals - Emit all of the global variables to memory, storing their
1212
/// addresses into GlobalAddress. This must make sure to copy the contents of
1213
/// their initializers into the memory.
1214
void ExecutionEngine::emitGlobals() {
1215
// Loop over all of the global variables in the program, allocating the memory
1216
// to hold them. If there is more than one module, do a prepass over globals
1217
// to figure out how the different modules should link together.
1218
std::map<std::pair<std::string, Type*>,
1219
const GlobalValue*> LinkedGlobalsMap;
1220
1221
if (Modules.size() != 1) {
1222
for (const auto &M : Modules) {
1223
for (const auto &GV : M->globals()) {
1224
if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1225
GV.hasAppendingLinkage() || !GV.hasName())
1226
continue;// Ignore external globals and globals with internal linkage.
1227
1228
const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(
1229
std::string(GV.getName()), GV.getType())];
1230
1231
// If this is the first time we've seen this global, it is the canonical
1232
// version.
1233
if (!GVEntry) {
1234
GVEntry = &GV;
1235
continue;
1236
}
1237
1238
// If the existing global is strong, never replace it.
1239
if (GVEntry->hasExternalLinkage())
1240
continue;
1241
1242
// Otherwise, we know it's linkonce/weak, replace it if this is a strong
1243
// symbol. FIXME is this right for common?
1244
if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1245
GVEntry = &GV;
1246
}
1247
}
1248
}
1249
1250
std::vector<const GlobalValue*> NonCanonicalGlobals;
1251
for (const auto &M : Modules) {
1252
for (const auto &GV : M->globals()) {
1253
// In the multi-module case, see what this global maps to.
1254
if (!LinkedGlobalsMap.empty()) {
1255
if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1256
std::string(GV.getName()), GV.getType())]) {
1257
// If something else is the canonical global, ignore this one.
1258
if (GVEntry != &GV) {
1259
NonCanonicalGlobals.push_back(&GV);
1260
continue;
1261
}
1262
}
1263
}
1264
1265
if (!GV.isDeclaration()) {
1266
addGlobalMapping(&GV, getMemoryForGV(&GV));
1267
} else {
1268
// External variable reference. Try to use the dynamic loader to
1269
// get a pointer to it.
1270
if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
1271
std::string(GV.getName())))
1272
addGlobalMapping(&GV, SymAddr);
1273
else {
1274
report_fatal_error("Could not resolve external global address: "
1275
+GV.getName());
1276
}
1277
}
1278
}
1279
1280
// If there are multiple modules, map the non-canonical globals to their
1281
// canonical location.
1282
if (!NonCanonicalGlobals.empty()) {
1283
for (const GlobalValue *GV : NonCanonicalGlobals) {
1284
const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(
1285
std::string(GV->getName()), GV->getType())];
1286
void *Ptr = getPointerToGlobalIfAvailable(CGV);
1287
assert(Ptr && "Canonical global wasn't codegen'd!");
1288
addGlobalMapping(GV, Ptr);
1289
}
1290
}
1291
1292
// Now that all of the globals are set up in memory, loop through them all
1293
// and initialize their contents.
1294
for (const auto &GV : M->globals()) {
1295
if (!GV.isDeclaration()) {
1296
if (!LinkedGlobalsMap.empty()) {
1297
if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1298
std::string(GV.getName()), GV.getType())])
1299
if (GVEntry != &GV) // Not the canonical variable.
1300
continue;
1301
}
1302
emitGlobalVariable(&GV);
1303
}
1304
}
1305
}
1306
}
1307
1308
// EmitGlobalVariable - This method emits the specified global variable to the
1309
// address specified in GlobalAddresses, or allocates new memory if it's not
1310
// already in the map.
1311
void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) {
1312
void *GA = getPointerToGlobalIfAvailable(GV);
1313
1314
if (!GA) {
1315
// If it's not already specified, allocate memory for the global.
1316
GA = getMemoryForGV(GV);
1317
1318
// If we failed to allocate memory for this global, return.
1319
if (!GA) return;
1320
1321
addGlobalMapping(GV, GA);
1322
}
1323
1324
// Don't initialize if it's thread local, let the client do it.
1325
if (!GV->isThreadLocal())
1326
InitializeMemory(GV->getInitializer(), GA);
1327
1328
Type *ElTy = GV->getValueType();
1329
size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
1330
NumInitBytes += (unsigned)GVSize;
1331
++NumGlobals;
1332
}
1333
1334