Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
35269 views
1
//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Implementation of the MC-JIT runtime dynamic linker.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/ExecutionEngine/RuntimeDyld.h"
14
#include "RuntimeDyldCOFF.h"
15
#include "RuntimeDyldELF.h"
16
#include "RuntimeDyldImpl.h"
17
#include "RuntimeDyldMachO.h"
18
#include "llvm/Object/COFF.h"
19
#include "llvm/Object/ELFObjectFile.h"
20
#include "llvm/Support/Alignment.h"
21
#include "llvm/Support/MSVCErrorWorkarounds.h"
22
#include "llvm/Support/MathExtras.h"
23
#include <mutex>
24
25
#include <future>
26
27
using namespace llvm;
28
using namespace llvm::object;
29
30
#define DEBUG_TYPE "dyld"
31
32
namespace {
33
34
enum RuntimeDyldErrorCode {
35
GenericRTDyldError = 1
36
};
37
38
// FIXME: This class is only here to support the transition to llvm::Error. It
39
// will be removed once this transition is complete. Clients should prefer to
40
// deal with the Error value directly, rather than converting to error_code.
41
class RuntimeDyldErrorCategory : public std::error_category {
42
public:
43
const char *name() const noexcept override { return "runtimedyld"; }
44
45
std::string message(int Condition) const override {
46
switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
47
case GenericRTDyldError: return "Generic RuntimeDyld error";
48
}
49
llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
50
}
51
};
52
53
}
54
55
char RuntimeDyldError::ID = 0;
56
57
void RuntimeDyldError::log(raw_ostream &OS) const {
58
OS << ErrMsg << "\n";
59
}
60
61
std::error_code RuntimeDyldError::convertToErrorCode() const {
62
static RuntimeDyldErrorCategory RTDyldErrorCategory;
63
return std::error_code(GenericRTDyldError, RTDyldErrorCategory);
64
}
65
66
// Empty out-of-line virtual destructor as the key function.
67
RuntimeDyldImpl::~RuntimeDyldImpl() = default;
68
69
// Pin LoadedObjectInfo's vtables to this file.
70
void RuntimeDyld::LoadedObjectInfo::anchor() {}
71
72
namespace llvm {
73
74
void RuntimeDyldImpl::registerEHFrames() {}
75
76
void RuntimeDyldImpl::deregisterEHFrames() {
77
MemMgr.deregisterEHFrames();
78
}
79
80
#ifndef NDEBUG
81
static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
82
dbgs() << "----- Contents of section " << S.getName() << " " << State
83
<< " -----";
84
85
if (S.getAddress() == nullptr) {
86
dbgs() << "\n <section not emitted>\n";
87
return;
88
}
89
90
const unsigned ColsPerRow = 16;
91
92
uint8_t *DataAddr = S.getAddress();
93
uint64_t LoadAddr = S.getLoadAddress();
94
95
unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
96
unsigned BytesRemaining = S.getSize();
97
98
if (StartPadding) {
99
dbgs() << "\n" << format("0x%016" PRIx64,
100
LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
101
while (StartPadding--)
102
dbgs() << " ";
103
}
104
105
while (BytesRemaining > 0) {
106
if ((LoadAddr & (ColsPerRow - 1)) == 0)
107
dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
108
109
dbgs() << " " << format("%02x", *DataAddr);
110
111
++DataAddr;
112
++LoadAddr;
113
--BytesRemaining;
114
}
115
116
dbgs() << "\n";
117
}
118
#endif
119
120
// Resolve the relocations for all symbols we currently know about.
121
void RuntimeDyldImpl::resolveRelocations() {
122
std::lock_guard<sys::Mutex> locked(lock);
123
124
// Print out the sections prior to relocation.
125
LLVM_DEBUG({
126
for (SectionEntry &S : Sections)
127
dumpSectionMemory(S, "before relocations");
128
});
129
130
// First, resolve relocations associated with external symbols.
131
if (auto Err = resolveExternalSymbols()) {
132
HasError = true;
133
ErrorStr = toString(std::move(Err));
134
}
135
136
resolveLocalRelocations();
137
138
// Print out sections after relocation.
139
LLVM_DEBUG({
140
for (SectionEntry &S : Sections)
141
dumpSectionMemory(S, "after relocations");
142
});
143
}
144
145
void RuntimeDyldImpl::resolveLocalRelocations() {
146
// Iterate over all outstanding relocations
147
for (const auto &Rel : Relocations) {
148
// The Section here (Sections[i]) refers to the section in which the
149
// symbol for the relocation is located. The SectionID in the relocation
150
// entry provides the section to which the relocation will be applied.
151
unsigned Idx = Rel.first;
152
uint64_t Addr = getSectionLoadAddress(Idx);
153
LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
154
<< format("%p", (uintptr_t)Addr) << "\n");
155
resolveRelocationList(Rel.second, Addr);
156
}
157
Relocations.clear();
158
}
159
160
void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
161
uint64_t TargetAddress) {
162
std::lock_guard<sys::Mutex> locked(lock);
163
for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
164
if (Sections[i].getAddress() == LocalAddress) {
165
reassignSectionAddress(i, TargetAddress);
166
return;
167
}
168
}
169
llvm_unreachable("Attempting to remap address of unknown section!");
170
}
171
172
static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
173
uint64_t &Result) {
174
Expected<uint64_t> AddressOrErr = Sym.getAddress();
175
if (!AddressOrErr)
176
return AddressOrErr.takeError();
177
Result = *AddressOrErr - Sec.getAddress();
178
return Error::success();
179
}
180
181
Expected<RuntimeDyldImpl::ObjSectionToIDMap>
182
RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
183
std::lock_guard<sys::Mutex> locked(lock);
184
185
// Save information about our target
186
Arch = (Triple::ArchType)Obj.getArch();
187
IsTargetLittleEndian = Obj.isLittleEndian();
188
setMipsABI(Obj);
189
190
// Compute the memory size required to load all sections to be loaded
191
// and pass this information to the memory manager
192
if (MemMgr.needsToReserveAllocationSpace()) {
193
uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
194
Align CodeAlign, RODataAlign, RWDataAlign;
195
if (auto Err = computeTotalAllocSize(Obj, CodeSize, CodeAlign, RODataSize,
196
RODataAlign, RWDataSize, RWDataAlign))
197
return std::move(Err);
198
MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199
RWDataSize, RWDataAlign);
200
}
201
202
// Used sections from the object file
203
ObjSectionToIDMap LocalSections;
204
205
// Common symbols requiring allocation, with their sizes and alignments
206
CommonSymbolList CommonSymbolsToAllocate;
207
208
uint64_t CommonSize = 0;
209
uint32_t CommonAlign = 0;
210
211
// First, collect all weak and common symbols. We need to know if stronger
212
// definitions occur elsewhere.
213
JITSymbolResolver::LookupSet ResponsibilitySet;
214
{
215
JITSymbolResolver::LookupSet Symbols;
216
for (auto &Sym : Obj.symbols()) {
217
Expected<uint32_t> FlagsOrErr = Sym.getFlags();
218
if (!FlagsOrErr)
219
// TODO: Test this error.
220
return FlagsOrErr.takeError();
221
if ((*FlagsOrErr & SymbolRef::SF_Common) ||
222
(*FlagsOrErr & SymbolRef::SF_Weak)) {
223
// Get symbol name.
224
if (auto NameOrErr = Sym.getName())
225
Symbols.insert(*NameOrErr);
226
else
227
return NameOrErr.takeError();
228
}
229
}
230
231
if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
232
ResponsibilitySet = std::move(*ResultOrErr);
233
else
234
return ResultOrErr.takeError();
235
}
236
237
// Parse symbols
238
LLVM_DEBUG(dbgs() << "Parse symbols:\n");
239
for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
240
++I) {
241
Expected<uint32_t> FlagsOrErr = I->getFlags();
242
if (!FlagsOrErr)
243
// TODO: Test this error.
244
return FlagsOrErr.takeError();
245
246
// Skip undefined symbols.
247
if (*FlagsOrErr & SymbolRef::SF_Undefined)
248
continue;
249
250
// Get the symbol type.
251
object::SymbolRef::Type SymType;
252
if (auto SymTypeOrErr = I->getType())
253
SymType = *SymTypeOrErr;
254
else
255
return SymTypeOrErr.takeError();
256
257
// Get symbol name.
258
StringRef Name;
259
if (auto NameOrErr = I->getName())
260
Name = *NameOrErr;
261
else
262
return NameOrErr.takeError();
263
264
// Compute JIT symbol flags.
265
auto JITSymFlags = getJITSymbolFlags(*I);
266
if (!JITSymFlags)
267
return JITSymFlags.takeError();
268
269
// If this is a weak definition, check to see if there's a strong one.
270
// If there is, skip this symbol (we won't be providing it: the strong
271
// definition will). If there's no strong definition, make this definition
272
// strong.
273
if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
274
// First check whether there's already a definition in this instance.
275
if (GlobalSymbolTable.count(Name))
276
continue;
277
278
// If we're not responsible for this symbol, skip it.
279
if (!ResponsibilitySet.count(Name))
280
continue;
281
282
// Otherwise update the flags on the symbol to make this definition
283
// strong.
284
if (JITSymFlags->isWeak())
285
*JITSymFlags &= ~JITSymbolFlags::Weak;
286
if (JITSymFlags->isCommon()) {
287
*JITSymFlags &= ~JITSymbolFlags::Common;
288
uint32_t Align = I->getAlignment();
289
uint64_t Size = I->getCommonSize();
290
if (!CommonAlign)
291
CommonAlign = Align;
292
CommonSize = alignTo(CommonSize, Align) + Size;
293
CommonSymbolsToAllocate.push_back(*I);
294
}
295
}
296
297
if (*FlagsOrErr & SymbolRef::SF_Absolute &&
298
SymType != object::SymbolRef::ST_File) {
299
uint64_t Addr = 0;
300
if (auto AddrOrErr = I->getAddress())
301
Addr = *AddrOrErr;
302
else
303
return AddrOrErr.takeError();
304
305
unsigned SectionID = AbsoluteSymbolSection;
306
307
LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
308
<< " SID: " << SectionID
309
<< " Offset: " << format("%p", (uintptr_t)Addr)
310
<< " flags: " << *FlagsOrErr << "\n");
311
// Skip absolute symbol relocations.
312
if (!Name.empty()) {
313
auto Result = GlobalSymbolTable.insert_or_assign(
314
Name, SymbolTableEntry(SectionID, Addr, *JITSymFlags));
315
processNewSymbol(*I, Result.first->getValue());
316
}
317
} else if (SymType == object::SymbolRef::ST_Function ||
318
SymType == object::SymbolRef::ST_Data ||
319
SymType == object::SymbolRef::ST_Unknown ||
320
SymType == object::SymbolRef::ST_Other) {
321
322
section_iterator SI = Obj.section_end();
323
if (auto SIOrErr = I->getSection())
324
SI = *SIOrErr;
325
else
326
return SIOrErr.takeError();
327
328
if (SI == Obj.section_end())
329
continue;
330
331
// Get symbol offset.
332
uint64_t SectOffset;
333
if (auto Err = getOffset(*I, *SI, SectOffset))
334
return std::move(Err);
335
336
bool IsCode = SI->isText();
337
unsigned SectionID;
338
if (auto SectionIDOrErr =
339
findOrEmitSection(Obj, *SI, IsCode, LocalSections))
340
SectionID = *SectionIDOrErr;
341
else
342
return SectionIDOrErr.takeError();
343
344
LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
345
<< " SID: " << SectionID
346
<< " Offset: " << format("%p", (uintptr_t)SectOffset)
347
<< " flags: " << *FlagsOrErr << "\n");
348
// Skip absolute symbol relocations.
349
if (!Name.empty()) {
350
auto Result = GlobalSymbolTable.insert_or_assign(
351
Name, SymbolTableEntry(SectionID, SectOffset, *JITSymFlags));
352
processNewSymbol(*I, Result.first->getValue());
353
}
354
}
355
}
356
357
// Allocate common symbols
358
if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
359
CommonAlign))
360
return std::move(Err);
361
362
// Parse and process relocations
363
LLVM_DEBUG(dbgs() << "Parse relocations:\n");
364
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
365
SI != SE; ++SI) {
366
StubMap Stubs;
367
368
Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
369
if (!RelSecOrErr)
370
return RelSecOrErr.takeError();
371
372
section_iterator RelocatedSection = *RelSecOrErr;
373
if (RelocatedSection == SE)
374
continue;
375
376
relocation_iterator I = SI->relocation_begin();
377
relocation_iterator E = SI->relocation_end();
378
379
if (I == E && !ProcessAllSections)
380
continue;
381
382
bool IsCode = RelocatedSection->isText();
383
unsigned SectionID = 0;
384
if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
385
LocalSections))
386
SectionID = *SectionIDOrErr;
387
else
388
return SectionIDOrErr.takeError();
389
390
LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
391
392
for (; I != E;)
393
if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
394
I = *IOrErr;
395
else
396
return IOrErr.takeError();
397
398
// If there is a NotifyStubEmitted callback set, call it to register any
399
// stubs created for this section.
400
if (NotifyStubEmitted) {
401
StringRef FileName = Obj.getFileName();
402
StringRef SectionName = Sections[SectionID].getName();
403
for (auto &KV : Stubs) {
404
405
auto &VR = KV.first;
406
uint64_t StubAddr = KV.second;
407
408
// If this is a named stub, just call NotifyStubEmitted.
409
if (VR.SymbolName) {
410
NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
411
StubAddr);
412
continue;
413
}
414
415
// Otherwise we will have to try a reverse lookup on the globla symbol table.
416
for (auto &GSTMapEntry : GlobalSymbolTable) {
417
StringRef SymbolName = GSTMapEntry.first();
418
auto &GSTEntry = GSTMapEntry.second;
419
if (GSTEntry.getSectionID() == VR.SectionID &&
420
GSTEntry.getOffset() == VR.Offset) {
421
NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
422
StubAddr);
423
break;
424
}
425
}
426
}
427
}
428
}
429
430
// Process remaining sections
431
if (ProcessAllSections) {
432
LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
433
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
434
SI != SE; ++SI) {
435
436
/* Ignore already loaded sections */
437
if (LocalSections.find(*SI) != LocalSections.end())
438
continue;
439
440
bool IsCode = SI->isText();
441
if (auto SectionIDOrErr =
442
findOrEmitSection(Obj, *SI, IsCode, LocalSections))
443
LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
444
else
445
return SectionIDOrErr.takeError();
446
}
447
}
448
449
// Give the subclasses a chance to tie-up any loose ends.
450
if (auto Err = finalizeLoad(Obj, LocalSections))
451
return std::move(Err);
452
453
// for (auto E : LocalSections)
454
// llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
455
456
return LocalSections;
457
}
458
459
// A helper method for computeTotalAllocSize.
460
// Computes the memory size required to allocate sections with the given sizes,
461
// assuming that all sections are allocated with the given alignment
462
static uint64_t
463
computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
464
Align Alignment) {
465
uint64_t TotalSize = 0;
466
for (uint64_t SectionSize : SectionSizes)
467
TotalSize += alignTo(SectionSize, Alignment);
468
return TotalSize;
469
}
470
471
static bool isRequiredForExecution(const SectionRef Section) {
472
const ObjectFile *Obj = Section.getObject();
473
if (isa<object::ELFObjectFileBase>(Obj))
474
return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
475
if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
476
const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
477
// Avoid loading zero-sized COFF sections.
478
// In PE files, VirtualSize gives the section size, and SizeOfRawData
479
// may be zero for sections with content. In Obj files, SizeOfRawData
480
// gives the section size, and VirtualSize is always zero. Hence
481
// the need to check for both cases below.
482
bool HasContent =
483
(CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
484
bool IsDiscardable =
485
CoffSection->Characteristics &
486
(COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
487
return HasContent && !IsDiscardable;
488
}
489
490
assert(isa<MachOObjectFile>(Obj));
491
return true;
492
}
493
494
static bool isReadOnlyData(const SectionRef Section) {
495
const ObjectFile *Obj = Section.getObject();
496
if (isa<object::ELFObjectFileBase>(Obj))
497
return !(ELFSectionRef(Section).getFlags() &
498
(ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
499
if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
500
return ((COFFObj->getCOFFSection(Section)->Characteristics &
501
(COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
502
| COFF::IMAGE_SCN_MEM_READ
503
| COFF::IMAGE_SCN_MEM_WRITE))
504
==
505
(COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
506
| COFF::IMAGE_SCN_MEM_READ));
507
508
assert(isa<MachOObjectFile>(Obj));
509
return false;
510
}
511
512
static bool isZeroInit(const SectionRef Section) {
513
const ObjectFile *Obj = Section.getObject();
514
if (isa<object::ELFObjectFileBase>(Obj))
515
return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
516
if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
517
return COFFObj->getCOFFSection(Section)->Characteristics &
518
COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
519
520
auto *MachO = cast<MachOObjectFile>(Obj);
521
unsigned SectionType = MachO->getSectionType(Section);
522
return SectionType == MachO::S_ZEROFILL ||
523
SectionType == MachO::S_GB_ZEROFILL;
524
}
525
526
static bool isTLS(const SectionRef Section) {
527
const ObjectFile *Obj = Section.getObject();
528
if (isa<object::ELFObjectFileBase>(Obj))
529
return ELFSectionRef(Section).getFlags() & ELF::SHF_TLS;
530
return false;
531
}
532
533
// Compute an upper bound of the memory size that is required to load all
534
// sections
535
Error RuntimeDyldImpl::computeTotalAllocSize(
536
const ObjectFile &Obj, uint64_t &CodeSize, Align &CodeAlign,
537
uint64_t &RODataSize, Align &RODataAlign, uint64_t &RWDataSize,
538
Align &RWDataAlign) {
539
// Compute the size of all sections required for execution
540
std::vector<uint64_t> CodeSectionSizes;
541
std::vector<uint64_t> ROSectionSizes;
542
std::vector<uint64_t> RWSectionSizes;
543
544
// Collect sizes of all sections to be loaded;
545
// also determine the max alignment of all sections
546
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
547
SI != SE; ++SI) {
548
const SectionRef &Section = *SI;
549
550
bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
551
552
// Consider only the sections that are required to be loaded for execution
553
if (IsRequired) {
554
uint64_t DataSize = Section.getSize();
555
Align Alignment = Section.getAlignment();
556
bool IsCode = Section.isText();
557
bool IsReadOnly = isReadOnlyData(Section);
558
bool IsTLS = isTLS(Section);
559
560
Expected<StringRef> NameOrErr = Section.getName();
561
if (!NameOrErr)
562
return NameOrErr.takeError();
563
StringRef Name = *NameOrErr;
564
565
uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
566
567
uint64_t PaddingSize = 0;
568
if (Name == ".eh_frame")
569
PaddingSize += 4;
570
if (StubBufSize != 0)
571
PaddingSize += getStubAlignment().value() - 1;
572
573
uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
574
575
// The .eh_frame section (at least on Linux) needs an extra four bytes
576
// padded
577
// with zeroes added at the end. For MachO objects, this section has a
578
// slightly different name, so this won't have any effect for MachO
579
// objects.
580
if (Name == ".eh_frame")
581
SectionSize += 4;
582
583
if (!SectionSize)
584
SectionSize = 1;
585
586
if (IsCode) {
587
CodeAlign = std::max(CodeAlign, Alignment);
588
CodeSectionSizes.push_back(SectionSize);
589
} else if (IsReadOnly) {
590
RODataAlign = std::max(RODataAlign, Alignment);
591
ROSectionSizes.push_back(SectionSize);
592
} else if (!IsTLS) {
593
RWDataAlign = std::max(RWDataAlign, Alignment);
594
RWSectionSizes.push_back(SectionSize);
595
}
596
}
597
}
598
599
// Compute Global Offset Table size. If it is not zero we
600
// also update alignment, which is equal to a size of a
601
// single GOT entry.
602
if (unsigned GotSize = computeGOTSize(Obj)) {
603
RWSectionSizes.push_back(GotSize);
604
RWDataAlign = std::max(RWDataAlign, Align(getGOTEntrySize()));
605
}
606
607
// Compute the size of all common symbols
608
uint64_t CommonSize = 0;
609
Align CommonAlign;
610
for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
611
++I) {
612
Expected<uint32_t> FlagsOrErr = I->getFlags();
613
if (!FlagsOrErr)
614
// TODO: Test this error.
615
return FlagsOrErr.takeError();
616
if (*FlagsOrErr & SymbolRef::SF_Common) {
617
// Add the common symbols to a list. We'll allocate them all below.
618
uint64_t Size = I->getCommonSize();
619
Align Alignment = Align(I->getAlignment());
620
// If this is the first common symbol, use its alignment as the alignment
621
// for the common symbols section.
622
if (CommonSize == 0)
623
CommonAlign = Alignment;
624
CommonSize = alignTo(CommonSize, Alignment) + Size;
625
}
626
}
627
if (CommonSize != 0) {
628
RWSectionSizes.push_back(CommonSize);
629
RWDataAlign = std::max(RWDataAlign, CommonAlign);
630
}
631
632
if (!CodeSectionSizes.empty()) {
633
// Add 64 bytes for a potential IFunc resolver stub
634
CodeSectionSizes.push_back(64);
635
}
636
637
// Compute the required allocation space for each different type of sections
638
// (code, read-only data, read-write data) assuming that all sections are
639
// allocated with the max alignment. Note that we cannot compute with the
640
// individual alignments of the sections, because then the required size
641
// depends on the order, in which the sections are allocated.
642
CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
643
RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
644
RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
645
646
return Error::success();
647
}
648
649
// compute GOT size
650
unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
651
size_t GotEntrySize = getGOTEntrySize();
652
if (!GotEntrySize)
653
return 0;
654
655
size_t GotSize = 0;
656
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
657
SI != SE; ++SI) {
658
659
for (const RelocationRef &Reloc : SI->relocations())
660
if (relocationNeedsGot(Reloc))
661
GotSize += GotEntrySize;
662
}
663
664
return GotSize;
665
}
666
667
// compute stub buffer size for the given section
668
unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
669
const SectionRef &Section) {
670
if (!MemMgr.allowStubAllocation()) {
671
return 0;
672
}
673
674
unsigned StubSize = getMaxStubSize();
675
if (StubSize == 0) {
676
return 0;
677
}
678
// FIXME: this is an inefficient way to handle this. We should computed the
679
// necessary section allocation size in loadObject by walking all the sections
680
// once.
681
unsigned StubBufSize = 0;
682
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
683
SI != SE; ++SI) {
684
685
Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
686
if (!RelSecOrErr)
687
report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
688
689
section_iterator RelSecI = *RelSecOrErr;
690
if (!(RelSecI == Section))
691
continue;
692
693
for (const RelocationRef &Reloc : SI->relocations())
694
if (relocationNeedsStub(Reloc))
695
StubBufSize += StubSize;
696
}
697
698
// Get section data size and alignment
699
uint64_t DataSize = Section.getSize();
700
Align Alignment = Section.getAlignment();
701
702
// Add stubbuf size alignment
703
Align StubAlignment = getStubAlignment();
704
Align EndAlignment = commonAlignment(Alignment, DataSize);
705
if (StubAlignment > EndAlignment)
706
StubBufSize += StubAlignment.value() - EndAlignment.value();
707
return StubBufSize;
708
}
709
710
uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
711
unsigned Size) const {
712
uint64_t Result = 0;
713
if (IsTargetLittleEndian) {
714
Src += Size - 1;
715
while (Size--)
716
Result = (Result << 8) | *Src--;
717
} else
718
while (Size--)
719
Result = (Result << 8) | *Src++;
720
721
return Result;
722
}
723
724
void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
725
unsigned Size) const {
726
if (IsTargetLittleEndian) {
727
while (Size--) {
728
*Dst++ = Value & 0xFF;
729
Value >>= 8;
730
}
731
} else {
732
Dst += Size - 1;
733
while (Size--) {
734
*Dst-- = Value & 0xFF;
735
Value >>= 8;
736
}
737
}
738
}
739
740
Expected<JITSymbolFlags>
741
RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
742
return JITSymbolFlags::fromObjectSymbol(SR);
743
}
744
745
Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
746
CommonSymbolList &SymbolsToAllocate,
747
uint64_t CommonSize,
748
uint32_t CommonAlign) {
749
if (SymbolsToAllocate.empty())
750
return Error::success();
751
752
// Allocate memory for the section
753
unsigned SectionID = Sections.size();
754
uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
755
"<common symbols>", false);
756
if (!Addr)
757
report_fatal_error("Unable to allocate memory for common symbols!");
758
uint64_t Offset = 0;
759
Sections.push_back(
760
SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
761
memset(Addr, 0, CommonSize);
762
763
LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
764
<< " new addr: " << format("%p", Addr)
765
<< " DataSize: " << CommonSize << "\n");
766
767
// Assign the address of each symbol
768
for (auto &Sym : SymbolsToAllocate) {
769
uint32_t Alignment = Sym.getAlignment();
770
uint64_t Size = Sym.getCommonSize();
771
StringRef Name;
772
if (auto NameOrErr = Sym.getName())
773
Name = *NameOrErr;
774
else
775
return NameOrErr.takeError();
776
if (Alignment) {
777
// This symbol has an alignment requirement.
778
uint64_t AlignOffset =
779
offsetToAlignment((uint64_t)Addr, Align(Alignment));
780
Addr += AlignOffset;
781
Offset += AlignOffset;
782
}
783
auto JITSymFlags = getJITSymbolFlags(Sym);
784
785
if (!JITSymFlags)
786
return JITSymFlags.takeError();
787
788
LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
789
<< format("%p", Addr) << "\n");
790
if (!Name.empty()) // Skip absolute symbol relocations.
791
GlobalSymbolTable[Name] =
792
SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
793
Offset += Size;
794
Addr += Size;
795
}
796
797
return Error::success();
798
}
799
800
Expected<unsigned>
801
RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
802
const SectionRef &Section,
803
bool IsCode) {
804
StringRef data;
805
Align Alignment = Section.getAlignment();
806
807
unsigned PaddingSize = 0;
808
unsigned StubBufSize = 0;
809
bool IsRequired = isRequiredForExecution(Section);
810
bool IsVirtual = Section.isVirtual();
811
bool IsZeroInit = isZeroInit(Section);
812
bool IsReadOnly = isReadOnlyData(Section);
813
bool IsTLS = isTLS(Section);
814
uint64_t DataSize = Section.getSize();
815
816
Expected<StringRef> NameOrErr = Section.getName();
817
if (!NameOrErr)
818
return NameOrErr.takeError();
819
StringRef Name = *NameOrErr;
820
821
StubBufSize = computeSectionStubBufSize(Obj, Section);
822
823
// The .eh_frame section (at least on Linux) needs an extra four bytes padded
824
// with zeroes added at the end. For MachO objects, this section has a
825
// slightly different name, so this won't have any effect for MachO objects.
826
if (Name == ".eh_frame")
827
PaddingSize = 4;
828
829
uintptr_t Allocate;
830
unsigned SectionID = Sections.size();
831
uint8_t *Addr;
832
uint64_t LoadAddress = 0;
833
const char *pData = nullptr;
834
835
// If this section contains any bits (i.e. isn't a virtual or bss section),
836
// grab a reference to them.
837
if (!IsVirtual && !IsZeroInit) {
838
// In either case, set the location of the unrelocated section in memory,
839
// since we still process relocations for it even if we're not applying them.
840
if (Expected<StringRef> E = Section.getContents())
841
data = *E;
842
else
843
return E.takeError();
844
pData = data.data();
845
}
846
847
// If there are any stubs then the section alignment needs to be at least as
848
// high as stub alignment or padding calculations may by incorrect when the
849
// section is remapped.
850
if (StubBufSize != 0) {
851
Alignment = std::max(Alignment, getStubAlignment());
852
PaddingSize += getStubAlignment().value() - 1;
853
}
854
855
// Some sections, such as debug info, don't need to be loaded for execution.
856
// Process those only if explicitly requested.
857
if (IsRequired || ProcessAllSections) {
858
Allocate = DataSize + PaddingSize + StubBufSize;
859
if (!Allocate)
860
Allocate = 1;
861
if (IsTLS) {
862
auto TLSSection = MemMgr.allocateTLSSection(Allocate, Alignment.value(),
863
SectionID, Name);
864
Addr = TLSSection.InitializationImage;
865
LoadAddress = TLSSection.Offset;
866
} else if (IsCode) {
867
Addr = MemMgr.allocateCodeSection(Allocate, Alignment.value(), SectionID,
868
Name);
869
} else {
870
Addr = MemMgr.allocateDataSection(Allocate, Alignment.value(), SectionID,
871
Name, IsReadOnly);
872
}
873
if (!Addr)
874
report_fatal_error("Unable to allocate section memory!");
875
876
// Zero-initialize or copy the data from the image
877
if (IsZeroInit || IsVirtual)
878
memset(Addr, 0, DataSize);
879
else
880
memcpy(Addr, pData, DataSize);
881
882
// Fill in any extra bytes we allocated for padding
883
if (PaddingSize != 0) {
884
memset(Addr + DataSize, 0, PaddingSize);
885
// Update the DataSize variable to include padding.
886
DataSize += PaddingSize;
887
888
// Align DataSize to stub alignment if we have any stubs (PaddingSize will
889
// have been increased above to account for this).
890
if (StubBufSize > 0)
891
DataSize &= -(uint64_t)getStubAlignment().value();
892
}
893
894
LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
895
<< Name << " obj addr: " << format("%p", pData)
896
<< " new addr: " << format("%p", Addr) << " DataSize: "
897
<< DataSize << " StubBufSize: " << StubBufSize
898
<< " Allocate: " << Allocate << "\n");
899
} else {
900
// Even if we didn't load the section, we need to record an entry for it
901
// to handle later processing (and by 'handle' I mean don't do anything
902
// with these sections).
903
Allocate = 0;
904
Addr = nullptr;
905
LLVM_DEBUG(
906
dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
907
<< " obj addr: " << format("%p", data.data()) << " new addr: 0"
908
<< " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
909
<< " Allocate: " << Allocate << "\n");
910
}
911
912
Sections.push_back(
913
SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
914
915
// The load address of a TLS section is not equal to the address of its
916
// initialization image
917
if (IsTLS)
918
Sections.back().setLoadAddress(LoadAddress);
919
// Debug info sections are linked as if their load address was zero
920
if (!IsRequired)
921
Sections.back().setLoadAddress(0);
922
923
return SectionID;
924
}
925
926
Expected<unsigned>
927
RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
928
const SectionRef &Section,
929
bool IsCode,
930
ObjSectionToIDMap &LocalSections) {
931
932
unsigned SectionID = 0;
933
ObjSectionToIDMap::iterator i = LocalSections.find(Section);
934
if (i != LocalSections.end())
935
SectionID = i->second;
936
else {
937
if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
938
SectionID = *SectionIDOrErr;
939
else
940
return SectionIDOrErr.takeError();
941
LocalSections[Section] = SectionID;
942
}
943
return SectionID;
944
}
945
946
void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
947
unsigned SectionID) {
948
Relocations[SectionID].push_back(RE);
949
}
950
951
void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
952
StringRef SymbolName) {
953
// Relocation by symbol. If the symbol is found in the global symbol table,
954
// create an appropriate section relocation. Otherwise, add it to
955
// ExternalSymbolRelocations.
956
RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
957
if (Loc == GlobalSymbolTable.end()) {
958
ExternalSymbolRelocations[SymbolName].push_back(RE);
959
} else {
960
assert(!SymbolName.empty() &&
961
"Empty symbol should not be in GlobalSymbolTable");
962
// Copy the RE since we want to modify its addend.
963
RelocationEntry RECopy = RE;
964
const auto &SymInfo = Loc->second;
965
RECopy.Addend += SymInfo.getOffset();
966
Relocations[SymInfo.getSectionID()].push_back(RECopy);
967
}
968
}
969
970
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
971
unsigned AbiVariant) {
972
if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
973
Arch == Triple::aarch64_32) {
974
// This stub has to be able to access the full address space,
975
// since symbol lookup won't necessarily find a handy, in-range,
976
// PLT stub for functions which could be anywhere.
977
// Stub can use ip0 (== x16) to calculate address
978
writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
979
writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
980
writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
981
writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
982
writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
983
984
return Addr;
985
} else if (Arch == Triple::arm || Arch == Triple::armeb) {
986
// TODO: There is only ARM far stub now. We should add the Thumb stub,
987
// and stubs for branches Thumb - ARM and ARM - Thumb.
988
writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
989
return Addr + 4;
990
} else if (IsMipsO32ABI || IsMipsN32ABI) {
991
// 0: 3c190000 lui t9,%hi(addr).
992
// 4: 27390000 addiu t9,t9,%lo(addr).
993
// 8: 03200008 jr t9.
994
// c: 00000000 nop.
995
const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
996
const unsigned NopInstr = 0x0;
997
unsigned JrT9Instr = 0x03200008;
998
if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
999
(AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
1000
JrT9Instr = 0x03200009;
1001
1002
writeBytesUnaligned(LuiT9Instr, Addr, 4);
1003
writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
1004
writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
1005
writeBytesUnaligned(NopInstr, Addr + 12, 4);
1006
return Addr;
1007
} else if (IsMipsN64ABI) {
1008
// 0: 3c190000 lui t9,%highest(addr).
1009
// 4: 67390000 daddiu t9,t9,%higher(addr).
1010
// 8: 0019CC38 dsll t9,t9,16.
1011
// c: 67390000 daddiu t9,t9,%hi(addr).
1012
// 10: 0019CC38 dsll t9,t9,16.
1013
// 14: 67390000 daddiu t9,t9,%lo(addr).
1014
// 18: 03200008 jr t9.
1015
// 1c: 00000000 nop.
1016
const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
1017
DsllT9Instr = 0x19CC38;
1018
const unsigned NopInstr = 0x0;
1019
unsigned JrT9Instr = 0x03200008;
1020
if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
1021
JrT9Instr = 0x03200009;
1022
1023
writeBytesUnaligned(LuiT9Instr, Addr, 4);
1024
writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
1025
writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
1026
writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
1027
writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
1028
writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
1029
writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
1030
writeBytesUnaligned(NopInstr, Addr + 28, 4);
1031
return Addr;
1032
} else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1033
// Depending on which version of the ELF ABI is in use, we need to
1034
// generate one of two variants of the stub. They both start with
1035
// the same sequence to load the target address into r12.
1036
writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
1037
writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
1038
writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
1039
writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
1040
writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
1041
if (AbiVariant == 2) {
1042
// PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1043
// The address is already in r12 as required by the ABI. Branch to it.
1044
writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
1045
writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1046
writeInt32BE(Addr+28, 0x4E800420); // bctr
1047
} else {
1048
// PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1049
// Load the function address on r11 and sets it to control register. Also
1050
// loads the function TOC in r2 and environment pointer to r11.
1051
writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
1052
writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
1053
writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
1054
writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1055
writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
1056
writeInt32BE(Addr+40, 0x4E800420); // bctr
1057
}
1058
return Addr;
1059
} else if (Arch == Triple::systemz) {
1060
writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
1061
writeInt16BE(Addr+2, 0x0000);
1062
writeInt16BE(Addr+4, 0x0004);
1063
writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
1064
// 8-byte address stored at Addr + 8
1065
return Addr;
1066
} else if (Arch == Triple::x86_64) {
1067
*Addr = 0xFF; // jmp
1068
*(Addr+1) = 0x25; // rip
1069
// 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1070
} else if (Arch == Triple::x86) {
1071
*Addr = 0xE9; // 32-bit pc-relative jump.
1072
}
1073
return Addr;
1074
}
1075
1076
// Assign an address to a symbol name and resolve all the relocations
1077
// associated with it.
1078
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1079
uint64_t Addr) {
1080
// The address to use for relocation resolution is not
1081
// the address of the local section buffer. We must be doing
1082
// a remote execution environment of some sort. Relocations can't
1083
// be applied until all the sections have been moved. The client must
1084
// trigger this with a call to MCJIT::finalize() or
1085
// RuntimeDyld::resolveRelocations().
1086
//
1087
// Addr is a uint64_t because we can't assume the pointer width
1088
// of the target is the same as that of the host. Just use a generic
1089
// "big enough" type.
1090
LLVM_DEBUG(
1091
dbgs() << "Reassigning address for section " << SectionID << " ("
1092
<< Sections[SectionID].getName() << "): "
1093
<< format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1094
<< " -> " << format("0x%016" PRIx64, Addr) << "\n");
1095
Sections[SectionID].setLoadAddress(Addr);
1096
}
1097
1098
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1099
uint64_t Value) {
1100
for (const RelocationEntry &RE : Relocs) {
1101
// Ignore relocations for sections that were not loaded
1102
if (RE.SectionID != AbsoluteSymbolSection &&
1103
Sections[RE.SectionID].getAddress() == nullptr)
1104
continue;
1105
resolveRelocation(RE, Value);
1106
}
1107
}
1108
1109
void RuntimeDyldImpl::applyExternalSymbolRelocations(
1110
const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1111
for (auto &RelocKV : ExternalSymbolRelocations) {
1112
StringRef Name = RelocKV.first();
1113
RelocationList &Relocs = RelocKV.second;
1114
if (Name.size() == 0) {
1115
// This is an absolute symbol, use an address of zero.
1116
LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1117
<< "\n");
1118
resolveRelocationList(Relocs, 0);
1119
} else {
1120
uint64_t Addr = 0;
1121
JITSymbolFlags Flags;
1122
RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1123
if (Loc == GlobalSymbolTable.end()) {
1124
auto RRI = ExternalSymbolMap.find(Name);
1125
assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1126
Addr = RRI->second.getAddress();
1127
Flags = RRI->second.getFlags();
1128
} else {
1129
// We found the symbol in our global table. It was probably in a
1130
// Module that we loaded previously.
1131
const auto &SymInfo = Loc->second;
1132
Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1133
SymInfo.getOffset();
1134
Flags = SymInfo.getFlags();
1135
}
1136
1137
// FIXME: Implement error handling that doesn't kill the host program!
1138
if (!Addr && !Resolver.allowsZeroSymbols())
1139
report_fatal_error(Twine("Program used external function '") + Name +
1140
"' which could not be resolved!");
1141
1142
// If Resolver returned UINT64_MAX, the client wants to handle this symbol
1143
// manually and we shouldn't resolve its relocations.
1144
if (Addr != UINT64_MAX) {
1145
1146
// Tweak the address based on the symbol flags if necessary.
1147
// For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1148
// if the target symbol is Thumb.
1149
Addr = modifyAddressBasedOnFlags(Addr, Flags);
1150
1151
LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1152
<< format("0x%lx", Addr) << "\n");
1153
resolveRelocationList(Relocs, Addr);
1154
}
1155
}
1156
}
1157
ExternalSymbolRelocations.clear();
1158
}
1159
1160
Error RuntimeDyldImpl::resolveExternalSymbols() {
1161
StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1162
1163
// Resolution can trigger emission of more symbols, so iterate until
1164
// we've resolved *everything*.
1165
{
1166
JITSymbolResolver::LookupSet ResolvedSymbols;
1167
1168
while (true) {
1169
JITSymbolResolver::LookupSet NewSymbols;
1170
1171
for (auto &RelocKV : ExternalSymbolRelocations) {
1172
StringRef Name = RelocKV.first();
1173
if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1174
!ResolvedSymbols.count(Name))
1175
NewSymbols.insert(Name);
1176
}
1177
1178
if (NewSymbols.empty())
1179
break;
1180
1181
#ifdef _MSC_VER
1182
using ExpectedLookupResult =
1183
MSVCPExpected<JITSymbolResolver::LookupResult>;
1184
#else
1185
using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1186
#endif
1187
1188
auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1189
auto NewSymbolsF = NewSymbolsP->get_future();
1190
Resolver.lookup(NewSymbols,
1191
[=](Expected<JITSymbolResolver::LookupResult> Result) {
1192
NewSymbolsP->set_value(std::move(Result));
1193
});
1194
1195
auto NewResolverResults = NewSymbolsF.get();
1196
1197
if (!NewResolverResults)
1198
return NewResolverResults.takeError();
1199
1200
assert(NewResolverResults->size() == NewSymbols.size() &&
1201
"Should have errored on unresolved symbols");
1202
1203
for (auto &RRKV : *NewResolverResults) {
1204
assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1205
ExternalSymbolMap.insert(RRKV);
1206
ResolvedSymbols.insert(RRKV.first);
1207
}
1208
}
1209
}
1210
1211
applyExternalSymbolRelocations(ExternalSymbolMap);
1212
1213
return Error::success();
1214
}
1215
1216
void RuntimeDyldImpl::finalizeAsync(
1217
std::unique_ptr<RuntimeDyldImpl> This,
1218
unique_function<void(object::OwningBinary<object::ObjectFile>,
1219
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1220
OnEmitted,
1221
object::OwningBinary<object::ObjectFile> O,
1222
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) {
1223
1224
auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1225
auto PostResolveContinuation =
1226
[SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O),
1227
Info = std::move(Info)](
1228
Expected<JITSymbolResolver::LookupResult> Result) mutable {
1229
if (!Result) {
1230
OnEmitted(std::move(O), std::move(Info), Result.takeError());
1231
return;
1232
}
1233
1234
/// Copy the result into a StringMap, where the keys are held by value.
1235
StringMap<JITEvaluatedSymbol> Resolved;
1236
for (auto &KV : *Result)
1237
Resolved[KV.first] = KV.second;
1238
1239
SharedThis->applyExternalSymbolRelocations(Resolved);
1240
SharedThis->resolveLocalRelocations();
1241
SharedThis->registerEHFrames();
1242
std::string ErrMsg;
1243
if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1244
OnEmitted(std::move(O), std::move(Info),
1245
make_error<StringError>(std::move(ErrMsg),
1246
inconvertibleErrorCode()));
1247
else
1248
OnEmitted(std::move(O), std::move(Info), Error::success());
1249
};
1250
1251
JITSymbolResolver::LookupSet Symbols;
1252
1253
for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1254
StringRef Name = RelocKV.first();
1255
if (Name.empty()) // Skip absolute symbol relocations.
1256
continue;
1257
assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1258
"Name already processed. RuntimeDyld instances can not be re-used "
1259
"when finalizing with finalizeAsync.");
1260
Symbols.insert(Name);
1261
}
1262
1263
if (!Symbols.empty()) {
1264
SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1265
} else
1266
PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1267
}
1268
1269
//===----------------------------------------------------------------------===//
1270
// RuntimeDyld class implementation
1271
1272
uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1273
const object::SectionRef &Sec) const {
1274
1275
auto I = ObjSecToIDMap.find(Sec);
1276
if (I != ObjSecToIDMap.end())
1277
return RTDyld.Sections[I->second].getLoadAddress();
1278
1279
return 0;
1280
}
1281
1282
RuntimeDyld::MemoryManager::TLSSection
1283
RuntimeDyld::MemoryManager::allocateTLSSection(uintptr_t Size,
1284
unsigned Alignment,
1285
unsigned SectionID,
1286
StringRef SectionName) {
1287
report_fatal_error("allocation of TLS not implemented");
1288
}
1289
1290
void RuntimeDyld::MemoryManager::anchor() {}
1291
void JITSymbolResolver::anchor() {}
1292
void LegacyJITSymbolResolver::anchor() {}
1293
1294
RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1295
JITSymbolResolver &Resolver)
1296
: MemMgr(MemMgr), Resolver(Resolver) {
1297
// FIXME: There's a potential issue lurking here if a single instance of
1298
// RuntimeDyld is used to load multiple objects. The current implementation
1299
// associates a single memory manager with a RuntimeDyld instance. Even
1300
// though the public class spawns a new 'impl' instance for each load,
1301
// they share a single memory manager. This can become a problem when page
1302
// permissions are applied.
1303
Dyld = nullptr;
1304
ProcessAllSections = false;
1305
}
1306
1307
RuntimeDyld::~RuntimeDyld() = default;
1308
1309
static std::unique_ptr<RuntimeDyldCOFF>
1310
createRuntimeDyldCOFF(
1311
Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1312
JITSymbolResolver &Resolver, bool ProcessAllSections,
1313
RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1314
std::unique_ptr<RuntimeDyldCOFF> Dyld =
1315
RuntimeDyldCOFF::create(Arch, MM, Resolver);
1316
Dyld->setProcessAllSections(ProcessAllSections);
1317
Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1318
return Dyld;
1319
}
1320
1321
static std::unique_ptr<RuntimeDyldELF>
1322
createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1323
JITSymbolResolver &Resolver, bool ProcessAllSections,
1324
RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1325
std::unique_ptr<RuntimeDyldELF> Dyld =
1326
RuntimeDyldELF::create(Arch, MM, Resolver);
1327
Dyld->setProcessAllSections(ProcessAllSections);
1328
Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1329
return Dyld;
1330
}
1331
1332
static std::unique_ptr<RuntimeDyldMachO>
1333
createRuntimeDyldMachO(
1334
Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1335
JITSymbolResolver &Resolver,
1336
bool ProcessAllSections,
1337
RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1338
std::unique_ptr<RuntimeDyldMachO> Dyld =
1339
RuntimeDyldMachO::create(Arch, MM, Resolver);
1340
Dyld->setProcessAllSections(ProcessAllSections);
1341
Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1342
return Dyld;
1343
}
1344
1345
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1346
RuntimeDyld::loadObject(const ObjectFile &Obj) {
1347
if (!Dyld) {
1348
if (Obj.isELF())
1349
Dyld =
1350
createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1351
MemMgr, Resolver, ProcessAllSections,
1352
std::move(NotifyStubEmitted));
1353
else if (Obj.isMachO())
1354
Dyld = createRuntimeDyldMachO(
1355
static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1356
ProcessAllSections, std::move(NotifyStubEmitted));
1357
else if (Obj.isCOFF())
1358
Dyld = createRuntimeDyldCOFF(
1359
static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1360
ProcessAllSections, std::move(NotifyStubEmitted));
1361
else
1362
report_fatal_error("Incompatible object format!");
1363
}
1364
1365
if (!Dyld->isCompatibleFile(Obj))
1366
report_fatal_error("Incompatible object format!");
1367
1368
auto LoadedObjInfo = Dyld->loadObject(Obj);
1369
MemMgr.notifyObjectLoaded(*this, Obj);
1370
return LoadedObjInfo;
1371
}
1372
1373
void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1374
if (!Dyld)
1375
return nullptr;
1376
return Dyld->getSymbolLocalAddress(Name);
1377
}
1378
1379
unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1380
assert(Dyld && "No RuntimeDyld instance attached");
1381
return Dyld->getSymbolSectionID(Name);
1382
}
1383
1384
JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1385
if (!Dyld)
1386
return nullptr;
1387
return Dyld->getSymbol(Name);
1388
}
1389
1390
std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1391
if (!Dyld)
1392
return std::map<StringRef, JITEvaluatedSymbol>();
1393
return Dyld->getSymbolTable();
1394
}
1395
1396
void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1397
1398
void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1399
Dyld->reassignSectionAddress(SectionID, Addr);
1400
}
1401
1402
void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1403
uint64_t TargetAddress) {
1404
Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1405
}
1406
1407
bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1408
1409
StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1410
1411
void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1412
bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1413
MemMgr.FinalizationLocked = true;
1414
resolveRelocations();
1415
registerEHFrames();
1416
if (!MemoryFinalizationLocked) {
1417
MemMgr.finalizeMemory();
1418
MemMgr.FinalizationLocked = false;
1419
}
1420
}
1421
1422
StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1423
assert(Dyld && "No Dyld instance attached");
1424
return Dyld->getSectionContent(SectionID);
1425
}
1426
1427
uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1428
assert(Dyld && "No Dyld instance attached");
1429
return Dyld->getSectionLoadAddress(SectionID);
1430
}
1431
1432
void RuntimeDyld::registerEHFrames() {
1433
if (Dyld)
1434
Dyld->registerEHFrames();
1435
}
1436
1437
void RuntimeDyld::deregisterEHFrames() {
1438
if (Dyld)
1439
Dyld->deregisterEHFrames();
1440
}
1441
// FIXME: Kill this with fire once we have a new JIT linker: this is only here
1442
// so that we can re-use RuntimeDyld's implementation without twisting the
1443
// interface any further for ORC's purposes.
1444
void jitLinkForORC(
1445
object::OwningBinary<object::ObjectFile> O,
1446
RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
1447
bool ProcessAllSections,
1448
unique_function<Error(const object::ObjectFile &Obj,
1449
RuntimeDyld::LoadedObjectInfo &LoadedObj,
1450
std::map<StringRef, JITEvaluatedSymbol>)>
1451
OnLoaded,
1452
unique_function<void(object::OwningBinary<object::ObjectFile>,
1453
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
1454
OnEmitted) {
1455
1456
RuntimeDyld RTDyld(MemMgr, Resolver);
1457
RTDyld.setProcessAllSections(ProcessAllSections);
1458
1459
auto Info = RTDyld.loadObject(*O.getBinary());
1460
1461
if (RTDyld.hasError()) {
1462
OnEmitted(std::move(O), std::move(Info),
1463
make_error<StringError>(RTDyld.getErrorString(),
1464
inconvertibleErrorCode()));
1465
return;
1466
}
1467
1468
if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable())) {
1469
OnEmitted(std::move(O), std::move(Info), std::move(Err));
1470
return;
1471
}
1472
1473
RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1474
std::move(O), std::move(Info));
1475
}
1476
1477
} // end namespace llvm
1478
1479