Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp
35269 views
1
//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Implementation of ELF support for the MC-JIT runtime dynamic linker.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "RuntimeDyldELF.h"
14
#include "RuntimeDyldCheckerImpl.h"
15
#include "Targets/RuntimeDyldELFMips.h"
16
#include "llvm/ADT/STLExtras.h"
17
#include "llvm/ADT/StringRef.h"
18
#include "llvm/BinaryFormat/ELF.h"
19
#include "llvm/Object/ELFObjectFile.h"
20
#include "llvm/Object/ObjectFile.h"
21
#include "llvm/Support/Endian.h"
22
#include "llvm/Support/MemoryBuffer.h"
23
#include "llvm/TargetParser/Triple.h"
24
25
using namespace llvm;
26
using namespace llvm::object;
27
using namespace llvm::support::endian;
28
29
#define DEBUG_TYPE "dyld"
30
31
static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
32
33
static void or32AArch64Imm(void *L, uint64_t Imm) {
34
or32le(L, (Imm & 0xFFF) << 10);
35
}
36
37
template <class T> static void write(bool isBE, void *P, T V) {
38
isBE ? write<T, llvm::endianness::big>(P, V)
39
: write<T, llvm::endianness::little>(P, V);
40
}
41
42
static void write32AArch64Addr(void *L, uint64_t Imm) {
43
uint32_t ImmLo = (Imm & 0x3) << 29;
44
uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
45
uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
46
write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
47
}
48
49
// Return the bits [Start, End] from Val shifted Start bits.
50
// For instance, getBits(0xF0, 4, 8) returns 0xF.
51
static uint64_t getBits(uint64_t Val, int Start, int End) {
52
uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
53
return (Val >> Start) & Mask;
54
}
55
56
namespace {
57
58
template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
59
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
60
61
typedef typename ELFT::uint addr_type;
62
63
DyldELFObject(ELFObjectFile<ELFT> &&Obj);
64
65
public:
66
static Expected<std::unique_ptr<DyldELFObject>>
67
create(MemoryBufferRef Wrapper);
68
69
void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
70
71
void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
72
73
// Methods for type inquiry through isa, cast and dyn_cast
74
static bool classof(const Binary *v) {
75
return (isa<ELFObjectFile<ELFT>>(v) &&
76
classof(cast<ELFObjectFile<ELFT>>(v)));
77
}
78
static bool classof(const ELFObjectFile<ELFT> *v) {
79
return v->isDyldType();
80
}
81
};
82
83
84
85
// The MemoryBuffer passed into this constructor is just a wrapper around the
86
// actual memory. Ultimately, the Binary parent class will take ownership of
87
// this MemoryBuffer object but not the underlying memory.
88
template <class ELFT>
89
DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
90
: ELFObjectFile<ELFT>(std::move(Obj)) {
91
this->isDyldELFObject = true;
92
}
93
94
template <class ELFT>
95
Expected<std::unique_ptr<DyldELFObject<ELFT>>>
96
DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
97
auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
98
if (auto E = Obj.takeError())
99
return std::move(E);
100
std::unique_ptr<DyldELFObject<ELFT>> Ret(
101
new DyldELFObject<ELFT>(std::move(*Obj)));
102
return std::move(Ret);
103
}
104
105
template <class ELFT>
106
void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
107
uint64_t Addr) {
108
DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
109
Elf_Shdr *shdr =
110
const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
111
112
// This assumes the address passed in matches the target address bitness
113
// The template-based type cast handles everything else.
114
shdr->sh_addr = static_cast<addr_type>(Addr);
115
}
116
117
template <class ELFT>
118
void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
119
uint64_t Addr) {
120
121
Elf_Sym *sym = const_cast<Elf_Sym *>(
122
ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
123
124
// This assumes the address passed in matches the target address bitness
125
// The template-based type cast handles everything else.
126
sym->st_value = static_cast<addr_type>(Addr);
127
}
128
129
class LoadedELFObjectInfo final
130
: public LoadedObjectInfoHelper<LoadedELFObjectInfo,
131
RuntimeDyld::LoadedObjectInfo> {
132
public:
133
LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
134
: LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
135
136
OwningBinary<ObjectFile>
137
getObjectForDebug(const ObjectFile &Obj) const override;
138
};
139
140
template <typename ELFT>
141
static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
142
createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
143
const LoadedELFObjectInfo &L) {
144
typedef typename ELFT::Shdr Elf_Shdr;
145
typedef typename ELFT::uint addr_type;
146
147
Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
148
DyldELFObject<ELFT>::create(Buffer);
149
if (Error E = ObjOrErr.takeError())
150
return std::move(E);
151
152
std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
153
154
// Iterate over all sections in the object.
155
auto SI = SourceObject.section_begin();
156
for (const auto &Sec : Obj->sections()) {
157
Expected<StringRef> NameOrErr = Sec.getName();
158
if (!NameOrErr) {
159
consumeError(NameOrErr.takeError());
160
continue;
161
}
162
163
if (*NameOrErr != "") {
164
DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
165
Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
166
reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
167
168
if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
169
// This assumes that the address passed in matches the target address
170
// bitness. The template-based type cast handles everything else.
171
shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
172
}
173
}
174
++SI;
175
}
176
177
return std::move(Obj);
178
}
179
180
static OwningBinary<ObjectFile>
181
createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
182
assert(Obj.isELF() && "Not an ELF object file.");
183
184
std::unique_ptr<MemoryBuffer> Buffer =
185
MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
186
187
Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
188
handleAllErrors(DebugObj.takeError());
189
if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
190
DebugObj =
191
createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
192
else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
193
DebugObj =
194
createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
195
else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
196
DebugObj =
197
createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
198
else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
199
DebugObj =
200
createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
201
else
202
llvm_unreachable("Unexpected ELF format");
203
204
handleAllErrors(DebugObj.takeError());
205
return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
206
}
207
208
OwningBinary<ObjectFile>
209
LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
210
return createELFDebugObject(Obj, *this);
211
}
212
213
} // anonymous namespace
214
215
namespace llvm {
216
217
RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
218
JITSymbolResolver &Resolver)
219
: RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
220
RuntimeDyldELF::~RuntimeDyldELF() = default;
221
222
void RuntimeDyldELF::registerEHFrames() {
223
for (SID EHFrameSID : UnregisteredEHFrameSections) {
224
uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
225
uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
226
size_t EHFrameSize = Sections[EHFrameSID].getSize();
227
MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
228
}
229
UnregisteredEHFrameSections.clear();
230
}
231
232
std::unique_ptr<RuntimeDyldELF>
233
llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
234
RuntimeDyld::MemoryManager &MemMgr,
235
JITSymbolResolver &Resolver) {
236
switch (Arch) {
237
default:
238
return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
239
case Triple::mips:
240
case Triple::mipsel:
241
case Triple::mips64:
242
case Triple::mips64el:
243
return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
244
}
245
}
246
247
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
248
RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
249
if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
250
return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
251
else {
252
HasError = true;
253
raw_string_ostream ErrStream(ErrorStr);
254
logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
255
return nullptr;
256
}
257
}
258
259
void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
260
uint64_t Offset, uint64_t Value,
261
uint32_t Type, int64_t Addend,
262
uint64_t SymOffset) {
263
switch (Type) {
264
default:
265
report_fatal_error("Relocation type not implemented yet!");
266
break;
267
case ELF::R_X86_64_NONE:
268
break;
269
case ELF::R_X86_64_8: {
270
Value += Addend;
271
assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
272
uint8_t TruncatedAddr = (Value & 0xFF);
273
*Section.getAddressWithOffset(Offset) = TruncatedAddr;
274
LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
275
<< format("%p\n", Section.getAddressWithOffset(Offset)));
276
break;
277
}
278
case ELF::R_X86_64_16: {
279
Value += Addend;
280
assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
281
uint16_t TruncatedAddr = (Value & 0xFFFF);
282
support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
283
TruncatedAddr;
284
LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
285
<< format("%p\n", Section.getAddressWithOffset(Offset)));
286
break;
287
}
288
case ELF::R_X86_64_64: {
289
support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
290
Value + Addend;
291
LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
292
<< format("%p\n", Section.getAddressWithOffset(Offset)));
293
break;
294
}
295
case ELF::R_X86_64_32:
296
case ELF::R_X86_64_32S: {
297
Value += Addend;
298
assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
299
(Type == ELF::R_X86_64_32S &&
300
((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
301
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
302
support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
303
TruncatedAddr;
304
LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
305
<< format("%p\n", Section.getAddressWithOffset(Offset)));
306
break;
307
}
308
case ELF::R_X86_64_PC8: {
309
uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
310
int64_t RealOffset = Value + Addend - FinalAddress;
311
assert(isInt<8>(RealOffset));
312
int8_t TruncOffset = (RealOffset & 0xFF);
313
Section.getAddress()[Offset] = TruncOffset;
314
break;
315
}
316
case ELF::R_X86_64_PC32: {
317
uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
318
int64_t RealOffset = Value + Addend - FinalAddress;
319
assert(isInt<32>(RealOffset));
320
int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
321
support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
322
TruncOffset;
323
break;
324
}
325
case ELF::R_X86_64_PC64: {
326
uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
327
int64_t RealOffset = Value + Addend - FinalAddress;
328
support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
329
RealOffset;
330
LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
331
<< format("%p\n", FinalAddress));
332
break;
333
}
334
case ELF::R_X86_64_GOTOFF64: {
335
// Compute Value - GOTBase.
336
uint64_t GOTBase = 0;
337
for (const auto &Section : Sections) {
338
if (Section.getName() == ".got") {
339
GOTBase = Section.getLoadAddressWithOffset(0);
340
break;
341
}
342
}
343
assert(GOTBase != 0 && "missing GOT");
344
int64_t GOTOffset = Value - GOTBase + Addend;
345
support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
346
break;
347
}
348
case ELF::R_X86_64_DTPMOD64: {
349
// We only have one DSO, so the module id is always 1.
350
support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
351
break;
352
}
353
case ELF::R_X86_64_DTPOFF64:
354
case ELF::R_X86_64_TPOFF64: {
355
// DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
356
// offset in the *initial* TLS block. Since we are statically linking, all
357
// TLS blocks already exist in the initial block, so resolve both
358
// relocations equally.
359
support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
360
Value + Addend;
361
break;
362
}
363
case ELF::R_X86_64_DTPOFF32:
364
case ELF::R_X86_64_TPOFF32: {
365
// As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
366
// be resolved equally.
367
int64_t RealValue = Value + Addend;
368
assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
369
int32_t TruncValue = RealValue;
370
support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
371
TruncValue;
372
break;
373
}
374
}
375
}
376
377
void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
378
uint64_t Offset, uint32_t Value,
379
uint32_t Type, int32_t Addend) {
380
switch (Type) {
381
case ELF::R_386_32: {
382
support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
383
Value + Addend;
384
break;
385
}
386
// Handle R_386_PLT32 like R_386_PC32 since it should be able to
387
// reach any 32 bit address.
388
case ELF::R_386_PLT32:
389
case ELF::R_386_PC32: {
390
uint32_t FinalAddress =
391
Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
392
uint32_t RealOffset = Value + Addend - FinalAddress;
393
support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
394
RealOffset;
395
break;
396
}
397
default:
398
// There are other relocation types, but it appears these are the
399
// only ones currently used by the LLVM ELF object writer
400
report_fatal_error("Relocation type not implemented yet!");
401
break;
402
}
403
}
404
405
void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
406
uint64_t Offset, uint64_t Value,
407
uint32_t Type, int64_t Addend) {
408
uint32_t *TargetPtr =
409
reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
410
uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
411
// Data should use target endian. Code should always use little endian.
412
bool isBE = Arch == Triple::aarch64_be;
413
414
LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
415
<< format("%llx", Section.getAddressWithOffset(Offset))
416
<< " FinalAddress: 0x" << format("%llx", FinalAddress)
417
<< " Value: 0x" << format("%llx", Value) << " Type: 0x"
418
<< format("%x", Type) << " Addend: 0x"
419
<< format("%llx", Addend) << "\n");
420
421
switch (Type) {
422
default:
423
report_fatal_error("Relocation type not implemented yet!");
424
break;
425
case ELF::R_AARCH64_NONE:
426
break;
427
case ELF::R_AARCH64_ABS16: {
428
uint64_t Result = Value + Addend;
429
assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 16)) ||
430
(Result >> 16) == 0);
431
write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
432
break;
433
}
434
case ELF::R_AARCH64_ABS32: {
435
uint64_t Result = Value + Addend;
436
assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 32)) ||
437
(Result >> 32) == 0);
438
write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
439
break;
440
}
441
case ELF::R_AARCH64_ABS64:
442
write(isBE, TargetPtr, Value + Addend);
443
break;
444
case ELF::R_AARCH64_PLT32: {
445
uint64_t Result = Value + Addend - FinalAddress;
446
assert(static_cast<int64_t>(Result) >= INT32_MIN &&
447
static_cast<int64_t>(Result) <= INT32_MAX);
448
write(isBE, TargetPtr, static_cast<uint32_t>(Result));
449
break;
450
}
451
case ELF::R_AARCH64_PREL16: {
452
uint64_t Result = Value + Addend - FinalAddress;
453
assert(static_cast<int64_t>(Result) >= INT16_MIN &&
454
static_cast<int64_t>(Result) <= UINT16_MAX);
455
write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
456
break;
457
}
458
case ELF::R_AARCH64_PREL32: {
459
uint64_t Result = Value + Addend - FinalAddress;
460
assert(static_cast<int64_t>(Result) >= INT32_MIN &&
461
static_cast<int64_t>(Result) <= UINT32_MAX);
462
write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
463
break;
464
}
465
case ELF::R_AARCH64_PREL64:
466
write(isBE, TargetPtr, Value + Addend - FinalAddress);
467
break;
468
case ELF::R_AARCH64_CONDBR19: {
469
uint64_t BranchImm = Value + Addend - FinalAddress;
470
471
assert(isInt<21>(BranchImm));
472
*TargetPtr &= 0xff00001fU;
473
// Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
474
or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
475
break;
476
}
477
case ELF::R_AARCH64_TSTBR14: {
478
uint64_t BranchImm = Value + Addend - FinalAddress;
479
480
assert(isInt<16>(BranchImm));
481
482
uint32_t RawInstr = *(support::little32_t *)TargetPtr;
483
*(support::little32_t *)TargetPtr = RawInstr & 0xfff8001fU;
484
485
// Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
486
or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
487
break;
488
}
489
case ELF::R_AARCH64_CALL26: // fallthrough
490
case ELF::R_AARCH64_JUMP26: {
491
// Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
492
// calculation.
493
uint64_t BranchImm = Value + Addend - FinalAddress;
494
495
// "Check that -2^27 <= result < 2^27".
496
assert(isInt<28>(BranchImm));
497
or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
498
break;
499
}
500
case ELF::R_AARCH64_MOVW_UABS_G3:
501
or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
502
break;
503
case ELF::R_AARCH64_MOVW_UABS_G2_NC:
504
or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
505
break;
506
case ELF::R_AARCH64_MOVW_UABS_G1_NC:
507
or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
508
break;
509
case ELF::R_AARCH64_MOVW_UABS_G0_NC:
510
or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
511
break;
512
case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
513
// Operation: Page(S+A) - Page(P)
514
uint64_t Result =
515
((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
516
517
// Check that -2^32 <= X < 2^32
518
assert(isInt<33>(Result) && "overflow check failed for relocation");
519
520
// Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
521
// from bits 32:12 of X.
522
write32AArch64Addr(TargetPtr, Result >> 12);
523
break;
524
}
525
case ELF::R_AARCH64_ADD_ABS_LO12_NC:
526
// Operation: S + A
527
// Immediate goes in bits 21:10 of LD/ST instruction, taken
528
// from bits 11:0 of X
529
or32AArch64Imm(TargetPtr, Value + Addend);
530
break;
531
case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
532
// Operation: S + A
533
// Immediate goes in bits 21:10 of LD/ST instruction, taken
534
// from bits 11:0 of X
535
or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
536
break;
537
case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
538
// Operation: S + A
539
// Immediate goes in bits 21:10 of LD/ST instruction, taken
540
// from bits 11:1 of X
541
or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
542
break;
543
case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
544
// Operation: S + A
545
// Immediate goes in bits 21:10 of LD/ST instruction, taken
546
// from bits 11:2 of X
547
or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
548
break;
549
case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
550
// Operation: S + A
551
// Immediate goes in bits 21:10 of LD/ST instruction, taken
552
// from bits 11:3 of X
553
or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
554
break;
555
case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
556
// Operation: S + A
557
// Immediate goes in bits 21:10 of LD/ST instruction, taken
558
// from bits 11:4 of X
559
or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
560
break;
561
case ELF::R_AARCH64_LD_PREL_LO19: {
562
// Operation: S + A - P
563
uint64_t Result = Value + Addend - FinalAddress;
564
565
// "Check that -2^20 <= result < 2^20".
566
assert(isInt<21>(Result));
567
568
*TargetPtr &= 0xff00001fU;
569
// Immediate goes in bits 23:5 of LD imm instruction, taken
570
// from bits 20:2 of X
571
*TargetPtr |= ((Result & 0xffc) << (5 - 2));
572
break;
573
}
574
case ELF::R_AARCH64_ADR_PREL_LO21: {
575
// Operation: S + A - P
576
uint64_t Result = Value + Addend - FinalAddress;
577
578
// "Check that -2^20 <= result < 2^20".
579
assert(isInt<21>(Result));
580
581
*TargetPtr &= 0x9f00001fU;
582
// Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
583
// from bits 20:0 of X
584
*TargetPtr |= ((Result & 0xffc) << (5 - 2));
585
*TargetPtr |= (Result & 0x3) << 29;
586
break;
587
}
588
}
589
}
590
591
void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
592
uint64_t Offset, uint32_t Value,
593
uint32_t Type, int32_t Addend) {
594
// TODO: Add Thumb relocations.
595
uint32_t *TargetPtr =
596
reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
597
uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
598
Value += Addend;
599
600
LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
601
<< Section.getAddressWithOffset(Offset)
602
<< " FinalAddress: " << format("%p", FinalAddress)
603
<< " Value: " << format("%x", Value)
604
<< " Type: " << format("%x", Type)
605
<< " Addend: " << format("%x", Addend) << "\n");
606
607
switch (Type) {
608
default:
609
llvm_unreachable("Not implemented relocation type!");
610
611
case ELF::R_ARM_NONE:
612
break;
613
// Write a 31bit signed offset
614
case ELF::R_ARM_PREL31:
615
support::ulittle32_t::ref{TargetPtr} =
616
(support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
617
((Value - FinalAddress) & ~0x80000000);
618
break;
619
case ELF::R_ARM_TARGET1:
620
case ELF::R_ARM_ABS32:
621
support::ulittle32_t::ref{TargetPtr} = Value;
622
break;
623
// Write first 16 bit of 32 bit value to the mov instruction.
624
// Last 4 bit should be shifted.
625
case ELF::R_ARM_MOVW_ABS_NC:
626
case ELF::R_ARM_MOVT_ABS:
627
if (Type == ELF::R_ARM_MOVW_ABS_NC)
628
Value = Value & 0xFFFF;
629
else if (Type == ELF::R_ARM_MOVT_ABS)
630
Value = (Value >> 16) & 0xFFFF;
631
support::ulittle32_t::ref{TargetPtr} =
632
(support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
633
(((Value >> 12) & 0xF) << 16);
634
break;
635
// Write 24 bit relative value to the branch instruction.
636
case ELF::R_ARM_PC24: // Fall through.
637
case ELF::R_ARM_CALL: // Fall through.
638
case ELF::R_ARM_JUMP24:
639
int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
640
RelValue = (RelValue & 0x03FFFFFC) >> 2;
641
assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
642
support::ulittle32_t::ref{TargetPtr} =
643
(support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
644
break;
645
}
646
}
647
648
void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
649
if (Arch == Triple::UnknownArch ||
650
Triple::getArchTypePrefix(Arch) != "mips") {
651
IsMipsO32ABI = false;
652
IsMipsN32ABI = false;
653
IsMipsN64ABI = false;
654
return;
655
}
656
if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
657
unsigned AbiVariant = E->getPlatformFlags();
658
IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
659
IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
660
}
661
IsMipsN64ABI = Obj.getFileFormatName() == "elf64-mips";
662
}
663
664
// Return the .TOC. section and offset.
665
Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
666
ObjSectionToIDMap &LocalSections,
667
RelocationValueRef &Rel) {
668
// Set a default SectionID in case we do not find a TOC section below.
669
// This may happen for references to TOC base base (sym@toc, .odp
670
// relocation) without a .toc directive. In this case just use the
671
// first section (which is usually the .odp) since the code won't
672
// reference the .toc base directly.
673
Rel.SymbolName = nullptr;
674
Rel.SectionID = 0;
675
676
// The TOC consists of sections .got, .toc, .tocbss, .plt in that
677
// order. The TOC starts where the first of these sections starts.
678
for (auto &Section : Obj.sections()) {
679
Expected<StringRef> NameOrErr = Section.getName();
680
if (!NameOrErr)
681
return NameOrErr.takeError();
682
StringRef SectionName = *NameOrErr;
683
684
if (SectionName == ".got"
685
|| SectionName == ".toc"
686
|| SectionName == ".tocbss"
687
|| SectionName == ".plt") {
688
if (auto SectionIDOrErr =
689
findOrEmitSection(Obj, Section, false, LocalSections))
690
Rel.SectionID = *SectionIDOrErr;
691
else
692
return SectionIDOrErr.takeError();
693
break;
694
}
695
}
696
697
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
698
// thus permitting a full 64 Kbytes segment.
699
Rel.Addend = 0x8000;
700
701
return Error::success();
702
}
703
704
// Returns the sections and offset associated with the ODP entry referenced
705
// by Symbol.
706
Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
707
ObjSectionToIDMap &LocalSections,
708
RelocationValueRef &Rel) {
709
// Get the ELF symbol value (st_value) to compare with Relocation offset in
710
// .opd entries
711
for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
712
si != se; ++si) {
713
714
Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
715
if (!RelSecOrErr)
716
report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
717
718
section_iterator RelSecI = *RelSecOrErr;
719
if (RelSecI == Obj.section_end())
720
continue;
721
722
Expected<StringRef> NameOrErr = RelSecI->getName();
723
if (!NameOrErr)
724
return NameOrErr.takeError();
725
StringRef RelSectionName = *NameOrErr;
726
727
if (RelSectionName != ".opd")
728
continue;
729
730
for (elf_relocation_iterator i = si->relocation_begin(),
731
e = si->relocation_end();
732
i != e;) {
733
// The R_PPC64_ADDR64 relocation indicates the first field
734
// of a .opd entry
735
uint64_t TypeFunc = i->getType();
736
if (TypeFunc != ELF::R_PPC64_ADDR64) {
737
++i;
738
continue;
739
}
740
741
uint64_t TargetSymbolOffset = i->getOffset();
742
symbol_iterator TargetSymbol = i->getSymbol();
743
int64_t Addend;
744
if (auto AddendOrErr = i->getAddend())
745
Addend = *AddendOrErr;
746
else
747
return AddendOrErr.takeError();
748
749
++i;
750
if (i == e)
751
break;
752
753
// Just check if following relocation is a R_PPC64_TOC
754
uint64_t TypeTOC = i->getType();
755
if (TypeTOC != ELF::R_PPC64_TOC)
756
continue;
757
758
// Finally compares the Symbol value and the target symbol offset
759
// to check if this .opd entry refers to the symbol the relocation
760
// points to.
761
if (Rel.Addend != (int64_t)TargetSymbolOffset)
762
continue;
763
764
section_iterator TSI = Obj.section_end();
765
if (auto TSIOrErr = TargetSymbol->getSection())
766
TSI = *TSIOrErr;
767
else
768
return TSIOrErr.takeError();
769
assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
770
771
bool IsCode = TSI->isText();
772
if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
773
LocalSections))
774
Rel.SectionID = *SectionIDOrErr;
775
else
776
return SectionIDOrErr.takeError();
777
Rel.Addend = (intptr_t)Addend;
778
return Error::success();
779
}
780
}
781
llvm_unreachable("Attempting to get address of ODP entry!");
782
}
783
784
// Relocation masks following the #lo(value), #hi(value), #ha(value),
785
// #higher(value), #highera(value), #highest(value), and #highesta(value)
786
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
787
// document.
788
789
static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
790
791
static inline uint16_t applyPPChi(uint64_t value) {
792
return (value >> 16) & 0xffff;
793
}
794
795
static inline uint16_t applyPPCha (uint64_t value) {
796
return ((value + 0x8000) >> 16) & 0xffff;
797
}
798
799
static inline uint16_t applyPPChigher(uint64_t value) {
800
return (value >> 32) & 0xffff;
801
}
802
803
static inline uint16_t applyPPChighera (uint64_t value) {
804
return ((value + 0x8000) >> 32) & 0xffff;
805
}
806
807
static inline uint16_t applyPPChighest(uint64_t value) {
808
return (value >> 48) & 0xffff;
809
}
810
811
static inline uint16_t applyPPChighesta (uint64_t value) {
812
return ((value + 0x8000) >> 48) & 0xffff;
813
}
814
815
void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
816
uint64_t Offset, uint64_t Value,
817
uint32_t Type, int64_t Addend) {
818
uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
819
switch (Type) {
820
default:
821
report_fatal_error("Relocation type not implemented yet!");
822
break;
823
case ELF::R_PPC_ADDR16_LO:
824
writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
825
break;
826
case ELF::R_PPC_ADDR16_HI:
827
writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
828
break;
829
case ELF::R_PPC_ADDR16_HA:
830
writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
831
break;
832
}
833
}
834
835
void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
836
uint64_t Offset, uint64_t Value,
837
uint32_t Type, int64_t Addend) {
838
uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
839
switch (Type) {
840
default:
841
report_fatal_error("Relocation type not implemented yet!");
842
break;
843
case ELF::R_PPC64_ADDR16:
844
writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
845
break;
846
case ELF::R_PPC64_ADDR16_DS:
847
writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
848
break;
849
case ELF::R_PPC64_ADDR16_LO:
850
writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
851
break;
852
case ELF::R_PPC64_ADDR16_LO_DS:
853
writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
854
break;
855
case ELF::R_PPC64_ADDR16_HI:
856
case ELF::R_PPC64_ADDR16_HIGH:
857
writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
858
break;
859
case ELF::R_PPC64_ADDR16_HA:
860
case ELF::R_PPC64_ADDR16_HIGHA:
861
writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
862
break;
863
case ELF::R_PPC64_ADDR16_HIGHER:
864
writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
865
break;
866
case ELF::R_PPC64_ADDR16_HIGHERA:
867
writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
868
break;
869
case ELF::R_PPC64_ADDR16_HIGHEST:
870
writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
871
break;
872
case ELF::R_PPC64_ADDR16_HIGHESTA:
873
writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
874
break;
875
case ELF::R_PPC64_ADDR14: {
876
assert(((Value + Addend) & 3) == 0);
877
// Preserve the AA/LK bits in the branch instruction
878
uint8_t aalk = *(LocalAddress + 3);
879
writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
880
} break;
881
case ELF::R_PPC64_REL16_LO: {
882
uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
883
uint64_t Delta = Value - FinalAddress + Addend;
884
writeInt16BE(LocalAddress, applyPPClo(Delta));
885
} break;
886
case ELF::R_PPC64_REL16_HI: {
887
uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
888
uint64_t Delta = Value - FinalAddress + Addend;
889
writeInt16BE(LocalAddress, applyPPChi(Delta));
890
} break;
891
case ELF::R_PPC64_REL16_HA: {
892
uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
893
uint64_t Delta = Value - FinalAddress + Addend;
894
writeInt16BE(LocalAddress, applyPPCha(Delta));
895
} break;
896
case ELF::R_PPC64_ADDR32: {
897
int64_t Result = static_cast<int64_t>(Value + Addend);
898
if (SignExtend64<32>(Result) != Result)
899
llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
900
writeInt32BE(LocalAddress, Result);
901
} break;
902
case ELF::R_PPC64_REL24: {
903
uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
904
int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
905
if (SignExtend64<26>(delta) != delta)
906
llvm_unreachable("Relocation R_PPC64_REL24 overflow");
907
// We preserve bits other than LI field, i.e. PO and AA/LK fields.
908
uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
909
writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
910
} break;
911
case ELF::R_PPC64_REL32: {
912
uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
913
int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
914
if (SignExtend64<32>(delta) != delta)
915
llvm_unreachable("Relocation R_PPC64_REL32 overflow");
916
writeInt32BE(LocalAddress, delta);
917
} break;
918
case ELF::R_PPC64_REL64: {
919
uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
920
uint64_t Delta = Value - FinalAddress + Addend;
921
writeInt64BE(LocalAddress, Delta);
922
} break;
923
case ELF::R_PPC64_ADDR64:
924
writeInt64BE(LocalAddress, Value + Addend);
925
break;
926
}
927
}
928
929
void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
930
uint64_t Offset, uint64_t Value,
931
uint32_t Type, int64_t Addend) {
932
uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
933
switch (Type) {
934
default:
935
report_fatal_error("Relocation type not implemented yet!");
936
break;
937
case ELF::R_390_PC16DBL:
938
case ELF::R_390_PLT16DBL: {
939
int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
940
assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
941
writeInt16BE(LocalAddress, Delta / 2);
942
break;
943
}
944
case ELF::R_390_PC32DBL:
945
case ELF::R_390_PLT32DBL: {
946
int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
947
assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
948
writeInt32BE(LocalAddress, Delta / 2);
949
break;
950
}
951
case ELF::R_390_PC16: {
952
int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
953
assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
954
writeInt16BE(LocalAddress, Delta);
955
break;
956
}
957
case ELF::R_390_PC32: {
958
int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
959
assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
960
writeInt32BE(LocalAddress, Delta);
961
break;
962
}
963
case ELF::R_390_PC64: {
964
int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
965
writeInt64BE(LocalAddress, Delta);
966
break;
967
}
968
case ELF::R_390_8:
969
*LocalAddress = (uint8_t)(Value + Addend);
970
break;
971
case ELF::R_390_16:
972
writeInt16BE(LocalAddress, Value + Addend);
973
break;
974
case ELF::R_390_32:
975
writeInt32BE(LocalAddress, Value + Addend);
976
break;
977
case ELF::R_390_64:
978
writeInt64BE(LocalAddress, Value + Addend);
979
break;
980
}
981
}
982
983
void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
984
uint64_t Offset, uint64_t Value,
985
uint32_t Type, int64_t Addend) {
986
bool isBE = Arch == Triple::bpfeb;
987
988
switch (Type) {
989
default:
990
report_fatal_error("Relocation type not implemented yet!");
991
break;
992
case ELF::R_BPF_NONE:
993
case ELF::R_BPF_64_64:
994
case ELF::R_BPF_64_32:
995
case ELF::R_BPF_64_NODYLD32:
996
break;
997
case ELF::R_BPF_64_ABS64: {
998
write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
999
LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
1000
<< format("%p\n", Section.getAddressWithOffset(Offset)));
1001
break;
1002
}
1003
case ELF::R_BPF_64_ABS32: {
1004
Value += Addend;
1005
assert(Value <= UINT32_MAX);
1006
write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
1007
LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
1008
<< format("%p\n", Section.getAddressWithOffset(Offset)));
1009
break;
1010
}
1011
}
1012
}
1013
1014
// The target location for the relocation is described by RE.SectionID and
1015
// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1016
// SectionEntry has three members describing its location.
1017
// SectionEntry::Address is the address at which the section has been loaded
1018
// into memory in the current (host) process. SectionEntry::LoadAddress is the
1019
// address that the section will have in the target process.
1020
// SectionEntry::ObjAddress is the address of the bits for this section in the
1021
// original emitted object image (also in the current address space).
1022
//
1023
// Relocations will be applied as if the section were loaded at
1024
// SectionEntry::LoadAddress, but they will be applied at an address based
1025
// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1026
// Target memory contents if they are required for value calculations.
1027
//
1028
// The Value parameter here is the load address of the symbol for the
1029
// relocation to be applied. For relocations which refer to symbols in the
1030
// current object Value will be the LoadAddress of the section in which
1031
// the symbol resides (RE.Addend provides additional information about the
1032
// symbol location). For external symbols, Value will be the address of the
1033
// symbol in the target address space.
1034
void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1035
uint64_t Value) {
1036
const SectionEntry &Section = Sections[RE.SectionID];
1037
return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1038
RE.SymOffset, RE.SectionID);
1039
}
1040
1041
void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1042
uint64_t Offset, uint64_t Value,
1043
uint32_t Type, int64_t Addend,
1044
uint64_t SymOffset, SID SectionID) {
1045
switch (Arch) {
1046
case Triple::x86_64:
1047
resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1048
break;
1049
case Triple::x86:
1050
resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1051
(uint32_t)(Addend & 0xffffffffL));
1052
break;
1053
case Triple::aarch64:
1054
case Triple::aarch64_be:
1055
resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1056
break;
1057
case Triple::arm: // Fall through.
1058
case Triple::armeb:
1059
case Triple::thumb:
1060
case Triple::thumbeb:
1061
resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1062
(uint32_t)(Addend & 0xffffffffL));
1063
break;
1064
case Triple::ppc: // Fall through.
1065
case Triple::ppcle:
1066
resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1067
break;
1068
case Triple::ppc64: // Fall through.
1069
case Triple::ppc64le:
1070
resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1071
break;
1072
case Triple::systemz:
1073
resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1074
break;
1075
case Triple::bpfel:
1076
case Triple::bpfeb:
1077
resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1078
break;
1079
default:
1080
llvm_unreachable("Unsupported CPU type!");
1081
}
1082
}
1083
1084
void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1085
return (void *)(Sections[SectionID].getObjAddress() + Offset);
1086
}
1087
1088
void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1089
RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1090
if (Value.SymbolName)
1091
addRelocationForSymbol(RE, Value.SymbolName);
1092
else
1093
addRelocationForSection(RE, Value.SectionID);
1094
}
1095
1096
uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1097
bool IsLocal) const {
1098
switch (RelType) {
1099
case ELF::R_MICROMIPS_GOT16:
1100
if (IsLocal)
1101
return ELF::R_MICROMIPS_LO16;
1102
break;
1103
case ELF::R_MICROMIPS_HI16:
1104
return ELF::R_MICROMIPS_LO16;
1105
case ELF::R_MIPS_GOT16:
1106
if (IsLocal)
1107
return ELF::R_MIPS_LO16;
1108
break;
1109
case ELF::R_MIPS_HI16:
1110
return ELF::R_MIPS_LO16;
1111
case ELF::R_MIPS_PCHI16:
1112
return ELF::R_MIPS_PCLO16;
1113
default:
1114
break;
1115
}
1116
return ELF::R_MIPS_NONE;
1117
}
1118
1119
// Sometimes we don't need to create thunk for a branch.
1120
// This typically happens when branch target is located
1121
// in the same object file. In such case target is either
1122
// a weak symbol or symbol in a different executable section.
1123
// This function checks if branch target is located in the
1124
// same object file and if distance between source and target
1125
// fits R_AARCH64_CALL26 relocation. If both conditions are
1126
// met, it emits direct jump to the target and returns true.
1127
// Otherwise false is returned and thunk is created.
1128
bool RuntimeDyldELF::resolveAArch64ShortBranch(
1129
unsigned SectionID, relocation_iterator RelI,
1130
const RelocationValueRef &Value) {
1131
uint64_t TargetOffset;
1132
unsigned TargetSectionID;
1133
if (Value.SymbolName) {
1134
auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1135
1136
// Don't create direct branch for external symbols.
1137
if (Loc == GlobalSymbolTable.end())
1138
return false;
1139
1140
const auto &SymInfo = Loc->second;
1141
1142
TargetSectionID = SymInfo.getSectionID();
1143
TargetOffset = SymInfo.getOffset();
1144
} else {
1145
TargetSectionID = Value.SectionID;
1146
TargetOffset = 0;
1147
}
1148
1149
// We don't actually know the load addresses at this point, so if the
1150
// branch is cross-section, we don't know exactly how far away it is.
1151
if (TargetSectionID != SectionID)
1152
return false;
1153
1154
uint64_t SourceOffset = RelI->getOffset();
1155
1156
// R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1157
// If distance between source and target is out of range then we should
1158
// create thunk.
1159
if (!isInt<28>(TargetOffset + Value.Addend - SourceOffset))
1160
return false;
1161
1162
RelocationEntry RE(SectionID, SourceOffset, RelI->getType(), Value.Addend);
1163
if (Value.SymbolName)
1164
addRelocationForSymbol(RE, Value.SymbolName);
1165
else
1166
addRelocationForSection(RE, Value.SectionID);
1167
1168
return true;
1169
}
1170
1171
void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1172
const RelocationValueRef &Value,
1173
relocation_iterator RelI,
1174
StubMap &Stubs) {
1175
1176
LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1177
SectionEntry &Section = Sections[SectionID];
1178
1179
uint64_t Offset = RelI->getOffset();
1180
unsigned RelType = RelI->getType();
1181
// Look for an existing stub.
1182
StubMap::const_iterator i = Stubs.find(Value);
1183
if (i != Stubs.end()) {
1184
resolveRelocation(Section, Offset,
1185
Section.getLoadAddressWithOffset(i->second), RelType, 0);
1186
LLVM_DEBUG(dbgs() << " Stub function found\n");
1187
} else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1188
// Create a new stub function.
1189
LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1190
Stubs[Value] = Section.getStubOffset();
1191
uint8_t *StubTargetAddr = createStubFunction(
1192
Section.getAddressWithOffset(Section.getStubOffset()));
1193
1194
RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1195
ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1196
RelocationEntry REmovk_g2(SectionID,
1197
StubTargetAddr - Section.getAddress() + 4,
1198
ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1199
RelocationEntry REmovk_g1(SectionID,
1200
StubTargetAddr - Section.getAddress() + 8,
1201
ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1202
RelocationEntry REmovk_g0(SectionID,
1203
StubTargetAddr - Section.getAddress() + 12,
1204
ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1205
1206
if (Value.SymbolName) {
1207
addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1208
addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1209
addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1210
addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1211
} else {
1212
addRelocationForSection(REmovz_g3, Value.SectionID);
1213
addRelocationForSection(REmovk_g2, Value.SectionID);
1214
addRelocationForSection(REmovk_g1, Value.SectionID);
1215
addRelocationForSection(REmovk_g0, Value.SectionID);
1216
}
1217
resolveRelocation(Section, Offset,
1218
Section.getLoadAddressWithOffset(Section.getStubOffset()),
1219
RelType, 0);
1220
Section.advanceStubOffset(getMaxStubSize());
1221
}
1222
}
1223
1224
Expected<relocation_iterator>
1225
RuntimeDyldELF::processRelocationRef(
1226
unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1227
ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1228
const auto &Obj = cast<ELFObjectFileBase>(O);
1229
uint64_t RelType = RelI->getType();
1230
int64_t Addend = 0;
1231
if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1232
Addend = *AddendOrErr;
1233
else
1234
consumeError(AddendOrErr.takeError());
1235
elf_symbol_iterator Symbol = RelI->getSymbol();
1236
1237
// Obtain the symbol name which is referenced in the relocation
1238
StringRef TargetName;
1239
if (Symbol != Obj.symbol_end()) {
1240
if (auto TargetNameOrErr = Symbol->getName())
1241
TargetName = *TargetNameOrErr;
1242
else
1243
return TargetNameOrErr.takeError();
1244
}
1245
LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1246
<< " TargetName: " << TargetName << "\n");
1247
RelocationValueRef Value;
1248
// First search for the symbol in the local symbol table
1249
SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1250
1251
// Search for the symbol in the global symbol table
1252
RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1253
if (Symbol != Obj.symbol_end()) {
1254
gsi = GlobalSymbolTable.find(TargetName.data());
1255
Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1256
if (!SymTypeOrErr) {
1257
std::string Buf;
1258
raw_string_ostream OS(Buf);
1259
logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1260
report_fatal_error(Twine(OS.str()));
1261
}
1262
SymType = *SymTypeOrErr;
1263
}
1264
if (gsi != GlobalSymbolTable.end()) {
1265
const auto &SymInfo = gsi->second;
1266
Value.SectionID = SymInfo.getSectionID();
1267
Value.Offset = SymInfo.getOffset();
1268
Value.Addend = SymInfo.getOffset() + Addend;
1269
} else {
1270
switch (SymType) {
1271
case SymbolRef::ST_Debug: {
1272
// TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1273
// and can be changed by another developers. Maybe best way is add
1274
// a new symbol type ST_Section to SymbolRef and use it.
1275
auto SectionOrErr = Symbol->getSection();
1276
if (!SectionOrErr) {
1277
std::string Buf;
1278
raw_string_ostream OS(Buf);
1279
logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1280
report_fatal_error(Twine(OS.str()));
1281
}
1282
section_iterator si = *SectionOrErr;
1283
if (si == Obj.section_end())
1284
llvm_unreachable("Symbol section not found, bad object file format!");
1285
LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1286
bool isCode = si->isText();
1287
if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1288
ObjSectionToID))
1289
Value.SectionID = *SectionIDOrErr;
1290
else
1291
return SectionIDOrErr.takeError();
1292
Value.Addend = Addend;
1293
break;
1294
}
1295
case SymbolRef::ST_Data:
1296
case SymbolRef::ST_Function:
1297
case SymbolRef::ST_Other:
1298
case SymbolRef::ST_Unknown: {
1299
Value.SymbolName = TargetName.data();
1300
Value.Addend = Addend;
1301
1302
// Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1303
// will manifest here as a NULL symbol name.
1304
// We can set this as a valid (but empty) symbol name, and rely
1305
// on addRelocationForSymbol to handle this.
1306
if (!Value.SymbolName)
1307
Value.SymbolName = "";
1308
break;
1309
}
1310
default:
1311
llvm_unreachable("Unresolved symbol type!");
1312
break;
1313
}
1314
}
1315
1316
uint64_t Offset = RelI->getOffset();
1317
1318
LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1319
<< "\n");
1320
if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1321
if ((RelType == ELF::R_AARCH64_CALL26 ||
1322
RelType == ELF::R_AARCH64_JUMP26) &&
1323
MemMgr.allowStubAllocation()) {
1324
resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1325
} else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1326
// Create new GOT entry or find existing one. If GOT entry is
1327
// to be created, then we also emit ABS64 relocation for it.
1328
uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1329
resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1330
ELF::R_AARCH64_ADR_PREL_PG_HI21);
1331
1332
} else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1333
uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1334
resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1335
ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1336
} else {
1337
processSimpleRelocation(SectionID, Offset, RelType, Value);
1338
}
1339
} else if (Arch == Triple::arm) {
1340
if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1341
RelType == ELF::R_ARM_JUMP24) {
1342
// This is an ARM branch relocation, need to use a stub function.
1343
LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1344
SectionEntry &Section = Sections[SectionID];
1345
1346
// Look for an existing stub.
1347
StubMap::const_iterator i = Stubs.find(Value);
1348
if (i != Stubs.end()) {
1349
resolveRelocation(Section, Offset,
1350
Section.getLoadAddressWithOffset(i->second), RelType,
1351
0);
1352
LLVM_DEBUG(dbgs() << " Stub function found\n");
1353
} else {
1354
// Create a new stub function.
1355
LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1356
Stubs[Value] = Section.getStubOffset();
1357
uint8_t *StubTargetAddr = createStubFunction(
1358
Section.getAddressWithOffset(Section.getStubOffset()));
1359
RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1360
ELF::R_ARM_ABS32, Value.Addend);
1361
if (Value.SymbolName)
1362
addRelocationForSymbol(RE, Value.SymbolName);
1363
else
1364
addRelocationForSection(RE, Value.SectionID);
1365
1366
resolveRelocation(
1367
Section, Offset,
1368
Section.getLoadAddressWithOffset(Section.getStubOffset()), RelType,
1369
0);
1370
Section.advanceStubOffset(getMaxStubSize());
1371
}
1372
} else {
1373
uint32_t *Placeholder =
1374
reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1375
if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1376
RelType == ELF::R_ARM_ABS32) {
1377
Value.Addend += *Placeholder;
1378
} else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1379
// See ELF for ARM documentation
1380
Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1381
}
1382
processSimpleRelocation(SectionID, Offset, RelType, Value);
1383
}
1384
} else if (IsMipsO32ABI) {
1385
uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1386
computePlaceholderAddress(SectionID, Offset));
1387
uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1388
if (RelType == ELF::R_MIPS_26) {
1389
// This is an Mips branch relocation, need to use a stub function.
1390
LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1391
SectionEntry &Section = Sections[SectionID];
1392
1393
// Extract the addend from the instruction.
1394
// We shift up by two since the Value will be down shifted again
1395
// when applying the relocation.
1396
uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1397
1398
Value.Addend += Addend;
1399
1400
// Look up for existing stub.
1401
StubMap::const_iterator i = Stubs.find(Value);
1402
if (i != Stubs.end()) {
1403
RelocationEntry RE(SectionID, Offset, RelType, i->second);
1404
addRelocationForSection(RE, SectionID);
1405
LLVM_DEBUG(dbgs() << " Stub function found\n");
1406
} else {
1407
// Create a new stub function.
1408
LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1409
Stubs[Value] = Section.getStubOffset();
1410
1411
unsigned AbiVariant = Obj.getPlatformFlags();
1412
1413
uint8_t *StubTargetAddr = createStubFunction(
1414
Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1415
1416
// Creating Hi and Lo relocations for the filled stub instructions.
1417
RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1418
ELF::R_MIPS_HI16, Value.Addend);
1419
RelocationEntry RELo(SectionID,
1420
StubTargetAddr - Section.getAddress() + 4,
1421
ELF::R_MIPS_LO16, Value.Addend);
1422
1423
if (Value.SymbolName) {
1424
addRelocationForSymbol(REHi, Value.SymbolName);
1425
addRelocationForSymbol(RELo, Value.SymbolName);
1426
} else {
1427
addRelocationForSection(REHi, Value.SectionID);
1428
addRelocationForSection(RELo, Value.SectionID);
1429
}
1430
1431
RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1432
addRelocationForSection(RE, SectionID);
1433
Section.advanceStubOffset(getMaxStubSize());
1434
}
1435
} else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1436
int64_t Addend = (Opcode & 0x0000ffff) << 16;
1437
RelocationEntry RE(SectionID, Offset, RelType, Addend);
1438
PendingRelocs.push_back(std::make_pair(Value, RE));
1439
} else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1440
int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1441
for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1442
const RelocationValueRef &MatchingValue = I->first;
1443
RelocationEntry &Reloc = I->second;
1444
if (MatchingValue == Value &&
1445
RelType == getMatchingLoRelocation(Reloc.RelType) &&
1446
SectionID == Reloc.SectionID) {
1447
Reloc.Addend += Addend;
1448
if (Value.SymbolName)
1449
addRelocationForSymbol(Reloc, Value.SymbolName);
1450
else
1451
addRelocationForSection(Reloc, Value.SectionID);
1452
I = PendingRelocs.erase(I);
1453
} else
1454
++I;
1455
}
1456
RelocationEntry RE(SectionID, Offset, RelType, Addend);
1457
if (Value.SymbolName)
1458
addRelocationForSymbol(RE, Value.SymbolName);
1459
else
1460
addRelocationForSection(RE, Value.SectionID);
1461
} else {
1462
if (RelType == ELF::R_MIPS_32)
1463
Value.Addend += Opcode;
1464
else if (RelType == ELF::R_MIPS_PC16)
1465
Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1466
else if (RelType == ELF::R_MIPS_PC19_S2)
1467
Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1468
else if (RelType == ELF::R_MIPS_PC21_S2)
1469
Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1470
else if (RelType == ELF::R_MIPS_PC26_S2)
1471
Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1472
processSimpleRelocation(SectionID, Offset, RelType, Value);
1473
}
1474
} else if (IsMipsN32ABI || IsMipsN64ABI) {
1475
uint32_t r_type = RelType & 0xff;
1476
RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1477
if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1478
|| r_type == ELF::R_MIPS_GOT_DISP) {
1479
StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1480
if (i != GOTSymbolOffsets.end())
1481
RE.SymOffset = i->second;
1482
else {
1483
RE.SymOffset = allocateGOTEntries(1);
1484
GOTSymbolOffsets[TargetName] = RE.SymOffset;
1485
}
1486
if (Value.SymbolName)
1487
addRelocationForSymbol(RE, Value.SymbolName);
1488
else
1489
addRelocationForSection(RE, Value.SectionID);
1490
} else if (RelType == ELF::R_MIPS_26) {
1491
// This is an Mips branch relocation, need to use a stub function.
1492
LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1493
SectionEntry &Section = Sections[SectionID];
1494
1495
// Look up for existing stub.
1496
StubMap::const_iterator i = Stubs.find(Value);
1497
if (i != Stubs.end()) {
1498
RelocationEntry RE(SectionID, Offset, RelType, i->second);
1499
addRelocationForSection(RE, SectionID);
1500
LLVM_DEBUG(dbgs() << " Stub function found\n");
1501
} else {
1502
// Create a new stub function.
1503
LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1504
Stubs[Value] = Section.getStubOffset();
1505
1506
unsigned AbiVariant = Obj.getPlatformFlags();
1507
1508
uint8_t *StubTargetAddr = createStubFunction(
1509
Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1510
1511
if (IsMipsN32ABI) {
1512
// Creating Hi and Lo relocations for the filled stub instructions.
1513
RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1514
ELF::R_MIPS_HI16, Value.Addend);
1515
RelocationEntry RELo(SectionID,
1516
StubTargetAddr - Section.getAddress() + 4,
1517
ELF::R_MIPS_LO16, Value.Addend);
1518
if (Value.SymbolName) {
1519
addRelocationForSymbol(REHi, Value.SymbolName);
1520
addRelocationForSymbol(RELo, Value.SymbolName);
1521
} else {
1522
addRelocationForSection(REHi, Value.SectionID);
1523
addRelocationForSection(RELo, Value.SectionID);
1524
}
1525
} else {
1526
// Creating Highest, Higher, Hi and Lo relocations for the filled stub
1527
// instructions.
1528
RelocationEntry REHighest(SectionID,
1529
StubTargetAddr - Section.getAddress(),
1530
ELF::R_MIPS_HIGHEST, Value.Addend);
1531
RelocationEntry REHigher(SectionID,
1532
StubTargetAddr - Section.getAddress() + 4,
1533
ELF::R_MIPS_HIGHER, Value.Addend);
1534
RelocationEntry REHi(SectionID,
1535
StubTargetAddr - Section.getAddress() + 12,
1536
ELF::R_MIPS_HI16, Value.Addend);
1537
RelocationEntry RELo(SectionID,
1538
StubTargetAddr - Section.getAddress() + 20,
1539
ELF::R_MIPS_LO16, Value.Addend);
1540
if (Value.SymbolName) {
1541
addRelocationForSymbol(REHighest, Value.SymbolName);
1542
addRelocationForSymbol(REHigher, Value.SymbolName);
1543
addRelocationForSymbol(REHi, Value.SymbolName);
1544
addRelocationForSymbol(RELo, Value.SymbolName);
1545
} else {
1546
addRelocationForSection(REHighest, Value.SectionID);
1547
addRelocationForSection(REHigher, Value.SectionID);
1548
addRelocationForSection(REHi, Value.SectionID);
1549
addRelocationForSection(RELo, Value.SectionID);
1550
}
1551
}
1552
RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1553
addRelocationForSection(RE, SectionID);
1554
Section.advanceStubOffset(getMaxStubSize());
1555
}
1556
} else {
1557
processSimpleRelocation(SectionID, Offset, RelType, Value);
1558
}
1559
1560
} else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1561
if (RelType == ELF::R_PPC64_REL24) {
1562
// Determine ABI variant in use for this object.
1563
unsigned AbiVariant = Obj.getPlatformFlags();
1564
AbiVariant &= ELF::EF_PPC64_ABI;
1565
// A PPC branch relocation will need a stub function if the target is
1566
// an external symbol (either Value.SymbolName is set, or SymType is
1567
// Symbol::ST_Unknown) or if the target address is not within the
1568
// signed 24-bits branch address.
1569
SectionEntry &Section = Sections[SectionID];
1570
uint8_t *Target = Section.getAddressWithOffset(Offset);
1571
bool RangeOverflow = false;
1572
bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1573
if (!IsExtern) {
1574
if (AbiVariant != 2) {
1575
// In the ELFv1 ABI, a function call may point to the .opd entry,
1576
// so the final symbol value is calculated based on the relocation
1577
// values in the .opd section.
1578
if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1579
return std::move(Err);
1580
} else {
1581
// In the ELFv2 ABI, a function symbol may provide a local entry
1582
// point, which must be used for direct calls.
1583
if (Value.SectionID == SectionID){
1584
uint8_t SymOther = Symbol->getOther();
1585
Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1586
}
1587
}
1588
uint8_t *RelocTarget =
1589
Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1590
int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1591
// If it is within 26-bits branch range, just set the branch target
1592
if (SignExtend64<26>(delta) != delta) {
1593
RangeOverflow = true;
1594
} else if ((AbiVariant != 2) ||
1595
(AbiVariant == 2 && Value.SectionID == SectionID)) {
1596
RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1597
addRelocationForSection(RE, Value.SectionID);
1598
}
1599
}
1600
if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1601
RangeOverflow) {
1602
// It is an external symbol (either Value.SymbolName is set, or
1603
// SymType is SymbolRef::ST_Unknown) or out of range.
1604
StubMap::const_iterator i = Stubs.find(Value);
1605
if (i != Stubs.end()) {
1606
// Symbol function stub already created, just relocate to it
1607
resolveRelocation(Section, Offset,
1608
Section.getLoadAddressWithOffset(i->second),
1609
RelType, 0);
1610
LLVM_DEBUG(dbgs() << " Stub function found\n");
1611
} else {
1612
// Create a new stub function.
1613
LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1614
Stubs[Value] = Section.getStubOffset();
1615
uint8_t *StubTargetAddr = createStubFunction(
1616
Section.getAddressWithOffset(Section.getStubOffset()),
1617
AbiVariant);
1618
RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1619
ELF::R_PPC64_ADDR64, Value.Addend);
1620
1621
// Generates the 64-bits address loads as exemplified in section
1622
// 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1623
// apply to the low part of the instructions, so we have to update
1624
// the offset according to the target endianness.
1625
uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1626
if (!IsTargetLittleEndian)
1627
StubRelocOffset += 2;
1628
1629
RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1630
ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1631
RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1632
ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1633
RelocationEntry REh(SectionID, StubRelocOffset + 12,
1634
ELF::R_PPC64_ADDR16_HI, Value.Addend);
1635
RelocationEntry REl(SectionID, StubRelocOffset + 16,
1636
ELF::R_PPC64_ADDR16_LO, Value.Addend);
1637
1638
if (Value.SymbolName) {
1639
addRelocationForSymbol(REhst, Value.SymbolName);
1640
addRelocationForSymbol(REhr, Value.SymbolName);
1641
addRelocationForSymbol(REh, Value.SymbolName);
1642
addRelocationForSymbol(REl, Value.SymbolName);
1643
} else {
1644
addRelocationForSection(REhst, Value.SectionID);
1645
addRelocationForSection(REhr, Value.SectionID);
1646
addRelocationForSection(REh, Value.SectionID);
1647
addRelocationForSection(REl, Value.SectionID);
1648
}
1649
1650
resolveRelocation(
1651
Section, Offset,
1652
Section.getLoadAddressWithOffset(Section.getStubOffset()),
1653
RelType, 0);
1654
Section.advanceStubOffset(getMaxStubSize());
1655
}
1656
if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1657
// Restore the TOC for external calls
1658
if (AbiVariant == 2)
1659
writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1660
else
1661
writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1662
}
1663
}
1664
} else if (RelType == ELF::R_PPC64_TOC16 ||
1665
RelType == ELF::R_PPC64_TOC16_DS ||
1666
RelType == ELF::R_PPC64_TOC16_LO ||
1667
RelType == ELF::R_PPC64_TOC16_LO_DS ||
1668
RelType == ELF::R_PPC64_TOC16_HI ||
1669
RelType == ELF::R_PPC64_TOC16_HA) {
1670
// These relocations are supposed to subtract the TOC address from
1671
// the final value. This does not fit cleanly into the RuntimeDyld
1672
// scheme, since there may be *two* sections involved in determining
1673
// the relocation value (the section of the symbol referred to by the
1674
// relocation, and the TOC section associated with the current module).
1675
//
1676
// Fortunately, these relocations are currently only ever generated
1677
// referring to symbols that themselves reside in the TOC, which means
1678
// that the two sections are actually the same. Thus they cancel out
1679
// and we can immediately resolve the relocation right now.
1680
switch (RelType) {
1681
case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1682
case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1683
case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1684
case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1685
case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1686
case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1687
default: llvm_unreachable("Wrong relocation type.");
1688
}
1689
1690
RelocationValueRef TOCValue;
1691
if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1692
return std::move(Err);
1693
if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1694
llvm_unreachable("Unsupported TOC relocation.");
1695
Value.Addend -= TOCValue.Addend;
1696
resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1697
} else {
1698
// There are two ways to refer to the TOC address directly: either
1699
// via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1700
// ignored), or via any relocation that refers to the magic ".TOC."
1701
// symbols (in which case the addend is respected).
1702
if (RelType == ELF::R_PPC64_TOC) {
1703
RelType = ELF::R_PPC64_ADDR64;
1704
if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1705
return std::move(Err);
1706
} else if (TargetName == ".TOC.") {
1707
if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1708
return std::move(Err);
1709
Value.Addend += Addend;
1710
}
1711
1712
RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1713
1714
if (Value.SymbolName)
1715
addRelocationForSymbol(RE, Value.SymbolName);
1716
else
1717
addRelocationForSection(RE, Value.SectionID);
1718
}
1719
} else if (Arch == Triple::systemz &&
1720
(RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1721
// Create function stubs for both PLT and GOT references, regardless of
1722
// whether the GOT reference is to data or code. The stub contains the
1723
// full address of the symbol, as needed by GOT references, and the
1724
// executable part only adds an overhead of 8 bytes.
1725
//
1726
// We could try to conserve space by allocating the code and data
1727
// parts of the stub separately. However, as things stand, we allocate
1728
// a stub for every relocation, so using a GOT in JIT code should be
1729
// no less space efficient than using an explicit constant pool.
1730
LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1731
SectionEntry &Section = Sections[SectionID];
1732
1733
// Look for an existing stub.
1734
StubMap::const_iterator i = Stubs.find(Value);
1735
uintptr_t StubAddress;
1736
if (i != Stubs.end()) {
1737
StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1738
LLVM_DEBUG(dbgs() << " Stub function found\n");
1739
} else {
1740
// Create a new stub function.
1741
LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1742
1743
uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1744
StubAddress =
1745
alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment());
1746
unsigned StubOffset = StubAddress - BaseAddress;
1747
1748
Stubs[Value] = StubOffset;
1749
createStubFunction((uint8_t *)StubAddress);
1750
RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1751
Value.Offset);
1752
if (Value.SymbolName)
1753
addRelocationForSymbol(RE, Value.SymbolName);
1754
else
1755
addRelocationForSection(RE, Value.SectionID);
1756
Section.advanceStubOffset(getMaxStubSize());
1757
}
1758
1759
if (RelType == ELF::R_390_GOTENT)
1760
resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1761
Addend);
1762
else
1763
resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1764
} else if (Arch == Triple::x86_64) {
1765
if (RelType == ELF::R_X86_64_PLT32) {
1766
// The way the PLT relocations normally work is that the linker allocates
1767
// the
1768
// PLT and this relocation makes a PC-relative call into the PLT. The PLT
1769
// entry will then jump to an address provided by the GOT. On first call,
1770
// the
1771
// GOT address will point back into PLT code that resolves the symbol. After
1772
// the first call, the GOT entry points to the actual function.
1773
//
1774
// For local functions we're ignoring all of that here and just replacing
1775
// the PLT32 relocation type with PC32, which will translate the relocation
1776
// into a PC-relative call directly to the function. For external symbols we
1777
// can't be sure the function will be within 2^32 bytes of the call site, so
1778
// we need to create a stub, which calls into the GOT. This case is
1779
// equivalent to the usual PLT implementation except that we use the stub
1780
// mechanism in RuntimeDyld (which puts stubs at the end of the section)
1781
// rather than allocating a PLT section.
1782
if (Value.SymbolName && MemMgr.allowStubAllocation()) {
1783
// This is a call to an external function.
1784
// Look for an existing stub.
1785
SectionEntry *Section = &Sections[SectionID];
1786
StubMap::const_iterator i = Stubs.find(Value);
1787
uintptr_t StubAddress;
1788
if (i != Stubs.end()) {
1789
StubAddress = uintptr_t(Section->getAddress()) + i->second;
1790
LLVM_DEBUG(dbgs() << " Stub function found\n");
1791
} else {
1792
// Create a new stub function (equivalent to a PLT entry).
1793
LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1794
1795
uintptr_t BaseAddress = uintptr_t(Section->getAddress());
1796
StubAddress = alignTo(BaseAddress + Section->getStubOffset(),
1797
getStubAlignment());
1798
unsigned StubOffset = StubAddress - BaseAddress;
1799
Stubs[Value] = StubOffset;
1800
createStubFunction((uint8_t *)StubAddress);
1801
1802
// Bump our stub offset counter
1803
Section->advanceStubOffset(getMaxStubSize());
1804
1805
// Allocate a GOT Entry
1806
uint64_t GOTOffset = allocateGOTEntries(1);
1807
// This potentially creates a new Section which potentially
1808
// invalidates the Section pointer, so reload it.
1809
Section = &Sections[SectionID];
1810
1811
// The load of the GOT address has an addend of -4
1812
resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1813
ELF::R_X86_64_PC32);
1814
1815
// Fill in the value of the symbol we're targeting into the GOT
1816
addRelocationForSymbol(
1817
computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1818
Value.SymbolName);
1819
}
1820
1821
// Make the target call a call into the stub table.
1822
resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1823
Addend);
1824
} else {
1825
Value.Addend += support::ulittle32_t::ref(
1826
computePlaceholderAddress(SectionID, Offset));
1827
processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
1828
}
1829
} else if (RelType == ELF::R_X86_64_GOTPCREL ||
1830
RelType == ELF::R_X86_64_GOTPCRELX ||
1831
RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1832
uint64_t GOTOffset = allocateGOTEntries(1);
1833
resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1834
ELF::R_X86_64_PC32);
1835
1836
// Fill in the value of the symbol we're targeting into the GOT
1837
RelocationEntry RE =
1838
computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1839
if (Value.SymbolName)
1840
addRelocationForSymbol(RE, Value.SymbolName);
1841
else
1842
addRelocationForSection(RE, Value.SectionID);
1843
} else if (RelType == ELF::R_X86_64_GOT64) {
1844
// Fill in a 64-bit GOT offset.
1845
uint64_t GOTOffset = allocateGOTEntries(1);
1846
resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1847
ELF::R_X86_64_64, 0);
1848
1849
// Fill in the value of the symbol we're targeting into the GOT
1850
RelocationEntry RE =
1851
computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1852
if (Value.SymbolName)
1853
addRelocationForSymbol(RE, Value.SymbolName);
1854
else
1855
addRelocationForSection(RE, Value.SectionID);
1856
} else if (RelType == ELF::R_X86_64_GOTPC32) {
1857
// Materialize the address of the base of the GOT relative to the PC.
1858
// This doesn't create a GOT entry, but it does mean we need a GOT
1859
// section.
1860
(void)allocateGOTEntries(0);
1861
resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
1862
} else if (RelType == ELF::R_X86_64_GOTPC64) {
1863
(void)allocateGOTEntries(0);
1864
resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1865
} else if (RelType == ELF::R_X86_64_GOTOFF64) {
1866
// GOTOFF relocations ultimately require a section difference relocation.
1867
(void)allocateGOTEntries(0);
1868
processSimpleRelocation(SectionID, Offset, RelType, Value);
1869
} else if (RelType == ELF::R_X86_64_PC32) {
1870
Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1871
processSimpleRelocation(SectionID, Offset, RelType, Value);
1872
} else if (RelType == ELF::R_X86_64_PC64) {
1873
Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1874
processSimpleRelocation(SectionID, Offset, RelType, Value);
1875
} else if (RelType == ELF::R_X86_64_GOTTPOFF) {
1876
processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
1877
} else if (RelType == ELF::R_X86_64_TLSGD ||
1878
RelType == ELF::R_X86_64_TLSLD) {
1879
// The next relocation must be the relocation for __tls_get_addr.
1880
++RelI;
1881
auto &GetAddrRelocation = *RelI;
1882
processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
1883
GetAddrRelocation);
1884
} else {
1885
processSimpleRelocation(SectionID, Offset, RelType, Value);
1886
}
1887
} else {
1888
if (Arch == Triple::x86) {
1889
Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1890
}
1891
processSimpleRelocation(SectionID, Offset, RelType, Value);
1892
}
1893
return ++RelI;
1894
}
1895
1896
void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
1897
uint64_t Offset,
1898
RelocationValueRef Value,
1899
int64_t Addend) {
1900
// Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1901
// to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1902
// only mentions one optimization even though there are two different
1903
// code sequences for the Initial Exec TLS Model. We match the code to
1904
// find out which one was used.
1905
1906
// A possible TLS code sequence and its replacement
1907
struct CodeSequence {
1908
// The expected code sequence
1909
ArrayRef<uint8_t> ExpectedCodeSequence;
1910
// The negative offset of the GOTTPOFF relocation to the beginning of
1911
// the sequence
1912
uint64_t TLSSequenceOffset;
1913
// The new code sequence
1914
ArrayRef<uint8_t> NewCodeSequence;
1915
// The offset of the new TPOFF relocation
1916
uint64_t TpoffRelocationOffset;
1917
};
1918
1919
std::array<CodeSequence, 2> CodeSequences;
1920
1921
// Initial Exec Code Model Sequence
1922
{
1923
static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1924
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1925
0x00, // mov %fs:0, %rax
1926
0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1927
// %rax
1928
};
1929
CodeSequences[0].ExpectedCodeSequence =
1930
ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1931
CodeSequences[0].TLSSequenceOffset = 12;
1932
1933
static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1934
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1935
0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1936
};
1937
CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1938
CodeSequences[0].TpoffRelocationOffset = 12;
1939
}
1940
1941
// Initial Exec Code Model Sequence, II
1942
{
1943
static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1944
0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1945
0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax
1946
};
1947
CodeSequences[1].ExpectedCodeSequence =
1948
ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1949
CodeSequences[1].TLSSequenceOffset = 3;
1950
1951
static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1952
0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop
1953
0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1954
};
1955
CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1956
CodeSequences[1].TpoffRelocationOffset = 10;
1957
}
1958
1959
bool Resolved = false;
1960
auto &Section = Sections[SectionID];
1961
for (const auto &C : CodeSequences) {
1962
assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
1963
"Old and new code sequences must have the same size");
1964
1965
if (Offset < C.TLSSequenceOffset ||
1966
(Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
1967
Section.getSize()) {
1968
// This can't be a matching sequence as it doesn't fit in the current
1969
// section
1970
continue;
1971
}
1972
1973
auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
1974
auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
1975
if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
1976
C.ExpectedCodeSequence) {
1977
continue;
1978
}
1979
1980
memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
1981
1982
// The original GOTTPOFF relocation has an addend as it is PC relative,
1983
// so it needs to be corrected. The TPOFF32 relocation is used as an
1984
// absolute value (which is an offset from %fs:0), so remove the addend
1985
// again.
1986
RelocationEntry RE(SectionID,
1987
TLSSequenceStartOffset + C.TpoffRelocationOffset,
1988
ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
1989
1990
if (Value.SymbolName)
1991
addRelocationForSymbol(RE, Value.SymbolName);
1992
else
1993
addRelocationForSection(RE, Value.SectionID);
1994
1995
Resolved = true;
1996
break;
1997
}
1998
1999
if (!Resolved) {
2000
// The GOTTPOFF relocation was not used in one of the sequences
2001
// described in the spec, so we can't optimize it to a TPOFF
2002
// relocation.
2003
uint64_t GOTOffset = allocateGOTEntries(1);
2004
resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
2005
ELF::R_X86_64_PC32);
2006
RelocationEntry RE =
2007
computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
2008
if (Value.SymbolName)
2009
addRelocationForSymbol(RE, Value.SymbolName);
2010
else
2011
addRelocationForSection(RE, Value.SectionID);
2012
}
2013
}
2014
2015
void RuntimeDyldELF::processX86_64TLSRelocation(
2016
unsigned SectionID, uint64_t Offset, uint64_t RelType,
2017
RelocationValueRef Value, int64_t Addend,
2018
const RelocationRef &GetAddrRelocation) {
2019
// Since we are statically linking and have no additional DSOs, we can resolve
2020
// the relocation directly without using __tls_get_addr.
2021
// Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2022
// to replace it with the Local Exec relocation variant.
2023
2024
// Find out whether the code was compiled with the large or small memory
2025
// model. For this we look at the next relocation which is the relocation
2026
// for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2027
// small code model, with a 64 bit relocation it's the large code model.
2028
bool IsSmallCodeModel;
2029
// Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2030
bool IsGOTPCRel = false;
2031
2032
switch (GetAddrRelocation.getType()) {
2033
case ELF::R_X86_64_GOTPCREL:
2034
case ELF::R_X86_64_REX_GOTPCRELX:
2035
case ELF::R_X86_64_GOTPCRELX:
2036
IsGOTPCRel = true;
2037
[[fallthrough]];
2038
case ELF::R_X86_64_PLT32:
2039
IsSmallCodeModel = true;
2040
break;
2041
case ELF::R_X86_64_PLTOFF64:
2042
IsSmallCodeModel = false;
2043
break;
2044
default:
2045
report_fatal_error(
2046
"invalid TLS relocations for General/Local Dynamic TLS Model: "
2047
"expected PLT or GOT relocation for __tls_get_addr function");
2048
}
2049
2050
// The negative offset to the start of the TLS code sequence relative to
2051
// the offset of the TLSGD/TLSLD relocation
2052
uint64_t TLSSequenceOffset;
2053
// The expected start of the code sequence
2054
ArrayRef<uint8_t> ExpectedCodeSequence;
2055
// The new TLS code sequence that will replace the existing code
2056
ArrayRef<uint8_t> NewCodeSequence;
2057
2058
if (RelType == ELF::R_X86_64_TLSGD) {
2059
// The offset of the new TPOFF32 relocation (offset starting from the
2060
// beginning of the whole TLS sequence)
2061
uint64_t TpoffRelocOffset;
2062
2063
if (IsSmallCodeModel) {
2064
if (!IsGOTPCRel) {
2065
static const std::initializer_list<uint8_t> CodeSequence = {
2066
0x66, // data16 (no-op prefix)
2067
0x48, 0x8d, 0x3d, 0x00, 0x00,
2068
0x00, 0x00, // lea <disp32>(%rip), %rdi
2069
0x66, 0x66, // two data16 prefixes
2070
0x48, // rex64 (no-op prefix)
2071
0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2072
};
2073
ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2074
TLSSequenceOffset = 4;
2075
} else {
2076
// This code sequence is not described in the TLS spec but gcc
2077
// generates it sometimes.
2078
static const std::initializer_list<uint8_t> CodeSequence = {
2079
0x66, // data16 (no-op prefix)
2080
0x48, 0x8d, 0x3d, 0x00, 0x00,
2081
0x00, 0x00, // lea <disp32>(%rip), %rdi
2082
0x66, // data16 prefix (no-op prefix)
2083
0x48, // rex64 (no-op prefix)
2084
0xff, 0x15, 0x00, 0x00, 0x00,
2085
0x00 // call *__tls_get_addr@gotpcrel(%rip)
2086
};
2087
ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2088
TLSSequenceOffset = 4;
2089
}
2090
2091
// The replacement code for the small code model. It's the same for
2092
// both sequences.
2093
static const std::initializer_list<uint8_t> SmallSequence = {
2094
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2095
0x00, // mov %fs:0, %rax
2096
0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2097
// %rax
2098
};
2099
NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2100
TpoffRelocOffset = 12;
2101
} else {
2102
static const std::initializer_list<uint8_t> CodeSequence = {
2103
0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2104
// %rdi
2105
0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2106
0x00, // movabs $__tls_get_addr@pltoff, %rax
2107
0x48, 0x01, 0xd8, // add %rbx, %rax
2108
0xff, 0xd0 // call *%rax
2109
};
2110
ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2111
TLSSequenceOffset = 3;
2112
2113
// The replacement code for the large code model
2114
static const std::initializer_list<uint8_t> LargeSequence = {
2115
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2116
0x00, // mov %fs:0, %rax
2117
0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2118
// %rax
2119
0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1)
2120
};
2121
NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2122
TpoffRelocOffset = 12;
2123
}
2124
2125
// The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2126
// The new TPOFF32 relocations is used as an absolute offset from
2127
// %fs:0, so remove the TLSGD/TLSLD addend again.
2128
RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2129
ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2130
if (Value.SymbolName)
2131
addRelocationForSymbol(RE, Value.SymbolName);
2132
else
2133
addRelocationForSection(RE, Value.SectionID);
2134
} else if (RelType == ELF::R_X86_64_TLSLD) {
2135
if (IsSmallCodeModel) {
2136
if (!IsGOTPCRel) {
2137
static const std::initializer_list<uint8_t> CodeSequence = {
2138
0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2139
0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2140
};
2141
ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2142
TLSSequenceOffset = 3;
2143
2144
// The replacement code for the small code model
2145
static const std::initializer_list<uint8_t> SmallSequence = {
2146
0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2147
0x64, 0x48, 0x8b, 0x04, 0x25,
2148
0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2149
};
2150
NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2151
} else {
2152
// This code sequence is not described in the TLS spec but gcc
2153
// generates it sometimes.
2154
static const std::initializer_list<uint8_t> CodeSequence = {
2155
0x48, 0x8d, 0x3d, 0x00,
2156
0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2157
0xff, 0x15, 0x00, 0x00,
2158
0x00, 0x00 // call
2159
// *__tls_get_addr@gotpcrel(%rip)
2160
};
2161
ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2162
TLSSequenceOffset = 3;
2163
2164
// The replacement is code is just like above but it needs to be
2165
// one byte longer.
2166
static const std::initializer_list<uint8_t> SmallSequence = {
2167
0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2168
0x64, 0x48, 0x8b, 0x04, 0x25,
2169
0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2170
};
2171
NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2172
}
2173
} else {
2174
// This is the same sequence as for the TLSGD sequence with the large
2175
// memory model above
2176
static const std::initializer_list<uint8_t> CodeSequence = {
2177
0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2178
// %rdi
2179
0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2180
0x48, // movabs $__tls_get_addr@pltoff, %rax
2181
0x01, 0xd8, // add %rbx, %rax
2182
0xff, 0xd0 // call *%rax
2183
};
2184
ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2185
TLSSequenceOffset = 3;
2186
2187
// The replacement code for the large code model
2188
static const std::initializer_list<uint8_t> LargeSequence = {
2189
0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2190
0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2191
0x00, // 10 byte nop
2192
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2193
};
2194
NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2195
}
2196
} else {
2197
llvm_unreachable("both TLS relocations handled above");
2198
}
2199
2200
assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2201
"Old and new code sequences must have the same size");
2202
2203
auto &Section = Sections[SectionID];
2204
if (Offset < TLSSequenceOffset ||
2205
(Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2206
Section.getSize()) {
2207
report_fatal_error("unexpected end of section in TLS sequence");
2208
}
2209
2210
auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2211
if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2212
ExpectedCodeSequence) {
2213
report_fatal_error(
2214
"invalid TLS sequence for Global/Local Dynamic TLS Model");
2215
}
2216
2217
memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2218
}
2219
2220
size_t RuntimeDyldELF::getGOTEntrySize() {
2221
// We don't use the GOT in all of these cases, but it's essentially free
2222
// to put them all here.
2223
size_t Result = 0;
2224
switch (Arch) {
2225
case Triple::x86_64:
2226
case Triple::aarch64:
2227
case Triple::aarch64_be:
2228
case Triple::ppc64:
2229
case Triple::ppc64le:
2230
case Triple::systemz:
2231
Result = sizeof(uint64_t);
2232
break;
2233
case Triple::x86:
2234
case Triple::arm:
2235
case Triple::thumb:
2236
Result = sizeof(uint32_t);
2237
break;
2238
case Triple::mips:
2239
case Triple::mipsel:
2240
case Triple::mips64:
2241
case Triple::mips64el:
2242
if (IsMipsO32ABI || IsMipsN32ABI)
2243
Result = sizeof(uint32_t);
2244
else if (IsMipsN64ABI)
2245
Result = sizeof(uint64_t);
2246
else
2247
llvm_unreachable("Mips ABI not handled");
2248
break;
2249
default:
2250
llvm_unreachable("Unsupported CPU type!");
2251
}
2252
return Result;
2253
}
2254
2255
uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2256
if (GOTSectionID == 0) {
2257
GOTSectionID = Sections.size();
2258
// Reserve a section id. We'll allocate the section later
2259
// once we know the total size
2260
Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2261
}
2262
uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2263
CurrentGOTIndex += no;
2264
return StartOffset;
2265
}
2266
2267
uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2268
unsigned GOTRelType) {
2269
auto E = GOTOffsetMap.insert({Value, 0});
2270
if (E.second) {
2271
uint64_t GOTOffset = allocateGOTEntries(1);
2272
2273
// Create relocation for newly created GOT entry
2274
RelocationEntry RE =
2275
computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2276
if (Value.SymbolName)
2277
addRelocationForSymbol(RE, Value.SymbolName);
2278
else
2279
addRelocationForSection(RE, Value.SectionID);
2280
2281
E.first->second = GOTOffset;
2282
}
2283
2284
return E.first->second;
2285
}
2286
2287
void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2288
uint64_t Offset,
2289
uint64_t GOTOffset,
2290
uint32_t Type) {
2291
// Fill in the relative address of the GOT Entry into the stub
2292
RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2293
addRelocationForSection(GOTRE, GOTSectionID);
2294
}
2295
2296
RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2297
uint64_t SymbolOffset,
2298
uint32_t Type) {
2299
return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2300
}
2301
2302
void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) {
2303
// This should never return an error as `processNewSymbol` wouldn't have been
2304
// called if getFlags() returned an error before.
2305
auto ObjSymbolFlags = cantFail(ObjSymbol.getFlags());
2306
2307
if (ObjSymbolFlags & SymbolRef::SF_Indirect) {
2308
if (IFuncStubSectionID == 0) {
2309
// Create a dummy section for the ifunc stubs. It will be actually
2310
// allocated in finalizeLoad() below.
2311
IFuncStubSectionID = Sections.size();
2312
Sections.push_back(
2313
SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2314
// First 64B are reserverd for the IFunc resolver
2315
IFuncStubOffset = 64;
2316
}
2317
2318
IFuncStubs.push_back(IFuncStub{IFuncStubOffset, Symbol});
2319
// Modify the symbol so that it points to the ifunc stub instead of to the
2320
// resolver function.
2321
Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset,
2322
Symbol.getFlags());
2323
IFuncStubOffset += getMaxIFuncStubSize();
2324
}
2325
}
2326
2327
Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
2328
ObjSectionToIDMap &SectionMap) {
2329
if (IsMipsO32ABI)
2330
if (!PendingRelocs.empty())
2331
return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2332
2333
// Create the IFunc stubs if necessary. This must be done before processing
2334
// the GOT entries, as the IFunc stubs may create some.
2335
if (IFuncStubSectionID != 0) {
2336
uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection(
2337
IFuncStubOffset, 1, IFuncStubSectionID, ".text.__llvm_IFuncStubs");
2338
if (!IFuncStubsAddr)
2339
return make_error<RuntimeDyldError>(
2340
"Unable to allocate memory for IFunc stubs!");
2341
Sections[IFuncStubSectionID] =
2342
SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset,
2343
IFuncStubOffset, 0);
2344
2345
createIFuncResolver(IFuncStubsAddr);
2346
2347
LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2348
<< IFuncStubSectionID << " Addr: "
2349
<< Sections[IFuncStubSectionID].getAddress() << '\n');
2350
for (auto &IFuncStub : IFuncStubs) {
2351
auto &Symbol = IFuncStub.OriginalSymbol;
2352
LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID()
2353
<< " Offset: " << format("%p", Symbol.getOffset())
2354
<< " IFuncStubOffset: "
2355
<< format("%p\n", IFuncStub.StubOffset));
2356
createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset,
2357
Symbol.getSectionID(), Symbol.getOffset());
2358
}
2359
2360
IFuncStubSectionID = 0;
2361
IFuncStubOffset = 0;
2362
IFuncStubs.clear();
2363
}
2364
2365
// If necessary, allocate the global offset table
2366
if (GOTSectionID != 0) {
2367
// Allocate memory for the section
2368
size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2369
uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
2370
GOTSectionID, ".got", false);
2371
if (!Addr)
2372
return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2373
2374
Sections[GOTSectionID] =
2375
SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2376
2377
// For now, initialize all GOT entries to zero. We'll fill them in as
2378
// needed when GOT-based relocations are applied.
2379
memset(Addr, 0, TotalSize);
2380
if (IsMipsN32ABI || IsMipsN64ABI) {
2381
// To correctly resolve Mips GOT relocations, we need a mapping from
2382
// object's sections to GOTs.
2383
for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2384
SI != SE; ++SI) {
2385
if (SI->relocation_begin() != SI->relocation_end()) {
2386
Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2387
if (!RelSecOrErr)
2388
return make_error<RuntimeDyldError>(
2389
toString(RelSecOrErr.takeError()));
2390
2391
section_iterator RelocatedSection = *RelSecOrErr;
2392
ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2393
assert(i != SectionMap.end());
2394
SectionToGOTMap[i->second] = GOTSectionID;
2395
}
2396
}
2397
GOTSymbolOffsets.clear();
2398
}
2399
}
2400
2401
// Look for and record the EH frame section.
2402
ObjSectionToIDMap::iterator i, e;
2403
for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2404
const SectionRef &Section = i->first;
2405
2406
StringRef Name;
2407
Expected<StringRef> NameOrErr = Section.getName();
2408
if (NameOrErr)
2409
Name = *NameOrErr;
2410
else
2411
consumeError(NameOrErr.takeError());
2412
2413
if (Name == ".eh_frame") {
2414
UnregisteredEHFrameSections.push_back(i->second);
2415
break;
2416
}
2417
}
2418
2419
GOTOffsetMap.clear();
2420
GOTSectionID = 0;
2421
CurrentGOTIndex = 0;
2422
2423
return Error::success();
2424
}
2425
2426
bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
2427
return Obj.isELF();
2428
}
2429
2430
void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const {
2431
if (Arch == Triple::x86_64) {
2432
// The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2433
// (see createIFuncStub() for details)
2434
// The following code first saves all registers that contain the original
2435
// function arguments as those registers are not saved by the resolver
2436
// function. %r11 is saved as well so that the GOT2 entry can be updated
2437
// afterwards. Then it calls the actual IFunc resolver function whose
2438
// address is stored in GOT2. After the resolver function returns, all
2439
// saved registers are restored and the return value is written to GOT1.
2440
// Finally, jump to the now resolved function.
2441
// clang-format off
2442
const uint8_t StubCode[] = {
2443
0x57, // push %rdi
2444
0x56, // push %rsi
2445
0x52, // push %rdx
2446
0x51, // push %rcx
2447
0x41, 0x50, // push %r8
2448
0x41, 0x51, // push %r9
2449
0x41, 0x53, // push %r11
2450
0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2451
0x41, 0x5b, // pop %r11
2452
0x41, 0x59, // pop %r9
2453
0x41, 0x58, // pop %r8
2454
0x59, // pop %rcx
2455
0x5a, // pop %rdx
2456
0x5e, // pop %rsi
2457
0x5f, // pop %rdi
2458
0x49, 0x89, 0x03, // mov %rax,(%r11)
2459
0xff, 0xe0 // jmp *%rax
2460
};
2461
// clang-format on
2462
static_assert(sizeof(StubCode) <= 64,
2463
"maximum size of the IFunc resolver is 64B");
2464
memcpy(Addr, StubCode, sizeof(StubCode));
2465
} else {
2466
report_fatal_error(
2467
"IFunc resolver is not supported for target architecture");
2468
}
2469
}
2470
2471
void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID,
2472
uint64_t IFuncResolverOffset,
2473
uint64_t IFuncStubOffset,
2474
unsigned IFuncSectionID,
2475
uint64_t IFuncOffset) {
2476
auto &IFuncStubSection = Sections[IFuncStubSectionID];
2477
auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset);
2478
2479
if (Arch == Triple::x86_64) {
2480
// The first instruction loads a PC-relative address into %r11 which is a
2481
// GOT entry for this stub. This initially contains the address to the
2482
// IFunc resolver. We can use %r11 here as it's caller saved but not used
2483
// to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2484
// code in the PLT. The IFunc resolver will use %r11 to update the GOT
2485
// entry.
2486
//
2487
// The next instruction just jumps to the address contained in the GOT
2488
// entry. As mentioned above, we do this two-step jump by first setting
2489
// %r11 so that the IFunc resolver has access to it.
2490
//
2491
// The IFunc resolver of course also needs to know the actual address of
2492
// the actual IFunc resolver function. This will be stored in a GOT entry
2493
// right next to the first one for this stub. So, the IFunc resolver will
2494
// be able to call it with %r11+8.
2495
//
2496
// In total, two adjacent GOT entries (+relocation) and one additional
2497
// relocation are required:
2498
// GOT1: Address of the IFunc resolver.
2499
// GOT2: Address of the IFunc resolver function.
2500
// IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2501
uint64_t GOT1 = allocateGOTEntries(2);
2502
uint64_t GOT2 = GOT1 + getGOTEntrySize();
2503
2504
RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64,
2505
IFuncResolverOffset, {});
2506
addRelocationForSection(RE1, IFuncStubSectionID);
2507
RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {});
2508
addRelocationForSection(RE2, IFuncSectionID);
2509
2510
const uint8_t StubCode[] = {
2511
0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2512
0x41, 0xff, 0x23 // jmpq *(%r11)
2513
};
2514
assert(sizeof(StubCode) <= getMaxIFuncStubSize() &&
2515
"IFunc stub size must not exceed getMaxIFuncStubSize()");
2516
memcpy(Addr, StubCode, sizeof(StubCode));
2517
2518
// The PC-relative value starts 4 bytes from the end of the leaq
2519
// instruction, so the addend is -4.
2520
resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3,
2521
GOT1 - 4, ELF::R_X86_64_PC32);
2522
} else {
2523
report_fatal_error("IFunc stub is not supported for target architecture");
2524
}
2525
}
2526
2527
unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2528
if (Arch == Triple::x86_64) {
2529
return 10;
2530
}
2531
return 0;
2532
}
2533
2534
bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2535
unsigned RelTy = R.getType();
2536
if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
2537
return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2538
RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2539
2540
if (Arch == Triple::x86_64)
2541
return RelTy == ELF::R_X86_64_GOTPCREL ||
2542
RelTy == ELF::R_X86_64_GOTPCRELX ||
2543
RelTy == ELF::R_X86_64_GOT64 ||
2544
RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2545
return false;
2546
}
2547
2548
bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2549
if (Arch != Triple::x86_64)
2550
return true; // Conservative answer
2551
2552
switch (R.getType()) {
2553
default:
2554
return true; // Conservative answer
2555
2556
2557
case ELF::R_X86_64_GOTPCREL:
2558
case ELF::R_X86_64_GOTPCRELX:
2559
case ELF::R_X86_64_REX_GOTPCRELX:
2560
case ELF::R_X86_64_GOTPC64:
2561
case ELF::R_X86_64_GOT64:
2562
case ELF::R_X86_64_GOTOFF64:
2563
case ELF::R_X86_64_PC32:
2564
case ELF::R_X86_64_PC64:
2565
case ELF::R_X86_64_64:
2566
// We know that these reloation types won't need a stub function. This list
2567
// can be extended as needed.
2568
return false;
2569
}
2570
}
2571
2572
} // namespace llvm
2573
2574