Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/IR/DebugInfoMetadata.cpp
35234 views
1
//===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the debug info Metadata classes.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/IR/DebugInfoMetadata.h"
14
#include "LLVMContextImpl.h"
15
#include "MetadataImpl.h"
16
#include "llvm/ADT/SmallPtrSet.h"
17
#include "llvm/ADT/StringSwitch.h"
18
#include "llvm/BinaryFormat/Dwarf.h"
19
#include "llvm/IR/DebugProgramInstruction.h"
20
#include "llvm/IR/Function.h"
21
#include "llvm/IR/IntrinsicInst.h"
22
#include "llvm/IR/Type.h"
23
#include "llvm/IR/Value.h"
24
25
#include <numeric>
26
#include <optional>
27
28
using namespace llvm;
29
30
namespace llvm {
31
// Use FS-AFDO discriminator.
32
cl::opt<bool> EnableFSDiscriminator(
33
"enable-fs-discriminator", cl::Hidden,
34
cl::desc("Enable adding flow sensitive discriminators"));
35
} // namespace llvm
36
37
uint32_t DIType::getAlignInBits() const {
38
return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32);
39
}
40
41
const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
42
std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
43
44
DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII)
45
: Variable(DII->getVariable()),
46
Fragment(DII->getExpression()->getFragmentInfo()),
47
InlinedAt(DII->getDebugLoc().getInlinedAt()) {}
48
49
DebugVariable::DebugVariable(const DbgVariableRecord *DVR)
50
: Variable(DVR->getVariable()),
51
Fragment(DVR->getExpression()->getFragmentInfo()),
52
InlinedAt(DVR->getDebugLoc().getInlinedAt()) {}
53
54
DebugVariableAggregate::DebugVariableAggregate(const DbgVariableIntrinsic *DVI)
55
: DebugVariable(DVI->getVariable(), std::nullopt,
56
DVI->getDebugLoc()->getInlinedAt()) {}
57
58
DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
59
unsigned Column, ArrayRef<Metadata *> MDs,
60
bool ImplicitCode)
61
: MDNode(C, DILocationKind, Storage, MDs) {
62
assert((MDs.size() == 1 || MDs.size() == 2) &&
63
"Expected a scope and optional inlined-at");
64
65
// Set line and column.
66
assert(Column < (1u << 16) && "Expected 16-bit column");
67
68
SubclassData32 = Line;
69
SubclassData16 = Column;
70
71
setImplicitCode(ImplicitCode);
72
}
73
74
static void adjustColumn(unsigned &Column) {
75
// Set to unknown on overflow. We only have 16 bits to play with here.
76
if (Column >= (1u << 16))
77
Column = 0;
78
}
79
80
DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
81
unsigned Column, Metadata *Scope,
82
Metadata *InlinedAt, bool ImplicitCode,
83
StorageType Storage, bool ShouldCreate) {
84
// Fixup column.
85
adjustColumn(Column);
86
87
if (Storage == Uniqued) {
88
if (auto *N = getUniqued(Context.pImpl->DILocations,
89
DILocationInfo::KeyTy(Line, Column, Scope,
90
InlinedAt, ImplicitCode)))
91
return N;
92
if (!ShouldCreate)
93
return nullptr;
94
} else {
95
assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
96
}
97
98
SmallVector<Metadata *, 2> Ops;
99
Ops.push_back(Scope);
100
if (InlinedAt)
101
Ops.push_back(InlinedAt);
102
return storeImpl(new (Ops.size(), Storage) DILocation(
103
Context, Storage, Line, Column, Ops, ImplicitCode),
104
Storage, Context.pImpl->DILocations);
105
}
106
107
DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) {
108
if (Locs.empty())
109
return nullptr;
110
if (Locs.size() == 1)
111
return Locs[0];
112
auto *Merged = Locs[0];
113
for (DILocation *L : llvm::drop_begin(Locs)) {
114
Merged = getMergedLocation(Merged, L);
115
if (Merged == nullptr)
116
break;
117
}
118
return Merged;
119
}
120
121
DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) {
122
if (!LocA || !LocB)
123
return nullptr;
124
125
if (LocA == LocB)
126
return LocA;
127
128
LLVMContext &C = LocA->getContext();
129
130
using LocVec = SmallVector<const DILocation *>;
131
LocVec ALocs;
132
LocVec BLocs;
133
SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned,
134
4>
135
ALookup;
136
137
// Walk through LocA and its inlined-at locations, populate them in ALocs and
138
// save the index for the subprogram and inlined-at pair, which we use to find
139
// a matching starting location in LocB's chain.
140
for (auto [L, I] = std::make_pair(LocA, 0U); L; L = L->getInlinedAt(), I++) {
141
ALocs.push_back(L);
142
auto Res = ALookup.try_emplace(
143
{L->getScope()->getSubprogram(), L->getInlinedAt()}, I);
144
assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?");
145
(void)Res;
146
}
147
148
LocVec::reverse_iterator ARIt = ALocs.rend();
149
LocVec::reverse_iterator BRIt = BLocs.rend();
150
151
// Populate BLocs and look for a matching starting location, the first
152
// location with the same subprogram and inlined-at location as in LocA's
153
// chain. Since the two locations have the same inlined-at location we do
154
// not need to look at those parts of the chains.
155
for (auto [L, I] = std::make_pair(LocB, 0U); L; L = L->getInlinedAt(), I++) {
156
BLocs.push_back(L);
157
158
if (ARIt != ALocs.rend())
159
// We have already found a matching starting location.
160
continue;
161
162
auto IT = ALookup.find({L->getScope()->getSubprogram(), L->getInlinedAt()});
163
if (IT == ALookup.end())
164
continue;
165
166
// The + 1 is to account for the &*rev_it = &(it - 1) relationship.
167
ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1);
168
BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1);
169
170
// If we have found a matching starting location we do not need to add more
171
// locations to BLocs, since we will only look at location pairs preceding
172
// the matching starting location, and adding more elements to BLocs could
173
// invalidate the iterator that we initialized here.
174
break;
175
}
176
177
// Merge the two locations if possible, using the supplied
178
// inlined-at location for the created location.
179
auto MergeLocPair = [&C](const DILocation *L1, const DILocation *L2,
180
DILocation *InlinedAt) -> DILocation * {
181
if (L1 == L2)
182
return DILocation::get(C, L1->getLine(), L1->getColumn(), L1->getScope(),
183
InlinedAt);
184
185
// If the locations originate from different subprograms we can't produce
186
// a common location.
187
if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram())
188
return nullptr;
189
190
// Return the nearest common scope inside a subprogram.
191
auto GetNearestCommonScope = [](DIScope *S1, DIScope *S2) -> DIScope * {
192
SmallPtrSet<DIScope *, 8> Scopes;
193
for (; S1; S1 = S1->getScope()) {
194
Scopes.insert(S1);
195
if (isa<DISubprogram>(S1))
196
break;
197
}
198
199
for (; S2; S2 = S2->getScope()) {
200
if (Scopes.count(S2))
201
return S2;
202
if (isa<DISubprogram>(S2))
203
break;
204
}
205
206
return nullptr;
207
};
208
209
auto Scope = GetNearestCommonScope(L1->getScope(), L2->getScope());
210
assert(Scope && "No common scope in the same subprogram?");
211
212
bool SameLine = L1->getLine() == L2->getLine();
213
bool SameCol = L1->getColumn() == L2->getColumn();
214
unsigned Line = SameLine ? L1->getLine() : 0;
215
unsigned Col = SameLine && SameCol ? L1->getColumn() : 0;
216
217
return DILocation::get(C, Line, Col, Scope, InlinedAt);
218
};
219
220
DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr;
221
222
// If we have found a common starting location, walk up the inlined-at chains
223
// and try to produce common locations.
224
for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) {
225
DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result);
226
227
if (!Tmp)
228
// We have walked up to a point in the chains where the two locations
229
// are irreconsilable. At this point Result contains the nearest common
230
// location in the inlined-at chains of LocA and LocB, so we break here.
231
break;
232
233
Result = Tmp;
234
}
235
236
if (Result)
237
return Result;
238
239
// We ended up with LocA and LocB as irreconsilable locations. Produce a
240
// location at 0:0 with one of the locations' scope. The function has
241
// historically picked A's scope, and a nullptr inlined-at location, so that
242
// behavior is mimicked here but I am not sure if this is always the correct
243
// way to handle this.
244
return DILocation::get(C, 0, 0, LocA->getScope(), nullptr);
245
}
246
247
std::optional<unsigned>
248
DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
249
std::array<unsigned, 3> Components = {BD, DF, CI};
250
uint64_t RemainingWork = 0U;
251
// We use RemainingWork to figure out if we have no remaining components to
252
// encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
253
// encode anything for the latter 2.
254
// Since any of the input components is at most 32 bits, their sum will be
255
// less than 34 bits, and thus RemainingWork won't overflow.
256
RemainingWork =
257
std::accumulate(Components.begin(), Components.end(), RemainingWork);
258
259
int I = 0;
260
unsigned Ret = 0;
261
unsigned NextBitInsertionIndex = 0;
262
while (RemainingWork > 0) {
263
unsigned C = Components[I++];
264
RemainingWork -= C;
265
unsigned EC = encodeComponent(C);
266
Ret |= (EC << NextBitInsertionIndex);
267
NextBitInsertionIndex += encodingBits(C);
268
}
269
270
// Encoding may be unsuccessful because of overflow. We determine success by
271
// checking equivalence of components before & after encoding. Alternatively,
272
// we could determine Success during encoding, but the current alternative is
273
// simpler.
274
unsigned TBD, TDF, TCI = 0;
275
decodeDiscriminator(Ret, TBD, TDF, TCI);
276
if (TBD == BD && TDF == DF && TCI == CI)
277
return Ret;
278
return std::nullopt;
279
}
280
281
void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF,
282
unsigned &CI) {
283
BD = getUnsignedFromPrefixEncoding(D);
284
DF = getUnsignedFromPrefixEncoding(getNextComponentInDiscriminator(D));
285
CI = getUnsignedFromPrefixEncoding(
286
getNextComponentInDiscriminator(getNextComponentInDiscriminator(D)));
287
}
288
dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; }
289
290
DINode::DIFlags DINode::getFlag(StringRef Flag) {
291
return StringSwitch<DIFlags>(Flag)
292
#define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
293
#include "llvm/IR/DebugInfoFlags.def"
294
.Default(DINode::FlagZero);
295
}
296
297
StringRef DINode::getFlagString(DIFlags Flag) {
298
switch (Flag) {
299
#define HANDLE_DI_FLAG(ID, NAME) \
300
case Flag##NAME: \
301
return "DIFlag" #NAME;
302
#include "llvm/IR/DebugInfoFlags.def"
303
}
304
return "";
305
}
306
307
DINode::DIFlags DINode::splitFlags(DIFlags Flags,
308
SmallVectorImpl<DIFlags> &SplitFlags) {
309
// Flags that are packed together need to be specially handled, so
310
// that, for example, we emit "DIFlagPublic" and not
311
// "DIFlagPrivate | DIFlagProtected".
312
if (DIFlags A = Flags & FlagAccessibility) {
313
if (A == FlagPrivate)
314
SplitFlags.push_back(FlagPrivate);
315
else if (A == FlagProtected)
316
SplitFlags.push_back(FlagProtected);
317
else
318
SplitFlags.push_back(FlagPublic);
319
Flags &= ~A;
320
}
321
if (DIFlags R = Flags & FlagPtrToMemberRep) {
322
if (R == FlagSingleInheritance)
323
SplitFlags.push_back(FlagSingleInheritance);
324
else if (R == FlagMultipleInheritance)
325
SplitFlags.push_back(FlagMultipleInheritance);
326
else
327
SplitFlags.push_back(FlagVirtualInheritance);
328
Flags &= ~R;
329
}
330
if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
331
Flags &= ~FlagIndirectVirtualBase;
332
SplitFlags.push_back(FlagIndirectVirtualBase);
333
}
334
335
#define HANDLE_DI_FLAG(ID, NAME) \
336
if (DIFlags Bit = Flags & Flag##NAME) { \
337
SplitFlags.push_back(Bit); \
338
Flags &= ~Bit; \
339
}
340
#include "llvm/IR/DebugInfoFlags.def"
341
return Flags;
342
}
343
344
DIScope *DIScope::getScope() const {
345
if (auto *T = dyn_cast<DIType>(this))
346
return T->getScope();
347
348
if (auto *SP = dyn_cast<DISubprogram>(this))
349
return SP->getScope();
350
351
if (auto *LB = dyn_cast<DILexicalBlockBase>(this))
352
return LB->getScope();
353
354
if (auto *NS = dyn_cast<DINamespace>(this))
355
return NS->getScope();
356
357
if (auto *CB = dyn_cast<DICommonBlock>(this))
358
return CB->getScope();
359
360
if (auto *M = dyn_cast<DIModule>(this))
361
return M->getScope();
362
363
assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
364
"Unhandled type of scope.");
365
return nullptr;
366
}
367
368
StringRef DIScope::getName() const {
369
if (auto *T = dyn_cast<DIType>(this))
370
return T->getName();
371
if (auto *SP = dyn_cast<DISubprogram>(this))
372
return SP->getName();
373
if (auto *NS = dyn_cast<DINamespace>(this))
374
return NS->getName();
375
if (auto *CB = dyn_cast<DICommonBlock>(this))
376
return CB->getName();
377
if (auto *M = dyn_cast<DIModule>(this))
378
return M->getName();
379
assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) ||
380
isa<DICompileUnit>(this)) &&
381
"Unhandled type of scope.");
382
return "";
383
}
384
385
#ifndef NDEBUG
386
static bool isCanonical(const MDString *S) {
387
return !S || !S->getString().empty();
388
}
389
#endif
390
391
dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; }
392
GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
393
MDString *Header,
394
ArrayRef<Metadata *> DwarfOps,
395
StorageType Storage, bool ShouldCreate) {
396
unsigned Hash = 0;
397
if (Storage == Uniqued) {
398
GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
399
if (auto *N = getUniqued(Context.pImpl->GenericDINodes, Key))
400
return N;
401
if (!ShouldCreate)
402
return nullptr;
403
Hash = Key.getHash();
404
} else {
405
assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
406
}
407
408
// Use a nullptr for empty headers.
409
assert(isCanonical(Header) && "Expected canonical MDString");
410
Metadata *PreOps[] = {Header};
411
return storeImpl(new (DwarfOps.size() + 1, Storage) GenericDINode(
412
Context, Storage, Hash, Tag, PreOps, DwarfOps),
413
Storage, Context.pImpl->GenericDINodes);
414
}
415
416
void GenericDINode::recalculateHash() {
417
setHash(GenericDINodeInfo::KeyTy::calculateHash(this));
418
}
419
420
#define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
421
#define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
422
#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \
423
do { \
424
if (Storage == Uniqued) { \
425
if (auto *N = getUniqued(Context.pImpl->CLASS##s, \
426
CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \
427
return N; \
428
if (!ShouldCreate) \
429
return nullptr; \
430
} else { \
431
assert(ShouldCreate && \
432
"Expected non-uniqued nodes to always be created"); \
433
} \
434
} while (false)
435
#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \
436
return storeImpl(new (std::size(OPS), Storage) \
437
CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
438
Storage, Context.pImpl->CLASS##s)
439
#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \
440
return storeImpl(new (0u, Storage) \
441
CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \
442
Storage, Context.pImpl->CLASS##s)
443
#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \
444
return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
445
Storage, Context.pImpl->CLASS##s)
446
#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \
447
return storeImpl(new (NUM_OPS, Storage) \
448
CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
449
Storage, Context.pImpl->CLASS##s)
450
451
DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
452
ArrayRef<Metadata *> Ops)
453
: DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
454
DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
455
StorageType Storage, bool ShouldCreate) {
456
auto *CountNode = ConstantAsMetadata::get(
457
ConstantInt::getSigned(Type::getInt64Ty(Context), Count));
458
auto *LB = ConstantAsMetadata::get(
459
ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
460
return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
461
ShouldCreate);
462
}
463
464
DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
465
int64_t Lo, StorageType Storage,
466
bool ShouldCreate) {
467
auto *LB = ConstantAsMetadata::get(
468
ConstantInt::getSigned(Type::getInt64Ty(Context), Lo));
469
return getImpl(Context, CountNode, LB, nullptr, nullptr, Storage,
470
ShouldCreate);
471
}
472
473
DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
474
Metadata *LB, Metadata *UB, Metadata *Stride,
475
StorageType Storage, bool ShouldCreate) {
476
DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
477
Metadata *Ops[] = {CountNode, LB, UB, Stride};
478
DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops);
479
}
480
481
DISubrange::BoundType DISubrange::getCount() const {
482
Metadata *CB = getRawCountNode();
483
if (!CB)
484
return BoundType();
485
486
assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) ||
487
isa<DIExpression>(CB)) &&
488
"Count must be signed constant or DIVariable or DIExpression");
489
490
if (auto *MD = dyn_cast<ConstantAsMetadata>(CB))
491
return BoundType(cast<ConstantInt>(MD->getValue()));
492
493
if (auto *MD = dyn_cast<DIVariable>(CB))
494
return BoundType(MD);
495
496
if (auto *MD = dyn_cast<DIExpression>(CB))
497
return BoundType(MD);
498
499
return BoundType();
500
}
501
502
DISubrange::BoundType DISubrange::getLowerBound() const {
503
Metadata *LB = getRawLowerBound();
504
if (!LB)
505
return BoundType();
506
507
assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) ||
508
isa<DIExpression>(LB)) &&
509
"LowerBound must be signed constant or DIVariable or DIExpression");
510
511
if (auto *MD = dyn_cast<ConstantAsMetadata>(LB))
512
return BoundType(cast<ConstantInt>(MD->getValue()));
513
514
if (auto *MD = dyn_cast<DIVariable>(LB))
515
return BoundType(MD);
516
517
if (auto *MD = dyn_cast<DIExpression>(LB))
518
return BoundType(MD);
519
520
return BoundType();
521
}
522
523
DISubrange::BoundType DISubrange::getUpperBound() const {
524
Metadata *UB = getRawUpperBound();
525
if (!UB)
526
return BoundType();
527
528
assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) ||
529
isa<DIExpression>(UB)) &&
530
"UpperBound must be signed constant or DIVariable or DIExpression");
531
532
if (auto *MD = dyn_cast<ConstantAsMetadata>(UB))
533
return BoundType(cast<ConstantInt>(MD->getValue()));
534
535
if (auto *MD = dyn_cast<DIVariable>(UB))
536
return BoundType(MD);
537
538
if (auto *MD = dyn_cast<DIExpression>(UB))
539
return BoundType(MD);
540
541
return BoundType();
542
}
543
544
DISubrange::BoundType DISubrange::getStride() const {
545
Metadata *ST = getRawStride();
546
if (!ST)
547
return BoundType();
548
549
assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) ||
550
isa<DIExpression>(ST)) &&
551
"Stride must be signed constant or DIVariable or DIExpression");
552
553
if (auto *MD = dyn_cast<ConstantAsMetadata>(ST))
554
return BoundType(cast<ConstantInt>(MD->getValue()));
555
556
if (auto *MD = dyn_cast<DIVariable>(ST))
557
return BoundType(MD);
558
559
if (auto *MD = dyn_cast<DIExpression>(ST))
560
return BoundType(MD);
561
562
return BoundType();
563
}
564
DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
565
ArrayRef<Metadata *> Ops)
566
: DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
567
Ops) {}
568
569
DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
570
Metadata *CountNode, Metadata *LB,
571
Metadata *UB, Metadata *Stride,
572
StorageType Storage,
573
bool ShouldCreate) {
574
DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
575
Metadata *Ops[] = {CountNode, LB, UB, Stride};
576
DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops);
577
}
578
579
DIGenericSubrange::BoundType DIGenericSubrange::getCount() const {
580
Metadata *CB = getRawCountNode();
581
if (!CB)
582
return BoundType();
583
584
assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) &&
585
"Count must be signed constant or DIVariable or DIExpression");
586
587
if (auto *MD = dyn_cast<DIVariable>(CB))
588
return BoundType(MD);
589
590
if (auto *MD = dyn_cast<DIExpression>(CB))
591
return BoundType(MD);
592
593
return BoundType();
594
}
595
596
DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const {
597
Metadata *LB = getRawLowerBound();
598
if (!LB)
599
return BoundType();
600
601
assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) &&
602
"LowerBound must be signed constant or DIVariable or DIExpression");
603
604
if (auto *MD = dyn_cast<DIVariable>(LB))
605
return BoundType(MD);
606
607
if (auto *MD = dyn_cast<DIExpression>(LB))
608
return BoundType(MD);
609
610
return BoundType();
611
}
612
613
DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const {
614
Metadata *UB = getRawUpperBound();
615
if (!UB)
616
return BoundType();
617
618
assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) &&
619
"UpperBound must be signed constant or DIVariable or DIExpression");
620
621
if (auto *MD = dyn_cast<DIVariable>(UB))
622
return BoundType(MD);
623
624
if (auto *MD = dyn_cast<DIExpression>(UB))
625
return BoundType(MD);
626
627
return BoundType();
628
}
629
630
DIGenericSubrange::BoundType DIGenericSubrange::getStride() const {
631
Metadata *ST = getRawStride();
632
if (!ST)
633
return BoundType();
634
635
assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) &&
636
"Stride must be signed constant or DIVariable or DIExpression");
637
638
if (auto *MD = dyn_cast<DIVariable>(ST))
639
return BoundType(MD);
640
641
if (auto *MD = dyn_cast<DIExpression>(ST))
642
return BoundType(MD);
643
644
return BoundType();
645
}
646
647
DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
648
const APInt &Value, bool IsUnsigned,
649
ArrayRef<Metadata *> Ops)
650
: DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
651
Value(Value) {
652
SubclassData32 = IsUnsigned;
653
}
654
DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
655
bool IsUnsigned, MDString *Name,
656
StorageType Storage, bool ShouldCreate) {
657
assert(isCanonical(Name) && "Expected canonical MDString");
658
DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
659
Metadata *Ops[] = {Name};
660
DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
661
}
662
663
DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag,
664
MDString *Name, uint64_t SizeInBits,
665
uint32_t AlignInBits, unsigned Encoding,
666
DIFlags Flags, StorageType Storage,
667
bool ShouldCreate) {
668
assert(isCanonical(Name) && "Expected canonical MDString");
669
DEFINE_GETIMPL_LOOKUP(DIBasicType,
670
(Tag, Name, SizeInBits, AlignInBits, Encoding, Flags));
671
Metadata *Ops[] = {nullptr, nullptr, Name};
672
DEFINE_GETIMPL_STORE(DIBasicType,
673
(Tag, SizeInBits, AlignInBits, Encoding, Flags), Ops);
674
}
675
676
std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
677
switch (getEncoding()) {
678
case dwarf::DW_ATE_signed:
679
case dwarf::DW_ATE_signed_char:
680
return Signedness::Signed;
681
case dwarf::DW_ATE_unsigned:
682
case dwarf::DW_ATE_unsigned_char:
683
return Signedness::Unsigned;
684
default:
685
return std::nullopt;
686
}
687
}
688
689
DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
690
MDString *Name, Metadata *StringLength,
691
Metadata *StringLengthExp,
692
Metadata *StringLocationExp,
693
uint64_t SizeInBits, uint32_t AlignInBits,
694
unsigned Encoding, StorageType Storage,
695
bool ShouldCreate) {
696
assert(isCanonical(Name) && "Expected canonical MDString");
697
DEFINE_GETIMPL_LOOKUP(DIStringType,
698
(Tag, Name, StringLength, StringLengthExp,
699
StringLocationExp, SizeInBits, AlignInBits, Encoding));
700
Metadata *Ops[] = {nullptr, nullptr, Name,
701
StringLength, StringLengthExp, StringLocationExp};
702
DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding),
703
Ops);
704
}
705
DIType *DIDerivedType::getClassType() const {
706
assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
707
return cast_or_null<DIType>(getExtraData());
708
}
709
uint32_t DIDerivedType::getVBPtrOffset() const {
710
assert(getTag() == dwarf::DW_TAG_inheritance);
711
if (auto *CM = cast_or_null<ConstantAsMetadata>(getExtraData()))
712
if (auto *CI = dyn_cast_or_null<ConstantInt>(CM->getValue()))
713
return static_cast<uint32_t>(CI->getZExtValue());
714
return 0;
715
}
716
Constant *DIDerivedType::getStorageOffsetInBits() const {
717
assert(getTag() == dwarf::DW_TAG_member && isBitField());
718
if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
719
return C->getValue();
720
return nullptr;
721
}
722
723
Constant *DIDerivedType::getConstant() const {
724
assert((getTag() == dwarf::DW_TAG_member ||
725
getTag() == dwarf::DW_TAG_variable) &&
726
isStaticMember());
727
if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
728
return C->getValue();
729
return nullptr;
730
}
731
Constant *DIDerivedType::getDiscriminantValue() const {
732
assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
733
if (auto *C = cast_or_null<ConstantAsMetadata>(getExtraData()))
734
return C->getValue();
735
return nullptr;
736
}
737
738
DIDerivedType *DIDerivedType::getImpl(
739
LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
740
unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
741
uint32_t AlignInBits, uint64_t OffsetInBits,
742
std::optional<unsigned> DWARFAddressSpace,
743
std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData,
744
Metadata *Annotations, StorageType Storage, bool ShouldCreate) {
745
assert(isCanonical(Name) && "Expected canonical MDString");
746
DEFINE_GETIMPL_LOOKUP(DIDerivedType,
747
(Tag, Name, File, Line, Scope, BaseType, SizeInBits,
748
AlignInBits, OffsetInBits, DWARFAddressSpace,
749
PtrAuthData, Flags, ExtraData, Annotations));
750
Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData, Annotations};
751
DEFINE_GETIMPL_STORE(DIDerivedType,
752
(Tag, Line, SizeInBits, AlignInBits, OffsetInBits,
753
DWARFAddressSpace, PtrAuthData, Flags),
754
Ops);
755
}
756
757
std::optional<DIDerivedType::PtrAuthData>
758
DIDerivedType::getPtrAuthData() const {
759
return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type
760
? std::optional<PtrAuthData>(PtrAuthData(SubclassData32))
761
: std::nullopt;
762
}
763
764
DICompositeType *DICompositeType::getImpl(
765
LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
766
unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
767
uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags,
768
Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
769
Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator,
770
Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
771
Metadata *Rank, Metadata *Annotations, StorageType Storage,
772
bool ShouldCreate) {
773
assert(isCanonical(Name) && "Expected canonical MDString");
774
775
// Keep this in sync with buildODRType.
776
DEFINE_GETIMPL_LOOKUP(DICompositeType,
777
(Tag, Name, File, Line, Scope, BaseType, SizeInBits,
778
AlignInBits, OffsetInBits, Flags, Elements,
779
RuntimeLang, VTableHolder, TemplateParams, Identifier,
780
Discriminator, DataLocation, Associated, Allocated,
781
Rank, Annotations));
782
Metadata *Ops[] = {File, Scope, Name, BaseType,
783
Elements, VTableHolder, TemplateParams, Identifier,
784
Discriminator, DataLocation, Associated, Allocated,
785
Rank, Annotations};
786
DEFINE_GETIMPL_STORE(
787
DICompositeType,
788
(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags),
789
Ops);
790
}
791
792
DICompositeType *DICompositeType::buildODRType(
793
LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
794
Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
795
uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
796
DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
797
Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
798
Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
799
Metadata *Rank, Metadata *Annotations) {
800
assert(!Identifier.getString().empty() && "Expected valid identifier");
801
if (!Context.isODRUniquingDebugTypes())
802
return nullptr;
803
auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
804
if (!CT)
805
return CT = DICompositeType::getDistinct(
806
Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
807
AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
808
VTableHolder, TemplateParams, &Identifier, Discriminator,
809
DataLocation, Associated, Allocated, Rank, Annotations);
810
811
if (CT->getTag() != Tag)
812
return nullptr;
813
814
// Only mutate CT if it's a forward declaration and the new operands aren't.
815
assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
816
if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
817
return CT;
818
819
// Mutate CT in place. Keep this in sync with getImpl.
820
CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits,
821
Flags);
822
Metadata *Ops[] = {File, Scope, Name, BaseType,
823
Elements, VTableHolder, TemplateParams, &Identifier,
824
Discriminator, DataLocation, Associated, Allocated,
825
Rank, Annotations};
826
assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
827
"Mismatched number of operands");
828
for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
829
if (Ops[I] != CT->getOperand(I))
830
CT->setOperand(I, Ops[I]);
831
return CT;
832
}
833
834
DICompositeType *DICompositeType::getODRType(
835
LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
836
Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
837
uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
838
DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
839
Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
840
Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
841
Metadata *Rank, Metadata *Annotations) {
842
assert(!Identifier.getString().empty() && "Expected valid identifier");
843
if (!Context.isODRUniquingDebugTypes())
844
return nullptr;
845
auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
846
if (!CT) {
847
CT = DICompositeType::getDistinct(
848
Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
849
AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder,
850
TemplateParams, &Identifier, Discriminator, DataLocation, Associated,
851
Allocated, Rank, Annotations);
852
} else {
853
if (CT->getTag() != Tag)
854
return nullptr;
855
}
856
return CT;
857
}
858
859
DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context,
860
MDString &Identifier) {
861
assert(!Identifier.getString().empty() && "Expected valid identifier");
862
if (!Context.isODRUniquingDebugTypes())
863
return nullptr;
864
return Context.pImpl->DITypeMap->lookup(&Identifier);
865
}
866
DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
867
DIFlags Flags, uint8_t CC,
868
ArrayRef<Metadata *> Ops)
869
: DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
870
0, 0, 0, Flags, Ops),
871
CC(CC) {}
872
873
DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
874
uint8_t CC, Metadata *TypeArray,
875
StorageType Storage,
876
bool ShouldCreate) {
877
DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray));
878
Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray};
879
DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
880
}
881
882
DIFile::DIFile(LLVMContext &C, StorageType Storage,
883
std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
884
ArrayRef<Metadata *> Ops)
885
: DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
886
Checksum(CS), Source(Src) {}
887
888
// FIXME: Implement this string-enum correspondence with a .def file and macros,
889
// so that the association is explicit rather than implied.
890
static const char *ChecksumKindName[DIFile::CSK_Last] = {
891
"CSK_MD5",
892
"CSK_SHA1",
893
"CSK_SHA256",
894
};
895
896
StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
897
assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
898
// The first space was originally the CSK_None variant, which is now
899
// obsolete, but the space is still reserved in ChecksumKind, so we account
900
// for it here.
901
return ChecksumKindName[CSKind - 1];
902
}
903
904
std::optional<DIFile::ChecksumKind>
905
DIFile::getChecksumKind(StringRef CSKindStr) {
906
return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr)
907
.Case("CSK_MD5", DIFile::CSK_MD5)
908
.Case("CSK_SHA1", DIFile::CSK_SHA1)
909
.Case("CSK_SHA256", DIFile::CSK_SHA256)
910
.Default(std::nullopt);
911
}
912
913
DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
914
MDString *Directory,
915
std::optional<DIFile::ChecksumInfo<MDString *>> CS,
916
MDString *Source, StorageType Storage,
917
bool ShouldCreate) {
918
assert(isCanonical(Filename) && "Expected canonical MDString");
919
assert(isCanonical(Directory) && "Expected canonical MDString");
920
assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
921
// We do *NOT* expect Source to be a canonical MDString because nullptr
922
// means none, so we need something to represent the empty file.
923
DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source));
924
Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
925
DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops);
926
}
927
DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
928
unsigned SourceLanguage, bool IsOptimized,
929
unsigned RuntimeVersion, unsigned EmissionKind,
930
uint64_t DWOId, bool SplitDebugInlining,
931
bool DebugInfoForProfiling, unsigned NameTableKind,
932
bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
933
: DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
934
SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion),
935
DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind),
936
IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining),
937
DebugInfoForProfiling(DebugInfoForProfiling),
938
RangesBaseAddress(RangesBaseAddress) {
939
assert(Storage != Uniqued);
940
}
941
942
DICompileUnit *DICompileUnit::getImpl(
943
LLVMContext &Context, unsigned SourceLanguage, Metadata *File,
944
MDString *Producer, bool IsOptimized, MDString *Flags,
945
unsigned RuntimeVersion, MDString *SplitDebugFilename,
946
unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
947
Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
948
uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
949
unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
950
MDString *SDK, StorageType Storage, bool ShouldCreate) {
951
assert(Storage != Uniqued && "Cannot unique DICompileUnit");
952
assert(isCanonical(Producer) && "Expected canonical MDString");
953
assert(isCanonical(Flags) && "Expected canonical MDString");
954
assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
955
956
Metadata *Ops[] = {File,
957
Producer,
958
Flags,
959
SplitDebugFilename,
960
EnumTypes,
961
RetainedTypes,
962
GlobalVariables,
963
ImportedEntities,
964
Macros,
965
SysRoot,
966
SDK};
967
return storeImpl(new (std::size(Ops), Storage) DICompileUnit(
968
Context, Storage, SourceLanguage, IsOptimized,
969
RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
970
DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
971
Ops),
972
Storage);
973
}
974
975
std::optional<DICompileUnit::DebugEmissionKind>
976
DICompileUnit::getEmissionKind(StringRef Str) {
977
return StringSwitch<std::optional<DebugEmissionKind>>(Str)
978
.Case("NoDebug", NoDebug)
979
.Case("FullDebug", FullDebug)
980
.Case("LineTablesOnly", LineTablesOnly)
981
.Case("DebugDirectivesOnly", DebugDirectivesOnly)
982
.Default(std::nullopt);
983
}
984
985
std::optional<DICompileUnit::DebugNameTableKind>
986
DICompileUnit::getNameTableKind(StringRef Str) {
987
return StringSwitch<std::optional<DebugNameTableKind>>(Str)
988
.Case("Default", DebugNameTableKind::Default)
989
.Case("GNU", DebugNameTableKind::GNU)
990
.Case("Apple", DebugNameTableKind::Apple)
991
.Case("None", DebugNameTableKind::None)
992
.Default(std::nullopt);
993
}
994
995
const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) {
996
switch (EK) {
997
case NoDebug:
998
return "NoDebug";
999
case FullDebug:
1000
return "FullDebug";
1001
case LineTablesOnly:
1002
return "LineTablesOnly";
1003
case DebugDirectivesOnly:
1004
return "DebugDirectivesOnly";
1005
}
1006
return nullptr;
1007
}
1008
1009
const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) {
1010
switch (NTK) {
1011
case DebugNameTableKind::Default:
1012
return nullptr;
1013
case DebugNameTableKind::GNU:
1014
return "GNU";
1015
case DebugNameTableKind::Apple:
1016
return "Apple";
1017
case DebugNameTableKind::None:
1018
return "None";
1019
}
1020
return nullptr;
1021
}
1022
DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
1023
unsigned ScopeLine, unsigned VirtualIndex,
1024
int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
1025
ArrayRef<Metadata *> Ops)
1026
: DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
1027
Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
1028
ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
1029
static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
1030
}
1031
DISubprogram::DISPFlags
1032
DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
1033
unsigned Virtuality, bool IsMainSubprogram) {
1034
// We're assuming virtuality is the low-order field.
1035
static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
1036
int(SPFlagPureVirtual) ==
1037
int(dwarf::DW_VIRTUALITY_pure_virtual),
1038
"Virtuality constant mismatch");
1039
return static_cast<DISPFlags>(
1040
(Virtuality & SPFlagVirtuality) |
1041
(IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
1042
(IsDefinition ? SPFlagDefinition : SPFlagZero) |
1043
(IsOptimized ? SPFlagOptimized : SPFlagZero) |
1044
(IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
1045
}
1046
1047
DISubprogram *DILocalScope::getSubprogram() const {
1048
if (auto *Block = dyn_cast<DILexicalBlockBase>(this))
1049
return Block->getScope()->getSubprogram();
1050
return const_cast<DISubprogram *>(cast<DISubprogram>(this));
1051
}
1052
1053
DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const {
1054
if (auto *File = dyn_cast<DILexicalBlockFile>(this))
1055
return File->getScope()->getNonLexicalBlockFileScope();
1056
return const_cast<DILocalScope *>(this);
1057
}
1058
1059
DILocalScope *DILocalScope::cloneScopeForSubprogram(
1060
DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
1061
DenseMap<const MDNode *, MDNode *> &Cache) {
1062
SmallVector<DIScope *> ScopeChain;
1063
DIScope *CachedResult = nullptr;
1064
1065
for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Scope);
1066
Scope = Scope->getScope()) {
1067
if (auto It = Cache.find(Scope); It != Cache.end()) {
1068
CachedResult = cast<DIScope>(It->second);
1069
break;
1070
}
1071
ScopeChain.push_back(Scope);
1072
}
1073
1074
// Recreate the scope chain, bottom-up, starting at the new subprogram (or a
1075
// cached result).
1076
DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
1077
for (DIScope *ScopeToUpdate : reverse(ScopeChain)) {
1078
TempMDNode ClonedScope = ScopeToUpdate->clone();
1079
cast<DILexicalBlockBase>(*ClonedScope).replaceScope(UpdatedScope);
1080
UpdatedScope =
1081
cast<DIScope>(MDNode::replaceWithUniqued(std::move(ClonedScope)));
1082
Cache[ScopeToUpdate] = UpdatedScope;
1083
}
1084
1085
return cast<DILocalScope>(UpdatedScope);
1086
}
1087
1088
DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) {
1089
return StringSwitch<DISPFlags>(Flag)
1090
#define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
1091
#include "llvm/IR/DebugInfoFlags.def"
1092
.Default(SPFlagZero);
1093
}
1094
1095
StringRef DISubprogram::getFlagString(DISPFlags Flag) {
1096
switch (Flag) {
1097
// Appease a warning.
1098
case SPFlagVirtuality:
1099
return "";
1100
#define HANDLE_DISP_FLAG(ID, NAME) \
1101
case SPFlag##NAME: \
1102
return "DISPFlag" #NAME;
1103
#include "llvm/IR/DebugInfoFlags.def"
1104
}
1105
return "";
1106
}
1107
1108
DISubprogram::DISPFlags
1109
DISubprogram::splitFlags(DISPFlags Flags,
1110
SmallVectorImpl<DISPFlags> &SplitFlags) {
1111
// Multi-bit fields can require special handling. In our case, however, the
1112
// only multi-bit field is virtuality, and all its values happen to be
1113
// single-bit values, so the right behavior just falls out.
1114
#define HANDLE_DISP_FLAG(ID, NAME) \
1115
if (DISPFlags Bit = Flags & SPFlag##NAME) { \
1116
SplitFlags.push_back(Bit); \
1117
Flags &= ~Bit; \
1118
}
1119
#include "llvm/IR/DebugInfoFlags.def"
1120
return Flags;
1121
}
1122
1123
DISubprogram *DISubprogram::getImpl(
1124
LLVMContext &Context, Metadata *Scope, MDString *Name,
1125
MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
1126
unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
1127
int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
1128
Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
1129
Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
1130
StorageType Storage, bool ShouldCreate) {
1131
assert(isCanonical(Name) && "Expected canonical MDString");
1132
assert(isCanonical(LinkageName) && "Expected canonical MDString");
1133
assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
1134
DEFINE_GETIMPL_LOOKUP(DISubprogram,
1135
(Scope, Name, LinkageName, File, Line, Type, ScopeLine,
1136
ContainingType, VirtualIndex, ThisAdjustment, Flags,
1137
SPFlags, Unit, TemplateParams, Declaration,
1138
RetainedNodes, ThrownTypes, Annotations,
1139
TargetFuncName));
1140
SmallVector<Metadata *, 13> Ops = {
1141
File, Scope, Name, LinkageName,
1142
Type, Unit, Declaration, RetainedNodes,
1143
ContainingType, TemplateParams, ThrownTypes, Annotations,
1144
TargetFuncName};
1145
if (!TargetFuncName) {
1146
Ops.pop_back();
1147
if (!Annotations) {
1148
Ops.pop_back();
1149
if (!ThrownTypes) {
1150
Ops.pop_back();
1151
if (!TemplateParams) {
1152
Ops.pop_back();
1153
if (!ContainingType)
1154
Ops.pop_back();
1155
}
1156
}
1157
}
1158
}
1159
DEFINE_GETIMPL_STORE_N(
1160
DISubprogram,
1161
(Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops,
1162
Ops.size());
1163
}
1164
1165
bool DISubprogram::describes(const Function *F) const {
1166
assert(F && "Invalid function");
1167
return F->getSubprogram() == this;
1168
}
1169
DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID,
1170
StorageType Storage,
1171
ArrayRef<Metadata *> Ops)
1172
: DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {}
1173
1174
DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1175
Metadata *File, unsigned Line,
1176
unsigned Column, StorageType Storage,
1177
bool ShouldCreate) {
1178
// Fixup column.
1179
adjustColumn(Column);
1180
1181
assert(Scope && "Expected scope");
1182
DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column));
1183
Metadata *Ops[] = {File, Scope};
1184
DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops);
1185
}
1186
1187
DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
1188
Metadata *Scope, Metadata *File,
1189
unsigned Discriminator,
1190
StorageType Storage,
1191
bool ShouldCreate) {
1192
assert(Scope && "Expected scope");
1193
DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
1194
Metadata *Ops[] = {File, Scope};
1195
DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
1196
}
1197
1198
DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
1199
bool ExportSymbols, ArrayRef<Metadata *> Ops)
1200
: DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) {
1201
SubclassData1 = ExportSymbols;
1202
}
1203
DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
1204
MDString *Name, bool ExportSymbols,
1205
StorageType Storage, bool ShouldCreate) {
1206
assert(isCanonical(Name) && "Expected canonical MDString");
1207
DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols));
1208
// The nullptr is for DIScope's File operand. This should be refactored.
1209
Metadata *Ops[] = {nullptr, Scope, Name};
1210
DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
1211
}
1212
1213
DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
1214
unsigned LineNo, ArrayRef<Metadata *> Ops)
1215
: DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
1216
Ops) {
1217
SubclassData32 = LineNo;
1218
}
1219
DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1220
Metadata *Decl, MDString *Name,
1221
Metadata *File, unsigned LineNo,
1222
StorageType Storage, bool ShouldCreate) {
1223
assert(isCanonical(Name) && "Expected canonical MDString");
1224
DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
1225
// The nullptr is for DIScope's File operand. This should be refactored.
1226
Metadata *Ops[] = {Scope, Decl, Name, File};
1227
DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
1228
}
1229
1230
DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
1231
bool IsDecl, ArrayRef<Metadata *> Ops)
1232
: DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) {
1233
SubclassData1 = IsDecl;
1234
SubclassData32 = LineNo;
1235
}
1236
DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
1237
Metadata *Scope, MDString *Name,
1238
MDString *ConfigurationMacros,
1239
MDString *IncludePath, MDString *APINotesFile,
1240
unsigned LineNo, bool IsDecl, StorageType Storage,
1241
bool ShouldCreate) {
1242
assert(isCanonical(Name) && "Expected canonical MDString");
1243
DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros,
1244
IncludePath, APINotesFile, LineNo, IsDecl));
1245
Metadata *Ops[] = {File, Scope, Name, ConfigurationMacros,
1246
IncludePath, APINotesFile};
1247
DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
1248
}
1249
DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
1250
StorageType Storage,
1251
bool IsDefault,
1252
ArrayRef<Metadata *> Ops)
1253
: DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
1254
dwarf::DW_TAG_template_type_parameter, IsDefault,
1255
Ops) {}
1256
1257
DITemplateTypeParameter *
1258
DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
1259
Metadata *Type, bool isDefault,
1260
StorageType Storage, bool ShouldCreate) {
1261
assert(isCanonical(Name) && "Expected canonical MDString");
1262
DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
1263
Metadata *Ops[] = {Name, Type};
1264
DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
1265
}
1266
1267
DITemplateValueParameter *DITemplateValueParameter::getImpl(
1268
LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
1269
bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
1270
assert(isCanonical(Name) && "Expected canonical MDString");
1271
DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
1272
(Tag, Name, Type, isDefault, Value));
1273
Metadata *Ops[] = {Name, Type, Value};
1274
DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
1275
}
1276
1277
DIGlobalVariable *
1278
DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1279
MDString *LinkageName, Metadata *File, unsigned Line,
1280
Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
1281
Metadata *StaticDataMemberDeclaration,
1282
Metadata *TemplateParams, uint32_t AlignInBits,
1283
Metadata *Annotations, StorageType Storage,
1284
bool ShouldCreate) {
1285
assert(isCanonical(Name) && "Expected canonical MDString");
1286
assert(isCanonical(LinkageName) && "Expected canonical MDString");
1287
DEFINE_GETIMPL_LOOKUP(
1288
DIGlobalVariable,
1289
(Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
1290
StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations));
1291
Metadata *Ops[] = {Scope,
1292
Name,
1293
File,
1294
Type,
1295
Name,
1296
LinkageName,
1297
StaticDataMemberDeclaration,
1298
TemplateParams,
1299
Annotations};
1300
DEFINE_GETIMPL_STORE(DIGlobalVariable,
1301
(Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
1302
}
1303
1304
DILocalVariable *
1305
DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1306
Metadata *File, unsigned Line, Metadata *Type,
1307
unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
1308
Metadata *Annotations, StorageType Storage,
1309
bool ShouldCreate) {
1310
// 64K ought to be enough for any frontend.
1311
assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
1312
1313
assert(Scope && "Expected scope");
1314
assert(isCanonical(Name) && "Expected canonical MDString");
1315
DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg,
1316
Flags, AlignInBits, Annotations));
1317
Metadata *Ops[] = {Scope, Name, File, Type, Annotations};
1318
DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
1319
}
1320
1321
DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage,
1322
signed Line, ArrayRef<Metadata *> Ops,
1323
uint32_t AlignInBits)
1324
: DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) {
1325
SubclassData32 = AlignInBits;
1326
}
1327
std::optional<uint64_t> DIVariable::getSizeInBits() const {
1328
// This is used by the Verifier so be mindful of broken types.
1329
const Metadata *RawType = getRawType();
1330
while (RawType) {
1331
// Try to get the size directly.
1332
if (auto *T = dyn_cast<DIType>(RawType))
1333
if (uint64_t Size = T->getSizeInBits())
1334
return Size;
1335
1336
if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
1337
// Look at the base type.
1338
RawType = DT->getRawBaseType();
1339
continue;
1340
}
1341
1342
// Missing type or size.
1343
break;
1344
}
1345
1346
// Fail gracefully.
1347
return std::nullopt;
1348
}
1349
1350
DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
1351
ArrayRef<Metadata *> Ops)
1352
: DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) {
1353
SubclassData32 = Line;
1354
}
1355
DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1356
Metadata *File, unsigned Line, StorageType Storage,
1357
bool ShouldCreate) {
1358
assert(Scope && "Expected scope");
1359
assert(isCanonical(Name) && "Expected canonical MDString");
1360
DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line));
1361
Metadata *Ops[] = {Scope, Name, File};
1362
DEFINE_GETIMPL_STORE(DILabel, (Line), Ops);
1363
}
1364
1365
DIExpression *DIExpression::getImpl(LLVMContext &Context,
1366
ArrayRef<uint64_t> Elements,
1367
StorageType Storage, bool ShouldCreate) {
1368
DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
1369
DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
1370
}
1371
bool DIExpression::isEntryValue() const {
1372
if (auto singleLocElts = getSingleLocationExpressionElements()) {
1373
return singleLocElts->size() > 0 &&
1374
(*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value;
1375
}
1376
return false;
1377
}
1378
bool DIExpression::startsWithDeref() const {
1379
if (auto singleLocElts = getSingleLocationExpressionElements())
1380
return singleLocElts->size() > 0 &&
1381
(*singleLocElts)[0] == dwarf::DW_OP_deref;
1382
return false;
1383
}
1384
bool DIExpression::isDeref() const {
1385
if (auto singleLocElts = getSingleLocationExpressionElements())
1386
return singleLocElts->size() == 1 &&
1387
(*singleLocElts)[0] == dwarf::DW_OP_deref;
1388
return false;
1389
}
1390
1391
DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
1392
bool ShouldCreate) {
1393
// Uniqued DIAssignID are not supported as the instance address *is* the ID.
1394
assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
1395
return storeImpl(new (0u, Storage) DIAssignID(Context, Storage), Storage);
1396
}
1397
1398
unsigned DIExpression::ExprOperand::getSize() const {
1399
uint64_t Op = getOp();
1400
1401
if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
1402
return 2;
1403
1404
switch (Op) {
1405
case dwarf::DW_OP_LLVM_convert:
1406
case dwarf::DW_OP_LLVM_fragment:
1407
case dwarf::DW_OP_LLVM_extract_bits_sext:
1408
case dwarf::DW_OP_LLVM_extract_bits_zext:
1409
case dwarf::DW_OP_bregx:
1410
return 3;
1411
case dwarf::DW_OP_constu:
1412
case dwarf::DW_OP_consts:
1413
case dwarf::DW_OP_deref_size:
1414
case dwarf::DW_OP_plus_uconst:
1415
case dwarf::DW_OP_LLVM_tag_offset:
1416
case dwarf::DW_OP_LLVM_entry_value:
1417
case dwarf::DW_OP_LLVM_arg:
1418
case dwarf::DW_OP_regx:
1419
return 2;
1420
default:
1421
return 1;
1422
}
1423
}
1424
1425
bool DIExpression::isValid() const {
1426
for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
1427
// Check that there's space for the operand.
1428
if (I->get() + I->getSize() > E->get())
1429
return false;
1430
1431
uint64_t Op = I->getOp();
1432
if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
1433
(Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
1434
return true;
1435
1436
// Check that the operand is valid.
1437
switch (Op) {
1438
default:
1439
return false;
1440
case dwarf::DW_OP_LLVM_fragment:
1441
// A fragment operator must appear at the end.
1442
return I->get() + I->getSize() == E->get();
1443
case dwarf::DW_OP_stack_value: {
1444
// Must be the last one or followed by a DW_OP_LLVM_fragment.
1445
if (I->get() + I->getSize() == E->get())
1446
break;
1447
auto J = I;
1448
if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
1449
return false;
1450
break;
1451
}
1452
case dwarf::DW_OP_swap: {
1453
// Must be more than one implicit element on the stack.
1454
1455
// FIXME: A better way to implement this would be to add a local variable
1456
// that keeps track of the stack depth and introduce something like a
1457
// DW_LLVM_OP_implicit_location as a placeholder for the location this
1458
// DIExpression is attached to, or else pass the number of implicit stack
1459
// elements into isValid.
1460
if (getNumElements() == 1)
1461
return false;
1462
break;
1463
}
1464
case dwarf::DW_OP_LLVM_entry_value: {
1465
// An entry value operator must appear at the beginning or immediately
1466
// following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
1467
// currently only be 1, because we support only entry values of a simple
1468
// register location. One reason for this is that we currently can't
1469
// calculate the size of the resulting DWARF block for other expressions.
1470
auto FirstOp = expr_op_begin();
1471
if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(0) == 0)
1472
++FirstOp;
1473
return I->get() == FirstOp->get() && I->getArg(0) == 1;
1474
}
1475
case dwarf::DW_OP_LLVM_implicit_pointer:
1476
case dwarf::DW_OP_LLVM_convert:
1477
case dwarf::DW_OP_LLVM_arg:
1478
case dwarf::DW_OP_LLVM_tag_offset:
1479
case dwarf::DW_OP_LLVM_extract_bits_sext:
1480
case dwarf::DW_OP_LLVM_extract_bits_zext:
1481
case dwarf::DW_OP_constu:
1482
case dwarf::DW_OP_plus_uconst:
1483
case dwarf::DW_OP_plus:
1484
case dwarf::DW_OP_minus:
1485
case dwarf::DW_OP_mul:
1486
case dwarf::DW_OP_div:
1487
case dwarf::DW_OP_mod:
1488
case dwarf::DW_OP_or:
1489
case dwarf::DW_OP_and:
1490
case dwarf::DW_OP_xor:
1491
case dwarf::DW_OP_shl:
1492
case dwarf::DW_OP_shr:
1493
case dwarf::DW_OP_shra:
1494
case dwarf::DW_OP_deref:
1495
case dwarf::DW_OP_deref_size:
1496
case dwarf::DW_OP_xderef:
1497
case dwarf::DW_OP_lit0:
1498
case dwarf::DW_OP_not:
1499
case dwarf::DW_OP_dup:
1500
case dwarf::DW_OP_regx:
1501
case dwarf::DW_OP_bregx:
1502
case dwarf::DW_OP_push_object_address:
1503
case dwarf::DW_OP_over:
1504
case dwarf::DW_OP_consts:
1505
case dwarf::DW_OP_eq:
1506
case dwarf::DW_OP_ne:
1507
case dwarf::DW_OP_gt:
1508
case dwarf::DW_OP_ge:
1509
case dwarf::DW_OP_lt:
1510
case dwarf::DW_OP_le:
1511
break;
1512
}
1513
}
1514
return true;
1515
}
1516
1517
bool DIExpression::isImplicit() const {
1518
if (!isValid())
1519
return false;
1520
1521
if (getNumElements() == 0)
1522
return false;
1523
1524
for (const auto &It : expr_ops()) {
1525
switch (It.getOp()) {
1526
default:
1527
break;
1528
case dwarf::DW_OP_stack_value:
1529
return true;
1530
}
1531
}
1532
1533
return false;
1534
}
1535
1536
bool DIExpression::isComplex() const {
1537
if (!isValid())
1538
return false;
1539
1540
if (getNumElements() == 0)
1541
return false;
1542
1543
// If there are any elements other than fragment or tag_offset, then some
1544
// kind of complex computation occurs.
1545
for (const auto &It : expr_ops()) {
1546
switch (It.getOp()) {
1547
case dwarf::DW_OP_LLVM_tag_offset:
1548
case dwarf::DW_OP_LLVM_fragment:
1549
case dwarf::DW_OP_LLVM_arg:
1550
continue;
1551
default:
1552
return true;
1553
}
1554
}
1555
1556
return false;
1557
}
1558
1559
bool DIExpression::isSingleLocationExpression() const {
1560
if (!isValid())
1561
return false;
1562
1563
if (getNumElements() == 0)
1564
return true;
1565
1566
auto ExprOpBegin = expr_ops().begin();
1567
auto ExprOpEnd = expr_ops().end();
1568
if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) {
1569
if (ExprOpBegin->getArg(0) != 0)
1570
return false;
1571
++ExprOpBegin;
1572
}
1573
1574
return !std::any_of(ExprOpBegin, ExprOpEnd, [](auto Op) {
1575
return Op.getOp() == dwarf::DW_OP_LLVM_arg;
1576
});
1577
}
1578
1579
std::optional<ArrayRef<uint64_t>>
1580
DIExpression::getSingleLocationExpressionElements() const {
1581
// Check for `isValid` covered by `isSingleLocationExpression`.
1582
if (!isSingleLocationExpression())
1583
return std::nullopt;
1584
1585
// An empty expression is already non-variadic.
1586
if (!getNumElements())
1587
return ArrayRef<uint64_t>();
1588
1589
// If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
1590
// anything.
1591
if (getElements()[0] == dwarf::DW_OP_LLVM_arg)
1592
return getElements().drop_front(2);
1593
return getElements();
1594
}
1595
1596
const DIExpression *
1597
DIExpression::convertToUndefExpression(const DIExpression *Expr) {
1598
SmallVector<uint64_t, 3> UndefOps;
1599
if (auto FragmentInfo = Expr->getFragmentInfo()) {
1600
UndefOps.append({dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits,
1601
FragmentInfo->SizeInBits});
1602
}
1603
return DIExpression::get(Expr->getContext(), UndefOps);
1604
}
1605
1606
const DIExpression *
1607
DIExpression::convertToVariadicExpression(const DIExpression *Expr) {
1608
if (any_of(Expr->expr_ops(), [](auto ExprOp) {
1609
return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1610
}))
1611
return Expr;
1612
SmallVector<uint64_t> NewOps;
1613
NewOps.reserve(Expr->getNumElements() + 2);
1614
NewOps.append({dwarf::DW_OP_LLVM_arg, 0});
1615
NewOps.append(Expr->elements_begin(), Expr->elements_end());
1616
return DIExpression::get(Expr->getContext(), NewOps);
1617
}
1618
1619
std::optional<const DIExpression *>
1620
DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) {
1621
if (!Expr)
1622
return std::nullopt;
1623
1624
if (auto Elts = Expr->getSingleLocationExpressionElements())
1625
return DIExpression::get(Expr->getContext(), *Elts);
1626
1627
return std::nullopt;
1628
}
1629
1630
void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops,
1631
const DIExpression *Expr,
1632
bool IsIndirect) {
1633
// If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
1634
// to the existing expression ops.
1635
if (none_of(Expr->expr_ops(), [](auto ExprOp) {
1636
return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1637
}))
1638
Ops.append({dwarf::DW_OP_LLVM_arg, 0});
1639
// If Expr is not indirect, we only need to insert the expression elements and
1640
// we're done.
1641
if (!IsIndirect) {
1642
Ops.append(Expr->elements_begin(), Expr->elements_end());
1643
return;
1644
}
1645
// If Expr is indirect, insert the implied DW_OP_deref at the end of the
1646
// expression but before DW_OP_{stack_value, LLVM_fragment} if they are
1647
// present.
1648
for (auto Op : Expr->expr_ops()) {
1649
if (Op.getOp() == dwarf::DW_OP_stack_value ||
1650
Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1651
Ops.push_back(dwarf::DW_OP_deref);
1652
IsIndirect = false;
1653
}
1654
Op.appendToVector(Ops);
1655
}
1656
if (IsIndirect)
1657
Ops.push_back(dwarf::DW_OP_deref);
1658
}
1659
1660
bool DIExpression::isEqualExpression(const DIExpression *FirstExpr,
1661
bool FirstIndirect,
1662
const DIExpression *SecondExpr,
1663
bool SecondIndirect) {
1664
SmallVector<uint64_t> FirstOps;
1665
DIExpression::canonicalizeExpressionOps(FirstOps, FirstExpr, FirstIndirect);
1666
SmallVector<uint64_t> SecondOps;
1667
DIExpression::canonicalizeExpressionOps(SecondOps, SecondExpr,
1668
SecondIndirect);
1669
return FirstOps == SecondOps;
1670
}
1671
1672
std::optional<DIExpression::FragmentInfo>
1673
DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) {
1674
for (auto I = Start; I != End; ++I)
1675
if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
1676
DIExpression::FragmentInfo Info = {I->getArg(1), I->getArg(0)};
1677
return Info;
1678
}
1679
return std::nullopt;
1680
}
1681
1682
std::optional<uint64_t> DIExpression::getActiveBits(DIVariable *Var) {
1683
std::optional<uint64_t> InitialActiveBits = Var->getSizeInBits();
1684
std::optional<uint64_t> ActiveBits = InitialActiveBits;
1685
for (auto Op : expr_ops()) {
1686
switch (Op.getOp()) {
1687
default:
1688
// We assume the worst case for anything we don't currently handle and
1689
// revert to the initial active bits.
1690
ActiveBits = InitialActiveBits;
1691
break;
1692
case dwarf::DW_OP_LLVM_extract_bits_zext:
1693
case dwarf::DW_OP_LLVM_extract_bits_sext: {
1694
// We can't handle an extract whose sign doesn't match that of the
1695
// variable.
1696
std::optional<DIBasicType::Signedness> VarSign = Var->getSignedness();
1697
bool VarSigned = (VarSign == DIBasicType::Signedness::Signed);
1698
bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext);
1699
if (!VarSign || VarSigned != OpSigned) {
1700
ActiveBits = InitialActiveBits;
1701
break;
1702
}
1703
[[fallthrough]];
1704
}
1705
case dwarf::DW_OP_LLVM_fragment:
1706
// Extract or fragment narrows the active bits
1707
if (ActiveBits)
1708
ActiveBits = std::min(*ActiveBits, Op.getArg(1));
1709
else
1710
ActiveBits = Op.getArg(1);
1711
break;
1712
}
1713
}
1714
return ActiveBits;
1715
}
1716
1717
void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops,
1718
int64_t Offset) {
1719
if (Offset > 0) {
1720
Ops.push_back(dwarf::DW_OP_plus_uconst);
1721
Ops.push_back(Offset);
1722
} else if (Offset < 0) {
1723
Ops.push_back(dwarf::DW_OP_constu);
1724
// Avoid UB when encountering LLONG_MIN, because in 2's complement
1725
// abs(LLONG_MIN) is LLONG_MAX+1.
1726
uint64_t AbsMinusOne = -(Offset+1);
1727
Ops.push_back(AbsMinusOne + 1);
1728
Ops.push_back(dwarf::DW_OP_minus);
1729
}
1730
}
1731
1732
bool DIExpression::extractIfOffset(int64_t &Offset) const {
1733
auto SingleLocEltsOpt = getSingleLocationExpressionElements();
1734
if (!SingleLocEltsOpt)
1735
return false;
1736
auto SingleLocElts = *SingleLocEltsOpt;
1737
1738
if (SingleLocElts.size() == 0) {
1739
Offset = 0;
1740
return true;
1741
}
1742
1743
if (SingleLocElts.size() == 2 &&
1744
SingleLocElts[0] == dwarf::DW_OP_plus_uconst) {
1745
Offset = SingleLocElts[1];
1746
return true;
1747
}
1748
1749
if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) {
1750
if (SingleLocElts[2] == dwarf::DW_OP_plus) {
1751
Offset = SingleLocElts[1];
1752
return true;
1753
}
1754
if (SingleLocElts[2] == dwarf::DW_OP_minus) {
1755
Offset = -SingleLocElts[1];
1756
return true;
1757
}
1758
}
1759
1760
return false;
1761
}
1762
1763
bool DIExpression::extractLeadingOffset(
1764
int64_t &OffsetInBytes, SmallVectorImpl<uint64_t> &RemainingOps) const {
1765
OffsetInBytes = 0;
1766
RemainingOps.clear();
1767
1768
auto SingleLocEltsOpt = getSingleLocationExpressionElements();
1769
if (!SingleLocEltsOpt)
1770
return false;
1771
1772
auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end());
1773
auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin());
1774
while (ExprOpIt != ExprOpEnd) {
1775
uint64_t Op = ExprOpIt->getOp();
1776
if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size ||
1777
Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment ||
1778
Op == dwarf::DW_OP_LLVM_extract_bits_zext ||
1779
Op == dwarf::DW_OP_LLVM_extract_bits_sext) {
1780
break;
1781
} else if (Op == dwarf::DW_OP_plus_uconst) {
1782
OffsetInBytes += ExprOpIt->getArg(0);
1783
} else if (Op == dwarf::DW_OP_constu) {
1784
uint64_t Value = ExprOpIt->getArg(0);
1785
++ExprOpIt;
1786
if (ExprOpIt->getOp() == dwarf::DW_OP_plus)
1787
OffsetInBytes += Value;
1788
else if (ExprOpIt->getOp() == dwarf::DW_OP_minus)
1789
OffsetInBytes -= Value;
1790
else
1791
return false;
1792
} else {
1793
// Not a const plus/minus operation or deref.
1794
return false;
1795
}
1796
++ExprOpIt;
1797
}
1798
RemainingOps.append(ExprOpIt.getBase(), ExprOpEnd.getBase());
1799
return true;
1800
}
1801
1802
bool DIExpression::hasAllLocationOps(unsigned N) const {
1803
SmallDenseSet<uint64_t, 4> SeenOps;
1804
for (auto ExprOp : expr_ops())
1805
if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
1806
SeenOps.insert(ExprOp.getArg(0));
1807
for (uint64_t Idx = 0; Idx < N; ++Idx)
1808
if (!SeenOps.contains(Idx))
1809
return false;
1810
return true;
1811
}
1812
1813
const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
1814
unsigned &AddrClass) {
1815
// FIXME: This seems fragile. Nothing that verifies that these elements
1816
// actually map to ops and not operands.
1817
auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements();
1818
if (!SingleLocEltsOpt)
1819
return nullptr;
1820
auto SingleLocElts = *SingleLocEltsOpt;
1821
1822
const unsigned PatternSize = 4;
1823
if (SingleLocElts.size() >= PatternSize &&
1824
SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu &&
1825
SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap &&
1826
SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) {
1827
AddrClass = SingleLocElts[PatternSize - 3];
1828
1829
if (SingleLocElts.size() == PatternSize)
1830
return nullptr;
1831
return DIExpression::get(
1832
Expr->getContext(),
1833
ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize));
1834
}
1835
return Expr;
1836
}
1837
1838
DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
1839
int64_t Offset) {
1840
SmallVector<uint64_t, 8> Ops;
1841
if (Flags & DIExpression::DerefBefore)
1842
Ops.push_back(dwarf::DW_OP_deref);
1843
1844
appendOffset(Ops, Offset);
1845
if (Flags & DIExpression::DerefAfter)
1846
Ops.push_back(dwarf::DW_OP_deref);
1847
1848
bool StackValue = Flags & DIExpression::StackValue;
1849
bool EntryValue = Flags & DIExpression::EntryValue;
1850
1851
return prependOpcodes(Expr, Ops, StackValue, EntryValue);
1852
}
1853
1854
DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr,
1855
ArrayRef<uint64_t> Ops,
1856
unsigned ArgNo, bool StackValue) {
1857
assert(Expr && "Can't add ops to this expression");
1858
1859
// Handle non-variadic intrinsics by prepending the opcodes.
1860
if (!any_of(Expr->expr_ops(),
1861
[](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
1862
assert(ArgNo == 0 &&
1863
"Location Index must be 0 for a non-variadic expression.");
1864
SmallVector<uint64_t, 8> NewOps(Ops.begin(), Ops.end());
1865
return DIExpression::prependOpcodes(Expr, NewOps, StackValue);
1866
}
1867
1868
SmallVector<uint64_t, 8> NewOps;
1869
for (auto Op : Expr->expr_ops()) {
1870
// A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1871
if (StackValue) {
1872
if (Op.getOp() == dwarf::DW_OP_stack_value)
1873
StackValue = false;
1874
else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1875
NewOps.push_back(dwarf::DW_OP_stack_value);
1876
StackValue = false;
1877
}
1878
}
1879
Op.appendToVector(NewOps);
1880
if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(0) == ArgNo)
1881
NewOps.insert(NewOps.end(), Ops.begin(), Ops.end());
1882
}
1883
if (StackValue)
1884
NewOps.push_back(dwarf::DW_OP_stack_value);
1885
1886
return DIExpression::get(Expr->getContext(), NewOps);
1887
}
1888
1889
DIExpression *DIExpression::replaceArg(const DIExpression *Expr,
1890
uint64_t OldArg, uint64_t NewArg) {
1891
assert(Expr && "Can't replace args in this expression");
1892
1893
SmallVector<uint64_t, 8> NewOps;
1894
1895
for (auto Op : Expr->expr_ops()) {
1896
if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(0) < OldArg) {
1897
Op.appendToVector(NewOps);
1898
continue;
1899
}
1900
NewOps.push_back(dwarf::DW_OP_LLVM_arg);
1901
uint64_t Arg = Op.getArg(0) == OldArg ? NewArg : Op.getArg(0);
1902
// OldArg has been deleted from the Op list, so decrement all indices
1903
// greater than it.
1904
if (Arg > OldArg)
1905
--Arg;
1906
NewOps.push_back(Arg);
1907
}
1908
return DIExpression::get(Expr->getContext(), NewOps);
1909
}
1910
1911
DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
1912
SmallVectorImpl<uint64_t> &Ops,
1913
bool StackValue, bool EntryValue) {
1914
assert(Expr && "Can't prepend ops to this expression");
1915
1916
if (EntryValue) {
1917
Ops.push_back(dwarf::DW_OP_LLVM_entry_value);
1918
// Use a block size of 1 for the target register operand. The
1919
// DWARF backend currently cannot emit entry values with a block
1920
// size > 1.
1921
Ops.push_back(1);
1922
}
1923
1924
// If there are no ops to prepend, do not even add the DW_OP_stack_value.
1925
if (Ops.empty())
1926
StackValue = false;
1927
for (auto Op : Expr->expr_ops()) {
1928
// A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1929
if (StackValue) {
1930
if (Op.getOp() == dwarf::DW_OP_stack_value)
1931
StackValue = false;
1932
else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1933
Ops.push_back(dwarf::DW_OP_stack_value);
1934
StackValue = false;
1935
}
1936
}
1937
Op.appendToVector(Ops);
1938
}
1939
if (StackValue)
1940
Ops.push_back(dwarf::DW_OP_stack_value);
1941
return DIExpression::get(Expr->getContext(), Ops);
1942
}
1943
1944
DIExpression *DIExpression::append(const DIExpression *Expr,
1945
ArrayRef<uint64_t> Ops) {
1946
assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1947
1948
// Copy Expr's current op list.
1949
SmallVector<uint64_t, 16> NewOps;
1950
for (auto Op : Expr->expr_ops()) {
1951
// Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
1952
if (Op.getOp() == dwarf::DW_OP_stack_value ||
1953
Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1954
NewOps.append(Ops.begin(), Ops.end());
1955
1956
// Ensure that the new opcodes are only appended once.
1957
Ops = std::nullopt;
1958
}
1959
Op.appendToVector(NewOps);
1960
}
1961
NewOps.append(Ops.begin(), Ops.end());
1962
auto *result =
1963
DIExpression::get(Expr->getContext(), NewOps)->foldConstantMath();
1964
assert(result->isValid() && "concatenated expression is not valid");
1965
return result;
1966
}
1967
1968
DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
1969
ArrayRef<uint64_t> Ops) {
1970
assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1971
assert(std::none_of(expr_op_iterator(Ops.begin()),
1972
expr_op_iterator(Ops.end()),
1973
[](auto Op) {
1974
return Op.getOp() == dwarf::DW_OP_stack_value ||
1975
Op.getOp() == dwarf::DW_OP_LLVM_fragment;
1976
}) &&
1977
"Can't append this op");
1978
1979
// Append a DW_OP_deref after Expr's current op list if it's non-empty and
1980
// has no DW_OP_stack_value.
1981
//
1982
// Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
1983
std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
1984
unsigned DropUntilStackValue = FI ? 3 : 0;
1985
ArrayRef<uint64_t> ExprOpsBeforeFragment =
1986
Expr->getElements().drop_back(DropUntilStackValue);
1987
bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
1988
(ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
1989
bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
1990
1991
// Append a DW_OP_deref after Expr's current op list if needed, then append
1992
// the new ops, and finally ensure that a single DW_OP_stack_value is present.
1993
SmallVector<uint64_t, 16> NewOps;
1994
if (NeedsDeref)
1995
NewOps.push_back(dwarf::DW_OP_deref);
1996
NewOps.append(Ops.begin(), Ops.end());
1997
if (NeedsStackValue)
1998
NewOps.push_back(dwarf::DW_OP_stack_value);
1999
return DIExpression::append(Expr, NewOps);
2000
}
2001
2002
std::optional<DIExpression *> DIExpression::createFragmentExpression(
2003
const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
2004
SmallVector<uint64_t, 8> Ops;
2005
// Track whether it's safe to split the value at the top of the DWARF stack,
2006
// assuming that it'll be used as an implicit location value.
2007
bool CanSplitValue = true;
2008
// Track whether we need to add a fragment expression to the end of Expr.
2009
bool EmitFragment = true;
2010
// Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
2011
if (Expr) {
2012
for (auto Op : Expr->expr_ops()) {
2013
switch (Op.getOp()) {
2014
default:
2015
break;
2016
case dwarf::DW_OP_shr:
2017
case dwarf::DW_OP_shra:
2018
case dwarf::DW_OP_shl:
2019
case dwarf::DW_OP_plus:
2020
case dwarf::DW_OP_plus_uconst:
2021
case dwarf::DW_OP_minus:
2022
// We can't safely split arithmetic or shift operations into multiple
2023
// fragments because we can't express carry-over between fragments.
2024
//
2025
// FIXME: We *could* preserve the lowest fragment of a constant offset
2026
// operation if the offset fits into SizeInBits.
2027
CanSplitValue = false;
2028
break;
2029
case dwarf::DW_OP_deref:
2030
case dwarf::DW_OP_deref_size:
2031
case dwarf::DW_OP_deref_type:
2032
case dwarf::DW_OP_xderef:
2033
case dwarf::DW_OP_xderef_size:
2034
case dwarf::DW_OP_xderef_type:
2035
// Preceeding arithmetic operations have been applied to compute an
2036
// address. It's okay to split the value loaded from that address.
2037
CanSplitValue = true;
2038
break;
2039
case dwarf::DW_OP_stack_value:
2040
// Bail if this expression computes a value that cannot be split.
2041
if (!CanSplitValue)
2042
return std::nullopt;
2043
break;
2044
case dwarf::DW_OP_LLVM_fragment: {
2045
// If we've decided we don't need a fragment then give up if we see that
2046
// there's already a fragment expression.
2047
// FIXME: We could probably do better here
2048
if (!EmitFragment)
2049
return std::nullopt;
2050
// Make the new offset point into the existing fragment.
2051
uint64_t FragmentOffsetInBits = Op.getArg(0);
2052
uint64_t FragmentSizeInBits = Op.getArg(1);
2053
(void)FragmentSizeInBits;
2054
assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
2055
"new fragment outside of original fragment");
2056
OffsetInBits += FragmentOffsetInBits;
2057
continue;
2058
}
2059
case dwarf::DW_OP_LLVM_extract_bits_zext:
2060
case dwarf::DW_OP_LLVM_extract_bits_sext: {
2061
// If we're extracting bits from inside of the fragment that we're
2062
// creating then we don't have a fragment after all, and just need to
2063
// adjust the offset that we're extracting from.
2064
uint64_t ExtractOffsetInBits = Op.getArg(0);
2065
uint64_t ExtractSizeInBits = Op.getArg(1);
2066
if (ExtractOffsetInBits >= OffsetInBits &&
2067
ExtractOffsetInBits + ExtractSizeInBits <=
2068
OffsetInBits + SizeInBits) {
2069
Ops.push_back(Op.getOp());
2070
Ops.push_back(ExtractOffsetInBits - OffsetInBits);
2071
Ops.push_back(ExtractSizeInBits);
2072
EmitFragment = false;
2073
continue;
2074
}
2075
// If the extracted bits aren't fully contained within the fragment then
2076
// give up.
2077
// FIXME: We could probably do better here
2078
return std::nullopt;
2079
}
2080
}
2081
Op.appendToVector(Ops);
2082
}
2083
}
2084
assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
2085
assert(Expr && "Unknown DIExpression");
2086
if (EmitFragment) {
2087
Ops.push_back(dwarf::DW_OP_LLVM_fragment);
2088
Ops.push_back(OffsetInBits);
2089
Ops.push_back(SizeInBits);
2090
}
2091
return DIExpression::get(Expr->getContext(), Ops);
2092
}
2093
2094
/// See declaration for more info.
2095
bool DIExpression::calculateFragmentIntersect(
2096
const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits,
2097
uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits,
2098
int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag,
2099
std::optional<DIExpression::FragmentInfo> &Result,
2100
int64_t &OffsetFromLocationInBits) {
2101
2102
if (VarFrag.SizeInBits == 0)
2103
return false; // Variable size is unknown.
2104
2105
// Difference between mem slice start and the dbg location start.
2106
// 0 4 8 12 16 ...
2107
// | |
2108
// dbg location start
2109
// |
2110
// mem slice start
2111
// Here MemStartRelToDbgStartInBits is 8. Note this can be negative.
2112
int64_t MemStartRelToDbgStartInBits;
2113
{
2114
auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(DbgPtr, DL);
2115
if (!MemOffsetFromDbgInBytes)
2116
return false; // Can't calculate difference in addresses.
2117
// Difference between the pointers.
2118
MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8;
2119
// Add the difference of the offsets.
2120
MemStartRelToDbgStartInBits +=
2121
SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits);
2122
}
2123
2124
// Out-param. Invert offset to get offset from debug location.
2125
OffsetFromLocationInBits = -MemStartRelToDbgStartInBits;
2126
2127
// Check if the variable fragment sits outside (before) this memory slice.
2128
int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits;
2129
if (MemEndRelToDbgStart < 0) {
2130
Result = {0, 0}; // Out-param.
2131
return true;
2132
}
2133
2134
// Work towards creating SliceOfVariable which is the bits of the variable
2135
// that the memory region covers.
2136
// 0 4 8 12 16 ...
2137
// | |
2138
// dbg location start with VarFrag offset=32
2139
// |
2140
// mem slice start: SliceOfVariable offset=40
2141
int64_t MemStartRelToVarInBits =
2142
MemStartRelToDbgStartInBits + VarFrag.OffsetInBits;
2143
int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits;
2144
// If the memory region starts before the debug location the fragment
2145
// offset would be negative, which we can't encode. Limit those to 0. This
2146
// is fine because those bits necessarily don't overlap with the existing
2147
// variable fragment.
2148
int64_t MemFragStart = std::max<int64_t>(0, MemStartRelToVarInBits);
2149
int64_t MemFragSize =
2150
std::max<int64_t>(0, MemEndRelToVarInBits - MemFragStart);
2151
DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart);
2152
2153
// Intersect the memory region fragment with the variable location fragment.
2154
DIExpression::FragmentInfo TrimmedSliceOfVariable =
2155
DIExpression::FragmentInfo::intersect(SliceOfVariable, VarFrag);
2156
if (TrimmedSliceOfVariable == VarFrag)
2157
Result = std::nullopt; // Out-param.
2158
else
2159
Result = TrimmedSliceOfVariable; // Out-param.
2160
return true;
2161
}
2162
2163
std::pair<DIExpression *, const ConstantInt *>
2164
DIExpression::constantFold(const ConstantInt *CI) {
2165
// Copy the APInt so we can modify it.
2166
APInt NewInt = CI->getValue();
2167
SmallVector<uint64_t, 8> Ops;
2168
2169
// Fold operators only at the beginning of the expression.
2170
bool First = true;
2171
bool Changed = false;
2172
for (auto Op : expr_ops()) {
2173
switch (Op.getOp()) {
2174
default:
2175
// We fold only the leading part of the expression; if we get to a part
2176
// that we're going to copy unchanged, and haven't done any folding,
2177
// then the entire expression is unchanged and we can return early.
2178
if (!Changed)
2179
return {this, CI};
2180
First = false;
2181
break;
2182
case dwarf::DW_OP_LLVM_convert:
2183
if (!First)
2184
break;
2185
Changed = true;
2186
if (Op.getArg(1) == dwarf::DW_ATE_signed)
2187
NewInt = NewInt.sextOrTrunc(Op.getArg(0));
2188
else {
2189
assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
2190
NewInt = NewInt.zextOrTrunc(Op.getArg(0));
2191
}
2192
continue;
2193
}
2194
Op.appendToVector(Ops);
2195
}
2196
if (!Changed)
2197
return {this, CI};
2198
return {DIExpression::get(getContext(), Ops),
2199
ConstantInt::get(getContext(), NewInt)};
2200
}
2201
2202
uint64_t DIExpression::getNumLocationOperands() const {
2203
uint64_t Result = 0;
2204
for (auto ExprOp : expr_ops())
2205
if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2206
Result = std::max(Result, ExprOp.getArg(0) + 1);
2207
assert(hasAllLocationOps(Result) &&
2208
"Expression is missing one or more location operands.");
2209
return Result;
2210
}
2211
2212
std::optional<DIExpression::SignedOrUnsignedConstant>
2213
DIExpression::isConstant() const {
2214
2215
// Recognize signed and unsigned constants.
2216
// An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
2217
// (DW_OP_LLVM_fragment of Len).
2218
// An unsigned constant can be represented as
2219
// DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
2220
2221
if ((getNumElements() != 2 && getNumElements() != 3 &&
2222
getNumElements() != 6) ||
2223
(getElement(0) != dwarf::DW_OP_consts &&
2224
getElement(0) != dwarf::DW_OP_constu))
2225
return std::nullopt;
2226
2227
if (getNumElements() == 2 && getElement(0) == dwarf::DW_OP_consts)
2228
return SignedOrUnsignedConstant::SignedConstant;
2229
2230
if ((getNumElements() == 3 && getElement(2) != dwarf::DW_OP_stack_value) ||
2231
(getNumElements() == 6 && (getElement(2) != dwarf::DW_OP_stack_value ||
2232
getElement(3) != dwarf::DW_OP_LLVM_fragment)))
2233
return std::nullopt;
2234
return getElement(0) == dwarf::DW_OP_constu
2235
? SignedOrUnsignedConstant::UnsignedConstant
2236
: SignedOrUnsignedConstant::SignedConstant;
2237
}
2238
2239
DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
2240
bool Signed) {
2241
dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
2242
DIExpression::ExtOps Ops{{dwarf::DW_OP_LLVM_convert, FromSize, TK,
2243
dwarf::DW_OP_LLVM_convert, ToSize, TK}};
2244
return Ops;
2245
}
2246
2247
DIExpression *DIExpression::appendExt(const DIExpression *Expr,
2248
unsigned FromSize, unsigned ToSize,
2249
bool Signed) {
2250
return appendToStack(Expr, getExtOps(FromSize, ToSize, Signed));
2251
}
2252
2253
DIGlobalVariableExpression *
2254
DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
2255
Metadata *Expression, StorageType Storage,
2256
bool ShouldCreate) {
2257
DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression));
2258
Metadata *Ops[] = {Variable, Expression};
2259
DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops);
2260
}
2261
DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
2262
unsigned Line, unsigned Attributes,
2263
ArrayRef<Metadata *> Ops)
2264
: DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
2265
Line(Line), Attributes(Attributes) {}
2266
2267
DIObjCProperty *DIObjCProperty::getImpl(
2268
LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
2269
MDString *GetterName, MDString *SetterName, unsigned Attributes,
2270
Metadata *Type, StorageType Storage, bool ShouldCreate) {
2271
assert(isCanonical(Name) && "Expected canonical MDString");
2272
assert(isCanonical(GetterName) && "Expected canonical MDString");
2273
assert(isCanonical(SetterName) && "Expected canonical MDString");
2274
DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
2275
SetterName, Attributes, Type));
2276
Metadata *Ops[] = {Name, File, GetterName, SetterName, Type};
2277
DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
2278
}
2279
2280
DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
2281
Metadata *Scope, Metadata *Entity,
2282
Metadata *File, unsigned Line,
2283
MDString *Name, Metadata *Elements,
2284
StorageType Storage,
2285
bool ShouldCreate) {
2286
assert(isCanonical(Name) && "Expected canonical MDString");
2287
DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
2288
(Tag, Scope, Entity, File, Line, Name, Elements));
2289
Metadata *Ops[] = {Scope, Entity, Name, File, Elements};
2290
DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
2291
}
2292
2293
DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
2294
MDString *Name, MDString *Value, StorageType Storage,
2295
bool ShouldCreate) {
2296
assert(isCanonical(Name) && "Expected canonical MDString");
2297
DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value));
2298
Metadata *Ops[] = {Name, Value};
2299
DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
2300
}
2301
2302
DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
2303
unsigned Line, Metadata *File,
2304
Metadata *Elements, StorageType Storage,
2305
bool ShouldCreate) {
2306
DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements));
2307
Metadata *Ops[] = {File, Elements};
2308
DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
2309
}
2310
2311
DIArgList *DIArgList::get(LLVMContext &Context,
2312
ArrayRef<ValueAsMetadata *> Args) {
2313
auto ExistingIt = Context.pImpl->DIArgLists.find_as(DIArgListKeyInfo(Args));
2314
if (ExistingIt != Context.pImpl->DIArgLists.end())
2315
return *ExistingIt;
2316
DIArgList *NewArgList = new DIArgList(Context, Args);
2317
Context.pImpl->DIArgLists.insert(NewArgList);
2318
return NewArgList;
2319
}
2320
2321
void DIArgList::handleChangedOperand(void *Ref, Metadata *New) {
2322
ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
2323
assert((!New || isa<ValueAsMetadata>(New)) &&
2324
"DIArgList must be passed a ValueAsMetadata");
2325
untrack();
2326
// We need to update the set storage once the Args are updated since they
2327
// form the key to the DIArgLists store.
2328
getContext().pImpl->DIArgLists.erase(this);
2329
ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(New);
2330
for (ValueAsMetadata *&VM : Args) {
2331
if (&VM == OldVMPtr) {
2332
if (NewVM)
2333
VM = NewVM;
2334
else
2335
VM = ValueAsMetadata::get(PoisonValue::get(VM->getValue()->getType()));
2336
}
2337
}
2338
// We've changed the contents of this DIArgList, and the set storage may
2339
// already contain a DIArgList with our new set of args; if it does, then we
2340
// must RAUW this with the existing DIArgList, otherwise we simply insert this
2341
// back into the set storage.
2342
DIArgList *ExistingArgList = getUniqued(getContext().pImpl->DIArgLists, this);
2343
if (ExistingArgList) {
2344
replaceAllUsesWith(ExistingArgList);
2345
// Clear this here so we don't try to untrack in the destructor.
2346
Args.clear();
2347
delete this;
2348
return;
2349
}
2350
getContext().pImpl->DIArgLists.insert(this);
2351
track();
2352
}
2353
void DIArgList::track() {
2354
for (ValueAsMetadata *&VAM : Args)
2355
if (VAM)
2356
MetadataTracking::track(&VAM, *VAM, *this);
2357
}
2358
void DIArgList::untrack() {
2359
for (ValueAsMetadata *&VAM : Args)
2360
if (VAM)
2361
MetadataTracking::untrack(&VAM, *VAM);
2362
}
2363
void DIArgList::dropAllReferences(bool Untrack) {
2364
if (Untrack)
2365
untrack();
2366
Args.clear();
2367
ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
2368
}
2369
2370