Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/IR/AsmWriter.cpp
35233 views
1
//===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This library implements `print` family of functions in classes like
10
// Module, Function, Value, etc. In-memory representation of those classes is
11
// converted to IR strings.
12
//
13
// Note that these routines must be extremely tolerant of various errors in the
14
// LLVM code, because it can be used for debugging transformations.
15
//
16
//===----------------------------------------------------------------------===//
17
18
#include "llvm/ADT/APFloat.h"
19
#include "llvm/ADT/APInt.h"
20
#include "llvm/ADT/ArrayRef.h"
21
#include "llvm/ADT/DenseMap.h"
22
#include "llvm/ADT/STLExtras.h"
23
#include "llvm/ADT/SetVector.h"
24
#include "llvm/ADT/SmallPtrSet.h"
25
#include "llvm/ADT/SmallString.h"
26
#include "llvm/ADT/SmallVector.h"
27
#include "llvm/ADT/StringExtras.h"
28
#include "llvm/ADT/StringRef.h"
29
#include "llvm/ADT/iterator_range.h"
30
#include "llvm/BinaryFormat/Dwarf.h"
31
#include "llvm/Config/llvm-config.h"
32
#include "llvm/IR/Argument.h"
33
#include "llvm/IR/AssemblyAnnotationWriter.h"
34
#include "llvm/IR/Attributes.h"
35
#include "llvm/IR/BasicBlock.h"
36
#include "llvm/IR/CFG.h"
37
#include "llvm/IR/CallingConv.h"
38
#include "llvm/IR/Comdat.h"
39
#include "llvm/IR/Constant.h"
40
#include "llvm/IR/Constants.h"
41
#include "llvm/IR/DebugInfoMetadata.h"
42
#include "llvm/IR/DebugProgramInstruction.h"
43
#include "llvm/IR/DerivedTypes.h"
44
#include "llvm/IR/Function.h"
45
#include "llvm/IR/GlobalAlias.h"
46
#include "llvm/IR/GlobalIFunc.h"
47
#include "llvm/IR/GlobalObject.h"
48
#include "llvm/IR/GlobalValue.h"
49
#include "llvm/IR/GlobalVariable.h"
50
#include "llvm/IR/IRPrintingPasses.h"
51
#include "llvm/IR/InlineAsm.h"
52
#include "llvm/IR/InstrTypes.h"
53
#include "llvm/IR/Instruction.h"
54
#include "llvm/IR/Instructions.h"
55
#include "llvm/IR/IntrinsicInst.h"
56
#include "llvm/IR/LLVMContext.h"
57
#include "llvm/IR/Metadata.h"
58
#include "llvm/IR/Module.h"
59
#include "llvm/IR/ModuleSlotTracker.h"
60
#include "llvm/IR/ModuleSummaryIndex.h"
61
#include "llvm/IR/Operator.h"
62
#include "llvm/IR/Type.h"
63
#include "llvm/IR/TypeFinder.h"
64
#include "llvm/IR/TypedPointerType.h"
65
#include "llvm/IR/Use.h"
66
#include "llvm/IR/User.h"
67
#include "llvm/IR/Value.h"
68
#include "llvm/Support/AtomicOrdering.h"
69
#include "llvm/Support/Casting.h"
70
#include "llvm/Support/Compiler.h"
71
#include "llvm/Support/Debug.h"
72
#include "llvm/Support/ErrorHandling.h"
73
#include "llvm/Support/Format.h"
74
#include "llvm/Support/FormattedStream.h"
75
#include "llvm/Support/SaveAndRestore.h"
76
#include "llvm/Support/raw_ostream.h"
77
#include <algorithm>
78
#include <cassert>
79
#include <cctype>
80
#include <cstddef>
81
#include <cstdint>
82
#include <iterator>
83
#include <memory>
84
#include <optional>
85
#include <string>
86
#include <tuple>
87
#include <utility>
88
#include <vector>
89
90
using namespace llvm;
91
92
// Make virtual table appear in this compilation unit.
93
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
94
95
//===----------------------------------------------------------------------===//
96
// Helper Functions
97
//===----------------------------------------------------------------------===//
98
99
using OrderMap = MapVector<const Value *, unsigned>;
100
101
using UseListOrderMap =
102
DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
103
104
/// Look for a value that might be wrapped as metadata, e.g. a value in a
105
/// metadata operand. Returns the input value as-is if it is not wrapped.
106
static const Value *skipMetadataWrapper(const Value *V) {
107
if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
108
if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
109
return VAM->getValue();
110
return V;
111
}
112
113
static void orderValue(const Value *V, OrderMap &OM) {
114
if (OM.lookup(V))
115
return;
116
117
if (const Constant *C = dyn_cast<Constant>(V))
118
if (C->getNumOperands() && !isa<GlobalValue>(C))
119
for (const Value *Op : C->operands())
120
if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
121
orderValue(Op, OM);
122
123
// Note: we cannot cache this lookup above, since inserting into the map
124
// changes the map's size, and thus affects the other IDs.
125
unsigned ID = OM.size() + 1;
126
OM[V] = ID;
127
}
128
129
static OrderMap orderModule(const Module *M) {
130
OrderMap OM;
131
132
for (const GlobalVariable &G : M->globals()) {
133
if (G.hasInitializer())
134
if (!isa<GlobalValue>(G.getInitializer()))
135
orderValue(G.getInitializer(), OM);
136
orderValue(&G, OM);
137
}
138
for (const GlobalAlias &A : M->aliases()) {
139
if (!isa<GlobalValue>(A.getAliasee()))
140
orderValue(A.getAliasee(), OM);
141
orderValue(&A, OM);
142
}
143
for (const GlobalIFunc &I : M->ifuncs()) {
144
if (!isa<GlobalValue>(I.getResolver()))
145
orderValue(I.getResolver(), OM);
146
orderValue(&I, OM);
147
}
148
for (const Function &F : *M) {
149
for (const Use &U : F.operands())
150
if (!isa<GlobalValue>(U.get()))
151
orderValue(U.get(), OM);
152
153
orderValue(&F, OM);
154
155
if (F.isDeclaration())
156
continue;
157
158
for (const Argument &A : F.args())
159
orderValue(&A, OM);
160
for (const BasicBlock &BB : F) {
161
orderValue(&BB, OM);
162
for (const Instruction &I : BB) {
163
for (const Value *Op : I.operands()) {
164
Op = skipMetadataWrapper(Op);
165
if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
166
isa<InlineAsm>(*Op))
167
orderValue(Op, OM);
168
}
169
orderValue(&I, OM);
170
}
171
}
172
}
173
return OM;
174
}
175
176
static std::vector<unsigned>
177
predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
178
// Predict use-list order for this one.
179
using Entry = std::pair<const Use *, unsigned>;
180
SmallVector<Entry, 64> List;
181
for (const Use &U : V->uses())
182
// Check if this user will be serialized.
183
if (OM.lookup(U.getUser()))
184
List.push_back(std::make_pair(&U, List.size()));
185
186
if (List.size() < 2)
187
// We may have lost some users.
188
return {};
189
190
// When referencing a value before its declaration, a temporary value is
191
// created, which will later be RAUWed with the actual value. This reverses
192
// the use list. This happens for all values apart from basic blocks.
193
bool GetsReversed = !isa<BasicBlock>(V);
194
if (auto *BA = dyn_cast<BlockAddress>(V))
195
ID = OM.lookup(BA->getBasicBlock());
196
llvm::sort(List, [&](const Entry &L, const Entry &R) {
197
const Use *LU = L.first;
198
const Use *RU = R.first;
199
if (LU == RU)
200
return false;
201
202
auto LID = OM.lookup(LU->getUser());
203
auto RID = OM.lookup(RU->getUser());
204
205
// If ID is 4, then expect: 7 6 5 1 2 3.
206
if (LID < RID) {
207
if (GetsReversed)
208
if (RID <= ID)
209
return true;
210
return false;
211
}
212
if (RID < LID) {
213
if (GetsReversed)
214
if (LID <= ID)
215
return false;
216
return true;
217
}
218
219
// LID and RID are equal, so we have different operands of the same user.
220
// Assume operands are added in order for all instructions.
221
if (GetsReversed)
222
if (LID <= ID)
223
return LU->getOperandNo() < RU->getOperandNo();
224
return LU->getOperandNo() > RU->getOperandNo();
225
});
226
227
if (llvm::is_sorted(List, llvm::less_second()))
228
// Order is already correct.
229
return {};
230
231
// Store the shuffle.
232
std::vector<unsigned> Shuffle(List.size());
233
for (size_t I = 0, E = List.size(); I != E; ++I)
234
Shuffle[I] = List[I].second;
235
return Shuffle;
236
}
237
238
static UseListOrderMap predictUseListOrder(const Module *M) {
239
OrderMap OM = orderModule(M);
240
UseListOrderMap ULOM;
241
for (const auto &Pair : OM) {
242
const Value *V = Pair.first;
243
if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
244
continue;
245
246
std::vector<unsigned> Shuffle =
247
predictValueUseListOrder(V, Pair.second, OM);
248
if (Shuffle.empty())
249
continue;
250
251
const Function *F = nullptr;
252
if (auto *I = dyn_cast<Instruction>(V))
253
F = I->getFunction();
254
if (auto *A = dyn_cast<Argument>(V))
255
F = A->getParent();
256
if (auto *BB = dyn_cast<BasicBlock>(V))
257
F = BB->getParent();
258
ULOM[F][V] = std::move(Shuffle);
259
}
260
return ULOM;
261
}
262
263
static const Module *getModuleFromVal(const Value *V) {
264
if (const Argument *MA = dyn_cast<Argument>(V))
265
return MA->getParent() ? MA->getParent()->getParent() : nullptr;
266
267
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
268
return BB->getParent() ? BB->getParent()->getParent() : nullptr;
269
270
if (const Instruction *I = dyn_cast<Instruction>(V)) {
271
const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
272
return M ? M->getParent() : nullptr;
273
}
274
275
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
276
return GV->getParent();
277
278
if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
279
for (const User *U : MAV->users())
280
if (isa<Instruction>(U))
281
if (const Module *M = getModuleFromVal(U))
282
return M;
283
return nullptr;
284
}
285
286
return nullptr;
287
}
288
289
static const Module *getModuleFromDPI(const DbgMarker *Marker) {
290
const Function *M =
291
Marker->getParent() ? Marker->getParent()->getParent() : nullptr;
292
return M ? M->getParent() : nullptr;
293
}
294
295
static const Module *getModuleFromDPI(const DbgRecord *DR) {
296
return DR->getMarker() ? getModuleFromDPI(DR->getMarker()) : nullptr;
297
}
298
299
static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
300
switch (cc) {
301
default: Out << "cc" << cc; break;
302
case CallingConv::Fast: Out << "fastcc"; break;
303
case CallingConv::Cold: Out << "coldcc"; break;
304
case CallingConv::AnyReg: Out << "anyregcc"; break;
305
case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
306
case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
307
case CallingConv::PreserveNone: Out << "preserve_nonecc"; break;
308
case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
309
case CallingConv::GHC: Out << "ghccc"; break;
310
case CallingConv::Tail: Out << "tailcc"; break;
311
case CallingConv::GRAAL: Out << "graalcc"; break;
312
case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
313
case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
314
case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
315
case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
316
case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
317
case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
318
case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
319
case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
320
case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
321
case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
322
case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
323
case CallingConv::AArch64_SVE_VectorCall:
324
Out << "aarch64_sve_vector_pcs";
325
break;
326
case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0:
327
Out << "aarch64_sme_preservemost_from_x0";
328
break;
329
case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1:
330
Out << "aarch64_sme_preservemost_from_x1";
331
break;
332
case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2:
333
Out << "aarch64_sme_preservemost_from_x2";
334
break;
335
case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
336
case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
337
case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
338
case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
339
case CallingConv::PTX_Device: Out << "ptx_device"; break;
340
case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
341
case CallingConv::Win64: Out << "win64cc"; break;
342
case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
343
case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
344
case CallingConv::Swift: Out << "swiftcc"; break;
345
case CallingConv::SwiftTail: Out << "swifttailcc"; break;
346
case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
347
case CallingConv::DUMMY_HHVM:
348
Out << "hhvmcc";
349
break;
350
case CallingConv::DUMMY_HHVM_C:
351
Out << "hhvm_ccc";
352
break;
353
case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
354
case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
355
case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
356
case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
357
case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
358
case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
359
case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
360
case CallingConv::AMDGPU_CS_Chain:
361
Out << "amdgpu_cs_chain";
362
break;
363
case CallingConv::AMDGPU_CS_ChainPreserve:
364
Out << "amdgpu_cs_chain_preserve";
365
break;
366
case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
367
case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break;
368
case CallingConv::M68k_RTD: Out << "m68k_rtdcc"; break;
369
case CallingConv::RISCV_VectorCall:
370
Out << "riscv_vector_cc";
371
break;
372
}
373
}
374
375
enum PrefixType {
376
GlobalPrefix,
377
ComdatPrefix,
378
LabelPrefix,
379
LocalPrefix,
380
NoPrefix
381
};
382
383
void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
384
assert(!Name.empty() && "Cannot get empty name!");
385
386
// Scan the name to see if it needs quotes first.
387
bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
388
if (!NeedsQuotes) {
389
for (unsigned char C : Name) {
390
// By making this unsigned, the value passed in to isalnum will always be
391
// in the range 0-255. This is important when building with MSVC because
392
// its implementation will assert. This situation can arise when dealing
393
// with UTF-8 multibyte characters.
394
if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
395
C != '_') {
396
NeedsQuotes = true;
397
break;
398
}
399
}
400
}
401
402
// If we didn't need any quotes, just write out the name in one blast.
403
if (!NeedsQuotes) {
404
OS << Name;
405
return;
406
}
407
408
// Okay, we need quotes. Output the quotes and escape any scary characters as
409
// needed.
410
OS << '"';
411
printEscapedString(Name, OS);
412
OS << '"';
413
}
414
415
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
416
/// (if the string only contains simple characters) or is surrounded with ""'s
417
/// (if it has special chars in it). Print it out.
418
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
419
switch (Prefix) {
420
case NoPrefix:
421
break;
422
case GlobalPrefix:
423
OS << '@';
424
break;
425
case ComdatPrefix:
426
OS << '$';
427
break;
428
case LabelPrefix:
429
break;
430
case LocalPrefix:
431
OS << '%';
432
break;
433
}
434
printLLVMNameWithoutPrefix(OS, Name);
435
}
436
437
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
438
/// (if the string only contains simple characters) or is surrounded with ""'s
439
/// (if it has special chars in it). Print it out.
440
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
441
PrintLLVMName(OS, V->getName(),
442
isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
443
}
444
445
static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
446
Out << ", <";
447
if (isa<ScalableVectorType>(Ty))
448
Out << "vscale x ";
449
Out << Mask.size() << " x i32> ";
450
bool FirstElt = true;
451
if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
452
Out << "zeroinitializer";
453
} else if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) {
454
Out << "poison";
455
} else {
456
Out << "<";
457
for (int Elt : Mask) {
458
if (FirstElt)
459
FirstElt = false;
460
else
461
Out << ", ";
462
Out << "i32 ";
463
if (Elt == PoisonMaskElem)
464
Out << "poison";
465
else
466
Out << Elt;
467
}
468
Out << ">";
469
}
470
}
471
472
namespace {
473
474
class TypePrinting {
475
public:
476
TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
477
478
TypePrinting(const TypePrinting &) = delete;
479
TypePrinting &operator=(const TypePrinting &) = delete;
480
481
/// The named types that are used by the current module.
482
TypeFinder &getNamedTypes();
483
484
/// The numbered types, number to type mapping.
485
std::vector<StructType *> &getNumberedTypes();
486
487
bool empty();
488
489
void print(Type *Ty, raw_ostream &OS);
490
491
void printStructBody(StructType *Ty, raw_ostream &OS);
492
493
private:
494
void incorporateTypes();
495
496
/// A module to process lazily when needed. Set to nullptr as soon as used.
497
const Module *DeferredM;
498
499
TypeFinder NamedTypes;
500
501
// The numbered types, along with their value.
502
DenseMap<StructType *, unsigned> Type2Number;
503
504
std::vector<StructType *> NumberedTypes;
505
};
506
507
} // end anonymous namespace
508
509
TypeFinder &TypePrinting::getNamedTypes() {
510
incorporateTypes();
511
return NamedTypes;
512
}
513
514
std::vector<StructType *> &TypePrinting::getNumberedTypes() {
515
incorporateTypes();
516
517
// We know all the numbers that each type is used and we know that it is a
518
// dense assignment. Convert the map to an index table, if it's not done
519
// already (judging from the sizes):
520
if (NumberedTypes.size() == Type2Number.size())
521
return NumberedTypes;
522
523
NumberedTypes.resize(Type2Number.size());
524
for (const auto &P : Type2Number) {
525
assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
526
assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
527
NumberedTypes[P.second] = P.first;
528
}
529
return NumberedTypes;
530
}
531
532
bool TypePrinting::empty() {
533
incorporateTypes();
534
return NamedTypes.empty() && Type2Number.empty();
535
}
536
537
void TypePrinting::incorporateTypes() {
538
if (!DeferredM)
539
return;
540
541
NamedTypes.run(*DeferredM, false);
542
DeferredM = nullptr;
543
544
// The list of struct types we got back includes all the struct types, split
545
// the unnamed ones out to a numbering and remove the anonymous structs.
546
unsigned NextNumber = 0;
547
548
std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
549
for (StructType *STy : NamedTypes) {
550
// Ignore anonymous types.
551
if (STy->isLiteral())
552
continue;
553
554
if (STy->getName().empty())
555
Type2Number[STy] = NextNumber++;
556
else
557
*NextToUse++ = STy;
558
}
559
560
NamedTypes.erase(NextToUse, NamedTypes.end());
561
}
562
563
/// Write the specified type to the specified raw_ostream, making use of type
564
/// names or up references to shorten the type name where possible.
565
void TypePrinting::print(Type *Ty, raw_ostream &OS) {
566
switch (Ty->getTypeID()) {
567
case Type::VoidTyID: OS << "void"; return;
568
case Type::HalfTyID: OS << "half"; return;
569
case Type::BFloatTyID: OS << "bfloat"; return;
570
case Type::FloatTyID: OS << "float"; return;
571
case Type::DoubleTyID: OS << "double"; return;
572
case Type::X86_FP80TyID: OS << "x86_fp80"; return;
573
case Type::FP128TyID: OS << "fp128"; return;
574
case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
575
case Type::LabelTyID: OS << "label"; return;
576
case Type::MetadataTyID: OS << "metadata"; return;
577
case Type::X86_MMXTyID: OS << "x86_mmx"; return;
578
case Type::X86_AMXTyID: OS << "x86_amx"; return;
579
case Type::TokenTyID: OS << "token"; return;
580
case Type::IntegerTyID:
581
OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
582
return;
583
584
case Type::FunctionTyID: {
585
FunctionType *FTy = cast<FunctionType>(Ty);
586
print(FTy->getReturnType(), OS);
587
OS << " (";
588
ListSeparator LS;
589
for (Type *Ty : FTy->params()) {
590
OS << LS;
591
print(Ty, OS);
592
}
593
if (FTy->isVarArg())
594
OS << LS << "...";
595
OS << ')';
596
return;
597
}
598
case Type::StructTyID: {
599
StructType *STy = cast<StructType>(Ty);
600
601
if (STy->isLiteral())
602
return printStructBody(STy, OS);
603
604
if (!STy->getName().empty())
605
return PrintLLVMName(OS, STy->getName(), LocalPrefix);
606
607
incorporateTypes();
608
const auto I = Type2Number.find(STy);
609
if (I != Type2Number.end())
610
OS << '%' << I->second;
611
else // Not enumerated, print the hex address.
612
OS << "%\"type " << STy << '\"';
613
return;
614
}
615
case Type::PointerTyID: {
616
PointerType *PTy = cast<PointerType>(Ty);
617
OS << "ptr";
618
if (unsigned AddressSpace = PTy->getAddressSpace())
619
OS << " addrspace(" << AddressSpace << ')';
620
return;
621
}
622
case Type::ArrayTyID: {
623
ArrayType *ATy = cast<ArrayType>(Ty);
624
OS << '[' << ATy->getNumElements() << " x ";
625
print(ATy->getElementType(), OS);
626
OS << ']';
627
return;
628
}
629
case Type::FixedVectorTyID:
630
case Type::ScalableVectorTyID: {
631
VectorType *PTy = cast<VectorType>(Ty);
632
ElementCount EC = PTy->getElementCount();
633
OS << "<";
634
if (EC.isScalable())
635
OS << "vscale x ";
636
OS << EC.getKnownMinValue() << " x ";
637
print(PTy->getElementType(), OS);
638
OS << '>';
639
return;
640
}
641
case Type::TypedPointerTyID: {
642
TypedPointerType *TPTy = cast<TypedPointerType>(Ty);
643
OS << "typedptr(" << *TPTy->getElementType() << ", "
644
<< TPTy->getAddressSpace() << ")";
645
return;
646
}
647
case Type::TargetExtTyID:
648
TargetExtType *TETy = cast<TargetExtType>(Ty);
649
OS << "target(\"";
650
printEscapedString(Ty->getTargetExtName(), OS);
651
OS << "\"";
652
for (Type *Inner : TETy->type_params())
653
OS << ", " << *Inner;
654
for (unsigned IntParam : TETy->int_params())
655
OS << ", " << IntParam;
656
OS << ")";
657
return;
658
}
659
llvm_unreachable("Invalid TypeID");
660
}
661
662
void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
663
if (STy->isOpaque()) {
664
OS << "opaque";
665
return;
666
}
667
668
if (STy->isPacked())
669
OS << '<';
670
671
if (STy->getNumElements() == 0) {
672
OS << "{}";
673
} else {
674
OS << "{ ";
675
ListSeparator LS;
676
for (Type *Ty : STy->elements()) {
677
OS << LS;
678
print(Ty, OS);
679
}
680
681
OS << " }";
682
}
683
if (STy->isPacked())
684
OS << '>';
685
}
686
687
AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() = default;
688
689
namespace llvm {
690
691
//===----------------------------------------------------------------------===//
692
// SlotTracker Class: Enumerate slot numbers for unnamed values
693
//===----------------------------------------------------------------------===//
694
/// This class provides computation of slot numbers for LLVM Assembly writing.
695
///
696
class SlotTracker : public AbstractSlotTrackerStorage {
697
public:
698
/// ValueMap - A mapping of Values to slot numbers.
699
using ValueMap = DenseMap<const Value *, unsigned>;
700
701
private:
702
/// TheModule - The module for which we are holding slot numbers.
703
const Module* TheModule;
704
705
/// TheFunction - The function for which we are holding slot numbers.
706
const Function* TheFunction = nullptr;
707
bool FunctionProcessed = false;
708
bool ShouldInitializeAllMetadata;
709
710
std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
711
ProcessModuleHookFn;
712
std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
713
ProcessFunctionHookFn;
714
715
/// The summary index for which we are holding slot numbers.
716
const ModuleSummaryIndex *TheIndex = nullptr;
717
718
/// mMap - The slot map for the module level data.
719
ValueMap mMap;
720
unsigned mNext = 0;
721
722
/// fMap - The slot map for the function level data.
723
ValueMap fMap;
724
unsigned fNext = 0;
725
726
/// mdnMap - Map for MDNodes.
727
DenseMap<const MDNode*, unsigned> mdnMap;
728
unsigned mdnNext = 0;
729
730
/// asMap - The slot map for attribute sets.
731
DenseMap<AttributeSet, unsigned> asMap;
732
unsigned asNext = 0;
733
734
/// ModulePathMap - The slot map for Module paths used in the summary index.
735
StringMap<unsigned> ModulePathMap;
736
unsigned ModulePathNext = 0;
737
738
/// GUIDMap - The slot map for GUIDs used in the summary index.
739
DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
740
unsigned GUIDNext = 0;
741
742
/// TypeIdMap - The slot map for type ids used in the summary index.
743
StringMap<unsigned> TypeIdMap;
744
unsigned TypeIdNext = 0;
745
746
/// TypeIdCompatibleVtableMap - The slot map for type compatible vtable ids
747
/// used in the summary index.
748
StringMap<unsigned> TypeIdCompatibleVtableMap;
749
unsigned TypeIdCompatibleVtableNext = 0;
750
751
public:
752
/// Construct from a module.
753
///
754
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
755
/// functions, giving correct numbering for metadata referenced only from
756
/// within a function (even if no functions have been initialized).
757
explicit SlotTracker(const Module *M,
758
bool ShouldInitializeAllMetadata = false);
759
760
/// Construct from a function, starting out in incorp state.
761
///
762
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
763
/// functions, giving correct numbering for metadata referenced only from
764
/// within a function (even if no functions have been initialized).
765
explicit SlotTracker(const Function *F,
766
bool ShouldInitializeAllMetadata = false);
767
768
/// Construct from a module summary index.
769
explicit SlotTracker(const ModuleSummaryIndex *Index);
770
771
SlotTracker(const SlotTracker &) = delete;
772
SlotTracker &operator=(const SlotTracker &) = delete;
773
774
~SlotTracker() = default;
775
776
void setProcessHook(
777
std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
778
void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
779
const Function *, bool)>);
780
781
unsigned getNextMetadataSlot() override { return mdnNext; }
782
783
void createMetadataSlot(const MDNode *N) override;
784
785
/// Return the slot number of the specified value in it's type
786
/// plane. If something is not in the SlotTracker, return -1.
787
int getLocalSlot(const Value *V);
788
int getGlobalSlot(const GlobalValue *V);
789
int getMetadataSlot(const MDNode *N) override;
790
int getAttributeGroupSlot(AttributeSet AS);
791
int getModulePathSlot(StringRef Path);
792
int getGUIDSlot(GlobalValue::GUID GUID);
793
int getTypeIdSlot(StringRef Id);
794
int getTypeIdCompatibleVtableSlot(StringRef Id);
795
796
/// If you'd like to deal with a function instead of just a module, use
797
/// this method to get its data into the SlotTracker.
798
void incorporateFunction(const Function *F) {
799
TheFunction = F;
800
FunctionProcessed = false;
801
}
802
803
const Function *getFunction() const { return TheFunction; }
804
805
/// After calling incorporateFunction, use this method to remove the
806
/// most recently incorporated function from the SlotTracker. This
807
/// will reset the state of the machine back to just the module contents.
808
void purgeFunction();
809
810
/// MDNode map iterators.
811
using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
812
813
mdn_iterator mdn_begin() { return mdnMap.begin(); }
814
mdn_iterator mdn_end() { return mdnMap.end(); }
815
unsigned mdn_size() const { return mdnMap.size(); }
816
bool mdn_empty() const { return mdnMap.empty(); }
817
818
/// AttributeSet map iterators.
819
using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
820
821
as_iterator as_begin() { return asMap.begin(); }
822
as_iterator as_end() { return asMap.end(); }
823
unsigned as_size() const { return asMap.size(); }
824
bool as_empty() const { return asMap.empty(); }
825
826
/// GUID map iterators.
827
using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
828
829
/// These functions do the actual initialization.
830
inline void initializeIfNeeded();
831
int initializeIndexIfNeeded();
832
833
// Implementation Details
834
private:
835
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
836
void CreateModuleSlot(const GlobalValue *V);
837
838
/// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
839
void CreateMetadataSlot(const MDNode *N);
840
841
/// CreateFunctionSlot - Insert the specified Value* into the slot table.
842
void CreateFunctionSlot(const Value *V);
843
844
/// Insert the specified AttributeSet into the slot table.
845
void CreateAttributeSetSlot(AttributeSet AS);
846
847
inline void CreateModulePathSlot(StringRef Path);
848
void CreateGUIDSlot(GlobalValue::GUID GUID);
849
void CreateTypeIdSlot(StringRef Id);
850
void CreateTypeIdCompatibleVtableSlot(StringRef Id);
851
852
/// Add all of the module level global variables (and their initializers)
853
/// and function declarations, but not the contents of those functions.
854
void processModule();
855
// Returns number of allocated slots
856
int processIndex();
857
858
/// Add all of the functions arguments, basic blocks, and instructions.
859
void processFunction();
860
861
/// Add the metadata directly attached to a GlobalObject.
862
void processGlobalObjectMetadata(const GlobalObject &GO);
863
864
/// Add all of the metadata from a function.
865
void processFunctionMetadata(const Function &F);
866
867
/// Add all of the metadata from an instruction.
868
void processInstructionMetadata(const Instruction &I);
869
870
/// Add all of the metadata from a DbgRecord.
871
void processDbgRecordMetadata(const DbgRecord &DVR);
872
};
873
874
} // end namespace llvm
875
876
ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
877
const Function *F)
878
: M(M), F(F), Machine(&Machine) {}
879
880
ModuleSlotTracker::ModuleSlotTracker(const Module *M,
881
bool ShouldInitializeAllMetadata)
882
: ShouldCreateStorage(M),
883
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
884
885
ModuleSlotTracker::~ModuleSlotTracker() = default;
886
887
SlotTracker *ModuleSlotTracker::getMachine() {
888
if (!ShouldCreateStorage)
889
return Machine;
890
891
ShouldCreateStorage = false;
892
MachineStorage =
893
std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
894
Machine = MachineStorage.get();
895
if (ProcessModuleHookFn)
896
Machine->setProcessHook(ProcessModuleHookFn);
897
if (ProcessFunctionHookFn)
898
Machine->setProcessHook(ProcessFunctionHookFn);
899
return Machine;
900
}
901
902
void ModuleSlotTracker::incorporateFunction(const Function &F) {
903
// Using getMachine() may lazily create the slot tracker.
904
if (!getMachine())
905
return;
906
907
// Nothing to do if this is the right function already.
908
if (this->F == &F)
909
return;
910
if (this->F)
911
Machine->purgeFunction();
912
Machine->incorporateFunction(&F);
913
this->F = &F;
914
}
915
916
int ModuleSlotTracker::getLocalSlot(const Value *V) {
917
assert(F && "No function incorporated");
918
return Machine->getLocalSlot(V);
919
}
920
921
void ModuleSlotTracker::setProcessHook(
922
std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
923
Fn) {
924
ProcessModuleHookFn = Fn;
925
}
926
927
void ModuleSlotTracker::setProcessHook(
928
std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
929
Fn) {
930
ProcessFunctionHookFn = Fn;
931
}
932
933
static SlotTracker *createSlotTracker(const Value *V) {
934
if (const Argument *FA = dyn_cast<Argument>(V))
935
return new SlotTracker(FA->getParent());
936
937
if (const Instruction *I = dyn_cast<Instruction>(V))
938
if (I->getParent())
939
return new SlotTracker(I->getParent()->getParent());
940
941
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
942
return new SlotTracker(BB->getParent());
943
944
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
945
return new SlotTracker(GV->getParent());
946
947
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
948
return new SlotTracker(GA->getParent());
949
950
if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
951
return new SlotTracker(GIF->getParent());
952
953
if (const Function *Func = dyn_cast<Function>(V))
954
return new SlotTracker(Func);
955
956
return nullptr;
957
}
958
959
#if 0
960
#define ST_DEBUG(X) dbgs() << X
961
#else
962
#define ST_DEBUG(X)
963
#endif
964
965
// Module level constructor. Causes the contents of the Module (sans functions)
966
// to be added to the slot table.
967
SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
968
: TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
969
970
// Function level constructor. Causes the contents of the Module and the one
971
// function provided to be added to the slot table.
972
SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
973
: TheModule(F ? F->getParent() : nullptr), TheFunction(F),
974
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
975
976
SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
977
: TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
978
979
inline void SlotTracker::initializeIfNeeded() {
980
if (TheModule) {
981
processModule();
982
TheModule = nullptr; ///< Prevent re-processing next time we're called.
983
}
984
985
if (TheFunction && !FunctionProcessed)
986
processFunction();
987
}
988
989
int SlotTracker::initializeIndexIfNeeded() {
990
if (!TheIndex)
991
return 0;
992
int NumSlots = processIndex();
993
TheIndex = nullptr; ///< Prevent re-processing next time we're called.
994
return NumSlots;
995
}
996
997
// Iterate through all the global variables, functions, and global
998
// variable initializers and create slots for them.
999
void SlotTracker::processModule() {
1000
ST_DEBUG("begin processModule!\n");
1001
1002
// Add all of the unnamed global variables to the value table.
1003
for (const GlobalVariable &Var : TheModule->globals()) {
1004
if (!Var.hasName())
1005
CreateModuleSlot(&Var);
1006
processGlobalObjectMetadata(Var);
1007
auto Attrs = Var.getAttributes();
1008
if (Attrs.hasAttributes())
1009
CreateAttributeSetSlot(Attrs);
1010
}
1011
1012
for (const GlobalAlias &A : TheModule->aliases()) {
1013
if (!A.hasName())
1014
CreateModuleSlot(&A);
1015
}
1016
1017
for (const GlobalIFunc &I : TheModule->ifuncs()) {
1018
if (!I.hasName())
1019
CreateModuleSlot(&I);
1020
}
1021
1022
// Add metadata used by named metadata.
1023
for (const NamedMDNode &NMD : TheModule->named_metadata()) {
1024
for (const MDNode *N : NMD.operands())
1025
CreateMetadataSlot(N);
1026
}
1027
1028
for (const Function &F : *TheModule) {
1029
if (!F.hasName())
1030
// Add all the unnamed functions to the table.
1031
CreateModuleSlot(&F);
1032
1033
if (ShouldInitializeAllMetadata)
1034
processFunctionMetadata(F);
1035
1036
// Add all the function attributes to the table.
1037
// FIXME: Add attributes of other objects?
1038
AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
1039
if (FnAttrs.hasAttributes())
1040
CreateAttributeSetSlot(FnAttrs);
1041
}
1042
1043
if (ProcessModuleHookFn)
1044
ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
1045
1046
ST_DEBUG("end processModule!\n");
1047
}
1048
1049
// Process the arguments, basic blocks, and instructions of a function.
1050
void SlotTracker::processFunction() {
1051
ST_DEBUG("begin processFunction!\n");
1052
fNext = 0;
1053
1054
// Process function metadata if it wasn't hit at the module-level.
1055
if (!ShouldInitializeAllMetadata)
1056
processFunctionMetadata(*TheFunction);
1057
1058
// Add all the function arguments with no names.
1059
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1060
AE = TheFunction->arg_end(); AI != AE; ++AI)
1061
if (!AI->hasName())
1062
CreateFunctionSlot(&*AI);
1063
1064
ST_DEBUG("Inserting Instructions:\n");
1065
1066
// Add all of the basic blocks and instructions with no names.
1067
for (auto &BB : *TheFunction) {
1068
if (!BB.hasName())
1069
CreateFunctionSlot(&BB);
1070
1071
for (auto &I : BB) {
1072
if (!I.getType()->isVoidTy() && !I.hasName())
1073
CreateFunctionSlot(&I);
1074
1075
// We allow direct calls to any llvm.foo function here, because the
1076
// target may not be linked into the optimizer.
1077
if (const auto *Call = dyn_cast<CallBase>(&I)) {
1078
// Add all the call attributes to the table.
1079
AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1080
if (Attrs.hasAttributes())
1081
CreateAttributeSetSlot(Attrs);
1082
}
1083
}
1084
}
1085
1086
if (ProcessFunctionHookFn)
1087
ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1088
1089
FunctionProcessed = true;
1090
1091
ST_DEBUG("end processFunction!\n");
1092
}
1093
1094
// Iterate through all the GUID in the index and create slots for them.
1095
int SlotTracker::processIndex() {
1096
ST_DEBUG("begin processIndex!\n");
1097
assert(TheIndex);
1098
1099
// The first block of slots are just the module ids, which start at 0 and are
1100
// assigned consecutively. Since the StringMap iteration order isn't
1101
// guaranteed, order by path string before assigning slots.
1102
std::vector<StringRef> ModulePaths;
1103
for (auto &[ModPath, _] : TheIndex->modulePaths())
1104
ModulePaths.push_back(ModPath);
1105
llvm::sort(ModulePaths.begin(), ModulePaths.end());
1106
for (auto &ModPath : ModulePaths)
1107
CreateModulePathSlot(ModPath);
1108
1109
// Start numbering the GUIDs after the module ids.
1110
GUIDNext = ModulePathNext;
1111
1112
for (auto &GlobalList : *TheIndex)
1113
CreateGUIDSlot(GlobalList.first);
1114
1115
// Start numbering the TypeIdCompatibleVtables after the GUIDs.
1116
TypeIdCompatibleVtableNext = GUIDNext;
1117
for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1118
CreateTypeIdCompatibleVtableSlot(TId.first);
1119
1120
// Start numbering the TypeIds after the TypeIdCompatibleVtables.
1121
TypeIdNext = TypeIdCompatibleVtableNext;
1122
for (const auto &TID : TheIndex->typeIds())
1123
CreateTypeIdSlot(TID.second.first);
1124
1125
ST_DEBUG("end processIndex!\n");
1126
return TypeIdNext;
1127
}
1128
1129
void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1130
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1131
GO.getAllMetadata(MDs);
1132
for (auto &MD : MDs)
1133
CreateMetadataSlot(MD.second);
1134
}
1135
1136
void SlotTracker::processFunctionMetadata(const Function &F) {
1137
processGlobalObjectMetadata(F);
1138
for (auto &BB : F) {
1139
for (auto &I : BB) {
1140
for (const DbgRecord &DR : I.getDbgRecordRange())
1141
processDbgRecordMetadata(DR);
1142
processInstructionMetadata(I);
1143
}
1144
}
1145
}
1146
1147
void SlotTracker::processDbgRecordMetadata(const DbgRecord &DR) {
1148
if (const DbgVariableRecord *DVR = dyn_cast<const DbgVariableRecord>(&DR)) {
1149
// Process metadata used by DbgRecords; we only specifically care about the
1150
// DILocalVariable, DILocation, and DIAssignID fields, as the Value and
1151
// Expression fields should only be printed inline and so do not use a slot.
1152
// Note: The above doesn't apply for empty-metadata operands.
1153
if (auto *Empty = dyn_cast<MDNode>(DVR->getRawLocation()))
1154
CreateMetadataSlot(Empty);
1155
CreateMetadataSlot(DVR->getRawVariable());
1156
if (DVR->isDbgAssign()) {
1157
CreateMetadataSlot(cast<MDNode>(DVR->getRawAssignID()));
1158
if (auto *Empty = dyn_cast<MDNode>(DVR->getRawAddress()))
1159
CreateMetadataSlot(Empty);
1160
}
1161
} else if (const DbgLabelRecord *DLR = dyn_cast<const DbgLabelRecord>(&DR)) {
1162
CreateMetadataSlot(DLR->getRawLabel());
1163
} else {
1164
llvm_unreachable("unsupported DbgRecord kind");
1165
}
1166
CreateMetadataSlot(DR.getDebugLoc().getAsMDNode());
1167
}
1168
1169
void SlotTracker::processInstructionMetadata(const Instruction &I) {
1170
// Process metadata used directly by intrinsics.
1171
if (const CallInst *CI = dyn_cast<CallInst>(&I))
1172
if (Function *F = CI->getCalledFunction())
1173
if (F->isIntrinsic())
1174
for (auto &Op : I.operands())
1175
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1176
if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1177
CreateMetadataSlot(N);
1178
1179
// Process metadata attached to this instruction.
1180
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1181
I.getAllMetadata(MDs);
1182
for (auto &MD : MDs)
1183
CreateMetadataSlot(MD.second);
1184
}
1185
1186
/// Clean up after incorporating a function. This is the only way to get out of
1187
/// the function incorporation state that affects get*Slot/Create*Slot. Function
1188
/// incorporation state is indicated by TheFunction != 0.
1189
void SlotTracker::purgeFunction() {
1190
ST_DEBUG("begin purgeFunction!\n");
1191
fMap.clear(); // Simply discard the function level map
1192
TheFunction = nullptr;
1193
FunctionProcessed = false;
1194
ST_DEBUG("end purgeFunction!\n");
1195
}
1196
1197
/// getGlobalSlot - Get the slot number of a global value.
1198
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1199
// Check for uninitialized state and do lazy initialization.
1200
initializeIfNeeded();
1201
1202
// Find the value in the module map
1203
ValueMap::iterator MI = mMap.find(V);
1204
return MI == mMap.end() ? -1 : (int)MI->second;
1205
}
1206
1207
void SlotTracker::setProcessHook(
1208
std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1209
Fn) {
1210
ProcessModuleHookFn = Fn;
1211
}
1212
1213
void SlotTracker::setProcessHook(
1214
std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1215
Fn) {
1216
ProcessFunctionHookFn = Fn;
1217
}
1218
1219
/// getMetadataSlot - Get the slot number of a MDNode.
1220
void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1221
1222
/// getMetadataSlot - Get the slot number of a MDNode.
1223
int SlotTracker::getMetadataSlot(const MDNode *N) {
1224
// Check for uninitialized state and do lazy initialization.
1225
initializeIfNeeded();
1226
1227
// Find the MDNode in the module map
1228
mdn_iterator MI = mdnMap.find(N);
1229
return MI == mdnMap.end() ? -1 : (int)MI->second;
1230
}
1231
1232
/// getLocalSlot - Get the slot number for a value that is local to a function.
1233
int SlotTracker::getLocalSlot(const Value *V) {
1234
assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1235
1236
// Check for uninitialized state and do lazy initialization.
1237
initializeIfNeeded();
1238
1239
ValueMap::iterator FI = fMap.find(V);
1240
return FI == fMap.end() ? -1 : (int)FI->second;
1241
}
1242
1243
int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1244
// Check for uninitialized state and do lazy initialization.
1245
initializeIfNeeded();
1246
1247
// Find the AttributeSet in the module map.
1248
as_iterator AI = asMap.find(AS);
1249
return AI == asMap.end() ? -1 : (int)AI->second;
1250
}
1251
1252
int SlotTracker::getModulePathSlot(StringRef Path) {
1253
// Check for uninitialized state and do lazy initialization.
1254
initializeIndexIfNeeded();
1255
1256
// Find the Module path in the map
1257
auto I = ModulePathMap.find(Path);
1258
return I == ModulePathMap.end() ? -1 : (int)I->second;
1259
}
1260
1261
int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1262
// Check for uninitialized state and do lazy initialization.
1263
initializeIndexIfNeeded();
1264
1265
// Find the GUID in the map
1266
guid_iterator I = GUIDMap.find(GUID);
1267
return I == GUIDMap.end() ? -1 : (int)I->second;
1268
}
1269
1270
int SlotTracker::getTypeIdSlot(StringRef Id) {
1271
// Check for uninitialized state and do lazy initialization.
1272
initializeIndexIfNeeded();
1273
1274
// Find the TypeId string in the map
1275
auto I = TypeIdMap.find(Id);
1276
return I == TypeIdMap.end() ? -1 : (int)I->second;
1277
}
1278
1279
int SlotTracker::getTypeIdCompatibleVtableSlot(StringRef Id) {
1280
// Check for uninitialized state and do lazy initialization.
1281
initializeIndexIfNeeded();
1282
1283
// Find the TypeIdCompatibleVtable string in the map
1284
auto I = TypeIdCompatibleVtableMap.find(Id);
1285
return I == TypeIdCompatibleVtableMap.end() ? -1 : (int)I->second;
1286
}
1287
1288
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1289
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1290
assert(V && "Can't insert a null Value into SlotTracker!");
1291
assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1292
assert(!V->hasName() && "Doesn't need a slot!");
1293
1294
unsigned DestSlot = mNext++;
1295
mMap[V] = DestSlot;
1296
1297
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1298
DestSlot << " [");
1299
// G = Global, F = Function, A = Alias, I = IFunc, o = other
1300
ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1301
(isa<Function>(V) ? 'F' :
1302
(isa<GlobalAlias>(V) ? 'A' :
1303
(isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1304
}
1305
1306
/// CreateSlot - Create a new slot for the specified value if it has no name.
1307
void SlotTracker::CreateFunctionSlot(const Value *V) {
1308
assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1309
1310
unsigned DestSlot = fNext++;
1311
fMap[V] = DestSlot;
1312
1313
// G = Global, F = Function, o = other
1314
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1315
DestSlot << " [o]\n");
1316
}
1317
1318
/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1319
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1320
assert(N && "Can't insert a null Value into SlotTracker!");
1321
1322
// Don't make slots for DIExpressions. We just print them inline everywhere.
1323
if (isa<DIExpression>(N))
1324
return;
1325
1326
unsigned DestSlot = mdnNext;
1327
if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1328
return;
1329
++mdnNext;
1330
1331
// Recursively add any MDNodes referenced by operands.
1332
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1333
if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1334
CreateMetadataSlot(Op);
1335
}
1336
1337
void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1338
assert(AS.hasAttributes() && "Doesn't need a slot!");
1339
1340
as_iterator I = asMap.find(AS);
1341
if (I != asMap.end())
1342
return;
1343
1344
unsigned DestSlot = asNext++;
1345
asMap[AS] = DestSlot;
1346
}
1347
1348
/// Create a new slot for the specified Module
1349
void SlotTracker::CreateModulePathSlot(StringRef Path) {
1350
ModulePathMap[Path] = ModulePathNext++;
1351
}
1352
1353
/// Create a new slot for the specified GUID
1354
void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1355
GUIDMap[GUID] = GUIDNext++;
1356
}
1357
1358
/// Create a new slot for the specified Id
1359
void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1360
TypeIdMap[Id] = TypeIdNext++;
1361
}
1362
1363
/// Create a new slot for the specified Id
1364
void SlotTracker::CreateTypeIdCompatibleVtableSlot(StringRef Id) {
1365
TypeIdCompatibleVtableMap[Id] = TypeIdCompatibleVtableNext++;
1366
}
1367
1368
namespace {
1369
/// Common instances used by most of the printer functions.
1370
struct AsmWriterContext {
1371
TypePrinting *TypePrinter = nullptr;
1372
SlotTracker *Machine = nullptr;
1373
const Module *Context = nullptr;
1374
1375
AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1376
: TypePrinter(TP), Machine(ST), Context(M) {}
1377
1378
static AsmWriterContext &getEmpty() {
1379
static AsmWriterContext EmptyCtx(nullptr, nullptr);
1380
return EmptyCtx;
1381
}
1382
1383
/// A callback that will be triggered when the underlying printer
1384
/// prints a Metadata as operand.
1385
virtual void onWriteMetadataAsOperand(const Metadata *) {}
1386
1387
virtual ~AsmWriterContext() = default;
1388
};
1389
} // end anonymous namespace
1390
1391
//===----------------------------------------------------------------------===//
1392
// AsmWriter Implementation
1393
//===----------------------------------------------------------------------===//
1394
1395
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1396
AsmWriterContext &WriterCtx);
1397
1398
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1399
AsmWriterContext &WriterCtx,
1400
bool FromValue = false);
1401
1402
static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1403
if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
1404
Out << FPO->getFastMathFlags();
1405
1406
if (const OverflowingBinaryOperator *OBO =
1407
dyn_cast<OverflowingBinaryOperator>(U)) {
1408
if (OBO->hasNoUnsignedWrap())
1409
Out << " nuw";
1410
if (OBO->hasNoSignedWrap())
1411
Out << " nsw";
1412
} else if (const PossiblyExactOperator *Div =
1413
dyn_cast<PossiblyExactOperator>(U)) {
1414
if (Div->isExact())
1415
Out << " exact";
1416
} else if (const PossiblyDisjointInst *PDI =
1417
dyn_cast<PossiblyDisjointInst>(U)) {
1418
if (PDI->isDisjoint())
1419
Out << " disjoint";
1420
} else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1421
if (GEP->isInBounds())
1422
Out << " inbounds";
1423
else if (GEP->hasNoUnsignedSignedWrap())
1424
Out << " nusw";
1425
if (GEP->hasNoUnsignedWrap())
1426
Out << " nuw";
1427
if (auto InRange = GEP->getInRange()) {
1428
Out << " inrange(" << InRange->getLower() << ", " << InRange->getUpper()
1429
<< ")";
1430
}
1431
} else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(U)) {
1432
if (NNI->hasNonNeg())
1433
Out << " nneg";
1434
} else if (const auto *TI = dyn_cast<TruncInst>(U)) {
1435
if (TI->hasNoUnsignedWrap())
1436
Out << " nuw";
1437
if (TI->hasNoSignedWrap())
1438
Out << " nsw";
1439
}
1440
}
1441
1442
static void WriteAPFloatInternal(raw_ostream &Out, const APFloat &APF) {
1443
if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1444
&APF.getSemantics() == &APFloat::IEEEdouble()) {
1445
// We would like to output the FP constant value in exponential notation,
1446
// but we cannot do this if doing so will lose precision. Check here to
1447
// make sure that we only output it in exponential format if we can parse
1448
// the value back and get the same value.
1449
//
1450
bool ignored;
1451
bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1452
bool isInf = APF.isInfinity();
1453
bool isNaN = APF.isNaN();
1454
1455
if (!isInf && !isNaN) {
1456
double Val = APF.convertToDouble();
1457
SmallString<128> StrVal;
1458
APF.toString(StrVal, 6, 0, false);
1459
// Check to make sure that the stringized number is not some string like
1460
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
1461
// that the string matches the "[-+]?[0-9]" regex.
1462
//
1463
assert((isDigit(StrVal[0]) ||
1464
((StrVal[0] == '-' || StrVal[0] == '+') && isDigit(StrVal[1]))) &&
1465
"[-+]?[0-9] regex does not match!");
1466
// Reparse stringized version!
1467
if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1468
Out << StrVal;
1469
return;
1470
}
1471
}
1472
1473
// Otherwise we could not reparse it to exactly the same value, so we must
1474
// output the string in hexadecimal format! Note that loading and storing
1475
// floating point types changes the bits of NaNs on some hosts, notably
1476
// x86, so we must not use these types.
1477
static_assert(sizeof(double) == sizeof(uint64_t),
1478
"assuming that double is 64 bits!");
1479
APFloat apf = APF;
1480
1481
// Floats are represented in ASCII IR as double, convert.
1482
// FIXME: We should allow 32-bit hex float and remove this.
1483
if (!isDouble) {
1484
// A signaling NaN is quieted on conversion, so we need to recreate the
1485
// expected value after convert (quiet bit of the payload is clear).
1486
bool IsSNAN = apf.isSignaling();
1487
apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1488
&ignored);
1489
if (IsSNAN) {
1490
APInt Payload = apf.bitcastToAPInt();
1491
apf =
1492
APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(), &Payload);
1493
}
1494
}
1495
1496
Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1497
return;
1498
}
1499
1500
// Either half, bfloat or some form of long double.
1501
// These appear as a magic letter identifying the type, then a
1502
// fixed number of hex digits.
1503
Out << "0x";
1504
APInt API = APF.bitcastToAPInt();
1505
if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1506
Out << 'K';
1507
Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1508
/*Upper=*/true);
1509
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1510
/*Upper=*/true);
1511
} else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1512
Out << 'L';
1513
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1514
/*Upper=*/true);
1515
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1516
/*Upper=*/true);
1517
} else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1518
Out << 'M';
1519
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1520
/*Upper=*/true);
1521
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1522
/*Upper=*/true);
1523
} else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1524
Out << 'H';
1525
Out << format_hex_no_prefix(API.getZExtValue(), 4,
1526
/*Upper=*/true);
1527
} else if (&APF.getSemantics() == &APFloat::BFloat()) {
1528
Out << 'R';
1529
Out << format_hex_no_prefix(API.getZExtValue(), 4,
1530
/*Upper=*/true);
1531
} else
1532
llvm_unreachable("Unsupported floating point type");
1533
}
1534
1535
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1536
AsmWriterContext &WriterCtx) {
1537
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1538
Type *Ty = CI->getType();
1539
1540
if (Ty->isVectorTy()) {
1541
Out << "splat (";
1542
WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1543
Out << " ";
1544
}
1545
1546
if (Ty->getScalarType()->isIntegerTy(1))
1547
Out << (CI->getZExtValue() ? "true" : "false");
1548
else
1549
Out << CI->getValue();
1550
1551
if (Ty->isVectorTy())
1552
Out << ")";
1553
1554
return;
1555
}
1556
1557
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1558
Type *Ty = CFP->getType();
1559
1560
if (Ty->isVectorTy()) {
1561
Out << "splat (";
1562
WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1563
Out << " ";
1564
}
1565
1566
WriteAPFloatInternal(Out, CFP->getValueAPF());
1567
1568
if (Ty->isVectorTy())
1569
Out << ")";
1570
1571
return;
1572
}
1573
1574
if (isa<ConstantAggregateZero>(CV) || isa<ConstantTargetNone>(CV)) {
1575
Out << "zeroinitializer";
1576
return;
1577
}
1578
1579
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1580
Out << "blockaddress(";
1581
WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
1582
Out << ", ";
1583
WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
1584
Out << ")";
1585
return;
1586
}
1587
1588
if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1589
Out << "dso_local_equivalent ";
1590
WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
1591
return;
1592
}
1593
1594
if (const auto *NC = dyn_cast<NoCFIValue>(CV)) {
1595
Out << "no_cfi ";
1596
WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx);
1597
return;
1598
}
1599
1600
if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(CV)) {
1601
Out << "ptrauth (";
1602
1603
// ptrauth (ptr CST, i32 KEY[, i64 DISC[, ptr ADDRDISC]?]?)
1604
unsigned NumOpsToWrite = 2;
1605
if (!CPA->getOperand(2)->isNullValue())
1606
NumOpsToWrite = 3;
1607
if (!CPA->getOperand(3)->isNullValue())
1608
NumOpsToWrite = 4;
1609
1610
ListSeparator LS;
1611
for (unsigned i = 0, e = NumOpsToWrite; i != e; ++i) {
1612
Out << LS;
1613
WriterCtx.TypePrinter->print(CPA->getOperand(i)->getType(), Out);
1614
Out << ' ';
1615
WriteAsOperandInternal(Out, CPA->getOperand(i), WriterCtx);
1616
}
1617
Out << ')';
1618
return;
1619
}
1620
1621
if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1622
Type *ETy = CA->getType()->getElementType();
1623
Out << '[';
1624
WriterCtx.TypePrinter->print(ETy, Out);
1625
Out << ' ';
1626
WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
1627
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1628
Out << ", ";
1629
WriterCtx.TypePrinter->print(ETy, Out);
1630
Out << ' ';
1631
WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
1632
}
1633
Out << ']';
1634
return;
1635
}
1636
1637
if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1638
// As a special case, print the array as a string if it is an array of
1639
// i8 with ConstantInt values.
1640
if (CA->isString()) {
1641
Out << "c\"";
1642
printEscapedString(CA->getAsString(), Out);
1643
Out << '"';
1644
return;
1645
}
1646
1647
Type *ETy = CA->getType()->getElementType();
1648
Out << '[';
1649
WriterCtx.TypePrinter->print(ETy, Out);
1650
Out << ' ';
1651
WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
1652
for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1653
Out << ", ";
1654
WriterCtx.TypePrinter->print(ETy, Out);
1655
Out << ' ';
1656
WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
1657
}
1658
Out << ']';
1659
return;
1660
}
1661
1662
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1663
if (CS->getType()->isPacked())
1664
Out << '<';
1665
Out << '{';
1666
unsigned N = CS->getNumOperands();
1667
if (N) {
1668
Out << ' ';
1669
WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1670
Out << ' ';
1671
1672
WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
1673
1674
for (unsigned i = 1; i < N; i++) {
1675
Out << ", ";
1676
WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1677
Out << ' ';
1678
1679
WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
1680
}
1681
Out << ' ';
1682
}
1683
1684
Out << '}';
1685
if (CS->getType()->isPacked())
1686
Out << '>';
1687
return;
1688
}
1689
1690
if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1691
auto *CVVTy = cast<FixedVectorType>(CV->getType());
1692
Type *ETy = CVVTy->getElementType();
1693
Out << '<';
1694
WriterCtx.TypePrinter->print(ETy, Out);
1695
Out << ' ';
1696
WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
1697
for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1698
Out << ", ";
1699
WriterCtx.TypePrinter->print(ETy, Out);
1700
Out << ' ';
1701
WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
1702
}
1703
Out << '>';
1704
return;
1705
}
1706
1707
if (isa<ConstantPointerNull>(CV)) {
1708
Out << "null";
1709
return;
1710
}
1711
1712
if (isa<ConstantTokenNone>(CV)) {
1713
Out << "none";
1714
return;
1715
}
1716
1717
if (isa<PoisonValue>(CV)) {
1718
Out << "poison";
1719
return;
1720
}
1721
1722
if (isa<UndefValue>(CV)) {
1723
Out << "undef";
1724
return;
1725
}
1726
1727
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1728
Out << CE->getOpcodeName();
1729
WriteOptimizationInfo(Out, CE);
1730
Out << " (";
1731
1732
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1733
WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1734
Out << ", ";
1735
}
1736
1737
for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end();
1738
++OI) {
1739
WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1740
Out << ' ';
1741
WriteAsOperandInternal(Out, *OI, WriterCtx);
1742
if (OI+1 != CE->op_end())
1743
Out << ", ";
1744
}
1745
1746
if (CE->isCast()) {
1747
Out << " to ";
1748
WriterCtx.TypePrinter->print(CE->getType(), Out);
1749
}
1750
1751
if (CE->getOpcode() == Instruction::ShuffleVector)
1752
PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1753
1754
Out << ')';
1755
return;
1756
}
1757
1758
Out << "<placeholder or erroneous Constant>";
1759
}
1760
1761
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1762
AsmWriterContext &WriterCtx) {
1763
Out << "!{";
1764
for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1765
const Metadata *MD = Node->getOperand(mi);
1766
if (!MD)
1767
Out << "null";
1768
else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1769
Value *V = MDV->getValue();
1770
WriterCtx.TypePrinter->print(V->getType(), Out);
1771
Out << ' ';
1772
WriteAsOperandInternal(Out, V, WriterCtx);
1773
} else {
1774
WriteAsOperandInternal(Out, MD, WriterCtx);
1775
WriterCtx.onWriteMetadataAsOperand(MD);
1776
}
1777
if (mi + 1 != me)
1778
Out << ", ";
1779
}
1780
1781
Out << "}";
1782
}
1783
1784
namespace {
1785
1786
struct FieldSeparator {
1787
bool Skip = true;
1788
const char *Sep;
1789
1790
FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1791
};
1792
1793
raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1794
if (FS.Skip) {
1795
FS.Skip = false;
1796
return OS;
1797
}
1798
return OS << FS.Sep;
1799
}
1800
1801
struct MDFieldPrinter {
1802
raw_ostream &Out;
1803
FieldSeparator FS;
1804
AsmWriterContext &WriterCtx;
1805
1806
explicit MDFieldPrinter(raw_ostream &Out)
1807
: Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1808
MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1809
: Out(Out), WriterCtx(Ctx) {}
1810
1811
void printTag(const DINode *N);
1812
void printMacinfoType(const DIMacroNode *N);
1813
void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1814
void printString(StringRef Name, StringRef Value,
1815
bool ShouldSkipEmpty = true);
1816
void printMetadata(StringRef Name, const Metadata *MD,
1817
bool ShouldSkipNull = true);
1818
template <class IntTy>
1819
void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1820
void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1821
bool ShouldSkipZero);
1822
void printBool(StringRef Name, bool Value,
1823
std::optional<bool> Default = std::nullopt);
1824
void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1825
void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1826
template <class IntTy, class Stringifier>
1827
void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1828
bool ShouldSkipZero = true);
1829
void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1830
void printNameTableKind(StringRef Name,
1831
DICompileUnit::DebugNameTableKind NTK);
1832
};
1833
1834
} // end anonymous namespace
1835
1836
void MDFieldPrinter::printTag(const DINode *N) {
1837
Out << FS << "tag: ";
1838
auto Tag = dwarf::TagString(N->getTag());
1839
if (!Tag.empty())
1840
Out << Tag;
1841
else
1842
Out << N->getTag();
1843
}
1844
1845
void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1846
Out << FS << "type: ";
1847
auto Type = dwarf::MacinfoString(N->getMacinfoType());
1848
if (!Type.empty())
1849
Out << Type;
1850
else
1851
Out << N->getMacinfoType();
1852
}
1853
1854
void MDFieldPrinter::printChecksum(
1855
const DIFile::ChecksumInfo<StringRef> &Checksum) {
1856
Out << FS << "checksumkind: " << Checksum.getKindAsString();
1857
printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1858
}
1859
1860
void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1861
bool ShouldSkipEmpty) {
1862
if (ShouldSkipEmpty && Value.empty())
1863
return;
1864
1865
Out << FS << Name << ": \"";
1866
printEscapedString(Value, Out);
1867
Out << "\"";
1868
}
1869
1870
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1871
AsmWriterContext &WriterCtx) {
1872
if (!MD) {
1873
Out << "null";
1874
return;
1875
}
1876
WriteAsOperandInternal(Out, MD, WriterCtx);
1877
WriterCtx.onWriteMetadataAsOperand(MD);
1878
}
1879
1880
void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1881
bool ShouldSkipNull) {
1882
if (ShouldSkipNull && !MD)
1883
return;
1884
1885
Out << FS << Name << ": ";
1886
writeMetadataAsOperand(Out, MD, WriterCtx);
1887
}
1888
1889
template <class IntTy>
1890
void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1891
if (ShouldSkipZero && !Int)
1892
return;
1893
1894
Out << FS << Name << ": " << Int;
1895
}
1896
1897
void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1898
bool IsUnsigned, bool ShouldSkipZero) {
1899
if (ShouldSkipZero && Int.isZero())
1900
return;
1901
1902
Out << FS << Name << ": ";
1903
Int.print(Out, !IsUnsigned);
1904
}
1905
1906
void MDFieldPrinter::printBool(StringRef Name, bool Value,
1907
std::optional<bool> Default) {
1908
if (Default && Value == *Default)
1909
return;
1910
Out << FS << Name << ": " << (Value ? "true" : "false");
1911
}
1912
1913
void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1914
if (!Flags)
1915
return;
1916
1917
Out << FS << Name << ": ";
1918
1919
SmallVector<DINode::DIFlags, 8> SplitFlags;
1920
auto Extra = DINode::splitFlags(Flags, SplitFlags);
1921
1922
FieldSeparator FlagsFS(" | ");
1923
for (auto F : SplitFlags) {
1924
auto StringF = DINode::getFlagString(F);
1925
assert(!StringF.empty() && "Expected valid flag");
1926
Out << FlagsFS << StringF;
1927
}
1928
if (Extra || SplitFlags.empty())
1929
Out << FlagsFS << Extra;
1930
}
1931
1932
void MDFieldPrinter::printDISPFlags(StringRef Name,
1933
DISubprogram::DISPFlags Flags) {
1934
// Always print this field, because no flags in the IR at all will be
1935
// interpreted as old-style isDefinition: true.
1936
Out << FS << Name << ": ";
1937
1938
if (!Flags) {
1939
Out << 0;
1940
return;
1941
}
1942
1943
SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1944
auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1945
1946
FieldSeparator FlagsFS(" | ");
1947
for (auto F : SplitFlags) {
1948
auto StringF = DISubprogram::getFlagString(F);
1949
assert(!StringF.empty() && "Expected valid flag");
1950
Out << FlagsFS << StringF;
1951
}
1952
if (Extra || SplitFlags.empty())
1953
Out << FlagsFS << Extra;
1954
}
1955
1956
void MDFieldPrinter::printEmissionKind(StringRef Name,
1957
DICompileUnit::DebugEmissionKind EK) {
1958
Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1959
}
1960
1961
void MDFieldPrinter::printNameTableKind(StringRef Name,
1962
DICompileUnit::DebugNameTableKind NTK) {
1963
if (NTK == DICompileUnit::DebugNameTableKind::Default)
1964
return;
1965
Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1966
}
1967
1968
template <class IntTy, class Stringifier>
1969
void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1970
Stringifier toString, bool ShouldSkipZero) {
1971
if (!Value)
1972
return;
1973
1974
Out << FS << Name << ": ";
1975
auto S = toString(Value);
1976
if (!S.empty())
1977
Out << S;
1978
else
1979
Out << Value;
1980
}
1981
1982
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1983
AsmWriterContext &WriterCtx) {
1984
Out << "!GenericDINode(";
1985
MDFieldPrinter Printer(Out, WriterCtx);
1986
Printer.printTag(N);
1987
Printer.printString("header", N->getHeader());
1988
if (N->getNumDwarfOperands()) {
1989
Out << Printer.FS << "operands: {";
1990
FieldSeparator IFS;
1991
for (auto &I : N->dwarf_operands()) {
1992
Out << IFS;
1993
writeMetadataAsOperand(Out, I, WriterCtx);
1994
}
1995
Out << "}";
1996
}
1997
Out << ")";
1998
}
1999
2000
static void writeDILocation(raw_ostream &Out, const DILocation *DL,
2001
AsmWriterContext &WriterCtx) {
2002
Out << "!DILocation(";
2003
MDFieldPrinter Printer(Out, WriterCtx);
2004
// Always output the line, since 0 is a relevant and important value for it.
2005
Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
2006
Printer.printInt("column", DL->getColumn());
2007
Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
2008
Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
2009
Printer.printBool("isImplicitCode", DL->isImplicitCode(),
2010
/* Default */ false);
2011
Out << ")";
2012
}
2013
2014
static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL,
2015
AsmWriterContext &WriterCtx) {
2016
Out << "!DIAssignID()";
2017
MDFieldPrinter Printer(Out, WriterCtx);
2018
}
2019
2020
static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
2021
AsmWriterContext &WriterCtx) {
2022
Out << "!DISubrange(";
2023
MDFieldPrinter Printer(Out, WriterCtx);
2024
2025
auto *Count = N->getRawCountNode();
2026
if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
2027
auto *CV = cast<ConstantInt>(CE->getValue());
2028
Printer.printInt("count", CV->getSExtValue(),
2029
/* ShouldSkipZero */ false);
2030
} else
2031
Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
2032
2033
// A lowerBound of constant 0 should not be skipped, since it is different
2034
// from an unspecified lower bound (= nullptr).
2035
auto *LBound = N->getRawLowerBound();
2036
if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
2037
auto *LV = cast<ConstantInt>(LE->getValue());
2038
Printer.printInt("lowerBound", LV->getSExtValue(),
2039
/* ShouldSkipZero */ false);
2040
} else
2041
Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
2042
2043
auto *UBound = N->getRawUpperBound();
2044
if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
2045
auto *UV = cast<ConstantInt>(UE->getValue());
2046
Printer.printInt("upperBound", UV->getSExtValue(),
2047
/* ShouldSkipZero */ false);
2048
} else
2049
Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
2050
2051
auto *Stride = N->getRawStride();
2052
if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
2053
auto *SV = cast<ConstantInt>(SE->getValue());
2054
Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
2055
} else
2056
Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
2057
2058
Out << ")";
2059
}
2060
2061
static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
2062
AsmWriterContext &WriterCtx) {
2063
Out << "!DIGenericSubrange(";
2064
MDFieldPrinter Printer(Out, WriterCtx);
2065
2066
auto IsConstant = [&](Metadata *Bound) -> bool {
2067
if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
2068
return BE->isConstant() &&
2069
DIExpression::SignedOrUnsignedConstant::SignedConstant ==
2070
*BE->isConstant();
2071
}
2072
return false;
2073
};
2074
2075
auto GetConstant = [&](Metadata *Bound) -> int64_t {
2076
assert(IsConstant(Bound) && "Expected constant");
2077
auto *BE = dyn_cast_or_null<DIExpression>(Bound);
2078
return static_cast<int64_t>(BE->getElement(1));
2079
};
2080
2081
auto *Count = N->getRawCountNode();
2082
if (IsConstant(Count))
2083
Printer.printInt("count", GetConstant(Count),
2084
/* ShouldSkipZero */ false);
2085
else
2086
Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
2087
2088
auto *LBound = N->getRawLowerBound();
2089
if (IsConstant(LBound))
2090
Printer.printInt("lowerBound", GetConstant(LBound),
2091
/* ShouldSkipZero */ false);
2092
else
2093
Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
2094
2095
auto *UBound = N->getRawUpperBound();
2096
if (IsConstant(UBound))
2097
Printer.printInt("upperBound", GetConstant(UBound),
2098
/* ShouldSkipZero */ false);
2099
else
2100
Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
2101
2102
auto *Stride = N->getRawStride();
2103
if (IsConstant(Stride))
2104
Printer.printInt("stride", GetConstant(Stride),
2105
/* ShouldSkipZero */ false);
2106
else
2107
Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
2108
2109
Out << ")";
2110
}
2111
2112
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
2113
AsmWriterContext &) {
2114
Out << "!DIEnumerator(";
2115
MDFieldPrinter Printer(Out);
2116
Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
2117
Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
2118
/*ShouldSkipZero=*/false);
2119
if (N->isUnsigned())
2120
Printer.printBool("isUnsigned", true);
2121
Out << ")";
2122
}
2123
2124
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
2125
AsmWriterContext &) {
2126
Out << "!DIBasicType(";
2127
MDFieldPrinter Printer(Out);
2128
if (N->getTag() != dwarf::DW_TAG_base_type)
2129
Printer.printTag(N);
2130
Printer.printString("name", N->getName());
2131
Printer.printInt("size", N->getSizeInBits());
2132
Printer.printInt("align", N->getAlignInBits());
2133
Printer.printDwarfEnum("encoding", N->getEncoding(),
2134
dwarf::AttributeEncodingString);
2135
Printer.printDIFlags("flags", N->getFlags());
2136
Out << ")";
2137
}
2138
2139
static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2140
AsmWriterContext &WriterCtx) {
2141
Out << "!DIStringType(";
2142
MDFieldPrinter Printer(Out, WriterCtx);
2143
if (N->getTag() != dwarf::DW_TAG_string_type)
2144
Printer.printTag(N);
2145
Printer.printString("name", N->getName());
2146
Printer.printMetadata("stringLength", N->getRawStringLength());
2147
Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2148
Printer.printMetadata("stringLocationExpression",
2149
N->getRawStringLocationExp());
2150
Printer.printInt("size", N->getSizeInBits());
2151
Printer.printInt("align", N->getAlignInBits());
2152
Printer.printDwarfEnum("encoding", N->getEncoding(),
2153
dwarf::AttributeEncodingString);
2154
Out << ")";
2155
}
2156
2157
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2158
AsmWriterContext &WriterCtx) {
2159
Out << "!DIDerivedType(";
2160
MDFieldPrinter Printer(Out, WriterCtx);
2161
Printer.printTag(N);
2162
Printer.printString("name", N->getName());
2163
Printer.printMetadata("scope", N->getRawScope());
2164
Printer.printMetadata("file", N->getRawFile());
2165
Printer.printInt("line", N->getLine());
2166
Printer.printMetadata("baseType", N->getRawBaseType(),
2167
/* ShouldSkipNull */ false);
2168
Printer.printInt("size", N->getSizeInBits());
2169
Printer.printInt("align", N->getAlignInBits());
2170
Printer.printInt("offset", N->getOffsetInBits());
2171
Printer.printDIFlags("flags", N->getFlags());
2172
Printer.printMetadata("extraData", N->getRawExtraData());
2173
if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2174
Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2175
/* ShouldSkipZero */ false);
2176
Printer.printMetadata("annotations", N->getRawAnnotations());
2177
if (auto PtrAuthData = N->getPtrAuthData()) {
2178
Printer.printInt("ptrAuthKey", PtrAuthData->key());
2179
Printer.printBool("ptrAuthIsAddressDiscriminated",
2180
PtrAuthData->isAddressDiscriminated());
2181
Printer.printInt("ptrAuthExtraDiscriminator",
2182
PtrAuthData->extraDiscriminator());
2183
Printer.printBool("ptrAuthIsaPointer", PtrAuthData->isaPointer());
2184
Printer.printBool("ptrAuthAuthenticatesNullValues",
2185
PtrAuthData->authenticatesNullValues());
2186
}
2187
Out << ")";
2188
}
2189
2190
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2191
AsmWriterContext &WriterCtx) {
2192
Out << "!DICompositeType(";
2193
MDFieldPrinter Printer(Out, WriterCtx);
2194
Printer.printTag(N);
2195
Printer.printString("name", N->getName());
2196
Printer.printMetadata("scope", N->getRawScope());
2197
Printer.printMetadata("file", N->getRawFile());
2198
Printer.printInt("line", N->getLine());
2199
Printer.printMetadata("baseType", N->getRawBaseType());
2200
Printer.printInt("size", N->getSizeInBits());
2201
Printer.printInt("align", N->getAlignInBits());
2202
Printer.printInt("offset", N->getOffsetInBits());
2203
Printer.printDIFlags("flags", N->getFlags());
2204
Printer.printMetadata("elements", N->getRawElements());
2205
Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2206
dwarf::LanguageString);
2207
Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2208
Printer.printMetadata("templateParams", N->getRawTemplateParams());
2209
Printer.printString("identifier", N->getIdentifier());
2210
Printer.printMetadata("discriminator", N->getRawDiscriminator());
2211
Printer.printMetadata("dataLocation", N->getRawDataLocation());
2212
Printer.printMetadata("associated", N->getRawAssociated());
2213
Printer.printMetadata("allocated", N->getRawAllocated());
2214
if (auto *RankConst = N->getRankConst())
2215
Printer.printInt("rank", RankConst->getSExtValue(),
2216
/* ShouldSkipZero */ false);
2217
else
2218
Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2219
Printer.printMetadata("annotations", N->getRawAnnotations());
2220
Out << ")";
2221
}
2222
2223
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2224
AsmWriterContext &WriterCtx) {
2225
Out << "!DISubroutineType(";
2226
MDFieldPrinter Printer(Out, WriterCtx);
2227
Printer.printDIFlags("flags", N->getFlags());
2228
Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2229
Printer.printMetadata("types", N->getRawTypeArray(),
2230
/* ShouldSkipNull */ false);
2231
Out << ")";
2232
}
2233
2234
static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
2235
Out << "!DIFile(";
2236
MDFieldPrinter Printer(Out);
2237
Printer.printString("filename", N->getFilename(),
2238
/* ShouldSkipEmpty */ false);
2239
Printer.printString("directory", N->getDirectory(),
2240
/* ShouldSkipEmpty */ false);
2241
// Print all values for checksum together, or not at all.
2242
if (N->getChecksum())
2243
Printer.printChecksum(*N->getChecksum());
2244
Printer.printString("source", N->getSource().value_or(StringRef()),
2245
/* ShouldSkipEmpty */ true);
2246
Out << ")";
2247
}
2248
2249
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2250
AsmWriterContext &WriterCtx) {
2251
Out << "!DICompileUnit(";
2252
MDFieldPrinter Printer(Out, WriterCtx);
2253
Printer.printDwarfEnum("language", N->getSourceLanguage(),
2254
dwarf::LanguageString, /* ShouldSkipZero */ false);
2255
Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2256
Printer.printString("producer", N->getProducer());
2257
Printer.printBool("isOptimized", N->isOptimized());
2258
Printer.printString("flags", N->getFlags());
2259
Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2260
/* ShouldSkipZero */ false);
2261
Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2262
Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2263
Printer.printMetadata("enums", N->getRawEnumTypes());
2264
Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2265
Printer.printMetadata("globals", N->getRawGlobalVariables());
2266
Printer.printMetadata("imports", N->getRawImportedEntities());
2267
Printer.printMetadata("macros", N->getRawMacros());
2268
Printer.printInt("dwoId", N->getDWOId());
2269
Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2270
Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2271
false);
2272
Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2273
Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2274
Printer.printString("sysroot", N->getSysRoot());
2275
Printer.printString("sdk", N->getSDK());
2276
Out << ")";
2277
}
2278
2279
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2280
AsmWriterContext &WriterCtx) {
2281
Out << "!DISubprogram(";
2282
MDFieldPrinter Printer(Out, WriterCtx);
2283
Printer.printString("name", N->getName());
2284
Printer.printString("linkageName", N->getLinkageName());
2285
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2286
Printer.printMetadata("file", N->getRawFile());
2287
Printer.printInt("line", N->getLine());
2288
Printer.printMetadata("type", N->getRawType());
2289
Printer.printInt("scopeLine", N->getScopeLine());
2290
Printer.printMetadata("containingType", N->getRawContainingType());
2291
if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2292
N->getVirtualIndex() != 0)
2293
Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2294
Printer.printInt("thisAdjustment", N->getThisAdjustment());
2295
Printer.printDIFlags("flags", N->getFlags());
2296
Printer.printDISPFlags("spFlags", N->getSPFlags());
2297
Printer.printMetadata("unit", N->getRawUnit());
2298
Printer.printMetadata("templateParams", N->getRawTemplateParams());
2299
Printer.printMetadata("declaration", N->getRawDeclaration());
2300
Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2301
Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2302
Printer.printMetadata("annotations", N->getRawAnnotations());
2303
Printer.printString("targetFuncName", N->getTargetFuncName());
2304
Out << ")";
2305
}
2306
2307
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2308
AsmWriterContext &WriterCtx) {
2309
Out << "!DILexicalBlock(";
2310
MDFieldPrinter Printer(Out, WriterCtx);
2311
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2312
Printer.printMetadata("file", N->getRawFile());
2313
Printer.printInt("line", N->getLine());
2314
Printer.printInt("column", N->getColumn());
2315
Out << ")";
2316
}
2317
2318
static void writeDILexicalBlockFile(raw_ostream &Out,
2319
const DILexicalBlockFile *N,
2320
AsmWriterContext &WriterCtx) {
2321
Out << "!DILexicalBlockFile(";
2322
MDFieldPrinter Printer(Out, WriterCtx);
2323
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2324
Printer.printMetadata("file", N->getRawFile());
2325
Printer.printInt("discriminator", N->getDiscriminator(),
2326
/* ShouldSkipZero */ false);
2327
Out << ")";
2328
}
2329
2330
static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2331
AsmWriterContext &WriterCtx) {
2332
Out << "!DINamespace(";
2333
MDFieldPrinter Printer(Out, WriterCtx);
2334
Printer.printString("name", N->getName());
2335
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2336
Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2337
Out << ")";
2338
}
2339
2340
static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2341
AsmWriterContext &WriterCtx) {
2342
Out << "!DICommonBlock(";
2343
MDFieldPrinter Printer(Out, WriterCtx);
2344
Printer.printMetadata("scope", N->getRawScope(), false);
2345
Printer.printMetadata("declaration", N->getRawDecl(), false);
2346
Printer.printString("name", N->getName());
2347
Printer.printMetadata("file", N->getRawFile());
2348
Printer.printInt("line", N->getLineNo());
2349
Out << ")";
2350
}
2351
2352
static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2353
AsmWriterContext &WriterCtx) {
2354
Out << "!DIMacro(";
2355
MDFieldPrinter Printer(Out, WriterCtx);
2356
Printer.printMacinfoType(N);
2357
Printer.printInt("line", N->getLine());
2358
Printer.printString("name", N->getName());
2359
Printer.printString("value", N->getValue());
2360
Out << ")";
2361
}
2362
2363
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2364
AsmWriterContext &WriterCtx) {
2365
Out << "!DIMacroFile(";
2366
MDFieldPrinter Printer(Out, WriterCtx);
2367
Printer.printInt("line", N->getLine());
2368
Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2369
Printer.printMetadata("nodes", N->getRawElements());
2370
Out << ")";
2371
}
2372
2373
static void writeDIModule(raw_ostream &Out, const DIModule *N,
2374
AsmWriterContext &WriterCtx) {
2375
Out << "!DIModule(";
2376
MDFieldPrinter Printer(Out, WriterCtx);
2377
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2378
Printer.printString("name", N->getName());
2379
Printer.printString("configMacros", N->getConfigurationMacros());
2380
Printer.printString("includePath", N->getIncludePath());
2381
Printer.printString("apinotes", N->getAPINotesFile());
2382
Printer.printMetadata("file", N->getRawFile());
2383
Printer.printInt("line", N->getLineNo());
2384
Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2385
Out << ")";
2386
}
2387
2388
static void writeDITemplateTypeParameter(raw_ostream &Out,
2389
const DITemplateTypeParameter *N,
2390
AsmWriterContext &WriterCtx) {
2391
Out << "!DITemplateTypeParameter(";
2392
MDFieldPrinter Printer(Out, WriterCtx);
2393
Printer.printString("name", N->getName());
2394
Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2395
Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2396
Out << ")";
2397
}
2398
2399
static void writeDITemplateValueParameter(raw_ostream &Out,
2400
const DITemplateValueParameter *N,
2401
AsmWriterContext &WriterCtx) {
2402
Out << "!DITemplateValueParameter(";
2403
MDFieldPrinter Printer(Out, WriterCtx);
2404
if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2405
Printer.printTag(N);
2406
Printer.printString("name", N->getName());
2407
Printer.printMetadata("type", N->getRawType());
2408
Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2409
Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2410
Out << ")";
2411
}
2412
2413
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2414
AsmWriterContext &WriterCtx) {
2415
Out << "!DIGlobalVariable(";
2416
MDFieldPrinter Printer(Out, WriterCtx);
2417
Printer.printString("name", N->getName());
2418
Printer.printString("linkageName", N->getLinkageName());
2419
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2420
Printer.printMetadata("file", N->getRawFile());
2421
Printer.printInt("line", N->getLine());
2422
Printer.printMetadata("type", N->getRawType());
2423
Printer.printBool("isLocal", N->isLocalToUnit());
2424
Printer.printBool("isDefinition", N->isDefinition());
2425
Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2426
Printer.printMetadata("templateParams", N->getRawTemplateParams());
2427
Printer.printInt("align", N->getAlignInBits());
2428
Printer.printMetadata("annotations", N->getRawAnnotations());
2429
Out << ")";
2430
}
2431
2432
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2433
AsmWriterContext &WriterCtx) {
2434
Out << "!DILocalVariable(";
2435
MDFieldPrinter Printer(Out, WriterCtx);
2436
Printer.printString("name", N->getName());
2437
Printer.printInt("arg", N->getArg());
2438
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2439
Printer.printMetadata("file", N->getRawFile());
2440
Printer.printInt("line", N->getLine());
2441
Printer.printMetadata("type", N->getRawType());
2442
Printer.printDIFlags("flags", N->getFlags());
2443
Printer.printInt("align", N->getAlignInBits());
2444
Printer.printMetadata("annotations", N->getRawAnnotations());
2445
Out << ")";
2446
}
2447
2448
static void writeDILabel(raw_ostream &Out, const DILabel *N,
2449
AsmWriterContext &WriterCtx) {
2450
Out << "!DILabel(";
2451
MDFieldPrinter Printer(Out, WriterCtx);
2452
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2453
Printer.printString("name", N->getName());
2454
Printer.printMetadata("file", N->getRawFile());
2455
Printer.printInt("line", N->getLine());
2456
Out << ")";
2457
}
2458
2459
static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2460
AsmWriterContext &WriterCtx) {
2461
Out << "!DIExpression(";
2462
FieldSeparator FS;
2463
if (N->isValid()) {
2464
for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2465
auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2466
assert(!OpStr.empty() && "Expected valid opcode");
2467
2468
Out << FS << OpStr;
2469
if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2470
Out << FS << Op.getArg(0);
2471
Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2472
} else {
2473
for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2474
Out << FS << Op.getArg(A);
2475
}
2476
}
2477
} else {
2478
for (const auto &I : N->getElements())
2479
Out << FS << I;
2480
}
2481
Out << ")";
2482
}
2483
2484
static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2485
AsmWriterContext &WriterCtx,
2486
bool FromValue = false) {
2487
assert(FromValue &&
2488
"Unexpected DIArgList metadata outside of value argument");
2489
Out << "!DIArgList(";
2490
FieldSeparator FS;
2491
MDFieldPrinter Printer(Out, WriterCtx);
2492
for (Metadata *Arg : N->getArgs()) {
2493
Out << FS;
2494
WriteAsOperandInternal(Out, Arg, WriterCtx, true);
2495
}
2496
Out << ")";
2497
}
2498
2499
static void writeDIGlobalVariableExpression(raw_ostream &Out,
2500
const DIGlobalVariableExpression *N,
2501
AsmWriterContext &WriterCtx) {
2502
Out << "!DIGlobalVariableExpression(";
2503
MDFieldPrinter Printer(Out, WriterCtx);
2504
Printer.printMetadata("var", N->getVariable());
2505
Printer.printMetadata("expr", N->getExpression());
2506
Out << ")";
2507
}
2508
2509
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2510
AsmWriterContext &WriterCtx) {
2511
Out << "!DIObjCProperty(";
2512
MDFieldPrinter Printer(Out, WriterCtx);
2513
Printer.printString("name", N->getName());
2514
Printer.printMetadata("file", N->getRawFile());
2515
Printer.printInt("line", N->getLine());
2516
Printer.printString("setter", N->getSetterName());
2517
Printer.printString("getter", N->getGetterName());
2518
Printer.printInt("attributes", N->getAttributes());
2519
Printer.printMetadata("type", N->getRawType());
2520
Out << ")";
2521
}
2522
2523
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2524
AsmWriterContext &WriterCtx) {
2525
Out << "!DIImportedEntity(";
2526
MDFieldPrinter Printer(Out, WriterCtx);
2527
Printer.printTag(N);
2528
Printer.printString("name", N->getName());
2529
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2530
Printer.printMetadata("entity", N->getRawEntity());
2531
Printer.printMetadata("file", N->getRawFile());
2532
Printer.printInt("line", N->getLine());
2533
Printer.printMetadata("elements", N->getRawElements());
2534
Out << ")";
2535
}
2536
2537
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2538
AsmWriterContext &Ctx) {
2539
if (Node->isDistinct())
2540
Out << "distinct ";
2541
else if (Node->isTemporary())
2542
Out << "<temporary!> "; // Handle broken code.
2543
2544
switch (Node->getMetadataID()) {
2545
default:
2546
llvm_unreachable("Expected uniquable MDNode");
2547
#define HANDLE_MDNODE_LEAF(CLASS) \
2548
case Metadata::CLASS##Kind: \
2549
write##CLASS(Out, cast<CLASS>(Node), Ctx); \
2550
break;
2551
#include "llvm/IR/Metadata.def"
2552
}
2553
}
2554
2555
// Full implementation of printing a Value as an operand with support for
2556
// TypePrinting, etc.
2557
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2558
AsmWriterContext &WriterCtx) {
2559
if (V->hasName()) {
2560
PrintLLVMName(Out, V);
2561
return;
2562
}
2563
2564
const Constant *CV = dyn_cast<Constant>(V);
2565
if (CV && !isa<GlobalValue>(CV)) {
2566
assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2567
WriteConstantInternal(Out, CV, WriterCtx);
2568
return;
2569
}
2570
2571
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2572
Out << "asm ";
2573
if (IA->hasSideEffects())
2574
Out << "sideeffect ";
2575
if (IA->isAlignStack())
2576
Out << "alignstack ";
2577
// We don't emit the AD_ATT dialect as it's the assumed default.
2578
if (IA->getDialect() == InlineAsm::AD_Intel)
2579
Out << "inteldialect ";
2580
if (IA->canThrow())
2581
Out << "unwind ";
2582
Out << '"';
2583
printEscapedString(IA->getAsmString(), Out);
2584
Out << "\", \"";
2585
printEscapedString(IA->getConstraintString(), Out);
2586
Out << '"';
2587
return;
2588
}
2589
2590
if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2591
WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
2592
/* FromValue */ true);
2593
return;
2594
}
2595
2596
char Prefix = '%';
2597
int Slot;
2598
auto *Machine = WriterCtx.Machine;
2599
// If we have a SlotTracker, use it.
2600
if (Machine) {
2601
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2602
Slot = Machine->getGlobalSlot(GV);
2603
Prefix = '@';
2604
} else {
2605
Slot = Machine->getLocalSlot(V);
2606
2607
// If the local value didn't succeed, then we may be referring to a value
2608
// from a different function. Translate it, as this can happen when using
2609
// address of blocks.
2610
if (Slot == -1)
2611
if ((Machine = createSlotTracker(V))) {
2612
Slot = Machine->getLocalSlot(V);
2613
delete Machine;
2614
}
2615
}
2616
} else if ((Machine = createSlotTracker(V))) {
2617
// Otherwise, create one to get the # and then destroy it.
2618
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2619
Slot = Machine->getGlobalSlot(GV);
2620
Prefix = '@';
2621
} else {
2622
Slot = Machine->getLocalSlot(V);
2623
}
2624
delete Machine;
2625
Machine = nullptr;
2626
} else {
2627
Slot = -1;
2628
}
2629
2630
if (Slot != -1)
2631
Out << Prefix << Slot;
2632
else
2633
Out << "<badref>";
2634
}
2635
2636
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2637
AsmWriterContext &WriterCtx,
2638
bool FromValue) {
2639
// Write DIExpressions and DIArgLists inline when used as a value. Improves
2640
// readability of debug info intrinsics.
2641
if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2642
writeDIExpression(Out, Expr, WriterCtx);
2643
return;
2644
}
2645
if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2646
writeDIArgList(Out, ArgList, WriterCtx, FromValue);
2647
return;
2648
}
2649
2650
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2651
std::unique_ptr<SlotTracker> MachineStorage;
2652
SaveAndRestore SARMachine(WriterCtx.Machine);
2653
if (!WriterCtx.Machine) {
2654
MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2655
WriterCtx.Machine = MachineStorage.get();
2656
}
2657
int Slot = WriterCtx.Machine->getMetadataSlot(N);
2658
if (Slot == -1) {
2659
if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2660
writeDILocation(Out, Loc, WriterCtx);
2661
return;
2662
}
2663
// Give the pointer value instead of "badref", since this comes up all
2664
// the time when debugging.
2665
Out << "<" << N << ">";
2666
} else
2667
Out << '!' << Slot;
2668
return;
2669
}
2670
2671
if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2672
Out << "!\"";
2673
printEscapedString(MDS->getString(), Out);
2674
Out << '"';
2675
return;
2676
}
2677
2678
auto *V = cast<ValueAsMetadata>(MD);
2679
assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2680
assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2681
"Unexpected function-local metadata outside of value argument");
2682
2683
WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2684
Out << ' ';
2685
WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
2686
}
2687
2688
namespace {
2689
2690
class AssemblyWriter {
2691
formatted_raw_ostream &Out;
2692
const Module *TheModule = nullptr;
2693
const ModuleSummaryIndex *TheIndex = nullptr;
2694
std::unique_ptr<SlotTracker> SlotTrackerStorage;
2695
SlotTracker &Machine;
2696
TypePrinting TypePrinter;
2697
AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2698
SetVector<const Comdat *> Comdats;
2699
bool IsForDebug;
2700
bool ShouldPreserveUseListOrder;
2701
UseListOrderMap UseListOrders;
2702
SmallVector<StringRef, 8> MDNames;
2703
/// Synchronization scope names registered with LLVMContext.
2704
SmallVector<StringRef, 8> SSNs;
2705
DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2706
2707
public:
2708
/// Construct an AssemblyWriter with an external SlotTracker
2709
AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2710
AssemblyAnnotationWriter *AAW, bool IsForDebug,
2711
bool ShouldPreserveUseListOrder = false);
2712
2713
AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2714
const ModuleSummaryIndex *Index, bool IsForDebug);
2715
2716
AsmWriterContext getContext() {
2717
return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2718
}
2719
2720
void printMDNodeBody(const MDNode *MD);
2721
void printNamedMDNode(const NamedMDNode *NMD);
2722
2723
void printModule(const Module *M);
2724
2725
void writeOperand(const Value *Op, bool PrintType);
2726
void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2727
void writeOperandBundles(const CallBase *Call);
2728
void writeSyncScope(const LLVMContext &Context,
2729
SyncScope::ID SSID);
2730
void writeAtomic(const LLVMContext &Context,
2731
AtomicOrdering Ordering,
2732
SyncScope::ID SSID);
2733
void writeAtomicCmpXchg(const LLVMContext &Context,
2734
AtomicOrdering SuccessOrdering,
2735
AtomicOrdering FailureOrdering,
2736
SyncScope::ID SSID);
2737
2738
void writeAllMDNodes();
2739
void writeMDNode(unsigned Slot, const MDNode *Node);
2740
void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2741
void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2742
void writeAllAttributeGroups();
2743
2744
void printTypeIdentities();
2745
void printGlobal(const GlobalVariable *GV);
2746
void printAlias(const GlobalAlias *GA);
2747
void printIFunc(const GlobalIFunc *GI);
2748
void printComdat(const Comdat *C);
2749
void printFunction(const Function *F);
2750
void printArgument(const Argument *FA, AttributeSet Attrs);
2751
void printBasicBlock(const BasicBlock *BB);
2752
void printInstructionLine(const Instruction &I);
2753
void printInstruction(const Instruction &I);
2754
void printDbgMarker(const DbgMarker &DPI);
2755
void printDbgVariableRecord(const DbgVariableRecord &DVR);
2756
void printDbgLabelRecord(const DbgLabelRecord &DLR);
2757
void printDbgRecord(const DbgRecord &DR);
2758
void printDbgRecordLine(const DbgRecord &DR);
2759
2760
void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2761
void printUseLists(const Function *F);
2762
2763
void printModuleSummaryIndex();
2764
void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2765
void printSummary(const GlobalValueSummary &Summary);
2766
void printAliasSummary(const AliasSummary *AS);
2767
void printGlobalVarSummary(const GlobalVarSummary *GS);
2768
void printFunctionSummary(const FunctionSummary *FS);
2769
void printTypeIdSummary(const TypeIdSummary &TIS);
2770
void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2771
void printTypeTestResolution(const TypeTestResolution &TTRes);
2772
void printArgs(const std::vector<uint64_t> &Args);
2773
void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2774
void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2775
void printVFuncId(const FunctionSummary::VFuncId VFId);
2776
void
2777
printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2778
const char *Tag);
2779
void
2780
printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2781
const char *Tag);
2782
2783
private:
2784
/// Print out metadata attachments.
2785
void printMetadataAttachments(
2786
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2787
StringRef Separator);
2788
2789
// printInfoComment - Print a little comment after the instruction indicating
2790
// which slot it occupies.
2791
void printInfoComment(const Value &V);
2792
2793
// printGCRelocateComment - print comment after call to the gc.relocate
2794
// intrinsic indicating base and derived pointer names.
2795
void printGCRelocateComment(const GCRelocateInst &Relocate);
2796
};
2797
2798
} // end anonymous namespace
2799
2800
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2801
const Module *M, AssemblyAnnotationWriter *AAW,
2802
bool IsForDebug, bool ShouldPreserveUseListOrder)
2803
: Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2804
IsForDebug(IsForDebug),
2805
ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2806
if (!TheModule)
2807
return;
2808
for (const GlobalObject &GO : TheModule->global_objects())
2809
if (const Comdat *C = GO.getComdat())
2810
Comdats.insert(C);
2811
}
2812
2813
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2814
const ModuleSummaryIndex *Index, bool IsForDebug)
2815
: Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2816
IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2817
2818
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2819
if (!Operand) {
2820
Out << "<null operand!>";
2821
return;
2822
}
2823
if (PrintType) {
2824
TypePrinter.print(Operand->getType(), Out);
2825
Out << ' ';
2826
}
2827
auto WriterCtx = getContext();
2828
WriteAsOperandInternal(Out, Operand, WriterCtx);
2829
}
2830
2831
void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2832
SyncScope::ID SSID) {
2833
switch (SSID) {
2834
case SyncScope::System: {
2835
break;
2836
}
2837
default: {
2838
if (SSNs.empty())
2839
Context.getSyncScopeNames(SSNs);
2840
2841
Out << " syncscope(\"";
2842
printEscapedString(SSNs[SSID], Out);
2843
Out << "\")";
2844
break;
2845
}
2846
}
2847
}
2848
2849
void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2850
AtomicOrdering Ordering,
2851
SyncScope::ID SSID) {
2852
if (Ordering == AtomicOrdering::NotAtomic)
2853
return;
2854
2855
writeSyncScope(Context, SSID);
2856
Out << " " << toIRString(Ordering);
2857
}
2858
2859
void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2860
AtomicOrdering SuccessOrdering,
2861
AtomicOrdering FailureOrdering,
2862
SyncScope::ID SSID) {
2863
assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2864
FailureOrdering != AtomicOrdering::NotAtomic);
2865
2866
writeSyncScope(Context, SSID);
2867
Out << " " << toIRString(SuccessOrdering);
2868
Out << " " << toIRString(FailureOrdering);
2869
}
2870
2871
void AssemblyWriter::writeParamOperand(const Value *Operand,
2872
AttributeSet Attrs) {
2873
if (!Operand) {
2874
Out << "<null operand!>";
2875
return;
2876
}
2877
2878
// Print the type
2879
TypePrinter.print(Operand->getType(), Out);
2880
// Print parameter attributes list
2881
if (Attrs.hasAttributes()) {
2882
Out << ' ';
2883
writeAttributeSet(Attrs);
2884
}
2885
Out << ' ';
2886
// Print the operand
2887
auto WriterCtx = getContext();
2888
WriteAsOperandInternal(Out, Operand, WriterCtx);
2889
}
2890
2891
void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2892
if (!Call->hasOperandBundles())
2893
return;
2894
2895
Out << " [ ";
2896
2897
bool FirstBundle = true;
2898
for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2899
OperandBundleUse BU = Call->getOperandBundleAt(i);
2900
2901
if (!FirstBundle)
2902
Out << ", ";
2903
FirstBundle = false;
2904
2905
Out << '"';
2906
printEscapedString(BU.getTagName(), Out);
2907
Out << '"';
2908
2909
Out << '(';
2910
2911
bool FirstInput = true;
2912
auto WriterCtx = getContext();
2913
for (const auto &Input : BU.Inputs) {
2914
if (!FirstInput)
2915
Out << ", ";
2916
FirstInput = false;
2917
2918
if (Input == nullptr)
2919
Out << "<null operand bundle!>";
2920
else {
2921
TypePrinter.print(Input->getType(), Out);
2922
Out << " ";
2923
WriteAsOperandInternal(Out, Input, WriterCtx);
2924
}
2925
}
2926
2927
Out << ')';
2928
}
2929
2930
Out << " ]";
2931
}
2932
2933
void AssemblyWriter::printModule(const Module *M) {
2934
Machine.initializeIfNeeded();
2935
2936
if (ShouldPreserveUseListOrder)
2937
UseListOrders = predictUseListOrder(M);
2938
2939
if (!M->getModuleIdentifier().empty() &&
2940
// Don't print the ID if it will start a new line (which would
2941
// require a comment char before it).
2942
M->getModuleIdentifier().find('\n') == std::string::npos)
2943
Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2944
2945
if (!M->getSourceFileName().empty()) {
2946
Out << "source_filename = \"";
2947
printEscapedString(M->getSourceFileName(), Out);
2948
Out << "\"\n";
2949
}
2950
2951
const std::string &DL = M->getDataLayoutStr();
2952
if (!DL.empty())
2953
Out << "target datalayout = \"" << DL << "\"\n";
2954
if (!M->getTargetTriple().empty())
2955
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2956
2957
if (!M->getModuleInlineAsm().empty()) {
2958
Out << '\n';
2959
2960
// Split the string into lines, to make it easier to read the .ll file.
2961
StringRef Asm = M->getModuleInlineAsm();
2962
do {
2963
StringRef Front;
2964
std::tie(Front, Asm) = Asm.split('\n');
2965
2966
// We found a newline, print the portion of the asm string from the
2967
// last newline up to this newline.
2968
Out << "module asm \"";
2969
printEscapedString(Front, Out);
2970
Out << "\"\n";
2971
} while (!Asm.empty());
2972
}
2973
2974
printTypeIdentities();
2975
2976
// Output all comdats.
2977
if (!Comdats.empty())
2978
Out << '\n';
2979
for (const Comdat *C : Comdats) {
2980
printComdat(C);
2981
if (C != Comdats.back())
2982
Out << '\n';
2983
}
2984
2985
// Output all globals.
2986
if (!M->global_empty()) Out << '\n';
2987
for (const GlobalVariable &GV : M->globals()) {
2988
printGlobal(&GV); Out << '\n';
2989
}
2990
2991
// Output all aliases.
2992
if (!M->alias_empty()) Out << "\n";
2993
for (const GlobalAlias &GA : M->aliases())
2994
printAlias(&GA);
2995
2996
// Output all ifuncs.
2997
if (!M->ifunc_empty()) Out << "\n";
2998
for (const GlobalIFunc &GI : M->ifuncs())
2999
printIFunc(&GI);
3000
3001
// Output all of the functions.
3002
for (const Function &F : *M) {
3003
Out << '\n';
3004
printFunction(&F);
3005
}
3006
3007
// Output global use-lists.
3008
printUseLists(nullptr);
3009
3010
// Output all attribute groups.
3011
if (!Machine.as_empty()) {
3012
Out << '\n';
3013
writeAllAttributeGroups();
3014
}
3015
3016
// Output named metadata.
3017
if (!M->named_metadata_empty()) Out << '\n';
3018
3019
for (const NamedMDNode &Node : M->named_metadata())
3020
printNamedMDNode(&Node);
3021
3022
// Output metadata.
3023
if (!Machine.mdn_empty()) {
3024
Out << '\n';
3025
writeAllMDNodes();
3026
}
3027
}
3028
3029
void AssemblyWriter::printModuleSummaryIndex() {
3030
assert(TheIndex);
3031
int NumSlots = Machine.initializeIndexIfNeeded();
3032
3033
Out << "\n";
3034
3035
// Print module path entries. To print in order, add paths to a vector
3036
// indexed by module slot.
3037
std::vector<std::pair<std::string, ModuleHash>> moduleVec;
3038
std::string RegularLTOModuleName =
3039
ModuleSummaryIndex::getRegularLTOModuleName();
3040
moduleVec.resize(TheIndex->modulePaths().size());
3041
for (auto &[ModPath, ModHash] : TheIndex->modulePaths())
3042
moduleVec[Machine.getModulePathSlot(ModPath)] = std::make_pair(
3043
// An empty module path is a special entry for a regular LTO module
3044
// created during the thin link.
3045
ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
3046
3047
unsigned i = 0;
3048
for (auto &ModPair : moduleVec) {
3049
Out << "^" << i++ << " = module: (";
3050
Out << "path: \"";
3051
printEscapedString(ModPair.first, Out);
3052
Out << "\", hash: (";
3053
FieldSeparator FS;
3054
for (auto Hash : ModPair.second)
3055
Out << FS << Hash;
3056
Out << "))\n";
3057
}
3058
3059
// FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
3060
// for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
3061
for (auto &GlobalList : *TheIndex) {
3062
auto GUID = GlobalList.first;
3063
for (auto &Summary : GlobalList.second.SummaryList)
3064
SummaryToGUIDMap[Summary.get()] = GUID;
3065
}
3066
3067
// Print the global value summary entries.
3068
for (auto &GlobalList : *TheIndex) {
3069
auto GUID = GlobalList.first;
3070
auto VI = TheIndex->getValueInfo(GlobalList);
3071
printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
3072
}
3073
3074
// Print the TypeIdMap entries.
3075
for (const auto &TID : TheIndex->typeIds()) {
3076
Out << "^" << Machine.getTypeIdSlot(TID.second.first)
3077
<< " = typeid: (name: \"" << TID.second.first << "\"";
3078
printTypeIdSummary(TID.second.second);
3079
Out << ") ; guid = " << TID.first << "\n";
3080
}
3081
3082
// Print the TypeIdCompatibleVtableMap entries.
3083
for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
3084
auto GUID = GlobalValue::getGUID(TId.first);
3085
Out << "^" << Machine.getTypeIdCompatibleVtableSlot(TId.first)
3086
<< " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
3087
printTypeIdCompatibleVtableSummary(TId.second);
3088
Out << ") ; guid = " << GUID << "\n";
3089
}
3090
3091
// Don't emit flags when it's not really needed (value is zero by default).
3092
if (TheIndex->getFlags()) {
3093
Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
3094
++NumSlots;
3095
}
3096
3097
Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
3098
<< "\n";
3099
}
3100
3101
static const char *
3102
getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
3103
switch (K) {
3104
case WholeProgramDevirtResolution::Indir:
3105
return "indir";
3106
case WholeProgramDevirtResolution::SingleImpl:
3107
return "singleImpl";
3108
case WholeProgramDevirtResolution::BranchFunnel:
3109
return "branchFunnel";
3110
}
3111
llvm_unreachable("invalid WholeProgramDevirtResolution kind");
3112
}
3113
3114
static const char *getWholeProgDevirtResByArgKindName(
3115
WholeProgramDevirtResolution::ByArg::Kind K) {
3116
switch (K) {
3117
case WholeProgramDevirtResolution::ByArg::Indir:
3118
return "indir";
3119
case WholeProgramDevirtResolution::ByArg::UniformRetVal:
3120
return "uniformRetVal";
3121
case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
3122
return "uniqueRetVal";
3123
case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
3124
return "virtualConstProp";
3125
}
3126
llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
3127
}
3128
3129
static const char *getTTResKindName(TypeTestResolution::Kind K) {
3130
switch (K) {
3131
case TypeTestResolution::Unknown:
3132
return "unknown";
3133
case TypeTestResolution::Unsat:
3134
return "unsat";
3135
case TypeTestResolution::ByteArray:
3136
return "byteArray";
3137
case TypeTestResolution::Inline:
3138
return "inline";
3139
case TypeTestResolution::Single:
3140
return "single";
3141
case TypeTestResolution::AllOnes:
3142
return "allOnes";
3143
}
3144
llvm_unreachable("invalid TypeTestResolution kind");
3145
}
3146
3147
void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3148
Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3149
<< ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3150
3151
// The following fields are only used if the target does not support the use
3152
// of absolute symbols to store constants. Print only if non-zero.
3153
if (TTRes.AlignLog2)
3154
Out << ", alignLog2: " << TTRes.AlignLog2;
3155
if (TTRes.SizeM1)
3156
Out << ", sizeM1: " << TTRes.SizeM1;
3157
if (TTRes.BitMask)
3158
// BitMask is uint8_t which causes it to print the corresponding char.
3159
Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3160
if (TTRes.InlineBits)
3161
Out << ", inlineBits: " << TTRes.InlineBits;
3162
3163
Out << ")";
3164
}
3165
3166
void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3167
Out << ", summary: (";
3168
printTypeTestResolution(TIS.TTRes);
3169
if (!TIS.WPDRes.empty()) {
3170
Out << ", wpdResolutions: (";
3171
FieldSeparator FS;
3172
for (auto &WPDRes : TIS.WPDRes) {
3173
Out << FS;
3174
Out << "(offset: " << WPDRes.first << ", ";
3175
printWPDRes(WPDRes.second);
3176
Out << ")";
3177
}
3178
Out << ")";
3179
}
3180
Out << ")";
3181
}
3182
3183
void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3184
const TypeIdCompatibleVtableInfo &TI) {
3185
Out << ", summary: (";
3186
FieldSeparator FS;
3187
for (auto &P : TI) {
3188
Out << FS;
3189
Out << "(offset: " << P.AddressPointOffset << ", ";
3190
Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3191
Out << ")";
3192
}
3193
Out << ")";
3194
}
3195
3196
void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3197
Out << "args: (";
3198
FieldSeparator FS;
3199
for (auto arg : Args) {
3200
Out << FS;
3201
Out << arg;
3202
}
3203
Out << ")";
3204
}
3205
3206
void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3207
Out << "wpdRes: (kind: ";
3208
Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3209
3210
if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3211
Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3212
3213
if (!WPDRes.ResByArg.empty()) {
3214
Out << ", resByArg: (";
3215
FieldSeparator FS;
3216
for (auto &ResByArg : WPDRes.ResByArg) {
3217
Out << FS;
3218
printArgs(ResByArg.first);
3219
Out << ", byArg: (kind: ";
3220
Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3221
if (ResByArg.second.TheKind ==
3222
WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3223
ResByArg.second.TheKind ==
3224
WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3225
Out << ", info: " << ResByArg.second.Info;
3226
3227
// The following fields are only used if the target does not support the
3228
// use of absolute symbols to store constants. Print only if non-zero.
3229
if (ResByArg.second.Byte || ResByArg.second.Bit)
3230
Out << ", byte: " << ResByArg.second.Byte
3231
<< ", bit: " << ResByArg.second.Bit;
3232
3233
Out << ")";
3234
}
3235
Out << ")";
3236
}
3237
Out << ")";
3238
}
3239
3240
static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3241
switch (SK) {
3242
case GlobalValueSummary::AliasKind:
3243
return "alias";
3244
case GlobalValueSummary::FunctionKind:
3245
return "function";
3246
case GlobalValueSummary::GlobalVarKind:
3247
return "variable";
3248
}
3249
llvm_unreachable("invalid summary kind");
3250
}
3251
3252
void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3253
Out << ", aliasee: ";
3254
// The indexes emitted for distributed backends may not include the
3255
// aliasee summary (only if it is being imported directly). Handle
3256
// that case by just emitting "null" as the aliasee.
3257
if (AS->hasAliasee())
3258
Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3259
else
3260
Out << "null";
3261
}
3262
3263
void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3264
auto VTableFuncs = GS->vTableFuncs();
3265
Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3266
<< "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3267
<< "constant: " << GS->VarFlags.Constant;
3268
if (!VTableFuncs.empty())
3269
Out << ", "
3270
<< "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3271
Out << ")";
3272
3273
if (!VTableFuncs.empty()) {
3274
Out << ", vTableFuncs: (";
3275
FieldSeparator FS;
3276
for (auto &P : VTableFuncs) {
3277
Out << FS;
3278
Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3279
<< ", offset: " << P.VTableOffset;
3280
Out << ")";
3281
}
3282
Out << ")";
3283
}
3284
}
3285
3286
static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3287
switch (LT) {
3288
case GlobalValue::ExternalLinkage:
3289
return "external";
3290
case GlobalValue::PrivateLinkage:
3291
return "private";
3292
case GlobalValue::InternalLinkage:
3293
return "internal";
3294
case GlobalValue::LinkOnceAnyLinkage:
3295
return "linkonce";
3296
case GlobalValue::LinkOnceODRLinkage:
3297
return "linkonce_odr";
3298
case GlobalValue::WeakAnyLinkage:
3299
return "weak";
3300
case GlobalValue::WeakODRLinkage:
3301
return "weak_odr";
3302
case GlobalValue::CommonLinkage:
3303
return "common";
3304
case GlobalValue::AppendingLinkage:
3305
return "appending";
3306
case GlobalValue::ExternalWeakLinkage:
3307
return "extern_weak";
3308
case GlobalValue::AvailableExternallyLinkage:
3309
return "available_externally";
3310
}
3311
llvm_unreachable("invalid linkage");
3312
}
3313
3314
// When printing the linkage types in IR where the ExternalLinkage is
3315
// not printed, and other linkage types are expected to be printed with
3316
// a space after the name.
3317
static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3318
if (LT == GlobalValue::ExternalLinkage)
3319
return "";
3320
return getLinkageName(LT) + " ";
3321
}
3322
3323
static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3324
switch (Vis) {
3325
case GlobalValue::DefaultVisibility:
3326
return "default";
3327
case GlobalValue::HiddenVisibility:
3328
return "hidden";
3329
case GlobalValue::ProtectedVisibility:
3330
return "protected";
3331
}
3332
llvm_unreachable("invalid visibility");
3333
}
3334
3335
static const char *getImportTypeName(GlobalValueSummary::ImportKind IK) {
3336
switch (IK) {
3337
case GlobalValueSummary::Definition:
3338
return "definition";
3339
case GlobalValueSummary::Declaration:
3340
return "declaration";
3341
}
3342
llvm_unreachable("invalid import kind");
3343
}
3344
3345
void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3346
Out << ", insts: " << FS->instCount();
3347
if (FS->fflags().anyFlagSet())
3348
Out << ", " << FS->fflags();
3349
3350
if (!FS->calls().empty()) {
3351
Out << ", calls: (";
3352
FieldSeparator IFS;
3353
for (auto &Call : FS->calls()) {
3354
Out << IFS;
3355
Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3356
if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3357
Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3358
else if (Call.second.RelBlockFreq)
3359
Out << ", relbf: " << Call.second.RelBlockFreq;
3360
// Follow the convention of emitting flags as a boolean value, but only
3361
// emit if true to avoid unnecessary verbosity and test churn.
3362
if (Call.second.HasTailCall)
3363
Out << ", tail: 1";
3364
Out << ")";
3365
}
3366
Out << ")";
3367
}
3368
3369
if (const auto *TIdInfo = FS->getTypeIdInfo())
3370
printTypeIdInfo(*TIdInfo);
3371
3372
// The AllocationType identifiers capture the profiled context behavior
3373
// reaching a specific static allocation site (possibly cloned).
3374
auto AllocTypeName = [](uint8_t Type) -> const char * {
3375
switch (Type) {
3376
case (uint8_t)AllocationType::None:
3377
return "none";
3378
case (uint8_t)AllocationType::NotCold:
3379
return "notcold";
3380
case (uint8_t)AllocationType::Cold:
3381
return "cold";
3382
case (uint8_t)AllocationType::Hot:
3383
return "hot";
3384
}
3385
llvm_unreachable("Unexpected alloc type");
3386
};
3387
3388
if (!FS->allocs().empty()) {
3389
Out << ", allocs: (";
3390
FieldSeparator AFS;
3391
for (auto &AI : FS->allocs()) {
3392
Out << AFS;
3393
Out << "(versions: (";
3394
FieldSeparator VFS;
3395
for (auto V : AI.Versions) {
3396
Out << VFS;
3397
Out << AllocTypeName(V);
3398
}
3399
Out << "), memProf: (";
3400
FieldSeparator MIBFS;
3401
for (auto &MIB : AI.MIBs) {
3402
Out << MIBFS;
3403
Out << "(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3404
Out << ", stackIds: (";
3405
FieldSeparator SIDFS;
3406
for (auto Id : MIB.StackIdIndices) {
3407
Out << SIDFS;
3408
Out << TheIndex->getStackIdAtIndex(Id);
3409
}
3410
Out << "))";
3411
}
3412
Out << "))";
3413
}
3414
Out << ")";
3415
}
3416
3417
if (!FS->callsites().empty()) {
3418
Out << ", callsites: (";
3419
FieldSeparator SNFS;
3420
for (auto &CI : FS->callsites()) {
3421
Out << SNFS;
3422
if (CI.Callee)
3423
Out << "(callee: ^" << Machine.getGUIDSlot(CI.Callee.getGUID());
3424
else
3425
Out << "(callee: null";
3426
Out << ", clones: (";
3427
FieldSeparator VFS;
3428
for (auto V : CI.Clones) {
3429
Out << VFS;
3430
Out << V;
3431
}
3432
Out << "), stackIds: (";
3433
FieldSeparator SIDFS;
3434
for (auto Id : CI.StackIdIndices) {
3435
Out << SIDFS;
3436
Out << TheIndex->getStackIdAtIndex(Id);
3437
}
3438
Out << "))";
3439
}
3440
Out << ")";
3441
}
3442
3443
auto PrintRange = [&](const ConstantRange &Range) {
3444
Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3445
};
3446
3447
if (!FS->paramAccesses().empty()) {
3448
Out << ", params: (";
3449
FieldSeparator IFS;
3450
for (auto &PS : FS->paramAccesses()) {
3451
Out << IFS;
3452
Out << "(param: " << PS.ParamNo;
3453
Out << ", offset: ";
3454
PrintRange(PS.Use);
3455
if (!PS.Calls.empty()) {
3456
Out << ", calls: (";
3457
FieldSeparator IFS;
3458
for (auto &Call : PS.Calls) {
3459
Out << IFS;
3460
Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3461
Out << ", param: " << Call.ParamNo;
3462
Out << ", offset: ";
3463
PrintRange(Call.Offsets);
3464
Out << ")";
3465
}
3466
Out << ")";
3467
}
3468
Out << ")";
3469
}
3470
Out << ")";
3471
}
3472
}
3473
3474
void AssemblyWriter::printTypeIdInfo(
3475
const FunctionSummary::TypeIdInfo &TIDInfo) {
3476
Out << ", typeIdInfo: (";
3477
FieldSeparator TIDFS;
3478
if (!TIDInfo.TypeTests.empty()) {
3479
Out << TIDFS;
3480
Out << "typeTests: (";
3481
FieldSeparator FS;
3482
for (auto &GUID : TIDInfo.TypeTests) {
3483
auto TidIter = TheIndex->typeIds().equal_range(GUID);
3484
if (TidIter.first == TidIter.second) {
3485
Out << FS;
3486
Out << GUID;
3487
continue;
3488
}
3489
// Print all type id that correspond to this GUID.
3490
for (auto It = TidIter.first; It != TidIter.second; ++It) {
3491
Out << FS;
3492
auto Slot = Machine.getTypeIdSlot(It->second.first);
3493
assert(Slot != -1);
3494
Out << "^" << Slot;
3495
}
3496
}
3497
Out << ")";
3498
}
3499
if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3500
Out << TIDFS;
3501
printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3502
}
3503
if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3504
Out << TIDFS;
3505
printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3506
}
3507
if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3508
Out << TIDFS;
3509
printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3510
"typeTestAssumeConstVCalls");
3511
}
3512
if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3513
Out << TIDFS;
3514
printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3515
"typeCheckedLoadConstVCalls");
3516
}
3517
Out << ")";
3518
}
3519
3520
void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3521
auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3522
if (TidIter.first == TidIter.second) {
3523
Out << "vFuncId: (";
3524
Out << "guid: " << VFId.GUID;
3525
Out << ", offset: " << VFId.Offset;
3526
Out << ")";
3527
return;
3528
}
3529
// Print all type id that correspond to this GUID.
3530
FieldSeparator FS;
3531
for (auto It = TidIter.first; It != TidIter.second; ++It) {
3532
Out << FS;
3533
Out << "vFuncId: (";
3534
auto Slot = Machine.getTypeIdSlot(It->second.first);
3535
assert(Slot != -1);
3536
Out << "^" << Slot;
3537
Out << ", offset: " << VFId.Offset;
3538
Out << ")";
3539
}
3540
}
3541
3542
void AssemblyWriter::printNonConstVCalls(
3543
const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3544
Out << Tag << ": (";
3545
FieldSeparator FS;
3546
for (auto &VFuncId : VCallList) {
3547
Out << FS;
3548
printVFuncId(VFuncId);
3549
}
3550
Out << ")";
3551
}
3552
3553
void AssemblyWriter::printConstVCalls(
3554
const std::vector<FunctionSummary::ConstVCall> &VCallList,
3555
const char *Tag) {
3556
Out << Tag << ": (";
3557
FieldSeparator FS;
3558
for (auto &ConstVCall : VCallList) {
3559
Out << FS;
3560
Out << "(";
3561
printVFuncId(ConstVCall.VFunc);
3562
if (!ConstVCall.Args.empty()) {
3563
Out << ", ";
3564
printArgs(ConstVCall.Args);
3565
}
3566
Out << ")";
3567
}
3568
Out << ")";
3569
}
3570
3571
void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3572
GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3573
GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3574
Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3575
Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3576
<< ", flags: (";
3577
Out << "linkage: " << getLinkageName(LT);
3578
Out << ", visibility: "
3579
<< getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3580
Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3581
Out << ", live: " << GVFlags.Live;
3582
Out << ", dsoLocal: " << GVFlags.DSOLocal;
3583
Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3584
Out << ", importType: "
3585
<< getImportTypeName(GlobalValueSummary::ImportKind(GVFlags.ImportType));
3586
Out << ")";
3587
3588
if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3589
printAliasSummary(cast<AliasSummary>(&Summary));
3590
else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3591
printFunctionSummary(cast<FunctionSummary>(&Summary));
3592
else
3593
printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3594
3595
auto RefList = Summary.refs();
3596
if (!RefList.empty()) {
3597
Out << ", refs: (";
3598
FieldSeparator FS;
3599
for (auto &Ref : RefList) {
3600
Out << FS;
3601
if (Ref.isReadOnly())
3602
Out << "readonly ";
3603
else if (Ref.isWriteOnly())
3604
Out << "writeonly ";
3605
Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3606
}
3607
Out << ")";
3608
}
3609
3610
Out << ")";
3611
}
3612
3613
void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3614
Out << "^" << Slot << " = gv: (";
3615
if (!VI.name().empty())
3616
Out << "name: \"" << VI.name() << "\"";
3617
else
3618
Out << "guid: " << VI.getGUID();
3619
if (!VI.getSummaryList().empty()) {
3620
Out << ", summaries: (";
3621
FieldSeparator FS;
3622
for (auto &Summary : VI.getSummaryList()) {
3623
Out << FS;
3624
printSummary(*Summary);
3625
}
3626
Out << ")";
3627
}
3628
Out << ")";
3629
if (!VI.name().empty())
3630
Out << " ; guid = " << VI.getGUID();
3631
Out << "\n";
3632
}
3633
3634
static void printMetadataIdentifier(StringRef Name,
3635
formatted_raw_ostream &Out) {
3636
if (Name.empty()) {
3637
Out << "<empty name> ";
3638
} else {
3639
unsigned char FirstC = static_cast<unsigned char>(Name[0]);
3640
if (isalpha(FirstC) || FirstC == '-' || FirstC == '$' || FirstC == '.' ||
3641
FirstC == '_')
3642
Out << FirstC;
3643
else
3644
Out << '\\' << hexdigit(FirstC >> 4) << hexdigit(FirstC & 0x0F);
3645
for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3646
unsigned char C = Name[i];
3647
if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
3648
Out << C;
3649
else
3650
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3651
}
3652
}
3653
}
3654
3655
void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3656
Out << '!';
3657
printMetadataIdentifier(NMD->getName(), Out);
3658
Out << " = !{";
3659
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3660
if (i)
3661
Out << ", ";
3662
3663
// Write DIExpressions inline.
3664
// FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3665
MDNode *Op = NMD->getOperand(i);
3666
if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3667
writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
3668
continue;
3669
}
3670
3671
int Slot = Machine.getMetadataSlot(Op);
3672
if (Slot == -1)
3673
Out << "<badref>";
3674
else
3675
Out << '!' << Slot;
3676
}
3677
Out << "}\n";
3678
}
3679
3680
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3681
formatted_raw_ostream &Out) {
3682
switch (Vis) {
3683
case GlobalValue::DefaultVisibility: break;
3684
case GlobalValue::HiddenVisibility: Out << "hidden "; break;
3685
case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3686
}
3687
}
3688
3689
static void PrintDSOLocation(const GlobalValue &GV,
3690
formatted_raw_ostream &Out) {
3691
if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3692
Out << "dso_local ";
3693
}
3694
3695
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3696
formatted_raw_ostream &Out) {
3697
switch (SCT) {
3698
case GlobalValue::DefaultStorageClass: break;
3699
case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3700
case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3701
}
3702
}
3703
3704
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3705
formatted_raw_ostream &Out) {
3706
switch (TLM) {
3707
case GlobalVariable::NotThreadLocal:
3708
break;
3709
case GlobalVariable::GeneralDynamicTLSModel:
3710
Out << "thread_local ";
3711
break;
3712
case GlobalVariable::LocalDynamicTLSModel:
3713
Out << "thread_local(localdynamic) ";
3714
break;
3715
case GlobalVariable::InitialExecTLSModel:
3716
Out << "thread_local(initialexec) ";
3717
break;
3718
case GlobalVariable::LocalExecTLSModel:
3719
Out << "thread_local(localexec) ";
3720
break;
3721
}
3722
}
3723
3724
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3725
switch (UA) {
3726
case GlobalVariable::UnnamedAddr::None:
3727
return "";
3728
case GlobalVariable::UnnamedAddr::Local:
3729
return "local_unnamed_addr";
3730
case GlobalVariable::UnnamedAddr::Global:
3731
return "unnamed_addr";
3732
}
3733
llvm_unreachable("Unknown UnnamedAddr");
3734
}
3735
3736
static void maybePrintComdat(formatted_raw_ostream &Out,
3737
const GlobalObject &GO) {
3738
const Comdat *C = GO.getComdat();
3739
if (!C)
3740
return;
3741
3742
if (isa<GlobalVariable>(GO))
3743
Out << ',';
3744
Out << " comdat";
3745
3746
if (GO.getName() == C->getName())
3747
return;
3748
3749
Out << '(';
3750
PrintLLVMName(Out, C->getName(), ComdatPrefix);
3751
Out << ')';
3752
}
3753
3754
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3755
if (GV->isMaterializable())
3756
Out << "; Materializable\n";
3757
3758
AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3759
WriteAsOperandInternal(Out, GV, WriterCtx);
3760
Out << " = ";
3761
3762
if (!GV->hasInitializer() && GV->hasExternalLinkage())
3763
Out << "external ";
3764
3765
Out << getLinkageNameWithSpace(GV->getLinkage());
3766
PrintDSOLocation(*GV, Out);
3767
PrintVisibility(GV->getVisibility(), Out);
3768
PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3769
PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3770
StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3771
if (!UA.empty())
3772
Out << UA << ' ';
3773
3774
if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3775
Out << "addrspace(" << AddressSpace << ") ";
3776
if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3777
Out << (GV->isConstant() ? "constant " : "global ");
3778
TypePrinter.print(GV->getValueType(), Out);
3779
3780
if (GV->hasInitializer()) {
3781
Out << ' ';
3782
writeOperand(GV->getInitializer(), false);
3783
}
3784
3785
if (GV->hasSection()) {
3786
Out << ", section \"";
3787
printEscapedString(GV->getSection(), Out);
3788
Out << '"';
3789
}
3790
if (GV->hasPartition()) {
3791
Out << ", partition \"";
3792
printEscapedString(GV->getPartition(), Out);
3793
Out << '"';
3794
}
3795
if (auto CM = GV->getCodeModel()) {
3796
Out << ", code_model \"";
3797
switch (*CM) {
3798
case CodeModel::Tiny:
3799
Out << "tiny";
3800
break;
3801
case CodeModel::Small:
3802
Out << "small";
3803
break;
3804
case CodeModel::Kernel:
3805
Out << "kernel";
3806
break;
3807
case CodeModel::Medium:
3808
Out << "medium";
3809
break;
3810
case CodeModel::Large:
3811
Out << "large";
3812
break;
3813
}
3814
Out << '"';
3815
}
3816
3817
using SanitizerMetadata = llvm::GlobalValue::SanitizerMetadata;
3818
if (GV->hasSanitizerMetadata()) {
3819
SanitizerMetadata MD = GV->getSanitizerMetadata();
3820
if (MD.NoAddress)
3821
Out << ", no_sanitize_address";
3822
if (MD.NoHWAddress)
3823
Out << ", no_sanitize_hwaddress";
3824
if (MD.Memtag)
3825
Out << ", sanitize_memtag";
3826
if (MD.IsDynInit)
3827
Out << ", sanitize_address_dyninit";
3828
}
3829
3830
maybePrintComdat(Out, *GV);
3831
if (MaybeAlign A = GV->getAlign())
3832
Out << ", align " << A->value();
3833
3834
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3835
GV->getAllMetadata(MDs);
3836
printMetadataAttachments(MDs, ", ");
3837
3838
auto Attrs = GV->getAttributes();
3839
if (Attrs.hasAttributes())
3840
Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3841
3842
printInfoComment(*GV);
3843
}
3844
3845
void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3846
if (GA->isMaterializable())
3847
Out << "; Materializable\n";
3848
3849
AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3850
WriteAsOperandInternal(Out, GA, WriterCtx);
3851
Out << " = ";
3852
3853
Out << getLinkageNameWithSpace(GA->getLinkage());
3854
PrintDSOLocation(*GA, Out);
3855
PrintVisibility(GA->getVisibility(), Out);
3856
PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
3857
PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
3858
StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr());
3859
if (!UA.empty())
3860
Out << UA << ' ';
3861
3862
Out << "alias ";
3863
3864
TypePrinter.print(GA->getValueType(), Out);
3865
Out << ", ";
3866
3867
if (const Constant *Aliasee = GA->getAliasee()) {
3868
writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
3869
} else {
3870
TypePrinter.print(GA->getType(), Out);
3871
Out << " <<NULL ALIASEE>>";
3872
}
3873
3874
if (GA->hasPartition()) {
3875
Out << ", partition \"";
3876
printEscapedString(GA->getPartition(), Out);
3877
Out << '"';
3878
}
3879
3880
printInfoComment(*GA);
3881
Out << '\n';
3882
}
3883
3884
void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
3885
if (GI->isMaterializable())
3886
Out << "; Materializable\n";
3887
3888
AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
3889
WriteAsOperandInternal(Out, GI, WriterCtx);
3890
Out << " = ";
3891
3892
Out << getLinkageNameWithSpace(GI->getLinkage());
3893
PrintDSOLocation(*GI, Out);
3894
PrintVisibility(GI->getVisibility(), Out);
3895
3896
Out << "ifunc ";
3897
3898
TypePrinter.print(GI->getValueType(), Out);
3899
Out << ", ";
3900
3901
if (const Constant *Resolver = GI->getResolver()) {
3902
writeOperand(Resolver, !isa<ConstantExpr>(Resolver));
3903
} else {
3904
TypePrinter.print(GI->getType(), Out);
3905
Out << " <<NULL RESOLVER>>";
3906
}
3907
3908
if (GI->hasPartition()) {
3909
Out << ", partition \"";
3910
printEscapedString(GI->getPartition(), Out);
3911
Out << '"';
3912
}
3913
3914
printInfoComment(*GI);
3915
Out << '\n';
3916
}
3917
3918
void AssemblyWriter::printComdat(const Comdat *C) {
3919
C->print(Out);
3920
}
3921
3922
void AssemblyWriter::printTypeIdentities() {
3923
if (TypePrinter.empty())
3924
return;
3925
3926
Out << '\n';
3927
3928
// Emit all numbered types.
3929
auto &NumberedTypes = TypePrinter.getNumberedTypes();
3930
for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3931
Out << '%' << I << " = type ";
3932
3933
// Make sure we print out at least one level of the type structure, so
3934
// that we do not get %2 = type %2
3935
TypePrinter.printStructBody(NumberedTypes[I], Out);
3936
Out << '\n';
3937
}
3938
3939
auto &NamedTypes = TypePrinter.getNamedTypes();
3940
for (StructType *NamedType : NamedTypes) {
3941
PrintLLVMName(Out, NamedType->getName(), LocalPrefix);
3942
Out << " = type ";
3943
3944
// Make sure we print out at least one level of the type structure, so
3945
// that we do not get %FILE = type %FILE
3946
TypePrinter.printStructBody(NamedType, Out);
3947
Out << '\n';
3948
}
3949
}
3950
3951
/// printFunction - Print all aspects of a function.
3952
void AssemblyWriter::printFunction(const Function *F) {
3953
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3954
3955
if (F->isMaterializable())
3956
Out << "; Materializable\n";
3957
3958
const AttributeList &Attrs = F->getAttributes();
3959
if (Attrs.hasFnAttrs()) {
3960
AttributeSet AS = Attrs.getFnAttrs();
3961
std::string AttrStr;
3962
3963
for (const Attribute &Attr : AS) {
3964
if (!Attr.isStringAttribute()) {
3965
if (!AttrStr.empty()) AttrStr += ' ';
3966
AttrStr += Attr.getAsString();
3967
}
3968
}
3969
3970
if (!AttrStr.empty())
3971
Out << "; Function Attrs: " << AttrStr << '\n';
3972
}
3973
3974
Machine.incorporateFunction(F);
3975
3976
if (F->isDeclaration()) {
3977
Out << "declare";
3978
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3979
F->getAllMetadata(MDs);
3980
printMetadataAttachments(MDs, " ");
3981
Out << ' ';
3982
} else
3983
Out << "define ";
3984
3985
Out << getLinkageNameWithSpace(F->getLinkage());
3986
PrintDSOLocation(*F, Out);
3987
PrintVisibility(F->getVisibility(), Out);
3988
PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3989
3990
// Print the calling convention.
3991
if (F->getCallingConv() != CallingConv::C) {
3992
PrintCallingConv(F->getCallingConv(), Out);
3993
Out << " ";
3994
}
3995
3996
FunctionType *FT = F->getFunctionType();
3997
if (Attrs.hasRetAttrs())
3998
Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3999
TypePrinter.print(F->getReturnType(), Out);
4000
AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
4001
Out << ' ';
4002
WriteAsOperandInternal(Out, F, WriterCtx);
4003
Out << '(';
4004
4005
// Loop over the arguments, printing them...
4006
if (F->isDeclaration() && !IsForDebug) {
4007
// We're only interested in the type here - don't print argument names.
4008
for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
4009
// Insert commas as we go... the first arg doesn't get a comma
4010
if (I)
4011
Out << ", ";
4012
// Output type...
4013
TypePrinter.print(FT->getParamType(I), Out);
4014
4015
AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
4016
if (ArgAttrs.hasAttributes()) {
4017
Out << ' ';
4018
writeAttributeSet(ArgAttrs);
4019
}
4020
}
4021
} else {
4022
// The arguments are meaningful here, print them in detail.
4023
for (const Argument &Arg : F->args()) {
4024
// Insert commas as we go... the first arg doesn't get a comma
4025
if (Arg.getArgNo() != 0)
4026
Out << ", ";
4027
printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
4028
}
4029
}
4030
4031
// Finish printing arguments...
4032
if (FT->isVarArg()) {
4033
if (FT->getNumParams()) Out << ", ";
4034
Out << "..."; // Output varargs portion of signature!
4035
}
4036
Out << ')';
4037
StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
4038
if (!UA.empty())
4039
Out << ' ' << UA;
4040
// We print the function address space if it is non-zero or if we are writing
4041
// a module with a non-zero program address space or if there is no valid
4042
// Module* so that the file can be parsed without the datalayout string.
4043
const Module *Mod = F->getParent();
4044
if (F->getAddressSpace() != 0 || !Mod ||
4045
Mod->getDataLayout().getProgramAddressSpace() != 0)
4046
Out << " addrspace(" << F->getAddressSpace() << ")";
4047
if (Attrs.hasFnAttrs())
4048
Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
4049
if (F->hasSection()) {
4050
Out << " section \"";
4051
printEscapedString(F->getSection(), Out);
4052
Out << '"';
4053
}
4054
if (F->hasPartition()) {
4055
Out << " partition \"";
4056
printEscapedString(F->getPartition(), Out);
4057
Out << '"';
4058
}
4059
maybePrintComdat(Out, *F);
4060
if (MaybeAlign A = F->getAlign())
4061
Out << " align " << A->value();
4062
if (F->hasGC())
4063
Out << " gc \"" << F->getGC() << '"';
4064
if (F->hasPrefixData()) {
4065
Out << " prefix ";
4066
writeOperand(F->getPrefixData(), true);
4067
}
4068
if (F->hasPrologueData()) {
4069
Out << " prologue ";
4070
writeOperand(F->getPrologueData(), true);
4071
}
4072
if (F->hasPersonalityFn()) {
4073
Out << " personality ";
4074
writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
4075
}
4076
4077
if (F->isDeclaration()) {
4078
Out << '\n';
4079
} else {
4080
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4081
F->getAllMetadata(MDs);
4082
printMetadataAttachments(MDs, " ");
4083
4084
Out << " {";
4085
// Output all of the function's basic blocks.
4086
for (const BasicBlock &BB : *F)
4087
printBasicBlock(&BB);
4088
4089
// Output the function's use-lists.
4090
printUseLists(F);
4091
4092
Out << "}\n";
4093
}
4094
4095
Machine.purgeFunction();
4096
}
4097
4098
/// printArgument - This member is called for every argument that is passed into
4099
/// the function. Simply print it out
4100
void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
4101
// Output type...
4102
TypePrinter.print(Arg->getType(), Out);
4103
4104
// Output parameter attributes list
4105
if (Attrs.hasAttributes()) {
4106
Out << ' ';
4107
writeAttributeSet(Attrs);
4108
}
4109
4110
// Output name, if available...
4111
if (Arg->hasName()) {
4112
Out << ' ';
4113
PrintLLVMName(Out, Arg);
4114
} else {
4115
int Slot = Machine.getLocalSlot(Arg);
4116
assert(Slot != -1 && "expect argument in function here");
4117
Out << " %" << Slot;
4118
}
4119
}
4120
4121
/// printBasicBlock - This member is called for each basic block in a method.
4122
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
4123
bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
4124
if (BB->hasName()) { // Print out the label if it exists...
4125
Out << "\n";
4126
PrintLLVMName(Out, BB->getName(), LabelPrefix);
4127
Out << ':';
4128
} else if (!IsEntryBlock) {
4129
Out << "\n";
4130
int Slot = Machine.getLocalSlot(BB);
4131
if (Slot != -1)
4132
Out << Slot << ":";
4133
else
4134
Out << "<badref>:";
4135
}
4136
4137
if (!IsEntryBlock) {
4138
// Output predecessors for the block.
4139
Out.PadToColumn(50);
4140
Out << ";";
4141
const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
4142
4143
if (PI == PE) {
4144
Out << " No predecessors!";
4145
} else {
4146
Out << " preds = ";
4147
writeOperand(*PI, false);
4148
for (++PI; PI != PE; ++PI) {
4149
Out << ", ";
4150
writeOperand(*PI, false);
4151
}
4152
}
4153
}
4154
4155
Out << "\n";
4156
4157
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
4158
4159
// Output all of the instructions in the basic block...
4160
for (const Instruction &I : *BB) {
4161
for (const DbgRecord &DR : I.getDbgRecordRange())
4162
printDbgRecordLine(DR);
4163
printInstructionLine(I);
4164
}
4165
4166
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
4167
}
4168
4169
/// printInstructionLine - Print an instruction and a newline character.
4170
void AssemblyWriter::printInstructionLine(const Instruction &I) {
4171
printInstruction(I);
4172
Out << '\n';
4173
}
4174
4175
/// printGCRelocateComment - print comment after call to the gc.relocate
4176
/// intrinsic indicating base and derived pointer names.
4177
void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
4178
Out << " ; (";
4179
writeOperand(Relocate.getBasePtr(), false);
4180
Out << ", ";
4181
writeOperand(Relocate.getDerivedPtr(), false);
4182
Out << ")";
4183
}
4184
4185
/// printInfoComment - Print a little comment after the instruction indicating
4186
/// which slot it occupies.
4187
void AssemblyWriter::printInfoComment(const Value &V) {
4188
if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
4189
printGCRelocateComment(*Relocate);
4190
4191
if (AnnotationWriter) {
4192
AnnotationWriter->printInfoComment(V, Out);
4193
}
4194
}
4195
4196
static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
4197
raw_ostream &Out) {
4198
// We print the address space of the call if it is non-zero.
4199
if (Operand == nullptr) {
4200
Out << " <cannot get addrspace!>";
4201
return;
4202
}
4203
unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
4204
bool PrintAddrSpace = CallAddrSpace != 0;
4205
if (!PrintAddrSpace) {
4206
const Module *Mod = getModuleFromVal(I);
4207
// We also print it if it is zero but not equal to the program address space
4208
// or if we can't find a valid Module* to make it possible to parse
4209
// the resulting file even without a datalayout string.
4210
if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
4211
PrintAddrSpace = true;
4212
}
4213
if (PrintAddrSpace)
4214
Out << " addrspace(" << CallAddrSpace << ")";
4215
}
4216
4217
// This member is called for each Instruction in a function..
4218
void AssemblyWriter::printInstruction(const Instruction &I) {
4219
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
4220
4221
// Print out indentation for an instruction.
4222
Out << " ";
4223
4224
// Print out name if it exists...
4225
if (I.hasName()) {
4226
PrintLLVMName(Out, &I);
4227
Out << " = ";
4228
} else if (!I.getType()->isVoidTy()) {
4229
// Print out the def slot taken.
4230
int SlotNum = Machine.getLocalSlot(&I);
4231
if (SlotNum == -1)
4232
Out << "<badref> = ";
4233
else
4234
Out << '%' << SlotNum << " = ";
4235
}
4236
4237
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4238
if (CI->isMustTailCall())
4239
Out << "musttail ";
4240
else if (CI->isTailCall())
4241
Out << "tail ";
4242
else if (CI->isNoTailCall())
4243
Out << "notail ";
4244
}
4245
4246
// Print out the opcode...
4247
Out << I.getOpcodeName();
4248
4249
// If this is an atomic load or store, print out the atomic marker.
4250
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
4251
(isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
4252
Out << " atomic";
4253
4254
if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
4255
Out << " weak";
4256
4257
// If this is a volatile operation, print out the volatile marker.
4258
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
4259
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
4260
(isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
4261
(isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
4262
Out << " volatile";
4263
4264
// Print out optimization information.
4265
WriteOptimizationInfo(Out, &I);
4266
4267
// Print out the compare instruction predicates
4268
if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
4269
Out << ' ' << CI->getPredicate();
4270
4271
// Print out the atomicrmw operation
4272
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
4273
Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
4274
4275
// Print out the type of the operands...
4276
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
4277
4278
// Special case conditional branches to swizzle the condition out to the front
4279
if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
4280
const BranchInst &BI(cast<BranchInst>(I));
4281
Out << ' ';
4282
writeOperand(BI.getCondition(), true);
4283
Out << ", ";
4284
writeOperand(BI.getSuccessor(0), true);
4285
Out << ", ";
4286
writeOperand(BI.getSuccessor(1), true);
4287
4288
} else if (isa<SwitchInst>(I)) {
4289
const SwitchInst& SI(cast<SwitchInst>(I));
4290
// Special case switch instruction to get formatting nice and correct.
4291
Out << ' ';
4292
writeOperand(SI.getCondition(), true);
4293
Out << ", ";
4294
writeOperand(SI.getDefaultDest(), true);
4295
Out << " [";
4296
for (auto Case : SI.cases()) {
4297
Out << "\n ";
4298
writeOperand(Case.getCaseValue(), true);
4299
Out << ", ";
4300
writeOperand(Case.getCaseSuccessor(), true);
4301
}
4302
Out << "\n ]";
4303
} else if (isa<IndirectBrInst>(I)) {
4304
// Special case indirectbr instruction to get formatting nice and correct.
4305
Out << ' ';
4306
writeOperand(Operand, true);
4307
Out << ", [";
4308
4309
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4310
if (i != 1)
4311
Out << ", ";
4312
writeOperand(I.getOperand(i), true);
4313
}
4314
Out << ']';
4315
} else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4316
Out << ' ';
4317
TypePrinter.print(I.getType(), Out);
4318
Out << ' ';
4319
4320
for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4321
if (op) Out << ", ";
4322
Out << "[ ";
4323
writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4324
writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4325
}
4326
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4327
Out << ' ';
4328
writeOperand(I.getOperand(0), true);
4329
for (unsigned i : EVI->indices())
4330
Out << ", " << i;
4331
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4332
Out << ' ';
4333
writeOperand(I.getOperand(0), true); Out << ", ";
4334
writeOperand(I.getOperand(1), true);
4335
for (unsigned i : IVI->indices())
4336
Out << ", " << i;
4337
} else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4338
Out << ' ';
4339
TypePrinter.print(I.getType(), Out);
4340
if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4341
Out << '\n';
4342
4343
if (LPI->isCleanup())
4344
Out << " cleanup";
4345
4346
for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4347
if (i != 0 || LPI->isCleanup()) Out << "\n";
4348
if (LPI->isCatch(i))
4349
Out << " catch ";
4350
else
4351
Out << " filter ";
4352
4353
writeOperand(LPI->getClause(i), true);
4354
}
4355
} else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4356
Out << " within ";
4357
writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4358
Out << " [";
4359
unsigned Op = 0;
4360
for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4361
if (Op > 0)
4362
Out << ", ";
4363
writeOperand(PadBB, /*PrintType=*/true);
4364
++Op;
4365
}
4366
Out << "] unwind ";
4367
if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4368
writeOperand(UnwindDest, /*PrintType=*/true);
4369
else
4370
Out << "to caller";
4371
} else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4372
Out << " within ";
4373
writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4374
Out << " [";
4375
for (unsigned Op = 0, NumOps = FPI->arg_size(); Op < NumOps; ++Op) {
4376
if (Op > 0)
4377
Out << ", ";
4378
writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4379
}
4380
Out << ']';
4381
} else if (isa<ReturnInst>(I) && !Operand) {
4382
Out << " void";
4383
} else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4384
Out << " from ";
4385
writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4386
4387
Out << " to ";
4388
writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4389
} else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4390
Out << " from ";
4391
writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4392
4393
Out << " unwind ";
4394
if (CRI->hasUnwindDest())
4395
writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4396
else
4397
Out << "to caller";
4398
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4399
// Print the calling convention being used.
4400
if (CI->getCallingConv() != CallingConv::C) {
4401
Out << " ";
4402
PrintCallingConv(CI->getCallingConv(), Out);
4403
}
4404
4405
Operand = CI->getCalledOperand();
4406
FunctionType *FTy = CI->getFunctionType();
4407
Type *RetTy = FTy->getReturnType();
4408
const AttributeList &PAL = CI->getAttributes();
4409
4410
if (PAL.hasRetAttrs())
4411
Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4412
4413
// Only print addrspace(N) if necessary:
4414
maybePrintCallAddrSpace(Operand, &I, Out);
4415
4416
// If possible, print out the short form of the call instruction. We can
4417
// only do this if the first argument is a pointer to a nonvararg function,
4418
// and if the return type is not a pointer to a function.
4419
Out << ' ';
4420
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4421
Out << ' ';
4422
writeOperand(Operand, false);
4423
Out << '(';
4424
for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4425
if (op > 0)
4426
Out << ", ";
4427
writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4428
}
4429
4430
// Emit an ellipsis if this is a musttail call in a vararg function. This
4431
// is only to aid readability, musttail calls forward varargs by default.
4432
if (CI->isMustTailCall() && CI->getParent() &&
4433
CI->getParent()->getParent() &&
4434
CI->getParent()->getParent()->isVarArg()) {
4435
if (CI->arg_size() > 0)
4436
Out << ", ";
4437
Out << "...";
4438
}
4439
4440
Out << ')';
4441
if (PAL.hasFnAttrs())
4442
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4443
4444
writeOperandBundles(CI);
4445
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4446
Operand = II->getCalledOperand();
4447
FunctionType *FTy = II->getFunctionType();
4448
Type *RetTy = FTy->getReturnType();
4449
const AttributeList &PAL = II->getAttributes();
4450
4451
// Print the calling convention being used.
4452
if (II->getCallingConv() != CallingConv::C) {
4453
Out << " ";
4454
PrintCallingConv(II->getCallingConv(), Out);
4455
}
4456
4457
if (PAL.hasRetAttrs())
4458
Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4459
4460
// Only print addrspace(N) if necessary:
4461
maybePrintCallAddrSpace(Operand, &I, Out);
4462
4463
// If possible, print out the short form of the invoke instruction. We can
4464
// only do this if the first argument is a pointer to a nonvararg function,
4465
// and if the return type is not a pointer to a function.
4466
//
4467
Out << ' ';
4468
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4469
Out << ' ';
4470
writeOperand(Operand, false);
4471
Out << '(';
4472
for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4473
if (op)
4474
Out << ", ";
4475
writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4476
}
4477
4478
Out << ')';
4479
if (PAL.hasFnAttrs())
4480
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4481
4482
writeOperandBundles(II);
4483
4484
Out << "\n to ";
4485
writeOperand(II->getNormalDest(), true);
4486
Out << " unwind ";
4487
writeOperand(II->getUnwindDest(), true);
4488
} else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4489
Operand = CBI->getCalledOperand();
4490
FunctionType *FTy = CBI->getFunctionType();
4491
Type *RetTy = FTy->getReturnType();
4492
const AttributeList &PAL = CBI->getAttributes();
4493
4494
// Print the calling convention being used.
4495
if (CBI->getCallingConv() != CallingConv::C) {
4496
Out << " ";
4497
PrintCallingConv(CBI->getCallingConv(), Out);
4498
}
4499
4500
if (PAL.hasRetAttrs())
4501
Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4502
4503
// If possible, print out the short form of the callbr instruction. We can
4504
// only do this if the first argument is a pointer to a nonvararg function,
4505
// and if the return type is not a pointer to a function.
4506
//
4507
Out << ' ';
4508
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4509
Out << ' ';
4510
writeOperand(Operand, false);
4511
Out << '(';
4512
for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4513
if (op)
4514
Out << ", ";
4515
writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4516
}
4517
4518
Out << ')';
4519
if (PAL.hasFnAttrs())
4520
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4521
4522
writeOperandBundles(CBI);
4523
4524
Out << "\n to ";
4525
writeOperand(CBI->getDefaultDest(), true);
4526
Out << " [";
4527
for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4528
if (i != 0)
4529
Out << ", ";
4530
writeOperand(CBI->getIndirectDest(i), true);
4531
}
4532
Out << ']';
4533
} else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4534
Out << ' ';
4535
if (AI->isUsedWithInAlloca())
4536
Out << "inalloca ";
4537
if (AI->isSwiftError())
4538
Out << "swifterror ";
4539
TypePrinter.print(AI->getAllocatedType(), Out);
4540
4541
// Explicitly write the array size if the code is broken, if it's an array
4542
// allocation, or if the type is not canonical for scalar allocations. The
4543
// latter case prevents the type from mutating when round-tripping through
4544
// assembly.
4545
if (!AI->getArraySize() || AI->isArrayAllocation() ||
4546
!AI->getArraySize()->getType()->isIntegerTy(32)) {
4547
Out << ", ";
4548
writeOperand(AI->getArraySize(), true);
4549
}
4550
if (MaybeAlign A = AI->getAlign()) {
4551
Out << ", align " << A->value();
4552
}
4553
4554
unsigned AddrSpace = AI->getAddressSpace();
4555
if (AddrSpace != 0) {
4556
Out << ", addrspace(" << AddrSpace << ')';
4557
}
4558
} else if (isa<CastInst>(I)) {
4559
if (Operand) {
4560
Out << ' ';
4561
writeOperand(Operand, true); // Work with broken code
4562
}
4563
Out << " to ";
4564
TypePrinter.print(I.getType(), Out);
4565
} else if (isa<VAArgInst>(I)) {
4566
if (Operand) {
4567
Out << ' ';
4568
writeOperand(Operand, true); // Work with broken code
4569
}
4570
Out << ", ";
4571
TypePrinter.print(I.getType(), Out);
4572
} else if (Operand) { // Print the normal way.
4573
if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4574
Out << ' ';
4575
TypePrinter.print(GEP->getSourceElementType(), Out);
4576
Out << ',';
4577
} else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4578
Out << ' ';
4579
TypePrinter.print(LI->getType(), Out);
4580
Out << ',';
4581
}
4582
4583
// PrintAllTypes - Instructions who have operands of all the same type
4584
// omit the type from all but the first operand. If the instruction has
4585
// different type operands (for example br), then they are all printed.
4586
bool PrintAllTypes = false;
4587
Type *TheType = Operand->getType();
4588
4589
// Select, Store, ShuffleVector, CmpXchg and AtomicRMW always print all
4590
// types.
4591
if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) ||
4592
isa<ReturnInst>(I) || isa<AtomicCmpXchgInst>(I) ||
4593
isa<AtomicRMWInst>(I)) {
4594
PrintAllTypes = true;
4595
} else {
4596
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4597
Operand = I.getOperand(i);
4598
// note that Operand shouldn't be null, but the test helps make dump()
4599
// more tolerant of malformed IR
4600
if (Operand && Operand->getType() != TheType) {
4601
PrintAllTypes = true; // We have differing types! Print them all!
4602
break;
4603
}
4604
}
4605
}
4606
4607
if (!PrintAllTypes) {
4608
Out << ' ';
4609
TypePrinter.print(TheType, Out);
4610
}
4611
4612
Out << ' ';
4613
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4614
if (i) Out << ", ";
4615
writeOperand(I.getOperand(i), PrintAllTypes);
4616
}
4617
}
4618
4619
// Print atomic ordering/alignment for memory operations
4620
if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4621
if (LI->isAtomic())
4622
writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4623
if (MaybeAlign A = LI->getAlign())
4624
Out << ", align " << A->value();
4625
} else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4626
if (SI->isAtomic())
4627
writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4628
if (MaybeAlign A = SI->getAlign())
4629
Out << ", align " << A->value();
4630
} else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4631
writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4632
CXI->getFailureOrdering(), CXI->getSyncScopeID());
4633
Out << ", align " << CXI->getAlign().value();
4634
} else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4635
writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4636
RMWI->getSyncScopeID());
4637
Out << ", align " << RMWI->getAlign().value();
4638
} else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4639
writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4640
} else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4641
PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4642
}
4643
4644
// Print Metadata info.
4645
SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4646
I.getAllMetadata(InstMD);
4647
printMetadataAttachments(InstMD, ", ");
4648
4649
// Print a nice comment.
4650
printInfoComment(I);
4651
}
4652
4653
void AssemblyWriter::printDbgMarker(const DbgMarker &Marker) {
4654
// There's no formal representation of a DbgMarker -- print purely as a
4655
// debugging aid.
4656
for (const DbgRecord &DPR : Marker.StoredDbgRecords) {
4657
printDbgRecord(DPR);
4658
Out << "\n";
4659
}
4660
4661
Out << " DbgMarker -> { ";
4662
printInstruction(*Marker.MarkedInstr);
4663
Out << " }";
4664
return;
4665
}
4666
4667
void AssemblyWriter::printDbgRecord(const DbgRecord &DR) {
4668
if (auto *DVR = dyn_cast<DbgVariableRecord>(&DR))
4669
printDbgVariableRecord(*DVR);
4670
else if (auto *DLR = dyn_cast<DbgLabelRecord>(&DR))
4671
printDbgLabelRecord(*DLR);
4672
else
4673
llvm_unreachable("Unexpected DbgRecord kind");
4674
}
4675
4676
void AssemblyWriter::printDbgVariableRecord(const DbgVariableRecord &DVR) {
4677
auto WriterCtx = getContext();
4678
Out << "#dbg_";
4679
switch (DVR.getType()) {
4680
case DbgVariableRecord::LocationType::Value:
4681
Out << "value";
4682
break;
4683
case DbgVariableRecord::LocationType::Declare:
4684
Out << "declare";
4685
break;
4686
case DbgVariableRecord::LocationType::Assign:
4687
Out << "assign";
4688
break;
4689
default:
4690
llvm_unreachable(
4691
"Tried to print a DbgVariableRecord with an invalid LocationType!");
4692
}
4693
Out << "(";
4694
WriteAsOperandInternal(Out, DVR.getRawLocation(), WriterCtx, true);
4695
Out << ", ";
4696
WriteAsOperandInternal(Out, DVR.getRawVariable(), WriterCtx, true);
4697
Out << ", ";
4698
WriteAsOperandInternal(Out, DVR.getRawExpression(), WriterCtx, true);
4699
Out << ", ";
4700
if (DVR.isDbgAssign()) {
4701
WriteAsOperandInternal(Out, DVR.getRawAssignID(), WriterCtx, true);
4702
Out << ", ";
4703
WriteAsOperandInternal(Out, DVR.getRawAddress(), WriterCtx, true);
4704
Out << ", ";
4705
WriteAsOperandInternal(Out, DVR.getRawAddressExpression(), WriterCtx, true);
4706
Out << ", ";
4707
}
4708
WriteAsOperandInternal(Out, DVR.getDebugLoc().getAsMDNode(), WriterCtx, true);
4709
Out << ")";
4710
}
4711
4712
/// printDbgRecordLine - Print a DbgRecord with indentation and a newline
4713
/// character.
4714
void AssemblyWriter::printDbgRecordLine(const DbgRecord &DR) {
4715
// Print lengthier indentation to bring out-of-line with instructions.
4716
Out << " ";
4717
printDbgRecord(DR);
4718
Out << '\n';
4719
}
4720
4721
void AssemblyWriter::printDbgLabelRecord(const DbgLabelRecord &Label) {
4722
auto WriterCtx = getContext();
4723
Out << "#dbg_label(";
4724
WriteAsOperandInternal(Out, Label.getRawLabel(), WriterCtx, true);
4725
Out << ", ";
4726
WriteAsOperandInternal(Out, Label.getDebugLoc(), WriterCtx, true);
4727
Out << ")";
4728
}
4729
4730
void AssemblyWriter::printMetadataAttachments(
4731
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4732
StringRef Separator) {
4733
if (MDs.empty())
4734
return;
4735
4736
if (MDNames.empty())
4737
MDs[0].second->getContext().getMDKindNames(MDNames);
4738
4739
auto WriterCtx = getContext();
4740
for (const auto &I : MDs) {
4741
unsigned Kind = I.first;
4742
Out << Separator;
4743
if (Kind < MDNames.size()) {
4744
Out << "!";
4745
printMetadataIdentifier(MDNames[Kind], Out);
4746
} else
4747
Out << "!<unknown kind #" << Kind << ">";
4748
Out << ' ';
4749
WriteAsOperandInternal(Out, I.second, WriterCtx);
4750
}
4751
}
4752
4753
void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4754
Out << '!' << Slot << " = ";
4755
printMDNodeBody(Node);
4756
Out << "\n";
4757
}
4758
4759
void AssemblyWriter::writeAllMDNodes() {
4760
SmallVector<const MDNode *, 16> Nodes;
4761
Nodes.resize(Machine.mdn_size());
4762
for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4763
Nodes[I.second] = cast<MDNode>(I.first);
4764
4765
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4766
writeMDNode(i, Nodes[i]);
4767
}
4768
}
4769
4770
void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4771
auto WriterCtx = getContext();
4772
WriteMDNodeBodyInternal(Out, Node, WriterCtx);
4773
}
4774
4775
void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4776
if (!Attr.isTypeAttribute()) {
4777
Out << Attr.getAsString(InAttrGroup);
4778
return;
4779
}
4780
4781
Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4782
if (Type *Ty = Attr.getValueAsType()) {
4783
Out << '(';
4784
TypePrinter.print(Ty, Out);
4785
Out << ')';
4786
}
4787
}
4788
4789
void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4790
bool InAttrGroup) {
4791
bool FirstAttr = true;
4792
for (const auto &Attr : AttrSet) {
4793
if (!FirstAttr)
4794
Out << ' ';
4795
writeAttribute(Attr, InAttrGroup);
4796
FirstAttr = false;
4797
}
4798
}
4799
4800
void AssemblyWriter::writeAllAttributeGroups() {
4801
std::vector<std::pair<AttributeSet, unsigned>> asVec;
4802
asVec.resize(Machine.as_size());
4803
4804
for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4805
asVec[I.second] = I;
4806
4807
for (const auto &I : asVec)
4808
Out << "attributes #" << I.second << " = { "
4809
<< I.first.getAsString(true) << " }\n";
4810
}
4811
4812
void AssemblyWriter::printUseListOrder(const Value *V,
4813
const std::vector<unsigned> &Shuffle) {
4814
bool IsInFunction = Machine.getFunction();
4815
if (IsInFunction)
4816
Out << " ";
4817
4818
Out << "uselistorder";
4819
if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4820
Out << "_bb ";
4821
writeOperand(BB->getParent(), false);
4822
Out << ", ";
4823
writeOperand(BB, false);
4824
} else {
4825
Out << " ";
4826
writeOperand(V, true);
4827
}
4828
Out << ", { ";
4829
4830
assert(Shuffle.size() >= 2 && "Shuffle too small");
4831
Out << Shuffle[0];
4832
for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4833
Out << ", " << Shuffle[I];
4834
Out << " }\n";
4835
}
4836
4837
void AssemblyWriter::printUseLists(const Function *F) {
4838
auto It = UseListOrders.find(F);
4839
if (It == UseListOrders.end())
4840
return;
4841
4842
Out << "\n; uselistorder directives\n";
4843
for (const auto &Pair : It->second)
4844
printUseListOrder(Pair.first, Pair.second);
4845
}
4846
4847
//===----------------------------------------------------------------------===//
4848
// External Interface declarations
4849
//===----------------------------------------------------------------------===//
4850
4851
void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4852
bool ShouldPreserveUseListOrder,
4853
bool IsForDebug) const {
4854
SlotTracker SlotTable(this->getParent());
4855
formatted_raw_ostream OS(ROS);
4856
AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4857
IsForDebug,
4858
ShouldPreserveUseListOrder);
4859
W.printFunction(this);
4860
}
4861
4862
void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4863
bool ShouldPreserveUseListOrder,
4864
bool IsForDebug) const {
4865
SlotTracker SlotTable(this->getParent());
4866
formatted_raw_ostream OS(ROS);
4867
AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4868
IsForDebug,
4869
ShouldPreserveUseListOrder);
4870
W.printBasicBlock(this);
4871
}
4872
4873
void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4874
bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4875
SlotTracker SlotTable(this);
4876
formatted_raw_ostream OS(ROS);
4877
AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4878
ShouldPreserveUseListOrder);
4879
W.printModule(this);
4880
}
4881
4882
void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4883
SlotTracker SlotTable(getParent());
4884
formatted_raw_ostream OS(ROS);
4885
AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4886
W.printNamedMDNode(this);
4887
}
4888
4889
void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4890
bool IsForDebug) const {
4891
std::optional<SlotTracker> LocalST;
4892
SlotTracker *SlotTable;
4893
if (auto *ST = MST.getMachine())
4894
SlotTable = ST;
4895
else {
4896
LocalST.emplace(getParent());
4897
SlotTable = &*LocalST;
4898
}
4899
4900
formatted_raw_ostream OS(ROS);
4901
AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4902
W.printNamedMDNode(this);
4903
}
4904
4905
void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4906
PrintLLVMName(ROS, getName(), ComdatPrefix);
4907
ROS << " = comdat ";
4908
4909
switch (getSelectionKind()) {
4910
case Comdat::Any:
4911
ROS << "any";
4912
break;
4913
case Comdat::ExactMatch:
4914
ROS << "exactmatch";
4915
break;
4916
case Comdat::Largest:
4917
ROS << "largest";
4918
break;
4919
case Comdat::NoDeduplicate:
4920
ROS << "nodeduplicate";
4921
break;
4922
case Comdat::SameSize:
4923
ROS << "samesize";
4924
break;
4925
}
4926
4927
ROS << '\n';
4928
}
4929
4930
void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4931
TypePrinting TP;
4932
TP.print(const_cast<Type*>(this), OS);
4933
4934
if (NoDetails)
4935
return;
4936
4937
// If the type is a named struct type, print the body as well.
4938
if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4939
if (!STy->isLiteral()) {
4940
OS << " = type ";
4941
TP.printStructBody(STy, OS);
4942
}
4943
}
4944
4945
static bool isReferencingMDNode(const Instruction &I) {
4946
if (const auto *CI = dyn_cast<CallInst>(&I))
4947
if (Function *F = CI->getCalledFunction())
4948
if (F->isIntrinsic())
4949
for (auto &Op : I.operands())
4950
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4951
if (isa<MDNode>(V->getMetadata()))
4952
return true;
4953
return false;
4954
}
4955
4956
void DbgMarker::print(raw_ostream &ROS, bool IsForDebug) const {
4957
4958
ModuleSlotTracker MST(getModuleFromDPI(this), true);
4959
print(ROS, MST, IsForDebug);
4960
}
4961
4962
void DbgVariableRecord::print(raw_ostream &ROS, bool IsForDebug) const {
4963
4964
ModuleSlotTracker MST(getModuleFromDPI(this), true);
4965
print(ROS, MST, IsForDebug);
4966
}
4967
4968
void DbgMarker::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4969
bool IsForDebug) const {
4970
formatted_raw_ostream OS(ROS);
4971
SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4972
SlotTracker &SlotTable =
4973
MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4974
auto incorporateFunction = [&](const Function *F) {
4975
if (F)
4976
MST.incorporateFunction(*F);
4977
};
4978
incorporateFunction(getParent() ? getParent()->getParent() : nullptr);
4979
AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
4980
W.printDbgMarker(*this);
4981
}
4982
4983
void DbgLabelRecord::print(raw_ostream &ROS, bool IsForDebug) const {
4984
4985
ModuleSlotTracker MST(getModuleFromDPI(this), true);
4986
print(ROS, MST, IsForDebug);
4987
}
4988
4989
void DbgVariableRecord::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4990
bool IsForDebug) const {
4991
formatted_raw_ostream OS(ROS);
4992
SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4993
SlotTracker &SlotTable =
4994
MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4995
auto incorporateFunction = [&](const Function *F) {
4996
if (F)
4997
MST.incorporateFunction(*F);
4998
};
4999
incorporateFunction(Marker && Marker->getParent()
5000
? Marker->getParent()->getParent()
5001
: nullptr);
5002
AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5003
W.printDbgVariableRecord(*this);
5004
}
5005
5006
void DbgLabelRecord::print(raw_ostream &ROS, ModuleSlotTracker &MST,
5007
bool IsForDebug) const {
5008
formatted_raw_ostream OS(ROS);
5009
SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5010
SlotTracker &SlotTable =
5011
MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5012
auto incorporateFunction = [&](const Function *F) {
5013
if (F)
5014
MST.incorporateFunction(*F);
5015
};
5016
incorporateFunction(Marker->getParent() ? Marker->getParent()->getParent()
5017
: nullptr);
5018
AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5019
W.printDbgLabelRecord(*this);
5020
}
5021
5022
void Value::print(raw_ostream &ROS, bool IsForDebug) const {
5023
bool ShouldInitializeAllMetadata = false;
5024
if (auto *I = dyn_cast<Instruction>(this))
5025
ShouldInitializeAllMetadata = isReferencingMDNode(*I);
5026
else if (isa<Function>(this) || isa<MetadataAsValue>(this))
5027
ShouldInitializeAllMetadata = true;
5028
5029
ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
5030
print(ROS, MST, IsForDebug);
5031
}
5032
5033
void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
5034
bool IsForDebug) const {
5035
formatted_raw_ostream OS(ROS);
5036
SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5037
SlotTracker &SlotTable =
5038
MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5039
auto incorporateFunction = [&](const Function *F) {
5040
if (F)
5041
MST.incorporateFunction(*F);
5042
};
5043
5044
if (const Instruction *I = dyn_cast<Instruction>(this)) {
5045
incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
5046
AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
5047
W.printInstruction(*I);
5048
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
5049
incorporateFunction(BB->getParent());
5050
AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
5051
W.printBasicBlock(BB);
5052
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
5053
AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
5054
if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
5055
W.printGlobal(V);
5056
else if (const Function *F = dyn_cast<Function>(GV))
5057
W.printFunction(F);
5058
else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV))
5059
W.printAlias(A);
5060
else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV))
5061
W.printIFunc(I);
5062
else
5063
llvm_unreachable("Unknown GlobalValue to print out!");
5064
} else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
5065
V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
5066
} else if (const Constant *C = dyn_cast<Constant>(this)) {
5067
TypePrinting TypePrinter;
5068
TypePrinter.print(C->getType(), OS);
5069
OS << ' ';
5070
AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
5071
WriteConstantInternal(OS, C, WriterCtx);
5072
} else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
5073
this->printAsOperand(OS, /* PrintType */ true, MST);
5074
} else {
5075
llvm_unreachable("Unknown value to print out!");
5076
}
5077
}
5078
5079
/// Print without a type, skipping the TypePrinting object.
5080
///
5081
/// \return \c true iff printing was successful.
5082
static bool printWithoutType(const Value &V, raw_ostream &O,
5083
SlotTracker *Machine, const Module *M) {
5084
if (V.hasName() || isa<GlobalValue>(V) ||
5085
(!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
5086
AsmWriterContext WriterCtx(nullptr, Machine, M);
5087
WriteAsOperandInternal(O, &V, WriterCtx);
5088
return true;
5089
}
5090
return false;
5091
}
5092
5093
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
5094
ModuleSlotTracker &MST) {
5095
TypePrinting TypePrinter(MST.getModule());
5096
if (PrintType) {
5097
TypePrinter.print(V.getType(), O);
5098
O << ' ';
5099
}
5100
5101
AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
5102
WriteAsOperandInternal(O, &V, WriterCtx);
5103
}
5104
5105
void Value::printAsOperand(raw_ostream &O, bool PrintType,
5106
const Module *M) const {
5107
if (!M)
5108
M = getModuleFromVal(this);
5109
5110
if (!PrintType)
5111
if (printWithoutType(*this, O, nullptr, M))
5112
return;
5113
5114
SlotTracker Machine(
5115
M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
5116
ModuleSlotTracker MST(Machine, M);
5117
printAsOperandImpl(*this, O, PrintType, MST);
5118
}
5119
5120
void Value::printAsOperand(raw_ostream &O, bool PrintType,
5121
ModuleSlotTracker &MST) const {
5122
if (!PrintType)
5123
if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
5124
return;
5125
5126
printAsOperandImpl(*this, O, PrintType, MST);
5127
}
5128
5129
/// Recursive version of printMetadataImpl.
5130
static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
5131
AsmWriterContext &WriterCtx) {
5132
formatted_raw_ostream OS(ROS);
5133
WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
5134
5135
auto *N = dyn_cast<MDNode>(&MD);
5136
if (!N || isa<DIExpression>(MD))
5137
return;
5138
5139
OS << " = ";
5140
WriteMDNodeBodyInternal(OS, N, WriterCtx);
5141
}
5142
5143
namespace {
5144
struct MDTreeAsmWriterContext : public AsmWriterContext {
5145
unsigned Level;
5146
// {Level, Printed string}
5147
using EntryTy = std::pair<unsigned, std::string>;
5148
SmallVector<EntryTy, 4> Buffer;
5149
5150
// Used to break the cycle in case there is any.
5151
SmallPtrSet<const Metadata *, 4> Visited;
5152
5153
raw_ostream &MainOS;
5154
5155
MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
5156
raw_ostream &OS, const Metadata *InitMD)
5157
: AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
5158
5159
void onWriteMetadataAsOperand(const Metadata *MD) override {
5160
if (!Visited.insert(MD).second)
5161
return;
5162
5163
std::string Str;
5164
raw_string_ostream SS(Str);
5165
++Level;
5166
// A placeholder entry to memorize the correct
5167
// position in buffer.
5168
Buffer.emplace_back(std::make_pair(Level, ""));
5169
unsigned InsertIdx = Buffer.size() - 1;
5170
5171
printMetadataImplRec(SS, *MD, *this);
5172
Buffer[InsertIdx].second = std::move(SS.str());
5173
--Level;
5174
}
5175
5176
~MDTreeAsmWriterContext() {
5177
for (const auto &Entry : Buffer) {
5178
MainOS << "\n";
5179
unsigned NumIndent = Entry.first * 2U;
5180
MainOS.indent(NumIndent) << Entry.second;
5181
}
5182
}
5183
};
5184
} // end anonymous namespace
5185
5186
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
5187
ModuleSlotTracker &MST, const Module *M,
5188
bool OnlyAsOperand, bool PrintAsTree = false) {
5189
formatted_raw_ostream OS(ROS);
5190
5191
TypePrinting TypePrinter(M);
5192
5193
std::unique_ptr<AsmWriterContext> WriterCtx;
5194
if (PrintAsTree && !OnlyAsOperand)
5195
WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
5196
&TypePrinter, MST.getMachine(), M, OS, &MD);
5197
else
5198
WriterCtx =
5199
std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
5200
5201
WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
5202
5203
auto *N = dyn_cast<MDNode>(&MD);
5204
if (OnlyAsOperand || !N || isa<DIExpression>(MD))
5205
return;
5206
5207
OS << " = ";
5208
WriteMDNodeBodyInternal(OS, N, *WriterCtx);
5209
}
5210
5211
void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
5212
ModuleSlotTracker MST(M, isa<MDNode>(this));
5213
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5214
}
5215
5216
void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
5217
const Module *M) const {
5218
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5219
}
5220
5221
void Metadata::print(raw_ostream &OS, const Module *M,
5222
bool /*IsForDebug*/) const {
5223
ModuleSlotTracker MST(M, isa<MDNode>(this));
5224
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5225
}
5226
5227
void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
5228
const Module *M, bool /*IsForDebug*/) const {
5229
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5230
}
5231
5232
void MDNode::printTree(raw_ostream &OS, const Module *M) const {
5233
ModuleSlotTracker MST(M, true);
5234
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5235
/*PrintAsTree=*/true);
5236
}
5237
5238
void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST,
5239
const Module *M) const {
5240
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5241
/*PrintAsTree=*/true);
5242
}
5243
5244
void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
5245
SlotTracker SlotTable(this);
5246
formatted_raw_ostream OS(ROS);
5247
AssemblyWriter W(OS, SlotTable, this, IsForDebug);
5248
W.printModuleSummaryIndex();
5249
}
5250
5251
void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
5252
unsigned UB) const {
5253
SlotTracker *ST = MachineStorage.get();
5254
if (!ST)
5255
return;
5256
5257
for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
5258
if (I.second >= LB && I.second < UB)
5259
L.push_back(std::make_pair(I.second, I.first));
5260
}
5261
5262
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5263
// Value::dump - allow easy printing of Values from the debugger.
5264
LLVM_DUMP_METHOD
5265
void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5266
5267
// Value::dump - allow easy printing of Values from the debugger.
5268
LLVM_DUMP_METHOD
5269
void DbgMarker::dump() const {
5270
print(dbgs(), /*IsForDebug=*/true);
5271
dbgs() << '\n';
5272
}
5273
5274
// Value::dump - allow easy printing of Values from the debugger.
5275
LLVM_DUMP_METHOD
5276
void DbgRecord::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5277
5278
// Type::dump - allow easy printing of Types from the debugger.
5279
LLVM_DUMP_METHOD
5280
void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5281
5282
// Module::dump() - Allow printing of Modules from the debugger.
5283
LLVM_DUMP_METHOD
5284
void Module::dump() const {
5285
print(dbgs(), nullptr,
5286
/*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
5287
}
5288
5289
// Allow printing of Comdats from the debugger.
5290
LLVM_DUMP_METHOD
5291
void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5292
5293
// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
5294
LLVM_DUMP_METHOD
5295
void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5296
5297
LLVM_DUMP_METHOD
5298
void Metadata::dump() const { dump(nullptr); }
5299
5300
LLVM_DUMP_METHOD
5301
void Metadata::dump(const Module *M) const {
5302
print(dbgs(), M, /*IsForDebug=*/true);
5303
dbgs() << '\n';
5304
}
5305
5306
LLVM_DUMP_METHOD
5307
void MDNode::dumpTree() const { dumpTree(nullptr); }
5308
5309
LLVM_DUMP_METHOD
5310
void MDNode::dumpTree(const Module *M) const {
5311
printTree(dbgs(), M);
5312
dbgs() << '\n';
5313
}
5314
5315
// Allow printing of ModuleSummaryIndex from the debugger.
5316
LLVM_DUMP_METHOD
5317
void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5318
#endif
5319
5320