Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Object/ELFObjectFile.cpp
35232 views
1
//===- ELFObjectFile.cpp - ELF object file implementation -----------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Part of the ELFObjectFile class implementation.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/Object/ELFObjectFile.h"
14
#include "llvm/BinaryFormat/ELF.h"
15
#include "llvm/MC/MCInstrAnalysis.h"
16
#include "llvm/MC/TargetRegistry.h"
17
#include "llvm/Object/ELF.h"
18
#include "llvm/Object/ELFTypes.h"
19
#include "llvm/Object/Error.h"
20
#include "llvm/Support/ARMAttributeParser.h"
21
#include "llvm/Support/ARMBuildAttributes.h"
22
#include "llvm/Support/ErrorHandling.h"
23
#include "llvm/Support/HexagonAttributeParser.h"
24
#include "llvm/Support/MathExtras.h"
25
#include "llvm/Support/RISCVAttributeParser.h"
26
#include "llvm/Support/RISCVAttributes.h"
27
#include "llvm/TargetParser/RISCVISAInfo.h"
28
#include "llvm/TargetParser/SubtargetFeature.h"
29
#include "llvm/TargetParser/Triple.h"
30
#include <algorithm>
31
#include <cstddef>
32
#include <cstdint>
33
#include <memory>
34
#include <optional>
35
#include <string>
36
#include <utility>
37
38
using namespace llvm;
39
using namespace object;
40
41
const EnumEntry<unsigned> llvm::object::ElfSymbolTypes[NumElfSymbolTypes] = {
42
{"None", "NOTYPE", ELF::STT_NOTYPE},
43
{"Object", "OBJECT", ELF::STT_OBJECT},
44
{"Function", "FUNC", ELF::STT_FUNC},
45
{"Section", "SECTION", ELF::STT_SECTION},
46
{"File", "FILE", ELF::STT_FILE},
47
{"Common", "COMMON", ELF::STT_COMMON},
48
{"TLS", "TLS", ELF::STT_TLS},
49
{"Unknown", "<unknown>: 7", 7},
50
{"Unknown", "<unknown>: 8", 8},
51
{"Unknown", "<unknown>: 9", 9},
52
{"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC},
53
{"OS Specific", "<OS specific>: 11", 11},
54
{"OS Specific", "<OS specific>: 12", 12},
55
{"Proc Specific", "<processor specific>: 13", 13},
56
{"Proc Specific", "<processor specific>: 14", 14},
57
{"Proc Specific", "<processor specific>: 15", 15}
58
};
59
60
ELFObjectFileBase::ELFObjectFileBase(unsigned int Type, MemoryBufferRef Source)
61
: ObjectFile(Type, Source) {}
62
63
template <class ELFT>
64
static Expected<std::unique_ptr<ELFObjectFile<ELFT>>>
65
createPtr(MemoryBufferRef Object, bool InitContent) {
66
auto Ret = ELFObjectFile<ELFT>::create(Object, InitContent);
67
if (Error E = Ret.takeError())
68
return std::move(E);
69
return std::make_unique<ELFObjectFile<ELFT>>(std::move(*Ret));
70
}
71
72
Expected<std::unique_ptr<ObjectFile>>
73
ObjectFile::createELFObjectFile(MemoryBufferRef Obj, bool InitContent) {
74
std::pair<unsigned char, unsigned char> Ident =
75
getElfArchType(Obj.getBuffer());
76
std::size_t MaxAlignment =
77
1ULL << llvm::countr_zero(
78
reinterpret_cast<uintptr_t>(Obj.getBufferStart()));
79
80
if (MaxAlignment < 2)
81
return createError("Insufficient alignment");
82
83
if (Ident.first == ELF::ELFCLASS32) {
84
if (Ident.second == ELF::ELFDATA2LSB)
85
return createPtr<ELF32LE>(Obj, InitContent);
86
else if (Ident.second == ELF::ELFDATA2MSB)
87
return createPtr<ELF32BE>(Obj, InitContent);
88
else
89
return createError("Invalid ELF data");
90
} else if (Ident.first == ELF::ELFCLASS64) {
91
if (Ident.second == ELF::ELFDATA2LSB)
92
return createPtr<ELF64LE>(Obj, InitContent);
93
else if (Ident.second == ELF::ELFDATA2MSB)
94
return createPtr<ELF64BE>(Obj, InitContent);
95
else
96
return createError("Invalid ELF data");
97
}
98
return createError("Invalid ELF class");
99
}
100
101
SubtargetFeatures ELFObjectFileBase::getMIPSFeatures() const {
102
SubtargetFeatures Features;
103
unsigned PlatformFlags = getPlatformFlags();
104
105
switch (PlatformFlags & ELF::EF_MIPS_ARCH) {
106
case ELF::EF_MIPS_ARCH_1:
107
break;
108
case ELF::EF_MIPS_ARCH_2:
109
Features.AddFeature("mips2");
110
break;
111
case ELF::EF_MIPS_ARCH_3:
112
Features.AddFeature("mips3");
113
break;
114
case ELF::EF_MIPS_ARCH_4:
115
Features.AddFeature("mips4");
116
break;
117
case ELF::EF_MIPS_ARCH_5:
118
Features.AddFeature("mips5");
119
break;
120
case ELF::EF_MIPS_ARCH_32:
121
Features.AddFeature("mips32");
122
break;
123
case ELF::EF_MIPS_ARCH_64:
124
Features.AddFeature("mips64");
125
break;
126
case ELF::EF_MIPS_ARCH_32R2:
127
Features.AddFeature("mips32r2");
128
break;
129
case ELF::EF_MIPS_ARCH_64R2:
130
Features.AddFeature("mips64r2");
131
break;
132
case ELF::EF_MIPS_ARCH_32R6:
133
Features.AddFeature("mips32r6");
134
break;
135
case ELF::EF_MIPS_ARCH_64R6:
136
Features.AddFeature("mips64r6");
137
break;
138
default:
139
llvm_unreachable("Unknown EF_MIPS_ARCH value");
140
}
141
142
switch (PlatformFlags & ELF::EF_MIPS_MACH) {
143
case ELF::EF_MIPS_MACH_NONE:
144
// No feature associated with this value.
145
break;
146
case ELF::EF_MIPS_MACH_OCTEON:
147
Features.AddFeature("cnmips");
148
break;
149
default:
150
llvm_unreachable("Unknown EF_MIPS_ARCH value");
151
}
152
153
if (PlatformFlags & ELF::EF_MIPS_ARCH_ASE_M16)
154
Features.AddFeature("mips16");
155
if (PlatformFlags & ELF::EF_MIPS_MICROMIPS)
156
Features.AddFeature("micromips");
157
158
return Features;
159
}
160
161
SubtargetFeatures ELFObjectFileBase::getARMFeatures() const {
162
SubtargetFeatures Features;
163
ARMAttributeParser Attributes;
164
if (Error E = getBuildAttributes(Attributes)) {
165
consumeError(std::move(E));
166
return SubtargetFeatures();
167
}
168
169
// both ARMv7-M and R have to support thumb hardware div
170
bool isV7 = false;
171
std::optional<unsigned> Attr =
172
Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
173
if (Attr)
174
isV7 = *Attr == ARMBuildAttrs::v7;
175
176
Attr = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
177
if (Attr) {
178
switch (*Attr) {
179
case ARMBuildAttrs::ApplicationProfile:
180
Features.AddFeature("aclass");
181
break;
182
case ARMBuildAttrs::RealTimeProfile:
183
Features.AddFeature("rclass");
184
if (isV7)
185
Features.AddFeature("hwdiv");
186
break;
187
case ARMBuildAttrs::MicroControllerProfile:
188
Features.AddFeature("mclass");
189
if (isV7)
190
Features.AddFeature("hwdiv");
191
break;
192
}
193
}
194
195
Attr = Attributes.getAttributeValue(ARMBuildAttrs::THUMB_ISA_use);
196
if (Attr) {
197
switch (*Attr) {
198
default:
199
break;
200
case ARMBuildAttrs::Not_Allowed:
201
Features.AddFeature("thumb", false);
202
Features.AddFeature("thumb2", false);
203
break;
204
case ARMBuildAttrs::AllowThumb32:
205
Features.AddFeature("thumb2");
206
break;
207
}
208
}
209
210
Attr = Attributes.getAttributeValue(ARMBuildAttrs::FP_arch);
211
if (Attr) {
212
switch (*Attr) {
213
default:
214
break;
215
case ARMBuildAttrs::Not_Allowed:
216
Features.AddFeature("vfp2sp", false);
217
Features.AddFeature("vfp3d16sp", false);
218
Features.AddFeature("vfp4d16sp", false);
219
break;
220
case ARMBuildAttrs::AllowFPv2:
221
Features.AddFeature("vfp2");
222
break;
223
case ARMBuildAttrs::AllowFPv3A:
224
case ARMBuildAttrs::AllowFPv3B:
225
Features.AddFeature("vfp3");
226
break;
227
case ARMBuildAttrs::AllowFPv4A:
228
case ARMBuildAttrs::AllowFPv4B:
229
Features.AddFeature("vfp4");
230
break;
231
}
232
}
233
234
Attr = Attributes.getAttributeValue(ARMBuildAttrs::Advanced_SIMD_arch);
235
if (Attr) {
236
switch (*Attr) {
237
default:
238
break;
239
case ARMBuildAttrs::Not_Allowed:
240
Features.AddFeature("neon", false);
241
Features.AddFeature("fp16", false);
242
break;
243
case ARMBuildAttrs::AllowNeon:
244
Features.AddFeature("neon");
245
break;
246
case ARMBuildAttrs::AllowNeon2:
247
Features.AddFeature("neon");
248
Features.AddFeature("fp16");
249
break;
250
}
251
}
252
253
Attr = Attributes.getAttributeValue(ARMBuildAttrs::MVE_arch);
254
if (Attr) {
255
switch (*Attr) {
256
default:
257
break;
258
case ARMBuildAttrs::Not_Allowed:
259
Features.AddFeature("mve", false);
260
Features.AddFeature("mve.fp", false);
261
break;
262
case ARMBuildAttrs::AllowMVEInteger:
263
Features.AddFeature("mve.fp", false);
264
Features.AddFeature("mve");
265
break;
266
case ARMBuildAttrs::AllowMVEIntegerAndFloat:
267
Features.AddFeature("mve.fp");
268
break;
269
}
270
}
271
272
Attr = Attributes.getAttributeValue(ARMBuildAttrs::DIV_use);
273
if (Attr) {
274
switch (*Attr) {
275
default:
276
break;
277
case ARMBuildAttrs::DisallowDIV:
278
Features.AddFeature("hwdiv", false);
279
Features.AddFeature("hwdiv-arm", false);
280
break;
281
case ARMBuildAttrs::AllowDIVExt:
282
Features.AddFeature("hwdiv");
283
Features.AddFeature("hwdiv-arm");
284
break;
285
}
286
}
287
288
return Features;
289
}
290
291
static std::optional<std::string> hexagonAttrToFeatureString(unsigned Attr) {
292
switch (Attr) {
293
case 5:
294
return "v5";
295
case 55:
296
return "v55";
297
case 60:
298
return "v60";
299
case 62:
300
return "v62";
301
case 65:
302
return "v65";
303
case 67:
304
return "v67";
305
case 68:
306
return "v68";
307
case 69:
308
return "v69";
309
case 71:
310
return "v71";
311
case 73:
312
return "v73";
313
default:
314
return {};
315
}
316
}
317
318
SubtargetFeatures ELFObjectFileBase::getHexagonFeatures() const {
319
SubtargetFeatures Features;
320
HexagonAttributeParser Parser;
321
if (Error E = getBuildAttributes(Parser)) {
322
// Return no attributes if none can be read.
323
// This behavior is important for backwards compatibility.
324
consumeError(std::move(E));
325
return Features;
326
}
327
std::optional<unsigned> Attr;
328
329
if ((Attr = Parser.getAttributeValue(HexagonAttrs::ARCH))) {
330
if (std::optional<std::string> FeatureString =
331
hexagonAttrToFeatureString(*Attr))
332
Features.AddFeature(*FeatureString);
333
}
334
335
if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXARCH))) {
336
std::optional<std::string> FeatureString =
337
hexagonAttrToFeatureString(*Attr);
338
// There is no corresponding hvx arch for v5 and v55.
339
if (FeatureString && *Attr >= 60)
340
Features.AddFeature("hvx" + *FeatureString);
341
}
342
343
if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXIEEEFP)))
344
if (*Attr)
345
Features.AddFeature("hvx-ieee-fp");
346
347
if ((Attr = Parser.getAttributeValue(HexagonAttrs::HVXQFLOAT)))
348
if (*Attr)
349
Features.AddFeature("hvx-qfloat");
350
351
if ((Attr = Parser.getAttributeValue(HexagonAttrs::ZREG)))
352
if (*Attr)
353
Features.AddFeature("zreg");
354
355
if ((Attr = Parser.getAttributeValue(HexagonAttrs::AUDIO)))
356
if (*Attr)
357
Features.AddFeature("audio");
358
359
if ((Attr = Parser.getAttributeValue(HexagonAttrs::CABAC)))
360
if (*Attr)
361
Features.AddFeature("cabac");
362
363
return Features;
364
}
365
366
Expected<SubtargetFeatures> ELFObjectFileBase::getRISCVFeatures() const {
367
SubtargetFeatures Features;
368
unsigned PlatformFlags = getPlatformFlags();
369
370
if (PlatformFlags & ELF::EF_RISCV_RVC) {
371
Features.AddFeature("zca");
372
}
373
374
RISCVAttributeParser Attributes;
375
if (Error E = getBuildAttributes(Attributes)) {
376
return std::move(E);
377
}
378
379
std::optional<StringRef> Attr =
380
Attributes.getAttributeString(RISCVAttrs::ARCH);
381
if (Attr) {
382
auto ParseResult = RISCVISAInfo::parseNormalizedArchString(*Attr);
383
if (!ParseResult)
384
return ParseResult.takeError();
385
auto &ISAInfo = *ParseResult;
386
387
if (ISAInfo->getXLen() == 32)
388
Features.AddFeature("64bit", false);
389
else if (ISAInfo->getXLen() == 64)
390
Features.AddFeature("64bit");
391
else
392
llvm_unreachable("XLEN should be 32 or 64.");
393
394
Features.addFeaturesVector(ISAInfo->toFeatures());
395
}
396
397
return Features;
398
}
399
400
SubtargetFeatures ELFObjectFileBase::getLoongArchFeatures() const {
401
SubtargetFeatures Features;
402
403
switch (getPlatformFlags() & ELF::EF_LOONGARCH_ABI_MODIFIER_MASK) {
404
case ELF::EF_LOONGARCH_ABI_SOFT_FLOAT:
405
break;
406
case ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT:
407
Features.AddFeature("d");
408
// D implies F according to LoongArch ISA spec.
409
[[fallthrough]];
410
case ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT:
411
Features.AddFeature("f");
412
break;
413
}
414
415
return Features;
416
}
417
418
Expected<SubtargetFeatures> ELFObjectFileBase::getFeatures() const {
419
switch (getEMachine()) {
420
case ELF::EM_MIPS:
421
return getMIPSFeatures();
422
case ELF::EM_ARM:
423
return getARMFeatures();
424
case ELF::EM_RISCV:
425
return getRISCVFeatures();
426
case ELF::EM_LOONGARCH:
427
return getLoongArchFeatures();
428
case ELF::EM_HEXAGON:
429
return getHexagonFeatures();
430
default:
431
return SubtargetFeatures();
432
}
433
}
434
435
std::optional<StringRef> ELFObjectFileBase::tryGetCPUName() const {
436
switch (getEMachine()) {
437
case ELF::EM_AMDGPU:
438
return getAMDGPUCPUName();
439
case ELF::EM_CUDA:
440
return getNVPTXCPUName();
441
case ELF::EM_PPC:
442
case ELF::EM_PPC64:
443
return StringRef("future");
444
default:
445
return std::nullopt;
446
}
447
}
448
449
StringRef ELFObjectFileBase::getAMDGPUCPUName() const {
450
assert(getEMachine() == ELF::EM_AMDGPU);
451
unsigned CPU = getPlatformFlags() & ELF::EF_AMDGPU_MACH;
452
453
switch (CPU) {
454
// Radeon HD 2000/3000 Series (R600).
455
case ELF::EF_AMDGPU_MACH_R600_R600:
456
return "r600";
457
case ELF::EF_AMDGPU_MACH_R600_R630:
458
return "r630";
459
case ELF::EF_AMDGPU_MACH_R600_RS880:
460
return "rs880";
461
case ELF::EF_AMDGPU_MACH_R600_RV670:
462
return "rv670";
463
464
// Radeon HD 4000 Series (R700).
465
case ELF::EF_AMDGPU_MACH_R600_RV710:
466
return "rv710";
467
case ELF::EF_AMDGPU_MACH_R600_RV730:
468
return "rv730";
469
case ELF::EF_AMDGPU_MACH_R600_RV770:
470
return "rv770";
471
472
// Radeon HD 5000 Series (Evergreen).
473
case ELF::EF_AMDGPU_MACH_R600_CEDAR:
474
return "cedar";
475
case ELF::EF_AMDGPU_MACH_R600_CYPRESS:
476
return "cypress";
477
case ELF::EF_AMDGPU_MACH_R600_JUNIPER:
478
return "juniper";
479
case ELF::EF_AMDGPU_MACH_R600_REDWOOD:
480
return "redwood";
481
case ELF::EF_AMDGPU_MACH_R600_SUMO:
482
return "sumo";
483
484
// Radeon HD 6000 Series (Northern Islands).
485
case ELF::EF_AMDGPU_MACH_R600_BARTS:
486
return "barts";
487
case ELF::EF_AMDGPU_MACH_R600_CAICOS:
488
return "caicos";
489
case ELF::EF_AMDGPU_MACH_R600_CAYMAN:
490
return "cayman";
491
case ELF::EF_AMDGPU_MACH_R600_TURKS:
492
return "turks";
493
494
// AMDGCN GFX6.
495
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX600:
496
return "gfx600";
497
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX601:
498
return "gfx601";
499
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX602:
500
return "gfx602";
501
502
// AMDGCN GFX7.
503
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX700:
504
return "gfx700";
505
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX701:
506
return "gfx701";
507
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX702:
508
return "gfx702";
509
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX703:
510
return "gfx703";
511
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX704:
512
return "gfx704";
513
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX705:
514
return "gfx705";
515
516
// AMDGCN GFX8.
517
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX801:
518
return "gfx801";
519
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX802:
520
return "gfx802";
521
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX803:
522
return "gfx803";
523
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX805:
524
return "gfx805";
525
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX810:
526
return "gfx810";
527
528
// AMDGCN GFX9.
529
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX900:
530
return "gfx900";
531
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX902:
532
return "gfx902";
533
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX904:
534
return "gfx904";
535
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX906:
536
return "gfx906";
537
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX908:
538
return "gfx908";
539
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX909:
540
return "gfx909";
541
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90A:
542
return "gfx90a";
543
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX90C:
544
return "gfx90c";
545
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX940:
546
return "gfx940";
547
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX941:
548
return "gfx941";
549
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX942:
550
return "gfx942";
551
552
// AMDGCN GFX10.
553
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1010:
554
return "gfx1010";
555
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1011:
556
return "gfx1011";
557
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1012:
558
return "gfx1012";
559
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1013:
560
return "gfx1013";
561
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1030:
562
return "gfx1030";
563
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1031:
564
return "gfx1031";
565
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1032:
566
return "gfx1032";
567
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1033:
568
return "gfx1033";
569
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1034:
570
return "gfx1034";
571
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1035:
572
return "gfx1035";
573
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1036:
574
return "gfx1036";
575
576
// AMDGCN GFX11.
577
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1100:
578
return "gfx1100";
579
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1101:
580
return "gfx1101";
581
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1102:
582
return "gfx1102";
583
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1103:
584
return "gfx1103";
585
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1150:
586
return "gfx1150";
587
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1151:
588
return "gfx1151";
589
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1152:
590
return "gfx1152";
591
592
// AMDGCN GFX12.
593
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1200:
594
return "gfx1200";
595
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX1201:
596
return "gfx1201";
597
598
// Generic AMDGCN targets
599
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC:
600
return "gfx9-generic";
601
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC:
602
return "gfx10-1-generic";
603
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC:
604
return "gfx10-3-generic";
605
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC:
606
return "gfx11-generic";
607
case ELF::EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC:
608
return "gfx12-generic";
609
default:
610
llvm_unreachable("Unknown EF_AMDGPU_MACH value");
611
}
612
}
613
614
StringRef ELFObjectFileBase::getNVPTXCPUName() const {
615
assert(getEMachine() == ELF::EM_CUDA);
616
unsigned SM = getPlatformFlags() & ELF::EF_CUDA_SM;
617
618
switch (SM) {
619
// Fermi architecture.
620
case ELF::EF_CUDA_SM20:
621
return "sm_20";
622
case ELF::EF_CUDA_SM21:
623
return "sm_21";
624
625
// Kepler architecture.
626
case ELF::EF_CUDA_SM30:
627
return "sm_30";
628
case ELF::EF_CUDA_SM32:
629
return "sm_32";
630
case ELF::EF_CUDA_SM35:
631
return "sm_35";
632
case ELF::EF_CUDA_SM37:
633
return "sm_37";
634
635
// Maxwell architecture.
636
case ELF::EF_CUDA_SM50:
637
return "sm_50";
638
case ELF::EF_CUDA_SM52:
639
return "sm_52";
640
case ELF::EF_CUDA_SM53:
641
return "sm_53";
642
643
// Pascal architecture.
644
case ELF::EF_CUDA_SM60:
645
return "sm_60";
646
case ELF::EF_CUDA_SM61:
647
return "sm_61";
648
case ELF::EF_CUDA_SM62:
649
return "sm_62";
650
651
// Volta architecture.
652
case ELF::EF_CUDA_SM70:
653
return "sm_70";
654
case ELF::EF_CUDA_SM72:
655
return "sm_72";
656
657
// Turing architecture.
658
case ELF::EF_CUDA_SM75:
659
return "sm_75";
660
661
// Ampere architecture.
662
case ELF::EF_CUDA_SM80:
663
return "sm_80";
664
case ELF::EF_CUDA_SM86:
665
return "sm_86";
666
case ELF::EF_CUDA_SM87:
667
return "sm_87";
668
669
// Ada architecture.
670
case ELF::EF_CUDA_SM89:
671
return "sm_89";
672
673
// Hopper architecture.
674
case ELF::EF_CUDA_SM90:
675
return getPlatformFlags() & ELF::EF_CUDA_ACCELERATORS ? "sm_90a" : "sm_90";
676
default:
677
llvm_unreachable("Unknown EF_CUDA_SM value");
678
}
679
}
680
681
// FIXME Encode from a tablegen description or target parser.
682
void ELFObjectFileBase::setARMSubArch(Triple &TheTriple) const {
683
if (TheTriple.getSubArch() != Triple::NoSubArch)
684
return;
685
686
ARMAttributeParser Attributes;
687
if (Error E = getBuildAttributes(Attributes)) {
688
// TODO Propagate Error.
689
consumeError(std::move(E));
690
return;
691
}
692
693
std::string Triple;
694
// Default to ARM, but use the triple if it's been set.
695
if (TheTriple.isThumb())
696
Triple = "thumb";
697
else
698
Triple = "arm";
699
700
std::optional<unsigned> Attr =
701
Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
702
if (Attr) {
703
switch (*Attr) {
704
case ARMBuildAttrs::v4:
705
Triple += "v4";
706
break;
707
case ARMBuildAttrs::v4T:
708
Triple += "v4t";
709
break;
710
case ARMBuildAttrs::v5T:
711
Triple += "v5t";
712
break;
713
case ARMBuildAttrs::v5TE:
714
Triple += "v5te";
715
break;
716
case ARMBuildAttrs::v5TEJ:
717
Triple += "v5tej";
718
break;
719
case ARMBuildAttrs::v6:
720
Triple += "v6";
721
break;
722
case ARMBuildAttrs::v6KZ:
723
Triple += "v6kz";
724
break;
725
case ARMBuildAttrs::v6T2:
726
Triple += "v6t2";
727
break;
728
case ARMBuildAttrs::v6K:
729
Triple += "v6k";
730
break;
731
case ARMBuildAttrs::v7: {
732
std::optional<unsigned> ArchProfileAttr =
733
Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch_profile);
734
if (ArchProfileAttr &&
735
*ArchProfileAttr == ARMBuildAttrs::MicroControllerProfile)
736
Triple += "v7m";
737
else
738
Triple += "v7";
739
break;
740
}
741
case ARMBuildAttrs::v6_M:
742
Triple += "v6m";
743
break;
744
case ARMBuildAttrs::v6S_M:
745
Triple += "v6sm";
746
break;
747
case ARMBuildAttrs::v7E_M:
748
Triple += "v7em";
749
break;
750
case ARMBuildAttrs::v8_A:
751
Triple += "v8a";
752
break;
753
case ARMBuildAttrs::v8_R:
754
Triple += "v8r";
755
break;
756
case ARMBuildAttrs::v8_M_Base:
757
Triple += "v8m.base";
758
break;
759
case ARMBuildAttrs::v8_M_Main:
760
Triple += "v8m.main";
761
break;
762
case ARMBuildAttrs::v8_1_M_Main:
763
Triple += "v8.1m.main";
764
break;
765
case ARMBuildAttrs::v9_A:
766
Triple += "v9a";
767
break;
768
}
769
}
770
if (!isLittleEndian())
771
Triple += "eb";
772
773
TheTriple.setArchName(Triple);
774
}
775
776
std::vector<ELFPltEntry> ELFObjectFileBase::getPltEntries() const {
777
std::string Err;
778
const auto Triple = makeTriple();
779
const auto *T = TargetRegistry::lookupTarget(Triple.str(), Err);
780
if (!T)
781
return {};
782
uint32_t JumpSlotReloc = 0, GlobDatReloc = 0;
783
switch (Triple.getArch()) {
784
case Triple::x86:
785
JumpSlotReloc = ELF::R_386_JUMP_SLOT;
786
GlobDatReloc = ELF::R_386_GLOB_DAT;
787
break;
788
case Triple::x86_64:
789
JumpSlotReloc = ELF::R_X86_64_JUMP_SLOT;
790
GlobDatReloc = ELF::R_X86_64_GLOB_DAT;
791
break;
792
case Triple::aarch64:
793
case Triple::aarch64_be:
794
JumpSlotReloc = ELF::R_AARCH64_JUMP_SLOT;
795
break;
796
default:
797
return {};
798
}
799
std::unique_ptr<const MCInstrInfo> MII(T->createMCInstrInfo());
800
std::unique_ptr<const MCInstrAnalysis> MIA(
801
T->createMCInstrAnalysis(MII.get()));
802
if (!MIA)
803
return {};
804
std::vector<std::pair<uint64_t, uint64_t>> PltEntries;
805
std::optional<SectionRef> RelaPlt, RelaDyn;
806
uint64_t GotBaseVA = 0;
807
for (const SectionRef &Section : sections()) {
808
Expected<StringRef> NameOrErr = Section.getName();
809
if (!NameOrErr) {
810
consumeError(NameOrErr.takeError());
811
continue;
812
}
813
StringRef Name = *NameOrErr;
814
815
if (Name == ".rela.plt" || Name == ".rel.plt") {
816
RelaPlt = Section;
817
} else if (Name == ".rela.dyn" || Name == ".rel.dyn") {
818
RelaDyn = Section;
819
} else if (Name == ".got.plt") {
820
GotBaseVA = Section.getAddress();
821
} else if (Name == ".plt" || Name == ".plt.got") {
822
Expected<StringRef> PltContents = Section.getContents();
823
if (!PltContents) {
824
consumeError(PltContents.takeError());
825
return {};
826
}
827
llvm::append_range(
828
PltEntries,
829
MIA->findPltEntries(Section.getAddress(),
830
arrayRefFromStringRef(*PltContents), Triple));
831
}
832
}
833
834
// Build a map from GOT entry virtual address to PLT entry virtual address.
835
DenseMap<uint64_t, uint64_t> GotToPlt;
836
for (auto [Plt, GotPlt] : PltEntries) {
837
uint64_t GotPltEntry = GotPlt;
838
// An x86-32 PIC PLT uses jmp DWORD PTR [ebx-offset]. Add
839
// _GLOBAL_OFFSET_TABLE_ (EBX) to get the .got.plt (or .got) entry address.
840
// See X86MCTargetDesc.cpp:findPltEntries for the 1 << 32 bit.
841
if (GotPltEntry & (uint64_t(1) << 32) && getEMachine() == ELF::EM_386)
842
GotPltEntry = static_cast<int32_t>(GotPltEntry) + GotBaseVA;
843
GotToPlt.insert(std::make_pair(GotPltEntry, Plt));
844
}
845
846
// Find the relocations in the dynamic relocation table that point to
847
// locations in the GOT for which we know the corresponding PLT entry.
848
std::vector<ELFPltEntry> Result;
849
auto handleRels = [&](iterator_range<relocation_iterator> Rels,
850
uint32_t RelType, StringRef PltSec) {
851
for (const auto &R : Rels) {
852
if (R.getType() != RelType)
853
continue;
854
auto PltEntryIter = GotToPlt.find(R.getOffset());
855
if (PltEntryIter != GotToPlt.end()) {
856
symbol_iterator Sym = R.getSymbol();
857
if (Sym == symbol_end())
858
Result.push_back(
859
ELFPltEntry{PltSec, std::nullopt, PltEntryIter->second});
860
else
861
Result.push_back(ELFPltEntry{PltSec, Sym->getRawDataRefImpl(),
862
PltEntryIter->second});
863
}
864
}
865
};
866
867
if (RelaPlt)
868
handleRels(RelaPlt->relocations(), JumpSlotReloc, ".plt");
869
870
// If a symbol needing a PLT entry also needs a GLOB_DAT relocation, GNU ld's
871
// x86 port places the PLT entry in the .plt.got section.
872
if (RelaDyn)
873
handleRels(RelaDyn->relocations(), GlobDatReloc, ".plt.got");
874
875
return Result;
876
}
877
878
template <class ELFT>
879
Expected<std::vector<BBAddrMap>> static readBBAddrMapImpl(
880
const ELFFile<ELFT> &EF, std::optional<unsigned> TextSectionIndex,
881
std::vector<PGOAnalysisMap> *PGOAnalyses) {
882
using Elf_Shdr = typename ELFT::Shdr;
883
bool IsRelocatable = EF.getHeader().e_type == ELF::ET_REL;
884
std::vector<BBAddrMap> BBAddrMaps;
885
if (PGOAnalyses)
886
PGOAnalyses->clear();
887
888
const auto &Sections = cantFail(EF.sections());
889
auto IsMatch = [&](const Elf_Shdr &Sec) -> Expected<bool> {
890
if (Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP &&
891
Sec.sh_type != ELF::SHT_LLVM_BB_ADDR_MAP_V0)
892
return false;
893
if (!TextSectionIndex)
894
return true;
895
Expected<const Elf_Shdr *> TextSecOrErr = EF.getSection(Sec.sh_link);
896
if (!TextSecOrErr)
897
return createError("unable to get the linked-to section for " +
898
describe(EF, Sec) + ": " +
899
toString(TextSecOrErr.takeError()));
900
assert(*TextSecOrErr >= Sections.begin() &&
901
"Text section pointer outside of bounds");
902
if (*TextSectionIndex !=
903
(unsigned)std::distance(Sections.begin(), *TextSecOrErr))
904
return false;
905
return true;
906
};
907
908
Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SectionRelocMapOrErr =
909
EF.getSectionAndRelocations(IsMatch);
910
if (!SectionRelocMapOrErr)
911
return SectionRelocMapOrErr.takeError();
912
913
for (auto const &[Sec, RelocSec] : *SectionRelocMapOrErr) {
914
if (IsRelocatable && !RelocSec)
915
return createError("unable to get relocation section for " +
916
describe(EF, *Sec));
917
Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
918
EF.decodeBBAddrMap(*Sec, RelocSec, PGOAnalyses);
919
if (!BBAddrMapOrErr) {
920
if (PGOAnalyses)
921
PGOAnalyses->clear();
922
return createError("unable to read " + describe(EF, *Sec) + ": " +
923
toString(BBAddrMapOrErr.takeError()));
924
}
925
std::move(BBAddrMapOrErr->begin(), BBAddrMapOrErr->end(),
926
std::back_inserter(BBAddrMaps));
927
}
928
if (PGOAnalyses)
929
assert(PGOAnalyses->size() == BBAddrMaps.size() &&
930
"The same number of BBAddrMaps and PGOAnalysisMaps should be "
931
"returned when PGO information is requested");
932
return BBAddrMaps;
933
}
934
935
template <class ELFT>
936
static Expected<std::vector<VersionEntry>>
937
readDynsymVersionsImpl(const ELFFile<ELFT> &EF,
938
ELFObjectFileBase::elf_symbol_iterator_range Symbols) {
939
using Elf_Shdr = typename ELFT::Shdr;
940
const Elf_Shdr *VerSec = nullptr;
941
const Elf_Shdr *VerNeedSec = nullptr;
942
const Elf_Shdr *VerDefSec = nullptr;
943
// The user should ensure sections() can't fail here.
944
for (const Elf_Shdr &Sec : cantFail(EF.sections())) {
945
if (Sec.sh_type == ELF::SHT_GNU_versym)
946
VerSec = &Sec;
947
else if (Sec.sh_type == ELF::SHT_GNU_verdef)
948
VerDefSec = &Sec;
949
else if (Sec.sh_type == ELF::SHT_GNU_verneed)
950
VerNeedSec = &Sec;
951
}
952
if (!VerSec)
953
return std::vector<VersionEntry>();
954
955
Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
956
EF.loadVersionMap(VerNeedSec, VerDefSec);
957
if (!MapOrErr)
958
return MapOrErr.takeError();
959
960
std::vector<VersionEntry> Ret;
961
size_t I = 0;
962
for (const ELFSymbolRef &Sym : Symbols) {
963
++I;
964
Expected<const typename ELFT::Versym *> VerEntryOrErr =
965
EF.template getEntry<typename ELFT::Versym>(*VerSec, I);
966
if (!VerEntryOrErr)
967
return createError("unable to read an entry with index " + Twine(I) +
968
" from " + describe(EF, *VerSec) + ": " +
969
toString(VerEntryOrErr.takeError()));
970
971
Expected<uint32_t> FlagsOrErr = Sym.getFlags();
972
if (!FlagsOrErr)
973
return createError("unable to read flags for symbol with index " +
974
Twine(I) + ": " + toString(FlagsOrErr.takeError()));
975
976
bool IsDefault;
977
Expected<StringRef> VerOrErr = EF.getSymbolVersionByIndex(
978
(*VerEntryOrErr)->vs_index, IsDefault, *MapOrErr,
979
(*FlagsOrErr) & SymbolRef::SF_Undefined);
980
if (!VerOrErr)
981
return createError("unable to get a version for entry " + Twine(I) +
982
" of " + describe(EF, *VerSec) + ": " +
983
toString(VerOrErr.takeError()));
984
985
Ret.push_back({(*VerOrErr).str(), IsDefault});
986
}
987
988
return Ret;
989
}
990
991
Expected<std::vector<VersionEntry>>
992
ELFObjectFileBase::readDynsymVersions() const {
993
elf_symbol_iterator_range Symbols = getDynamicSymbolIterators();
994
if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
995
return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
996
if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
997
return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
998
if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
999
return readDynsymVersionsImpl(Obj->getELFFile(), Symbols);
1000
return readDynsymVersionsImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
1001
Symbols);
1002
}
1003
1004
Expected<std::vector<BBAddrMap>> ELFObjectFileBase::readBBAddrMap(
1005
std::optional<unsigned> TextSectionIndex,
1006
std::vector<PGOAnalysisMap> *PGOAnalyses) const {
1007
if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1008
return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1009
if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1010
return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1011
if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1012
return readBBAddrMapImpl(Obj->getELFFile(), TextSectionIndex, PGOAnalyses);
1013
return readBBAddrMapImpl(cast<ELF64BEObjectFile>(this)->getELFFile(),
1014
TextSectionIndex, PGOAnalyses);
1015
}
1016
1017
StringRef ELFObjectFileBase::getCrelDecodeProblem(SectionRef Sec) const {
1018
auto Data = Sec.getRawDataRefImpl();
1019
if (const auto *Obj = dyn_cast<ELF32LEObjectFile>(this))
1020
return Obj->getCrelDecodeProblem(Data);
1021
if (const auto *Obj = dyn_cast<ELF32BEObjectFile>(this))
1022
return Obj->getCrelDecodeProblem(Data);
1023
if (const auto *Obj = dyn_cast<ELF64LEObjectFile>(this))
1024
return Obj->getCrelDecodeProblem(Data);
1025
return cast<ELF64BEObjectFile>(this)->getCrelDecodeProblem(Data);
1026
}
1027
1028