Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/IR/Instructions.cpp
35234 views
1
//===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements all of the non-inline methods for the LLVM instruction
10
// classes.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/IR/Instructions.h"
15
#include "LLVMContextImpl.h"
16
#include "llvm/ADT/SmallBitVector.h"
17
#include "llvm/ADT/SmallVector.h"
18
#include "llvm/ADT/Twine.h"
19
#include "llvm/IR/Attributes.h"
20
#include "llvm/IR/BasicBlock.h"
21
#include "llvm/IR/Constant.h"
22
#include "llvm/IR/ConstantRange.h"
23
#include "llvm/IR/Constants.h"
24
#include "llvm/IR/DataLayout.h"
25
#include "llvm/IR/DerivedTypes.h"
26
#include "llvm/IR/Function.h"
27
#include "llvm/IR/InstrTypes.h"
28
#include "llvm/IR/Instruction.h"
29
#include "llvm/IR/Intrinsics.h"
30
#include "llvm/IR/LLVMContext.h"
31
#include "llvm/IR/MDBuilder.h"
32
#include "llvm/IR/Metadata.h"
33
#include "llvm/IR/Module.h"
34
#include "llvm/IR/Operator.h"
35
#include "llvm/IR/ProfDataUtils.h"
36
#include "llvm/IR/Type.h"
37
#include "llvm/IR/Value.h"
38
#include "llvm/Support/AtomicOrdering.h"
39
#include "llvm/Support/Casting.h"
40
#include "llvm/Support/CheckedArithmetic.h"
41
#include "llvm/Support/ErrorHandling.h"
42
#include "llvm/Support/MathExtras.h"
43
#include "llvm/Support/ModRef.h"
44
#include "llvm/Support/TypeSize.h"
45
#include <algorithm>
46
#include <cassert>
47
#include <cstdint>
48
#include <optional>
49
#include <vector>
50
51
using namespace llvm;
52
53
static cl::opt<bool> DisableI2pP2iOpt(
54
"disable-i2p-p2i-opt", cl::init(false),
55
cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
56
57
//===----------------------------------------------------------------------===//
58
// AllocaInst Class
59
//===----------------------------------------------------------------------===//
60
61
std::optional<TypeSize>
62
AllocaInst::getAllocationSize(const DataLayout &DL) const {
63
TypeSize Size = DL.getTypeAllocSize(getAllocatedType());
64
if (isArrayAllocation()) {
65
auto *C = dyn_cast<ConstantInt>(getArraySize());
66
if (!C)
67
return std::nullopt;
68
assert(!Size.isScalable() && "Array elements cannot have a scalable size");
69
auto CheckedProd =
70
checkedMulUnsigned(Size.getKnownMinValue(), C->getZExtValue());
71
if (!CheckedProd)
72
return std::nullopt;
73
return TypeSize::getFixed(*CheckedProd);
74
}
75
return Size;
76
}
77
78
std::optional<TypeSize>
79
AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
80
std::optional<TypeSize> Size = getAllocationSize(DL);
81
if (!Size)
82
return std::nullopt;
83
auto CheckedProd = checkedMulUnsigned(Size->getKnownMinValue(),
84
static_cast<TypeSize::ScalarTy>(8));
85
if (!CheckedProd)
86
return std::nullopt;
87
return TypeSize::get(*CheckedProd, Size->isScalable());
88
}
89
90
//===----------------------------------------------------------------------===//
91
// SelectInst Class
92
//===----------------------------------------------------------------------===//
93
94
/// areInvalidOperands - Return a string if the specified operands are invalid
95
/// for a select operation, otherwise return null.
96
const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
97
if (Op1->getType() != Op2->getType())
98
return "both values to select must have same type";
99
100
if (Op1->getType()->isTokenTy())
101
return "select values cannot have token type";
102
103
if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
104
// Vector select.
105
if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
106
return "vector select condition element type must be i1";
107
VectorType *ET = dyn_cast<VectorType>(Op1->getType());
108
if (!ET)
109
return "selected values for vector select must be vectors";
110
if (ET->getElementCount() != VT->getElementCount())
111
return "vector select requires selected vectors to have "
112
"the same vector length as select condition";
113
} else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
114
return "select condition must be i1 or <n x i1>";
115
}
116
return nullptr;
117
}
118
119
//===----------------------------------------------------------------------===//
120
// PHINode Class
121
//===----------------------------------------------------------------------===//
122
123
PHINode::PHINode(const PHINode &PN)
124
: Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
125
ReservedSpace(PN.getNumOperands()) {
126
allocHungoffUses(PN.getNumOperands());
127
std::copy(PN.op_begin(), PN.op_end(), op_begin());
128
copyIncomingBlocks(make_range(PN.block_begin(), PN.block_end()));
129
SubclassOptionalData = PN.SubclassOptionalData;
130
}
131
132
// removeIncomingValue - Remove an incoming value. This is useful if a
133
// predecessor basic block is deleted.
134
Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
135
Value *Removed = getIncomingValue(Idx);
136
137
// Move everything after this operand down.
138
//
139
// FIXME: we could just swap with the end of the list, then erase. However,
140
// clients might not expect this to happen. The code as it is thrashes the
141
// use/def lists, which is kinda lame.
142
std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
143
copyIncomingBlocks(drop_begin(blocks(), Idx + 1), Idx);
144
145
// Nuke the last value.
146
Op<-1>().set(nullptr);
147
setNumHungOffUseOperands(getNumOperands() - 1);
148
149
// If the PHI node is dead, because it has zero entries, nuke it now.
150
if (getNumOperands() == 0 && DeletePHIIfEmpty) {
151
// If anyone is using this PHI, make them use a dummy value instead...
152
replaceAllUsesWith(PoisonValue::get(getType()));
153
eraseFromParent();
154
}
155
return Removed;
156
}
157
158
void PHINode::removeIncomingValueIf(function_ref<bool(unsigned)> Predicate,
159
bool DeletePHIIfEmpty) {
160
SmallDenseSet<unsigned> RemoveIndices;
161
for (unsigned Idx = 0; Idx < getNumIncomingValues(); ++Idx)
162
if (Predicate(Idx))
163
RemoveIndices.insert(Idx);
164
165
if (RemoveIndices.empty())
166
return;
167
168
// Remove operands.
169
auto NewOpEnd = remove_if(operands(), [&](Use &U) {
170
return RemoveIndices.contains(U.getOperandNo());
171
});
172
for (Use &U : make_range(NewOpEnd, op_end()))
173
U.set(nullptr);
174
175
// Remove incoming blocks.
176
(void)std::remove_if(const_cast<block_iterator>(block_begin()),
177
const_cast<block_iterator>(block_end()), [&](BasicBlock *&BB) {
178
return RemoveIndices.contains(&BB - block_begin());
179
});
180
181
setNumHungOffUseOperands(getNumOperands() - RemoveIndices.size());
182
183
// If the PHI node is dead, because it has zero entries, nuke it now.
184
if (getNumOperands() == 0 && DeletePHIIfEmpty) {
185
// If anyone is using this PHI, make them use a dummy value instead...
186
replaceAllUsesWith(PoisonValue::get(getType()));
187
eraseFromParent();
188
}
189
}
190
191
/// growOperands - grow operands - This grows the operand list in response
192
/// to a push_back style of operation. This grows the number of ops by 1.5
193
/// times.
194
///
195
void PHINode::growOperands() {
196
unsigned e = getNumOperands();
197
unsigned NumOps = e + e / 2;
198
if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
199
200
ReservedSpace = NumOps;
201
growHungoffUses(ReservedSpace, /* IsPhi */ true);
202
}
203
204
/// hasConstantValue - If the specified PHI node always merges together the same
205
/// value, return the value, otherwise return null.
206
Value *PHINode::hasConstantValue() const {
207
// Exploit the fact that phi nodes always have at least one entry.
208
Value *ConstantValue = getIncomingValue(0);
209
for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
210
if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
211
if (ConstantValue != this)
212
return nullptr; // Incoming values not all the same.
213
// The case where the first value is this PHI.
214
ConstantValue = getIncomingValue(i);
215
}
216
if (ConstantValue == this)
217
return PoisonValue::get(getType());
218
return ConstantValue;
219
}
220
221
/// hasConstantOrUndefValue - Whether the specified PHI node always merges
222
/// together the same value, assuming that undefs result in the same value as
223
/// non-undefs.
224
/// Unlike \ref hasConstantValue, this does not return a value because the
225
/// unique non-undef incoming value need not dominate the PHI node.
226
bool PHINode::hasConstantOrUndefValue() const {
227
Value *ConstantValue = nullptr;
228
for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
229
Value *Incoming = getIncomingValue(i);
230
if (Incoming != this && !isa<UndefValue>(Incoming)) {
231
if (ConstantValue && ConstantValue != Incoming)
232
return false;
233
ConstantValue = Incoming;
234
}
235
}
236
return true;
237
}
238
239
//===----------------------------------------------------------------------===//
240
// LandingPadInst Implementation
241
//===----------------------------------------------------------------------===//
242
243
LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
244
const Twine &NameStr,
245
InsertPosition InsertBefore)
246
: Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
247
init(NumReservedValues, NameStr);
248
}
249
250
LandingPadInst::LandingPadInst(const LandingPadInst &LP)
251
: Instruction(LP.getType(), Instruction::LandingPad, nullptr,
252
LP.getNumOperands()),
253
ReservedSpace(LP.getNumOperands()) {
254
allocHungoffUses(LP.getNumOperands());
255
Use *OL = getOperandList();
256
const Use *InOL = LP.getOperandList();
257
for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
258
OL[I] = InOL[I];
259
260
setCleanup(LP.isCleanup());
261
}
262
263
LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
264
const Twine &NameStr,
265
InsertPosition InsertBefore) {
266
return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
267
}
268
269
void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
270
ReservedSpace = NumReservedValues;
271
setNumHungOffUseOperands(0);
272
allocHungoffUses(ReservedSpace);
273
setName(NameStr);
274
setCleanup(false);
275
}
276
277
/// growOperands - grow operands - This grows the operand list in response to a
278
/// push_back style of operation. This grows the number of ops by 2 times.
279
void LandingPadInst::growOperands(unsigned Size) {
280
unsigned e = getNumOperands();
281
if (ReservedSpace >= e + Size) return;
282
ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
283
growHungoffUses(ReservedSpace);
284
}
285
286
void LandingPadInst::addClause(Constant *Val) {
287
unsigned OpNo = getNumOperands();
288
growOperands(1);
289
assert(OpNo < ReservedSpace && "Growing didn't work!");
290
setNumHungOffUseOperands(getNumOperands() + 1);
291
getOperandList()[OpNo] = Val;
292
}
293
294
//===----------------------------------------------------------------------===//
295
// CallBase Implementation
296
//===----------------------------------------------------------------------===//
297
298
CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
299
InsertPosition InsertPt) {
300
switch (CB->getOpcode()) {
301
case Instruction::Call:
302
return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
303
case Instruction::Invoke:
304
return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
305
case Instruction::CallBr:
306
return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
307
default:
308
llvm_unreachable("Unknown CallBase sub-class!");
309
}
310
}
311
312
CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
313
InsertPosition InsertPt) {
314
SmallVector<OperandBundleDef, 2> OpDefs;
315
for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
316
auto ChildOB = CI->getOperandBundleAt(i);
317
if (ChildOB.getTagName() != OpB.getTag())
318
OpDefs.emplace_back(ChildOB);
319
}
320
OpDefs.emplace_back(OpB);
321
return CallBase::Create(CI, OpDefs, InsertPt);
322
}
323
324
Function *CallBase::getCaller() { return getParent()->getParent(); }
325
326
unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
327
assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
328
return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
329
}
330
331
bool CallBase::isIndirectCall() const {
332
const Value *V = getCalledOperand();
333
if (isa<Function>(V) || isa<Constant>(V))
334
return false;
335
return !isInlineAsm();
336
}
337
338
/// Tests if this call site must be tail call optimized. Only a CallInst can
339
/// be tail call optimized.
340
bool CallBase::isMustTailCall() const {
341
if (auto *CI = dyn_cast<CallInst>(this))
342
return CI->isMustTailCall();
343
return false;
344
}
345
346
/// Tests if this call site is marked as a tail call.
347
bool CallBase::isTailCall() const {
348
if (auto *CI = dyn_cast<CallInst>(this))
349
return CI->isTailCall();
350
return false;
351
}
352
353
Intrinsic::ID CallBase::getIntrinsicID() const {
354
if (auto *F = getCalledFunction())
355
return F->getIntrinsicID();
356
return Intrinsic::not_intrinsic;
357
}
358
359
FPClassTest CallBase::getRetNoFPClass() const {
360
FPClassTest Mask = Attrs.getRetNoFPClass();
361
362
if (const Function *F = getCalledFunction())
363
Mask |= F->getAttributes().getRetNoFPClass();
364
return Mask;
365
}
366
367
FPClassTest CallBase::getParamNoFPClass(unsigned i) const {
368
FPClassTest Mask = Attrs.getParamNoFPClass(i);
369
370
if (const Function *F = getCalledFunction())
371
Mask |= F->getAttributes().getParamNoFPClass(i);
372
return Mask;
373
}
374
375
std::optional<ConstantRange> CallBase::getRange() const {
376
const Attribute RangeAttr = getRetAttr(llvm::Attribute::Range);
377
if (RangeAttr.isValid())
378
return RangeAttr.getRange();
379
return std::nullopt;
380
}
381
382
bool CallBase::isReturnNonNull() const {
383
if (hasRetAttr(Attribute::NonNull))
384
return true;
385
386
if (getRetDereferenceableBytes() > 0 &&
387
!NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
388
return true;
389
390
return false;
391
}
392
393
Value *CallBase::getArgOperandWithAttribute(Attribute::AttrKind Kind) const {
394
unsigned Index;
395
396
if (Attrs.hasAttrSomewhere(Kind, &Index))
397
return getArgOperand(Index - AttributeList::FirstArgIndex);
398
if (const Function *F = getCalledFunction())
399
if (F->getAttributes().hasAttrSomewhere(Kind, &Index))
400
return getArgOperand(Index - AttributeList::FirstArgIndex);
401
402
return nullptr;
403
}
404
405
/// Determine whether the argument or parameter has the given attribute.
406
bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
407
assert(ArgNo < arg_size() && "Param index out of bounds!");
408
409
if (Attrs.hasParamAttr(ArgNo, Kind))
410
return true;
411
412
const Function *F = getCalledFunction();
413
if (!F)
414
return false;
415
416
if (!F->getAttributes().hasParamAttr(ArgNo, Kind))
417
return false;
418
419
// Take into account mod/ref by operand bundles.
420
switch (Kind) {
421
case Attribute::ReadNone:
422
return !hasReadingOperandBundles() && !hasClobberingOperandBundles();
423
case Attribute::ReadOnly:
424
return !hasClobberingOperandBundles();
425
case Attribute::WriteOnly:
426
return !hasReadingOperandBundles();
427
default:
428
return true;
429
}
430
}
431
432
bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
433
if (auto *F = dyn_cast<Function>(getCalledOperand()))
434
return F->getAttributes().hasFnAttr(Kind);
435
436
return false;
437
}
438
439
bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
440
if (auto *F = dyn_cast<Function>(getCalledOperand()))
441
return F->getAttributes().hasFnAttr(Kind);
442
443
return false;
444
}
445
446
template <typename AK>
447
Attribute CallBase::getFnAttrOnCalledFunction(AK Kind) const {
448
if constexpr (std::is_same_v<AK, Attribute::AttrKind>) {
449
// getMemoryEffects() correctly combines memory effects from the call-site,
450
// operand bundles and function.
451
assert(Kind != Attribute::Memory && "Use getMemoryEffects() instead");
452
}
453
454
if (auto *F = dyn_cast<Function>(getCalledOperand()))
455
return F->getAttributes().getFnAttr(Kind);
456
457
return Attribute();
458
}
459
460
template Attribute
461
CallBase::getFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
462
template Attribute CallBase::getFnAttrOnCalledFunction(StringRef Kind) const;
463
464
template <typename AK>
465
Attribute CallBase::getParamAttrOnCalledFunction(unsigned ArgNo,
466
AK Kind) const {
467
Value *V = getCalledOperand();
468
469
if (auto *F = dyn_cast<Function>(V))
470
return F->getAttributes().getParamAttr(ArgNo, Kind);
471
472
return Attribute();
473
}
474
template Attribute
475
CallBase::getParamAttrOnCalledFunction(unsigned ArgNo,
476
Attribute::AttrKind Kind) const;
477
template Attribute CallBase::getParamAttrOnCalledFunction(unsigned ArgNo,
478
StringRef Kind) const;
479
480
void CallBase::getOperandBundlesAsDefs(
481
SmallVectorImpl<OperandBundleDef> &Defs) const {
482
for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
483
Defs.emplace_back(getOperandBundleAt(i));
484
}
485
486
CallBase::op_iterator
487
CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
488
const unsigned BeginIndex) {
489
auto It = op_begin() + BeginIndex;
490
for (auto &B : Bundles)
491
It = std::copy(B.input_begin(), B.input_end(), It);
492
493
auto *ContextImpl = getContext().pImpl;
494
auto BI = Bundles.begin();
495
unsigned CurrentIndex = BeginIndex;
496
497
for (auto &BOI : bundle_op_infos()) {
498
assert(BI != Bundles.end() && "Incorrect allocation?");
499
500
BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
501
BOI.Begin = CurrentIndex;
502
BOI.End = CurrentIndex + BI->input_size();
503
CurrentIndex = BOI.End;
504
BI++;
505
}
506
507
assert(BI == Bundles.end() && "Incorrect allocation?");
508
509
return It;
510
}
511
512
CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
513
/// When there isn't many bundles, we do a simple linear search.
514
/// Else fallback to a binary-search that use the fact that bundles usually
515
/// have similar number of argument to get faster convergence.
516
if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
517
for (auto &BOI : bundle_op_infos())
518
if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
519
return BOI;
520
521
llvm_unreachable("Did not find operand bundle for operand!");
522
}
523
524
assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
525
assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
526
OpIdx < std::prev(bundle_op_info_end())->End &&
527
"The Idx isn't in the operand bundle");
528
529
/// We need a decimal number below and to prevent using floating point numbers
530
/// we use an intergal value multiplied by this constant.
531
constexpr unsigned NumberScaling = 1024;
532
533
bundle_op_iterator Begin = bundle_op_info_begin();
534
bundle_op_iterator End = bundle_op_info_end();
535
bundle_op_iterator Current = Begin;
536
537
while (Begin != End) {
538
unsigned ScaledOperandPerBundle =
539
NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
540
Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
541
ScaledOperandPerBundle);
542
if (Current >= End)
543
Current = std::prev(End);
544
assert(Current < End && Current >= Begin &&
545
"the operand bundle doesn't cover every value in the range");
546
if (OpIdx >= Current->Begin && OpIdx < Current->End)
547
break;
548
if (OpIdx >= Current->End)
549
Begin = Current + 1;
550
else
551
End = Current;
552
}
553
554
assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
555
"the operand bundle doesn't cover every value in the range");
556
return *Current;
557
}
558
559
CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
560
OperandBundleDef OB,
561
InsertPosition InsertPt) {
562
if (CB->getOperandBundle(ID))
563
return CB;
564
565
SmallVector<OperandBundleDef, 1> Bundles;
566
CB->getOperandBundlesAsDefs(Bundles);
567
Bundles.push_back(OB);
568
return Create(CB, Bundles, InsertPt);
569
}
570
571
CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
572
InsertPosition InsertPt) {
573
SmallVector<OperandBundleDef, 1> Bundles;
574
bool CreateNew = false;
575
576
for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
577
auto Bundle = CB->getOperandBundleAt(I);
578
if (Bundle.getTagID() == ID) {
579
CreateNew = true;
580
continue;
581
}
582
Bundles.emplace_back(Bundle);
583
}
584
585
return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
586
}
587
588
bool CallBase::hasReadingOperandBundles() const {
589
// Implementation note: this is a conservative implementation of operand
590
// bundle semantics, where *any* non-assume operand bundle (other than
591
// ptrauth) forces a callsite to be at least readonly.
592
return hasOperandBundlesOtherThan(
593
{LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}) &&
594
getIntrinsicID() != Intrinsic::assume;
595
}
596
597
bool CallBase::hasClobberingOperandBundles() const {
598
return hasOperandBundlesOtherThan(
599
{LLVMContext::OB_deopt, LLVMContext::OB_funclet,
600
LLVMContext::OB_ptrauth, LLVMContext::OB_kcfi}) &&
601
getIntrinsicID() != Intrinsic::assume;
602
}
603
604
MemoryEffects CallBase::getMemoryEffects() const {
605
MemoryEffects ME = getAttributes().getMemoryEffects();
606
if (auto *Fn = dyn_cast<Function>(getCalledOperand())) {
607
MemoryEffects FnME = Fn->getMemoryEffects();
608
if (hasOperandBundles()) {
609
// TODO: Add a method to get memory effects for operand bundles instead.
610
if (hasReadingOperandBundles())
611
FnME |= MemoryEffects::readOnly();
612
if (hasClobberingOperandBundles())
613
FnME |= MemoryEffects::writeOnly();
614
}
615
ME &= FnME;
616
}
617
return ME;
618
}
619
void CallBase::setMemoryEffects(MemoryEffects ME) {
620
addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
621
}
622
623
/// Determine if the function does not access memory.
624
bool CallBase::doesNotAccessMemory() const {
625
return getMemoryEffects().doesNotAccessMemory();
626
}
627
void CallBase::setDoesNotAccessMemory() {
628
setMemoryEffects(MemoryEffects::none());
629
}
630
631
/// Determine if the function does not access or only reads memory.
632
bool CallBase::onlyReadsMemory() const {
633
return getMemoryEffects().onlyReadsMemory();
634
}
635
void CallBase::setOnlyReadsMemory() {
636
setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
637
}
638
639
/// Determine if the function does not access or only writes memory.
640
bool CallBase::onlyWritesMemory() const {
641
return getMemoryEffects().onlyWritesMemory();
642
}
643
void CallBase::setOnlyWritesMemory() {
644
setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
645
}
646
647
/// Determine if the call can access memmory only using pointers based
648
/// on its arguments.
649
bool CallBase::onlyAccessesArgMemory() const {
650
return getMemoryEffects().onlyAccessesArgPointees();
651
}
652
void CallBase::setOnlyAccessesArgMemory() {
653
setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
654
}
655
656
/// Determine if the function may only access memory that is
657
/// inaccessible from the IR.
658
bool CallBase::onlyAccessesInaccessibleMemory() const {
659
return getMemoryEffects().onlyAccessesInaccessibleMem();
660
}
661
void CallBase::setOnlyAccessesInaccessibleMemory() {
662
setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
663
}
664
665
/// Determine if the function may only access memory that is
666
/// either inaccessible from the IR or pointed to by its arguments.
667
bool CallBase::onlyAccessesInaccessibleMemOrArgMem() const {
668
return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
669
}
670
void CallBase::setOnlyAccessesInaccessibleMemOrArgMem() {
671
setMemoryEffects(getMemoryEffects() &
672
MemoryEffects::inaccessibleOrArgMemOnly());
673
}
674
675
//===----------------------------------------------------------------------===//
676
// CallInst Implementation
677
//===----------------------------------------------------------------------===//
678
679
void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
680
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
681
this->FTy = FTy;
682
assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
683
"NumOperands not set up?");
684
685
#ifndef NDEBUG
686
assert((Args.size() == FTy->getNumParams() ||
687
(FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
688
"Calling a function with bad signature!");
689
690
for (unsigned i = 0; i != Args.size(); ++i)
691
assert((i >= FTy->getNumParams() ||
692
FTy->getParamType(i) == Args[i]->getType()) &&
693
"Calling a function with a bad signature!");
694
#endif
695
696
// Set operands in order of their index to match use-list-order
697
// prediction.
698
llvm::copy(Args, op_begin());
699
setCalledOperand(Func);
700
701
auto It = populateBundleOperandInfos(Bundles, Args.size());
702
(void)It;
703
assert(It + 1 == op_end() && "Should add up!");
704
705
setName(NameStr);
706
}
707
708
void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
709
this->FTy = FTy;
710
assert(getNumOperands() == 1 && "NumOperands not set up?");
711
setCalledOperand(Func);
712
713
assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
714
715
setName(NameStr);
716
}
717
718
CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
719
InsertPosition InsertBefore)
720
: CallBase(Ty->getReturnType(), Instruction::Call,
721
OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
722
init(Ty, Func, Name);
723
}
724
725
CallInst::CallInst(const CallInst &CI)
726
: CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
727
OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
728
CI.getNumOperands()) {
729
setTailCallKind(CI.getTailCallKind());
730
setCallingConv(CI.getCallingConv());
731
732
std::copy(CI.op_begin(), CI.op_end(), op_begin());
733
std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
734
bundle_op_info_begin());
735
SubclassOptionalData = CI.SubclassOptionalData;
736
}
737
738
CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
739
InsertPosition InsertPt) {
740
std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
741
742
auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
743
Args, OpB, CI->getName(), InsertPt);
744
NewCI->setTailCallKind(CI->getTailCallKind());
745
NewCI->setCallingConv(CI->getCallingConv());
746
NewCI->SubclassOptionalData = CI->SubclassOptionalData;
747
NewCI->setAttributes(CI->getAttributes());
748
NewCI->setDebugLoc(CI->getDebugLoc());
749
return NewCI;
750
}
751
752
// Update profile weight for call instruction by scaling it using the ratio
753
// of S/T. The meaning of "branch_weights" meta data for call instruction is
754
// transfered to represent call count.
755
void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
756
if (T == 0) {
757
LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
758
"div by 0. Ignoring. Likely the function "
759
<< getParent()->getParent()->getName()
760
<< " has 0 entry count, and contains call instructions "
761
"with non-zero prof info.");
762
return;
763
}
764
scaleProfData(*this, S, T);
765
}
766
767
//===----------------------------------------------------------------------===//
768
// InvokeInst Implementation
769
//===----------------------------------------------------------------------===//
770
771
void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
772
BasicBlock *IfException, ArrayRef<Value *> Args,
773
ArrayRef<OperandBundleDef> Bundles,
774
const Twine &NameStr) {
775
this->FTy = FTy;
776
777
assert((int)getNumOperands() ==
778
ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
779
"NumOperands not set up?");
780
781
#ifndef NDEBUG
782
assert(((Args.size() == FTy->getNumParams()) ||
783
(FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
784
"Invoking a function with bad signature");
785
786
for (unsigned i = 0, e = Args.size(); i != e; i++)
787
assert((i >= FTy->getNumParams() ||
788
FTy->getParamType(i) == Args[i]->getType()) &&
789
"Invoking a function with a bad signature!");
790
#endif
791
792
// Set operands in order of their index to match use-list-order
793
// prediction.
794
llvm::copy(Args, op_begin());
795
setNormalDest(IfNormal);
796
setUnwindDest(IfException);
797
setCalledOperand(Fn);
798
799
auto It = populateBundleOperandInfos(Bundles, Args.size());
800
(void)It;
801
assert(It + 3 == op_end() && "Should add up!");
802
803
setName(NameStr);
804
}
805
806
InvokeInst::InvokeInst(const InvokeInst &II)
807
: CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
808
OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
809
II.getNumOperands()) {
810
setCallingConv(II.getCallingConv());
811
std::copy(II.op_begin(), II.op_end(), op_begin());
812
std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
813
bundle_op_info_begin());
814
SubclassOptionalData = II.SubclassOptionalData;
815
}
816
817
InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
818
InsertPosition InsertPt) {
819
std::vector<Value *> Args(II->arg_begin(), II->arg_end());
820
821
auto *NewII = InvokeInst::Create(
822
II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
823
II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
824
NewII->setCallingConv(II->getCallingConv());
825
NewII->SubclassOptionalData = II->SubclassOptionalData;
826
NewII->setAttributes(II->getAttributes());
827
NewII->setDebugLoc(II->getDebugLoc());
828
return NewII;
829
}
830
831
LandingPadInst *InvokeInst::getLandingPadInst() const {
832
return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
833
}
834
835
void InvokeInst::updateProfWeight(uint64_t S, uint64_t T) {
836
if (T == 0) {
837
LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
838
"div by 0. Ignoring. Likely the function "
839
<< getParent()->getParent()->getName()
840
<< " has 0 entry count, and contains call instructions "
841
"with non-zero prof info.");
842
return;
843
}
844
scaleProfData(*this, S, T);
845
}
846
847
//===----------------------------------------------------------------------===//
848
// CallBrInst Implementation
849
//===----------------------------------------------------------------------===//
850
851
void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
852
ArrayRef<BasicBlock *> IndirectDests,
853
ArrayRef<Value *> Args,
854
ArrayRef<OperandBundleDef> Bundles,
855
const Twine &NameStr) {
856
this->FTy = FTy;
857
858
assert((int)getNumOperands() ==
859
ComputeNumOperands(Args.size(), IndirectDests.size(),
860
CountBundleInputs(Bundles)) &&
861
"NumOperands not set up?");
862
863
#ifndef NDEBUG
864
assert(((Args.size() == FTy->getNumParams()) ||
865
(FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
866
"Calling a function with bad signature");
867
868
for (unsigned i = 0, e = Args.size(); i != e; i++)
869
assert((i >= FTy->getNumParams() ||
870
FTy->getParamType(i) == Args[i]->getType()) &&
871
"Calling a function with a bad signature!");
872
#endif
873
874
// Set operands in order of their index to match use-list-order
875
// prediction.
876
std::copy(Args.begin(), Args.end(), op_begin());
877
NumIndirectDests = IndirectDests.size();
878
setDefaultDest(Fallthrough);
879
for (unsigned i = 0; i != NumIndirectDests; ++i)
880
setIndirectDest(i, IndirectDests[i]);
881
setCalledOperand(Fn);
882
883
auto It = populateBundleOperandInfos(Bundles, Args.size());
884
(void)It;
885
assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
886
887
setName(NameStr);
888
}
889
890
CallBrInst::CallBrInst(const CallBrInst &CBI)
891
: CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
892
OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
893
CBI.getNumOperands()) {
894
setCallingConv(CBI.getCallingConv());
895
std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
896
std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
897
bundle_op_info_begin());
898
SubclassOptionalData = CBI.SubclassOptionalData;
899
NumIndirectDests = CBI.NumIndirectDests;
900
}
901
902
CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
903
InsertPosition InsertPt) {
904
std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
905
906
auto *NewCBI = CallBrInst::Create(
907
CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
908
CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
909
NewCBI->setCallingConv(CBI->getCallingConv());
910
NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
911
NewCBI->setAttributes(CBI->getAttributes());
912
NewCBI->setDebugLoc(CBI->getDebugLoc());
913
NewCBI->NumIndirectDests = CBI->NumIndirectDests;
914
return NewCBI;
915
}
916
917
//===----------------------------------------------------------------------===//
918
// ReturnInst Implementation
919
//===----------------------------------------------------------------------===//
920
921
ReturnInst::ReturnInst(const ReturnInst &RI)
922
: Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
923
OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
924
RI.getNumOperands()) {
925
if (RI.getNumOperands())
926
Op<0>() = RI.Op<0>();
927
SubclassOptionalData = RI.SubclassOptionalData;
928
}
929
930
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal,
931
InsertPosition InsertBefore)
932
: Instruction(Type::getVoidTy(C), Instruction::Ret,
933
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
934
InsertBefore) {
935
if (retVal)
936
Op<0>() = retVal;
937
}
938
939
//===----------------------------------------------------------------------===//
940
// ResumeInst Implementation
941
//===----------------------------------------------------------------------===//
942
943
ResumeInst::ResumeInst(const ResumeInst &RI)
944
: Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
945
OperandTraits<ResumeInst>::op_begin(this), 1) {
946
Op<0>() = RI.Op<0>();
947
}
948
949
ResumeInst::ResumeInst(Value *Exn, InsertPosition InsertBefore)
950
: Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
951
OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
952
Op<0>() = Exn;
953
}
954
955
//===----------------------------------------------------------------------===//
956
// CleanupReturnInst Implementation
957
//===----------------------------------------------------------------------===//
958
959
CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
960
: Instruction(CRI.getType(), Instruction::CleanupRet,
961
OperandTraits<CleanupReturnInst>::op_end(this) -
962
CRI.getNumOperands(),
963
CRI.getNumOperands()) {
964
setSubclassData<Instruction::OpaqueField>(
965
CRI.getSubclassData<Instruction::OpaqueField>());
966
Op<0>() = CRI.Op<0>();
967
if (CRI.hasUnwindDest())
968
Op<1>() = CRI.Op<1>();
969
}
970
971
void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
972
if (UnwindBB)
973
setSubclassData<UnwindDestField>(true);
974
975
Op<0>() = CleanupPad;
976
if (UnwindBB)
977
Op<1>() = UnwindBB;
978
}
979
980
CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
981
unsigned Values,
982
InsertPosition InsertBefore)
983
: Instruction(Type::getVoidTy(CleanupPad->getContext()),
984
Instruction::CleanupRet,
985
OperandTraits<CleanupReturnInst>::op_end(this) - Values,
986
Values, InsertBefore) {
987
init(CleanupPad, UnwindBB);
988
}
989
990
//===----------------------------------------------------------------------===//
991
// CatchReturnInst Implementation
992
//===----------------------------------------------------------------------===//
993
void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
994
Op<0>() = CatchPad;
995
Op<1>() = BB;
996
}
997
998
CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
999
: Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1000
OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1001
Op<0>() = CRI.Op<0>();
1002
Op<1>() = CRI.Op<1>();
1003
}
1004
1005
CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1006
InsertPosition InsertBefore)
1007
: Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1008
OperandTraits<CatchReturnInst>::op_begin(this), 2,
1009
InsertBefore) {
1010
init(CatchPad, BB);
1011
}
1012
1013
//===----------------------------------------------------------------------===//
1014
// CatchSwitchInst Implementation
1015
//===----------------------------------------------------------------------===//
1016
1017
CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1018
unsigned NumReservedValues,
1019
const Twine &NameStr,
1020
InsertPosition InsertBefore)
1021
: Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1022
InsertBefore) {
1023
if (UnwindDest)
1024
++NumReservedValues;
1025
init(ParentPad, UnwindDest, NumReservedValues + 1);
1026
setName(NameStr);
1027
}
1028
1029
CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1030
: Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1031
CSI.getNumOperands()) {
1032
init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1033
setNumHungOffUseOperands(ReservedSpace);
1034
Use *OL = getOperandList();
1035
const Use *InOL = CSI.getOperandList();
1036
for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1037
OL[I] = InOL[I];
1038
}
1039
1040
void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1041
unsigned NumReservedValues) {
1042
assert(ParentPad && NumReservedValues);
1043
1044
ReservedSpace = NumReservedValues;
1045
setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1046
allocHungoffUses(ReservedSpace);
1047
1048
Op<0>() = ParentPad;
1049
if (UnwindDest) {
1050
setSubclassData<UnwindDestField>(true);
1051
setUnwindDest(UnwindDest);
1052
}
1053
}
1054
1055
/// growOperands - grow operands - This grows the operand list in response to a
1056
/// push_back style of operation. This grows the number of ops by 2 times.
1057
void CatchSwitchInst::growOperands(unsigned Size) {
1058
unsigned NumOperands = getNumOperands();
1059
assert(NumOperands >= 1);
1060
if (ReservedSpace >= NumOperands + Size)
1061
return;
1062
ReservedSpace = (NumOperands + Size / 2) * 2;
1063
growHungoffUses(ReservedSpace);
1064
}
1065
1066
void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1067
unsigned OpNo = getNumOperands();
1068
growOperands(1);
1069
assert(OpNo < ReservedSpace && "Growing didn't work!");
1070
setNumHungOffUseOperands(getNumOperands() + 1);
1071
getOperandList()[OpNo] = Handler;
1072
}
1073
1074
void CatchSwitchInst::removeHandler(handler_iterator HI) {
1075
// Move all subsequent handlers up one.
1076
Use *EndDst = op_end() - 1;
1077
for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1078
*CurDst = *(CurDst + 1);
1079
// Null out the last handler use.
1080
*EndDst = nullptr;
1081
1082
setNumHungOffUseOperands(getNumOperands() - 1);
1083
}
1084
1085
//===----------------------------------------------------------------------===//
1086
// FuncletPadInst Implementation
1087
//===----------------------------------------------------------------------===//
1088
void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1089
const Twine &NameStr) {
1090
assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1091
llvm::copy(Args, op_begin());
1092
setParentPad(ParentPad);
1093
setName(NameStr);
1094
}
1095
1096
FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1097
: Instruction(FPI.getType(), FPI.getOpcode(),
1098
OperandTraits<FuncletPadInst>::op_end(this) -
1099
FPI.getNumOperands(),
1100
FPI.getNumOperands()) {
1101
std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1102
setParentPad(FPI.getParentPad());
1103
}
1104
1105
FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1106
ArrayRef<Value *> Args, unsigned Values,
1107
const Twine &NameStr,
1108
InsertPosition InsertBefore)
1109
: Instruction(ParentPad->getType(), Op,
1110
OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1111
InsertBefore) {
1112
init(ParentPad, Args, NameStr);
1113
}
1114
1115
//===----------------------------------------------------------------------===//
1116
// UnreachableInst Implementation
1117
//===----------------------------------------------------------------------===//
1118
1119
UnreachableInst::UnreachableInst(LLVMContext &Context,
1120
InsertPosition InsertBefore)
1121
: Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1122
0, InsertBefore) {}
1123
1124
//===----------------------------------------------------------------------===//
1125
// BranchInst Implementation
1126
//===----------------------------------------------------------------------===//
1127
1128
void BranchInst::AssertOK() {
1129
if (isConditional())
1130
assert(getCondition()->getType()->isIntegerTy(1) &&
1131
"May only branch on boolean predicates!");
1132
}
1133
1134
BranchInst::BranchInst(BasicBlock *IfTrue, InsertPosition InsertBefore)
1135
: Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1136
OperandTraits<BranchInst>::op_end(this) - 1, 1,
1137
InsertBefore) {
1138
assert(IfTrue && "Branch destination may not be null!");
1139
Op<-1>() = IfTrue;
1140
}
1141
1142
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1143
InsertPosition InsertBefore)
1144
: Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1145
OperandTraits<BranchInst>::op_end(this) - 3, 3,
1146
InsertBefore) {
1147
// Assign in order of operand index to make use-list order predictable.
1148
Op<-3>() = Cond;
1149
Op<-2>() = IfFalse;
1150
Op<-1>() = IfTrue;
1151
#ifndef NDEBUG
1152
AssertOK();
1153
#endif
1154
}
1155
1156
BranchInst::BranchInst(const BranchInst &BI)
1157
: Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1158
OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1159
BI.getNumOperands()) {
1160
// Assign in order of operand index to make use-list order predictable.
1161
if (BI.getNumOperands() != 1) {
1162
assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1163
Op<-3>() = BI.Op<-3>();
1164
Op<-2>() = BI.Op<-2>();
1165
}
1166
Op<-1>() = BI.Op<-1>();
1167
SubclassOptionalData = BI.SubclassOptionalData;
1168
}
1169
1170
void BranchInst::swapSuccessors() {
1171
assert(isConditional() &&
1172
"Cannot swap successors of an unconditional branch");
1173
Op<-1>().swap(Op<-2>());
1174
1175
// Update profile metadata if present and it matches our structural
1176
// expectations.
1177
swapProfMetadata();
1178
}
1179
1180
//===----------------------------------------------------------------------===//
1181
// AllocaInst Implementation
1182
//===----------------------------------------------------------------------===//
1183
1184
static Value *getAISize(LLVMContext &Context, Value *Amt) {
1185
if (!Amt)
1186
Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1187
else {
1188
assert(!isa<BasicBlock>(Amt) &&
1189
"Passed basic block into allocation size parameter! Use other ctor");
1190
assert(Amt->getType()->isIntegerTy() &&
1191
"Allocation array size is not an integer!");
1192
}
1193
return Amt;
1194
}
1195
1196
static Align computeAllocaDefaultAlign(Type *Ty, InsertPosition Pos) {
1197
assert(Pos.isValid() &&
1198
"Insertion position cannot be null when alignment not provided!");
1199
BasicBlock *BB = Pos.getBasicBlock();
1200
assert(BB->getParent() &&
1201
"BB must be in a Function when alignment not provided!");
1202
const DataLayout &DL = BB->getDataLayout();
1203
return DL.getPrefTypeAlign(Ty);
1204
}
1205
1206
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1207
InsertPosition InsertBefore)
1208
: AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1209
1210
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1211
const Twine &Name, InsertPosition InsertBefore)
1212
: AllocaInst(Ty, AddrSpace, ArraySize,
1213
computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1214
InsertBefore) {}
1215
1216
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1217
Align Align, const Twine &Name,
1218
InsertPosition InsertBefore)
1219
: UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1220
getAISize(Ty->getContext(), ArraySize), InsertBefore),
1221
AllocatedType(Ty) {
1222
setAlignment(Align);
1223
assert(!Ty->isVoidTy() && "Cannot allocate void!");
1224
setName(Name);
1225
}
1226
1227
bool AllocaInst::isArrayAllocation() const {
1228
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1229
return !CI->isOne();
1230
return true;
1231
}
1232
1233
/// isStaticAlloca - Return true if this alloca is in the entry block of the
1234
/// function and is a constant size. If so, the code generator will fold it
1235
/// into the prolog/epilog code, so it is basically free.
1236
bool AllocaInst::isStaticAlloca() const {
1237
// Must be constant size.
1238
if (!isa<ConstantInt>(getArraySize())) return false;
1239
1240
// Must be in the entry block.
1241
const BasicBlock *Parent = getParent();
1242
return Parent->isEntryBlock() && !isUsedWithInAlloca();
1243
}
1244
1245
//===----------------------------------------------------------------------===//
1246
// LoadInst Implementation
1247
//===----------------------------------------------------------------------===//
1248
1249
void LoadInst::AssertOK() {
1250
assert(getOperand(0)->getType()->isPointerTy() &&
1251
"Ptr must have pointer type.");
1252
}
1253
1254
static Align computeLoadStoreDefaultAlign(Type *Ty, InsertPosition Pos) {
1255
assert(Pos.isValid() &&
1256
"Insertion position cannot be null when alignment not provided!");
1257
BasicBlock *BB = Pos.getBasicBlock();
1258
assert(BB->getParent() &&
1259
"BB must be in a Function when alignment not provided!");
1260
const DataLayout &DL = BB->getDataLayout();
1261
return DL.getABITypeAlign(Ty);
1262
}
1263
1264
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1265
InsertPosition InsertBef)
1266
: LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1267
1268
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1269
InsertPosition InsertBef)
1270
: LoadInst(Ty, Ptr, Name, isVolatile,
1271
computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1272
1273
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1274
Align Align, InsertPosition InsertBef)
1275
: LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1276
SyncScope::System, InsertBef) {}
1277
1278
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1279
Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1280
InsertPosition InsertBef)
1281
: UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1282
setVolatile(isVolatile);
1283
setAlignment(Align);
1284
setAtomic(Order, SSID);
1285
AssertOK();
1286
setName(Name);
1287
}
1288
1289
//===----------------------------------------------------------------------===//
1290
// StoreInst Implementation
1291
//===----------------------------------------------------------------------===//
1292
1293
void StoreInst::AssertOK() {
1294
assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1295
assert(getOperand(1)->getType()->isPointerTy() &&
1296
"Ptr must have pointer type!");
1297
}
1298
1299
StoreInst::StoreInst(Value *val, Value *addr, InsertPosition InsertBefore)
1300
: StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1301
1302
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1303
InsertPosition InsertBefore)
1304
: StoreInst(val, addr, isVolatile,
1305
computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1306
InsertBefore) {}
1307
1308
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1309
InsertPosition InsertBefore)
1310
: StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1311
SyncScope::System, InsertBefore) {}
1312
1313
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1314
AtomicOrdering Order, SyncScope::ID SSID,
1315
InsertPosition InsertBefore)
1316
: Instruction(Type::getVoidTy(val->getContext()), Store,
1317
OperandTraits<StoreInst>::op_begin(this),
1318
OperandTraits<StoreInst>::operands(this), InsertBefore) {
1319
Op<0>() = val;
1320
Op<1>() = addr;
1321
setVolatile(isVolatile);
1322
setAlignment(Align);
1323
setAtomic(Order, SSID);
1324
AssertOK();
1325
}
1326
1327
//===----------------------------------------------------------------------===//
1328
// AtomicCmpXchgInst Implementation
1329
//===----------------------------------------------------------------------===//
1330
1331
void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1332
Align Alignment, AtomicOrdering SuccessOrdering,
1333
AtomicOrdering FailureOrdering,
1334
SyncScope::ID SSID) {
1335
Op<0>() = Ptr;
1336
Op<1>() = Cmp;
1337
Op<2>() = NewVal;
1338
setSuccessOrdering(SuccessOrdering);
1339
setFailureOrdering(FailureOrdering);
1340
setSyncScopeID(SSID);
1341
setAlignment(Alignment);
1342
1343
assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1344
"All operands must be non-null!");
1345
assert(getOperand(0)->getType()->isPointerTy() &&
1346
"Ptr must have pointer type!");
1347
assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1348
"Cmp type and NewVal type must be same!");
1349
}
1350
1351
AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1352
Align Alignment,
1353
AtomicOrdering SuccessOrdering,
1354
AtomicOrdering FailureOrdering,
1355
SyncScope::ID SSID,
1356
InsertPosition InsertBefore)
1357
: Instruction(
1358
StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1359
AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1360
OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1361
Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1362
}
1363
1364
//===----------------------------------------------------------------------===//
1365
// AtomicRMWInst Implementation
1366
//===----------------------------------------------------------------------===//
1367
1368
void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1369
Align Alignment, AtomicOrdering Ordering,
1370
SyncScope::ID SSID) {
1371
assert(Ordering != AtomicOrdering::NotAtomic &&
1372
"atomicrmw instructions can only be atomic.");
1373
assert(Ordering != AtomicOrdering::Unordered &&
1374
"atomicrmw instructions cannot be unordered.");
1375
Op<0>() = Ptr;
1376
Op<1>() = Val;
1377
setOperation(Operation);
1378
setOrdering(Ordering);
1379
setSyncScopeID(SSID);
1380
setAlignment(Alignment);
1381
1382
assert(getOperand(0) && getOperand(1) && "All operands must be non-null!");
1383
assert(getOperand(0)->getType()->isPointerTy() &&
1384
"Ptr must have pointer type!");
1385
assert(Ordering != AtomicOrdering::NotAtomic &&
1386
"AtomicRMW instructions must be atomic!");
1387
}
1388
1389
AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1390
Align Alignment, AtomicOrdering Ordering,
1391
SyncScope::ID SSID, InsertPosition InsertBefore)
1392
: Instruction(Val->getType(), AtomicRMW,
1393
OperandTraits<AtomicRMWInst>::op_begin(this),
1394
OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1395
Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1396
}
1397
1398
StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1399
switch (Op) {
1400
case AtomicRMWInst::Xchg:
1401
return "xchg";
1402
case AtomicRMWInst::Add:
1403
return "add";
1404
case AtomicRMWInst::Sub:
1405
return "sub";
1406
case AtomicRMWInst::And:
1407
return "and";
1408
case AtomicRMWInst::Nand:
1409
return "nand";
1410
case AtomicRMWInst::Or:
1411
return "or";
1412
case AtomicRMWInst::Xor:
1413
return "xor";
1414
case AtomicRMWInst::Max:
1415
return "max";
1416
case AtomicRMWInst::Min:
1417
return "min";
1418
case AtomicRMWInst::UMax:
1419
return "umax";
1420
case AtomicRMWInst::UMin:
1421
return "umin";
1422
case AtomicRMWInst::FAdd:
1423
return "fadd";
1424
case AtomicRMWInst::FSub:
1425
return "fsub";
1426
case AtomicRMWInst::FMax:
1427
return "fmax";
1428
case AtomicRMWInst::FMin:
1429
return "fmin";
1430
case AtomicRMWInst::UIncWrap:
1431
return "uinc_wrap";
1432
case AtomicRMWInst::UDecWrap:
1433
return "udec_wrap";
1434
case AtomicRMWInst::BAD_BINOP:
1435
return "<invalid operation>";
1436
}
1437
1438
llvm_unreachable("invalid atomicrmw operation");
1439
}
1440
1441
//===----------------------------------------------------------------------===//
1442
// FenceInst Implementation
1443
//===----------------------------------------------------------------------===//
1444
1445
FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1446
SyncScope::ID SSID, InsertPosition InsertBefore)
1447
: Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1448
setOrdering(Ordering);
1449
setSyncScopeID(SSID);
1450
}
1451
1452
//===----------------------------------------------------------------------===//
1453
// GetElementPtrInst Implementation
1454
//===----------------------------------------------------------------------===//
1455
1456
void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1457
const Twine &Name) {
1458
assert(getNumOperands() == 1 + IdxList.size() &&
1459
"NumOperands not initialized?");
1460
Op<0>() = Ptr;
1461
llvm::copy(IdxList, op_begin() + 1);
1462
setName(Name);
1463
}
1464
1465
GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1466
: Instruction(GEPI.getType(), GetElementPtr,
1467
OperandTraits<GetElementPtrInst>::op_end(this) -
1468
GEPI.getNumOperands(),
1469
GEPI.getNumOperands()),
1470
SourceElementType(GEPI.SourceElementType),
1471
ResultElementType(GEPI.ResultElementType) {
1472
std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1473
SubclassOptionalData = GEPI.SubclassOptionalData;
1474
}
1475
1476
Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1477
if (auto *Struct = dyn_cast<StructType>(Ty)) {
1478
if (!Struct->indexValid(Idx))
1479
return nullptr;
1480
return Struct->getTypeAtIndex(Idx);
1481
}
1482
if (!Idx->getType()->isIntOrIntVectorTy())
1483
return nullptr;
1484
if (auto *Array = dyn_cast<ArrayType>(Ty))
1485
return Array->getElementType();
1486
if (auto *Vector = dyn_cast<VectorType>(Ty))
1487
return Vector->getElementType();
1488
return nullptr;
1489
}
1490
1491
Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1492
if (auto *Struct = dyn_cast<StructType>(Ty)) {
1493
if (Idx >= Struct->getNumElements())
1494
return nullptr;
1495
return Struct->getElementType(Idx);
1496
}
1497
if (auto *Array = dyn_cast<ArrayType>(Ty))
1498
return Array->getElementType();
1499
if (auto *Vector = dyn_cast<VectorType>(Ty))
1500
return Vector->getElementType();
1501
return nullptr;
1502
}
1503
1504
template <typename IndexTy>
1505
static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1506
if (IdxList.empty())
1507
return Ty;
1508
for (IndexTy V : IdxList.slice(1)) {
1509
Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1510
if (!Ty)
1511
return Ty;
1512
}
1513
return Ty;
1514
}
1515
1516
Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1517
return getIndexedTypeInternal(Ty, IdxList);
1518
}
1519
1520
Type *GetElementPtrInst::getIndexedType(Type *Ty,
1521
ArrayRef<Constant *> IdxList) {
1522
return getIndexedTypeInternal(Ty, IdxList);
1523
}
1524
1525
Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1526
return getIndexedTypeInternal(Ty, IdxList);
1527
}
1528
1529
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1530
/// zeros. If so, the result pointer and the first operand have the same
1531
/// value, just potentially different types.
1532
bool GetElementPtrInst::hasAllZeroIndices() const {
1533
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1534
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1535
if (!CI->isZero()) return false;
1536
} else {
1537
return false;
1538
}
1539
}
1540
return true;
1541
}
1542
1543
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1544
/// constant integers. If so, the result pointer and the first operand have
1545
/// a constant offset between them.
1546
bool GetElementPtrInst::hasAllConstantIndices() const {
1547
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1548
if (!isa<ConstantInt>(getOperand(i)))
1549
return false;
1550
}
1551
return true;
1552
}
1553
1554
void GetElementPtrInst::setNoWrapFlags(GEPNoWrapFlags NW) {
1555
SubclassOptionalData = NW.getRaw();
1556
}
1557
1558
void GetElementPtrInst::setIsInBounds(bool B) {
1559
GEPNoWrapFlags NW = cast<GEPOperator>(this)->getNoWrapFlags();
1560
if (B)
1561
NW |= GEPNoWrapFlags::inBounds();
1562
else
1563
NW = NW.withoutInBounds();
1564
setNoWrapFlags(NW);
1565
}
1566
1567
GEPNoWrapFlags GetElementPtrInst::getNoWrapFlags() const {
1568
return cast<GEPOperator>(this)->getNoWrapFlags();
1569
}
1570
1571
bool GetElementPtrInst::isInBounds() const {
1572
return cast<GEPOperator>(this)->isInBounds();
1573
}
1574
1575
bool GetElementPtrInst::hasNoUnsignedSignedWrap() const {
1576
return cast<GEPOperator>(this)->hasNoUnsignedSignedWrap();
1577
}
1578
1579
bool GetElementPtrInst::hasNoUnsignedWrap() const {
1580
return cast<GEPOperator>(this)->hasNoUnsignedWrap();
1581
}
1582
1583
bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1584
APInt &Offset) const {
1585
// Delegate to the generic GEPOperator implementation.
1586
return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1587
}
1588
1589
bool GetElementPtrInst::collectOffset(
1590
const DataLayout &DL, unsigned BitWidth,
1591
MapVector<Value *, APInt> &VariableOffsets,
1592
APInt &ConstantOffset) const {
1593
// Delegate to the generic GEPOperator implementation.
1594
return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1595
ConstantOffset);
1596
}
1597
1598
//===----------------------------------------------------------------------===//
1599
// ExtractElementInst Implementation
1600
//===----------------------------------------------------------------------===//
1601
1602
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1603
const Twine &Name,
1604
InsertPosition InsertBef)
1605
: Instruction(
1606
cast<VectorType>(Val->getType())->getElementType(), ExtractElement,
1607
OperandTraits<ExtractElementInst>::op_begin(this), 2, InsertBef) {
1608
assert(isValidOperands(Val, Index) &&
1609
"Invalid extractelement instruction operands!");
1610
Op<0>() = Val;
1611
Op<1>() = Index;
1612
setName(Name);
1613
}
1614
1615
bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1616
if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1617
return false;
1618
return true;
1619
}
1620
1621
//===----------------------------------------------------------------------===//
1622
// InsertElementInst Implementation
1623
//===----------------------------------------------------------------------===//
1624
1625
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1626
const Twine &Name,
1627
InsertPosition InsertBef)
1628
: Instruction(Vec->getType(), InsertElement,
1629
OperandTraits<InsertElementInst>::op_begin(this), 3,
1630
InsertBef) {
1631
assert(isValidOperands(Vec, Elt, Index) &&
1632
"Invalid insertelement instruction operands!");
1633
Op<0>() = Vec;
1634
Op<1>() = Elt;
1635
Op<2>() = Index;
1636
setName(Name);
1637
}
1638
1639
bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1640
const Value *Index) {
1641
if (!Vec->getType()->isVectorTy())
1642
return false; // First operand of insertelement must be vector type.
1643
1644
if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1645
return false;// Second operand of insertelement must be vector element type.
1646
1647
if (!Index->getType()->isIntegerTy())
1648
return false; // Third operand of insertelement must be i32.
1649
return true;
1650
}
1651
1652
//===----------------------------------------------------------------------===//
1653
// ShuffleVectorInst Implementation
1654
//===----------------------------------------------------------------------===//
1655
1656
static Value *createPlaceholderForShuffleVector(Value *V) {
1657
assert(V && "Cannot create placeholder of nullptr V");
1658
return PoisonValue::get(V->getType());
1659
}
1660
1661
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *Mask, const Twine &Name,
1662
InsertPosition InsertBefore)
1663
: ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1664
InsertBefore) {}
1665
1666
ShuffleVectorInst::ShuffleVectorInst(Value *V1, ArrayRef<int> Mask,
1667
const Twine &Name,
1668
InsertPosition InsertBefore)
1669
: ShuffleVectorInst(V1, createPlaceholderForShuffleVector(V1), Mask, Name,
1670
InsertBefore) {}
1671
1672
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1673
const Twine &Name,
1674
InsertPosition InsertBefore)
1675
: Instruction(
1676
VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1677
cast<VectorType>(Mask->getType())->getElementCount()),
1678
ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1679
OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1680
assert(isValidOperands(V1, V2, Mask) &&
1681
"Invalid shuffle vector instruction operands!");
1682
1683
Op<0>() = V1;
1684
Op<1>() = V2;
1685
SmallVector<int, 16> MaskArr;
1686
getShuffleMask(cast<Constant>(Mask), MaskArr);
1687
setShuffleMask(MaskArr);
1688
setName(Name);
1689
}
1690
1691
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1692
const Twine &Name,
1693
InsertPosition InsertBefore)
1694
: Instruction(
1695
VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1696
Mask.size(), isa<ScalableVectorType>(V1->getType())),
1697
ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1698
OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1699
assert(isValidOperands(V1, V2, Mask) &&
1700
"Invalid shuffle vector instruction operands!");
1701
Op<0>() = V1;
1702
Op<1>() = V2;
1703
setShuffleMask(Mask);
1704
setName(Name);
1705
}
1706
1707
void ShuffleVectorInst::commute() {
1708
int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1709
int NumMaskElts = ShuffleMask.size();
1710
SmallVector<int, 16> NewMask(NumMaskElts);
1711
for (int i = 0; i != NumMaskElts; ++i) {
1712
int MaskElt = getMaskValue(i);
1713
if (MaskElt == PoisonMaskElem) {
1714
NewMask[i] = PoisonMaskElem;
1715
continue;
1716
}
1717
assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1718
MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1719
NewMask[i] = MaskElt;
1720
}
1721
setShuffleMask(NewMask);
1722
Op<0>().swap(Op<1>());
1723
}
1724
1725
bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1726
ArrayRef<int> Mask) {
1727
// V1 and V2 must be vectors of the same type.
1728
if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1729
return false;
1730
1731
// Make sure the mask elements make sense.
1732
int V1Size =
1733
cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
1734
for (int Elem : Mask)
1735
if (Elem != PoisonMaskElem && Elem >= V1Size * 2)
1736
return false;
1737
1738
if (isa<ScalableVectorType>(V1->getType()))
1739
if ((Mask[0] != 0 && Mask[0] != PoisonMaskElem) || !all_equal(Mask))
1740
return false;
1741
1742
return true;
1743
}
1744
1745
bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1746
const Value *Mask) {
1747
// V1 and V2 must be vectors of the same type.
1748
if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1749
return false;
1750
1751
// Mask must be vector of i32, and must be the same kind of vector as the
1752
// input vectors
1753
auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1754
if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
1755
isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
1756
return false;
1757
1758
// Check to see if Mask is valid.
1759
if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1760
return true;
1761
1762
if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1763
unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
1764
for (Value *Op : MV->operands()) {
1765
if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1766
if (CI->uge(V1Size*2))
1767
return false;
1768
} else if (!isa<UndefValue>(Op)) {
1769
return false;
1770
}
1771
}
1772
return true;
1773
}
1774
1775
if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1776
unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
1777
for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
1778
i != e; ++i)
1779
if (CDS->getElementAsInteger(i) >= V1Size*2)
1780
return false;
1781
return true;
1782
}
1783
1784
return false;
1785
}
1786
1787
void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1788
SmallVectorImpl<int> &Result) {
1789
ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
1790
1791
if (isa<ConstantAggregateZero>(Mask)) {
1792
Result.resize(EC.getKnownMinValue(), 0);
1793
return;
1794
}
1795
1796
Result.reserve(EC.getKnownMinValue());
1797
1798
if (EC.isScalable()) {
1799
assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
1800
"Scalable vector shuffle mask must be undef or zeroinitializer");
1801
int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
1802
for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
1803
Result.emplace_back(MaskVal);
1804
return;
1805
}
1806
1807
unsigned NumElts = EC.getKnownMinValue();
1808
1809
if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1810
for (unsigned i = 0; i != NumElts; ++i)
1811
Result.push_back(CDS->getElementAsInteger(i));
1812
return;
1813
}
1814
for (unsigned i = 0; i != NumElts; ++i) {
1815
Constant *C = Mask->getAggregateElement(i);
1816
Result.push_back(isa<UndefValue>(C) ? -1 :
1817
cast<ConstantInt>(C)->getZExtValue());
1818
}
1819
}
1820
1821
void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
1822
ShuffleMask.assign(Mask.begin(), Mask.end());
1823
ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
1824
}
1825
1826
Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
1827
Type *ResultTy) {
1828
Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
1829
if (isa<ScalableVectorType>(ResultTy)) {
1830
assert(all_equal(Mask) && "Unexpected shuffle");
1831
Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
1832
if (Mask[0] == 0)
1833
return Constant::getNullValue(VecTy);
1834
return PoisonValue::get(VecTy);
1835
}
1836
SmallVector<Constant *, 16> MaskConst;
1837
for (int Elem : Mask) {
1838
if (Elem == PoisonMaskElem)
1839
MaskConst.push_back(PoisonValue::get(Int32Ty));
1840
else
1841
MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
1842
}
1843
return ConstantVector::get(MaskConst);
1844
}
1845
1846
static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1847
assert(!Mask.empty() && "Shuffle mask must contain elements");
1848
bool UsesLHS = false;
1849
bool UsesRHS = false;
1850
for (int I : Mask) {
1851
if (I == -1)
1852
continue;
1853
assert(I >= 0 && I < (NumOpElts * 2) &&
1854
"Out-of-bounds shuffle mask element");
1855
UsesLHS |= (I < NumOpElts);
1856
UsesRHS |= (I >= NumOpElts);
1857
if (UsesLHS && UsesRHS)
1858
return false;
1859
}
1860
// Allow for degenerate case: completely undef mask means neither source is used.
1861
return UsesLHS || UsesRHS;
1862
}
1863
1864
bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask, int NumSrcElts) {
1865
// We don't have vector operand size information, so assume operands are the
1866
// same size as the mask.
1867
return isSingleSourceMaskImpl(Mask, NumSrcElts);
1868
}
1869
1870
static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1871
if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1872
return false;
1873
for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1874
if (Mask[i] == -1)
1875
continue;
1876
if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1877
return false;
1878
}
1879
return true;
1880
}
1881
1882
bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask, int NumSrcElts) {
1883
if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1884
return false;
1885
// We don't have vector operand size information, so assume operands are the
1886
// same size as the mask.
1887
return isIdentityMaskImpl(Mask, NumSrcElts);
1888
}
1889
1890
bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask, int NumSrcElts) {
1891
if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1892
return false;
1893
if (!isSingleSourceMask(Mask, NumSrcElts))
1894
return false;
1895
1896
// The number of elements in the mask must be at least 2.
1897
if (NumSrcElts < 2)
1898
return false;
1899
1900
for (int I = 0, E = Mask.size(); I < E; ++I) {
1901
if (Mask[I] == -1)
1902
continue;
1903
if (Mask[I] != (NumSrcElts - 1 - I) &&
1904
Mask[I] != (NumSrcElts + NumSrcElts - 1 - I))
1905
return false;
1906
}
1907
return true;
1908
}
1909
1910
bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask, int NumSrcElts) {
1911
if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1912
return false;
1913
if (!isSingleSourceMask(Mask, NumSrcElts))
1914
return false;
1915
for (int I = 0, E = Mask.size(); I < E; ++I) {
1916
if (Mask[I] == -1)
1917
continue;
1918
if (Mask[I] != 0 && Mask[I] != NumSrcElts)
1919
return false;
1920
}
1921
return true;
1922
}
1923
1924
bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask, int NumSrcElts) {
1925
if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1926
return false;
1927
// Select is differentiated from identity. It requires using both sources.
1928
if (isSingleSourceMask(Mask, NumSrcElts))
1929
return false;
1930
for (int I = 0, E = Mask.size(); I < E; ++I) {
1931
if (Mask[I] == -1)
1932
continue;
1933
if (Mask[I] != I && Mask[I] != (NumSrcElts + I))
1934
return false;
1935
}
1936
return true;
1937
}
1938
1939
bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask, int NumSrcElts) {
1940
// Example masks that will return true:
1941
// v1 = <a, b, c, d>
1942
// v2 = <e, f, g, h>
1943
// trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1944
// trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1945
1946
if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1947
return false;
1948
// 1. The number of elements in the mask must be a power-of-2 and at least 2.
1949
int Sz = Mask.size();
1950
if (Sz < 2 || !isPowerOf2_32(Sz))
1951
return false;
1952
1953
// 2. The first element of the mask must be either a 0 or a 1.
1954
if (Mask[0] != 0 && Mask[0] != 1)
1955
return false;
1956
1957
// 3. The difference between the first 2 elements must be equal to the
1958
// number of elements in the mask.
1959
if ((Mask[1] - Mask[0]) != NumSrcElts)
1960
return false;
1961
1962
// 4. The difference between consecutive even-numbered and odd-numbered
1963
// elements must be equal to 2.
1964
for (int I = 2; I < Sz; ++I) {
1965
int MaskEltVal = Mask[I];
1966
if (MaskEltVal == -1)
1967
return false;
1968
int MaskEltPrevVal = Mask[I - 2];
1969
if (MaskEltVal - MaskEltPrevVal != 2)
1970
return false;
1971
}
1972
return true;
1973
}
1974
1975
bool ShuffleVectorInst::isSpliceMask(ArrayRef<int> Mask, int NumSrcElts,
1976
int &Index) {
1977
if (Mask.size() != static_cast<unsigned>(NumSrcElts))
1978
return false;
1979
// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4>
1980
int StartIndex = -1;
1981
for (int I = 0, E = Mask.size(); I != E; ++I) {
1982
int MaskEltVal = Mask[I];
1983
if (MaskEltVal == -1)
1984
continue;
1985
1986
if (StartIndex == -1) {
1987
// Don't support a StartIndex that begins in the second input, or if the
1988
// first non-undef index would access below the StartIndex.
1989
if (MaskEltVal < I || NumSrcElts <= (MaskEltVal - I))
1990
return false;
1991
1992
StartIndex = MaskEltVal - I;
1993
continue;
1994
}
1995
1996
// Splice is sequential starting from StartIndex.
1997
if (MaskEltVal != (StartIndex + I))
1998
return false;
1999
}
2000
2001
if (StartIndex == -1)
2002
return false;
2003
2004
// NOTE: This accepts StartIndex == 0 (COPY).
2005
Index = StartIndex;
2006
return true;
2007
}
2008
2009
bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2010
int NumSrcElts, int &Index) {
2011
// Must extract from a single source.
2012
if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2013
return false;
2014
2015
// Must be smaller (else this is an Identity shuffle).
2016
if (NumSrcElts <= (int)Mask.size())
2017
return false;
2018
2019
// Find start of extraction, accounting that we may start with an UNDEF.
2020
int SubIndex = -1;
2021
for (int i = 0, e = Mask.size(); i != e; ++i) {
2022
int M = Mask[i];
2023
if (M < 0)
2024
continue;
2025
int Offset = (M % NumSrcElts) - i;
2026
if (0 <= SubIndex && SubIndex != Offset)
2027
return false;
2028
SubIndex = Offset;
2029
}
2030
2031
if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2032
Index = SubIndex;
2033
return true;
2034
}
2035
return false;
2036
}
2037
2038
bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
2039
int NumSrcElts, int &NumSubElts,
2040
int &Index) {
2041
int NumMaskElts = Mask.size();
2042
2043
// Don't try to match if we're shuffling to a smaller size.
2044
if (NumMaskElts < NumSrcElts)
2045
return false;
2046
2047
// TODO: We don't recognize self-insertion/widening.
2048
if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2049
return false;
2050
2051
// Determine which mask elements are attributed to which source.
2052
APInt UndefElts = APInt::getZero(NumMaskElts);
2053
APInt Src0Elts = APInt::getZero(NumMaskElts);
2054
APInt Src1Elts = APInt::getZero(NumMaskElts);
2055
bool Src0Identity = true;
2056
bool Src1Identity = true;
2057
2058
for (int i = 0; i != NumMaskElts; ++i) {
2059
int M = Mask[i];
2060
if (M < 0) {
2061
UndefElts.setBit(i);
2062
continue;
2063
}
2064
if (M < NumSrcElts) {
2065
Src0Elts.setBit(i);
2066
Src0Identity &= (M == i);
2067
continue;
2068
}
2069
Src1Elts.setBit(i);
2070
Src1Identity &= (M == (i + NumSrcElts));
2071
}
2072
assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2073
"unknown shuffle elements");
2074
assert(!Src0Elts.isZero() && !Src1Elts.isZero() &&
2075
"2-source shuffle not found");
2076
2077
// Determine lo/hi span ranges.
2078
// TODO: How should we handle undefs at the start of subvector insertions?
2079
int Src0Lo = Src0Elts.countr_zero();
2080
int Src1Lo = Src1Elts.countr_zero();
2081
int Src0Hi = NumMaskElts - Src0Elts.countl_zero();
2082
int Src1Hi = NumMaskElts - Src1Elts.countl_zero();
2083
2084
// If src0 is in place, see if the src1 elements is inplace within its own
2085
// span.
2086
if (Src0Identity) {
2087
int NumSub1Elts = Src1Hi - Src1Lo;
2088
ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2089
if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2090
NumSubElts = NumSub1Elts;
2091
Index = Src1Lo;
2092
return true;
2093
}
2094
}
2095
2096
// If src1 is in place, see if the src0 elements is inplace within its own
2097
// span.
2098
if (Src1Identity) {
2099
int NumSub0Elts = Src0Hi - Src0Lo;
2100
ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2101
if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2102
NumSubElts = NumSub0Elts;
2103
Index = Src0Lo;
2104
return true;
2105
}
2106
}
2107
2108
return false;
2109
}
2110
2111
bool ShuffleVectorInst::isIdentityWithPadding() const {
2112
// FIXME: Not currently possible to express a shuffle mask for a scalable
2113
// vector for this case.
2114
if (isa<ScalableVectorType>(getType()))
2115
return false;
2116
2117
int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2118
int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2119
if (NumMaskElts <= NumOpElts)
2120
return false;
2121
2122
// The first part of the mask must choose elements from exactly 1 source op.
2123
ArrayRef<int> Mask = getShuffleMask();
2124
if (!isIdentityMaskImpl(Mask, NumOpElts))
2125
return false;
2126
2127
// All extending must be with undef elements.
2128
for (int i = NumOpElts; i < NumMaskElts; ++i)
2129
if (Mask[i] != -1)
2130
return false;
2131
2132
return true;
2133
}
2134
2135
bool ShuffleVectorInst::isIdentityWithExtract() const {
2136
// FIXME: Not currently possible to express a shuffle mask for a scalable
2137
// vector for this case.
2138
if (isa<ScalableVectorType>(getType()))
2139
return false;
2140
2141
int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2142
int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2143
if (NumMaskElts >= NumOpElts)
2144
return false;
2145
2146
return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2147
}
2148
2149
bool ShuffleVectorInst::isConcat() const {
2150
// Vector concatenation is differentiated from identity with padding.
2151
if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2152
return false;
2153
2154
// FIXME: Not currently possible to express a shuffle mask for a scalable
2155
// vector for this case.
2156
if (isa<ScalableVectorType>(getType()))
2157
return false;
2158
2159
int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2160
int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2161
if (NumMaskElts != NumOpElts * 2)
2162
return false;
2163
2164
// Use the mask length rather than the operands' vector lengths here. We
2165
// already know that the shuffle returns a vector twice as long as the inputs,
2166
// and neither of the inputs are undef vectors. If the mask picks consecutive
2167
// elements from both inputs, then this is a concatenation of the inputs.
2168
return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2169
}
2170
2171
static bool isReplicationMaskWithParams(ArrayRef<int> Mask,
2172
int ReplicationFactor, int VF) {
2173
assert(Mask.size() == (unsigned)ReplicationFactor * VF &&
2174
"Unexpected mask size.");
2175
2176
for (int CurrElt : seq(VF)) {
2177
ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2178
assert(CurrSubMask.size() == (unsigned)ReplicationFactor &&
2179
"Run out of mask?");
2180
Mask = Mask.drop_front(ReplicationFactor);
2181
if (!all_of(CurrSubMask, [CurrElt](int MaskElt) {
2182
return MaskElt == PoisonMaskElem || MaskElt == CurrElt;
2183
}))
2184
return false;
2185
}
2186
assert(Mask.empty() && "Did not consume the whole mask?");
2187
2188
return true;
2189
}
2190
2191
bool ShuffleVectorInst::isReplicationMask(ArrayRef<int> Mask,
2192
int &ReplicationFactor, int &VF) {
2193
// undef-less case is trivial.
2194
if (!llvm::is_contained(Mask, PoisonMaskElem)) {
2195
ReplicationFactor =
2196
Mask.take_while([](int MaskElt) { return MaskElt == 0; }).size();
2197
if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2198
return false;
2199
VF = Mask.size() / ReplicationFactor;
2200
return isReplicationMaskWithParams(Mask, ReplicationFactor, VF);
2201
}
2202
2203
// However, if the mask contains undef's, we have to enumerate possible tuples
2204
// and pick one. There are bounds on replication factor: [1, mask size]
2205
// (where RF=1 is an identity shuffle, RF=mask size is a broadcast shuffle)
2206
// Additionally, mask size is a replication factor multiplied by vector size,
2207
// which further significantly reduces the search space.
2208
2209
// Before doing that, let's perform basic correctness checking first.
2210
int Largest = -1;
2211
for (int MaskElt : Mask) {
2212
if (MaskElt == PoisonMaskElem)
2213
continue;
2214
// Elements must be in non-decreasing order.
2215
if (MaskElt < Largest)
2216
return false;
2217
Largest = std::max(Largest, MaskElt);
2218
}
2219
2220
// Prefer larger replication factor if all else equal.
2221
for (int PossibleReplicationFactor :
2222
reverse(seq_inclusive<unsigned>(1, Mask.size()))) {
2223
if (Mask.size() % PossibleReplicationFactor != 0)
2224
continue;
2225
int PossibleVF = Mask.size() / PossibleReplicationFactor;
2226
if (!isReplicationMaskWithParams(Mask, PossibleReplicationFactor,
2227
PossibleVF))
2228
continue;
2229
ReplicationFactor = PossibleReplicationFactor;
2230
VF = PossibleVF;
2231
return true;
2232
}
2233
2234
return false;
2235
}
2236
2237
bool ShuffleVectorInst::isReplicationMask(int &ReplicationFactor,
2238
int &VF) const {
2239
// Not possible to express a shuffle mask for a scalable vector for this
2240
// case.
2241
if (isa<ScalableVectorType>(getType()))
2242
return false;
2243
2244
VF = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2245
if (ShuffleMask.size() % VF != 0)
2246
return false;
2247
ReplicationFactor = ShuffleMask.size() / VF;
2248
2249
return isReplicationMaskWithParams(ShuffleMask, ReplicationFactor, VF);
2250
}
2251
2252
bool ShuffleVectorInst::isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF) {
2253
if (VF <= 0 || Mask.size() < static_cast<unsigned>(VF) ||
2254
Mask.size() % VF != 0)
2255
return false;
2256
for (unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) {
2257
ArrayRef<int> SubMask = Mask.slice(K, VF);
2258
if (all_of(SubMask, [](int Idx) { return Idx == PoisonMaskElem; }))
2259
continue;
2260
SmallBitVector Used(VF, false);
2261
for (int Idx : SubMask) {
2262
if (Idx != PoisonMaskElem && Idx < VF)
2263
Used.set(Idx);
2264
}
2265
if (!Used.all())
2266
return false;
2267
}
2268
return true;
2269
}
2270
2271
/// Return true if this shuffle mask is a replication mask.
2272
bool ShuffleVectorInst::isOneUseSingleSourceMask(int VF) const {
2273
// Not possible to express a shuffle mask for a scalable vector for this
2274
// case.
2275
if (isa<ScalableVectorType>(getType()))
2276
return false;
2277
if (!isSingleSourceMask(ShuffleMask, VF))
2278
return false;
2279
2280
return isOneUseSingleSourceMask(ShuffleMask, VF);
2281
}
2282
2283
bool ShuffleVectorInst::isInterleave(unsigned Factor) {
2284
FixedVectorType *OpTy = dyn_cast<FixedVectorType>(getOperand(0)->getType());
2285
// shuffle_vector can only interleave fixed length vectors - for scalable
2286
// vectors, see the @llvm.vector.interleave2 intrinsic
2287
if (!OpTy)
2288
return false;
2289
unsigned OpNumElts = OpTy->getNumElements();
2290
2291
return isInterleaveMask(ShuffleMask, Factor, OpNumElts * 2);
2292
}
2293
2294
bool ShuffleVectorInst::isInterleaveMask(
2295
ArrayRef<int> Mask, unsigned Factor, unsigned NumInputElts,
2296
SmallVectorImpl<unsigned> &StartIndexes) {
2297
unsigned NumElts = Mask.size();
2298
if (NumElts % Factor)
2299
return false;
2300
2301
unsigned LaneLen = NumElts / Factor;
2302
if (!isPowerOf2_32(LaneLen))
2303
return false;
2304
2305
StartIndexes.resize(Factor);
2306
2307
// Check whether each element matches the general interleaved rule.
2308
// Ignore undef elements, as long as the defined elements match the rule.
2309
// Outer loop processes all factors (x, y, z in the above example)
2310
unsigned I = 0, J;
2311
for (; I < Factor; I++) {
2312
unsigned SavedLaneValue;
2313
unsigned SavedNoUndefs = 0;
2314
2315
// Inner loop processes consecutive accesses (x, x+1... in the example)
2316
for (J = 0; J < LaneLen - 1; J++) {
2317
// Lane computes x's position in the Mask
2318
unsigned Lane = J * Factor + I;
2319
unsigned NextLane = Lane + Factor;
2320
int LaneValue = Mask[Lane];
2321
int NextLaneValue = Mask[NextLane];
2322
2323
// If both are defined, values must be sequential
2324
if (LaneValue >= 0 && NextLaneValue >= 0 &&
2325
LaneValue + 1 != NextLaneValue)
2326
break;
2327
2328
// If the next value is undef, save the current one as reference
2329
if (LaneValue >= 0 && NextLaneValue < 0) {
2330
SavedLaneValue = LaneValue;
2331
SavedNoUndefs = 1;
2332
}
2333
2334
// Undefs are allowed, but defined elements must still be consecutive:
2335
// i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
2336
// Verify this by storing the last non-undef followed by an undef
2337
// Check that following non-undef masks are incremented with the
2338
// corresponding distance.
2339
if (SavedNoUndefs > 0 && LaneValue < 0) {
2340
SavedNoUndefs++;
2341
if (NextLaneValue >= 0 &&
2342
SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
2343
break;
2344
}
2345
}
2346
2347
if (J < LaneLen - 1)
2348
return false;
2349
2350
int StartMask = 0;
2351
if (Mask[I] >= 0) {
2352
// Check that the start of the I range (J=0) is greater than 0
2353
StartMask = Mask[I];
2354
} else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
2355
// StartMask defined by the last value in lane
2356
StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
2357
} else if (SavedNoUndefs > 0) {
2358
// StartMask defined by some non-zero value in the j loop
2359
StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
2360
}
2361
// else StartMask remains set to 0, i.e. all elements are undefs
2362
2363
if (StartMask < 0)
2364
return false;
2365
// We must stay within the vectors; This case can happen with undefs.
2366
if (StartMask + LaneLen > NumInputElts)
2367
return false;
2368
2369
StartIndexes[I] = StartMask;
2370
}
2371
2372
return true;
2373
}
2374
2375
/// Check if the mask is a DE-interleave mask of the given factor
2376
/// \p Factor like:
2377
/// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
2378
bool ShuffleVectorInst::isDeInterleaveMaskOfFactor(ArrayRef<int> Mask,
2379
unsigned Factor,
2380
unsigned &Index) {
2381
// Check all potential start indices from 0 to (Factor - 1).
2382
for (unsigned Idx = 0; Idx < Factor; Idx++) {
2383
unsigned I = 0;
2384
2385
// Check that elements are in ascending order by Factor. Ignore undef
2386
// elements.
2387
for (; I < Mask.size(); I++)
2388
if (Mask[I] >= 0 && static_cast<unsigned>(Mask[I]) != Idx + I * Factor)
2389
break;
2390
2391
if (I == Mask.size()) {
2392
Index = Idx;
2393
return true;
2394
}
2395
}
2396
2397
return false;
2398
}
2399
2400
/// Try to lower a vector shuffle as a bit rotation.
2401
///
2402
/// Look for a repeated rotation pattern in each sub group.
2403
/// Returns an element-wise left bit rotation amount or -1 if failed.
2404
static int matchShuffleAsBitRotate(ArrayRef<int> Mask, int NumSubElts) {
2405
int NumElts = Mask.size();
2406
assert((NumElts % NumSubElts) == 0 && "Illegal shuffle mask");
2407
2408
int RotateAmt = -1;
2409
for (int i = 0; i != NumElts; i += NumSubElts) {
2410
for (int j = 0; j != NumSubElts; ++j) {
2411
int M = Mask[i + j];
2412
if (M < 0)
2413
continue;
2414
if (M < i || M >= i + NumSubElts)
2415
return -1;
2416
int Offset = (NumSubElts - (M - (i + j))) % NumSubElts;
2417
if (0 <= RotateAmt && Offset != RotateAmt)
2418
return -1;
2419
RotateAmt = Offset;
2420
}
2421
}
2422
return RotateAmt;
2423
}
2424
2425
bool ShuffleVectorInst::isBitRotateMask(
2426
ArrayRef<int> Mask, unsigned EltSizeInBits, unsigned MinSubElts,
2427
unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt) {
2428
for (NumSubElts = MinSubElts; NumSubElts <= MaxSubElts; NumSubElts *= 2) {
2429
int EltRotateAmt = matchShuffleAsBitRotate(Mask, NumSubElts);
2430
if (EltRotateAmt < 0)
2431
continue;
2432
RotateAmt = EltRotateAmt * EltSizeInBits;
2433
return true;
2434
}
2435
2436
return false;
2437
}
2438
2439
//===----------------------------------------------------------------------===//
2440
// InsertValueInst Class
2441
//===----------------------------------------------------------------------===//
2442
2443
void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2444
const Twine &Name) {
2445
assert(getNumOperands() == 2 && "NumOperands not initialized?");
2446
2447
// There's no fundamental reason why we require at least one index
2448
// (other than weirdness with &*IdxBegin being invalid; see
2449
// getelementptr's init routine for example). But there's no
2450
// present need to support it.
2451
assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2452
2453
assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2454
Val->getType() && "Inserted value must match indexed type!");
2455
Op<0>() = Agg;
2456
Op<1>() = Val;
2457
2458
Indices.append(Idxs.begin(), Idxs.end());
2459
setName(Name);
2460
}
2461
2462
InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2463
: Instruction(IVI.getType(), InsertValue,
2464
OperandTraits<InsertValueInst>::op_begin(this), 2),
2465
Indices(IVI.Indices) {
2466
Op<0>() = IVI.getOperand(0);
2467
Op<1>() = IVI.getOperand(1);
2468
SubclassOptionalData = IVI.SubclassOptionalData;
2469
}
2470
2471
//===----------------------------------------------------------------------===//
2472
// ExtractValueInst Class
2473
//===----------------------------------------------------------------------===//
2474
2475
void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2476
assert(getNumOperands() == 1 && "NumOperands not initialized?");
2477
2478
// There's no fundamental reason why we require at least one index.
2479
// But there's no present need to support it.
2480
assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2481
2482
Indices.append(Idxs.begin(), Idxs.end());
2483
setName(Name);
2484
}
2485
2486
ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2487
: UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2488
Indices(EVI.Indices) {
2489
SubclassOptionalData = EVI.SubclassOptionalData;
2490
}
2491
2492
// getIndexedType - Returns the type of the element that would be extracted
2493
// with an extractvalue instruction with the specified parameters.
2494
//
2495
// A null type is returned if the indices are invalid for the specified
2496
// pointer type.
2497
//
2498
Type *ExtractValueInst::getIndexedType(Type *Agg,
2499
ArrayRef<unsigned> Idxs) {
2500
for (unsigned Index : Idxs) {
2501
// We can't use CompositeType::indexValid(Index) here.
2502
// indexValid() always returns true for arrays because getelementptr allows
2503
// out-of-bounds indices. Since we don't allow those for extractvalue and
2504
// insertvalue we need to check array indexing manually.
2505
// Since the only other types we can index into are struct types it's just
2506
// as easy to check those manually as well.
2507
if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2508
if (Index >= AT->getNumElements())
2509
return nullptr;
2510
Agg = AT->getElementType();
2511
} else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2512
if (Index >= ST->getNumElements())
2513
return nullptr;
2514
Agg = ST->getElementType(Index);
2515
} else {
2516
// Not a valid type to index into.
2517
return nullptr;
2518
}
2519
}
2520
return const_cast<Type*>(Agg);
2521
}
2522
2523
//===----------------------------------------------------------------------===//
2524
// UnaryOperator Class
2525
//===----------------------------------------------------------------------===//
2526
2527
UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
2528
const Twine &Name, InsertPosition InsertBefore)
2529
: UnaryInstruction(Ty, iType, S, InsertBefore) {
2530
Op<0>() = S;
2531
setName(Name);
2532
AssertOK();
2533
}
2534
2535
UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, const Twine &Name,
2536
InsertPosition InsertBefore) {
2537
return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2538
}
2539
2540
void UnaryOperator::AssertOK() {
2541
Value *LHS = getOperand(0);
2542
(void)LHS; // Silence warnings.
2543
#ifndef NDEBUG
2544
switch (getOpcode()) {
2545
case FNeg:
2546
assert(getType() == LHS->getType() &&
2547
"Unary operation should return same type as operand!");
2548
assert(getType()->isFPOrFPVectorTy() &&
2549
"Tried to create a floating-point operation on a "
2550
"non-floating-point type!");
2551
break;
2552
default: llvm_unreachable("Invalid opcode provided");
2553
}
2554
#endif
2555
}
2556
2557
//===----------------------------------------------------------------------===//
2558
// BinaryOperator Class
2559
//===----------------------------------------------------------------------===//
2560
2561
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
2562
const Twine &Name, InsertPosition InsertBefore)
2563
: Instruction(Ty, iType, OperandTraits<BinaryOperator>::op_begin(this),
2564
OperandTraits<BinaryOperator>::operands(this), InsertBefore) {
2565
Op<0>() = S1;
2566
Op<1>() = S2;
2567
setName(Name);
2568
AssertOK();
2569
}
2570
2571
void BinaryOperator::AssertOK() {
2572
Value *LHS = getOperand(0), *RHS = getOperand(1);
2573
(void)LHS; (void)RHS; // Silence warnings.
2574
assert(LHS->getType() == RHS->getType() &&
2575
"Binary operator operand types must match!");
2576
#ifndef NDEBUG
2577
switch (getOpcode()) {
2578
case Add: case Sub:
2579
case Mul:
2580
assert(getType() == LHS->getType() &&
2581
"Arithmetic operation should return same type as operands!");
2582
assert(getType()->isIntOrIntVectorTy() &&
2583
"Tried to create an integer operation on a non-integer type!");
2584
break;
2585
case FAdd: case FSub:
2586
case FMul:
2587
assert(getType() == LHS->getType() &&
2588
"Arithmetic operation should return same type as operands!");
2589
assert(getType()->isFPOrFPVectorTy() &&
2590
"Tried to create a floating-point operation on a "
2591
"non-floating-point type!");
2592
break;
2593
case UDiv:
2594
case SDiv:
2595
assert(getType() == LHS->getType() &&
2596
"Arithmetic operation should return same type as operands!");
2597
assert(getType()->isIntOrIntVectorTy() &&
2598
"Incorrect operand type (not integer) for S/UDIV");
2599
break;
2600
case FDiv:
2601
assert(getType() == LHS->getType() &&
2602
"Arithmetic operation should return same type as operands!");
2603
assert(getType()->isFPOrFPVectorTy() &&
2604
"Incorrect operand type (not floating point) for FDIV");
2605
break;
2606
case URem:
2607
case SRem:
2608
assert(getType() == LHS->getType() &&
2609
"Arithmetic operation should return same type as operands!");
2610
assert(getType()->isIntOrIntVectorTy() &&
2611
"Incorrect operand type (not integer) for S/UREM");
2612
break;
2613
case FRem:
2614
assert(getType() == LHS->getType() &&
2615
"Arithmetic operation should return same type as operands!");
2616
assert(getType()->isFPOrFPVectorTy() &&
2617
"Incorrect operand type (not floating point) for FREM");
2618
break;
2619
case Shl:
2620
case LShr:
2621
case AShr:
2622
assert(getType() == LHS->getType() &&
2623
"Shift operation should return same type as operands!");
2624
assert(getType()->isIntOrIntVectorTy() &&
2625
"Tried to create a shift operation on a non-integral type!");
2626
break;
2627
case And: case Or:
2628
case Xor:
2629
assert(getType() == LHS->getType() &&
2630
"Logical operation should return same type as operands!");
2631
assert(getType()->isIntOrIntVectorTy() &&
2632
"Tried to create a logical operation on a non-integral type!");
2633
break;
2634
default: llvm_unreachable("Invalid opcode provided");
2635
}
2636
#endif
2637
}
2638
2639
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2640
const Twine &Name,
2641
InsertPosition InsertBefore) {
2642
assert(S1->getType() == S2->getType() &&
2643
"Cannot create binary operator with two operands of differing type!");
2644
return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2645
}
2646
2647
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2648
InsertPosition InsertBefore) {
2649
Value *Zero = ConstantInt::get(Op->getType(), 0);
2650
return new BinaryOperator(Instruction::Sub, Zero, Op, Op->getType(), Name,
2651
InsertBefore);
2652
}
2653
2654
BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2655
InsertPosition InsertBefore) {
2656
Value *Zero = ConstantInt::get(Op->getType(), 0);
2657
return BinaryOperator::CreateNSWSub(Zero, Op, Name, InsertBefore);
2658
}
2659
2660
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2661
InsertPosition InsertBefore) {
2662
Constant *C = Constant::getAllOnesValue(Op->getType());
2663
return new BinaryOperator(Instruction::Xor, Op, C,
2664
Op->getType(), Name, InsertBefore);
2665
}
2666
2667
// Exchange the two operands to this instruction. This instruction is safe to
2668
// use on any binary instruction and does not modify the semantics of the
2669
// instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2670
// is changed.
2671
bool BinaryOperator::swapOperands() {
2672
if (!isCommutative())
2673
return true; // Can't commute operands
2674
Op<0>().swap(Op<1>());
2675
return false;
2676
}
2677
2678
//===----------------------------------------------------------------------===//
2679
// FPMathOperator Class
2680
//===----------------------------------------------------------------------===//
2681
2682
float FPMathOperator::getFPAccuracy() const {
2683
const MDNode *MD =
2684
cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2685
if (!MD)
2686
return 0.0;
2687
ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2688
return Accuracy->getValueAPF().convertToFloat();
2689
}
2690
2691
//===----------------------------------------------------------------------===//
2692
// CastInst Class
2693
//===----------------------------------------------------------------------===//
2694
2695
// Just determine if this cast only deals with integral->integral conversion.
2696
bool CastInst::isIntegerCast() const {
2697
switch (getOpcode()) {
2698
default: return false;
2699
case Instruction::ZExt:
2700
case Instruction::SExt:
2701
case Instruction::Trunc:
2702
return true;
2703
case Instruction::BitCast:
2704
return getOperand(0)->getType()->isIntegerTy() &&
2705
getType()->isIntegerTy();
2706
}
2707
}
2708
2709
/// This function determines if the CastInst does not require any bits to be
2710
/// changed in order to effect the cast. Essentially, it identifies cases where
2711
/// no code gen is necessary for the cast, hence the name no-op cast. For
2712
/// example, the following are all no-op casts:
2713
/// # bitcast i32* %x to i8*
2714
/// # bitcast <2 x i32> %x to <4 x i16>
2715
/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2716
/// Determine if the described cast is a no-op.
2717
bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2718
Type *SrcTy,
2719
Type *DestTy,
2720
const DataLayout &DL) {
2721
assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2722
switch (Opcode) {
2723
default: llvm_unreachable("Invalid CastOp");
2724
case Instruction::Trunc:
2725
case Instruction::ZExt:
2726
case Instruction::SExt:
2727
case Instruction::FPTrunc:
2728
case Instruction::FPExt:
2729
case Instruction::UIToFP:
2730
case Instruction::SIToFP:
2731
case Instruction::FPToUI:
2732
case Instruction::FPToSI:
2733
case Instruction::AddrSpaceCast:
2734
// TODO: Target informations may give a more accurate answer here.
2735
return false;
2736
case Instruction::BitCast:
2737
return true; // BitCast never modifies bits.
2738
case Instruction::PtrToInt:
2739
return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2740
DestTy->getScalarSizeInBits();
2741
case Instruction::IntToPtr:
2742
return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2743
SrcTy->getScalarSizeInBits();
2744
}
2745
}
2746
2747
bool CastInst::isNoopCast(const DataLayout &DL) const {
2748
return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2749
}
2750
2751
/// This function determines if a pair of casts can be eliminated and what
2752
/// opcode should be used in the elimination. This assumes that there are two
2753
/// instructions like this:
2754
/// * %F = firstOpcode SrcTy %x to MidTy
2755
/// * %S = secondOpcode MidTy %F to DstTy
2756
/// The function returns a resultOpcode so these two casts can be replaced with:
2757
/// * %Replacement = resultOpcode %SrcTy %x to DstTy
2758
/// If no such cast is permitted, the function returns 0.
2759
unsigned CastInst::isEliminableCastPair(
2760
Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2761
Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2762
Type *DstIntPtrTy) {
2763
// Define the 144 possibilities for these two cast instructions. The values
2764
// in this matrix determine what to do in a given situation and select the
2765
// case in the switch below. The rows correspond to firstOp, the columns
2766
// correspond to secondOp. In looking at the table below, keep in mind
2767
// the following cast properties:
2768
//
2769
// Size Compare Source Destination
2770
// Operator Src ? Size Type Sign Type Sign
2771
// -------- ------------ ------------------- ---------------------
2772
// TRUNC > Integer Any Integral Any
2773
// ZEXT < Integral Unsigned Integer Any
2774
// SEXT < Integral Signed Integer Any
2775
// FPTOUI n/a FloatPt n/a Integral Unsigned
2776
// FPTOSI n/a FloatPt n/a Integral Signed
2777
// UITOFP n/a Integral Unsigned FloatPt n/a
2778
// SITOFP n/a Integral Signed FloatPt n/a
2779
// FPTRUNC > FloatPt n/a FloatPt n/a
2780
// FPEXT < FloatPt n/a FloatPt n/a
2781
// PTRTOINT n/a Pointer n/a Integral Unsigned
2782
// INTTOPTR n/a Integral Unsigned Pointer n/a
2783
// BITCAST = FirstClass n/a FirstClass n/a
2784
// ADDRSPCST n/a Pointer n/a Pointer n/a
2785
//
2786
// NOTE: some transforms are safe, but we consider them to be non-profitable.
2787
// For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2788
// into "fptoui double to i64", but this loses information about the range
2789
// of the produced value (we no longer know the top-part is all zeros).
2790
// Further this conversion is often much more expensive for typical hardware,
2791
// and causes issues when building libgcc. We disallow fptosi+sext for the
2792
// same reason.
2793
const unsigned numCastOps =
2794
Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2795
static const uint8_t CastResults[numCastOps][numCastOps] = {
2796
// T F F U S F F P I B A -+
2797
// R Z S P P I I T P 2 N T S |
2798
// U E E 2 2 2 2 R E I T C C +- secondOp
2799
// N X X U S F F N X N 2 V V |
2800
// C T T I I P P C T T P T T -+
2801
{ 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2802
{ 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2803
{ 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2804
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2805
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2806
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2807
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2808
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2809
{ 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2810
{ 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2811
{ 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2812
{ 5, 5, 5, 0, 0, 5, 5, 0, 0,16, 5, 1,14}, // BitCast |
2813
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2814
};
2815
2816
// TODO: This logic could be encoded into the table above and handled in the
2817
// switch below.
2818
// If either of the casts are a bitcast from scalar to vector, disallow the
2819
// merging. However, any pair of bitcasts are allowed.
2820
bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2821
bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2822
bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2823
2824
// Check if any of the casts convert scalars <-> vectors.
2825
if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2826
(IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2827
if (!AreBothBitcasts)
2828
return 0;
2829
2830
int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2831
[secondOp-Instruction::CastOpsBegin];
2832
switch (ElimCase) {
2833
case 0:
2834
// Categorically disallowed.
2835
return 0;
2836
case 1:
2837
// Allowed, use first cast's opcode.
2838
return firstOp;
2839
case 2:
2840
// Allowed, use second cast's opcode.
2841
return secondOp;
2842
case 3:
2843
// No-op cast in second op implies firstOp as long as the DestTy
2844
// is integer and we are not converting between a vector and a
2845
// non-vector type.
2846
if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2847
return firstOp;
2848
return 0;
2849
case 4:
2850
// No-op cast in second op implies firstOp as long as the DestTy
2851
// matches MidTy.
2852
if (DstTy == MidTy)
2853
return firstOp;
2854
return 0;
2855
case 5:
2856
// No-op cast in first op implies secondOp as long as the SrcTy
2857
// is an integer.
2858
if (SrcTy->isIntegerTy())
2859
return secondOp;
2860
return 0;
2861
case 7: {
2862
// Disable inttoptr/ptrtoint optimization if enabled.
2863
if (DisableI2pP2iOpt)
2864
return 0;
2865
2866
// Cannot simplify if address spaces are different!
2867
if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2868
return 0;
2869
2870
unsigned MidSize = MidTy->getScalarSizeInBits();
2871
// We can still fold this without knowing the actual sizes as long we
2872
// know that the intermediate pointer is the largest possible
2873
// pointer size.
2874
// FIXME: Is this always true?
2875
if (MidSize == 64)
2876
return Instruction::BitCast;
2877
2878
// ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2879
if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2880
return 0;
2881
unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2882
if (MidSize >= PtrSize)
2883
return Instruction::BitCast;
2884
return 0;
2885
}
2886
case 8: {
2887
// ext, trunc -> bitcast, if the SrcTy and DstTy are the same
2888
// ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2889
// ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2890
unsigned SrcSize = SrcTy->getScalarSizeInBits();
2891
unsigned DstSize = DstTy->getScalarSizeInBits();
2892
if (SrcTy == DstTy)
2893
return Instruction::BitCast;
2894
if (SrcSize < DstSize)
2895
return firstOp;
2896
if (SrcSize > DstSize)
2897
return secondOp;
2898
return 0;
2899
}
2900
case 9:
2901
// zext, sext -> zext, because sext can't sign extend after zext
2902
return Instruction::ZExt;
2903
case 11: {
2904
// inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2905
if (!MidIntPtrTy)
2906
return 0;
2907
unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2908
unsigned SrcSize = SrcTy->getScalarSizeInBits();
2909
unsigned DstSize = DstTy->getScalarSizeInBits();
2910
if (SrcSize <= PtrSize && SrcSize == DstSize)
2911
return Instruction::BitCast;
2912
return 0;
2913
}
2914
case 12:
2915
// addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2916
// addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2917
if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2918
return Instruction::AddrSpaceCast;
2919
return Instruction::BitCast;
2920
case 13:
2921
// FIXME: this state can be merged with (1), but the following assert
2922
// is useful to check the correcteness of the sequence due to semantic
2923
// change of bitcast.
2924
assert(
2925
SrcTy->isPtrOrPtrVectorTy() &&
2926
MidTy->isPtrOrPtrVectorTy() &&
2927
DstTy->isPtrOrPtrVectorTy() &&
2928
SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2929
MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2930
"Illegal addrspacecast, bitcast sequence!");
2931
// Allowed, use first cast's opcode
2932
return firstOp;
2933
case 14:
2934
// bitcast, addrspacecast -> addrspacecast
2935
return Instruction::AddrSpaceCast;
2936
case 15:
2937
// FIXME: this state can be merged with (1), but the following assert
2938
// is useful to check the correcteness of the sequence due to semantic
2939
// change of bitcast.
2940
assert(
2941
SrcTy->isIntOrIntVectorTy() &&
2942
MidTy->isPtrOrPtrVectorTy() &&
2943
DstTy->isPtrOrPtrVectorTy() &&
2944
MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2945
"Illegal inttoptr, bitcast sequence!");
2946
// Allowed, use first cast's opcode
2947
return firstOp;
2948
case 16:
2949
// FIXME: this state can be merged with (2), but the following assert
2950
// is useful to check the correcteness of the sequence due to semantic
2951
// change of bitcast.
2952
assert(
2953
SrcTy->isPtrOrPtrVectorTy() &&
2954
MidTy->isPtrOrPtrVectorTy() &&
2955
DstTy->isIntOrIntVectorTy() &&
2956
SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2957
"Illegal bitcast, ptrtoint sequence!");
2958
// Allowed, use second cast's opcode
2959
return secondOp;
2960
case 17:
2961
// (sitofp (zext x)) -> (uitofp x)
2962
return Instruction::UIToFP;
2963
case 99:
2964
// Cast combination can't happen (error in input). This is for all cases
2965
// where the MidTy is not the same for the two cast instructions.
2966
llvm_unreachable("Invalid Cast Combination");
2967
default:
2968
llvm_unreachable("Error in CastResults table!!!");
2969
}
2970
}
2971
2972
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2973
const Twine &Name, InsertPosition InsertBefore) {
2974
assert(castIsValid(op, S, Ty) && "Invalid cast!");
2975
// Construct and return the appropriate CastInst subclass
2976
switch (op) {
2977
case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2978
case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2979
case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2980
case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2981
case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2982
case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2983
case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2984
case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2985
case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2986
case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2987
case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2988
case BitCast:
2989
return new BitCastInst(S, Ty, Name, InsertBefore);
2990
case AddrSpaceCast:
2991
return new AddrSpaceCastInst(S, Ty, Name, InsertBefore);
2992
default:
2993
llvm_unreachable("Invalid opcode provided");
2994
}
2995
}
2996
2997
CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name,
2998
InsertPosition InsertBefore) {
2999
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3000
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3001
return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3002
}
3003
3004
CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name,
3005
InsertPosition InsertBefore) {
3006
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3007
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3008
return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3009
}
3010
3011
CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name,
3012
InsertPosition InsertBefore) {
3013
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3014
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3015
return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3016
}
3017
3018
/// Create a BitCast or a PtrToInt cast instruction
3019
CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, const Twine &Name,
3020
InsertPosition InsertBefore) {
3021
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3022
assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3023
"Invalid cast");
3024
assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3025
assert((!Ty->isVectorTy() ||
3026
cast<VectorType>(Ty)->getElementCount() ==
3027
cast<VectorType>(S->getType())->getElementCount()) &&
3028
"Invalid cast");
3029
3030
if (Ty->isIntOrIntVectorTy())
3031
return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3032
3033
return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3034
}
3035
3036
CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3037
Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore) {
3038
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3039
assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3040
3041
if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3042
return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3043
3044
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3045
}
3046
3047
CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3048
const Twine &Name,
3049
InsertPosition InsertBefore) {
3050
if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3051
return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3052
if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3053
return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3054
3055
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3056
}
3057
3058
CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, bool isSigned,
3059
const Twine &Name,
3060
InsertPosition InsertBefore) {
3061
assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3062
"Invalid integer cast");
3063
unsigned SrcBits = C->getType()->getScalarSizeInBits();
3064
unsigned DstBits = Ty->getScalarSizeInBits();
3065
Instruction::CastOps opcode =
3066
(SrcBits == DstBits ? Instruction::BitCast :
3067
(SrcBits > DstBits ? Instruction::Trunc :
3068
(isSigned ? Instruction::SExt : Instruction::ZExt)));
3069
return Create(opcode, C, Ty, Name, InsertBefore);
3070
}
3071
3072
CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, const Twine &Name,
3073
InsertPosition InsertBefore) {
3074
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3075
"Invalid cast");
3076
unsigned SrcBits = C->getType()->getScalarSizeInBits();
3077
unsigned DstBits = Ty->getScalarSizeInBits();
3078
assert((C->getType() == Ty || SrcBits != DstBits) && "Invalid cast");
3079
Instruction::CastOps opcode =
3080
(SrcBits == DstBits ? Instruction::BitCast :
3081
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3082
return Create(opcode, C, Ty, Name, InsertBefore);
3083
}
3084
3085
bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3086
if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3087
return false;
3088
3089
if (SrcTy == DestTy)
3090
return true;
3091
3092
if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3093
if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3094
if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3095
// An element by element cast. Valid if casting the elements is valid.
3096
SrcTy = SrcVecTy->getElementType();
3097
DestTy = DestVecTy->getElementType();
3098
}
3099
}
3100
}
3101
3102
if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3103
if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3104
return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3105
}
3106
}
3107
3108
TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3109
TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3110
3111
// Could still have vectors of pointers if the number of elements doesn't
3112
// match
3113
if (SrcBits.getKnownMinValue() == 0 || DestBits.getKnownMinValue() == 0)
3114
return false;
3115
3116
if (SrcBits != DestBits)
3117
return false;
3118
3119
if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3120
return false;
3121
3122
return true;
3123
}
3124
3125
bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3126
const DataLayout &DL) {
3127
// ptrtoint and inttoptr are not allowed on non-integral pointers
3128
if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3129
if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3130
return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3131
!DL.isNonIntegralPointerType(PtrTy));
3132
if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3133
if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3134
return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3135
!DL.isNonIntegralPointerType(PtrTy));
3136
3137
return isBitCastable(SrcTy, DestTy);
3138
}
3139
3140
// Provide a way to get a "cast" where the cast opcode is inferred from the
3141
// types and size of the operand. This, basically, is a parallel of the
3142
// logic in the castIsValid function below. This axiom should hold:
3143
// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3144
// should not assert in castIsValid. In other words, this produces a "correct"
3145
// casting opcode for the arguments passed to it.
3146
Instruction::CastOps
3147
CastInst::getCastOpcode(
3148
const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3149
Type *SrcTy = Src->getType();
3150
3151
assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3152
"Only first class types are castable!");
3153
3154
if (SrcTy == DestTy)
3155
return BitCast;
3156
3157
// FIXME: Check address space sizes here
3158
if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3159
if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3160
if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3161
// An element by element cast. Find the appropriate opcode based on the
3162
// element types.
3163
SrcTy = SrcVecTy->getElementType();
3164
DestTy = DestVecTy->getElementType();
3165
}
3166
3167
// Get the bit sizes, we'll need these
3168
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3169
unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3170
3171
// Run through the possibilities ...
3172
if (DestTy->isIntegerTy()) { // Casting to integral
3173
if (SrcTy->isIntegerTy()) { // Casting from integral
3174
if (DestBits < SrcBits)
3175
return Trunc; // int -> smaller int
3176
else if (DestBits > SrcBits) { // its an extension
3177
if (SrcIsSigned)
3178
return SExt; // signed -> SEXT
3179
else
3180
return ZExt; // unsigned -> ZEXT
3181
} else {
3182
return BitCast; // Same size, No-op cast
3183
}
3184
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3185
if (DestIsSigned)
3186
return FPToSI; // FP -> sint
3187
else
3188
return FPToUI; // FP -> uint
3189
} else if (SrcTy->isVectorTy()) {
3190
assert(DestBits == SrcBits &&
3191
"Casting vector to integer of different width");
3192
return BitCast; // Same size, no-op cast
3193
} else {
3194
assert(SrcTy->isPointerTy() &&
3195
"Casting from a value that is not first-class type");
3196
return PtrToInt; // ptr -> int
3197
}
3198
} else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3199
if (SrcTy->isIntegerTy()) { // Casting from integral
3200
if (SrcIsSigned)
3201
return SIToFP; // sint -> FP
3202
else
3203
return UIToFP; // uint -> FP
3204
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3205
if (DestBits < SrcBits) {
3206
return FPTrunc; // FP -> smaller FP
3207
} else if (DestBits > SrcBits) {
3208
return FPExt; // FP -> larger FP
3209
} else {
3210
return BitCast; // same size, no-op cast
3211
}
3212
} else if (SrcTy->isVectorTy()) {
3213
assert(DestBits == SrcBits &&
3214
"Casting vector to floating point of different width");
3215
return BitCast; // same size, no-op cast
3216
}
3217
llvm_unreachable("Casting pointer or non-first class to float");
3218
} else if (DestTy->isVectorTy()) {
3219
assert(DestBits == SrcBits &&
3220
"Illegal cast to vector (wrong type or size)");
3221
return BitCast;
3222
} else if (DestTy->isPointerTy()) {
3223
if (SrcTy->isPointerTy()) {
3224
if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3225
return AddrSpaceCast;
3226
return BitCast; // ptr -> ptr
3227
} else if (SrcTy->isIntegerTy()) {
3228
return IntToPtr; // int -> ptr
3229
}
3230
llvm_unreachable("Casting pointer to other than pointer or int");
3231
} else if (DestTy->isX86_MMXTy()) {
3232
if (SrcTy->isVectorTy()) {
3233
assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3234
return BitCast; // 64-bit vector to MMX
3235
}
3236
llvm_unreachable("Illegal cast to X86_MMX");
3237
}
3238
llvm_unreachable("Casting to type that is not first-class");
3239
}
3240
3241
//===----------------------------------------------------------------------===//
3242
// CastInst SubClass Constructors
3243
//===----------------------------------------------------------------------===//
3244
3245
/// Check that the construction parameters for a CastInst are correct. This
3246
/// could be broken out into the separate constructors but it is useful to have
3247
/// it in one place and to eliminate the redundant code for getting the sizes
3248
/// of the types involved.
3249
bool
3250
CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3251
if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3252
SrcTy->isAggregateType() || DstTy->isAggregateType())
3253
return false;
3254
3255
// Get the size of the types in bits, and whether we are dealing
3256
// with vector types, we'll need this later.
3257
bool SrcIsVec = isa<VectorType>(SrcTy);
3258
bool DstIsVec = isa<VectorType>(DstTy);
3259
unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3260
unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3261
3262
// If these are vector types, get the lengths of the vectors (using zero for
3263
// scalar types means that checking that vector lengths match also checks that
3264
// scalars are not being converted to vectors or vectors to scalars).
3265
ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3266
: ElementCount::getFixed(0);
3267
ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3268
: ElementCount::getFixed(0);
3269
3270
// Switch on the opcode provided
3271
switch (op) {
3272
default: return false; // This is an input error
3273
case Instruction::Trunc:
3274
return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3275
SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3276
case Instruction::ZExt:
3277
return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3278
SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3279
case Instruction::SExt:
3280
return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3281
SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3282
case Instruction::FPTrunc:
3283
return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3284
SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3285
case Instruction::FPExt:
3286
return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3287
SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3288
case Instruction::UIToFP:
3289
case Instruction::SIToFP:
3290
return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3291
SrcEC == DstEC;
3292
case Instruction::FPToUI:
3293
case Instruction::FPToSI:
3294
return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3295
SrcEC == DstEC;
3296
case Instruction::PtrToInt:
3297
if (SrcEC != DstEC)
3298
return false;
3299
return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3300
case Instruction::IntToPtr:
3301
if (SrcEC != DstEC)
3302
return false;
3303
return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3304
case Instruction::BitCast: {
3305
PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3306
PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3307
3308
// BitCast implies a no-op cast of type only. No bits change.
3309
// However, you can't cast pointers to anything but pointers.
3310
if (!SrcPtrTy != !DstPtrTy)
3311
return false;
3312
3313
// For non-pointer cases, the cast is okay if the source and destination bit
3314
// widths are identical.
3315
if (!SrcPtrTy)
3316
return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3317
3318
// If both are pointers then the address spaces must match.
3319
if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3320
return false;
3321
3322
// A vector of pointers must have the same number of elements.
3323
if (SrcIsVec && DstIsVec)
3324
return SrcEC == DstEC;
3325
if (SrcIsVec)
3326
return SrcEC == ElementCount::getFixed(1);
3327
if (DstIsVec)
3328
return DstEC == ElementCount::getFixed(1);
3329
3330
return true;
3331
}
3332
case Instruction::AddrSpaceCast: {
3333
PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3334
if (!SrcPtrTy)
3335
return false;
3336
3337
PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3338
if (!DstPtrTy)
3339
return false;
3340
3341
if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3342
return false;
3343
3344
return SrcEC == DstEC;
3345
}
3346
}
3347
}
3348
3349
TruncInst::TruncInst(Value *S, Type *Ty, const Twine &Name,
3350
InsertPosition InsertBefore)
3351
: CastInst(Ty, Trunc, S, Name, InsertBefore) {
3352
assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3353
}
3354
3355
ZExtInst::ZExtInst(Value *S, Type *Ty, const Twine &Name,
3356
InsertPosition InsertBefore)
3357
: CastInst(Ty, ZExt, S, Name, InsertBefore) {
3358
assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3359
}
3360
3361
SExtInst::SExtInst(Value *S, Type *Ty, const Twine &Name,
3362
InsertPosition InsertBefore)
3363
: CastInst(Ty, SExt, S, Name, InsertBefore) {
3364
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3365
}
3366
3367
FPTruncInst::FPTruncInst(Value *S, Type *Ty, const Twine &Name,
3368
InsertPosition InsertBefore)
3369
: CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3370
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3371
}
3372
3373
FPExtInst::FPExtInst(Value *S, Type *Ty, const Twine &Name,
3374
InsertPosition InsertBefore)
3375
: CastInst(Ty, FPExt, S, Name, InsertBefore) {
3376
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3377
}
3378
3379
UIToFPInst::UIToFPInst(Value *S, Type *Ty, const Twine &Name,
3380
InsertPosition InsertBefore)
3381
: CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3382
assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3383
}
3384
3385
SIToFPInst::SIToFPInst(Value *S, Type *Ty, const Twine &Name,
3386
InsertPosition InsertBefore)
3387
: CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3388
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3389
}
3390
3391
FPToUIInst::FPToUIInst(Value *S, Type *Ty, const Twine &Name,
3392
InsertPosition InsertBefore)
3393
: CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3394
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3395
}
3396
3397
FPToSIInst::FPToSIInst(Value *S, Type *Ty, const Twine &Name,
3398
InsertPosition InsertBefore)
3399
: CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3400
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3401
}
3402
3403
PtrToIntInst::PtrToIntInst(Value *S, Type *Ty, const Twine &Name,
3404
InsertPosition InsertBefore)
3405
: CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3406
assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3407
}
3408
3409
IntToPtrInst::IntToPtrInst(Value *S, Type *Ty, const Twine &Name,
3410
InsertPosition InsertBefore)
3411
: CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3412
assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3413
}
3414
3415
BitCastInst::BitCastInst(Value *S, Type *Ty, const Twine &Name,
3416
InsertPosition InsertBefore)
3417
: CastInst(Ty, BitCast, S, Name, InsertBefore) {
3418
assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3419
}
3420
3421
AddrSpaceCastInst::AddrSpaceCastInst(Value *S, Type *Ty, const Twine &Name,
3422
InsertPosition InsertBefore)
3423
: CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3424
assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3425
}
3426
3427
//===----------------------------------------------------------------------===//
3428
// CmpInst Classes
3429
//===----------------------------------------------------------------------===//
3430
3431
CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3432
Value *RHS, const Twine &Name, InsertPosition InsertBefore,
3433
Instruction *FlagsSource)
3434
: Instruction(ty, op, OperandTraits<CmpInst>::op_begin(this),
3435
OperandTraits<CmpInst>::operands(this), InsertBefore) {
3436
Op<0>() = LHS;
3437
Op<1>() = RHS;
3438
setPredicate((Predicate)predicate);
3439
setName(Name);
3440
if (FlagsSource)
3441
copyIRFlags(FlagsSource);
3442
}
3443
3444
CmpInst *CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3445
const Twine &Name, InsertPosition InsertBefore) {
3446
if (Op == Instruction::ICmp) {
3447
if (InsertBefore.isValid())
3448
return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3449
S1, S2, Name);
3450
else
3451
return new ICmpInst(CmpInst::Predicate(predicate),
3452
S1, S2, Name);
3453
}
3454
3455
if (InsertBefore.isValid())
3456
return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3457
S1, S2, Name);
3458
else
3459
return new FCmpInst(CmpInst::Predicate(predicate),
3460
S1, S2, Name);
3461
}
3462
3463
CmpInst *CmpInst::CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1,
3464
Value *S2,
3465
const Instruction *FlagsSource,
3466
const Twine &Name,
3467
InsertPosition InsertBefore) {
3468
CmpInst *Inst = Create(Op, Pred, S1, S2, Name, InsertBefore);
3469
Inst->copyIRFlags(FlagsSource);
3470
return Inst;
3471
}
3472
3473
void CmpInst::swapOperands() {
3474
if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3475
IC->swapOperands();
3476
else
3477
cast<FCmpInst>(this)->swapOperands();
3478
}
3479
3480
bool CmpInst::isCommutative() const {
3481
if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3482
return IC->isCommutative();
3483
return cast<FCmpInst>(this)->isCommutative();
3484
}
3485
3486
bool CmpInst::isEquality(Predicate P) {
3487
if (ICmpInst::isIntPredicate(P))
3488
return ICmpInst::isEquality(P);
3489
if (FCmpInst::isFPPredicate(P))
3490
return FCmpInst::isEquality(P);
3491
llvm_unreachable("Unsupported predicate kind");
3492
}
3493
3494
CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3495
switch (pred) {
3496
default: llvm_unreachable("Unknown cmp predicate!");
3497
case ICMP_EQ: return ICMP_NE;
3498
case ICMP_NE: return ICMP_EQ;
3499
case ICMP_UGT: return ICMP_ULE;
3500
case ICMP_ULT: return ICMP_UGE;
3501
case ICMP_UGE: return ICMP_ULT;
3502
case ICMP_ULE: return ICMP_UGT;
3503
case ICMP_SGT: return ICMP_SLE;
3504
case ICMP_SLT: return ICMP_SGE;
3505
case ICMP_SGE: return ICMP_SLT;
3506
case ICMP_SLE: return ICMP_SGT;
3507
3508
case FCMP_OEQ: return FCMP_UNE;
3509
case FCMP_ONE: return FCMP_UEQ;
3510
case FCMP_OGT: return FCMP_ULE;
3511
case FCMP_OLT: return FCMP_UGE;
3512
case FCMP_OGE: return FCMP_ULT;
3513
case FCMP_OLE: return FCMP_UGT;
3514
case FCMP_UEQ: return FCMP_ONE;
3515
case FCMP_UNE: return FCMP_OEQ;
3516
case FCMP_UGT: return FCMP_OLE;
3517
case FCMP_ULT: return FCMP_OGE;
3518
case FCMP_UGE: return FCMP_OLT;
3519
case FCMP_ULE: return FCMP_OGT;
3520
case FCMP_ORD: return FCMP_UNO;
3521
case FCMP_UNO: return FCMP_ORD;
3522
case FCMP_TRUE: return FCMP_FALSE;
3523
case FCMP_FALSE: return FCMP_TRUE;
3524
}
3525
}
3526
3527
StringRef CmpInst::getPredicateName(Predicate Pred) {
3528
switch (Pred) {
3529
default: return "unknown";
3530
case FCmpInst::FCMP_FALSE: return "false";
3531
case FCmpInst::FCMP_OEQ: return "oeq";
3532
case FCmpInst::FCMP_OGT: return "ogt";
3533
case FCmpInst::FCMP_OGE: return "oge";
3534
case FCmpInst::FCMP_OLT: return "olt";
3535
case FCmpInst::FCMP_OLE: return "ole";
3536
case FCmpInst::FCMP_ONE: return "one";
3537
case FCmpInst::FCMP_ORD: return "ord";
3538
case FCmpInst::FCMP_UNO: return "uno";
3539
case FCmpInst::FCMP_UEQ: return "ueq";
3540
case FCmpInst::FCMP_UGT: return "ugt";
3541
case FCmpInst::FCMP_UGE: return "uge";
3542
case FCmpInst::FCMP_ULT: return "ult";
3543
case FCmpInst::FCMP_ULE: return "ule";
3544
case FCmpInst::FCMP_UNE: return "une";
3545
case FCmpInst::FCMP_TRUE: return "true";
3546
case ICmpInst::ICMP_EQ: return "eq";
3547
case ICmpInst::ICMP_NE: return "ne";
3548
case ICmpInst::ICMP_SGT: return "sgt";
3549
case ICmpInst::ICMP_SGE: return "sge";
3550
case ICmpInst::ICMP_SLT: return "slt";
3551
case ICmpInst::ICMP_SLE: return "sle";
3552
case ICmpInst::ICMP_UGT: return "ugt";
3553
case ICmpInst::ICMP_UGE: return "uge";
3554
case ICmpInst::ICMP_ULT: return "ult";
3555
case ICmpInst::ICMP_ULE: return "ule";
3556
}
3557
}
3558
3559
raw_ostream &llvm::operator<<(raw_ostream &OS, CmpInst::Predicate Pred) {
3560
OS << CmpInst::getPredicateName(Pred);
3561
return OS;
3562
}
3563
3564
ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3565
switch (pred) {
3566
default: llvm_unreachable("Unknown icmp predicate!");
3567
case ICMP_EQ: case ICMP_NE:
3568
case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3569
return pred;
3570
case ICMP_UGT: return ICMP_SGT;
3571
case ICMP_ULT: return ICMP_SLT;
3572
case ICMP_UGE: return ICMP_SGE;
3573
case ICMP_ULE: return ICMP_SLE;
3574
}
3575
}
3576
3577
ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3578
switch (pred) {
3579
default: llvm_unreachable("Unknown icmp predicate!");
3580
case ICMP_EQ: case ICMP_NE:
3581
case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3582
return pred;
3583
case ICMP_SGT: return ICMP_UGT;
3584
case ICMP_SLT: return ICMP_ULT;
3585
case ICMP_SGE: return ICMP_UGE;
3586
case ICMP_SLE: return ICMP_ULE;
3587
}
3588
}
3589
3590
CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3591
switch (pred) {
3592
default: llvm_unreachable("Unknown cmp predicate!");
3593
case ICMP_EQ: case ICMP_NE:
3594
return pred;
3595
case ICMP_SGT: return ICMP_SLT;
3596
case ICMP_SLT: return ICMP_SGT;
3597
case ICMP_SGE: return ICMP_SLE;
3598
case ICMP_SLE: return ICMP_SGE;
3599
case ICMP_UGT: return ICMP_ULT;
3600
case ICMP_ULT: return ICMP_UGT;
3601
case ICMP_UGE: return ICMP_ULE;
3602
case ICMP_ULE: return ICMP_UGE;
3603
3604
case FCMP_FALSE: case FCMP_TRUE:
3605
case FCMP_OEQ: case FCMP_ONE:
3606
case FCMP_UEQ: case FCMP_UNE:
3607
case FCMP_ORD: case FCMP_UNO:
3608
return pred;
3609
case FCMP_OGT: return FCMP_OLT;
3610
case FCMP_OLT: return FCMP_OGT;
3611
case FCMP_OGE: return FCMP_OLE;
3612
case FCMP_OLE: return FCMP_OGE;
3613
case FCMP_UGT: return FCMP_ULT;
3614
case FCMP_ULT: return FCMP_UGT;
3615
case FCMP_UGE: return FCMP_ULE;
3616
case FCMP_ULE: return FCMP_UGE;
3617
}
3618
}
3619
3620
bool CmpInst::isNonStrictPredicate(Predicate pred) {
3621
switch (pred) {
3622
case ICMP_SGE:
3623
case ICMP_SLE:
3624
case ICMP_UGE:
3625
case ICMP_ULE:
3626
case FCMP_OGE:
3627
case FCMP_OLE:
3628
case FCMP_UGE:
3629
case FCMP_ULE:
3630
return true;
3631
default:
3632
return false;
3633
}
3634
}
3635
3636
bool CmpInst::isStrictPredicate(Predicate pred) {
3637
switch (pred) {
3638
case ICMP_SGT:
3639
case ICMP_SLT:
3640
case ICMP_UGT:
3641
case ICMP_ULT:
3642
case FCMP_OGT:
3643
case FCMP_OLT:
3644
case FCMP_UGT:
3645
case FCMP_ULT:
3646
return true;
3647
default:
3648
return false;
3649
}
3650
}
3651
3652
CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3653
switch (pred) {
3654
case ICMP_SGE:
3655
return ICMP_SGT;
3656
case ICMP_SLE:
3657
return ICMP_SLT;
3658
case ICMP_UGE:
3659
return ICMP_UGT;
3660
case ICMP_ULE:
3661
return ICMP_ULT;
3662
case FCMP_OGE:
3663
return FCMP_OGT;
3664
case FCMP_OLE:
3665
return FCMP_OLT;
3666
case FCMP_UGE:
3667
return FCMP_UGT;
3668
case FCMP_ULE:
3669
return FCMP_ULT;
3670
default:
3671
return pred;
3672
}
3673
}
3674
3675
CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3676
switch (pred) {
3677
case ICMP_SGT:
3678
return ICMP_SGE;
3679
case ICMP_SLT:
3680
return ICMP_SLE;
3681
case ICMP_UGT:
3682
return ICMP_UGE;
3683
case ICMP_ULT:
3684
return ICMP_ULE;
3685
case FCMP_OGT:
3686
return FCMP_OGE;
3687
case FCMP_OLT:
3688
return FCMP_OLE;
3689
case FCMP_UGT:
3690
return FCMP_UGE;
3691
case FCMP_ULT:
3692
return FCMP_ULE;
3693
default:
3694
return pred;
3695
}
3696
}
3697
3698
CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3699
assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3700
3701
if (isStrictPredicate(pred))
3702
return getNonStrictPredicate(pred);
3703
if (isNonStrictPredicate(pred))
3704
return getStrictPredicate(pred);
3705
3706
llvm_unreachable("Unknown predicate!");
3707
}
3708
3709
CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3710
assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
3711
3712
switch (pred) {
3713
default:
3714
llvm_unreachable("Unknown predicate!");
3715
case CmpInst::ICMP_ULT:
3716
return CmpInst::ICMP_SLT;
3717
case CmpInst::ICMP_ULE:
3718
return CmpInst::ICMP_SLE;
3719
case CmpInst::ICMP_UGT:
3720
return CmpInst::ICMP_SGT;
3721
case CmpInst::ICMP_UGE:
3722
return CmpInst::ICMP_SGE;
3723
}
3724
}
3725
3726
CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
3727
assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
3728
3729
switch (pred) {
3730
default:
3731
llvm_unreachable("Unknown predicate!");
3732
case CmpInst::ICMP_SLT:
3733
return CmpInst::ICMP_ULT;
3734
case CmpInst::ICMP_SLE:
3735
return CmpInst::ICMP_ULE;
3736
case CmpInst::ICMP_SGT:
3737
return CmpInst::ICMP_UGT;
3738
case CmpInst::ICMP_SGE:
3739
return CmpInst::ICMP_UGE;
3740
}
3741
}
3742
3743
bool CmpInst::isUnsigned(Predicate predicate) {
3744
switch (predicate) {
3745
default: return false;
3746
case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3747
case ICmpInst::ICMP_UGE: return true;
3748
}
3749
}
3750
3751
bool CmpInst::isSigned(Predicate predicate) {
3752
switch (predicate) {
3753
default: return false;
3754
case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3755
case ICmpInst::ICMP_SGE: return true;
3756
}
3757
}
3758
3759
bool ICmpInst::compare(const APInt &LHS, const APInt &RHS,
3760
ICmpInst::Predicate Pred) {
3761
assert(ICmpInst::isIntPredicate(Pred) && "Only for integer predicates!");
3762
switch (Pred) {
3763
case ICmpInst::Predicate::ICMP_EQ:
3764
return LHS.eq(RHS);
3765
case ICmpInst::Predicate::ICMP_NE:
3766
return LHS.ne(RHS);
3767
case ICmpInst::Predicate::ICMP_UGT:
3768
return LHS.ugt(RHS);
3769
case ICmpInst::Predicate::ICMP_UGE:
3770
return LHS.uge(RHS);
3771
case ICmpInst::Predicate::ICMP_ULT:
3772
return LHS.ult(RHS);
3773
case ICmpInst::Predicate::ICMP_ULE:
3774
return LHS.ule(RHS);
3775
case ICmpInst::Predicate::ICMP_SGT:
3776
return LHS.sgt(RHS);
3777
case ICmpInst::Predicate::ICMP_SGE:
3778
return LHS.sge(RHS);
3779
case ICmpInst::Predicate::ICMP_SLT:
3780
return LHS.slt(RHS);
3781
case ICmpInst::Predicate::ICMP_SLE:
3782
return LHS.sle(RHS);
3783
default:
3784
llvm_unreachable("Unexpected non-integer predicate.");
3785
};
3786
}
3787
3788
bool FCmpInst::compare(const APFloat &LHS, const APFloat &RHS,
3789
FCmpInst::Predicate Pred) {
3790
APFloat::cmpResult R = LHS.compare(RHS);
3791
switch (Pred) {
3792
default:
3793
llvm_unreachable("Invalid FCmp Predicate");
3794
case FCmpInst::FCMP_FALSE:
3795
return false;
3796
case FCmpInst::FCMP_TRUE:
3797
return true;
3798
case FCmpInst::FCMP_UNO:
3799
return R == APFloat::cmpUnordered;
3800
case FCmpInst::FCMP_ORD:
3801
return R != APFloat::cmpUnordered;
3802
case FCmpInst::FCMP_UEQ:
3803
return R == APFloat::cmpUnordered || R == APFloat::cmpEqual;
3804
case FCmpInst::FCMP_OEQ:
3805
return R == APFloat::cmpEqual;
3806
case FCmpInst::FCMP_UNE:
3807
return R != APFloat::cmpEqual;
3808
case FCmpInst::FCMP_ONE:
3809
return R == APFloat::cmpLessThan || R == APFloat::cmpGreaterThan;
3810
case FCmpInst::FCMP_ULT:
3811
return R == APFloat::cmpUnordered || R == APFloat::cmpLessThan;
3812
case FCmpInst::FCMP_OLT:
3813
return R == APFloat::cmpLessThan;
3814
case FCmpInst::FCMP_UGT:
3815
return R == APFloat::cmpUnordered || R == APFloat::cmpGreaterThan;
3816
case FCmpInst::FCMP_OGT:
3817
return R == APFloat::cmpGreaterThan;
3818
case FCmpInst::FCMP_ULE:
3819
return R != APFloat::cmpGreaterThan;
3820
case FCmpInst::FCMP_OLE:
3821
return R == APFloat::cmpLessThan || R == APFloat::cmpEqual;
3822
case FCmpInst::FCMP_UGE:
3823
return R != APFloat::cmpLessThan;
3824
case FCmpInst::FCMP_OGE:
3825
return R == APFloat::cmpGreaterThan || R == APFloat::cmpEqual;
3826
}
3827
}
3828
3829
CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
3830
assert(CmpInst::isRelational(pred) &&
3831
"Call only with non-equality predicates!");
3832
3833
if (isSigned(pred))
3834
return getUnsignedPredicate(pred);
3835
if (isUnsigned(pred))
3836
return getSignedPredicate(pred);
3837
3838
llvm_unreachable("Unknown predicate!");
3839
}
3840
3841
bool CmpInst::isOrdered(Predicate predicate) {
3842
switch (predicate) {
3843
default: return false;
3844
case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3845
case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3846
case FCmpInst::FCMP_ORD: return true;
3847
}
3848
}
3849
3850
bool CmpInst::isUnordered(Predicate predicate) {
3851
switch (predicate) {
3852
default: return false;
3853
case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3854
case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3855
case FCmpInst::FCMP_UNO: return true;
3856
}
3857
}
3858
3859
bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3860
switch(predicate) {
3861
default: return false;
3862
case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3863
case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3864
}
3865
}
3866
3867
bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3868
switch(predicate) {
3869
case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3870
case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3871
default: return false;
3872
}
3873
}
3874
3875
bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3876
// If the predicates match, then we know the first condition implies the
3877
// second is true.
3878
if (Pred1 == Pred2)
3879
return true;
3880
3881
switch (Pred1) {
3882
default:
3883
break;
3884
case ICMP_EQ:
3885
// A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3886
return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3887
Pred2 == ICMP_SLE;
3888
case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3889
return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3890
case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3891
return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3892
case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3893
return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3894
case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3895
return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3896
}
3897
return false;
3898
}
3899
3900
bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3901
return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3902
}
3903
3904
//===----------------------------------------------------------------------===//
3905
// SwitchInst Implementation
3906
//===----------------------------------------------------------------------===//
3907
3908
void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3909
assert(Value && Default && NumReserved);
3910
ReservedSpace = NumReserved;
3911
setNumHungOffUseOperands(2);
3912
allocHungoffUses(ReservedSpace);
3913
3914
Op<0>() = Value;
3915
Op<1>() = Default;
3916
}
3917
3918
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
3919
/// switch on and a default destination. The number of additional cases can
3920
/// be specified here to make memory allocation more efficient. This
3921
/// constructor can also autoinsert before another instruction.
3922
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3923
InsertPosition InsertBefore)
3924
: Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3925
nullptr, 0, InsertBefore) {
3926
init(Value, Default, 2+NumCases*2);
3927
}
3928
3929
SwitchInst::SwitchInst(const SwitchInst &SI)
3930
: Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3931
init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3932
setNumHungOffUseOperands(SI.getNumOperands());
3933
Use *OL = getOperandList();
3934
const Use *InOL = SI.getOperandList();
3935
for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3936
OL[i] = InOL[i];
3937
OL[i+1] = InOL[i+1];
3938
}
3939
SubclassOptionalData = SI.SubclassOptionalData;
3940
}
3941
3942
/// addCase - Add an entry to the switch instruction...
3943
///
3944
void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3945
unsigned NewCaseIdx = getNumCases();
3946
unsigned OpNo = getNumOperands();
3947
if (OpNo+2 > ReservedSpace)
3948
growOperands(); // Get more space!
3949
// Initialize some new operands.
3950
assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3951
setNumHungOffUseOperands(OpNo+2);
3952
CaseHandle Case(this, NewCaseIdx);
3953
Case.setValue(OnVal);
3954
Case.setSuccessor(Dest);
3955
}
3956
3957
/// removeCase - This method removes the specified case and its successor
3958
/// from the switch instruction.
3959
SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3960
unsigned idx = I->getCaseIndex();
3961
3962
assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3963
3964
unsigned NumOps = getNumOperands();
3965
Use *OL = getOperandList();
3966
3967
// Overwrite this case with the end of the list.
3968
if (2 + (idx + 1) * 2 != NumOps) {
3969
OL[2 + idx * 2] = OL[NumOps - 2];
3970
OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3971
}
3972
3973
// Nuke the last value.
3974
OL[NumOps-2].set(nullptr);
3975
OL[NumOps-2+1].set(nullptr);
3976
setNumHungOffUseOperands(NumOps-2);
3977
3978
return CaseIt(this, idx);
3979
}
3980
3981
/// growOperands - grow operands - This grows the operand list in response
3982
/// to a push_back style of operation. This grows the number of ops by 3 times.
3983
///
3984
void SwitchInst::growOperands() {
3985
unsigned e = getNumOperands();
3986
unsigned NumOps = e*3;
3987
3988
ReservedSpace = NumOps;
3989
growHungoffUses(ReservedSpace);
3990
}
3991
3992
MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3993
assert(Changed && "called only if metadata has changed");
3994
3995
if (!Weights)
3996
return nullptr;
3997
3998
assert(SI.getNumSuccessors() == Weights->size() &&
3999
"num of prof branch_weights must accord with num of successors");
4000
4001
bool AllZeroes = all_of(*Weights, [](uint32_t W) { return W == 0; });
4002
4003
if (AllZeroes || Weights->size() < 2)
4004
return nullptr;
4005
4006
return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4007
}
4008
4009
void SwitchInstProfUpdateWrapper::init() {
4010
MDNode *ProfileData = getBranchWeightMDNode(SI);
4011
if (!ProfileData)
4012
return;
4013
4014
if (getNumBranchWeights(*ProfileData) != SI.getNumSuccessors()) {
4015
llvm_unreachable("number of prof branch_weights metadata operands does "
4016
"not correspond to number of succesors");
4017
}
4018
4019
SmallVector<uint32_t, 8> Weights;
4020
if (!extractBranchWeights(ProfileData, Weights))
4021
return;
4022
this->Weights = std::move(Weights);
4023
}
4024
4025
SwitchInst::CaseIt
4026
SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4027
if (Weights) {
4028
assert(SI.getNumSuccessors() == Weights->size() &&
4029
"num of prof branch_weights must accord with num of successors");
4030
Changed = true;
4031
// Copy the last case to the place of the removed one and shrink.
4032
// This is tightly coupled with the way SwitchInst::removeCase() removes
4033
// the cases in SwitchInst::removeCase(CaseIt).
4034
(*Weights)[I->getCaseIndex() + 1] = Weights->back();
4035
Weights->pop_back();
4036
}
4037
return SI.removeCase(I);
4038
}
4039
4040
void SwitchInstProfUpdateWrapper::addCase(
4041
ConstantInt *OnVal, BasicBlock *Dest,
4042
SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4043
SI.addCase(OnVal, Dest);
4044
4045
if (!Weights && W && *W) {
4046
Changed = true;
4047
Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4048
(*Weights)[SI.getNumSuccessors() - 1] = *W;
4049
} else if (Weights) {
4050
Changed = true;
4051
Weights->push_back(W.value_or(0));
4052
}
4053
if (Weights)
4054
assert(SI.getNumSuccessors() == Weights->size() &&
4055
"num of prof branch_weights must accord with num of successors");
4056
}
4057
4058
Instruction::InstListType::iterator
4059
SwitchInstProfUpdateWrapper::eraseFromParent() {
4060
// Instruction is erased. Mark as unchanged to not touch it in the destructor.
4061
Changed = false;
4062
if (Weights)
4063
Weights->resize(0);
4064
return SI.eraseFromParent();
4065
}
4066
4067
SwitchInstProfUpdateWrapper::CaseWeightOpt
4068
SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4069
if (!Weights)
4070
return std::nullopt;
4071
return (*Weights)[idx];
4072
}
4073
4074
void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4075
unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4076
if (!W)
4077
return;
4078
4079
if (!Weights && *W)
4080
Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4081
4082
if (Weights) {
4083
auto &OldW = (*Weights)[idx];
4084
if (*W != OldW) {
4085
Changed = true;
4086
OldW = *W;
4087
}
4088
}
4089
}
4090
4091
SwitchInstProfUpdateWrapper::CaseWeightOpt
4092
SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4093
unsigned idx) {
4094
if (MDNode *ProfileData = getBranchWeightMDNode(SI))
4095
if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4096
return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4097
->getValue()
4098
.getZExtValue();
4099
4100
return std::nullopt;
4101
}
4102
4103
//===----------------------------------------------------------------------===//
4104
// IndirectBrInst Implementation
4105
//===----------------------------------------------------------------------===//
4106
4107
void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4108
assert(Address && Address->getType()->isPointerTy() &&
4109
"Address of indirectbr must be a pointer");
4110
ReservedSpace = 1+NumDests;
4111
setNumHungOffUseOperands(1);
4112
allocHungoffUses(ReservedSpace);
4113
4114
Op<0>() = Address;
4115
}
4116
4117
4118
/// growOperands - grow operands - This grows the operand list in response
4119
/// to a push_back style of operation. This grows the number of ops by 2 times.
4120
///
4121
void IndirectBrInst::growOperands() {
4122
unsigned e = getNumOperands();
4123
unsigned NumOps = e*2;
4124
4125
ReservedSpace = NumOps;
4126
growHungoffUses(ReservedSpace);
4127
}
4128
4129
IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4130
InsertPosition InsertBefore)
4131
: Instruction(Type::getVoidTy(Address->getContext()),
4132
Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4133
init(Address, NumCases);
4134
}
4135
4136
IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4137
: Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4138
nullptr, IBI.getNumOperands()) {
4139
allocHungoffUses(IBI.getNumOperands());
4140
Use *OL = getOperandList();
4141
const Use *InOL = IBI.getOperandList();
4142
for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4143
OL[i] = InOL[i];
4144
SubclassOptionalData = IBI.SubclassOptionalData;
4145
}
4146
4147
/// addDestination - Add a destination.
4148
///
4149
void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4150
unsigned OpNo = getNumOperands();
4151
if (OpNo+1 > ReservedSpace)
4152
growOperands(); // Get more space!
4153
// Initialize some new operands.
4154
assert(OpNo < ReservedSpace && "Growing didn't work!");
4155
setNumHungOffUseOperands(OpNo+1);
4156
getOperandList()[OpNo] = DestBB;
4157
}
4158
4159
/// removeDestination - This method removes the specified successor from the
4160
/// indirectbr instruction.
4161
void IndirectBrInst::removeDestination(unsigned idx) {
4162
assert(idx < getNumOperands()-1 && "Successor index out of range!");
4163
4164
unsigned NumOps = getNumOperands();
4165
Use *OL = getOperandList();
4166
4167
// Replace this value with the last one.
4168
OL[idx+1] = OL[NumOps-1];
4169
4170
// Nuke the last value.
4171
OL[NumOps-1].set(nullptr);
4172
setNumHungOffUseOperands(NumOps-1);
4173
}
4174
4175
//===----------------------------------------------------------------------===//
4176
// FreezeInst Implementation
4177
//===----------------------------------------------------------------------===//
4178
4179
FreezeInst::FreezeInst(Value *S, const Twine &Name, InsertPosition InsertBefore)
4180
: UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4181
setName(Name);
4182
}
4183
4184
//===----------------------------------------------------------------------===//
4185
// cloneImpl() implementations
4186
//===----------------------------------------------------------------------===//
4187
4188
// Define these methods here so vtables don't get emitted into every translation
4189
// unit that uses these classes.
4190
4191
GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4192
return new (getNumOperands()) GetElementPtrInst(*this);
4193
}
4194
4195
UnaryOperator *UnaryOperator::cloneImpl() const {
4196
return Create(getOpcode(), Op<0>());
4197
}
4198
4199
BinaryOperator *BinaryOperator::cloneImpl() const {
4200
return Create(getOpcode(), Op<0>(), Op<1>());
4201
}
4202
4203
FCmpInst *FCmpInst::cloneImpl() const {
4204
return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4205
}
4206
4207
ICmpInst *ICmpInst::cloneImpl() const {
4208
return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4209
}
4210
4211
ExtractValueInst *ExtractValueInst::cloneImpl() const {
4212
return new ExtractValueInst(*this);
4213
}
4214
4215
InsertValueInst *InsertValueInst::cloneImpl() const {
4216
return new InsertValueInst(*this);
4217
}
4218
4219
AllocaInst *AllocaInst::cloneImpl() const {
4220
AllocaInst *Result = new AllocaInst(getAllocatedType(), getAddressSpace(),
4221
getOperand(0), getAlign());
4222
Result->setUsedWithInAlloca(isUsedWithInAlloca());
4223
Result->setSwiftError(isSwiftError());
4224
return Result;
4225
}
4226
4227
LoadInst *LoadInst::cloneImpl() const {
4228
return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4229
getAlign(), getOrdering(), getSyncScopeID());
4230
}
4231
4232
StoreInst *StoreInst::cloneImpl() const {
4233
return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4234
getOrdering(), getSyncScopeID());
4235
}
4236
4237
AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4238
AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4239
getOperand(0), getOperand(1), getOperand(2), getAlign(),
4240
getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4241
Result->setVolatile(isVolatile());
4242
Result->setWeak(isWeak());
4243
return Result;
4244
}
4245
4246
AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4247
AtomicRMWInst *Result =
4248
new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4249
getAlign(), getOrdering(), getSyncScopeID());
4250
Result->setVolatile(isVolatile());
4251
return Result;
4252
}
4253
4254
FenceInst *FenceInst::cloneImpl() const {
4255
return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4256
}
4257
4258
TruncInst *TruncInst::cloneImpl() const {
4259
return new TruncInst(getOperand(0), getType());
4260
}
4261
4262
ZExtInst *ZExtInst::cloneImpl() const {
4263
return new ZExtInst(getOperand(0), getType());
4264
}
4265
4266
SExtInst *SExtInst::cloneImpl() const {
4267
return new SExtInst(getOperand(0), getType());
4268
}
4269
4270
FPTruncInst *FPTruncInst::cloneImpl() const {
4271
return new FPTruncInst(getOperand(0), getType());
4272
}
4273
4274
FPExtInst *FPExtInst::cloneImpl() const {
4275
return new FPExtInst(getOperand(0), getType());
4276
}
4277
4278
UIToFPInst *UIToFPInst::cloneImpl() const {
4279
return new UIToFPInst(getOperand(0), getType());
4280
}
4281
4282
SIToFPInst *SIToFPInst::cloneImpl() const {
4283
return new SIToFPInst(getOperand(0), getType());
4284
}
4285
4286
FPToUIInst *FPToUIInst::cloneImpl() const {
4287
return new FPToUIInst(getOperand(0), getType());
4288
}
4289
4290
FPToSIInst *FPToSIInst::cloneImpl() const {
4291
return new FPToSIInst(getOperand(0), getType());
4292
}
4293
4294
PtrToIntInst *PtrToIntInst::cloneImpl() const {
4295
return new PtrToIntInst(getOperand(0), getType());
4296
}
4297
4298
IntToPtrInst *IntToPtrInst::cloneImpl() const {
4299
return new IntToPtrInst(getOperand(0), getType());
4300
}
4301
4302
BitCastInst *BitCastInst::cloneImpl() const {
4303
return new BitCastInst(getOperand(0), getType());
4304
}
4305
4306
AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4307
return new AddrSpaceCastInst(getOperand(0), getType());
4308
}
4309
4310
CallInst *CallInst::cloneImpl() const {
4311
if (hasOperandBundles()) {
4312
unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4313
return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4314
}
4315
return new(getNumOperands()) CallInst(*this);
4316
}
4317
4318
SelectInst *SelectInst::cloneImpl() const {
4319
return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4320
}
4321
4322
VAArgInst *VAArgInst::cloneImpl() const {
4323
return new VAArgInst(getOperand(0), getType());
4324
}
4325
4326
ExtractElementInst *ExtractElementInst::cloneImpl() const {
4327
return ExtractElementInst::Create(getOperand(0), getOperand(1));
4328
}
4329
4330
InsertElementInst *InsertElementInst::cloneImpl() const {
4331
return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4332
}
4333
4334
ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4335
return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4336
}
4337
4338
PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4339
4340
LandingPadInst *LandingPadInst::cloneImpl() const {
4341
return new LandingPadInst(*this);
4342
}
4343
4344
ReturnInst *ReturnInst::cloneImpl() const {
4345
return new(getNumOperands()) ReturnInst(*this);
4346
}
4347
4348
BranchInst *BranchInst::cloneImpl() const {
4349
return new(getNumOperands()) BranchInst(*this);
4350
}
4351
4352
SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4353
4354
IndirectBrInst *IndirectBrInst::cloneImpl() const {
4355
return new IndirectBrInst(*this);
4356
}
4357
4358
InvokeInst *InvokeInst::cloneImpl() const {
4359
if (hasOperandBundles()) {
4360
unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4361
return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4362
}
4363
return new(getNumOperands()) InvokeInst(*this);
4364
}
4365
4366
CallBrInst *CallBrInst::cloneImpl() const {
4367
if (hasOperandBundles()) {
4368
unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4369
return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4370
}
4371
return new (getNumOperands()) CallBrInst(*this);
4372
}
4373
4374
ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4375
4376
CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4377
return new (getNumOperands()) CleanupReturnInst(*this);
4378
}
4379
4380
CatchReturnInst *CatchReturnInst::cloneImpl() const {
4381
return new (getNumOperands()) CatchReturnInst(*this);
4382
}
4383
4384
CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4385
return new CatchSwitchInst(*this);
4386
}
4387
4388
FuncletPadInst *FuncletPadInst::cloneImpl() const {
4389
return new (getNumOperands()) FuncletPadInst(*this);
4390
}
4391
4392
UnreachableInst *UnreachableInst::cloneImpl() const {
4393
LLVMContext &Context = getContext();
4394
return new UnreachableInst(Context);
4395
}
4396
4397
FreezeInst *FreezeInst::cloneImpl() const {
4398
return new FreezeInst(getOperand(0));
4399
}
4400
4401