Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Object/COFFObjectFile.cpp
35232 views
1
//===- COFFObjectFile.cpp - COFF object file implementation ---------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file declares the COFFObjectFile class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/ADT/ArrayRef.h"
14
#include "llvm/ADT/StringRef.h"
15
#include "llvm/ADT/StringSwitch.h"
16
#include "llvm/ADT/iterator_range.h"
17
#include "llvm/Object/Binary.h"
18
#include "llvm/Object/COFF.h"
19
#include "llvm/Object/Error.h"
20
#include "llvm/Object/ObjectFile.h"
21
#include "llvm/Object/WindowsMachineFlag.h"
22
#include "llvm/Support/BinaryStreamReader.h"
23
#include "llvm/Support/Endian.h"
24
#include "llvm/Support/Error.h"
25
#include "llvm/Support/ErrorHandling.h"
26
#include "llvm/Support/MathExtras.h"
27
#include "llvm/Support/MemoryBufferRef.h"
28
#include <algorithm>
29
#include <cassert>
30
#include <cinttypes>
31
#include <cstddef>
32
#include <cstring>
33
#include <limits>
34
#include <memory>
35
#include <system_error>
36
37
using namespace llvm;
38
using namespace object;
39
40
using support::ulittle16_t;
41
using support::ulittle32_t;
42
using support::ulittle64_t;
43
using support::little16_t;
44
45
// Returns false if size is greater than the buffer size. And sets ec.
46
static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
47
if (M.getBufferSize() < Size) {
48
EC = object_error::unexpected_eof;
49
return false;
50
}
51
return true;
52
}
53
54
// Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
55
// Returns unexpected_eof if error.
56
template <typename T>
57
static Error getObject(const T *&Obj, MemoryBufferRef M, const void *Ptr,
58
const uint64_t Size = sizeof(T)) {
59
uintptr_t Addr = reinterpret_cast<uintptr_t>(Ptr);
60
if (Error E = Binary::checkOffset(M, Addr, Size))
61
return E;
62
Obj = reinterpret_cast<const T *>(Addr);
63
return Error::success();
64
}
65
66
// Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
67
// prefixed slashes.
68
static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
69
assert(Str.size() <= 6 && "String too long, possible overflow.");
70
if (Str.size() > 6)
71
return true;
72
73
uint64_t Value = 0;
74
while (!Str.empty()) {
75
unsigned CharVal;
76
if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
77
CharVal = Str[0] - 'A';
78
else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
79
CharVal = Str[0] - 'a' + 26;
80
else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
81
CharVal = Str[0] - '0' + 52;
82
else if (Str[0] == '+') // 62
83
CharVal = 62;
84
else if (Str[0] == '/') // 63
85
CharVal = 63;
86
else
87
return true;
88
89
Value = (Value * 64) + CharVal;
90
Str = Str.substr(1);
91
}
92
93
if (Value > std::numeric_limits<uint32_t>::max())
94
return true;
95
96
Result = static_cast<uint32_t>(Value);
97
return false;
98
}
99
100
template <typename coff_symbol_type>
101
const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
102
const coff_symbol_type *Addr =
103
reinterpret_cast<const coff_symbol_type *>(Ref.p);
104
105
assert(!checkOffset(Data, reinterpret_cast<uintptr_t>(Addr), sizeof(*Addr)));
106
#ifndef NDEBUG
107
// Verify that the symbol points to a valid entry in the symbol table.
108
uintptr_t Offset =
109
reinterpret_cast<uintptr_t>(Addr) - reinterpret_cast<uintptr_t>(base());
110
111
assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
112
"Symbol did not point to the beginning of a symbol");
113
#endif
114
115
return Addr;
116
}
117
118
const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
119
const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
120
121
#ifndef NDEBUG
122
// Verify that the section points to a valid entry in the section table.
123
if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
124
report_fatal_error("Section was outside of section table.");
125
126
uintptr_t Offset = reinterpret_cast<uintptr_t>(Addr) -
127
reinterpret_cast<uintptr_t>(SectionTable);
128
assert(Offset % sizeof(coff_section) == 0 &&
129
"Section did not point to the beginning of a section");
130
#endif
131
132
return Addr;
133
}
134
135
void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
136
auto End = reinterpret_cast<uintptr_t>(StringTable);
137
if (SymbolTable16) {
138
const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
139
Symb += 1 + Symb->NumberOfAuxSymbols;
140
Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
141
} else if (SymbolTable32) {
142
const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
143
Symb += 1 + Symb->NumberOfAuxSymbols;
144
Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
145
} else {
146
llvm_unreachable("no symbol table pointer!");
147
}
148
}
149
150
Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
151
return getSymbolName(getCOFFSymbol(Ref));
152
}
153
154
uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
155
return getCOFFSymbol(Ref).getValue();
156
}
157
158
uint32_t COFFObjectFile::getSymbolAlignment(DataRefImpl Ref) const {
159
// MSVC/link.exe seems to align symbols to the next-power-of-2
160
// up to 32 bytes.
161
COFFSymbolRef Symb = getCOFFSymbol(Ref);
162
return std::min(uint64_t(32), PowerOf2Ceil(Symb.getValue()));
163
}
164
165
Expected<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
166
uint64_t Result = cantFail(getSymbolValue(Ref));
167
COFFSymbolRef Symb = getCOFFSymbol(Ref);
168
int32_t SectionNumber = Symb.getSectionNumber();
169
170
if (Symb.isAnyUndefined() || Symb.isCommon() ||
171
COFF::isReservedSectionNumber(SectionNumber))
172
return Result;
173
174
Expected<const coff_section *> Section = getSection(SectionNumber);
175
if (!Section)
176
return Section.takeError();
177
Result += (*Section)->VirtualAddress;
178
179
// The section VirtualAddress does not include ImageBase, and we want to
180
// return virtual addresses.
181
Result += getImageBase();
182
183
return Result;
184
}
185
186
Expected<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
187
COFFSymbolRef Symb = getCOFFSymbol(Ref);
188
int32_t SectionNumber = Symb.getSectionNumber();
189
190
if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
191
return SymbolRef::ST_Function;
192
if (Symb.isAnyUndefined())
193
return SymbolRef::ST_Unknown;
194
if (Symb.isCommon())
195
return SymbolRef::ST_Data;
196
if (Symb.isFileRecord())
197
return SymbolRef::ST_File;
198
199
// TODO: perhaps we need a new symbol type ST_Section.
200
if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
201
return SymbolRef::ST_Debug;
202
203
if (!COFF::isReservedSectionNumber(SectionNumber))
204
return SymbolRef::ST_Data;
205
206
return SymbolRef::ST_Other;
207
}
208
209
Expected<uint32_t> COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
210
COFFSymbolRef Symb = getCOFFSymbol(Ref);
211
uint32_t Result = SymbolRef::SF_None;
212
213
if (Symb.isExternal() || Symb.isWeakExternal())
214
Result |= SymbolRef::SF_Global;
215
216
if (const coff_aux_weak_external *AWE = Symb.getWeakExternal()) {
217
Result |= SymbolRef::SF_Weak;
218
if (AWE->Characteristics != COFF::IMAGE_WEAK_EXTERN_SEARCH_ALIAS)
219
Result |= SymbolRef::SF_Undefined;
220
}
221
222
if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
223
Result |= SymbolRef::SF_Absolute;
224
225
if (Symb.isFileRecord())
226
Result |= SymbolRef::SF_FormatSpecific;
227
228
if (Symb.isSectionDefinition())
229
Result |= SymbolRef::SF_FormatSpecific;
230
231
if (Symb.isCommon())
232
Result |= SymbolRef::SF_Common;
233
234
if (Symb.isUndefined())
235
Result |= SymbolRef::SF_Undefined;
236
237
return Result;
238
}
239
240
uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
241
COFFSymbolRef Symb = getCOFFSymbol(Ref);
242
return Symb.getValue();
243
}
244
245
Expected<section_iterator>
246
COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
247
COFFSymbolRef Symb = getCOFFSymbol(Ref);
248
if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
249
return section_end();
250
Expected<const coff_section *> Sec = getSection(Symb.getSectionNumber());
251
if (!Sec)
252
return Sec.takeError();
253
DataRefImpl Ret;
254
Ret.p = reinterpret_cast<uintptr_t>(*Sec);
255
return section_iterator(SectionRef(Ret, this));
256
}
257
258
unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
259
COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
260
return Symb.getSectionNumber();
261
}
262
263
void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
264
const coff_section *Sec = toSec(Ref);
265
Sec += 1;
266
Ref.p = reinterpret_cast<uintptr_t>(Sec);
267
}
268
269
Expected<StringRef> COFFObjectFile::getSectionName(DataRefImpl Ref) const {
270
const coff_section *Sec = toSec(Ref);
271
return getSectionName(Sec);
272
}
273
274
uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
275
const coff_section *Sec = toSec(Ref);
276
uint64_t Result = Sec->VirtualAddress;
277
278
// The section VirtualAddress does not include ImageBase, and we want to
279
// return virtual addresses.
280
Result += getImageBase();
281
return Result;
282
}
283
284
uint64_t COFFObjectFile::getSectionIndex(DataRefImpl Sec) const {
285
return toSec(Sec) - SectionTable;
286
}
287
288
uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
289
return getSectionSize(toSec(Ref));
290
}
291
292
Expected<ArrayRef<uint8_t>>
293
COFFObjectFile::getSectionContents(DataRefImpl Ref) const {
294
const coff_section *Sec = toSec(Ref);
295
ArrayRef<uint8_t> Res;
296
if (Error E = getSectionContents(Sec, Res))
297
return E;
298
return Res;
299
}
300
301
uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
302
const coff_section *Sec = toSec(Ref);
303
return Sec->getAlignment();
304
}
305
306
bool COFFObjectFile::isSectionCompressed(DataRefImpl Sec) const {
307
return false;
308
}
309
310
bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
311
const coff_section *Sec = toSec(Ref);
312
return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
313
}
314
315
bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
316
const coff_section *Sec = toSec(Ref);
317
return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
318
}
319
320
bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
321
const coff_section *Sec = toSec(Ref);
322
const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
323
COFF::IMAGE_SCN_MEM_READ |
324
COFF::IMAGE_SCN_MEM_WRITE;
325
return (Sec->Characteristics & BssFlags) == BssFlags;
326
}
327
328
// The .debug sections are the only debug sections for COFF
329
// (\see MCObjectFileInfo.cpp).
330
bool COFFObjectFile::isDebugSection(DataRefImpl Ref) const {
331
Expected<StringRef> SectionNameOrErr = getSectionName(Ref);
332
if (!SectionNameOrErr) {
333
// TODO: Report the error message properly.
334
consumeError(SectionNameOrErr.takeError());
335
return false;
336
}
337
StringRef SectionName = SectionNameOrErr.get();
338
return SectionName.starts_with(".debug");
339
}
340
341
unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
342
uintptr_t Offset =
343
Sec.getRawDataRefImpl().p - reinterpret_cast<uintptr_t>(SectionTable);
344
assert((Offset % sizeof(coff_section)) == 0);
345
return (Offset / sizeof(coff_section)) + 1;
346
}
347
348
bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
349
const coff_section *Sec = toSec(Ref);
350
// In COFF, a virtual section won't have any in-file
351
// content, so the file pointer to the content will be zero.
352
return Sec->PointerToRawData == 0;
353
}
354
355
static uint32_t getNumberOfRelocations(const coff_section *Sec,
356
MemoryBufferRef M, const uint8_t *base) {
357
// The field for the number of relocations in COFF section table is only
358
// 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
359
// NumberOfRelocations field, and the actual relocation count is stored in the
360
// VirtualAddress field in the first relocation entry.
361
if (Sec->hasExtendedRelocations()) {
362
const coff_relocation *FirstReloc;
363
if (Error E = getObject(FirstReloc, M,
364
reinterpret_cast<const coff_relocation *>(
365
base + Sec->PointerToRelocations))) {
366
consumeError(std::move(E));
367
return 0;
368
}
369
// -1 to exclude this first relocation entry.
370
return FirstReloc->VirtualAddress - 1;
371
}
372
return Sec->NumberOfRelocations;
373
}
374
375
static const coff_relocation *
376
getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
377
uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
378
if (!NumRelocs)
379
return nullptr;
380
auto begin = reinterpret_cast<const coff_relocation *>(
381
Base + Sec->PointerToRelocations);
382
if (Sec->hasExtendedRelocations()) {
383
// Skip the first relocation entry repurposed to store the number of
384
// relocations.
385
begin++;
386
}
387
if (auto E = Binary::checkOffset(M, reinterpret_cast<uintptr_t>(begin),
388
sizeof(coff_relocation) * NumRelocs)) {
389
consumeError(std::move(E));
390
return nullptr;
391
}
392
return begin;
393
}
394
395
relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
396
const coff_section *Sec = toSec(Ref);
397
const coff_relocation *begin = getFirstReloc(Sec, Data, base());
398
if (begin && Sec->VirtualAddress != 0)
399
report_fatal_error("Sections with relocations should have an address of 0");
400
DataRefImpl Ret;
401
Ret.p = reinterpret_cast<uintptr_t>(begin);
402
return relocation_iterator(RelocationRef(Ret, this));
403
}
404
405
relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
406
const coff_section *Sec = toSec(Ref);
407
const coff_relocation *I = getFirstReloc(Sec, Data, base());
408
if (I)
409
I += getNumberOfRelocations(Sec, Data, base());
410
DataRefImpl Ret;
411
Ret.p = reinterpret_cast<uintptr_t>(I);
412
return relocation_iterator(RelocationRef(Ret, this));
413
}
414
415
// Initialize the pointer to the symbol table.
416
Error COFFObjectFile::initSymbolTablePtr() {
417
if (COFFHeader)
418
if (Error E = getObject(
419
SymbolTable16, Data, base() + getPointerToSymbolTable(),
420
(uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
421
return E;
422
423
if (COFFBigObjHeader)
424
if (Error E = getObject(
425
SymbolTable32, Data, base() + getPointerToSymbolTable(),
426
(uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
427
return E;
428
429
// Find string table. The first four byte of the string table contains the
430
// total size of the string table, including the size field itself. If the
431
// string table is empty, the value of the first four byte would be 4.
432
uint32_t StringTableOffset = getPointerToSymbolTable() +
433
getNumberOfSymbols() * getSymbolTableEntrySize();
434
const uint8_t *StringTableAddr = base() + StringTableOffset;
435
const ulittle32_t *StringTableSizePtr;
436
if (Error E = getObject(StringTableSizePtr, Data, StringTableAddr))
437
return E;
438
StringTableSize = *StringTableSizePtr;
439
if (Error E = getObject(StringTable, Data, StringTableAddr, StringTableSize))
440
return E;
441
442
// Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
443
// tools like cvtres write a size of 0 for an empty table instead of 4.
444
if (StringTableSize < 4)
445
StringTableSize = 4;
446
447
// Check that the string table is null terminated if has any in it.
448
if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
449
return createStringError(object_error::parse_failed,
450
"string table missing null terminator");
451
return Error::success();
452
}
453
454
uint64_t COFFObjectFile::getImageBase() const {
455
if (PE32Header)
456
return PE32Header->ImageBase;
457
else if (PE32PlusHeader)
458
return PE32PlusHeader->ImageBase;
459
// This actually comes up in practice.
460
return 0;
461
}
462
463
// Returns the file offset for the given VA.
464
Error COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
465
uint64_t ImageBase = getImageBase();
466
uint64_t Rva = Addr - ImageBase;
467
assert(Rva <= UINT32_MAX);
468
return getRvaPtr((uint32_t)Rva, Res);
469
}
470
471
// Returns the file offset for the given RVA.
472
Error COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res,
473
const char *ErrorContext) const {
474
for (const SectionRef &S : sections()) {
475
const coff_section *Section = getCOFFSection(S);
476
uint32_t SectionStart = Section->VirtualAddress;
477
uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
478
if (SectionStart <= Addr && Addr < SectionEnd) {
479
// A table/directory entry can be pointing to somewhere in a stripped
480
// section, in an object that went through `objcopy --only-keep-debug`.
481
// In this case we don't want to cause the parsing of the object file to
482
// fail, otherwise it will be impossible to use this object as debug info
483
// in LLDB. Return SectionStrippedError here so that
484
// COFFObjectFile::initialize can ignore the error.
485
// Somewhat common binaries may have RVAs pointing outside of the
486
// provided raw data. Instead of rejecting the binaries, just
487
// treat the section as stripped for these purposes.
488
if (Section->SizeOfRawData < Section->VirtualSize &&
489
Addr >= SectionStart + Section->SizeOfRawData) {
490
return make_error<SectionStrippedError>();
491
}
492
uint32_t Offset = Addr - SectionStart;
493
Res = reinterpret_cast<uintptr_t>(base()) + Section->PointerToRawData +
494
Offset;
495
return Error::success();
496
}
497
}
498
if (ErrorContext)
499
return createStringError(object_error::parse_failed,
500
"RVA 0x%" PRIx32 " for %s not found", Addr,
501
ErrorContext);
502
return createStringError(object_error::parse_failed,
503
"RVA 0x%" PRIx32 " not found", Addr);
504
}
505
506
Error COFFObjectFile::getRvaAndSizeAsBytes(uint32_t RVA, uint32_t Size,
507
ArrayRef<uint8_t> &Contents,
508
const char *ErrorContext) const {
509
for (const SectionRef &S : sections()) {
510
const coff_section *Section = getCOFFSection(S);
511
uint32_t SectionStart = Section->VirtualAddress;
512
// Check if this RVA is within the section bounds. Be careful about integer
513
// overflow.
514
uint32_t OffsetIntoSection = RVA - SectionStart;
515
if (SectionStart <= RVA && OffsetIntoSection < Section->VirtualSize &&
516
Size <= Section->VirtualSize - OffsetIntoSection) {
517
uintptr_t Begin = reinterpret_cast<uintptr_t>(base()) +
518
Section->PointerToRawData + OffsetIntoSection;
519
Contents =
520
ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Begin), Size);
521
return Error::success();
522
}
523
}
524
if (ErrorContext)
525
return createStringError(object_error::parse_failed,
526
"RVA 0x%" PRIx32 " for %s not found", RVA,
527
ErrorContext);
528
return createStringError(object_error::parse_failed,
529
"RVA 0x%" PRIx32 " not found", RVA);
530
}
531
532
// Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
533
// table entry.
534
Error COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
535
StringRef &Name) const {
536
uintptr_t IntPtr = 0;
537
if (Error E = getRvaPtr(Rva, IntPtr))
538
return E;
539
const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
540
Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
541
Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
542
return Error::success();
543
}
544
545
Error COFFObjectFile::getDebugPDBInfo(const debug_directory *DebugDir,
546
const codeview::DebugInfo *&PDBInfo,
547
StringRef &PDBFileName) const {
548
ArrayRef<uint8_t> InfoBytes;
549
if (Error E =
550
getRvaAndSizeAsBytes(DebugDir->AddressOfRawData, DebugDir->SizeOfData,
551
InfoBytes, "PDB info"))
552
return E;
553
if (InfoBytes.size() < sizeof(*PDBInfo) + 1)
554
return createStringError(object_error::parse_failed, "PDB info too small");
555
PDBInfo = reinterpret_cast<const codeview::DebugInfo *>(InfoBytes.data());
556
InfoBytes = InfoBytes.drop_front(sizeof(*PDBInfo));
557
PDBFileName = StringRef(reinterpret_cast<const char *>(InfoBytes.data()),
558
InfoBytes.size());
559
// Truncate the name at the first null byte. Ignore any padding.
560
PDBFileName = PDBFileName.split('\0').first;
561
return Error::success();
562
}
563
564
Error COFFObjectFile::getDebugPDBInfo(const codeview::DebugInfo *&PDBInfo,
565
StringRef &PDBFileName) const {
566
for (const debug_directory &D : debug_directories())
567
if (D.Type == COFF::IMAGE_DEBUG_TYPE_CODEVIEW)
568
return getDebugPDBInfo(&D, PDBInfo, PDBFileName);
569
// If we get here, there is no PDB info to return.
570
PDBInfo = nullptr;
571
PDBFileName = StringRef();
572
return Error::success();
573
}
574
575
// Find the import table.
576
Error COFFObjectFile::initImportTablePtr() {
577
// First, we get the RVA of the import table. If the file lacks a pointer to
578
// the import table, do nothing.
579
const data_directory *DataEntry = getDataDirectory(COFF::IMPORT_TABLE);
580
if (!DataEntry)
581
return Error::success();
582
583
// Do nothing if the pointer to import table is NULL.
584
if (DataEntry->RelativeVirtualAddress == 0)
585
return Error::success();
586
587
uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
588
589
// Find the section that contains the RVA. This is needed because the RVA is
590
// the import table's memory address which is different from its file offset.
591
uintptr_t IntPtr = 0;
592
if (Error E = getRvaPtr(ImportTableRva, IntPtr, "import table"))
593
return E;
594
if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
595
return E;
596
ImportDirectory = reinterpret_cast<
597
const coff_import_directory_table_entry *>(IntPtr);
598
return Error::success();
599
}
600
601
// Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
602
Error COFFObjectFile::initDelayImportTablePtr() {
603
const data_directory *DataEntry =
604
getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR);
605
if (!DataEntry)
606
return Error::success();
607
if (DataEntry->RelativeVirtualAddress == 0)
608
return Error::success();
609
610
uint32_t RVA = DataEntry->RelativeVirtualAddress;
611
NumberOfDelayImportDirectory = DataEntry->Size /
612
sizeof(delay_import_directory_table_entry) - 1;
613
614
uintptr_t IntPtr = 0;
615
if (Error E = getRvaPtr(RVA, IntPtr, "delay import table"))
616
return E;
617
if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
618
return E;
619
620
DelayImportDirectory = reinterpret_cast<
621
const delay_import_directory_table_entry *>(IntPtr);
622
return Error::success();
623
}
624
625
// Find the export table.
626
Error COFFObjectFile::initExportTablePtr() {
627
// First, we get the RVA of the export table. If the file lacks a pointer to
628
// the export table, do nothing.
629
const data_directory *DataEntry = getDataDirectory(COFF::EXPORT_TABLE);
630
if (!DataEntry)
631
return Error::success();
632
633
// Do nothing if the pointer to export table is NULL.
634
if (DataEntry->RelativeVirtualAddress == 0)
635
return Error::success();
636
637
uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
638
uintptr_t IntPtr = 0;
639
if (Error E = getRvaPtr(ExportTableRva, IntPtr, "export table"))
640
return E;
641
if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
642
return E;
643
644
ExportDirectory =
645
reinterpret_cast<const export_directory_table_entry *>(IntPtr);
646
return Error::success();
647
}
648
649
Error COFFObjectFile::initBaseRelocPtr() {
650
const data_directory *DataEntry =
651
getDataDirectory(COFF::BASE_RELOCATION_TABLE);
652
if (!DataEntry)
653
return Error::success();
654
if (DataEntry->RelativeVirtualAddress == 0)
655
return Error::success();
656
657
uintptr_t IntPtr = 0;
658
if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
659
"base reloc table"))
660
return E;
661
if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
662
return E;
663
664
BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
665
IntPtr);
666
BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
667
IntPtr + DataEntry->Size);
668
// FIXME: Verify the section containing BaseRelocHeader has at least
669
// DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
670
return Error::success();
671
}
672
673
Error COFFObjectFile::initDebugDirectoryPtr() {
674
// Get the RVA of the debug directory. Do nothing if it does not exist.
675
const data_directory *DataEntry = getDataDirectory(COFF::DEBUG_DIRECTORY);
676
if (!DataEntry)
677
return Error::success();
678
679
// Do nothing if the RVA is NULL.
680
if (DataEntry->RelativeVirtualAddress == 0)
681
return Error::success();
682
683
// Check that the size is a multiple of the entry size.
684
if (DataEntry->Size % sizeof(debug_directory) != 0)
685
return createStringError(object_error::parse_failed,
686
"debug directory has uneven size");
687
688
uintptr_t IntPtr = 0;
689
if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
690
"debug directory"))
691
return E;
692
if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
693
return E;
694
695
DebugDirectoryBegin = reinterpret_cast<const debug_directory *>(IntPtr);
696
DebugDirectoryEnd = reinterpret_cast<const debug_directory *>(
697
IntPtr + DataEntry->Size);
698
// FIXME: Verify the section containing DebugDirectoryBegin has at least
699
// DataEntry->Size bytes after DataEntry->RelativeVirtualAddress.
700
return Error::success();
701
}
702
703
Error COFFObjectFile::initTLSDirectoryPtr() {
704
// Get the RVA of the TLS directory. Do nothing if it does not exist.
705
const data_directory *DataEntry = getDataDirectory(COFF::TLS_TABLE);
706
if (!DataEntry)
707
return Error::success();
708
709
// Do nothing if the RVA is NULL.
710
if (DataEntry->RelativeVirtualAddress == 0)
711
return Error::success();
712
713
uint64_t DirSize =
714
is64() ? sizeof(coff_tls_directory64) : sizeof(coff_tls_directory32);
715
716
// Check that the size is correct.
717
if (DataEntry->Size != DirSize)
718
return createStringError(
719
object_error::parse_failed,
720
"TLS Directory size (%u) is not the expected size (%" PRIu64 ").",
721
static_cast<uint32_t>(DataEntry->Size), DirSize);
722
723
uintptr_t IntPtr = 0;
724
if (Error E =
725
getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr, "TLS directory"))
726
return E;
727
if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
728
return E;
729
730
if (is64())
731
TLSDirectory64 = reinterpret_cast<const coff_tls_directory64 *>(IntPtr);
732
else
733
TLSDirectory32 = reinterpret_cast<const coff_tls_directory32 *>(IntPtr);
734
735
return Error::success();
736
}
737
738
Error COFFObjectFile::initLoadConfigPtr() {
739
// Get the RVA of the debug directory. Do nothing if it does not exist.
740
const data_directory *DataEntry = getDataDirectory(COFF::LOAD_CONFIG_TABLE);
741
if (!DataEntry)
742
return Error::success();
743
744
// Do nothing if the RVA is NULL.
745
if (DataEntry->RelativeVirtualAddress == 0)
746
return Error::success();
747
uintptr_t IntPtr = 0;
748
if (Error E = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr,
749
"load config table"))
750
return E;
751
if (Error E = checkOffset(Data, IntPtr, DataEntry->Size))
752
return E;
753
754
LoadConfig = (const void *)IntPtr;
755
756
if (is64()) {
757
auto Config = getLoadConfig64();
758
if (Config->Size >=
759
offsetof(coff_load_configuration64, CHPEMetadataPointer) +
760
sizeof(Config->CHPEMetadataPointer) &&
761
Config->CHPEMetadataPointer) {
762
uint64_t ChpeOff = Config->CHPEMetadataPointer;
763
if (Error E =
764
getRvaPtr(ChpeOff - getImageBase(), IntPtr, "CHPE metadata"))
765
return E;
766
if (Error E = checkOffset(Data, IntPtr, sizeof(CHPEMetadata)))
767
return E;
768
769
CHPEMetadata = reinterpret_cast<const chpe_metadata *>(IntPtr);
770
771
// Validate CHPE metadata
772
if (CHPEMetadata->CodeMapCount) {
773
if (Error E = getRvaPtr(CHPEMetadata->CodeMap, IntPtr, "CHPE code map"))
774
return E;
775
if (Error E = checkOffset(Data, IntPtr,
776
CHPEMetadata->CodeMapCount *
777
sizeof(chpe_range_entry)))
778
return E;
779
}
780
781
if (CHPEMetadata->CodeRangesToEntryPointsCount) {
782
if (Error E = getRvaPtr(CHPEMetadata->CodeRangesToEntryPoints, IntPtr,
783
"CHPE entry point ranges"))
784
return E;
785
if (Error E = checkOffset(Data, IntPtr,
786
CHPEMetadata->CodeRangesToEntryPointsCount *
787
sizeof(chpe_code_range_entry)))
788
return E;
789
}
790
791
if (CHPEMetadata->RedirectionMetadataCount) {
792
if (Error E = getRvaPtr(CHPEMetadata->RedirectionMetadata, IntPtr,
793
"CHPE redirection metadata"))
794
return E;
795
if (Error E = checkOffset(Data, IntPtr,
796
CHPEMetadata->RedirectionMetadataCount *
797
sizeof(chpe_redirection_entry)))
798
return E;
799
}
800
}
801
}
802
803
return Error::success();
804
}
805
806
Expected<std::unique_ptr<COFFObjectFile>>
807
COFFObjectFile::create(MemoryBufferRef Object) {
808
std::unique_ptr<COFFObjectFile> Obj(new COFFObjectFile(std::move(Object)));
809
if (Error E = Obj->initialize())
810
return E;
811
return std::move(Obj);
812
}
813
814
COFFObjectFile::COFFObjectFile(MemoryBufferRef Object)
815
: ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
816
COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
817
DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
818
SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
819
ImportDirectory(nullptr), DelayImportDirectory(nullptr),
820
NumberOfDelayImportDirectory(0), ExportDirectory(nullptr),
821
BaseRelocHeader(nullptr), BaseRelocEnd(nullptr),
822
DebugDirectoryBegin(nullptr), DebugDirectoryEnd(nullptr),
823
TLSDirectory32(nullptr), TLSDirectory64(nullptr) {}
824
825
static Error ignoreStrippedErrors(Error E) {
826
if (E.isA<SectionStrippedError>()) {
827
consumeError(std::move(E));
828
return Error::success();
829
}
830
return E;
831
}
832
833
Error COFFObjectFile::initialize() {
834
// Check that we at least have enough room for a header.
835
std::error_code EC;
836
if (!checkSize(Data, EC, sizeof(coff_file_header)))
837
return errorCodeToError(EC);
838
839
// The current location in the file where we are looking at.
840
uint64_t CurPtr = 0;
841
842
// PE header is optional and is present only in executables. If it exists,
843
// it is placed right after COFF header.
844
bool HasPEHeader = false;
845
846
// Check if this is a PE/COFF file.
847
if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
848
// PE/COFF, seek through MS-DOS compatibility stub and 4-byte
849
// PE signature to find 'normal' COFF header.
850
const auto *DH = reinterpret_cast<const dos_header *>(base());
851
if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
852
CurPtr = DH->AddressOfNewExeHeader;
853
// Check the PE magic bytes. ("PE\0\0")
854
if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
855
return createStringError(object_error::parse_failed,
856
"incorrect PE magic");
857
}
858
CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
859
HasPEHeader = true;
860
}
861
}
862
863
if (Error E = getObject(COFFHeader, Data, base() + CurPtr))
864
return E;
865
866
// It might be a bigobj file, let's check. Note that COFF bigobj and COFF
867
// import libraries share a common prefix but bigobj is more restrictive.
868
if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
869
COFFHeader->NumberOfSections == uint16_t(0xffff) &&
870
checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
871
if (Error E = getObject(COFFBigObjHeader, Data, base() + CurPtr))
872
return E;
873
874
// Verify that we are dealing with bigobj.
875
if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
876
std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
877
sizeof(COFF::BigObjMagic)) == 0) {
878
COFFHeader = nullptr;
879
CurPtr += sizeof(coff_bigobj_file_header);
880
} else {
881
// It's not a bigobj.
882
COFFBigObjHeader = nullptr;
883
}
884
}
885
if (COFFHeader) {
886
// The prior checkSize call may have failed. This isn't a hard error
887
// because we were just trying to sniff out bigobj.
888
EC = std::error_code();
889
CurPtr += sizeof(coff_file_header);
890
891
if (COFFHeader->isImportLibrary())
892
return errorCodeToError(EC);
893
}
894
895
if (HasPEHeader) {
896
const pe32_header *Header;
897
if (Error E = getObject(Header, Data, base() + CurPtr))
898
return E;
899
900
const uint8_t *DataDirAddr;
901
uint64_t DataDirSize;
902
if (Header->Magic == COFF::PE32Header::PE32) {
903
PE32Header = Header;
904
DataDirAddr = base() + CurPtr + sizeof(pe32_header);
905
DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
906
} else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
907
PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
908
DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
909
DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
910
} else {
911
// It's neither PE32 nor PE32+.
912
return createStringError(object_error::parse_failed,
913
"incorrect PE magic");
914
}
915
if (Error E = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))
916
return E;
917
}
918
919
if (COFFHeader)
920
CurPtr += COFFHeader->SizeOfOptionalHeader;
921
922
assert(COFFHeader || COFFBigObjHeader);
923
924
if (Error E =
925
getObject(SectionTable, Data, base() + CurPtr,
926
(uint64_t)getNumberOfSections() * sizeof(coff_section)))
927
return E;
928
929
// Initialize the pointer to the symbol table.
930
if (getPointerToSymbolTable() != 0) {
931
if (Error E = initSymbolTablePtr()) {
932
// Recover from errors reading the symbol table.
933
consumeError(std::move(E));
934
SymbolTable16 = nullptr;
935
SymbolTable32 = nullptr;
936
StringTable = nullptr;
937
StringTableSize = 0;
938
}
939
} else {
940
// We had better not have any symbols if we don't have a symbol table.
941
if (getNumberOfSymbols() != 0) {
942
return createStringError(object_error::parse_failed,
943
"symbol table missing");
944
}
945
}
946
947
// Initialize the pointer to the beginning of the import table.
948
if (Error E = ignoreStrippedErrors(initImportTablePtr()))
949
return E;
950
if (Error E = ignoreStrippedErrors(initDelayImportTablePtr()))
951
return E;
952
953
// Initialize the pointer to the export table.
954
if (Error E = ignoreStrippedErrors(initExportTablePtr()))
955
return E;
956
957
// Initialize the pointer to the base relocation table.
958
if (Error E = ignoreStrippedErrors(initBaseRelocPtr()))
959
return E;
960
961
// Initialize the pointer to the debug directory.
962
if (Error E = ignoreStrippedErrors(initDebugDirectoryPtr()))
963
return E;
964
965
// Initialize the pointer to the TLS directory.
966
if (Error E = ignoreStrippedErrors(initTLSDirectoryPtr()))
967
return E;
968
969
if (Error E = ignoreStrippedErrors(initLoadConfigPtr()))
970
return E;
971
972
return Error::success();
973
}
974
975
basic_symbol_iterator COFFObjectFile::symbol_begin() const {
976
DataRefImpl Ret;
977
Ret.p = getSymbolTable();
978
return basic_symbol_iterator(SymbolRef(Ret, this));
979
}
980
981
basic_symbol_iterator COFFObjectFile::symbol_end() const {
982
// The symbol table ends where the string table begins.
983
DataRefImpl Ret;
984
Ret.p = reinterpret_cast<uintptr_t>(StringTable);
985
return basic_symbol_iterator(SymbolRef(Ret, this));
986
}
987
988
import_directory_iterator COFFObjectFile::import_directory_begin() const {
989
if (!ImportDirectory)
990
return import_directory_end();
991
if (ImportDirectory->isNull())
992
return import_directory_end();
993
return import_directory_iterator(
994
ImportDirectoryEntryRef(ImportDirectory, 0, this));
995
}
996
997
import_directory_iterator COFFObjectFile::import_directory_end() const {
998
return import_directory_iterator(
999
ImportDirectoryEntryRef(nullptr, -1, this));
1000
}
1001
1002
delay_import_directory_iterator
1003
COFFObjectFile::delay_import_directory_begin() const {
1004
return delay_import_directory_iterator(
1005
DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
1006
}
1007
1008
delay_import_directory_iterator
1009
COFFObjectFile::delay_import_directory_end() const {
1010
return delay_import_directory_iterator(
1011
DelayImportDirectoryEntryRef(
1012
DelayImportDirectory, NumberOfDelayImportDirectory, this));
1013
}
1014
1015
export_directory_iterator COFFObjectFile::export_directory_begin() const {
1016
return export_directory_iterator(
1017
ExportDirectoryEntryRef(ExportDirectory, 0, this));
1018
}
1019
1020
export_directory_iterator COFFObjectFile::export_directory_end() const {
1021
if (!ExportDirectory)
1022
return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
1023
ExportDirectoryEntryRef Ref(ExportDirectory,
1024
ExportDirectory->AddressTableEntries, this);
1025
return export_directory_iterator(Ref);
1026
}
1027
1028
section_iterator COFFObjectFile::section_begin() const {
1029
DataRefImpl Ret;
1030
Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
1031
return section_iterator(SectionRef(Ret, this));
1032
}
1033
1034
section_iterator COFFObjectFile::section_end() const {
1035
DataRefImpl Ret;
1036
int NumSections =
1037
COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
1038
Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
1039
return section_iterator(SectionRef(Ret, this));
1040
}
1041
1042
base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
1043
return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
1044
}
1045
1046
base_reloc_iterator COFFObjectFile::base_reloc_end() const {
1047
return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
1048
}
1049
1050
uint8_t COFFObjectFile::getBytesInAddress() const {
1051
return getArch() == Triple::x86_64 || getArch() == Triple::aarch64 ? 8 : 4;
1052
}
1053
1054
StringRef COFFObjectFile::getFileFormatName() const {
1055
switch(getMachine()) {
1056
case COFF::IMAGE_FILE_MACHINE_I386:
1057
return "COFF-i386";
1058
case COFF::IMAGE_FILE_MACHINE_AMD64:
1059
return "COFF-x86-64";
1060
case COFF::IMAGE_FILE_MACHINE_ARMNT:
1061
return "COFF-ARM";
1062
case COFF::IMAGE_FILE_MACHINE_ARM64:
1063
return "COFF-ARM64";
1064
case COFF::IMAGE_FILE_MACHINE_ARM64EC:
1065
return "COFF-ARM64EC";
1066
case COFF::IMAGE_FILE_MACHINE_ARM64X:
1067
return "COFF-ARM64X";
1068
default:
1069
return "COFF-<unknown arch>";
1070
}
1071
}
1072
1073
Triple::ArchType COFFObjectFile::getArch() const {
1074
return getMachineArchType(getMachine());
1075
}
1076
1077
Expected<uint64_t> COFFObjectFile::getStartAddress() const {
1078
if (PE32Header)
1079
return PE32Header->AddressOfEntryPoint;
1080
return 0;
1081
}
1082
1083
iterator_range<import_directory_iterator>
1084
COFFObjectFile::import_directories() const {
1085
return make_range(import_directory_begin(), import_directory_end());
1086
}
1087
1088
iterator_range<delay_import_directory_iterator>
1089
COFFObjectFile::delay_import_directories() const {
1090
return make_range(delay_import_directory_begin(),
1091
delay_import_directory_end());
1092
}
1093
1094
iterator_range<export_directory_iterator>
1095
COFFObjectFile::export_directories() const {
1096
return make_range(export_directory_begin(), export_directory_end());
1097
}
1098
1099
iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
1100
return make_range(base_reloc_begin(), base_reloc_end());
1101
}
1102
1103
const data_directory *COFFObjectFile::getDataDirectory(uint32_t Index) const {
1104
if (!DataDirectory)
1105
return nullptr;
1106
assert(PE32Header || PE32PlusHeader);
1107
uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
1108
: PE32PlusHeader->NumberOfRvaAndSize;
1109
if (Index >= NumEnt)
1110
return nullptr;
1111
return &DataDirectory[Index];
1112
}
1113
1114
Expected<const coff_section *> COFFObjectFile::getSection(int32_t Index) const {
1115
// Perhaps getting the section of a reserved section index should be an error,
1116
// but callers rely on this to return null.
1117
if (COFF::isReservedSectionNumber(Index))
1118
return (const coff_section *)nullptr;
1119
if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
1120
// We already verified the section table data, so no need to check again.
1121
return SectionTable + (Index - 1);
1122
}
1123
return createStringError(object_error::parse_failed,
1124
"section index out of bounds");
1125
}
1126
1127
Expected<StringRef> COFFObjectFile::getString(uint32_t Offset) const {
1128
if (StringTableSize <= 4)
1129
// Tried to get a string from an empty string table.
1130
return createStringError(object_error::parse_failed, "string table empty");
1131
if (Offset >= StringTableSize)
1132
return errorCodeToError(object_error::unexpected_eof);
1133
return StringRef(StringTable + Offset);
1134
}
1135
1136
Expected<StringRef> COFFObjectFile::getSymbolName(COFFSymbolRef Symbol) const {
1137
return getSymbolName(Symbol.getGeneric());
1138
}
1139
1140
Expected<StringRef>
1141
COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol) const {
1142
// Check for string table entry. First 4 bytes are 0.
1143
if (Symbol->Name.Offset.Zeroes == 0)
1144
return getString(Symbol->Name.Offset.Offset);
1145
1146
// Null terminated, let ::strlen figure out the length.
1147
if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
1148
return StringRef(Symbol->Name.ShortName);
1149
1150
// Not null terminated, use all 8 bytes.
1151
return StringRef(Symbol->Name.ShortName, COFF::NameSize);
1152
}
1153
1154
ArrayRef<uint8_t>
1155
COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
1156
const uint8_t *Aux = nullptr;
1157
1158
size_t SymbolSize = getSymbolTableEntrySize();
1159
if (Symbol.getNumberOfAuxSymbols() > 0) {
1160
// AUX data comes immediately after the symbol in COFF
1161
Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
1162
#ifndef NDEBUG
1163
// Verify that the Aux symbol points to a valid entry in the symbol table.
1164
uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
1165
if (Offset < getPointerToSymbolTable() ||
1166
Offset >=
1167
getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
1168
report_fatal_error("Aux Symbol data was outside of symbol table.");
1169
1170
assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
1171
"Aux Symbol data did not point to the beginning of a symbol");
1172
#endif
1173
}
1174
return ArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
1175
}
1176
1177
uint32_t COFFObjectFile::getSymbolIndex(COFFSymbolRef Symbol) const {
1178
uintptr_t Offset =
1179
reinterpret_cast<uintptr_t>(Symbol.getRawPtr()) - getSymbolTable();
1180
assert(Offset % getSymbolTableEntrySize() == 0 &&
1181
"Symbol did not point to the beginning of a symbol");
1182
size_t Index = Offset / getSymbolTableEntrySize();
1183
assert(Index < getNumberOfSymbols());
1184
return Index;
1185
}
1186
1187
Expected<StringRef>
1188
COFFObjectFile::getSectionName(const coff_section *Sec) const {
1189
StringRef Name = StringRef(Sec->Name, COFF::NameSize).split('\0').first;
1190
1191
// Check for string table entry. First byte is '/'.
1192
if (Name.starts_with("/")) {
1193
uint32_t Offset;
1194
if (Name.starts_with("//")) {
1195
if (decodeBase64StringEntry(Name.substr(2), Offset))
1196
return createStringError(object_error::parse_failed,
1197
"invalid section name");
1198
} else {
1199
if (Name.substr(1).getAsInteger(10, Offset))
1200
return createStringError(object_error::parse_failed,
1201
"invalid section name");
1202
}
1203
return getString(Offset);
1204
}
1205
1206
return Name;
1207
}
1208
1209
uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
1210
// SizeOfRawData and VirtualSize change what they represent depending on
1211
// whether or not we have an executable image.
1212
//
1213
// For object files, SizeOfRawData contains the size of section's data;
1214
// VirtualSize should be zero but isn't due to buggy COFF writers.
1215
//
1216
// For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
1217
// actual section size is in VirtualSize. It is possible for VirtualSize to
1218
// be greater than SizeOfRawData; the contents past that point should be
1219
// considered to be zero.
1220
if (getDOSHeader())
1221
return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
1222
return Sec->SizeOfRawData;
1223
}
1224
1225
Error COFFObjectFile::getSectionContents(const coff_section *Sec,
1226
ArrayRef<uint8_t> &Res) const {
1227
// In COFF, a virtual section won't have any in-file
1228
// content, so the file pointer to the content will be zero.
1229
if (Sec->PointerToRawData == 0)
1230
return Error::success();
1231
// The only thing that we need to verify is that the contents is contained
1232
// within the file bounds. We don't need to make sure it doesn't cover other
1233
// data, as there's nothing that says that is not allowed.
1234
uintptr_t ConStart =
1235
reinterpret_cast<uintptr_t>(base()) + Sec->PointerToRawData;
1236
uint32_t SectionSize = getSectionSize(Sec);
1237
if (Error E = checkOffset(Data, ConStart, SectionSize))
1238
return E;
1239
Res = ArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
1240
return Error::success();
1241
}
1242
1243
const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
1244
return reinterpret_cast<const coff_relocation*>(Rel.p);
1245
}
1246
1247
void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
1248
Rel.p = reinterpret_cast<uintptr_t>(
1249
reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
1250
}
1251
1252
uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
1253
const coff_relocation *R = toRel(Rel);
1254
return R->VirtualAddress;
1255
}
1256
1257
symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
1258
const coff_relocation *R = toRel(Rel);
1259
DataRefImpl Ref;
1260
if (R->SymbolTableIndex >= getNumberOfSymbols())
1261
return symbol_end();
1262
if (SymbolTable16)
1263
Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
1264
else if (SymbolTable32)
1265
Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
1266
else
1267
llvm_unreachable("no symbol table pointer!");
1268
return symbol_iterator(SymbolRef(Ref, this));
1269
}
1270
1271
uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
1272
const coff_relocation* R = toRel(Rel);
1273
return R->Type;
1274
}
1275
1276
const coff_section *
1277
COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1278
return toSec(Section.getRawDataRefImpl());
1279
}
1280
1281
COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1282
if (SymbolTable16)
1283
return toSymb<coff_symbol16>(Ref);
1284
if (SymbolTable32)
1285
return toSymb<coff_symbol32>(Ref);
1286
llvm_unreachable("no symbol table pointer!");
1287
}
1288
1289
COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1290
return getCOFFSymbol(Symbol.getRawDataRefImpl());
1291
}
1292
1293
const coff_relocation *
1294
COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1295
return toRel(Reloc.getRawDataRefImpl());
1296
}
1297
1298
ArrayRef<coff_relocation>
1299
COFFObjectFile::getRelocations(const coff_section *Sec) const {
1300
return {getFirstReloc(Sec, Data, base()),
1301
getNumberOfRelocations(Sec, Data, base())};
1302
}
1303
1304
#define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \
1305
case COFF::reloc_type: \
1306
return #reloc_type;
1307
1308
StringRef COFFObjectFile::getRelocationTypeName(uint16_t Type) const {
1309
switch (getArch()) {
1310
case Triple::x86_64:
1311
switch (Type) {
1312
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1313
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1314
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1315
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1316
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1317
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1318
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1319
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1320
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1321
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1322
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1323
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1324
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1325
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1326
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1327
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1328
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1329
default:
1330
return "Unknown";
1331
}
1332
break;
1333
case Triple::thumb:
1334
switch (Type) {
1335
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1336
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1337
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1338
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1339
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1340
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1341
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1342
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1343
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_REL32);
1344
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1345
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1346
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1347
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1348
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1349
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1350
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1351
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_PAIR);
1352
default:
1353
return "Unknown";
1354
}
1355
break;
1356
case Triple::aarch64:
1357
switch (Type) {
1358
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ABSOLUTE);
1359
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32);
1360
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR32NB);
1361
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH26);
1362
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEBASE_REL21);
1363
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL21);
1364
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12A);
1365
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_PAGEOFFSET_12L);
1366
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL);
1367
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12A);
1368
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_HIGH12A);
1369
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECREL_LOW12L);
1370
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_TOKEN);
1371
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_SECTION);
1372
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_ADDR64);
1373
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH19);
1374
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_BRANCH14);
1375
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM64_REL32);
1376
default:
1377
return "Unknown";
1378
}
1379
break;
1380
case Triple::x86:
1381
switch (Type) {
1382
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1383
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1384
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1385
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1386
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1387
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1388
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1389
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1390
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1391
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1392
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1393
default:
1394
return "Unknown";
1395
}
1396
break;
1397
default:
1398
return "Unknown";
1399
}
1400
}
1401
1402
#undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1403
1404
void COFFObjectFile::getRelocationTypeName(
1405
DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1406
const coff_relocation *Reloc = toRel(Rel);
1407
StringRef Res = getRelocationTypeName(Reloc->Type);
1408
Result.append(Res.begin(), Res.end());
1409
}
1410
1411
bool COFFObjectFile::isRelocatableObject() const {
1412
return !DataDirectory;
1413
}
1414
1415
StringRef COFFObjectFile::mapDebugSectionName(StringRef Name) const {
1416
return StringSwitch<StringRef>(Name)
1417
.Case("eh_fram", "eh_frame")
1418
.Default(Name);
1419
}
1420
1421
bool ImportDirectoryEntryRef::
1422
operator==(const ImportDirectoryEntryRef &Other) const {
1423
return ImportTable == Other.ImportTable && Index == Other.Index;
1424
}
1425
1426
void ImportDirectoryEntryRef::moveNext() {
1427
++Index;
1428
if (ImportTable[Index].isNull()) {
1429
Index = -1;
1430
ImportTable = nullptr;
1431
}
1432
}
1433
1434
Error ImportDirectoryEntryRef::getImportTableEntry(
1435
const coff_import_directory_table_entry *&Result) const {
1436
return getObject(Result, OwningObject->Data, ImportTable + Index);
1437
}
1438
1439
static imported_symbol_iterator
1440
makeImportedSymbolIterator(const COFFObjectFile *Object,
1441
uintptr_t Ptr, int Index) {
1442
if (Object->getBytesInAddress() == 4) {
1443
auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1444
return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1445
}
1446
auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1447
return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1448
}
1449
1450
static imported_symbol_iterator
1451
importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1452
uintptr_t IntPtr = 0;
1453
// FIXME: Handle errors.
1454
cantFail(Object->getRvaPtr(RVA, IntPtr));
1455
return makeImportedSymbolIterator(Object, IntPtr, 0);
1456
}
1457
1458
static imported_symbol_iterator
1459
importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1460
uintptr_t IntPtr = 0;
1461
// FIXME: Handle errors.
1462
cantFail(Object->getRvaPtr(RVA, IntPtr));
1463
// Forward the pointer to the last entry which is null.
1464
int Index = 0;
1465
if (Object->getBytesInAddress() == 4) {
1466
auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1467
while (*Entry++)
1468
++Index;
1469
} else {
1470
auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1471
while (*Entry++)
1472
++Index;
1473
}
1474
return makeImportedSymbolIterator(Object, IntPtr, Index);
1475
}
1476
1477
imported_symbol_iterator
1478
ImportDirectoryEntryRef::imported_symbol_begin() const {
1479
return importedSymbolBegin(ImportTable[Index].ImportAddressTableRVA,
1480
OwningObject);
1481
}
1482
1483
imported_symbol_iterator
1484
ImportDirectoryEntryRef::imported_symbol_end() const {
1485
return importedSymbolEnd(ImportTable[Index].ImportAddressTableRVA,
1486
OwningObject);
1487
}
1488
1489
iterator_range<imported_symbol_iterator>
1490
ImportDirectoryEntryRef::imported_symbols() const {
1491
return make_range(imported_symbol_begin(), imported_symbol_end());
1492
}
1493
1494
imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_begin() const {
1495
return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1496
OwningObject);
1497
}
1498
1499
imported_symbol_iterator ImportDirectoryEntryRef::lookup_table_end() const {
1500
return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1501
OwningObject);
1502
}
1503
1504
iterator_range<imported_symbol_iterator>
1505
ImportDirectoryEntryRef::lookup_table_symbols() const {
1506
return make_range(lookup_table_begin(), lookup_table_end());
1507
}
1508
1509
Error ImportDirectoryEntryRef::getName(StringRef &Result) const {
1510
uintptr_t IntPtr = 0;
1511
if (Error E = OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr,
1512
"import directory name"))
1513
return E;
1514
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1515
return Error::success();
1516
}
1517
1518
Error
1519
ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const {
1520
Result = ImportTable[Index].ImportLookupTableRVA;
1521
return Error::success();
1522
}
1523
1524
Error ImportDirectoryEntryRef::getImportAddressTableRVA(
1525
uint32_t &Result) const {
1526
Result = ImportTable[Index].ImportAddressTableRVA;
1527
return Error::success();
1528
}
1529
1530
bool DelayImportDirectoryEntryRef::
1531
operator==(const DelayImportDirectoryEntryRef &Other) const {
1532
return Table == Other.Table && Index == Other.Index;
1533
}
1534
1535
void DelayImportDirectoryEntryRef::moveNext() {
1536
++Index;
1537
}
1538
1539
imported_symbol_iterator
1540
DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1541
return importedSymbolBegin(Table[Index].DelayImportNameTable,
1542
OwningObject);
1543
}
1544
1545
imported_symbol_iterator
1546
DelayImportDirectoryEntryRef::imported_symbol_end() const {
1547
return importedSymbolEnd(Table[Index].DelayImportNameTable,
1548
OwningObject);
1549
}
1550
1551
iterator_range<imported_symbol_iterator>
1552
DelayImportDirectoryEntryRef::imported_symbols() const {
1553
return make_range(imported_symbol_begin(), imported_symbol_end());
1554
}
1555
1556
Error DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1557
uintptr_t IntPtr = 0;
1558
if (Error E = OwningObject->getRvaPtr(Table[Index].Name, IntPtr,
1559
"delay import directory name"))
1560
return E;
1561
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1562
return Error::success();
1563
}
1564
1565
Error DelayImportDirectoryEntryRef::getDelayImportTable(
1566
const delay_import_directory_table_entry *&Result) const {
1567
Result = &Table[Index];
1568
return Error::success();
1569
}
1570
1571
Error DelayImportDirectoryEntryRef::getImportAddress(int AddrIndex,
1572
uint64_t &Result) const {
1573
uint32_t RVA = Table[Index].DelayImportAddressTable +
1574
AddrIndex * (OwningObject->is64() ? 8 : 4);
1575
uintptr_t IntPtr = 0;
1576
if (Error E = OwningObject->getRvaPtr(RVA, IntPtr, "import address"))
1577
return E;
1578
if (OwningObject->is64())
1579
Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1580
else
1581
Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1582
return Error::success();
1583
}
1584
1585
bool ExportDirectoryEntryRef::
1586
operator==(const ExportDirectoryEntryRef &Other) const {
1587
return ExportTable == Other.ExportTable && Index == Other.Index;
1588
}
1589
1590
void ExportDirectoryEntryRef::moveNext() {
1591
++Index;
1592
}
1593
1594
// Returns the name of the current export symbol. If the symbol is exported only
1595
// by ordinal, the empty string is set as a result.
1596
Error ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1597
uintptr_t IntPtr = 0;
1598
if (Error E =
1599
OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr, "dll name"))
1600
return E;
1601
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1602
return Error::success();
1603
}
1604
1605
// Returns the starting ordinal number.
1606
Error ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1607
Result = ExportTable->OrdinalBase;
1608
return Error::success();
1609
}
1610
1611
// Returns the export ordinal of the current export symbol.
1612
Error ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1613
Result = ExportTable->OrdinalBase + Index;
1614
return Error::success();
1615
}
1616
1617
// Returns the address of the current export symbol.
1618
Error ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1619
uintptr_t IntPtr = 0;
1620
if (Error EC = OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA,
1621
IntPtr, "export address"))
1622
return EC;
1623
const export_address_table_entry *entry =
1624
reinterpret_cast<const export_address_table_entry *>(IntPtr);
1625
Result = entry[Index].ExportRVA;
1626
return Error::success();
1627
}
1628
1629
// Returns the name of the current export symbol. If the symbol is exported only
1630
// by ordinal, the empty string is set as a result.
1631
Error
1632
ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1633
uintptr_t IntPtr = 0;
1634
if (Error EC = OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr,
1635
"export ordinal table"))
1636
return EC;
1637
const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1638
1639
uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1640
int Offset = 0;
1641
for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1642
I < E; ++I, ++Offset) {
1643
if (*I != Index)
1644
continue;
1645
if (Error EC = OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr,
1646
"export table entry"))
1647
return EC;
1648
const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1649
if (Error EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr,
1650
"export symbol name"))
1651
return EC;
1652
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1653
return Error::success();
1654
}
1655
Result = "";
1656
return Error::success();
1657
}
1658
1659
Error ExportDirectoryEntryRef::isForwarder(bool &Result) const {
1660
const data_directory *DataEntry =
1661
OwningObject->getDataDirectory(COFF::EXPORT_TABLE);
1662
if (!DataEntry)
1663
return createStringError(object_error::parse_failed,
1664
"export table missing");
1665
uint32_t RVA;
1666
if (auto EC = getExportRVA(RVA))
1667
return EC;
1668
uint32_t Begin = DataEntry->RelativeVirtualAddress;
1669
uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
1670
Result = (Begin <= RVA && RVA < End);
1671
return Error::success();
1672
}
1673
1674
Error ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
1675
uint32_t RVA;
1676
if (auto EC = getExportRVA(RVA))
1677
return EC;
1678
uintptr_t IntPtr = 0;
1679
if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr, "export forward target"))
1680
return EC;
1681
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1682
return Error::success();
1683
}
1684
1685
bool ImportedSymbolRef::
1686
operator==(const ImportedSymbolRef &Other) const {
1687
return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1688
&& Index == Other.Index;
1689
}
1690
1691
void ImportedSymbolRef::moveNext() {
1692
++Index;
1693
}
1694
1695
Error ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1696
uint32_t RVA;
1697
if (Entry32) {
1698
// If a symbol is imported only by ordinal, it has no name.
1699
if (Entry32[Index].isOrdinal())
1700
return Error::success();
1701
RVA = Entry32[Index].getHintNameRVA();
1702
} else {
1703
if (Entry64[Index].isOrdinal())
1704
return Error::success();
1705
RVA = Entry64[Index].getHintNameRVA();
1706
}
1707
uintptr_t IntPtr = 0;
1708
if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol name"))
1709
return EC;
1710
// +2 because the first two bytes is hint.
1711
Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1712
return Error::success();
1713
}
1714
1715
Error ImportedSymbolRef::isOrdinal(bool &Result) const {
1716
if (Entry32)
1717
Result = Entry32[Index].isOrdinal();
1718
else
1719
Result = Entry64[Index].isOrdinal();
1720
return Error::success();
1721
}
1722
1723
Error ImportedSymbolRef::getHintNameRVA(uint32_t &Result) const {
1724
if (Entry32)
1725
Result = Entry32[Index].getHintNameRVA();
1726
else
1727
Result = Entry64[Index].getHintNameRVA();
1728
return Error::success();
1729
}
1730
1731
Error ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1732
uint32_t RVA;
1733
if (Entry32) {
1734
if (Entry32[Index].isOrdinal()) {
1735
Result = Entry32[Index].getOrdinal();
1736
return Error::success();
1737
}
1738
RVA = Entry32[Index].getHintNameRVA();
1739
} else {
1740
if (Entry64[Index].isOrdinal()) {
1741
Result = Entry64[Index].getOrdinal();
1742
return Error::success();
1743
}
1744
RVA = Entry64[Index].getHintNameRVA();
1745
}
1746
uintptr_t IntPtr = 0;
1747
if (Error EC = OwningObject->getRvaPtr(RVA, IntPtr, "import symbol ordinal"))
1748
return EC;
1749
Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1750
return Error::success();
1751
}
1752
1753
Expected<std::unique_ptr<COFFObjectFile>>
1754
ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1755
return COFFObjectFile::create(Object);
1756
}
1757
1758
bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1759
return Header == Other.Header && Index == Other.Index;
1760
}
1761
1762
void BaseRelocRef::moveNext() {
1763
// Header->BlockSize is the size of the current block, including the
1764
// size of the header itself.
1765
uint32_t Size = sizeof(*Header) +
1766
sizeof(coff_base_reloc_block_entry) * (Index + 1);
1767
if (Size == Header->BlockSize) {
1768
// .reloc contains a list of base relocation blocks. Each block
1769
// consists of the header followed by entries. The header contains
1770
// how many entories will follow. When we reach the end of the
1771
// current block, proceed to the next block.
1772
Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1773
reinterpret_cast<const uint8_t *>(Header) + Size);
1774
Index = 0;
1775
} else {
1776
++Index;
1777
}
1778
}
1779
1780
Error BaseRelocRef::getType(uint8_t &Type) const {
1781
auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1782
Type = Entry[Index].getType();
1783
return Error::success();
1784
}
1785
1786
Error BaseRelocRef::getRVA(uint32_t &Result) const {
1787
auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1788
Result = Header->PageRVA + Entry[Index].getOffset();
1789
return Error::success();
1790
}
1791
1792
#define RETURN_IF_ERROR(Expr) \
1793
do { \
1794
Error E = (Expr); \
1795
if (E) \
1796
return std::move(E); \
1797
} while (0)
1798
1799
Expected<ArrayRef<UTF16>>
1800
ResourceSectionRef::getDirStringAtOffset(uint32_t Offset) {
1801
BinaryStreamReader Reader = BinaryStreamReader(BBS);
1802
Reader.setOffset(Offset);
1803
uint16_t Length;
1804
RETURN_IF_ERROR(Reader.readInteger(Length));
1805
ArrayRef<UTF16> RawDirString;
1806
RETURN_IF_ERROR(Reader.readArray(RawDirString, Length));
1807
return RawDirString;
1808
}
1809
1810
Expected<ArrayRef<UTF16>>
1811
ResourceSectionRef::getEntryNameString(const coff_resource_dir_entry &Entry) {
1812
return getDirStringAtOffset(Entry.Identifier.getNameOffset());
1813
}
1814
1815
Expected<const coff_resource_dir_table &>
1816
ResourceSectionRef::getTableAtOffset(uint32_t Offset) {
1817
const coff_resource_dir_table *Table = nullptr;
1818
1819
BinaryStreamReader Reader(BBS);
1820
Reader.setOffset(Offset);
1821
RETURN_IF_ERROR(Reader.readObject(Table));
1822
assert(Table != nullptr);
1823
return *Table;
1824
}
1825
1826
Expected<const coff_resource_dir_entry &>
1827
ResourceSectionRef::getTableEntryAtOffset(uint32_t Offset) {
1828
const coff_resource_dir_entry *Entry = nullptr;
1829
1830
BinaryStreamReader Reader(BBS);
1831
Reader.setOffset(Offset);
1832
RETURN_IF_ERROR(Reader.readObject(Entry));
1833
assert(Entry != nullptr);
1834
return *Entry;
1835
}
1836
1837
Expected<const coff_resource_data_entry &>
1838
ResourceSectionRef::getDataEntryAtOffset(uint32_t Offset) {
1839
const coff_resource_data_entry *Entry = nullptr;
1840
1841
BinaryStreamReader Reader(BBS);
1842
Reader.setOffset(Offset);
1843
RETURN_IF_ERROR(Reader.readObject(Entry));
1844
assert(Entry != nullptr);
1845
return *Entry;
1846
}
1847
1848
Expected<const coff_resource_dir_table &>
1849
ResourceSectionRef::getEntrySubDir(const coff_resource_dir_entry &Entry) {
1850
assert(Entry.Offset.isSubDir());
1851
return getTableAtOffset(Entry.Offset.value());
1852
}
1853
1854
Expected<const coff_resource_data_entry &>
1855
ResourceSectionRef::getEntryData(const coff_resource_dir_entry &Entry) {
1856
assert(!Entry.Offset.isSubDir());
1857
return getDataEntryAtOffset(Entry.Offset.value());
1858
}
1859
1860
Expected<const coff_resource_dir_table &> ResourceSectionRef::getBaseTable() {
1861
return getTableAtOffset(0);
1862
}
1863
1864
Expected<const coff_resource_dir_entry &>
1865
ResourceSectionRef::getTableEntry(const coff_resource_dir_table &Table,
1866
uint32_t Index) {
1867
if (Index >= (uint32_t)(Table.NumberOfNameEntries + Table.NumberOfIDEntries))
1868
return createStringError(object_error::parse_failed, "index out of range");
1869
const uint8_t *TablePtr = reinterpret_cast<const uint8_t *>(&Table);
1870
ptrdiff_t TableOffset = TablePtr - BBS.data().data();
1871
return getTableEntryAtOffset(TableOffset + sizeof(Table) +
1872
Index * sizeof(coff_resource_dir_entry));
1873
}
1874
1875
Error ResourceSectionRef::load(const COFFObjectFile *O) {
1876
for (const SectionRef &S : O->sections()) {
1877
Expected<StringRef> Name = S.getName();
1878
if (!Name)
1879
return Name.takeError();
1880
1881
if (*Name == ".rsrc" || *Name == ".rsrc$01")
1882
return load(O, S);
1883
}
1884
return createStringError(object_error::parse_failed,
1885
"no resource section found");
1886
}
1887
1888
Error ResourceSectionRef::load(const COFFObjectFile *O, const SectionRef &S) {
1889
Obj = O;
1890
Section = S;
1891
Expected<StringRef> Contents = Section.getContents();
1892
if (!Contents)
1893
return Contents.takeError();
1894
BBS = BinaryByteStream(*Contents, llvm::endianness::little);
1895
const coff_section *COFFSect = Obj->getCOFFSection(Section);
1896
ArrayRef<coff_relocation> OrigRelocs = Obj->getRelocations(COFFSect);
1897
Relocs.reserve(OrigRelocs.size());
1898
for (const coff_relocation &R : OrigRelocs)
1899
Relocs.push_back(&R);
1900
llvm::sort(Relocs, [](const coff_relocation *A, const coff_relocation *B) {
1901
return A->VirtualAddress < B->VirtualAddress;
1902
});
1903
return Error::success();
1904
}
1905
1906
Expected<StringRef>
1907
ResourceSectionRef::getContents(const coff_resource_data_entry &Entry) {
1908
if (!Obj)
1909
return createStringError(object_error::parse_failed, "no object provided");
1910
1911
// Find a potential relocation at the DataRVA field (first member of
1912
// the coff_resource_data_entry struct).
1913
const uint8_t *EntryPtr = reinterpret_cast<const uint8_t *>(&Entry);
1914
ptrdiff_t EntryOffset = EntryPtr - BBS.data().data();
1915
coff_relocation RelocTarget{ulittle32_t(EntryOffset), ulittle32_t(0),
1916
ulittle16_t(0)};
1917
auto RelocsForOffset =
1918
std::equal_range(Relocs.begin(), Relocs.end(), &RelocTarget,
1919
[](const coff_relocation *A, const coff_relocation *B) {
1920
return A->VirtualAddress < B->VirtualAddress;
1921
});
1922
1923
if (RelocsForOffset.first != RelocsForOffset.second) {
1924
// We found a relocation with the right offset. Check that it does have
1925
// the expected type.
1926
const coff_relocation &R = **RelocsForOffset.first;
1927
uint16_t RVAReloc;
1928
switch (Obj->getArch()) {
1929
case Triple::x86:
1930
RVAReloc = COFF::IMAGE_REL_I386_DIR32NB;
1931
break;
1932
case Triple::x86_64:
1933
RVAReloc = COFF::IMAGE_REL_AMD64_ADDR32NB;
1934
break;
1935
case Triple::thumb:
1936
RVAReloc = COFF::IMAGE_REL_ARM_ADDR32NB;
1937
break;
1938
case Triple::aarch64:
1939
RVAReloc = COFF::IMAGE_REL_ARM64_ADDR32NB;
1940
break;
1941
default:
1942
return createStringError(object_error::parse_failed,
1943
"unsupported architecture");
1944
}
1945
if (R.Type != RVAReloc)
1946
return createStringError(object_error::parse_failed,
1947
"unexpected relocation type");
1948
// Get the relocation's symbol
1949
Expected<COFFSymbolRef> Sym = Obj->getSymbol(R.SymbolTableIndex);
1950
if (!Sym)
1951
return Sym.takeError();
1952
// And the symbol's section
1953
Expected<const coff_section *> Section =
1954
Obj->getSection(Sym->getSectionNumber());
1955
if (!Section)
1956
return Section.takeError();
1957
// Add the initial value of DataRVA to the symbol's offset to find the
1958
// data it points at.
1959
uint64_t Offset = Entry.DataRVA + Sym->getValue();
1960
ArrayRef<uint8_t> Contents;
1961
if (Error E = Obj->getSectionContents(*Section, Contents))
1962
return E;
1963
if (Offset + Entry.DataSize > Contents.size())
1964
return createStringError(object_error::parse_failed,
1965
"data outside of section");
1966
// Return a reference to the data inside the section.
1967
return StringRef(reinterpret_cast<const char *>(Contents.data()) + Offset,
1968
Entry.DataSize);
1969
} else {
1970
// Relocatable objects need a relocation for the DataRVA field.
1971
if (Obj->isRelocatableObject())
1972
return createStringError(object_error::parse_failed,
1973
"no relocation found for DataRVA");
1974
1975
// Locate the section that contains the address that DataRVA points at.
1976
uint64_t VA = Entry.DataRVA + Obj->getImageBase();
1977
for (const SectionRef &S : Obj->sections()) {
1978
if (VA >= S.getAddress() &&
1979
VA + Entry.DataSize <= S.getAddress() + S.getSize()) {
1980
uint64_t Offset = VA - S.getAddress();
1981
Expected<StringRef> Contents = S.getContents();
1982
if (!Contents)
1983
return Contents.takeError();
1984
return Contents->slice(Offset, Offset + Entry.DataSize);
1985
}
1986
}
1987
return createStringError(object_error::parse_failed,
1988
"address not found in image");
1989
}
1990
}
1991
1992