Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp
35271 views
1
//===-- Execution.cpp - Implement code to simulate the program ------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the actual instruction interpreter.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "Interpreter.h"
14
#include "llvm/ADT/APInt.h"
15
#include "llvm/ADT/Statistic.h"
16
#include "llvm/CodeGen/IntrinsicLowering.h"
17
#include "llvm/IR/Constants.h"
18
#include "llvm/IR/DerivedTypes.h"
19
#include "llvm/IR/GetElementPtrTypeIterator.h"
20
#include "llvm/IR/Instructions.h"
21
#include "llvm/Support/CommandLine.h"
22
#include "llvm/Support/Debug.h"
23
#include "llvm/Support/ErrorHandling.h"
24
#include "llvm/Support/MathExtras.h"
25
#include "llvm/Support/raw_ostream.h"
26
#include <algorithm>
27
#include <cmath>
28
using namespace llvm;
29
30
#define DEBUG_TYPE "interpreter"
31
32
STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
33
34
static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
35
cl::desc("make the interpreter print every volatile load and store"));
36
37
//===----------------------------------------------------------------------===//
38
// Various Helper Functions
39
//===----------------------------------------------------------------------===//
40
41
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
42
SF.Values[V] = Val;
43
}
44
45
//===----------------------------------------------------------------------===//
46
// Unary Instruction Implementations
47
//===----------------------------------------------------------------------===//
48
49
static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty) {
50
switch (Ty->getTypeID()) {
51
case Type::FloatTyID:
52
Dest.FloatVal = -Src.FloatVal;
53
break;
54
case Type::DoubleTyID:
55
Dest.DoubleVal = -Src.DoubleVal;
56
break;
57
default:
58
llvm_unreachable("Unhandled type for FNeg instruction");
59
}
60
}
61
62
void Interpreter::visitUnaryOperator(UnaryOperator &I) {
63
ExecutionContext &SF = ECStack.back();
64
Type *Ty = I.getOperand(0)->getType();
65
GenericValue Src = getOperandValue(I.getOperand(0), SF);
66
GenericValue R; // Result
67
68
// First process vector operation
69
if (Ty->isVectorTy()) {
70
R.AggregateVal.resize(Src.AggregateVal.size());
71
72
switch(I.getOpcode()) {
73
default:
74
llvm_unreachable("Don't know how to handle this unary operator");
75
break;
76
case Instruction::FNeg:
77
if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
78
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
79
R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal;
80
} else if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) {
81
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
82
R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal;
83
} else {
84
llvm_unreachable("Unhandled type for FNeg instruction");
85
}
86
break;
87
}
88
} else {
89
switch (I.getOpcode()) {
90
default:
91
llvm_unreachable("Don't know how to handle this unary operator");
92
break;
93
case Instruction::FNeg: executeFNegInst(R, Src, Ty); break;
94
}
95
}
96
SetValue(&I, R, SF);
97
}
98
99
//===----------------------------------------------------------------------===//
100
// Binary Instruction Implementations
101
//===----------------------------------------------------------------------===//
102
103
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
104
case Type::TY##TyID: \
105
Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
106
break
107
108
static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
109
GenericValue Src2, Type *Ty) {
110
switch (Ty->getTypeID()) {
111
IMPLEMENT_BINARY_OPERATOR(+, Float);
112
IMPLEMENT_BINARY_OPERATOR(+, Double);
113
default:
114
dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
115
llvm_unreachable(nullptr);
116
}
117
}
118
119
static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
120
GenericValue Src2, Type *Ty) {
121
switch (Ty->getTypeID()) {
122
IMPLEMENT_BINARY_OPERATOR(-, Float);
123
IMPLEMENT_BINARY_OPERATOR(-, Double);
124
default:
125
dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
126
llvm_unreachable(nullptr);
127
}
128
}
129
130
static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
131
GenericValue Src2, Type *Ty) {
132
switch (Ty->getTypeID()) {
133
IMPLEMENT_BINARY_OPERATOR(*, Float);
134
IMPLEMENT_BINARY_OPERATOR(*, Double);
135
default:
136
dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
137
llvm_unreachable(nullptr);
138
}
139
}
140
141
static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
142
GenericValue Src2, Type *Ty) {
143
switch (Ty->getTypeID()) {
144
IMPLEMENT_BINARY_OPERATOR(/, Float);
145
IMPLEMENT_BINARY_OPERATOR(/, Double);
146
default:
147
dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
148
llvm_unreachable(nullptr);
149
}
150
}
151
152
static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
153
GenericValue Src2, Type *Ty) {
154
switch (Ty->getTypeID()) {
155
case Type::FloatTyID:
156
Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
157
break;
158
case Type::DoubleTyID:
159
Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
160
break;
161
default:
162
dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
163
llvm_unreachable(nullptr);
164
}
165
}
166
167
#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
168
case Type::IntegerTyID: \
169
Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
170
break;
171
172
#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
173
case Type::FixedVectorTyID: \
174
case Type::ScalableVectorTyID: { \
175
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
176
Dest.AggregateVal.resize(Src1.AggregateVal.size()); \
177
for (uint32_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
178
Dest.AggregateVal[_i].IntVal = APInt( \
179
1, Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal)); \
180
} break;
181
182
// Handle pointers specially because they must be compared with only as much
183
// width as the host has. We _do not_ want to be comparing 64 bit values when
184
// running on a 32-bit target, otherwise the upper 32 bits might mess up
185
// comparisons if they contain garbage.
186
#define IMPLEMENT_POINTER_ICMP(OP) \
187
case Type::PointerTyID: \
188
Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
189
(void*)(intptr_t)Src2.PointerVal); \
190
break;
191
192
static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
193
Type *Ty) {
194
GenericValue Dest;
195
switch (Ty->getTypeID()) {
196
IMPLEMENT_INTEGER_ICMP(eq,Ty);
197
IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
198
IMPLEMENT_POINTER_ICMP(==);
199
default:
200
dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
201
llvm_unreachable(nullptr);
202
}
203
return Dest;
204
}
205
206
static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
207
Type *Ty) {
208
GenericValue Dest;
209
switch (Ty->getTypeID()) {
210
IMPLEMENT_INTEGER_ICMP(ne,Ty);
211
IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
212
IMPLEMENT_POINTER_ICMP(!=);
213
default:
214
dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
215
llvm_unreachable(nullptr);
216
}
217
return Dest;
218
}
219
220
static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
221
Type *Ty) {
222
GenericValue Dest;
223
switch (Ty->getTypeID()) {
224
IMPLEMENT_INTEGER_ICMP(ult,Ty);
225
IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
226
IMPLEMENT_POINTER_ICMP(<);
227
default:
228
dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
229
llvm_unreachable(nullptr);
230
}
231
return Dest;
232
}
233
234
static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
235
Type *Ty) {
236
GenericValue Dest;
237
switch (Ty->getTypeID()) {
238
IMPLEMENT_INTEGER_ICMP(slt,Ty);
239
IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
240
IMPLEMENT_POINTER_ICMP(<);
241
default:
242
dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
243
llvm_unreachable(nullptr);
244
}
245
return Dest;
246
}
247
248
static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
249
Type *Ty) {
250
GenericValue Dest;
251
switch (Ty->getTypeID()) {
252
IMPLEMENT_INTEGER_ICMP(ugt,Ty);
253
IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
254
IMPLEMENT_POINTER_ICMP(>);
255
default:
256
dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
257
llvm_unreachable(nullptr);
258
}
259
return Dest;
260
}
261
262
static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
263
Type *Ty) {
264
GenericValue Dest;
265
switch (Ty->getTypeID()) {
266
IMPLEMENT_INTEGER_ICMP(sgt,Ty);
267
IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
268
IMPLEMENT_POINTER_ICMP(>);
269
default:
270
dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
271
llvm_unreachable(nullptr);
272
}
273
return Dest;
274
}
275
276
static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
277
Type *Ty) {
278
GenericValue Dest;
279
switch (Ty->getTypeID()) {
280
IMPLEMENT_INTEGER_ICMP(ule,Ty);
281
IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
282
IMPLEMENT_POINTER_ICMP(<=);
283
default:
284
dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
285
llvm_unreachable(nullptr);
286
}
287
return Dest;
288
}
289
290
static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
291
Type *Ty) {
292
GenericValue Dest;
293
switch (Ty->getTypeID()) {
294
IMPLEMENT_INTEGER_ICMP(sle,Ty);
295
IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
296
IMPLEMENT_POINTER_ICMP(<=);
297
default:
298
dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
299
llvm_unreachable(nullptr);
300
}
301
return Dest;
302
}
303
304
static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
305
Type *Ty) {
306
GenericValue Dest;
307
switch (Ty->getTypeID()) {
308
IMPLEMENT_INTEGER_ICMP(uge,Ty);
309
IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
310
IMPLEMENT_POINTER_ICMP(>=);
311
default:
312
dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
313
llvm_unreachable(nullptr);
314
}
315
return Dest;
316
}
317
318
static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
319
Type *Ty) {
320
GenericValue Dest;
321
switch (Ty->getTypeID()) {
322
IMPLEMENT_INTEGER_ICMP(sge,Ty);
323
IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
324
IMPLEMENT_POINTER_ICMP(>=);
325
default:
326
dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
327
llvm_unreachable(nullptr);
328
}
329
return Dest;
330
}
331
332
void Interpreter::visitICmpInst(ICmpInst &I) {
333
ExecutionContext &SF = ECStack.back();
334
Type *Ty = I.getOperand(0)->getType();
335
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
336
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
337
GenericValue R; // Result
338
339
switch (I.getPredicate()) {
340
case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
341
case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
342
case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
343
case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
344
case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
345
case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
346
case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
347
case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
348
case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
349
case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
350
default:
351
dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
352
llvm_unreachable(nullptr);
353
}
354
355
SetValue(&I, R, SF);
356
}
357
358
#define IMPLEMENT_FCMP(OP, TY) \
359
case Type::TY##TyID: \
360
Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
361
break
362
363
#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
364
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
365
Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
366
for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
367
Dest.AggregateVal[_i].IntVal = APInt(1, \
368
Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
369
break;
370
371
#define IMPLEMENT_VECTOR_FCMP(OP) \
372
case Type::FixedVectorTyID: \
373
case Type::ScalableVectorTyID: \
374
if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
375
IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
376
} else { \
377
IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
378
}
379
380
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
381
Type *Ty) {
382
GenericValue Dest;
383
switch (Ty->getTypeID()) {
384
IMPLEMENT_FCMP(==, Float);
385
IMPLEMENT_FCMP(==, Double);
386
IMPLEMENT_VECTOR_FCMP(==);
387
default:
388
dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
389
llvm_unreachable(nullptr);
390
}
391
return Dest;
392
}
393
394
#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
395
if (TY->isFloatTy()) { \
396
if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
397
Dest.IntVal = APInt(1,false); \
398
return Dest; \
399
} \
400
} else { \
401
if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
402
Dest.IntVal = APInt(1,false); \
403
return Dest; \
404
} \
405
}
406
407
#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
408
assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
409
Dest.AggregateVal.resize( X.AggregateVal.size() ); \
410
for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
411
if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
412
Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
413
Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
414
else { \
415
Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
416
} \
417
}
418
419
#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
420
if (TY->isVectorTy()) { \
421
if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
422
MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
423
} else { \
424
MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
425
} \
426
} \
427
428
429
430
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
431
Type *Ty)
432
{
433
GenericValue Dest;
434
// if input is scalar value and Src1 or Src2 is NaN return false
435
IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
436
// if vector input detect NaNs and fill mask
437
MASK_VECTOR_NANS(Ty, Src1, Src2, false)
438
GenericValue DestMask = Dest;
439
switch (Ty->getTypeID()) {
440
IMPLEMENT_FCMP(!=, Float);
441
IMPLEMENT_FCMP(!=, Double);
442
IMPLEMENT_VECTOR_FCMP(!=);
443
default:
444
dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
445
llvm_unreachable(nullptr);
446
}
447
// in vector case mask out NaN elements
448
if (Ty->isVectorTy())
449
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
450
if (DestMask.AggregateVal[_i].IntVal == false)
451
Dest.AggregateVal[_i].IntVal = APInt(1,false);
452
453
return Dest;
454
}
455
456
static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
457
Type *Ty) {
458
GenericValue Dest;
459
switch (Ty->getTypeID()) {
460
IMPLEMENT_FCMP(<=, Float);
461
IMPLEMENT_FCMP(<=, Double);
462
IMPLEMENT_VECTOR_FCMP(<=);
463
default:
464
dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
465
llvm_unreachable(nullptr);
466
}
467
return Dest;
468
}
469
470
static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
471
Type *Ty) {
472
GenericValue Dest;
473
switch (Ty->getTypeID()) {
474
IMPLEMENT_FCMP(>=, Float);
475
IMPLEMENT_FCMP(>=, Double);
476
IMPLEMENT_VECTOR_FCMP(>=);
477
default:
478
dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
479
llvm_unreachable(nullptr);
480
}
481
return Dest;
482
}
483
484
static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
485
Type *Ty) {
486
GenericValue Dest;
487
switch (Ty->getTypeID()) {
488
IMPLEMENT_FCMP(<, Float);
489
IMPLEMENT_FCMP(<, Double);
490
IMPLEMENT_VECTOR_FCMP(<);
491
default:
492
dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
493
llvm_unreachable(nullptr);
494
}
495
return Dest;
496
}
497
498
static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
499
Type *Ty) {
500
GenericValue Dest;
501
switch (Ty->getTypeID()) {
502
IMPLEMENT_FCMP(>, Float);
503
IMPLEMENT_FCMP(>, Double);
504
IMPLEMENT_VECTOR_FCMP(>);
505
default:
506
dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
507
llvm_unreachable(nullptr);
508
}
509
return Dest;
510
}
511
512
#define IMPLEMENT_UNORDERED(TY, X,Y) \
513
if (TY->isFloatTy()) { \
514
if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
515
Dest.IntVal = APInt(1,true); \
516
return Dest; \
517
} \
518
} else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
519
Dest.IntVal = APInt(1,true); \
520
return Dest; \
521
}
522
523
#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
524
if (TY->isVectorTy()) { \
525
GenericValue DestMask = Dest; \
526
Dest = FUNC(Src1, Src2, Ty); \
527
for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
528
if (DestMask.AggregateVal[_i].IntVal == true) \
529
Dest.AggregateVal[_i].IntVal = APInt(1, true); \
530
return Dest; \
531
}
532
533
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
534
Type *Ty) {
535
GenericValue Dest;
536
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
537
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
538
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
539
return executeFCMP_OEQ(Src1, Src2, Ty);
540
541
}
542
543
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
544
Type *Ty) {
545
GenericValue Dest;
546
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
547
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
548
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
549
return executeFCMP_ONE(Src1, Src2, Ty);
550
}
551
552
static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
553
Type *Ty) {
554
GenericValue Dest;
555
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
556
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
557
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
558
return executeFCMP_OLE(Src1, Src2, Ty);
559
}
560
561
static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
562
Type *Ty) {
563
GenericValue Dest;
564
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
565
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
566
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
567
return executeFCMP_OGE(Src1, Src2, Ty);
568
}
569
570
static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
571
Type *Ty) {
572
GenericValue Dest;
573
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
574
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
575
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
576
return executeFCMP_OLT(Src1, Src2, Ty);
577
}
578
579
static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
580
Type *Ty) {
581
GenericValue Dest;
582
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
583
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
584
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
585
return executeFCMP_OGT(Src1, Src2, Ty);
586
}
587
588
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
589
Type *Ty) {
590
GenericValue Dest;
591
if(Ty->isVectorTy()) {
592
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
593
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
594
if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
595
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
596
Dest.AggregateVal[_i].IntVal = APInt(1,
597
( (Src1.AggregateVal[_i].FloatVal ==
598
Src1.AggregateVal[_i].FloatVal) &&
599
(Src2.AggregateVal[_i].FloatVal ==
600
Src2.AggregateVal[_i].FloatVal)));
601
} else {
602
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
603
Dest.AggregateVal[_i].IntVal = APInt(1,
604
( (Src1.AggregateVal[_i].DoubleVal ==
605
Src1.AggregateVal[_i].DoubleVal) &&
606
(Src2.AggregateVal[_i].DoubleVal ==
607
Src2.AggregateVal[_i].DoubleVal)));
608
}
609
} else if (Ty->isFloatTy())
610
Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
611
Src2.FloatVal == Src2.FloatVal));
612
else {
613
Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
614
Src2.DoubleVal == Src2.DoubleVal));
615
}
616
return Dest;
617
}
618
619
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
620
Type *Ty) {
621
GenericValue Dest;
622
if(Ty->isVectorTy()) {
623
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
624
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
625
if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
626
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
627
Dest.AggregateVal[_i].IntVal = APInt(1,
628
( (Src1.AggregateVal[_i].FloatVal !=
629
Src1.AggregateVal[_i].FloatVal) ||
630
(Src2.AggregateVal[_i].FloatVal !=
631
Src2.AggregateVal[_i].FloatVal)));
632
} else {
633
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
634
Dest.AggregateVal[_i].IntVal = APInt(1,
635
( (Src1.AggregateVal[_i].DoubleVal !=
636
Src1.AggregateVal[_i].DoubleVal) ||
637
(Src2.AggregateVal[_i].DoubleVal !=
638
Src2.AggregateVal[_i].DoubleVal)));
639
}
640
} else if (Ty->isFloatTy())
641
Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
642
Src2.FloatVal != Src2.FloatVal));
643
else {
644
Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
645
Src2.DoubleVal != Src2.DoubleVal));
646
}
647
return Dest;
648
}
649
650
static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
651
Type *Ty, const bool val) {
652
GenericValue Dest;
653
if(Ty->isVectorTy()) {
654
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
655
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
656
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
657
Dest.AggregateVal[_i].IntVal = APInt(1,val);
658
} else {
659
Dest.IntVal = APInt(1, val);
660
}
661
662
return Dest;
663
}
664
665
void Interpreter::visitFCmpInst(FCmpInst &I) {
666
ExecutionContext &SF = ECStack.back();
667
Type *Ty = I.getOperand(0)->getType();
668
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
669
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
670
GenericValue R; // Result
671
672
switch (I.getPredicate()) {
673
default:
674
dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
675
llvm_unreachable(nullptr);
676
break;
677
case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
678
break;
679
case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
680
break;
681
case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
682
case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
683
case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
684
case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
685
case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
686
case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
687
case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
688
case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
689
case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
690
case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
691
case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
692
case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
693
case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
694
case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
695
}
696
697
SetValue(&I, R, SF);
698
}
699
700
void Interpreter::visitBinaryOperator(BinaryOperator &I) {
701
ExecutionContext &SF = ECStack.back();
702
Type *Ty = I.getOperand(0)->getType();
703
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
704
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
705
GenericValue R; // Result
706
707
// First process vector operation
708
if (Ty->isVectorTy()) {
709
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
710
R.AggregateVal.resize(Src1.AggregateVal.size());
711
712
// Macros to execute binary operation 'OP' over integer vectors
713
#define INTEGER_VECTOR_OPERATION(OP) \
714
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
715
R.AggregateVal[i].IntVal = \
716
Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
717
718
// Additional macros to execute binary operations udiv/sdiv/urem/srem since
719
// they have different notation.
720
#define INTEGER_VECTOR_FUNCTION(OP) \
721
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
722
R.AggregateVal[i].IntVal = \
723
Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
724
725
// Macros to execute binary operation 'OP' over floating point type TY
726
// (float or double) vectors
727
#define FLOAT_VECTOR_FUNCTION(OP, TY) \
728
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
729
R.AggregateVal[i].TY = \
730
Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
731
732
// Macros to choose appropriate TY: float or double and run operation
733
// execution
734
#define FLOAT_VECTOR_OP(OP) { \
735
if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
736
FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
737
else { \
738
if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
739
FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
740
else { \
741
dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
742
llvm_unreachable(0); \
743
} \
744
} \
745
}
746
747
switch(I.getOpcode()){
748
default:
749
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
750
llvm_unreachable(nullptr);
751
break;
752
case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
753
case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
754
case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
755
case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
756
case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
757
case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
758
case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
759
case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
760
case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
761
case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
762
case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
763
case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
764
case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
765
case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
766
case Instruction::FRem:
767
if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
768
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
769
R.AggregateVal[i].FloatVal =
770
fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
771
else {
772
if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
773
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
774
R.AggregateVal[i].DoubleVal =
775
fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
776
else {
777
dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
778
llvm_unreachable(nullptr);
779
}
780
}
781
break;
782
}
783
} else {
784
switch (I.getOpcode()) {
785
default:
786
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
787
llvm_unreachable(nullptr);
788
break;
789
case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
790
case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
791
case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
792
case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
793
case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
794
case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
795
case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
796
case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
797
case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
798
case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
799
case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
800
case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
801
case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
802
case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
803
case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
804
}
805
}
806
SetValue(&I, R, SF);
807
}
808
809
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
810
GenericValue Src3, Type *Ty) {
811
GenericValue Dest;
812
if(Ty->isVectorTy()) {
813
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
814
assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
815
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
816
for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
817
Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
818
Src3.AggregateVal[i] : Src2.AggregateVal[i];
819
} else {
820
Dest = (Src1.IntVal == 0) ? Src3 : Src2;
821
}
822
return Dest;
823
}
824
825
void Interpreter::visitSelectInst(SelectInst &I) {
826
ExecutionContext &SF = ECStack.back();
827
Type * Ty = I.getOperand(0)->getType();
828
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
829
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
830
GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
831
GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
832
SetValue(&I, R, SF);
833
}
834
835
//===----------------------------------------------------------------------===//
836
// Terminator Instruction Implementations
837
//===----------------------------------------------------------------------===//
838
839
void Interpreter::exitCalled(GenericValue GV) {
840
// runAtExitHandlers() assumes there are no stack frames, but
841
// if exit() was called, then it had a stack frame. Blow away
842
// the stack before interpreting atexit handlers.
843
ECStack.clear();
844
runAtExitHandlers();
845
exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
846
}
847
848
/// Pop the last stack frame off of ECStack and then copy the result
849
/// back into the result variable if we are not returning void. The
850
/// result variable may be the ExitValue, or the Value of the calling
851
/// CallInst if there was a previous stack frame. This method may
852
/// invalidate any ECStack iterators you have. This method also takes
853
/// care of switching to the normal destination BB, if we are returning
854
/// from an invoke.
855
///
856
void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
857
GenericValue Result) {
858
// Pop the current stack frame.
859
ECStack.pop_back();
860
861
if (ECStack.empty()) { // Finished main. Put result into exit code...
862
if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
863
ExitValue = Result; // Capture the exit value of the program
864
} else {
865
memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
866
}
867
} else {
868
// If we have a previous stack frame, and we have a previous call,
869
// fill in the return value...
870
ExecutionContext &CallingSF = ECStack.back();
871
if (CallingSF.Caller) {
872
// Save result...
873
if (!CallingSF.Caller->getType()->isVoidTy())
874
SetValue(CallingSF.Caller, Result, CallingSF);
875
if (InvokeInst *II = dyn_cast<InvokeInst>(CallingSF.Caller))
876
SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
877
CallingSF.Caller = nullptr; // We returned from the call...
878
}
879
}
880
}
881
882
void Interpreter::visitReturnInst(ReturnInst &I) {
883
ExecutionContext &SF = ECStack.back();
884
Type *RetTy = Type::getVoidTy(I.getContext());
885
GenericValue Result;
886
887
// Save away the return value... (if we are not 'ret void')
888
if (I.getNumOperands()) {
889
RetTy = I.getReturnValue()->getType();
890
Result = getOperandValue(I.getReturnValue(), SF);
891
}
892
893
popStackAndReturnValueToCaller(RetTy, Result);
894
}
895
896
void Interpreter::visitUnreachableInst(UnreachableInst &I) {
897
report_fatal_error("Program executed an 'unreachable' instruction!");
898
}
899
900
void Interpreter::visitBranchInst(BranchInst &I) {
901
ExecutionContext &SF = ECStack.back();
902
BasicBlock *Dest;
903
904
Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
905
if (!I.isUnconditional()) {
906
Value *Cond = I.getCondition();
907
if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
908
Dest = I.getSuccessor(1);
909
}
910
SwitchToNewBasicBlock(Dest, SF);
911
}
912
913
void Interpreter::visitSwitchInst(SwitchInst &I) {
914
ExecutionContext &SF = ECStack.back();
915
Value* Cond = I.getCondition();
916
Type *ElTy = Cond->getType();
917
GenericValue CondVal = getOperandValue(Cond, SF);
918
919
// Check to see if any of the cases match...
920
BasicBlock *Dest = nullptr;
921
for (auto Case : I.cases()) {
922
GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
923
if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
924
Dest = cast<BasicBlock>(Case.getCaseSuccessor());
925
break;
926
}
927
}
928
if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
929
SwitchToNewBasicBlock(Dest, SF);
930
}
931
932
void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
933
ExecutionContext &SF = ECStack.back();
934
void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
935
SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
936
}
937
938
939
// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
940
// This function handles the actual updating of block and instruction iterators
941
// as well as execution of all of the PHI nodes in the destination block.
942
//
943
// This method does this because all of the PHI nodes must be executed
944
// atomically, reading their inputs before any of the results are updated. Not
945
// doing this can cause problems if the PHI nodes depend on other PHI nodes for
946
// their inputs. If the input PHI node is updated before it is read, incorrect
947
// results can happen. Thus we use a two phase approach.
948
//
949
void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
950
BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
951
SF.CurBB = Dest; // Update CurBB to branch destination
952
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
953
954
if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
955
956
// Loop over all of the PHI nodes in the current block, reading their inputs.
957
std::vector<GenericValue> ResultValues;
958
959
for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
960
// Search for the value corresponding to this previous bb...
961
int i = PN->getBasicBlockIndex(PrevBB);
962
assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
963
Value *IncomingValue = PN->getIncomingValue(i);
964
965
// Save the incoming value for this PHI node...
966
ResultValues.push_back(getOperandValue(IncomingValue, SF));
967
}
968
969
// Now loop over all of the PHI nodes setting their values...
970
SF.CurInst = SF.CurBB->begin();
971
for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
972
PHINode *PN = cast<PHINode>(SF.CurInst);
973
SetValue(PN, ResultValues[i], SF);
974
}
975
}
976
977
//===----------------------------------------------------------------------===//
978
// Memory Instruction Implementations
979
//===----------------------------------------------------------------------===//
980
981
void Interpreter::visitAllocaInst(AllocaInst &I) {
982
ExecutionContext &SF = ECStack.back();
983
984
Type *Ty = I.getAllocatedType(); // Type to be allocated
985
986
// Get the number of elements being allocated by the array...
987
unsigned NumElements =
988
getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
989
990
unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
991
992
// Avoid malloc-ing zero bytes, use max()...
993
unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
994
995
// Allocate enough memory to hold the type...
996
void *Memory = safe_malloc(MemToAlloc);
997
998
LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize
999
<< " bytes) x " << NumElements << " (Total: " << MemToAlloc
1000
<< ") at " << uintptr_t(Memory) << '\n');
1001
1002
GenericValue Result = PTOGV(Memory);
1003
assert(Result.PointerVal && "Null pointer returned by malloc!");
1004
SetValue(&I, Result, SF);
1005
1006
if (I.getOpcode() == Instruction::Alloca)
1007
ECStack.back().Allocas.add(Memory);
1008
}
1009
1010
// getElementOffset - The workhorse for getelementptr.
1011
//
1012
GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
1013
gep_type_iterator E,
1014
ExecutionContext &SF) {
1015
assert(Ptr->getType()->isPointerTy() &&
1016
"Cannot getElementOffset of a nonpointer type!");
1017
1018
uint64_t Total = 0;
1019
1020
for (; I != E; ++I) {
1021
if (StructType *STy = I.getStructTypeOrNull()) {
1022
const StructLayout *SLO = getDataLayout().getStructLayout(STy);
1023
1024
const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1025
unsigned Index = unsigned(CPU->getZExtValue());
1026
1027
Total += SLO->getElementOffset(Index);
1028
} else {
1029
// Get the index number for the array... which must be long type...
1030
GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1031
1032
int64_t Idx;
1033
unsigned BitWidth =
1034
cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1035
if (BitWidth == 32)
1036
Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1037
else {
1038
assert(BitWidth == 64 && "Invalid index type for getelementptr");
1039
Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1040
}
1041
Total += I.getSequentialElementStride(getDataLayout()) * Idx;
1042
}
1043
}
1044
1045
GenericValue Result;
1046
Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1047
LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1048
return Result;
1049
}
1050
1051
void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
1052
ExecutionContext &SF = ECStack.back();
1053
SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1054
gep_type_begin(I), gep_type_end(I), SF), SF);
1055
}
1056
1057
void Interpreter::visitLoadInst(LoadInst &I) {
1058
ExecutionContext &SF = ECStack.back();
1059
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1060
GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
1061
GenericValue Result;
1062
LoadValueFromMemory(Result, Ptr, I.getType());
1063
SetValue(&I, Result, SF);
1064
if (I.isVolatile() && PrintVolatile)
1065
dbgs() << "Volatile load " << I;
1066
}
1067
1068
void Interpreter::visitStoreInst(StoreInst &I) {
1069
ExecutionContext &SF = ECStack.back();
1070
GenericValue Val = getOperandValue(I.getOperand(0), SF);
1071
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1072
StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
1073
I.getOperand(0)->getType());
1074
if (I.isVolatile() && PrintVolatile)
1075
dbgs() << "Volatile store: " << I;
1076
}
1077
1078
//===----------------------------------------------------------------------===//
1079
// Miscellaneous Instruction Implementations
1080
//===----------------------------------------------------------------------===//
1081
1082
void Interpreter::visitVAStartInst(VAStartInst &I) {
1083
ExecutionContext &SF = ECStack.back();
1084
GenericValue ArgIndex;
1085
ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1086
ArgIndex.UIntPairVal.second = 0;
1087
SetValue(&I, ArgIndex, SF);
1088
}
1089
1090
void Interpreter::visitVAEndInst(VAEndInst &I) {
1091
// va_end is a noop for the interpreter
1092
}
1093
1094
void Interpreter::visitVACopyInst(VACopyInst &I) {
1095
ExecutionContext &SF = ECStack.back();
1096
SetValue(&I, getOperandValue(*I.arg_begin(), SF), SF);
1097
}
1098
1099
void Interpreter::visitIntrinsicInst(IntrinsicInst &I) {
1100
ExecutionContext &SF = ECStack.back();
1101
1102
// If it is an unknown intrinsic function, use the intrinsic lowering
1103
// class to transform it into hopefully tasty LLVM code.
1104
//
1105
BasicBlock::iterator Me(&I);
1106
BasicBlock *Parent = I.getParent();
1107
bool atBegin(Parent->begin() == Me);
1108
if (!atBegin)
1109
--Me;
1110
IL->LowerIntrinsicCall(&I);
1111
1112
// Restore the CurInst pointer to the first instruction newly inserted, if
1113
// any.
1114
if (atBegin) {
1115
SF.CurInst = Parent->begin();
1116
} else {
1117
SF.CurInst = Me;
1118
++SF.CurInst;
1119
}
1120
}
1121
1122
void Interpreter::visitCallBase(CallBase &I) {
1123
ExecutionContext &SF = ECStack.back();
1124
1125
SF.Caller = &I;
1126
std::vector<GenericValue> ArgVals;
1127
const unsigned NumArgs = SF.Caller->arg_size();
1128
ArgVals.reserve(NumArgs);
1129
for (Value *V : SF.Caller->args())
1130
ArgVals.push_back(getOperandValue(V, SF));
1131
1132
// To handle indirect calls, we must get the pointer value from the argument
1133
// and treat it as a function pointer.
1134
GenericValue SRC = getOperandValue(SF.Caller->getCalledOperand(), SF);
1135
callFunction((Function*)GVTOP(SRC), ArgVals);
1136
}
1137
1138
// auxiliary function for shift operations
1139
static unsigned getShiftAmount(uint64_t orgShiftAmount,
1140
llvm::APInt valueToShift) {
1141
unsigned valueWidth = valueToShift.getBitWidth();
1142
if (orgShiftAmount < (uint64_t)valueWidth)
1143
return orgShiftAmount;
1144
// according to the llvm documentation, if orgShiftAmount > valueWidth,
1145
// the result is undfeined. but we do shift by this rule:
1146
return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1147
}
1148
1149
1150
void Interpreter::visitShl(BinaryOperator &I) {
1151
ExecutionContext &SF = ECStack.back();
1152
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1153
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1154
GenericValue Dest;
1155
Type *Ty = I.getType();
1156
1157
if (Ty->isVectorTy()) {
1158
uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1159
assert(src1Size == Src2.AggregateVal.size());
1160
for (unsigned i = 0; i < src1Size; i++) {
1161
GenericValue Result;
1162
uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1163
llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1164
Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1165
Dest.AggregateVal.push_back(Result);
1166
}
1167
} else {
1168
// scalar
1169
uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1170
llvm::APInt valueToShift = Src1.IntVal;
1171
Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1172
}
1173
1174
SetValue(&I, Dest, SF);
1175
}
1176
1177
void Interpreter::visitLShr(BinaryOperator &I) {
1178
ExecutionContext &SF = ECStack.back();
1179
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1180
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1181
GenericValue Dest;
1182
Type *Ty = I.getType();
1183
1184
if (Ty->isVectorTy()) {
1185
uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1186
assert(src1Size == Src2.AggregateVal.size());
1187
for (unsigned i = 0; i < src1Size; i++) {
1188
GenericValue Result;
1189
uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1190
llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1191
Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1192
Dest.AggregateVal.push_back(Result);
1193
}
1194
} else {
1195
// scalar
1196
uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1197
llvm::APInt valueToShift = Src1.IntVal;
1198
Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1199
}
1200
1201
SetValue(&I, Dest, SF);
1202
}
1203
1204
void Interpreter::visitAShr(BinaryOperator &I) {
1205
ExecutionContext &SF = ECStack.back();
1206
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1207
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1208
GenericValue Dest;
1209
Type *Ty = I.getType();
1210
1211
if (Ty->isVectorTy()) {
1212
size_t src1Size = Src1.AggregateVal.size();
1213
assert(src1Size == Src2.AggregateVal.size());
1214
for (unsigned i = 0; i < src1Size; i++) {
1215
GenericValue Result;
1216
uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1217
llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1218
Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1219
Dest.AggregateVal.push_back(Result);
1220
}
1221
} else {
1222
// scalar
1223
uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1224
llvm::APInt valueToShift = Src1.IntVal;
1225
Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1226
}
1227
1228
SetValue(&I, Dest, SF);
1229
}
1230
1231
GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1232
ExecutionContext &SF) {
1233
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1234
Type *SrcTy = SrcVal->getType();
1235
if (SrcTy->isVectorTy()) {
1236
Type *DstVecTy = DstTy->getScalarType();
1237
unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1238
unsigned NumElts = Src.AggregateVal.size();
1239
// the sizes of src and dst vectors must be equal
1240
Dest.AggregateVal.resize(NumElts);
1241
for (unsigned i = 0; i < NumElts; i++)
1242
Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1243
} else {
1244
IntegerType *DITy = cast<IntegerType>(DstTy);
1245
unsigned DBitWidth = DITy->getBitWidth();
1246
Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1247
}
1248
return Dest;
1249
}
1250
1251
GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1252
ExecutionContext &SF) {
1253
Type *SrcTy = SrcVal->getType();
1254
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1255
if (SrcTy->isVectorTy()) {
1256
Type *DstVecTy = DstTy->getScalarType();
1257
unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1258
unsigned size = Src.AggregateVal.size();
1259
// the sizes of src and dst vectors must be equal.
1260
Dest.AggregateVal.resize(size);
1261
for (unsigned i = 0; i < size; i++)
1262
Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1263
} else {
1264
auto *DITy = cast<IntegerType>(DstTy);
1265
unsigned DBitWidth = DITy->getBitWidth();
1266
Dest.IntVal = Src.IntVal.sext(DBitWidth);
1267
}
1268
return Dest;
1269
}
1270
1271
GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1272
ExecutionContext &SF) {
1273
Type *SrcTy = SrcVal->getType();
1274
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1275
if (SrcTy->isVectorTy()) {
1276
Type *DstVecTy = DstTy->getScalarType();
1277
unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1278
1279
unsigned size = Src.AggregateVal.size();
1280
// the sizes of src and dst vectors must be equal.
1281
Dest.AggregateVal.resize(size);
1282
for (unsigned i = 0; i < size; i++)
1283
Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1284
} else {
1285
auto *DITy = cast<IntegerType>(DstTy);
1286
unsigned DBitWidth = DITy->getBitWidth();
1287
Dest.IntVal = Src.IntVal.zext(DBitWidth);
1288
}
1289
return Dest;
1290
}
1291
1292
GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1293
ExecutionContext &SF) {
1294
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1295
1296
if (isa<VectorType>(SrcVal->getType())) {
1297
assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1298
DstTy->getScalarType()->isFloatTy() &&
1299
"Invalid FPTrunc instruction");
1300
1301
unsigned size = Src.AggregateVal.size();
1302
// the sizes of src and dst vectors must be equal.
1303
Dest.AggregateVal.resize(size);
1304
for (unsigned i = 0; i < size; i++)
1305
Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1306
} else {
1307
assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1308
"Invalid FPTrunc instruction");
1309
Dest.FloatVal = (float)Src.DoubleVal;
1310
}
1311
1312
return Dest;
1313
}
1314
1315
GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1316
ExecutionContext &SF) {
1317
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1318
1319
if (isa<VectorType>(SrcVal->getType())) {
1320
assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1321
DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1322
1323
unsigned size = Src.AggregateVal.size();
1324
// the sizes of src and dst vectors must be equal.
1325
Dest.AggregateVal.resize(size);
1326
for (unsigned i = 0; i < size; i++)
1327
Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1328
} else {
1329
assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1330
"Invalid FPExt instruction");
1331
Dest.DoubleVal = (double)Src.FloatVal;
1332
}
1333
1334
return Dest;
1335
}
1336
1337
GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1338
ExecutionContext &SF) {
1339
Type *SrcTy = SrcVal->getType();
1340
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1341
1342
if (isa<VectorType>(SrcTy)) {
1343
Type *DstVecTy = DstTy->getScalarType();
1344
Type *SrcVecTy = SrcTy->getScalarType();
1345
uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1346
unsigned size = Src.AggregateVal.size();
1347
// the sizes of src and dst vectors must be equal.
1348
Dest.AggregateVal.resize(size);
1349
1350
if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1351
assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1352
for (unsigned i = 0; i < size; i++)
1353
Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1354
Src.AggregateVal[i].FloatVal, DBitWidth);
1355
} else {
1356
for (unsigned i = 0; i < size; i++)
1357
Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1358
Src.AggregateVal[i].DoubleVal, DBitWidth);
1359
}
1360
} else {
1361
// scalar
1362
uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1363
assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1364
1365
if (SrcTy->getTypeID() == Type::FloatTyID)
1366
Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1367
else {
1368
Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1369
}
1370
}
1371
1372
return Dest;
1373
}
1374
1375
GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1376
ExecutionContext &SF) {
1377
Type *SrcTy = SrcVal->getType();
1378
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1379
1380
if (isa<VectorType>(SrcTy)) {
1381
Type *DstVecTy = DstTy->getScalarType();
1382
Type *SrcVecTy = SrcTy->getScalarType();
1383
uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1384
unsigned size = Src.AggregateVal.size();
1385
// the sizes of src and dst vectors must be equal
1386
Dest.AggregateVal.resize(size);
1387
1388
if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1389
assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1390
for (unsigned i = 0; i < size; i++)
1391
Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1392
Src.AggregateVal[i].FloatVal, DBitWidth);
1393
} else {
1394
for (unsigned i = 0; i < size; i++)
1395
Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1396
Src.AggregateVal[i].DoubleVal, DBitWidth);
1397
}
1398
} else {
1399
// scalar
1400
unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1401
assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1402
1403
if (SrcTy->getTypeID() == Type::FloatTyID)
1404
Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1405
else {
1406
Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1407
}
1408
}
1409
return Dest;
1410
}
1411
1412
GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1413
ExecutionContext &SF) {
1414
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1415
1416
if (isa<VectorType>(SrcVal->getType())) {
1417
Type *DstVecTy = DstTy->getScalarType();
1418
unsigned size = Src.AggregateVal.size();
1419
// the sizes of src and dst vectors must be equal
1420
Dest.AggregateVal.resize(size);
1421
1422
if (DstVecTy->getTypeID() == Type::FloatTyID) {
1423
assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1424
for (unsigned i = 0; i < size; i++)
1425
Dest.AggregateVal[i].FloatVal =
1426
APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
1427
} else {
1428
for (unsigned i = 0; i < size; i++)
1429
Dest.AggregateVal[i].DoubleVal =
1430
APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
1431
}
1432
} else {
1433
// scalar
1434
assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1435
if (DstTy->getTypeID() == Type::FloatTyID)
1436
Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1437
else {
1438
Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1439
}
1440
}
1441
return Dest;
1442
}
1443
1444
GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1445
ExecutionContext &SF) {
1446
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1447
1448
if (isa<VectorType>(SrcVal->getType())) {
1449
Type *DstVecTy = DstTy->getScalarType();
1450
unsigned size = Src.AggregateVal.size();
1451
// the sizes of src and dst vectors must be equal
1452
Dest.AggregateVal.resize(size);
1453
1454
if (DstVecTy->getTypeID() == Type::FloatTyID) {
1455
assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1456
for (unsigned i = 0; i < size; i++)
1457
Dest.AggregateVal[i].FloatVal =
1458
APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
1459
} else {
1460
for (unsigned i = 0; i < size; i++)
1461
Dest.AggregateVal[i].DoubleVal =
1462
APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
1463
}
1464
} else {
1465
// scalar
1466
assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1467
1468
if (DstTy->getTypeID() == Type::FloatTyID)
1469
Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1470
else {
1471
Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1472
}
1473
}
1474
1475
return Dest;
1476
}
1477
1478
GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1479
ExecutionContext &SF) {
1480
uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1481
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1482
assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1483
1484
Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1485
return Dest;
1486
}
1487
1488
GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1489
ExecutionContext &SF) {
1490
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1491
assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1492
1493
uint32_t PtrSize = getDataLayout().getPointerSizeInBits();
1494
if (PtrSize != Src.IntVal.getBitWidth())
1495
Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1496
1497
Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1498
return Dest;
1499
}
1500
1501
GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1502
ExecutionContext &SF) {
1503
1504
// This instruction supports bitwise conversion of vectors to integers and
1505
// to vectors of other types (as long as they have the same size)
1506
Type *SrcTy = SrcVal->getType();
1507
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1508
1509
if (isa<VectorType>(SrcTy) || isa<VectorType>(DstTy)) {
1510
// vector src bitcast to vector dst or vector src bitcast to scalar dst or
1511
// scalar src bitcast to vector dst
1512
bool isLittleEndian = getDataLayout().isLittleEndian();
1513
GenericValue TempDst, TempSrc, SrcVec;
1514
Type *SrcElemTy;
1515
Type *DstElemTy;
1516
unsigned SrcBitSize;
1517
unsigned DstBitSize;
1518
unsigned SrcNum;
1519
unsigned DstNum;
1520
1521
if (isa<VectorType>(SrcTy)) {
1522
SrcElemTy = SrcTy->getScalarType();
1523
SrcBitSize = SrcTy->getScalarSizeInBits();
1524
SrcNum = Src.AggregateVal.size();
1525
SrcVec = Src;
1526
} else {
1527
// if src is scalar value, make it vector <1 x type>
1528
SrcElemTy = SrcTy;
1529
SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1530
SrcNum = 1;
1531
SrcVec.AggregateVal.push_back(Src);
1532
}
1533
1534
if (isa<VectorType>(DstTy)) {
1535
DstElemTy = DstTy->getScalarType();
1536
DstBitSize = DstTy->getScalarSizeInBits();
1537
DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1538
} else {
1539
DstElemTy = DstTy;
1540
DstBitSize = DstTy->getPrimitiveSizeInBits();
1541
DstNum = 1;
1542
}
1543
1544
if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1545
llvm_unreachable("Invalid BitCast");
1546
1547
// If src is floating point, cast to integer first.
1548
TempSrc.AggregateVal.resize(SrcNum);
1549
if (SrcElemTy->isFloatTy()) {
1550
for (unsigned i = 0; i < SrcNum; i++)
1551
TempSrc.AggregateVal[i].IntVal =
1552
APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1553
1554
} else if (SrcElemTy->isDoubleTy()) {
1555
for (unsigned i = 0; i < SrcNum; i++)
1556
TempSrc.AggregateVal[i].IntVal =
1557
APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1558
} else if (SrcElemTy->isIntegerTy()) {
1559
for (unsigned i = 0; i < SrcNum; i++)
1560
TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1561
} else {
1562
// Pointers are not allowed as the element type of vector.
1563
llvm_unreachable("Invalid Bitcast");
1564
}
1565
1566
// now TempSrc is integer type vector
1567
if (DstNum < SrcNum) {
1568
// Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1569
unsigned Ratio = SrcNum / DstNum;
1570
unsigned SrcElt = 0;
1571
for (unsigned i = 0; i < DstNum; i++) {
1572
GenericValue Elt;
1573
Elt.IntVal = 0;
1574
Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1575
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1576
for (unsigned j = 0; j < Ratio; j++) {
1577
APInt Tmp;
1578
Tmp = Tmp.zext(SrcBitSize);
1579
Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1580
Tmp = Tmp.zext(DstBitSize);
1581
Tmp <<= ShiftAmt;
1582
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1583
Elt.IntVal |= Tmp;
1584
}
1585
TempDst.AggregateVal.push_back(Elt);
1586
}
1587
} else {
1588
// Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1589
unsigned Ratio = DstNum / SrcNum;
1590
for (unsigned i = 0; i < SrcNum; i++) {
1591
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1592
for (unsigned j = 0; j < Ratio; j++) {
1593
GenericValue Elt;
1594
Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1595
Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1596
Elt.IntVal.lshrInPlace(ShiftAmt);
1597
// it could be DstBitSize == SrcBitSize, so check it
1598
if (DstBitSize < SrcBitSize)
1599
Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1600
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1601
TempDst.AggregateVal.push_back(Elt);
1602
}
1603
}
1604
}
1605
1606
// convert result from integer to specified type
1607
if (isa<VectorType>(DstTy)) {
1608
if (DstElemTy->isDoubleTy()) {
1609
Dest.AggregateVal.resize(DstNum);
1610
for (unsigned i = 0; i < DstNum; i++)
1611
Dest.AggregateVal[i].DoubleVal =
1612
TempDst.AggregateVal[i].IntVal.bitsToDouble();
1613
} else if (DstElemTy->isFloatTy()) {
1614
Dest.AggregateVal.resize(DstNum);
1615
for (unsigned i = 0; i < DstNum; i++)
1616
Dest.AggregateVal[i].FloatVal =
1617
TempDst.AggregateVal[i].IntVal.bitsToFloat();
1618
} else {
1619
Dest = TempDst;
1620
}
1621
} else {
1622
if (DstElemTy->isDoubleTy())
1623
Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1624
else if (DstElemTy->isFloatTy()) {
1625
Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1626
} else {
1627
Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1628
}
1629
}
1630
} else { // if (isa<VectorType>(SrcTy)) || isa<VectorType>(DstTy))
1631
1632
// scalar src bitcast to scalar dst
1633
if (DstTy->isPointerTy()) {
1634
assert(SrcTy->isPointerTy() && "Invalid BitCast");
1635
Dest.PointerVal = Src.PointerVal;
1636
} else if (DstTy->isIntegerTy()) {
1637
if (SrcTy->isFloatTy())
1638
Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1639
else if (SrcTy->isDoubleTy()) {
1640
Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1641
} else if (SrcTy->isIntegerTy()) {
1642
Dest.IntVal = Src.IntVal;
1643
} else {
1644
llvm_unreachable("Invalid BitCast");
1645
}
1646
} else if (DstTy->isFloatTy()) {
1647
if (SrcTy->isIntegerTy())
1648
Dest.FloatVal = Src.IntVal.bitsToFloat();
1649
else {
1650
Dest.FloatVal = Src.FloatVal;
1651
}
1652
} else if (DstTy->isDoubleTy()) {
1653
if (SrcTy->isIntegerTy())
1654
Dest.DoubleVal = Src.IntVal.bitsToDouble();
1655
else {
1656
Dest.DoubleVal = Src.DoubleVal;
1657
}
1658
} else {
1659
llvm_unreachable("Invalid Bitcast");
1660
}
1661
}
1662
1663
return Dest;
1664
}
1665
1666
void Interpreter::visitTruncInst(TruncInst &I) {
1667
ExecutionContext &SF = ECStack.back();
1668
SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1669
}
1670
1671
void Interpreter::visitSExtInst(SExtInst &I) {
1672
ExecutionContext &SF = ECStack.back();
1673
SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1674
}
1675
1676
void Interpreter::visitZExtInst(ZExtInst &I) {
1677
ExecutionContext &SF = ECStack.back();
1678
SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1679
}
1680
1681
void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1682
ExecutionContext &SF = ECStack.back();
1683
SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1684
}
1685
1686
void Interpreter::visitFPExtInst(FPExtInst &I) {
1687
ExecutionContext &SF = ECStack.back();
1688
SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1689
}
1690
1691
void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1692
ExecutionContext &SF = ECStack.back();
1693
SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1694
}
1695
1696
void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1697
ExecutionContext &SF = ECStack.back();
1698
SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1699
}
1700
1701
void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1702
ExecutionContext &SF = ECStack.back();
1703
SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1704
}
1705
1706
void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1707
ExecutionContext &SF = ECStack.back();
1708
SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1709
}
1710
1711
void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1712
ExecutionContext &SF = ECStack.back();
1713
SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1714
}
1715
1716
void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1717
ExecutionContext &SF = ECStack.back();
1718
SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1719
}
1720
1721
void Interpreter::visitBitCastInst(BitCastInst &I) {
1722
ExecutionContext &SF = ECStack.back();
1723
SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1724
}
1725
1726
#define IMPLEMENT_VAARG(TY) \
1727
case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1728
1729
void Interpreter::visitVAArgInst(VAArgInst &I) {
1730
ExecutionContext &SF = ECStack.back();
1731
1732
// Get the incoming valist parameter. LLI treats the valist as a
1733
// (ec-stack-depth var-arg-index) pair.
1734
GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1735
GenericValue Dest;
1736
GenericValue Src = ECStack[VAList.UIntPairVal.first]
1737
.VarArgs[VAList.UIntPairVal.second];
1738
Type *Ty = I.getType();
1739
switch (Ty->getTypeID()) {
1740
case Type::IntegerTyID:
1741
Dest.IntVal = Src.IntVal;
1742
break;
1743
IMPLEMENT_VAARG(Pointer);
1744
IMPLEMENT_VAARG(Float);
1745
IMPLEMENT_VAARG(Double);
1746
default:
1747
dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1748
llvm_unreachable(nullptr);
1749
}
1750
1751
// Set the Value of this Instruction.
1752
SetValue(&I, Dest, SF);
1753
1754
// Move the pointer to the next vararg.
1755
++VAList.UIntPairVal.second;
1756
}
1757
1758
void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
1759
ExecutionContext &SF = ECStack.back();
1760
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1761
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1762
GenericValue Dest;
1763
1764
Type *Ty = I.getType();
1765
const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1766
1767
if(Src1.AggregateVal.size() > indx) {
1768
switch (Ty->getTypeID()) {
1769
default:
1770
dbgs() << "Unhandled destination type for extractelement instruction: "
1771
<< *Ty << "\n";
1772
llvm_unreachable(nullptr);
1773
break;
1774
case Type::IntegerTyID:
1775
Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1776
break;
1777
case Type::FloatTyID:
1778
Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1779
break;
1780
case Type::DoubleTyID:
1781
Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1782
break;
1783
}
1784
} else {
1785
dbgs() << "Invalid index in extractelement instruction\n";
1786
}
1787
1788
SetValue(&I, Dest, SF);
1789
}
1790
1791
void Interpreter::visitInsertElementInst(InsertElementInst &I) {
1792
ExecutionContext &SF = ECStack.back();
1793
VectorType *Ty = cast<VectorType>(I.getType());
1794
1795
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1796
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1797
GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1798
GenericValue Dest;
1799
1800
Type *TyContained = Ty->getElementType();
1801
1802
const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
1803
Dest.AggregateVal = Src1.AggregateVal;
1804
1805
if(Src1.AggregateVal.size() <= indx)
1806
llvm_unreachable("Invalid index in insertelement instruction");
1807
switch (TyContained->getTypeID()) {
1808
default:
1809
llvm_unreachable("Unhandled dest type for insertelement instruction");
1810
case Type::IntegerTyID:
1811
Dest.AggregateVal[indx].IntVal = Src2.IntVal;
1812
break;
1813
case Type::FloatTyID:
1814
Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
1815
break;
1816
case Type::DoubleTyID:
1817
Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
1818
break;
1819
}
1820
SetValue(&I, Dest, SF);
1821
}
1822
1823
void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
1824
ExecutionContext &SF = ECStack.back();
1825
1826
VectorType *Ty = cast<VectorType>(I.getType());
1827
1828
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1829
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1830
GenericValue Dest;
1831
1832
// There is no need to check types of src1 and src2, because the compiled
1833
// bytecode can't contain different types for src1 and src2 for a
1834
// shufflevector instruction.
1835
1836
Type *TyContained = Ty->getElementType();
1837
unsigned src1Size = (unsigned)Src1.AggregateVal.size();
1838
unsigned src2Size = (unsigned)Src2.AggregateVal.size();
1839
unsigned src3Size = I.getShuffleMask().size();
1840
1841
Dest.AggregateVal.resize(src3Size);
1842
1843
switch (TyContained->getTypeID()) {
1844
default:
1845
llvm_unreachable("Unhandled dest type for insertelement instruction");
1846
break;
1847
case Type::IntegerTyID:
1848
for( unsigned i=0; i<src3Size; i++) {
1849
unsigned j = std::max(0, I.getMaskValue(i));
1850
if(j < src1Size)
1851
Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
1852
else if(j < src1Size + src2Size)
1853
Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
1854
else
1855
// The selector may not be greater than sum of lengths of first and
1856
// second operands and llasm should not allow situation like
1857
// %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1858
// <2 x i32> < i32 0, i32 5 >,
1859
// where i32 5 is invalid, but let it be additional check here:
1860
llvm_unreachable("Invalid mask in shufflevector instruction");
1861
}
1862
break;
1863
case Type::FloatTyID:
1864
for( unsigned i=0; i<src3Size; i++) {
1865
unsigned j = std::max(0, I.getMaskValue(i));
1866
if(j < src1Size)
1867
Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
1868
else if(j < src1Size + src2Size)
1869
Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
1870
else
1871
llvm_unreachable("Invalid mask in shufflevector instruction");
1872
}
1873
break;
1874
case Type::DoubleTyID:
1875
for( unsigned i=0; i<src3Size; i++) {
1876
unsigned j = std::max(0, I.getMaskValue(i));
1877
if(j < src1Size)
1878
Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
1879
else if(j < src1Size + src2Size)
1880
Dest.AggregateVal[i].DoubleVal =
1881
Src2.AggregateVal[j-src1Size].DoubleVal;
1882
else
1883
llvm_unreachable("Invalid mask in shufflevector instruction");
1884
}
1885
break;
1886
}
1887
SetValue(&I, Dest, SF);
1888
}
1889
1890
void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
1891
ExecutionContext &SF = ECStack.back();
1892
Value *Agg = I.getAggregateOperand();
1893
GenericValue Dest;
1894
GenericValue Src = getOperandValue(Agg, SF);
1895
1896
ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1897
unsigned Num = I.getNumIndices();
1898
GenericValue *pSrc = &Src;
1899
1900
for (unsigned i = 0 ; i < Num; ++i) {
1901
pSrc = &pSrc->AggregateVal[*IdxBegin];
1902
++IdxBegin;
1903
}
1904
1905
Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1906
switch (IndexedType->getTypeID()) {
1907
default:
1908
llvm_unreachable("Unhandled dest type for extractelement instruction");
1909
break;
1910
case Type::IntegerTyID:
1911
Dest.IntVal = pSrc->IntVal;
1912
break;
1913
case Type::FloatTyID:
1914
Dest.FloatVal = pSrc->FloatVal;
1915
break;
1916
case Type::DoubleTyID:
1917
Dest.DoubleVal = pSrc->DoubleVal;
1918
break;
1919
case Type::ArrayTyID:
1920
case Type::StructTyID:
1921
case Type::FixedVectorTyID:
1922
case Type::ScalableVectorTyID:
1923
Dest.AggregateVal = pSrc->AggregateVal;
1924
break;
1925
case Type::PointerTyID:
1926
Dest.PointerVal = pSrc->PointerVal;
1927
break;
1928
}
1929
1930
SetValue(&I, Dest, SF);
1931
}
1932
1933
void Interpreter::visitInsertValueInst(InsertValueInst &I) {
1934
1935
ExecutionContext &SF = ECStack.back();
1936
Value *Agg = I.getAggregateOperand();
1937
1938
GenericValue Src1 = getOperandValue(Agg, SF);
1939
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1940
GenericValue Dest = Src1; // Dest is a slightly changed Src1
1941
1942
ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1943
unsigned Num = I.getNumIndices();
1944
1945
GenericValue *pDest = &Dest;
1946
for (unsigned i = 0 ; i < Num; ++i) {
1947
pDest = &pDest->AggregateVal[*IdxBegin];
1948
++IdxBegin;
1949
}
1950
// pDest points to the target value in the Dest now
1951
1952
Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1953
1954
switch (IndexedType->getTypeID()) {
1955
default:
1956
llvm_unreachable("Unhandled dest type for insertelement instruction");
1957
break;
1958
case Type::IntegerTyID:
1959
pDest->IntVal = Src2.IntVal;
1960
break;
1961
case Type::FloatTyID:
1962
pDest->FloatVal = Src2.FloatVal;
1963
break;
1964
case Type::DoubleTyID:
1965
pDest->DoubleVal = Src2.DoubleVal;
1966
break;
1967
case Type::ArrayTyID:
1968
case Type::StructTyID:
1969
case Type::FixedVectorTyID:
1970
case Type::ScalableVectorTyID:
1971
pDest->AggregateVal = Src2.AggregateVal;
1972
break;
1973
case Type::PointerTyID:
1974
pDest->PointerVal = Src2.PointerVal;
1975
break;
1976
}
1977
1978
SetValue(&I, Dest, SF);
1979
}
1980
1981
GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1982
ExecutionContext &SF) {
1983
switch (CE->getOpcode()) {
1984
case Instruction::Trunc:
1985
return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1986
case Instruction::PtrToInt:
1987
return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1988
case Instruction::IntToPtr:
1989
return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1990
case Instruction::BitCast:
1991
return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
1992
case Instruction::GetElementPtr:
1993
return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
1994
gep_type_end(CE), SF);
1995
break;
1996
}
1997
1998
// The cases below here require a GenericValue parameter for the result
1999
// so we initialize one, compute it and then return it.
2000
GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
2001
GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
2002
GenericValue Dest;
2003
switch (CE->getOpcode()) {
2004
case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
2005
case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
2006
case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
2007
case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
2008
case Instruction::Shl:
2009
Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
2010
break;
2011
default:
2012
dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
2013
llvm_unreachable("Unhandled ConstantExpr");
2014
}
2015
return Dest;
2016
}
2017
2018
GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
2019
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2020
return getConstantExprValue(CE, SF);
2021
} else if (Constant *CPV = dyn_cast<Constant>(V)) {
2022
return getConstantValue(CPV);
2023
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2024
return PTOGV(getPointerToGlobal(GV));
2025
} else {
2026
return SF.Values[V];
2027
}
2028
}
2029
2030
//===----------------------------------------------------------------------===//
2031
// Dispatch and Execution Code
2032
//===----------------------------------------------------------------------===//
2033
2034
//===----------------------------------------------------------------------===//
2035
// callFunction - Execute the specified function...
2036
//
2037
void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) {
2038
assert((ECStack.empty() || !ECStack.back().Caller ||
2039
ECStack.back().Caller->arg_size() == ArgVals.size()) &&
2040
"Incorrect number of arguments passed into function call!");
2041
// Make a new stack frame... and fill it in.
2042
ECStack.emplace_back();
2043
ExecutionContext &StackFrame = ECStack.back();
2044
StackFrame.CurFunction = F;
2045
2046
// Special handling for external functions.
2047
if (F->isDeclaration()) {
2048
GenericValue Result = callExternalFunction (F, ArgVals);
2049
// Simulate a 'ret' instruction of the appropriate type.
2050
popStackAndReturnValueToCaller (F->getReturnType (), Result);
2051
return;
2052
}
2053
2054
// Get pointers to first LLVM BB & Instruction in function.
2055
StackFrame.CurBB = &F->front();
2056
StackFrame.CurInst = StackFrame.CurBB->begin();
2057
2058
// Run through the function arguments and initialize their values...
2059
assert((ArgVals.size() == F->arg_size() ||
2060
(ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
2061
"Invalid number of values passed to function invocation!");
2062
2063
// Handle non-varargs arguments...
2064
unsigned i = 0;
2065
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
2066
AI != E; ++AI, ++i)
2067
SetValue(&*AI, ArgVals[i], StackFrame);
2068
2069
// Handle varargs arguments...
2070
StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
2071
}
2072
2073
2074
void Interpreter::run() {
2075
while (!ECStack.empty()) {
2076
// Interpret a single instruction & increment the "PC".
2077
ExecutionContext &SF = ECStack.back(); // Current stack frame
2078
Instruction &I = *SF.CurInst++; // Increment before execute
2079
2080
// Track the number of dynamic instructions executed.
2081
++NumDynamicInsts;
2082
2083
LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n");
2084
visit(I); // Dispatch to one of the visit* methods...
2085
}
2086
}
2087
2088