Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/LTO/LTO.cpp
35234 views
1
//===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements functions and classes used to support LTO.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/LTO/LTO.h"
14
#include "llvm/ADT/ScopeExit.h"
15
#include "llvm/ADT/SmallSet.h"
16
#include "llvm/ADT/Statistic.h"
17
#include "llvm/ADT/StringExtras.h"
18
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
19
#include "llvm/Analysis/StackSafetyAnalysis.h"
20
#include "llvm/Analysis/TargetLibraryInfo.h"
21
#include "llvm/Analysis/TargetTransformInfo.h"
22
#include "llvm/Bitcode/BitcodeReader.h"
23
#include "llvm/Bitcode/BitcodeWriter.h"
24
#include "llvm/CodeGen/Analysis.h"
25
#include "llvm/Config/llvm-config.h"
26
#include "llvm/IR/AutoUpgrade.h"
27
#include "llvm/IR/DiagnosticPrinter.h"
28
#include "llvm/IR/Intrinsics.h"
29
#include "llvm/IR/LLVMRemarkStreamer.h"
30
#include "llvm/IR/LegacyPassManager.h"
31
#include "llvm/IR/Mangler.h"
32
#include "llvm/IR/Metadata.h"
33
#include "llvm/IR/RuntimeLibcalls.h"
34
#include "llvm/LTO/LTOBackend.h"
35
#include "llvm/LTO/SummaryBasedOptimizations.h"
36
#include "llvm/Linker/IRMover.h"
37
#include "llvm/MC/TargetRegistry.h"
38
#include "llvm/Object/IRObjectFile.h"
39
#include "llvm/Support/CommandLine.h"
40
#include "llvm/Support/Error.h"
41
#include "llvm/Support/FileSystem.h"
42
#include "llvm/Support/ManagedStatic.h"
43
#include "llvm/Support/MemoryBuffer.h"
44
#include "llvm/Support/Path.h"
45
#include "llvm/Support/SHA1.h"
46
#include "llvm/Support/SourceMgr.h"
47
#include "llvm/Support/ThreadPool.h"
48
#include "llvm/Support/Threading.h"
49
#include "llvm/Support/TimeProfiler.h"
50
#include "llvm/Support/ToolOutputFile.h"
51
#include "llvm/Support/VCSRevision.h"
52
#include "llvm/Support/raw_ostream.h"
53
#include "llvm/Target/TargetOptions.h"
54
#include "llvm/Transforms/IPO.h"
55
#include "llvm/Transforms/IPO/MemProfContextDisambiguation.h"
56
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
57
#include "llvm/Transforms/Utils/FunctionImportUtils.h"
58
#include "llvm/Transforms/Utils/SplitModule.h"
59
60
#include <optional>
61
#include <set>
62
63
using namespace llvm;
64
using namespace lto;
65
using namespace object;
66
67
#define DEBUG_TYPE "lto"
68
69
extern cl::opt<bool> UseNewDbgInfoFormat;
70
71
static cl::opt<bool>
72
DumpThinCGSCCs("dump-thin-cg-sccs", cl::init(false), cl::Hidden,
73
cl::desc("Dump the SCCs in the ThinLTO index's callgraph"));
74
75
namespace llvm {
76
/// Enable global value internalization in LTO.
77
cl::opt<bool> EnableLTOInternalization(
78
"enable-lto-internalization", cl::init(true), cl::Hidden,
79
cl::desc("Enable global value internalization in LTO"));
80
81
/// Indicate we are linking with an allocator that supports hot/cold operator
82
/// new interfaces.
83
extern cl::opt<bool> SupportsHotColdNew;
84
85
/// Enable MemProf context disambiguation for thin link.
86
extern cl::opt<bool> EnableMemProfContextDisambiguation;
87
} // namespace llvm
88
89
// Computes a unique hash for the Module considering the current list of
90
// export/import and other global analysis results.
91
// The hash is produced in \p Key.
92
void llvm::computeLTOCacheKey(
93
SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index,
94
StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList,
95
const FunctionImporter::ExportSetTy &ExportList,
96
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
97
const GVSummaryMapTy &DefinedGlobals,
98
const std::set<GlobalValue::GUID> &CfiFunctionDefs,
99
const std::set<GlobalValue::GUID> &CfiFunctionDecls) {
100
// Compute the unique hash for this entry.
101
// This is based on the current compiler version, the module itself, the
102
// export list, the hash for every single module in the import list, the
103
// list of ResolvedODR for the module, and the list of preserved symbols.
104
SHA1 Hasher;
105
106
// Start with the compiler revision
107
Hasher.update(LLVM_VERSION_STRING);
108
#ifdef LLVM_REVISION
109
Hasher.update(LLVM_REVISION);
110
#endif
111
112
// Include the parts of the LTO configuration that affect code generation.
113
auto AddString = [&](StringRef Str) {
114
Hasher.update(Str);
115
Hasher.update(ArrayRef<uint8_t>{0});
116
};
117
auto AddUnsigned = [&](unsigned I) {
118
uint8_t Data[4];
119
support::endian::write32le(Data, I);
120
Hasher.update(Data);
121
};
122
auto AddUint64 = [&](uint64_t I) {
123
uint8_t Data[8];
124
support::endian::write64le(Data, I);
125
Hasher.update(Data);
126
};
127
auto AddUint8 = [&](const uint8_t I) {
128
Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&I, 1));
129
};
130
AddString(Conf.CPU);
131
// FIXME: Hash more of Options. For now all clients initialize Options from
132
// command-line flags (which is unsupported in production), but may set
133
// X86RelaxRelocations. The clang driver can also pass FunctionSections,
134
// DataSections and DebuggerTuning via command line flags.
135
AddUnsigned(Conf.Options.MCOptions.X86RelaxRelocations);
136
AddUnsigned(Conf.Options.FunctionSections);
137
AddUnsigned(Conf.Options.DataSections);
138
AddUnsigned((unsigned)Conf.Options.DebuggerTuning);
139
for (auto &A : Conf.MAttrs)
140
AddString(A);
141
if (Conf.RelocModel)
142
AddUnsigned(*Conf.RelocModel);
143
else
144
AddUnsigned(-1);
145
if (Conf.CodeModel)
146
AddUnsigned(*Conf.CodeModel);
147
else
148
AddUnsigned(-1);
149
for (const auto &S : Conf.MllvmArgs)
150
AddString(S);
151
AddUnsigned(static_cast<int>(Conf.CGOptLevel));
152
AddUnsigned(static_cast<int>(Conf.CGFileType));
153
AddUnsigned(Conf.OptLevel);
154
AddUnsigned(Conf.Freestanding);
155
AddString(Conf.OptPipeline);
156
AddString(Conf.AAPipeline);
157
AddString(Conf.OverrideTriple);
158
AddString(Conf.DefaultTriple);
159
AddString(Conf.DwoDir);
160
161
// Include the hash for the current module
162
auto ModHash = Index.getModuleHash(ModuleID);
163
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
164
165
// TODO: `ExportList` is determined by `ImportList`. Since `ImportList` is
166
// used to compute cache key, we could omit hashing `ExportList` here.
167
std::vector<uint64_t> ExportsGUID;
168
ExportsGUID.reserve(ExportList.size());
169
for (const auto &VI : ExportList)
170
ExportsGUID.push_back(VI.getGUID());
171
172
// Sort the export list elements GUIDs.
173
llvm::sort(ExportsGUID);
174
for (auto GUID : ExportsGUID)
175
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID)));
176
177
// Include the hash for every module we import functions from. The set of
178
// imported symbols for each module may affect code generation and is
179
// sensitive to link order, so include that as well.
180
using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator;
181
struct ImportModule {
182
ImportMapIteratorTy ModIt;
183
const ModuleSummaryIndex::ModuleInfo *ModInfo;
184
185
StringRef getIdentifier() const { return ModIt->getFirst(); }
186
const FunctionImporter::FunctionsToImportTy &getFunctions() const {
187
return ModIt->second;
188
}
189
190
const ModuleHash &getHash() const { return ModInfo->second; }
191
};
192
193
std::vector<ImportModule> ImportModulesVector;
194
ImportModulesVector.reserve(ImportList.size());
195
196
for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end();
197
++It) {
198
ImportModulesVector.push_back({It, Index.getModule(It->getFirst())});
199
}
200
// Order using module hash, to be both independent of module name and
201
// module order.
202
llvm::sort(ImportModulesVector,
203
[](const ImportModule &Lhs, const ImportModule &Rhs) -> bool {
204
return Lhs.getHash() < Rhs.getHash();
205
});
206
std::vector<std::pair<uint64_t, uint8_t>> ImportedGUIDs;
207
for (const ImportModule &Entry : ImportModulesVector) {
208
auto ModHash = Entry.getHash();
209
Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
210
211
AddUint64(Entry.getFunctions().size());
212
213
ImportedGUIDs.clear();
214
for (auto &[Fn, ImportType] : Entry.getFunctions())
215
ImportedGUIDs.push_back(std::make_pair(Fn, ImportType));
216
llvm::sort(ImportedGUIDs);
217
for (auto &[GUID, Type] : ImportedGUIDs) {
218
AddUint64(GUID);
219
AddUint8(Type);
220
}
221
}
222
223
// Include the hash for the resolved ODR.
224
for (auto &Entry : ResolvedODR) {
225
Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first,
226
sizeof(GlobalValue::GUID)));
227
Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second,
228
sizeof(GlobalValue::LinkageTypes)));
229
}
230
231
// Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or
232
// defined in this module.
233
std::set<GlobalValue::GUID> UsedCfiDefs;
234
std::set<GlobalValue::GUID> UsedCfiDecls;
235
236
// Typeids used in this module.
237
std::set<GlobalValue::GUID> UsedTypeIds;
238
239
auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) {
240
if (CfiFunctionDefs.count(ValueGUID))
241
UsedCfiDefs.insert(ValueGUID);
242
if (CfiFunctionDecls.count(ValueGUID))
243
UsedCfiDecls.insert(ValueGUID);
244
};
245
246
auto AddUsedThings = [&](GlobalValueSummary *GS) {
247
if (!GS) return;
248
AddUnsigned(GS->getVisibility());
249
AddUnsigned(GS->isLive());
250
AddUnsigned(GS->canAutoHide());
251
for (const ValueInfo &VI : GS->refs()) {
252
AddUnsigned(VI.isDSOLocal(Index.withDSOLocalPropagation()));
253
AddUsedCfiGlobal(VI.getGUID());
254
}
255
if (auto *GVS = dyn_cast<GlobalVarSummary>(GS)) {
256
AddUnsigned(GVS->maybeReadOnly());
257
AddUnsigned(GVS->maybeWriteOnly());
258
}
259
if (auto *FS = dyn_cast<FunctionSummary>(GS)) {
260
for (auto &TT : FS->type_tests())
261
UsedTypeIds.insert(TT);
262
for (auto &TT : FS->type_test_assume_vcalls())
263
UsedTypeIds.insert(TT.GUID);
264
for (auto &TT : FS->type_checked_load_vcalls())
265
UsedTypeIds.insert(TT.GUID);
266
for (auto &TT : FS->type_test_assume_const_vcalls())
267
UsedTypeIds.insert(TT.VFunc.GUID);
268
for (auto &TT : FS->type_checked_load_const_vcalls())
269
UsedTypeIds.insert(TT.VFunc.GUID);
270
for (auto &ET : FS->calls()) {
271
AddUnsigned(ET.first.isDSOLocal(Index.withDSOLocalPropagation()));
272
AddUsedCfiGlobal(ET.first.getGUID());
273
}
274
}
275
};
276
277
// Include the hash for the linkage type to reflect internalization and weak
278
// resolution, and collect any used type identifier resolutions.
279
for (auto &GS : DefinedGlobals) {
280
GlobalValue::LinkageTypes Linkage = GS.second->linkage();
281
Hasher.update(
282
ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage)));
283
AddUsedCfiGlobal(GS.first);
284
AddUsedThings(GS.second);
285
}
286
287
// Imported functions may introduce new uses of type identifier resolutions,
288
// so we need to collect their used resolutions as well.
289
for (const ImportModule &ImpM : ImportModulesVector)
290
for (auto &[GUID, UnusedImportType] : ImpM.getFunctions()) {
291
GlobalValueSummary *S =
292
Index.findSummaryInModule(GUID, ImpM.getIdentifier());
293
AddUsedThings(S);
294
// If this is an alias, we also care about any types/etc. that the aliasee
295
// may reference.
296
if (auto *AS = dyn_cast_or_null<AliasSummary>(S))
297
AddUsedThings(AS->getBaseObject());
298
}
299
300
auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) {
301
AddString(TId);
302
303
AddUnsigned(S.TTRes.TheKind);
304
AddUnsigned(S.TTRes.SizeM1BitWidth);
305
306
AddUint64(S.TTRes.AlignLog2);
307
AddUint64(S.TTRes.SizeM1);
308
AddUint64(S.TTRes.BitMask);
309
AddUint64(S.TTRes.InlineBits);
310
311
AddUint64(S.WPDRes.size());
312
for (auto &WPD : S.WPDRes) {
313
AddUnsigned(WPD.first);
314
AddUnsigned(WPD.second.TheKind);
315
AddString(WPD.second.SingleImplName);
316
317
AddUint64(WPD.second.ResByArg.size());
318
for (auto &ByArg : WPD.second.ResByArg) {
319
AddUint64(ByArg.first.size());
320
for (uint64_t Arg : ByArg.first)
321
AddUint64(Arg);
322
AddUnsigned(ByArg.second.TheKind);
323
AddUint64(ByArg.second.Info);
324
AddUnsigned(ByArg.second.Byte);
325
AddUnsigned(ByArg.second.Bit);
326
}
327
}
328
};
329
330
// Include the hash for all type identifiers used by this module.
331
for (GlobalValue::GUID TId : UsedTypeIds) {
332
auto TidIter = Index.typeIds().equal_range(TId);
333
for (auto It = TidIter.first; It != TidIter.second; ++It)
334
AddTypeIdSummary(It->second.first, It->second.second);
335
}
336
337
AddUnsigned(UsedCfiDefs.size());
338
for (auto &V : UsedCfiDefs)
339
AddUint64(V);
340
341
AddUnsigned(UsedCfiDecls.size());
342
for (auto &V : UsedCfiDecls)
343
AddUint64(V);
344
345
if (!Conf.SampleProfile.empty()) {
346
auto FileOrErr = MemoryBuffer::getFile(Conf.SampleProfile);
347
if (FileOrErr) {
348
Hasher.update(FileOrErr.get()->getBuffer());
349
350
if (!Conf.ProfileRemapping.empty()) {
351
FileOrErr = MemoryBuffer::getFile(Conf.ProfileRemapping);
352
if (FileOrErr)
353
Hasher.update(FileOrErr.get()->getBuffer());
354
}
355
}
356
}
357
358
Key = toHex(Hasher.result());
359
}
360
361
static void thinLTOResolvePrevailingGUID(
362
const Config &C, ValueInfo VI,
363
DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias,
364
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
365
isPrevailing,
366
function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
367
recordNewLinkage,
368
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
369
GlobalValue::VisibilityTypes Visibility =
370
C.VisibilityScheme == Config::ELF ? VI.getELFVisibility()
371
: GlobalValue::DefaultVisibility;
372
for (auto &S : VI.getSummaryList()) {
373
GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
374
// Ignore local and appending linkage values since the linker
375
// doesn't resolve them.
376
if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
377
GlobalValue::isAppendingLinkage(S->linkage()))
378
continue;
379
// We need to emit only one of these. The prevailing module will keep it,
380
// but turned into a weak, while the others will drop it when possible.
381
// This is both a compile-time optimization and a correctness
382
// transformation. This is necessary for correctness when we have exported
383
// a reference - we need to convert the linkonce to weak to
384
// ensure a copy is kept to satisfy the exported reference.
385
// FIXME: We may want to split the compile time and correctness
386
// aspects into separate routines.
387
if (isPrevailing(VI.getGUID(), S.get())) {
388
if (GlobalValue::isLinkOnceLinkage(OriginalLinkage)) {
389
S->setLinkage(GlobalValue::getWeakLinkage(
390
GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
391
// The kept copy is eligible for auto-hiding (hidden visibility) if all
392
// copies were (i.e. they were all linkonce_odr global unnamed addr).
393
// If any copy is not (e.g. it was originally weak_odr), then the symbol
394
// must remain externally available (e.g. a weak_odr from an explicitly
395
// instantiated template). Additionally, if it is in the
396
// GUIDPreservedSymbols set, that means that it is visibile outside
397
// the summary (e.g. in a native object or a bitcode file without
398
// summary), and in that case we cannot hide it as it isn't possible to
399
// check all copies.
400
S->setCanAutoHide(VI.canAutoHide() &&
401
!GUIDPreservedSymbols.count(VI.getGUID()));
402
}
403
if (C.VisibilityScheme == Config::FromPrevailing)
404
Visibility = S->getVisibility();
405
}
406
// Alias and aliasee can't be turned into available_externally.
407
else if (!isa<AliasSummary>(S.get()) &&
408
!GlobalInvolvedWithAlias.count(S.get()))
409
S->setLinkage(GlobalValue::AvailableExternallyLinkage);
410
411
// For ELF, set visibility to the computed visibility from summaries. We
412
// don't track visibility from declarations so this may be more relaxed than
413
// the most constraining one.
414
if (C.VisibilityScheme == Config::ELF)
415
S->setVisibility(Visibility);
416
417
if (S->linkage() != OriginalLinkage)
418
recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage());
419
}
420
421
if (C.VisibilityScheme == Config::FromPrevailing) {
422
for (auto &S : VI.getSummaryList()) {
423
GlobalValue::LinkageTypes OriginalLinkage = S->linkage();
424
if (GlobalValue::isLocalLinkage(OriginalLinkage) ||
425
GlobalValue::isAppendingLinkage(S->linkage()))
426
continue;
427
S->setVisibility(Visibility);
428
}
429
}
430
}
431
432
/// Resolve linkage for prevailing symbols in the \p Index.
433
//
434
// We'd like to drop these functions if they are no longer referenced in the
435
// current module. However there is a chance that another module is still
436
// referencing them because of the import. We make sure we always emit at least
437
// one copy.
438
void llvm::thinLTOResolvePrevailingInIndex(
439
const Config &C, ModuleSummaryIndex &Index,
440
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
441
isPrevailing,
442
function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
443
recordNewLinkage,
444
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
445
// We won't optimize the globals that are referenced by an alias for now
446
// Ideally we should turn the alias into a global and duplicate the definition
447
// when needed.
448
DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias;
449
for (auto &I : Index)
450
for (auto &S : I.second.SummaryList)
451
if (auto AS = dyn_cast<AliasSummary>(S.get()))
452
GlobalInvolvedWithAlias.insert(&AS->getAliasee());
453
454
for (auto &I : Index)
455
thinLTOResolvePrevailingGUID(C, Index.getValueInfo(I),
456
GlobalInvolvedWithAlias, isPrevailing,
457
recordNewLinkage, GUIDPreservedSymbols);
458
}
459
460
static void thinLTOInternalizeAndPromoteGUID(
461
ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported,
462
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
463
isPrevailing) {
464
auto ExternallyVisibleCopies =
465
llvm::count_if(VI.getSummaryList(),
466
[](const std::unique_ptr<GlobalValueSummary> &Summary) {
467
return !GlobalValue::isLocalLinkage(Summary->linkage());
468
});
469
470
for (auto &S : VI.getSummaryList()) {
471
// First see if we need to promote an internal value because it is not
472
// exported.
473
if (isExported(S->modulePath(), VI)) {
474
if (GlobalValue::isLocalLinkage(S->linkage()))
475
S->setLinkage(GlobalValue::ExternalLinkage);
476
continue;
477
}
478
479
// Otherwise, see if we can internalize.
480
if (!EnableLTOInternalization)
481
continue;
482
483
// Non-exported values with external linkage can be internalized.
484
if (GlobalValue::isExternalLinkage(S->linkage())) {
485
S->setLinkage(GlobalValue::InternalLinkage);
486
continue;
487
}
488
489
// Non-exported function and variable definitions with a weak-for-linker
490
// linkage can be internalized in certain cases. The minimum legality
491
// requirements would be that they are not address taken to ensure that we
492
// don't break pointer equality checks, and that variables are either read-
493
// or write-only. For functions, this is the case if either all copies are
494
// [local_]unnamed_addr, or we can propagate reference edge attributes
495
// (which is how this is guaranteed for variables, when analyzing whether
496
// they are read or write-only).
497
//
498
// However, we only get to this code for weak-for-linkage values in one of
499
// two cases:
500
// 1) The prevailing copy is not in IR (it is in native code).
501
// 2) The prevailing copy in IR is not exported from its module.
502
// Additionally, at least for the new LTO API, case 2 will only happen if
503
// there is exactly one definition of the value (i.e. in exactly one
504
// module), as duplicate defs are result in the value being marked exported.
505
// Likely, users of the legacy LTO API are similar, however, currently there
506
// are llvm-lto based tests of the legacy LTO API that do not mark
507
// duplicate linkonce_odr copies as exported via the tool, so we need
508
// to handle that case below by checking the number of copies.
509
//
510
// Generally, we only want to internalize a weak-for-linker value in case
511
// 2, because in case 1 we cannot see how the value is used to know if it
512
// is read or write-only. We also don't want to bloat the binary with
513
// multiple internalized copies of non-prevailing linkonce/weak functions.
514
// Note if we don't internalize, we will convert non-prevailing copies to
515
// available_externally anyway, so that we drop them after inlining. The
516
// only reason to internalize such a function is if we indeed have a single
517
// copy, because internalizing it won't increase binary size, and enables
518
// use of inliner heuristics that are more aggressive in the face of a
519
// single call to a static (local). For variables, internalizing a read or
520
// write only variable can enable more aggressive optimization. However, we
521
// already perform this elsewhere in the ThinLTO backend handling for
522
// read or write-only variables (processGlobalForThinLTO).
523
//
524
// Therefore, only internalize linkonce/weak if there is a single copy, that
525
// is prevailing in this IR module. We can do so aggressively, without
526
// requiring the address to be insignificant, or that a variable be read or
527
// write-only.
528
if (!GlobalValue::isWeakForLinker(S->linkage()) ||
529
GlobalValue::isExternalWeakLinkage(S->linkage()))
530
continue;
531
532
if (isPrevailing(VI.getGUID(), S.get()) && ExternallyVisibleCopies == 1)
533
S->setLinkage(GlobalValue::InternalLinkage);
534
}
535
}
536
537
// Update the linkages in the given \p Index to mark exported values
538
// as external and non-exported values as internal.
539
void llvm::thinLTOInternalizeAndPromoteInIndex(
540
ModuleSummaryIndex &Index,
541
function_ref<bool(StringRef, ValueInfo)> isExported,
542
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
543
isPrevailing) {
544
for (auto &I : Index)
545
thinLTOInternalizeAndPromoteGUID(Index.getValueInfo(I), isExported,
546
isPrevailing);
547
}
548
549
// Requires a destructor for std::vector<InputModule>.
550
InputFile::~InputFile() = default;
551
552
Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) {
553
std::unique_ptr<InputFile> File(new InputFile);
554
555
Expected<IRSymtabFile> FOrErr = readIRSymtab(Object);
556
if (!FOrErr)
557
return FOrErr.takeError();
558
559
File->TargetTriple = FOrErr->TheReader.getTargetTriple();
560
File->SourceFileName = FOrErr->TheReader.getSourceFileName();
561
File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts();
562
File->DependentLibraries = FOrErr->TheReader.getDependentLibraries();
563
File->ComdatTable = FOrErr->TheReader.getComdatTable();
564
565
for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) {
566
size_t Begin = File->Symbols.size();
567
for (const irsymtab::Reader::SymbolRef &Sym :
568
FOrErr->TheReader.module_symbols(I))
569
// Skip symbols that are irrelevant to LTO. Note that this condition needs
570
// to match the one in Skip() in LTO::addRegularLTO().
571
if (Sym.isGlobal() && !Sym.isFormatSpecific())
572
File->Symbols.push_back(Sym);
573
File->ModuleSymIndices.push_back({Begin, File->Symbols.size()});
574
}
575
576
File->Mods = FOrErr->Mods;
577
File->Strtab = std::move(FOrErr->Strtab);
578
return std::move(File);
579
}
580
581
StringRef InputFile::getName() const {
582
return Mods[0].getModuleIdentifier();
583
}
584
585
BitcodeModule &InputFile::getSingleBitcodeModule() {
586
assert(Mods.size() == 1 && "Expect only one bitcode module");
587
return Mods[0];
588
}
589
590
LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
591
const Config &Conf)
592
: ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel),
593
Ctx(Conf), CombinedModule(std::make_unique<Module>("ld-temp.o", Ctx)),
594
Mover(std::make_unique<IRMover>(*CombinedModule)) {
595
CombinedModule->IsNewDbgInfoFormat = UseNewDbgInfoFormat;
596
}
597
598
LTO::ThinLTOState::ThinLTOState(ThinBackend Backend)
599
: Backend(Backend), CombinedIndex(/*HaveGVs*/ false) {
600
if (!Backend)
601
this->Backend =
602
createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
603
}
604
605
LTO::LTO(Config Conf, ThinBackend Backend,
606
unsigned ParallelCodeGenParallelismLevel, LTOKind LTOMode)
607
: Conf(std::move(Conf)),
608
RegularLTO(ParallelCodeGenParallelismLevel, this->Conf),
609
ThinLTO(std::move(Backend)),
610
GlobalResolutions(std::make_optional<StringMap<GlobalResolution>>()),
611
LTOMode(LTOMode) {}
612
613
// Requires a destructor for MapVector<BitcodeModule>.
614
LTO::~LTO() = default;
615
616
// Add the symbols in the given module to the GlobalResolutions map, and resolve
617
// their partitions.
618
void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
619
ArrayRef<SymbolResolution> Res,
620
unsigned Partition, bool InSummary) {
621
auto *ResI = Res.begin();
622
auto *ResE = Res.end();
623
(void)ResE;
624
const Triple TT(RegularLTO.CombinedModule->getTargetTriple());
625
for (const InputFile::Symbol &Sym : Syms) {
626
assert(ResI != ResE);
627
SymbolResolution Res = *ResI++;
628
629
auto &GlobalRes = (*GlobalResolutions)[Sym.getName()];
630
GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr();
631
if (Res.Prevailing) {
632
assert(!GlobalRes.Prevailing &&
633
"Multiple prevailing defs are not allowed");
634
GlobalRes.Prevailing = true;
635
GlobalRes.IRName = std::string(Sym.getIRName());
636
} else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) {
637
// Sometimes it can be two copies of symbol in a module and prevailing
638
// symbol can have no IR name. That might happen if symbol is defined in
639
// module level inline asm block. In case we have multiple modules with
640
// the same symbol we want to use IR name of the prevailing symbol.
641
// Otherwise, if we haven't seen a prevailing symbol, set the name so that
642
// we can later use it to check if there is any prevailing copy in IR.
643
GlobalRes.IRName = std::string(Sym.getIRName());
644
}
645
646
// In rare occasion, the symbol used to initialize GlobalRes has a different
647
// IRName from the inspected Symbol. This can happen on macOS + iOS, when a
648
// symbol is referenced through its mangled name, say @"\01_symbol" while
649
// the IRName is @symbol (the prefix underscore comes from MachO mangling).
650
// In that case, we have the same actual Symbol that can get two different
651
// GUID, leading to some invalid internalization. Workaround this by marking
652
// the GlobalRes external.
653
654
// FIXME: instead of this check, it would be desirable to compute GUIDs
655
// based on mangled name, but this requires an access to the Target Triple
656
// and would be relatively invasive on the codebase.
657
if (GlobalRes.IRName != Sym.getIRName()) {
658
GlobalRes.Partition = GlobalResolution::External;
659
GlobalRes.VisibleOutsideSummary = true;
660
}
661
662
// Set the partition to external if we know it is re-defined by the linker
663
// with -defsym or -wrap options, used elsewhere, e.g. it is visible to a
664
// regular object, is referenced from llvm.compiler.used/llvm.used, or was
665
// already recorded as being referenced from a different partition.
666
if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() ||
667
(GlobalRes.Partition != GlobalResolution::Unknown &&
668
GlobalRes.Partition != Partition)) {
669
GlobalRes.Partition = GlobalResolution::External;
670
} else
671
// First recorded reference, save the current partition.
672
GlobalRes.Partition = Partition;
673
674
// Flag as visible outside of summary if visible from a regular object or
675
// from a module that does not have a summary.
676
GlobalRes.VisibleOutsideSummary |=
677
(Res.VisibleToRegularObj || Sym.isUsed() || !InSummary);
678
679
GlobalRes.ExportDynamic |= Res.ExportDynamic;
680
}
681
}
682
683
static void writeToResolutionFile(raw_ostream &OS, InputFile *Input,
684
ArrayRef<SymbolResolution> Res) {
685
StringRef Path = Input->getName();
686
OS << Path << '\n';
687
auto ResI = Res.begin();
688
for (const InputFile::Symbol &Sym : Input->symbols()) {
689
assert(ResI != Res.end());
690
SymbolResolution Res = *ResI++;
691
692
OS << "-r=" << Path << ',' << Sym.getName() << ',';
693
if (Res.Prevailing)
694
OS << 'p';
695
if (Res.FinalDefinitionInLinkageUnit)
696
OS << 'l';
697
if (Res.VisibleToRegularObj)
698
OS << 'x';
699
if (Res.LinkerRedefined)
700
OS << 'r';
701
OS << '\n';
702
}
703
OS.flush();
704
assert(ResI == Res.end());
705
}
706
707
Error LTO::add(std::unique_ptr<InputFile> Input,
708
ArrayRef<SymbolResolution> Res) {
709
assert(!CalledGetMaxTasks);
710
711
if (Conf.ResolutionFile)
712
writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res);
713
714
if (RegularLTO.CombinedModule->getTargetTriple().empty()) {
715
RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple());
716
if (Triple(Input->getTargetTriple()).isOSBinFormatELF())
717
Conf.VisibilityScheme = Config::ELF;
718
}
719
720
const SymbolResolution *ResI = Res.begin();
721
for (unsigned I = 0; I != Input->Mods.size(); ++I)
722
if (Error Err = addModule(*Input, I, ResI, Res.end()))
723
return Err;
724
725
assert(ResI == Res.end());
726
return Error::success();
727
}
728
729
Error LTO::addModule(InputFile &Input, unsigned ModI,
730
const SymbolResolution *&ResI,
731
const SymbolResolution *ResE) {
732
Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo();
733
if (!LTOInfo)
734
return LTOInfo.takeError();
735
736
if (EnableSplitLTOUnit) {
737
// If only some modules were split, flag this in the index so that
738
// we can skip or error on optimizations that need consistently split
739
// modules (whole program devirt and lower type tests).
740
if (*EnableSplitLTOUnit != LTOInfo->EnableSplitLTOUnit)
741
ThinLTO.CombinedIndex.setPartiallySplitLTOUnits();
742
} else
743
EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit;
744
745
BitcodeModule BM = Input.Mods[ModI];
746
747
if ((LTOMode == LTOK_UnifiedRegular || LTOMode == LTOK_UnifiedThin) &&
748
!LTOInfo->UnifiedLTO)
749
return make_error<StringError>(
750
"unified LTO compilation must use "
751
"compatible bitcode modules (use -funified-lto)",
752
inconvertibleErrorCode());
753
754
if (LTOInfo->UnifiedLTO && LTOMode == LTOK_Default)
755
LTOMode = LTOK_UnifiedThin;
756
757
bool IsThinLTO = LTOInfo->IsThinLTO && (LTOMode != LTOK_UnifiedRegular);
758
759
auto ModSyms = Input.module_symbols(ModI);
760
addModuleToGlobalRes(ModSyms, {ResI, ResE},
761
IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0,
762
LTOInfo->HasSummary);
763
764
if (IsThinLTO)
765
return addThinLTO(BM, ModSyms, ResI, ResE);
766
767
RegularLTO.EmptyCombinedModule = false;
768
Expected<RegularLTOState::AddedModule> ModOrErr =
769
addRegularLTO(BM, ModSyms, ResI, ResE);
770
if (!ModOrErr)
771
return ModOrErr.takeError();
772
773
if (!LTOInfo->HasSummary)
774
return linkRegularLTO(std::move(*ModOrErr), /*LivenessFromIndex=*/false);
775
776
// Regular LTO module summaries are added to a dummy module that represents
777
// the combined regular LTO module.
778
if (Error Err = BM.readSummary(ThinLTO.CombinedIndex, ""))
779
return Err;
780
RegularLTO.ModsWithSummaries.push_back(std::move(*ModOrErr));
781
return Error::success();
782
}
783
784
// Checks whether the given global value is in a non-prevailing comdat
785
// (comdat containing values the linker indicated were not prevailing,
786
// which we then dropped to available_externally), and if so, removes
787
// it from the comdat. This is called for all global values to ensure the
788
// comdat is empty rather than leaving an incomplete comdat. It is needed for
789
// regular LTO modules, in case we are in a mixed-LTO mode (both regular
790
// and thin LTO modules) compilation. Since the regular LTO module will be
791
// linked first in the final native link, we want to make sure the linker
792
// doesn't select any of these incomplete comdats that would be left
793
// in the regular LTO module without this cleanup.
794
static void
795
handleNonPrevailingComdat(GlobalValue &GV,
796
std::set<const Comdat *> &NonPrevailingComdats) {
797
Comdat *C = GV.getComdat();
798
if (!C)
799
return;
800
801
if (!NonPrevailingComdats.count(C))
802
return;
803
804
// Additionally need to drop all global values from the comdat to
805
// available_externally, to satisfy the COMDAT requirement that all members
806
// are discarded as a unit. The non-local linkage global values avoid
807
// duplicate definition linker errors.
808
GV.setLinkage(GlobalValue::AvailableExternallyLinkage);
809
810
if (auto GO = dyn_cast<GlobalObject>(&GV))
811
GO->setComdat(nullptr);
812
}
813
814
// Add a regular LTO object to the link.
815
// The resulting module needs to be linked into the combined LTO module with
816
// linkRegularLTO.
817
Expected<LTO::RegularLTOState::AddedModule>
818
LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
819
const SymbolResolution *&ResI,
820
const SymbolResolution *ResE) {
821
RegularLTOState::AddedModule Mod;
822
Expected<std::unique_ptr<Module>> MOrErr =
823
BM.getLazyModule(RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true,
824
/*IsImporting*/ false);
825
if (!MOrErr)
826
return MOrErr.takeError();
827
Module &M = **MOrErr;
828
Mod.M = std::move(*MOrErr);
829
830
if (Error Err = M.materializeMetadata())
831
return std::move(Err);
832
833
// If cfi.functions is present and we are in regular LTO mode, LowerTypeTests
834
// will rename local functions in the merged module as "<function name>.1".
835
// This causes linking errors, since other parts of the module expect the
836
// original function name.
837
if (LTOMode == LTOK_UnifiedRegular)
838
if (NamedMDNode *CfiFunctionsMD = M.getNamedMetadata("cfi.functions"))
839
M.eraseNamedMetadata(CfiFunctionsMD);
840
841
UpgradeDebugInfo(M);
842
843
ModuleSymbolTable SymTab;
844
SymTab.addModule(&M);
845
846
for (GlobalVariable &GV : M.globals())
847
if (GV.hasAppendingLinkage())
848
Mod.Keep.push_back(&GV);
849
850
DenseSet<GlobalObject *> AliasedGlobals;
851
for (auto &GA : M.aliases())
852
if (GlobalObject *GO = GA.getAliaseeObject())
853
AliasedGlobals.insert(GO);
854
855
// In this function we need IR GlobalValues matching the symbols in Syms
856
// (which is not backed by a module), so we need to enumerate them in the same
857
// order. The symbol enumeration order of a ModuleSymbolTable intentionally
858
// matches the order of an irsymtab, but when we read the irsymtab in
859
// InputFile::create we omit some symbols that are irrelevant to LTO. The
860
// Skip() function skips the same symbols from the module as InputFile does
861
// from the symbol table.
862
auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end();
863
auto Skip = [&]() {
864
while (MsymI != MsymE) {
865
auto Flags = SymTab.getSymbolFlags(*MsymI);
866
if ((Flags & object::BasicSymbolRef::SF_Global) &&
867
!(Flags & object::BasicSymbolRef::SF_FormatSpecific))
868
return;
869
++MsymI;
870
}
871
};
872
Skip();
873
874
std::set<const Comdat *> NonPrevailingComdats;
875
SmallSet<StringRef, 2> NonPrevailingAsmSymbols;
876
for (const InputFile::Symbol &Sym : Syms) {
877
assert(ResI != ResE);
878
SymbolResolution Res = *ResI++;
879
880
assert(MsymI != MsymE);
881
ModuleSymbolTable::Symbol Msym = *MsymI++;
882
Skip();
883
884
if (GlobalValue *GV = dyn_cast_if_present<GlobalValue *>(Msym)) {
885
if (Res.Prevailing) {
886
if (Sym.isUndefined())
887
continue;
888
Mod.Keep.push_back(GV);
889
// For symbols re-defined with linker -wrap and -defsym options,
890
// set the linkage to weak to inhibit IPO. The linkage will be
891
// restored by the linker.
892
if (Res.LinkerRedefined)
893
GV->setLinkage(GlobalValue::WeakAnyLinkage);
894
895
GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage();
896
if (GlobalValue::isLinkOnceLinkage(OriginalLinkage))
897
GV->setLinkage(GlobalValue::getWeakLinkage(
898
GlobalValue::isLinkOnceODRLinkage(OriginalLinkage)));
899
} else if (isa<GlobalObject>(GV) &&
900
(GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() ||
901
GV->hasAvailableExternallyLinkage()) &&
902
!AliasedGlobals.count(cast<GlobalObject>(GV))) {
903
// Any of the above three types of linkage indicates that the
904
// chosen prevailing symbol will have the same semantics as this copy of
905
// the symbol, so we may be able to link it with available_externally
906
// linkage. We will decide later whether to do that when we link this
907
// module (in linkRegularLTO), based on whether it is undefined.
908
Mod.Keep.push_back(GV);
909
GV->setLinkage(GlobalValue::AvailableExternallyLinkage);
910
if (GV->hasComdat())
911
NonPrevailingComdats.insert(GV->getComdat());
912
cast<GlobalObject>(GV)->setComdat(nullptr);
913
}
914
915
// Set the 'local' flag based on the linker resolution for this symbol.
916
if (Res.FinalDefinitionInLinkageUnit) {
917
GV->setDSOLocal(true);
918
if (GV->hasDLLImportStorageClass())
919
GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes::
920
DefaultStorageClass);
921
}
922
} else if (auto *AS =
923
dyn_cast_if_present<ModuleSymbolTable::AsmSymbol *>(Msym)) {
924
// Collect non-prevailing symbols.
925
if (!Res.Prevailing)
926
NonPrevailingAsmSymbols.insert(AS->first);
927
} else {
928
llvm_unreachable("unknown symbol type");
929
}
930
931
// Common resolution: collect the maximum size/alignment over all commons.
932
// We also record if we see an instance of a common as prevailing, so that
933
// if none is prevailing we can ignore it later.
934
if (Sym.isCommon()) {
935
// FIXME: We should figure out what to do about commons defined by asm.
936
// For now they aren't reported correctly by ModuleSymbolTable.
937
auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())];
938
CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize());
939
if (uint32_t SymAlignValue = Sym.getCommonAlignment()) {
940
CommonRes.Alignment =
941
std::max(Align(SymAlignValue), CommonRes.Alignment);
942
}
943
CommonRes.Prevailing |= Res.Prevailing;
944
}
945
}
946
947
if (!M.getComdatSymbolTable().empty())
948
for (GlobalValue &GV : M.global_values())
949
handleNonPrevailingComdat(GV, NonPrevailingComdats);
950
951
// Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm
952
// block.
953
if (!M.getModuleInlineAsm().empty()) {
954
std::string NewIA = ".lto_discard";
955
if (!NonPrevailingAsmSymbols.empty()) {
956
// Don't dicard a symbol if there is a live .symver for it.
957
ModuleSymbolTable::CollectAsmSymvers(
958
M, [&](StringRef Name, StringRef Alias) {
959
if (!NonPrevailingAsmSymbols.count(Alias))
960
NonPrevailingAsmSymbols.erase(Name);
961
});
962
NewIA += " " + llvm::join(NonPrevailingAsmSymbols, ", ");
963
}
964
NewIA += "\n";
965
M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm());
966
}
967
968
assert(MsymI == MsymE);
969
return std::move(Mod);
970
}
971
972
Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod,
973
bool LivenessFromIndex) {
974
std::vector<GlobalValue *> Keep;
975
for (GlobalValue *GV : Mod.Keep) {
976
if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GV->getGUID())) {
977
if (Function *F = dyn_cast<Function>(GV)) {
978
if (DiagnosticOutputFile) {
979
if (Error Err = F->materialize())
980
return Err;
981
OptimizationRemarkEmitter ORE(F, nullptr);
982
ORE.emit(OptimizationRemark(DEBUG_TYPE, "deadfunction", F)
983
<< ore::NV("Function", F)
984
<< " not added to the combined module ");
985
}
986
}
987
continue;
988
}
989
990
if (!GV->hasAvailableExternallyLinkage()) {
991
Keep.push_back(GV);
992
continue;
993
}
994
995
// Only link available_externally definitions if we don't already have a
996
// definition.
997
GlobalValue *CombinedGV =
998
RegularLTO.CombinedModule->getNamedValue(GV->getName());
999
if (CombinedGV && !CombinedGV->isDeclaration())
1000
continue;
1001
1002
Keep.push_back(GV);
1003
}
1004
1005
return RegularLTO.Mover->move(std::move(Mod.M), Keep, nullptr,
1006
/* IsPerformingImport */ false);
1007
}
1008
1009
// Add a ThinLTO module to the link.
1010
Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
1011
const SymbolResolution *&ResI,
1012
const SymbolResolution *ResE) {
1013
const SymbolResolution *ResITmp = ResI;
1014
for (const InputFile::Symbol &Sym : Syms) {
1015
assert(ResITmp != ResE);
1016
SymbolResolution Res = *ResITmp++;
1017
1018
if (!Sym.getIRName().empty()) {
1019
auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
1020
Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
1021
if (Res.Prevailing)
1022
ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier();
1023
}
1024
}
1025
1026
if (Error Err =
1027
BM.readSummary(ThinLTO.CombinedIndex, BM.getModuleIdentifier(),
1028
[&](GlobalValue::GUID GUID) {
1029
return ThinLTO.PrevailingModuleForGUID[GUID] ==
1030
BM.getModuleIdentifier();
1031
}))
1032
return Err;
1033
LLVM_DEBUG(dbgs() << "Module " << BM.getModuleIdentifier() << "\n");
1034
1035
for (const InputFile::Symbol &Sym : Syms) {
1036
assert(ResI != ResE);
1037
SymbolResolution Res = *ResI++;
1038
1039
if (!Sym.getIRName().empty()) {
1040
auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
1041
Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
1042
if (Res.Prevailing) {
1043
assert(ThinLTO.PrevailingModuleForGUID[GUID] ==
1044
BM.getModuleIdentifier());
1045
1046
// For linker redefined symbols (via --wrap or --defsym) we want to
1047
// switch the linkage to `weak` to prevent IPOs from happening.
1048
// Find the summary in the module for this very GV and record the new
1049
// linkage so that we can switch it when we import the GV.
1050
if (Res.LinkerRedefined)
1051
if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
1052
GUID, BM.getModuleIdentifier()))
1053
S->setLinkage(GlobalValue::WeakAnyLinkage);
1054
}
1055
1056
// If the linker resolved the symbol to a local definition then mark it
1057
// as local in the summary for the module we are adding.
1058
if (Res.FinalDefinitionInLinkageUnit) {
1059
if (auto S = ThinLTO.CombinedIndex.findSummaryInModule(
1060
GUID, BM.getModuleIdentifier())) {
1061
S->setDSOLocal(true);
1062
}
1063
}
1064
}
1065
}
1066
1067
if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second)
1068
return make_error<StringError>(
1069
"Expected at most one ThinLTO module per bitcode file",
1070
inconvertibleErrorCode());
1071
1072
if (!Conf.ThinLTOModulesToCompile.empty()) {
1073
if (!ThinLTO.ModulesToCompile)
1074
ThinLTO.ModulesToCompile = ModuleMapType();
1075
// This is a fuzzy name matching where only modules with name containing the
1076
// specified switch values are going to be compiled.
1077
for (const std::string &Name : Conf.ThinLTOModulesToCompile) {
1078
if (BM.getModuleIdentifier().contains(Name)) {
1079
ThinLTO.ModulesToCompile->insert({BM.getModuleIdentifier(), BM});
1080
llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier()
1081
<< " to compile\n";
1082
}
1083
}
1084
}
1085
1086
return Error::success();
1087
}
1088
1089
unsigned LTO::getMaxTasks() const {
1090
CalledGetMaxTasks = true;
1091
auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size()
1092
: ThinLTO.ModuleMap.size();
1093
return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount;
1094
}
1095
1096
// If only some of the modules were split, we cannot correctly handle
1097
// code that contains type tests or type checked loads.
1098
Error LTO::checkPartiallySplit() {
1099
if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits())
1100
return Error::success();
1101
1102
Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction(
1103
Intrinsic::getName(Intrinsic::type_test));
1104
Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction(
1105
Intrinsic::getName(Intrinsic::type_checked_load));
1106
Function *TypeCheckedLoadRelativeFunc =
1107
RegularLTO.CombinedModule->getFunction(
1108
Intrinsic::getName(Intrinsic::type_checked_load_relative));
1109
1110
// First check if there are type tests / type checked loads in the
1111
// merged regular LTO module IR.
1112
if ((TypeTestFunc && !TypeTestFunc->use_empty()) ||
1113
(TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()) ||
1114
(TypeCheckedLoadRelativeFunc &&
1115
!TypeCheckedLoadRelativeFunc->use_empty()))
1116
return make_error<StringError>(
1117
"inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1118
inconvertibleErrorCode());
1119
1120
// Otherwise check if there are any recorded in the combined summary from the
1121
// ThinLTO modules.
1122
for (auto &P : ThinLTO.CombinedIndex) {
1123
for (auto &S : P.second.SummaryList) {
1124
auto *FS = dyn_cast<FunctionSummary>(S.get());
1125
if (!FS)
1126
continue;
1127
if (!FS->type_test_assume_vcalls().empty() ||
1128
!FS->type_checked_load_vcalls().empty() ||
1129
!FS->type_test_assume_const_vcalls().empty() ||
1130
!FS->type_checked_load_const_vcalls().empty() ||
1131
!FS->type_tests().empty())
1132
return make_error<StringError>(
1133
"inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)",
1134
inconvertibleErrorCode());
1135
}
1136
}
1137
return Error::success();
1138
}
1139
1140
Error LTO::run(AddStreamFn AddStream, FileCache Cache) {
1141
// Compute "dead" symbols, we don't want to import/export these!
1142
DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
1143
DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions;
1144
for (auto &Res : *GlobalResolutions) {
1145
// Normally resolution have IR name of symbol. We can do nothing here
1146
// otherwise. See comments in GlobalResolution struct for more details.
1147
if (Res.second.IRName.empty())
1148
continue;
1149
1150
GlobalValue::GUID GUID = GlobalValue::getGUID(
1151
GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
1152
1153
if (Res.second.VisibleOutsideSummary && Res.second.Prevailing)
1154
GUIDPreservedSymbols.insert(GUID);
1155
1156
if (Res.second.ExportDynamic)
1157
DynamicExportSymbols.insert(GUID);
1158
1159
GUIDPrevailingResolutions[GUID] =
1160
Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No;
1161
}
1162
1163
auto isPrevailing = [&](GlobalValue::GUID G) {
1164
auto It = GUIDPrevailingResolutions.find(G);
1165
if (It == GUIDPrevailingResolutions.end())
1166
return PrevailingType::Unknown;
1167
return It->second;
1168
};
1169
computeDeadSymbolsWithConstProp(ThinLTO.CombinedIndex, GUIDPreservedSymbols,
1170
isPrevailing, Conf.OptLevel > 0);
1171
1172
// Setup output file to emit statistics.
1173
auto StatsFileOrErr = setupStatsFile(Conf.StatsFile);
1174
if (!StatsFileOrErr)
1175
return StatsFileOrErr.takeError();
1176
std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get());
1177
1178
// TODO: Ideally this would be controlled automatically by detecting that we
1179
// are linking with an allocator that supports these interfaces, rather than
1180
// an internal option (which would still be needed for tests, however). For
1181
// example, if the library exported a symbol like __malloc_hot_cold the linker
1182
// could recognize that and set a flag in the lto::Config.
1183
if (SupportsHotColdNew)
1184
ThinLTO.CombinedIndex.setWithSupportsHotColdNew();
1185
1186
Error Result = runRegularLTO(AddStream);
1187
if (!Result)
1188
// This will reset the GlobalResolutions optional once done with it to
1189
// reduce peak memory before importing.
1190
Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols);
1191
1192
if (StatsFile)
1193
PrintStatisticsJSON(StatsFile->os());
1194
1195
return Result;
1196
}
1197
1198
void lto::updateMemProfAttributes(Module &Mod,
1199
const ModuleSummaryIndex &Index) {
1200
if (Index.withSupportsHotColdNew())
1201
return;
1202
1203
// The profile matcher applies hotness attributes directly for allocations,
1204
// and those will cause us to generate calls to the hot/cold interfaces
1205
// unconditionally. If supports-hot-cold-new was not enabled in the LTO
1206
// link then assume we don't want these calls (e.g. not linking with
1207
// the appropriate library, or otherwise trying to disable this behavior).
1208
for (auto &F : Mod) {
1209
for (auto &BB : F) {
1210
for (auto &I : BB) {
1211
auto *CI = dyn_cast<CallBase>(&I);
1212
if (!CI)
1213
continue;
1214
if (CI->hasFnAttr("memprof"))
1215
CI->removeFnAttr("memprof");
1216
// Strip off all memprof metadata as it is no longer needed.
1217
// Importantly, this avoids the addition of new memprof attributes
1218
// after inlining propagation.
1219
// TODO: If we support additional types of MemProf metadata beyond hot
1220
// and cold, we will need to update the metadata based on the allocator
1221
// APIs supported instead of completely stripping all.
1222
CI->setMetadata(LLVMContext::MD_memprof, nullptr);
1223
CI->setMetadata(LLVMContext::MD_callsite, nullptr);
1224
}
1225
}
1226
}
1227
}
1228
1229
Error LTO::runRegularLTO(AddStreamFn AddStream) {
1230
// Setup optimization remarks.
1231
auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks(
1232
RegularLTO.CombinedModule->getContext(), Conf.RemarksFilename,
1233
Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness,
1234
Conf.RemarksHotnessThreshold);
1235
LLVM_DEBUG(dbgs() << "Running regular LTO\n");
1236
if (!DiagFileOrErr)
1237
return DiagFileOrErr.takeError();
1238
DiagnosticOutputFile = std::move(*DiagFileOrErr);
1239
1240
// Finalize linking of regular LTO modules containing summaries now that
1241
// we have computed liveness information.
1242
for (auto &M : RegularLTO.ModsWithSummaries)
1243
if (Error Err = linkRegularLTO(std::move(M),
1244
/*LivenessFromIndex=*/true))
1245
return Err;
1246
1247
// Ensure we don't have inconsistently split LTO units with type tests.
1248
// FIXME: this checks both LTO and ThinLTO. It happens to work as we take
1249
// this path both cases but eventually this should be split into two and
1250
// do the ThinLTO checks in `runThinLTO`.
1251
if (Error Err = checkPartiallySplit())
1252
return Err;
1253
1254
// Make sure commons have the right size/alignment: we kept the largest from
1255
// all the prevailing when adding the inputs, and we apply it here.
1256
const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout();
1257
for (auto &I : RegularLTO.Commons) {
1258
if (!I.second.Prevailing)
1259
// Don't do anything if no instance of this common was prevailing.
1260
continue;
1261
GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(I.first);
1262
if (OldGV && DL.getTypeAllocSize(OldGV->getValueType()) == I.second.Size) {
1263
// Don't create a new global if the type is already correct, just make
1264
// sure the alignment is correct.
1265
OldGV->setAlignment(I.second.Alignment);
1266
continue;
1267
}
1268
ArrayType *Ty =
1269
ArrayType::get(Type::getInt8Ty(RegularLTO.Ctx), I.second.Size);
1270
auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false,
1271
GlobalValue::CommonLinkage,
1272
ConstantAggregateZero::get(Ty), "");
1273
GV->setAlignment(I.second.Alignment);
1274
if (OldGV) {
1275
OldGV->replaceAllUsesWith(GV);
1276
GV->takeName(OldGV);
1277
OldGV->eraseFromParent();
1278
} else {
1279
GV->setName(I.first);
1280
}
1281
}
1282
1283
updateMemProfAttributes(*RegularLTO.CombinedModule, ThinLTO.CombinedIndex);
1284
1285
bool WholeProgramVisibilityEnabledInLTO =
1286
Conf.HasWholeProgramVisibility &&
1287
// If validation is enabled, upgrade visibility only when all vtables
1288
// have typeinfos.
1289
(!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos);
1290
1291
// This returns true when the name is local or not defined. Locals are
1292
// expected to be handled separately.
1293
auto IsVisibleToRegularObj = [&](StringRef name) {
1294
auto It = GlobalResolutions->find(name);
1295
return (It == GlobalResolutions->end() || It->second.VisibleOutsideSummary);
1296
};
1297
1298
// If allowed, upgrade public vcall visibility metadata to linkage unit
1299
// visibility before whole program devirtualization in the optimizer.
1300
updateVCallVisibilityInModule(
1301
*RegularLTO.CombinedModule, WholeProgramVisibilityEnabledInLTO,
1302
DynamicExportSymbols, Conf.ValidateAllVtablesHaveTypeInfos,
1303
IsVisibleToRegularObj);
1304
updatePublicTypeTestCalls(*RegularLTO.CombinedModule,
1305
WholeProgramVisibilityEnabledInLTO);
1306
1307
if (Conf.PreOptModuleHook &&
1308
!Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule))
1309
return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
1310
1311
if (!Conf.CodeGenOnly) {
1312
for (const auto &R : *GlobalResolutions) {
1313
GlobalValue *GV =
1314
RegularLTO.CombinedModule->getNamedValue(R.second.IRName);
1315
if (!R.second.isPrevailingIRSymbol())
1316
continue;
1317
if (R.second.Partition != 0 &&
1318
R.second.Partition != GlobalResolution::External)
1319
continue;
1320
1321
// Ignore symbols defined in other partitions.
1322
// Also skip declarations, which are not allowed to have internal linkage.
1323
if (!GV || GV->hasLocalLinkage() || GV->isDeclaration())
1324
continue;
1325
1326
// Symbols that are marked DLLImport or DLLExport should not be
1327
// internalized, as they are either externally visible or referencing
1328
// external symbols. Symbols that have AvailableExternally or Appending
1329
// linkage might be used by future passes and should be kept as is.
1330
// These linkages are seen in Unified regular LTO, because the process
1331
// of creating split LTO units introduces symbols with that linkage into
1332
// one of the created modules. Normally, only the ThinLTO backend would
1333
// compile this module, but Unified Regular LTO processes both
1334
// modules created by the splitting process as regular LTO modules.
1335
if ((LTOMode == LTOKind::LTOK_UnifiedRegular) &&
1336
((GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) ||
1337
GV->hasAvailableExternallyLinkage() || GV->hasAppendingLinkage()))
1338
continue;
1339
1340
GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global
1341
: GlobalValue::UnnamedAddr::None);
1342
if (EnableLTOInternalization && R.second.Partition == 0)
1343
GV->setLinkage(GlobalValue::InternalLinkage);
1344
}
1345
1346
if (Conf.PostInternalizeModuleHook &&
1347
!Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule))
1348
return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
1349
}
1350
1351
if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) {
1352
if (Error Err =
1353
backend(Conf, AddStream, RegularLTO.ParallelCodeGenParallelismLevel,
1354
*RegularLTO.CombinedModule, ThinLTO.CombinedIndex))
1355
return Err;
1356
}
1357
1358
return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile));
1359
}
1360
1361
SmallVector<const char *> LTO::getRuntimeLibcallSymbols(const Triple &TT) {
1362
RTLIB::RuntimeLibcallsInfo Libcalls(TT);
1363
SmallVector<const char *> LibcallSymbols;
1364
copy_if(Libcalls.getLibcallNames(), std::back_inserter(LibcallSymbols),
1365
[](const char *Name) { return Name; });
1366
return LibcallSymbols;
1367
}
1368
1369
/// This class defines the interface to the ThinLTO backend.
1370
class lto::ThinBackendProc {
1371
protected:
1372
const Config &Conf;
1373
ModuleSummaryIndex &CombinedIndex;
1374
const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries;
1375
lto::IndexWriteCallback OnWrite;
1376
bool ShouldEmitImportsFiles;
1377
1378
public:
1379
ThinBackendProc(
1380
const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1381
const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1382
lto::IndexWriteCallback OnWrite, bool ShouldEmitImportsFiles)
1383
: Conf(Conf), CombinedIndex(CombinedIndex),
1384
ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries),
1385
OnWrite(OnWrite), ShouldEmitImportsFiles(ShouldEmitImportsFiles) {}
1386
1387
virtual ~ThinBackendProc() = default;
1388
virtual Error start(
1389
unsigned Task, BitcodeModule BM,
1390
const FunctionImporter::ImportMapTy &ImportList,
1391
const FunctionImporter::ExportSetTy &ExportList,
1392
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1393
MapVector<StringRef, BitcodeModule> &ModuleMap) = 0;
1394
virtual Error wait() = 0;
1395
virtual unsigned getThreadCount() = 0;
1396
1397
// Write sharded indices and (optionally) imports to disk
1398
Error emitFiles(const FunctionImporter::ImportMapTy &ImportList,
1399
llvm::StringRef ModulePath,
1400
const std::string &NewModulePath) {
1401
std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex;
1402
GVSummaryPtrSet DeclarationSummaries;
1403
1404
std::error_code EC;
1405
gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries,
1406
ImportList, ModuleToSummariesForIndex,
1407
DeclarationSummaries);
1408
1409
raw_fd_ostream OS(NewModulePath + ".thinlto.bc", EC,
1410
sys::fs::OpenFlags::OF_None);
1411
if (EC)
1412
return errorCodeToError(EC);
1413
1414
writeIndexToFile(CombinedIndex, OS, &ModuleToSummariesForIndex,
1415
&DeclarationSummaries);
1416
1417
if (ShouldEmitImportsFiles) {
1418
EC = EmitImportsFiles(ModulePath, NewModulePath + ".imports",
1419
ModuleToSummariesForIndex);
1420
if (EC)
1421
return errorCodeToError(EC);
1422
}
1423
return Error::success();
1424
}
1425
};
1426
1427
namespace {
1428
class InProcessThinBackend : public ThinBackendProc {
1429
DefaultThreadPool BackendThreadPool;
1430
AddStreamFn AddStream;
1431
FileCache Cache;
1432
std::set<GlobalValue::GUID> CfiFunctionDefs;
1433
std::set<GlobalValue::GUID> CfiFunctionDecls;
1434
1435
std::optional<Error> Err;
1436
std::mutex ErrMu;
1437
1438
bool ShouldEmitIndexFiles;
1439
1440
public:
1441
InProcessThinBackend(
1442
const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1443
ThreadPoolStrategy ThinLTOParallelism,
1444
const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1445
AddStreamFn AddStream, FileCache Cache, lto::IndexWriteCallback OnWrite,
1446
bool ShouldEmitIndexFiles, bool ShouldEmitImportsFiles)
1447
: ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries,
1448
OnWrite, ShouldEmitImportsFiles),
1449
BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)),
1450
Cache(std::move(Cache)), ShouldEmitIndexFiles(ShouldEmitIndexFiles) {
1451
for (auto &Name : CombinedIndex.cfiFunctionDefs())
1452
CfiFunctionDefs.insert(
1453
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1454
for (auto &Name : CombinedIndex.cfiFunctionDecls())
1455
CfiFunctionDecls.insert(
1456
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Name)));
1457
}
1458
1459
Error runThinLTOBackendThread(
1460
AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM,
1461
ModuleSummaryIndex &CombinedIndex,
1462
const FunctionImporter::ImportMapTy &ImportList,
1463
const FunctionImporter::ExportSetTy &ExportList,
1464
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1465
const GVSummaryMapTy &DefinedGlobals,
1466
MapVector<StringRef, BitcodeModule> &ModuleMap) {
1467
auto RunThinBackend = [&](AddStreamFn AddStream) {
1468
LTOLLVMContext BackendContext(Conf);
1469
Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(BackendContext);
1470
if (!MOrErr)
1471
return MOrErr.takeError();
1472
1473
return thinBackend(Conf, Task, AddStream, **MOrErr, CombinedIndex,
1474
ImportList, DefinedGlobals, &ModuleMap);
1475
};
1476
1477
auto ModuleID = BM.getModuleIdentifier();
1478
1479
if (ShouldEmitIndexFiles) {
1480
if (auto E = emitFiles(ImportList, ModuleID, ModuleID.str()))
1481
return E;
1482
}
1483
1484
if (!Cache || !CombinedIndex.modulePaths().count(ModuleID) ||
1485
all_of(CombinedIndex.getModuleHash(ModuleID),
1486
[](uint32_t V) { return V == 0; }))
1487
// Cache disabled or no entry for this module in the combined index or
1488
// no module hash.
1489
return RunThinBackend(AddStream);
1490
1491
SmallString<40> Key;
1492
// The module may be cached, this helps handling it.
1493
computeLTOCacheKey(Key, Conf, CombinedIndex, ModuleID, ImportList,
1494
ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs,
1495
CfiFunctionDecls);
1496
Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key, ModuleID);
1497
if (Error Err = CacheAddStreamOrErr.takeError())
1498
return Err;
1499
AddStreamFn &CacheAddStream = *CacheAddStreamOrErr;
1500
if (CacheAddStream)
1501
return RunThinBackend(CacheAddStream);
1502
1503
return Error::success();
1504
}
1505
1506
Error start(
1507
unsigned Task, BitcodeModule BM,
1508
const FunctionImporter::ImportMapTy &ImportList,
1509
const FunctionImporter::ExportSetTy &ExportList,
1510
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1511
MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1512
StringRef ModulePath = BM.getModuleIdentifier();
1513
assert(ModuleToDefinedGVSummaries.count(ModulePath));
1514
const GVSummaryMapTy &DefinedGlobals =
1515
ModuleToDefinedGVSummaries.find(ModulePath)->second;
1516
BackendThreadPool.async(
1517
[=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex,
1518
const FunctionImporter::ImportMapTy &ImportList,
1519
const FunctionImporter::ExportSetTy &ExportList,
1520
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>
1521
&ResolvedODR,
1522
const GVSummaryMapTy &DefinedGlobals,
1523
MapVector<StringRef, BitcodeModule> &ModuleMap) {
1524
if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled)
1525
timeTraceProfilerInitialize(Conf.TimeTraceGranularity,
1526
"thin backend");
1527
Error E = runThinLTOBackendThread(
1528
AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList,
1529
ResolvedODR, DefinedGlobals, ModuleMap);
1530
if (E) {
1531
std::unique_lock<std::mutex> L(ErrMu);
1532
if (Err)
1533
Err = joinErrors(std::move(*Err), std::move(E));
1534
else
1535
Err = std::move(E);
1536
}
1537
if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled)
1538
timeTraceProfilerFinishThread();
1539
},
1540
BM, std::ref(CombinedIndex), std::ref(ImportList), std::ref(ExportList),
1541
std::ref(ResolvedODR), std::ref(DefinedGlobals), std::ref(ModuleMap));
1542
1543
if (OnWrite)
1544
OnWrite(std::string(ModulePath));
1545
return Error::success();
1546
}
1547
1548
Error wait() override {
1549
BackendThreadPool.wait();
1550
if (Err)
1551
return std::move(*Err);
1552
else
1553
return Error::success();
1554
}
1555
1556
unsigned getThreadCount() override {
1557
return BackendThreadPool.getMaxConcurrency();
1558
}
1559
};
1560
} // end anonymous namespace
1561
1562
ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism,
1563
lto::IndexWriteCallback OnWrite,
1564
bool ShouldEmitIndexFiles,
1565
bool ShouldEmitImportsFiles) {
1566
return
1567
[=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1568
const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1569
AddStreamFn AddStream, FileCache Cache) {
1570
return std::make_unique<InProcessThinBackend>(
1571
Conf, CombinedIndex, Parallelism, ModuleToDefinedGVSummaries,
1572
AddStream, Cache, OnWrite, ShouldEmitIndexFiles,
1573
ShouldEmitImportsFiles);
1574
};
1575
}
1576
1577
StringLiteral lto::getThinLTODefaultCPU(const Triple &TheTriple) {
1578
if (!TheTriple.isOSDarwin())
1579
return "";
1580
if (TheTriple.getArch() == Triple::x86_64)
1581
return "core2";
1582
if (TheTriple.getArch() == Triple::x86)
1583
return "yonah";
1584
if (TheTriple.isArm64e())
1585
return "apple-a12";
1586
if (TheTriple.getArch() == Triple::aarch64 ||
1587
TheTriple.getArch() == Triple::aarch64_32)
1588
return "cyclone";
1589
return "";
1590
}
1591
1592
// Given the original \p Path to an output file, replace any path
1593
// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
1594
// resulting directory if it does not yet exist.
1595
std::string lto::getThinLTOOutputFile(StringRef Path, StringRef OldPrefix,
1596
StringRef NewPrefix) {
1597
if (OldPrefix.empty() && NewPrefix.empty())
1598
return std::string(Path);
1599
SmallString<128> NewPath(Path);
1600
llvm::sys::path::replace_path_prefix(NewPath, OldPrefix, NewPrefix);
1601
StringRef ParentPath = llvm::sys::path::parent_path(NewPath.str());
1602
if (!ParentPath.empty()) {
1603
// Make sure the new directory exists, creating it if necessary.
1604
if (std::error_code EC = llvm::sys::fs::create_directories(ParentPath))
1605
llvm::errs() << "warning: could not create directory '" << ParentPath
1606
<< "': " << EC.message() << '\n';
1607
}
1608
return std::string(NewPath);
1609
}
1610
1611
namespace {
1612
class WriteIndexesThinBackend : public ThinBackendProc {
1613
std::string OldPrefix, NewPrefix, NativeObjectPrefix;
1614
raw_fd_ostream *LinkedObjectsFile;
1615
1616
public:
1617
WriteIndexesThinBackend(
1618
const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1619
const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1620
std::string OldPrefix, std::string NewPrefix,
1621
std::string NativeObjectPrefix, bool ShouldEmitImportsFiles,
1622
raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite)
1623
: ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries,
1624
OnWrite, ShouldEmitImportsFiles),
1625
OldPrefix(OldPrefix), NewPrefix(NewPrefix),
1626
NativeObjectPrefix(NativeObjectPrefix),
1627
LinkedObjectsFile(LinkedObjectsFile) {}
1628
1629
Error start(
1630
unsigned Task, BitcodeModule BM,
1631
const FunctionImporter::ImportMapTy &ImportList,
1632
const FunctionImporter::ExportSetTy &ExportList,
1633
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
1634
MapVector<StringRef, BitcodeModule> &ModuleMap) override {
1635
StringRef ModulePath = BM.getModuleIdentifier();
1636
std::string NewModulePath =
1637
getThinLTOOutputFile(ModulePath, OldPrefix, NewPrefix);
1638
1639
if (LinkedObjectsFile) {
1640
std::string ObjectPrefix =
1641
NativeObjectPrefix.empty() ? NewPrefix : NativeObjectPrefix;
1642
std::string LinkedObjectsFilePath =
1643
getThinLTOOutputFile(ModulePath, OldPrefix, ObjectPrefix);
1644
*LinkedObjectsFile << LinkedObjectsFilePath << '\n';
1645
}
1646
1647
if (auto E = emitFiles(ImportList, ModulePath, NewModulePath))
1648
return E;
1649
1650
if (OnWrite)
1651
OnWrite(std::string(ModulePath));
1652
return Error::success();
1653
}
1654
1655
Error wait() override { return Error::success(); }
1656
1657
// WriteIndexesThinBackend should always return 1 to prevent module
1658
// re-ordering and avoid non-determinism in the final link.
1659
unsigned getThreadCount() override { return 1; }
1660
};
1661
} // end anonymous namespace
1662
1663
ThinBackend lto::createWriteIndexesThinBackend(
1664
std::string OldPrefix, std::string NewPrefix,
1665
std::string NativeObjectPrefix, bool ShouldEmitImportsFiles,
1666
raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) {
1667
return
1668
[=](const Config &Conf, ModuleSummaryIndex &CombinedIndex,
1669
const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
1670
AddStreamFn AddStream, FileCache Cache) {
1671
return std::make_unique<WriteIndexesThinBackend>(
1672
Conf, CombinedIndex, ModuleToDefinedGVSummaries, OldPrefix,
1673
NewPrefix, NativeObjectPrefix, ShouldEmitImportsFiles,
1674
LinkedObjectsFile, OnWrite);
1675
};
1676
}
1677
1678
Error LTO::runThinLTO(AddStreamFn AddStream, FileCache Cache,
1679
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) {
1680
LLVM_DEBUG(dbgs() << "Running ThinLTO\n");
1681
ThinLTO.CombinedIndex.releaseTemporaryMemory();
1682
timeTraceProfilerBegin("ThinLink", StringRef(""));
1683
auto TimeTraceScopeExit = llvm::make_scope_exit([]() {
1684
if (llvm::timeTraceProfilerEnabled())
1685
llvm::timeTraceProfilerEnd();
1686
});
1687
if (ThinLTO.ModuleMap.empty())
1688
return Error::success();
1689
1690
if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) {
1691
llvm::errs() << "warning: [ThinLTO] No module compiled\n";
1692
return Error::success();
1693
}
1694
1695
if (Conf.CombinedIndexHook &&
1696
!Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols))
1697
return Error::success();
1698
1699
// Collect for each module the list of function it defines (GUID ->
1700
// Summary).
1701
DenseMap<StringRef, GVSummaryMapTy> ModuleToDefinedGVSummaries(
1702
ThinLTO.ModuleMap.size());
1703
ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule(
1704
ModuleToDefinedGVSummaries);
1705
// Create entries for any modules that didn't have any GV summaries
1706
// (either they didn't have any GVs to start with, or we suppressed
1707
// generation of the summaries because they e.g. had inline assembly
1708
// uses that couldn't be promoted/renamed on export). This is so
1709
// InProcessThinBackend::start can still launch a backend thread, which
1710
// is passed the map of summaries for the module, without any special
1711
// handling for this case.
1712
for (auto &Mod : ThinLTO.ModuleMap)
1713
if (!ModuleToDefinedGVSummaries.count(Mod.first))
1714
ModuleToDefinedGVSummaries.try_emplace(Mod.first);
1715
1716
// Synthesize entry counts for functions in the CombinedIndex.
1717
computeSyntheticCounts(ThinLTO.CombinedIndex);
1718
1719
DenseMap<StringRef, FunctionImporter::ImportMapTy> ImportLists(
1720
ThinLTO.ModuleMap.size());
1721
DenseMap<StringRef, FunctionImporter::ExportSetTy> ExportLists(
1722
ThinLTO.ModuleMap.size());
1723
StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
1724
1725
if (DumpThinCGSCCs)
1726
ThinLTO.CombinedIndex.dumpSCCs(outs());
1727
1728
std::set<GlobalValue::GUID> ExportedGUIDs;
1729
1730
bool WholeProgramVisibilityEnabledInLTO =
1731
Conf.HasWholeProgramVisibility &&
1732
// If validation is enabled, upgrade visibility only when all vtables
1733
// have typeinfos.
1734
(!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos);
1735
if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
1736
ThinLTO.CombinedIndex.setWithWholeProgramVisibility();
1737
1738
// If we're validating, get the vtable symbols that should not be
1739
// upgraded because they correspond to typeIDs outside of index-based
1740
// WPD info.
1741
DenseSet<GlobalValue::GUID> VisibleToRegularObjSymbols;
1742
if (WholeProgramVisibilityEnabledInLTO &&
1743
Conf.ValidateAllVtablesHaveTypeInfos) {
1744
// This returns true when the name is local or not defined. Locals are
1745
// expected to be handled separately.
1746
auto IsVisibleToRegularObj = [&](StringRef name) {
1747
auto It = GlobalResolutions->find(name);
1748
return (It == GlobalResolutions->end() ||
1749
It->second.VisibleOutsideSummary);
1750
};
1751
1752
getVisibleToRegularObjVtableGUIDs(ThinLTO.CombinedIndex,
1753
VisibleToRegularObjSymbols,
1754
IsVisibleToRegularObj);
1755
}
1756
1757
// If allowed, upgrade public vcall visibility to linkage unit visibility in
1758
// the summaries before whole program devirtualization below.
1759
updateVCallVisibilityInIndex(
1760
ThinLTO.CombinedIndex, WholeProgramVisibilityEnabledInLTO,
1761
DynamicExportSymbols, VisibleToRegularObjSymbols);
1762
1763
// Perform index-based WPD. This will return immediately if there are
1764
// no index entries in the typeIdMetadata map (e.g. if we are instead
1765
// performing IR-based WPD in hybrid regular/thin LTO mode).
1766
std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap;
1767
runWholeProgramDevirtOnIndex(ThinLTO.CombinedIndex, ExportedGUIDs,
1768
LocalWPDTargetsMap);
1769
1770
auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) {
1771
return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath();
1772
};
1773
if (EnableMemProfContextDisambiguation) {
1774
MemProfContextDisambiguation ContextDisambiguation;
1775
ContextDisambiguation.run(ThinLTO.CombinedIndex, isPrevailing);
1776
}
1777
1778
// Figure out which symbols need to be internalized. This also needs to happen
1779
// at -O0 because summary-based DCE is implemented using internalization, and
1780
// we must apply DCE consistently with the full LTO module in order to avoid
1781
// undefined references during the final link.
1782
for (auto &Res : *GlobalResolutions) {
1783
// If the symbol does not have external references or it is not prevailing,
1784
// then not need to mark it as exported from a ThinLTO partition.
1785
if (Res.second.Partition != GlobalResolution::External ||
1786
!Res.second.isPrevailingIRSymbol())
1787
continue;
1788
auto GUID = GlobalValue::getGUID(
1789
GlobalValue::dropLLVMManglingEscape(Res.second.IRName));
1790
// Mark exported unless index-based analysis determined it to be dead.
1791
if (ThinLTO.CombinedIndex.isGUIDLive(GUID))
1792
ExportedGUIDs.insert(GUID);
1793
}
1794
1795
// Reset the GlobalResolutions to deallocate the associated memory, as there
1796
// are no further accesses. We specifically want to do this before computing
1797
// cross module importing, which adds to peak memory via the computed import
1798
// and export lists.
1799
GlobalResolutions.reset();
1800
1801
if (Conf.OptLevel > 0)
1802
ComputeCrossModuleImport(ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1803
isPrevailing, ImportLists, ExportLists);
1804
1805
// Any functions referenced by the jump table in the regular LTO object must
1806
// be exported.
1807
for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs())
1808
ExportedGUIDs.insert(
1809
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Def)));
1810
for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls())
1811
ExportedGUIDs.insert(
1812
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(Decl)));
1813
1814
auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) {
1815
const auto &ExportList = ExportLists.find(ModuleIdentifier);
1816
return (ExportList != ExportLists.end() && ExportList->second.count(VI)) ||
1817
ExportedGUIDs.count(VI.getGUID());
1818
};
1819
1820
// Update local devirtualized targets that were exported by cross-module
1821
// importing or by other devirtualizations marked in the ExportedGUIDs set.
1822
updateIndexWPDForExports(ThinLTO.CombinedIndex, isExported,
1823
LocalWPDTargetsMap);
1824
1825
thinLTOInternalizeAndPromoteInIndex(ThinLTO.CombinedIndex, isExported,
1826
isPrevailing);
1827
1828
auto recordNewLinkage = [&](StringRef ModuleIdentifier,
1829
GlobalValue::GUID GUID,
1830
GlobalValue::LinkageTypes NewLinkage) {
1831
ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
1832
};
1833
thinLTOResolvePrevailingInIndex(Conf, ThinLTO.CombinedIndex, isPrevailing,
1834
recordNewLinkage, GUIDPreservedSymbols);
1835
1836
thinLTOPropagateFunctionAttrs(ThinLTO.CombinedIndex, isPrevailing);
1837
1838
generateParamAccessSummary(ThinLTO.CombinedIndex);
1839
1840
if (llvm::timeTraceProfilerEnabled())
1841
llvm::timeTraceProfilerEnd();
1842
1843
TimeTraceScopeExit.release();
1844
1845
std::unique_ptr<ThinBackendProc> BackendProc =
1846
ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries,
1847
AddStream, Cache);
1848
1849
auto &ModuleMap =
1850
ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap;
1851
1852
auto ProcessOneModule = [&](int I) -> Error {
1853
auto &Mod = *(ModuleMap.begin() + I);
1854
// Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for
1855
// combined module and parallel code generation partitions.
1856
return BackendProc->start(RegularLTO.ParallelCodeGenParallelismLevel + I,
1857
Mod.second, ImportLists[Mod.first],
1858
ExportLists[Mod.first], ResolvedODR[Mod.first],
1859
ThinLTO.ModuleMap);
1860
};
1861
1862
if (BackendProc->getThreadCount() == 1) {
1863
// Process the modules in the order they were provided on the command-line.
1864
// It is important for this codepath to be used for WriteIndexesThinBackend,
1865
// to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same
1866
// order as the inputs, which otherwise would affect the final link order.
1867
for (int I = 0, E = ModuleMap.size(); I != E; ++I)
1868
if (Error E = ProcessOneModule(I))
1869
return E;
1870
} else {
1871
// When executing in parallel, process largest bitsize modules first to
1872
// improve parallelism, and avoid starving the thread pool near the end.
1873
// This saves about 15 sec on a 36-core machine while link `clang.exe` (out
1874
// of 100 sec).
1875
std::vector<BitcodeModule *> ModulesVec;
1876
ModulesVec.reserve(ModuleMap.size());
1877
for (auto &Mod : ModuleMap)
1878
ModulesVec.push_back(&Mod.second);
1879
for (int I : generateModulesOrdering(ModulesVec))
1880
if (Error E = ProcessOneModule(I))
1881
return E;
1882
}
1883
return BackendProc->wait();
1884
}
1885
1886
Expected<std::unique_ptr<ToolOutputFile>> lto::setupLLVMOptimizationRemarks(
1887
LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses,
1888
StringRef RemarksFormat, bool RemarksWithHotness,
1889
std::optional<uint64_t> RemarksHotnessThreshold, int Count) {
1890
std::string Filename = std::string(RemarksFilename);
1891
// For ThinLTO, file.opt.<format> becomes
1892
// file.opt.<format>.thin.<num>.<format>.
1893
if (!Filename.empty() && Count != -1)
1894
Filename =
1895
(Twine(Filename) + ".thin." + llvm::utostr(Count) + "." + RemarksFormat)
1896
.str();
1897
1898
auto ResultOrErr = llvm::setupLLVMOptimizationRemarks(
1899
Context, Filename, RemarksPasses, RemarksFormat, RemarksWithHotness,
1900
RemarksHotnessThreshold);
1901
if (Error E = ResultOrErr.takeError())
1902
return std::move(E);
1903
1904
if (*ResultOrErr)
1905
(*ResultOrErr)->keep();
1906
1907
return ResultOrErr;
1908
}
1909
1910
Expected<std::unique_ptr<ToolOutputFile>>
1911
lto::setupStatsFile(StringRef StatsFilename) {
1912
// Setup output file to emit statistics.
1913
if (StatsFilename.empty())
1914
return nullptr;
1915
1916
llvm::EnableStatistics(false);
1917
std::error_code EC;
1918
auto StatsFile =
1919
std::make_unique<ToolOutputFile>(StatsFilename, EC, sys::fs::OF_None);
1920
if (EC)
1921
return errorCodeToError(EC);
1922
1923
StatsFile->keep();
1924
return std::move(StatsFile);
1925
}
1926
1927
// Compute the ordering we will process the inputs: the rough heuristic here
1928
// is to sort them per size so that the largest module get schedule as soon as
1929
// possible. This is purely a compile-time optimization.
1930
std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) {
1931
auto Seq = llvm::seq<int>(0, R.size());
1932
std::vector<int> ModulesOrdering(Seq.begin(), Seq.end());
1933
llvm::sort(ModulesOrdering, [&](int LeftIndex, int RightIndex) {
1934
auto LSize = R[LeftIndex]->getBuffer().size();
1935
auto RSize = R[RightIndex]->getBuffer().size();
1936
return LSize > RSize;
1937
});
1938
return ModulesOrdering;
1939
}
1940
1941