Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp
35271 views
1
//===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains support for clang's and llvm's instrumentation based
10
// code coverage.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
15
#include "llvm/ADT/ArrayRef.h"
16
#include "llvm/ADT/DenseMap.h"
17
#include "llvm/ADT/STLExtras.h"
18
#include "llvm/ADT/SmallBitVector.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/ADT/StringExtras.h"
21
#include "llvm/ADT/StringRef.h"
22
#include "llvm/Object/BuildID.h"
23
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
24
#include "llvm/ProfileData/InstrProfReader.h"
25
#include "llvm/Support/Debug.h"
26
#include "llvm/Support/Errc.h"
27
#include "llvm/Support/Error.h"
28
#include "llvm/Support/ErrorHandling.h"
29
#include "llvm/Support/MemoryBuffer.h"
30
#include "llvm/Support/VirtualFileSystem.h"
31
#include "llvm/Support/raw_ostream.h"
32
#include <algorithm>
33
#include <cassert>
34
#include <cmath>
35
#include <cstdint>
36
#include <iterator>
37
#include <map>
38
#include <memory>
39
#include <optional>
40
#include <stack>
41
#include <string>
42
#include <system_error>
43
#include <utility>
44
#include <vector>
45
46
using namespace llvm;
47
using namespace coverage;
48
49
#define DEBUG_TYPE "coverage-mapping"
50
51
Counter CounterExpressionBuilder::get(const CounterExpression &E) {
52
auto It = ExpressionIndices.find(E);
53
if (It != ExpressionIndices.end())
54
return Counter::getExpression(It->second);
55
unsigned I = Expressions.size();
56
Expressions.push_back(E);
57
ExpressionIndices[E] = I;
58
return Counter::getExpression(I);
59
}
60
61
void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
62
SmallVectorImpl<Term> &Terms) {
63
switch (C.getKind()) {
64
case Counter::Zero:
65
break;
66
case Counter::CounterValueReference:
67
Terms.emplace_back(C.getCounterID(), Factor);
68
break;
69
case Counter::Expression:
70
const auto &E = Expressions[C.getExpressionID()];
71
extractTerms(E.LHS, Factor, Terms);
72
extractTerms(
73
E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
74
break;
75
}
76
}
77
78
Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
79
// Gather constant terms.
80
SmallVector<Term, 32> Terms;
81
extractTerms(ExpressionTree, +1, Terms);
82
83
// If there are no terms, this is just a zero. The algorithm below assumes at
84
// least one term.
85
if (Terms.size() == 0)
86
return Counter::getZero();
87
88
// Group the terms by counter ID.
89
llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
90
return LHS.CounterID < RHS.CounterID;
91
});
92
93
// Combine terms by counter ID to eliminate counters that sum to zero.
94
auto Prev = Terms.begin();
95
for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
96
if (I->CounterID == Prev->CounterID) {
97
Prev->Factor += I->Factor;
98
continue;
99
}
100
++Prev;
101
*Prev = *I;
102
}
103
Terms.erase(++Prev, Terms.end());
104
105
Counter C;
106
// Create additions. We do this before subtractions to avoid constructs like
107
// ((0 - X) + Y), as opposed to (Y - X).
108
for (auto T : Terms) {
109
if (T.Factor <= 0)
110
continue;
111
for (int I = 0; I < T.Factor; ++I)
112
if (C.isZero())
113
C = Counter::getCounter(T.CounterID);
114
else
115
C = get(CounterExpression(CounterExpression::Add, C,
116
Counter::getCounter(T.CounterID)));
117
}
118
119
// Create subtractions.
120
for (auto T : Terms) {
121
if (T.Factor >= 0)
122
continue;
123
for (int I = 0; I < -T.Factor; ++I)
124
C = get(CounterExpression(CounterExpression::Subtract, C,
125
Counter::getCounter(T.CounterID)));
126
}
127
return C;
128
}
129
130
Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) {
131
auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS));
132
return Simplify ? simplify(Cnt) : Cnt;
133
}
134
135
Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS,
136
bool Simplify) {
137
auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS));
138
return Simplify ? simplify(Cnt) : Cnt;
139
}
140
141
void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
142
switch (C.getKind()) {
143
case Counter::Zero:
144
OS << '0';
145
return;
146
case Counter::CounterValueReference:
147
OS << '#' << C.getCounterID();
148
break;
149
case Counter::Expression: {
150
if (C.getExpressionID() >= Expressions.size())
151
return;
152
const auto &E = Expressions[C.getExpressionID()];
153
OS << '(';
154
dump(E.LHS, OS);
155
OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
156
dump(E.RHS, OS);
157
OS << ')';
158
break;
159
}
160
}
161
if (CounterValues.empty())
162
return;
163
Expected<int64_t> Value = evaluate(C);
164
if (auto E = Value.takeError()) {
165
consumeError(std::move(E));
166
return;
167
}
168
OS << '[' << *Value << ']';
169
}
170
171
Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
172
struct StackElem {
173
Counter ICounter;
174
int64_t LHS = 0;
175
enum {
176
KNeverVisited = 0,
177
KVisitedOnce = 1,
178
KVisitedTwice = 2,
179
} VisitCount = KNeverVisited;
180
};
181
182
std::stack<StackElem> CounterStack;
183
CounterStack.push({C});
184
185
int64_t LastPoppedValue;
186
187
while (!CounterStack.empty()) {
188
StackElem &Current = CounterStack.top();
189
190
switch (Current.ICounter.getKind()) {
191
case Counter::Zero:
192
LastPoppedValue = 0;
193
CounterStack.pop();
194
break;
195
case Counter::CounterValueReference:
196
if (Current.ICounter.getCounterID() >= CounterValues.size())
197
return errorCodeToError(errc::argument_out_of_domain);
198
LastPoppedValue = CounterValues[Current.ICounter.getCounterID()];
199
CounterStack.pop();
200
break;
201
case Counter::Expression: {
202
if (Current.ICounter.getExpressionID() >= Expressions.size())
203
return errorCodeToError(errc::argument_out_of_domain);
204
const auto &E = Expressions[Current.ICounter.getExpressionID()];
205
if (Current.VisitCount == StackElem::KNeverVisited) {
206
CounterStack.push(StackElem{E.LHS});
207
Current.VisitCount = StackElem::KVisitedOnce;
208
} else if (Current.VisitCount == StackElem::KVisitedOnce) {
209
Current.LHS = LastPoppedValue;
210
CounterStack.push(StackElem{E.RHS});
211
Current.VisitCount = StackElem::KVisitedTwice;
212
} else {
213
int64_t LHS = Current.LHS;
214
int64_t RHS = LastPoppedValue;
215
LastPoppedValue =
216
E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS;
217
CounterStack.pop();
218
}
219
break;
220
}
221
}
222
}
223
224
return LastPoppedValue;
225
}
226
227
mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs,
228
int Offset)
229
: Indices(NextIDs.size()) {
230
// Construct Nodes and set up each InCount
231
auto N = NextIDs.size();
232
SmallVector<MCDCNode> Nodes(N);
233
for (unsigned ID = 0; ID < N; ++ID) {
234
for (unsigned C = 0; C < 2; ++C) {
235
#ifndef NDEBUG
236
Indices[ID][C] = INT_MIN;
237
#endif
238
auto NextID = NextIDs[ID][C];
239
Nodes[ID].NextIDs[C] = NextID;
240
if (NextID >= 0)
241
++Nodes[NextID].InCount;
242
}
243
}
244
245
// Sort key ordered by <-Width, Ord>
246
SmallVector<std::tuple<int, /// -Width
247
unsigned, /// Ord
248
int, /// ID
249
unsigned /// Cond (0 or 1)
250
>>
251
Decisions;
252
253
// Traverse Nodes to assign Idx
254
SmallVector<int> Q;
255
assert(Nodes[0].InCount == 0);
256
Nodes[0].Width = 1;
257
Q.push_back(0);
258
259
unsigned Ord = 0;
260
while (!Q.empty()) {
261
auto IID = Q.begin();
262
int ID = *IID;
263
Q.erase(IID);
264
auto &Node = Nodes[ID];
265
assert(Node.Width > 0);
266
267
for (unsigned I = 0; I < 2; ++I) {
268
auto NextID = Node.NextIDs[I];
269
assert(NextID != 0 && "NextID should not point to the top");
270
if (NextID < 0) {
271
// Decision
272
Decisions.emplace_back(-Node.Width, Ord++, ID, I);
273
assert(Ord == Decisions.size());
274
continue;
275
}
276
277
// Inter Node
278
auto &NextNode = Nodes[NextID];
279
assert(NextNode.InCount > 0);
280
281
// Assign Idx
282
assert(Indices[ID][I] == INT_MIN);
283
Indices[ID][I] = NextNode.Width;
284
auto NextWidth = int64_t(NextNode.Width) + Node.Width;
285
if (NextWidth > HardMaxTVs) {
286
NumTestVectors = HardMaxTVs; // Overflow
287
return;
288
}
289
NextNode.Width = NextWidth;
290
291
// Ready if all incomings are processed.
292
// Or NextNode.Width hasn't been confirmed yet.
293
if (--NextNode.InCount == 0)
294
Q.push_back(NextID);
295
}
296
}
297
298
llvm::sort(Decisions);
299
300
// Assign TestVector Indices in Decision Nodes
301
int64_t CurIdx = 0;
302
for (auto [NegWidth, Ord, ID, C] : Decisions) {
303
int Width = -NegWidth;
304
assert(Nodes[ID].Width == Width);
305
assert(Nodes[ID].NextIDs[C] < 0);
306
assert(Indices[ID][C] == INT_MIN);
307
Indices[ID][C] = Offset + CurIdx;
308
CurIdx += Width;
309
if (CurIdx > HardMaxTVs) {
310
NumTestVectors = HardMaxTVs; // Overflow
311
return;
312
}
313
}
314
315
assert(CurIdx < HardMaxTVs);
316
NumTestVectors = CurIdx;
317
318
#ifndef NDEBUG
319
for (const auto &Idxs : Indices)
320
for (auto Idx : Idxs)
321
assert(Idx != INT_MIN);
322
SavedNodes = std::move(Nodes);
323
#endif
324
}
325
326
namespace {
327
328
/// Construct this->NextIDs with Branches for TVIdxBuilder to use it
329
/// before MCDCRecordProcessor().
330
class NextIDsBuilder {
331
protected:
332
SmallVector<mcdc::ConditionIDs> NextIDs;
333
334
public:
335
NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches)
336
: NextIDs(Branches.size()) {
337
#ifndef NDEBUG
338
DenseSet<mcdc::ConditionID> SeenIDs;
339
#endif
340
for (const auto *Branch : Branches) {
341
const auto &BranchParams = Branch->getBranchParams();
342
assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID");
343
NextIDs[BranchParams.ID] = BranchParams.Conds;
344
}
345
assert(SeenIDs.size() == Branches.size());
346
}
347
};
348
349
class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder {
350
/// A bitmap representing the executed test vectors for a boolean expression.
351
/// Each index of the bitmap corresponds to a possible test vector. An index
352
/// with a bit value of '1' indicates that the corresponding Test Vector
353
/// identified by that index was executed.
354
const BitVector &Bitmap;
355
356
/// Decision Region to which the ExecutedTestVectorBitmap applies.
357
const CounterMappingRegion &Region;
358
const mcdc::DecisionParameters &DecisionParams;
359
360
/// Array of branch regions corresponding each conditions in the boolean
361
/// expression.
362
ArrayRef<const CounterMappingRegion *> Branches;
363
364
/// Total number of conditions in the boolean expression.
365
unsigned NumConditions;
366
367
/// Vector used to track whether a condition is constant folded.
368
MCDCRecord::BoolVector Folded;
369
370
/// Mapping of calculated MC/DC Independence Pairs for each condition.
371
MCDCRecord::TVPairMap IndependencePairs;
372
373
/// Storage for ExecVectors
374
/// ExecVectors is the alias of its 0th element.
375
std::array<MCDCRecord::TestVectors, 2> ExecVectorsByCond;
376
377
/// Actual executed Test Vectors for the boolean expression, based on
378
/// ExecutedTestVectorBitmap.
379
MCDCRecord::TestVectors &ExecVectors;
380
381
/// Number of False items in ExecVectors
382
unsigned NumExecVectorsF;
383
384
#ifndef NDEBUG
385
DenseSet<unsigned> TVIdxs;
386
#endif
387
388
bool IsVersion11;
389
390
public:
391
MCDCRecordProcessor(const BitVector &Bitmap,
392
const CounterMappingRegion &Region,
393
ArrayRef<const CounterMappingRegion *> Branches,
394
bool IsVersion11)
395
: NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap),
396
Region(Region), DecisionParams(Region.getDecisionParams()),
397
Branches(Branches), NumConditions(DecisionParams.NumConditions),
398
Folded(NumConditions, false), IndependencePairs(NumConditions),
399
ExecVectors(ExecVectorsByCond[false]), IsVersion11(IsVersion11) {}
400
401
private:
402
// Walk the binary decision diagram and try assigning both false and true to
403
// each node. When a terminal node (ID == 0) is reached, fill in the value in
404
// the truth table.
405
void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID,
406
int TVIdx) {
407
for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) {
408
static_assert(MCDCRecord::MCDC_False == 0);
409
static_assert(MCDCRecord::MCDC_True == 1);
410
TV.set(ID, MCDCCond);
411
auto NextID = NextIDs[ID][MCDCCond];
412
auto NextTVIdx = TVIdx + Indices[ID][MCDCCond];
413
assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]);
414
if (NextID >= 0) {
415
buildTestVector(TV, NextID, NextTVIdx);
416
continue;
417
}
418
419
assert(TVIdx < SavedNodes[ID].Width);
420
assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx");
421
422
if (!Bitmap[IsVersion11
423
? DecisionParams.BitmapIdx * CHAR_BIT + TV.getIndex()
424
: DecisionParams.BitmapIdx - NumTestVectors + NextTVIdx])
425
continue;
426
427
// Copy the completed test vector to the vector of testvectors.
428
// The final value (T,F) is equal to the last non-dontcare state on the
429
// path (in a short-circuiting system).
430
ExecVectorsByCond[MCDCCond].push_back({TV, MCDCCond});
431
}
432
433
// Reset back to DontCare.
434
TV.set(ID, MCDCRecord::MCDC_DontCare);
435
}
436
437
/// Walk the bits in the bitmap. A bit set to '1' indicates that the test
438
/// vector at the corresponding index was executed during a test run.
439
void findExecutedTestVectors() {
440
// Walk the binary decision diagram to enumerate all possible test vectors.
441
// We start at the root node (ID == 0) with all values being DontCare.
442
// `TVIdx` starts with 0 and is in the traversal.
443
// `Index` encodes the bitmask of true values and is initially 0.
444
MCDCRecord::TestVector TV(NumConditions);
445
buildTestVector(TV, 0, 0);
446
assert(TVIdxs.size() == unsigned(NumTestVectors) &&
447
"TVIdxs wasn't fulfilled");
448
449
// Fill ExecVectors order by False items and True items.
450
// ExecVectors is the alias of ExecVectorsByCond[false], so
451
// Append ExecVectorsByCond[true] on it.
452
NumExecVectorsF = ExecVectors.size();
453
auto &ExecVectorsT = ExecVectorsByCond[true];
454
ExecVectors.append(std::make_move_iterator(ExecVectorsT.begin()),
455
std::make_move_iterator(ExecVectorsT.end()));
456
}
457
458
// Find an independence pair for each condition:
459
// - The condition is true in one test and false in the other.
460
// - The decision outcome is true one test and false in the other.
461
// - All other conditions' values must be equal or marked as "don't care".
462
void findIndependencePairs() {
463
unsigned NumTVs = ExecVectors.size();
464
for (unsigned I = NumExecVectorsF; I < NumTVs; ++I) {
465
const auto &[A, ACond] = ExecVectors[I];
466
assert(ACond == MCDCRecord::MCDC_True);
467
for (unsigned J = 0; J < NumExecVectorsF; ++J) {
468
const auto &[B, BCond] = ExecVectors[J];
469
assert(BCond == MCDCRecord::MCDC_False);
470
// If the two vectors differ in exactly one condition, ignoring DontCare
471
// conditions, we have found an independence pair.
472
auto AB = A.getDifferences(B);
473
if (AB.count() == 1)
474
IndependencePairs.insert(
475
{AB.find_first(), std::make_pair(J + 1, I + 1)});
476
}
477
}
478
}
479
480
public:
481
/// Process the MC/DC Record in order to produce a result for a boolean
482
/// expression. This process includes tracking the conditions that comprise
483
/// the decision region, calculating the list of all possible test vectors,
484
/// marking the executed test vectors, and then finding an Independence Pair
485
/// out of the executed test vectors for each condition in the boolean
486
/// expression. A condition is tracked to ensure that its ID can be mapped to
487
/// its ordinal position in the boolean expression. The condition's source
488
/// location is also tracked, as well as whether it is constant folded (in
489
/// which case it is excuded from the metric).
490
MCDCRecord processMCDCRecord() {
491
unsigned I = 0;
492
MCDCRecord::CondIDMap PosToID;
493
MCDCRecord::LineColPairMap CondLoc;
494
495
// Walk the Record's BranchRegions (representing Conditions) in order to:
496
// - Hash the condition based on its corresponding ID. This will be used to
497
// calculate the test vectors.
498
// - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its
499
// actual ID. This will be used to visualize the conditions in the
500
// correct order.
501
// - Keep track of the condition source location. This will be used to
502
// visualize where the condition is.
503
// - Record whether the condition is constant folded so that we exclude it
504
// from being measured.
505
for (const auto *B : Branches) {
506
const auto &BranchParams = B->getBranchParams();
507
PosToID[I] = BranchParams.ID;
508
CondLoc[I] = B->startLoc();
509
Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero());
510
}
511
512
// Using Profile Bitmap from runtime, mark the executed test vectors.
513
findExecutedTestVectors();
514
515
// Compare executed test vectors against each other to find an independence
516
// pairs for each condition. This processing takes the most time.
517
findIndependencePairs();
518
519
// Record Test vectors, executed vectors, and independence pairs.
520
return MCDCRecord(Region, std::move(ExecVectors),
521
std::move(IndependencePairs), std::move(Folded),
522
std::move(PosToID), std::move(CondLoc));
523
}
524
};
525
526
} // namespace
527
528
Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion(
529
const CounterMappingRegion &Region,
530
ArrayRef<const CounterMappingRegion *> Branches, bool IsVersion11) {
531
532
MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches, IsVersion11);
533
return MCDCProcessor.processMCDCRecord();
534
}
535
536
unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const {
537
struct StackElem {
538
Counter ICounter;
539
int64_t LHS = 0;
540
enum {
541
KNeverVisited = 0,
542
KVisitedOnce = 1,
543
KVisitedTwice = 2,
544
} VisitCount = KNeverVisited;
545
};
546
547
std::stack<StackElem> CounterStack;
548
CounterStack.push({C});
549
550
int64_t LastPoppedValue;
551
552
while (!CounterStack.empty()) {
553
StackElem &Current = CounterStack.top();
554
555
switch (Current.ICounter.getKind()) {
556
case Counter::Zero:
557
LastPoppedValue = 0;
558
CounterStack.pop();
559
break;
560
case Counter::CounterValueReference:
561
LastPoppedValue = Current.ICounter.getCounterID();
562
CounterStack.pop();
563
break;
564
case Counter::Expression: {
565
if (Current.ICounter.getExpressionID() >= Expressions.size()) {
566
LastPoppedValue = 0;
567
CounterStack.pop();
568
} else {
569
const auto &E = Expressions[Current.ICounter.getExpressionID()];
570
if (Current.VisitCount == StackElem::KNeverVisited) {
571
CounterStack.push(StackElem{E.LHS});
572
Current.VisitCount = StackElem::KVisitedOnce;
573
} else if (Current.VisitCount == StackElem::KVisitedOnce) {
574
Current.LHS = LastPoppedValue;
575
CounterStack.push(StackElem{E.RHS});
576
Current.VisitCount = StackElem::KVisitedTwice;
577
} else {
578
int64_t LHS = Current.LHS;
579
int64_t RHS = LastPoppedValue;
580
LastPoppedValue = std::max(LHS, RHS);
581
CounterStack.pop();
582
}
583
}
584
break;
585
}
586
}
587
}
588
589
return LastPoppedValue;
590
}
591
592
void FunctionRecordIterator::skipOtherFiles() {
593
while (Current != Records.end() && !Filename.empty() &&
594
Filename != Current->Filenames[0])
595
++Current;
596
if (Current == Records.end())
597
*this = FunctionRecordIterator();
598
}
599
600
ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
601
StringRef Filename) const {
602
size_t FilenameHash = hash_value(Filename);
603
auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
604
if (RecordIt == FilenameHash2RecordIndices.end())
605
return {};
606
return RecordIt->second;
607
}
608
609
static unsigned getMaxCounterID(const CounterMappingContext &Ctx,
610
const CoverageMappingRecord &Record) {
611
unsigned MaxCounterID = 0;
612
for (const auto &Region : Record.MappingRegions) {
613
MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count));
614
}
615
return MaxCounterID;
616
}
617
618
/// Returns the bit count
619
static unsigned getMaxBitmapSize(const CoverageMappingRecord &Record,
620
bool IsVersion11) {
621
unsigned MaxBitmapIdx = 0;
622
unsigned NumConditions = 0;
623
// Scan max(BitmapIdx).
624
// Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid
625
// and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record.
626
for (const auto &Region : reverse(Record.MappingRegions)) {
627
if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion)
628
continue;
629
const auto &DecisionParams = Region.getDecisionParams();
630
if (MaxBitmapIdx <= DecisionParams.BitmapIdx) {
631
MaxBitmapIdx = DecisionParams.BitmapIdx;
632
NumConditions = DecisionParams.NumConditions;
633
}
634
}
635
636
if (IsVersion11)
637
MaxBitmapIdx = MaxBitmapIdx * CHAR_BIT +
638
llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT);
639
640
return MaxBitmapIdx;
641
}
642
643
namespace {
644
645
/// Collect Decisions, Branchs, and Expansions and associate them.
646
class MCDCDecisionRecorder {
647
private:
648
/// This holds the DecisionRegion and MCDCBranches under it.
649
/// Also traverses Expansion(s).
650
/// The Decision has the number of MCDCBranches and will complete
651
/// when it is filled with unique ConditionID of MCDCBranches.
652
struct DecisionRecord {
653
const CounterMappingRegion *DecisionRegion;
654
655
/// They are reflected from DecisionRegion for convenience.
656
mcdc::DecisionParameters DecisionParams;
657
LineColPair DecisionStartLoc;
658
LineColPair DecisionEndLoc;
659
660
/// This is passed to `MCDCRecordProcessor`, so this should be compatible
661
/// to`ArrayRef<const CounterMappingRegion *>`.
662
SmallVector<const CounterMappingRegion *> MCDCBranches;
663
664
/// IDs that are stored in MCDCBranches
665
/// Complete when all IDs (1 to NumConditions) are met.
666
DenseSet<mcdc::ConditionID> ConditionIDs;
667
668
/// Set of IDs of Expansion(s) that are relevant to DecisionRegion
669
/// and its children (via expansions).
670
/// FileID pointed by ExpandedFileID is dedicated to the expansion, so
671
/// the location in the expansion doesn't matter.
672
DenseSet<unsigned> ExpandedFileIDs;
673
674
DecisionRecord(const CounterMappingRegion &Decision)
675
: DecisionRegion(&Decision),
676
DecisionParams(Decision.getDecisionParams()),
677
DecisionStartLoc(Decision.startLoc()),
678
DecisionEndLoc(Decision.endLoc()) {
679
assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion);
680
}
681
682
/// Determine whether DecisionRecord dominates `R`.
683
bool dominates(const CounterMappingRegion &R) const {
684
// Determine whether `R` is included in `DecisionRegion`.
685
if (R.FileID == DecisionRegion->FileID &&
686
R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc)
687
return true;
688
689
// Determine whether `R` is pointed by any of Expansions.
690
return ExpandedFileIDs.contains(R.FileID);
691
}
692
693
enum Result {
694
NotProcessed = 0, /// Irrelevant to this Decision
695
Processed, /// Added to this Decision
696
Completed, /// Added and filled this Decision
697
};
698
699
/// Add Branch into the Decision
700
/// \param Branch expects MCDCBranchRegion
701
/// \returns NotProcessed/Processed/Completed
702
Result addBranch(const CounterMappingRegion &Branch) {
703
assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion);
704
705
auto ConditionID = Branch.getBranchParams().ID;
706
707
if (ConditionIDs.contains(ConditionID) ||
708
ConditionID >= DecisionParams.NumConditions)
709
return NotProcessed;
710
711
if (!this->dominates(Branch))
712
return NotProcessed;
713
714
assert(MCDCBranches.size() < DecisionParams.NumConditions);
715
716
// Put `ID=0` in front of `MCDCBranches` for convenience
717
// even if `MCDCBranches` is not topological.
718
if (ConditionID == 0)
719
MCDCBranches.insert(MCDCBranches.begin(), &Branch);
720
else
721
MCDCBranches.push_back(&Branch);
722
723
// Mark `ID` as `assigned`.
724
ConditionIDs.insert(ConditionID);
725
726
// `Completed` when `MCDCBranches` is full
727
return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed
728
: Processed);
729
}
730
731
/// Record Expansion if it is relevant to this Decision.
732
/// Each `Expansion` may nest.
733
/// \returns true if recorded.
734
bool recordExpansion(const CounterMappingRegion &Expansion) {
735
if (!this->dominates(Expansion))
736
return false;
737
738
ExpandedFileIDs.insert(Expansion.ExpandedFileID);
739
return true;
740
}
741
};
742
743
private:
744
/// Decisions in progress
745
/// DecisionRecord is added for each MCDCDecisionRegion.
746
/// DecisionRecord is removed when Decision is completed.
747
SmallVector<DecisionRecord> Decisions;
748
749
public:
750
~MCDCDecisionRecorder() {
751
assert(Decisions.empty() && "All Decisions have not been resolved");
752
}
753
754
/// Register Region and start recording.
755
void registerDecision(const CounterMappingRegion &Decision) {
756
Decisions.emplace_back(Decision);
757
}
758
759
void recordExpansion(const CounterMappingRegion &Expansion) {
760
any_of(Decisions, [&Expansion](auto &Decision) {
761
return Decision.recordExpansion(Expansion);
762
});
763
}
764
765
using DecisionAndBranches =
766
std::pair<const CounterMappingRegion *, /// Decision
767
SmallVector<const CounterMappingRegion *> /// Branches
768
>;
769
770
/// Add MCDCBranchRegion to DecisionRecord.
771
/// \param Branch to be processed
772
/// \returns DecisionsAndBranches if DecisionRecord completed.
773
/// Or returns nullopt.
774
std::optional<DecisionAndBranches>
775
processBranch(const CounterMappingRegion &Branch) {
776
// Seek each Decision and apply Region to it.
777
for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end();
778
DecisionIter != DecisionEnd; ++DecisionIter)
779
switch (DecisionIter->addBranch(Branch)) {
780
case DecisionRecord::NotProcessed:
781
continue;
782
case DecisionRecord::Processed:
783
return std::nullopt;
784
case DecisionRecord::Completed:
785
DecisionAndBranches Result =
786
std::make_pair(DecisionIter->DecisionRegion,
787
std::move(DecisionIter->MCDCBranches));
788
Decisions.erase(DecisionIter); // No longer used.
789
return Result;
790
}
791
792
llvm_unreachable("Branch not found in Decisions");
793
}
794
};
795
796
} // namespace
797
798
Error CoverageMapping::loadFunctionRecord(
799
const CoverageMappingRecord &Record,
800
IndexedInstrProfReader &ProfileReader) {
801
StringRef OrigFuncName = Record.FunctionName;
802
if (OrigFuncName.empty())
803
return make_error<CoverageMapError>(coveragemap_error::malformed,
804
"record function name is empty");
805
806
if (Record.Filenames.empty())
807
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
808
else
809
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
810
811
CounterMappingContext Ctx(Record.Expressions);
812
813
std::vector<uint64_t> Counts;
814
if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
815
Record.FunctionHash, Counts)) {
816
instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
817
if (IPE == instrprof_error::hash_mismatch) {
818
FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
819
Record.FunctionHash);
820
return Error::success();
821
}
822
if (IPE != instrprof_error::unknown_function)
823
return make_error<InstrProfError>(IPE);
824
Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0);
825
}
826
Ctx.setCounts(Counts);
827
828
bool IsVersion11 =
829
ProfileReader.getVersion() < IndexedInstrProf::ProfVersion::Version12;
830
831
BitVector Bitmap;
832
if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName,
833
Record.FunctionHash, Bitmap)) {
834
instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
835
if (IPE == instrprof_error::hash_mismatch) {
836
FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
837
Record.FunctionHash);
838
return Error::success();
839
}
840
if (IPE != instrprof_error::unknown_function)
841
return make_error<InstrProfError>(IPE);
842
Bitmap = BitVector(getMaxBitmapSize(Record, IsVersion11));
843
}
844
Ctx.setBitmap(std::move(Bitmap));
845
846
assert(!Record.MappingRegions.empty() && "Function has no regions");
847
848
// This coverage record is a zero region for a function that's unused in
849
// some TU, but used in a different TU. Ignore it. The coverage maps from the
850
// the other TU will either be loaded (providing full region counts) or they
851
// won't (in which case we don't unintuitively report functions as uncovered
852
// when they have non-zero counts in the profile).
853
if (Record.MappingRegions.size() == 1 &&
854
Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
855
return Error::success();
856
857
MCDCDecisionRecorder MCDCDecisions;
858
FunctionRecord Function(OrigFuncName, Record.Filenames);
859
for (const auto &Region : Record.MappingRegions) {
860
// MCDCDecisionRegion should be handled first since it overlaps with
861
// others inside.
862
if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) {
863
MCDCDecisions.registerDecision(Region);
864
continue;
865
}
866
Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
867
if (auto E = ExecutionCount.takeError()) {
868
consumeError(std::move(E));
869
return Error::success();
870
}
871
Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount);
872
if (auto E = AltExecutionCount.takeError()) {
873
consumeError(std::move(E));
874
return Error::success();
875
}
876
Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount,
877
ProfileReader.hasSingleByteCoverage());
878
879
// Record ExpansionRegion.
880
if (Region.Kind == CounterMappingRegion::ExpansionRegion) {
881
MCDCDecisions.recordExpansion(Region);
882
continue;
883
}
884
885
// Do nothing unless MCDCBranchRegion.
886
if (Region.Kind != CounterMappingRegion::MCDCBranchRegion)
887
continue;
888
889
auto Result = MCDCDecisions.processBranch(Region);
890
if (!Result) // Any Decision doesn't complete.
891
continue;
892
893
auto MCDCDecision = Result->first;
894
auto &MCDCBranches = Result->second;
895
896
// Since the bitmap identifies the executed test vectors for an MC/DC
897
// DecisionRegion, all of the information is now available to process.
898
// This is where the bulk of the MC/DC progressing takes place.
899
Expected<MCDCRecord> Record =
900
Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches, IsVersion11);
901
if (auto E = Record.takeError()) {
902
consumeError(std::move(E));
903
return Error::success();
904
}
905
906
// Save the MC/DC Record so that it can be visualized later.
907
Function.pushMCDCRecord(std::move(*Record));
908
}
909
910
// Don't create records for (filenames, function) pairs we've already seen.
911
auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
912
Record.Filenames.end());
913
if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
914
return Error::success();
915
916
Functions.push_back(std::move(Function));
917
918
// Performance optimization: keep track of the indices of the function records
919
// which correspond to each filename. This can be used to substantially speed
920
// up queries for coverage info in a file.
921
unsigned RecordIndex = Functions.size() - 1;
922
for (StringRef Filename : Record.Filenames) {
923
auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
924
// Note that there may be duplicates in the filename set for a function
925
// record, because of e.g. macro expansions in the function in which both
926
// the macro and the function are defined in the same file.
927
if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
928
RecordIndices.push_back(RecordIndex);
929
}
930
931
return Error::success();
932
}
933
934
// This function is for memory optimization by shortening the lifetimes
935
// of CoverageMappingReader instances.
936
Error CoverageMapping::loadFromReaders(
937
ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
938
IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) {
939
for (const auto &CoverageReader : CoverageReaders) {
940
for (auto RecordOrErr : *CoverageReader) {
941
if (Error E = RecordOrErr.takeError())
942
return E;
943
const auto &Record = *RecordOrErr;
944
if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader))
945
return E;
946
}
947
}
948
return Error::success();
949
}
950
951
Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
952
ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
953
IndexedInstrProfReader &ProfileReader) {
954
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
955
if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage))
956
return std::move(E);
957
return std::move(Coverage);
958
}
959
960
// If E is a no_data_found error, returns success. Otherwise returns E.
961
static Error handleMaybeNoDataFoundError(Error E) {
962
return handleErrors(
963
std::move(E), [](const CoverageMapError &CME) {
964
if (CME.get() == coveragemap_error::no_data_found)
965
return static_cast<Error>(Error::success());
966
return make_error<CoverageMapError>(CME.get(), CME.getMessage());
967
});
968
}
969
970
Error CoverageMapping::loadFromFile(
971
StringRef Filename, StringRef Arch, StringRef CompilationDir,
972
IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage,
973
bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) {
974
auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(
975
Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false);
976
if (std::error_code EC = CovMappingBufOrErr.getError())
977
return createFileError(Filename, errorCodeToError(EC));
978
MemoryBufferRef CovMappingBufRef =
979
CovMappingBufOrErr.get()->getMemBufferRef();
980
SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
981
982
SmallVector<object::BuildIDRef> BinaryIDs;
983
auto CoverageReadersOrErr = BinaryCoverageReader::create(
984
CovMappingBufRef, Arch, Buffers, CompilationDir,
985
FoundBinaryIDs ? &BinaryIDs : nullptr);
986
if (Error E = CoverageReadersOrErr.takeError()) {
987
E = handleMaybeNoDataFoundError(std::move(E));
988
if (E)
989
return createFileError(Filename, std::move(E));
990
return E;
991
}
992
993
SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
994
for (auto &Reader : CoverageReadersOrErr.get())
995
Readers.push_back(std::move(Reader));
996
if (FoundBinaryIDs && !Readers.empty()) {
997
llvm::append_range(*FoundBinaryIDs,
998
llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) {
999
return object::BuildID(BID);
1000
}));
1001
}
1002
DataFound |= !Readers.empty();
1003
if (Error E = loadFromReaders(Readers, ProfileReader, Coverage))
1004
return createFileError(Filename, std::move(E));
1005
return Error::success();
1006
}
1007
1008
Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
1009
ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename,
1010
vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir,
1011
const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) {
1012
auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS);
1013
if (Error E = ProfileReaderOrErr.takeError())
1014
return createFileError(ProfileFilename, std::move(E));
1015
auto ProfileReader = std::move(ProfileReaderOrErr.get());
1016
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
1017
bool DataFound = false;
1018
1019
auto GetArch = [&](size_t Idx) {
1020
if (Arches.empty())
1021
return StringRef();
1022
if (Arches.size() == 1)
1023
return Arches.front();
1024
return Arches[Idx];
1025
};
1026
1027
SmallVector<object::BuildID> FoundBinaryIDs;
1028
for (const auto &File : llvm::enumerate(ObjectFilenames)) {
1029
if (Error E =
1030
loadFromFile(File.value(), GetArch(File.index()), CompilationDir,
1031
*ProfileReader, *Coverage, DataFound, &FoundBinaryIDs))
1032
return std::move(E);
1033
}
1034
1035
if (BIDFetcher) {
1036
std::vector<object::BuildID> ProfileBinaryIDs;
1037
if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs))
1038
return createFileError(ProfileFilename, std::move(E));
1039
1040
SmallVector<object::BuildIDRef> BinaryIDsToFetch;
1041
if (!ProfileBinaryIDs.empty()) {
1042
const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) {
1043
return std::lexicographical_compare(A.begin(), A.end(), B.begin(),
1044
B.end());
1045
};
1046
llvm::sort(FoundBinaryIDs, Compare);
1047
std::set_difference(
1048
ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(),
1049
FoundBinaryIDs.begin(), FoundBinaryIDs.end(),
1050
std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare);
1051
}
1052
1053
for (object::BuildIDRef BinaryID : BinaryIDsToFetch) {
1054
std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID);
1055
if (PathOpt) {
1056
std::string Path = std::move(*PathOpt);
1057
StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef();
1058
if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader,
1059
*Coverage, DataFound))
1060
return std::move(E);
1061
} else if (CheckBinaryIDs) {
1062
return createFileError(
1063
ProfileFilename,
1064
createStringError(errc::no_such_file_or_directory,
1065
"Missing binary ID: " +
1066
llvm::toHex(BinaryID, /*LowerCase=*/true)));
1067
}
1068
}
1069
}
1070
1071
if (!DataFound)
1072
return createFileError(
1073
join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "),
1074
make_error<CoverageMapError>(coveragemap_error::no_data_found));
1075
return std::move(Coverage);
1076
}
1077
1078
namespace {
1079
1080
/// Distributes functions into instantiation sets.
1081
///
1082
/// An instantiation set is a collection of functions that have the same source
1083
/// code, ie, template functions specializations.
1084
class FunctionInstantiationSetCollector {
1085
using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
1086
MapT InstantiatedFunctions;
1087
1088
public:
1089
void insert(const FunctionRecord &Function, unsigned FileID) {
1090
auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
1091
while (I != E && I->FileID != FileID)
1092
++I;
1093
assert(I != E && "function does not cover the given file");
1094
auto &Functions = InstantiatedFunctions[I->startLoc()];
1095
Functions.push_back(&Function);
1096
}
1097
1098
MapT::iterator begin() { return InstantiatedFunctions.begin(); }
1099
MapT::iterator end() { return InstantiatedFunctions.end(); }
1100
};
1101
1102
class SegmentBuilder {
1103
std::vector<CoverageSegment> &Segments;
1104
SmallVector<const CountedRegion *, 8> ActiveRegions;
1105
1106
SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
1107
1108
/// Emit a segment with the count from \p Region starting at \p StartLoc.
1109
//
1110
/// \p IsRegionEntry: The segment is at the start of a new non-gap region.
1111
/// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
1112
void startSegment(const CountedRegion &Region, LineColPair StartLoc,
1113
bool IsRegionEntry, bool EmitSkippedRegion = false) {
1114
bool HasCount = !EmitSkippedRegion &&
1115
(Region.Kind != CounterMappingRegion::SkippedRegion);
1116
1117
// If the new segment wouldn't affect coverage rendering, skip it.
1118
if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
1119
const auto &Last = Segments.back();
1120
if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
1121
!Last.IsRegionEntry)
1122
return;
1123
}
1124
1125
if (HasCount)
1126
Segments.emplace_back(StartLoc.first, StartLoc.second,
1127
Region.ExecutionCount, IsRegionEntry,
1128
Region.Kind == CounterMappingRegion::GapRegion);
1129
else
1130
Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
1131
1132
LLVM_DEBUG({
1133
const auto &Last = Segments.back();
1134
dbgs() << "Segment at " << Last.Line << ":" << Last.Col
1135
<< " (count = " << Last.Count << ")"
1136
<< (Last.IsRegionEntry ? ", RegionEntry" : "")
1137
<< (!Last.HasCount ? ", Skipped" : "")
1138
<< (Last.IsGapRegion ? ", Gap" : "") << "\n";
1139
});
1140
}
1141
1142
/// Emit segments for active regions which end before \p Loc.
1143
///
1144
/// \p Loc: The start location of the next region. If std::nullopt, all active
1145
/// regions are completed.
1146
/// \p FirstCompletedRegion: Index of the first completed region.
1147
void completeRegionsUntil(std::optional<LineColPair> Loc,
1148
unsigned FirstCompletedRegion) {
1149
// Sort the completed regions by end location. This makes it simple to
1150
// emit closing segments in sorted order.
1151
auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
1152
std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
1153
[](const CountedRegion *L, const CountedRegion *R) {
1154
return L->endLoc() < R->endLoc();
1155
});
1156
1157
// Emit segments for all completed regions.
1158
for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
1159
++I) {
1160
const auto *CompletedRegion = ActiveRegions[I];
1161
assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
1162
"Completed region ends after start of new region");
1163
1164
const auto *PrevCompletedRegion = ActiveRegions[I - 1];
1165
auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
1166
1167
// Don't emit any more segments if they start where the new region begins.
1168
if (Loc && CompletedSegmentLoc == *Loc)
1169
break;
1170
1171
// Don't emit a segment if the next completed region ends at the same
1172
// location as this one.
1173
if (CompletedSegmentLoc == CompletedRegion->endLoc())
1174
continue;
1175
1176
// Use the count from the last completed region which ends at this loc.
1177
for (unsigned J = I + 1; J < E; ++J)
1178
if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
1179
CompletedRegion = ActiveRegions[J];
1180
1181
startSegment(*CompletedRegion, CompletedSegmentLoc, false);
1182
}
1183
1184
auto Last = ActiveRegions.back();
1185
if (FirstCompletedRegion && Last->endLoc() != *Loc) {
1186
// If there's a gap after the end of the last completed region and the
1187
// start of the new region, use the last active region to fill the gap.
1188
startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
1189
false);
1190
} else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
1191
// Emit a skipped segment if there are no more active regions. This
1192
// ensures that gaps between functions are marked correctly.
1193
startSegment(*Last, Last->endLoc(), false, true);
1194
}
1195
1196
// Pop the completed regions.
1197
ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
1198
}
1199
1200
void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
1201
for (const auto &CR : enumerate(Regions)) {
1202
auto CurStartLoc = CR.value().startLoc();
1203
1204
// Active regions which end before the current region need to be popped.
1205
auto CompletedRegions =
1206
std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
1207
[&](const CountedRegion *Region) {
1208
return !(Region->endLoc() <= CurStartLoc);
1209
});
1210
if (CompletedRegions != ActiveRegions.end()) {
1211
unsigned FirstCompletedRegion =
1212
std::distance(ActiveRegions.begin(), CompletedRegions);
1213
completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
1214
}
1215
1216
bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
1217
1218
// Try to emit a segment for the current region.
1219
if (CurStartLoc == CR.value().endLoc()) {
1220
// Avoid making zero-length regions active. If it's the last region,
1221
// emit a skipped segment. Otherwise use its predecessor's count.
1222
const bool Skipped =
1223
(CR.index() + 1) == Regions.size() ||
1224
CR.value().Kind == CounterMappingRegion::SkippedRegion;
1225
startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
1226
CurStartLoc, !GapRegion, Skipped);
1227
// If it is skipped segment, create a segment with last pushed
1228
// regions's count at CurStartLoc.
1229
if (Skipped && !ActiveRegions.empty())
1230
startSegment(*ActiveRegions.back(), CurStartLoc, false);
1231
continue;
1232
}
1233
if (CR.index() + 1 == Regions.size() ||
1234
CurStartLoc != Regions[CR.index() + 1].startLoc()) {
1235
// Emit a segment if the next region doesn't start at the same location
1236
// as this one.
1237
startSegment(CR.value(), CurStartLoc, !GapRegion);
1238
}
1239
1240
// This region is active (i.e not completed).
1241
ActiveRegions.push_back(&CR.value());
1242
}
1243
1244
// Complete any remaining active regions.
1245
if (!ActiveRegions.empty())
1246
completeRegionsUntil(std::nullopt, 0);
1247
}
1248
1249
/// Sort a nested sequence of regions from a single file.
1250
static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
1251
llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
1252
if (LHS.startLoc() != RHS.startLoc())
1253
return LHS.startLoc() < RHS.startLoc();
1254
if (LHS.endLoc() != RHS.endLoc())
1255
// When LHS completely contains RHS, we sort LHS first.
1256
return RHS.endLoc() < LHS.endLoc();
1257
// If LHS and RHS cover the same area, we need to sort them according
1258
// to their kinds so that the most suitable region will become "active"
1259
// in combineRegions(). Because we accumulate counter values only from
1260
// regions of the same kind as the first region of the area, prefer
1261
// CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
1262
static_assert(CounterMappingRegion::CodeRegion <
1263
CounterMappingRegion::ExpansionRegion &&
1264
CounterMappingRegion::ExpansionRegion <
1265
CounterMappingRegion::SkippedRegion,
1266
"Unexpected order of region kind values");
1267
return LHS.Kind < RHS.Kind;
1268
});
1269
}
1270
1271
/// Combine counts of regions which cover the same area.
1272
static ArrayRef<CountedRegion>
1273
combineRegions(MutableArrayRef<CountedRegion> Regions) {
1274
if (Regions.empty())
1275
return Regions;
1276
auto Active = Regions.begin();
1277
auto End = Regions.end();
1278
for (auto I = Regions.begin() + 1; I != End; ++I) {
1279
if (Active->startLoc() != I->startLoc() ||
1280
Active->endLoc() != I->endLoc()) {
1281
// Shift to the next region.
1282
++Active;
1283
if (Active != I)
1284
*Active = *I;
1285
continue;
1286
}
1287
// Merge duplicate region.
1288
// If CodeRegions and ExpansionRegions cover the same area, it's probably
1289
// a macro which is fully expanded to another macro. In that case, we need
1290
// to accumulate counts only from CodeRegions, or else the area will be
1291
// counted twice.
1292
// On the other hand, a macro may have a nested macro in its body. If the
1293
// outer macro is used several times, the ExpansionRegion for the nested
1294
// macro will also be added several times. These ExpansionRegions cover
1295
// the same source locations and have to be combined to reach the correct
1296
// value for that area.
1297
// We add counts of the regions of the same kind as the active region
1298
// to handle the both situations.
1299
if (I->Kind == Active->Kind) {
1300
assert(I->HasSingleByteCoverage == Active->HasSingleByteCoverage &&
1301
"Regions are generated in different coverage modes");
1302
if (I->HasSingleByteCoverage)
1303
Active->ExecutionCount = Active->ExecutionCount || I->ExecutionCount;
1304
else
1305
Active->ExecutionCount += I->ExecutionCount;
1306
}
1307
}
1308
return Regions.drop_back(std::distance(++Active, End));
1309
}
1310
1311
public:
1312
/// Build a sorted list of CoverageSegments from a list of Regions.
1313
static std::vector<CoverageSegment>
1314
buildSegments(MutableArrayRef<CountedRegion> Regions) {
1315
std::vector<CoverageSegment> Segments;
1316
SegmentBuilder Builder(Segments);
1317
1318
sortNestedRegions(Regions);
1319
ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
1320
1321
LLVM_DEBUG({
1322
dbgs() << "Combined regions:\n";
1323
for (const auto &CR : CombinedRegions)
1324
dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> "
1325
<< CR.LineEnd << ":" << CR.ColumnEnd
1326
<< " (count=" << CR.ExecutionCount << ")\n";
1327
});
1328
1329
Builder.buildSegmentsImpl(CombinedRegions);
1330
1331
#ifndef NDEBUG
1332
for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
1333
const auto &L = Segments[I - 1];
1334
const auto &R = Segments[I];
1335
if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
1336
if (L.Line == R.Line && L.Col == R.Col && !L.HasCount)
1337
continue;
1338
LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
1339
<< " followed by " << R.Line << ":" << R.Col << "\n");
1340
assert(false && "Coverage segments not unique or sorted");
1341
}
1342
}
1343
#endif
1344
1345
return Segments;
1346
}
1347
};
1348
1349
} // end anonymous namespace
1350
1351
std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
1352
std::vector<StringRef> Filenames;
1353
for (const auto &Function : getCoveredFunctions())
1354
llvm::append_range(Filenames, Function.Filenames);
1355
llvm::sort(Filenames);
1356
auto Last = llvm::unique(Filenames);
1357
Filenames.erase(Last, Filenames.end());
1358
return Filenames;
1359
}
1360
1361
static SmallBitVector gatherFileIDs(StringRef SourceFile,
1362
const FunctionRecord &Function) {
1363
SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
1364
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
1365
if (SourceFile == Function.Filenames[I])
1366
FilenameEquivalence[I] = true;
1367
return FilenameEquivalence;
1368
}
1369
1370
/// Return the ID of the file where the definition of the function is located.
1371
static std::optional<unsigned>
1372
findMainViewFileID(const FunctionRecord &Function) {
1373
SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
1374
for (const auto &CR : Function.CountedRegions)
1375
if (CR.Kind == CounterMappingRegion::ExpansionRegion)
1376
IsNotExpandedFile[CR.ExpandedFileID] = false;
1377
int I = IsNotExpandedFile.find_first();
1378
if (I == -1)
1379
return std::nullopt;
1380
return I;
1381
}
1382
1383
/// Check if SourceFile is the file that contains the definition of
1384
/// the Function. Return the ID of the file in that case or std::nullopt
1385
/// otherwise.
1386
static std::optional<unsigned>
1387
findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) {
1388
std::optional<unsigned> I = findMainViewFileID(Function);
1389
if (I && SourceFile == Function.Filenames[*I])
1390
return I;
1391
return std::nullopt;
1392
}
1393
1394
static bool isExpansion(const CountedRegion &R, unsigned FileID) {
1395
return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
1396
}
1397
1398
CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
1399
CoverageData FileCoverage(Filename);
1400
std::vector<CountedRegion> Regions;
1401
1402
// Look up the function records in the given file. Due to hash collisions on
1403
// the filename, we may get back some records that are not in the file.
1404
ArrayRef<unsigned> RecordIndices =
1405
getImpreciseRecordIndicesForFilename(Filename);
1406
for (unsigned RecordIndex : RecordIndices) {
1407
const FunctionRecord &Function = Functions[RecordIndex];
1408
auto MainFileID = findMainViewFileID(Filename, Function);
1409
auto FileIDs = gatherFileIDs(Filename, Function);
1410
for (const auto &CR : Function.CountedRegions)
1411
if (FileIDs.test(CR.FileID)) {
1412
Regions.push_back(CR);
1413
if (MainFileID && isExpansion(CR, *MainFileID))
1414
FileCoverage.Expansions.emplace_back(CR, Function);
1415
}
1416
// Capture branch regions specific to the function (excluding expansions).
1417
for (const auto &CR : Function.CountedBranchRegions)
1418
if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID))
1419
FileCoverage.BranchRegions.push_back(CR);
1420
// Capture MCDC records specific to the function.
1421
for (const auto &MR : Function.MCDCRecords)
1422
if (FileIDs.test(MR.getDecisionRegion().FileID))
1423
FileCoverage.MCDCRecords.push_back(MR);
1424
}
1425
1426
LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
1427
FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1428
1429
return FileCoverage;
1430
}
1431
1432
std::vector<InstantiationGroup>
1433
CoverageMapping::getInstantiationGroups(StringRef Filename) const {
1434
FunctionInstantiationSetCollector InstantiationSetCollector;
1435
// Look up the function records in the given file. Due to hash collisions on
1436
// the filename, we may get back some records that are not in the file.
1437
ArrayRef<unsigned> RecordIndices =
1438
getImpreciseRecordIndicesForFilename(Filename);
1439
for (unsigned RecordIndex : RecordIndices) {
1440
const FunctionRecord &Function = Functions[RecordIndex];
1441
auto MainFileID = findMainViewFileID(Filename, Function);
1442
if (!MainFileID)
1443
continue;
1444
InstantiationSetCollector.insert(Function, *MainFileID);
1445
}
1446
1447
std::vector<InstantiationGroup> Result;
1448
for (auto &InstantiationSet : InstantiationSetCollector) {
1449
InstantiationGroup IG{InstantiationSet.first.first,
1450
InstantiationSet.first.second,
1451
std::move(InstantiationSet.second)};
1452
Result.emplace_back(std::move(IG));
1453
}
1454
return Result;
1455
}
1456
1457
CoverageData
1458
CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
1459
auto MainFileID = findMainViewFileID(Function);
1460
if (!MainFileID)
1461
return CoverageData();
1462
1463
CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
1464
std::vector<CountedRegion> Regions;
1465
for (const auto &CR : Function.CountedRegions)
1466
if (CR.FileID == *MainFileID) {
1467
Regions.push_back(CR);
1468
if (isExpansion(CR, *MainFileID))
1469
FunctionCoverage.Expansions.emplace_back(CR, Function);
1470
}
1471
// Capture branch regions specific to the function (excluding expansions).
1472
for (const auto &CR : Function.CountedBranchRegions)
1473
if (CR.FileID == *MainFileID)
1474
FunctionCoverage.BranchRegions.push_back(CR);
1475
1476
// Capture MCDC records specific to the function.
1477
for (const auto &MR : Function.MCDCRecords)
1478
if (MR.getDecisionRegion().FileID == *MainFileID)
1479
FunctionCoverage.MCDCRecords.push_back(MR);
1480
1481
LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
1482
<< "\n");
1483
FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1484
1485
return FunctionCoverage;
1486
}
1487
1488
CoverageData CoverageMapping::getCoverageForExpansion(
1489
const ExpansionRecord &Expansion) const {
1490
CoverageData ExpansionCoverage(
1491
Expansion.Function.Filenames[Expansion.FileID]);
1492
std::vector<CountedRegion> Regions;
1493
for (const auto &CR : Expansion.Function.CountedRegions)
1494
if (CR.FileID == Expansion.FileID) {
1495
Regions.push_back(CR);
1496
if (isExpansion(CR, Expansion.FileID))
1497
ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
1498
}
1499
for (const auto &CR : Expansion.Function.CountedBranchRegions)
1500
// Capture branch regions that only pertain to the corresponding expansion.
1501
if (CR.FileID == Expansion.FileID)
1502
ExpansionCoverage.BranchRegions.push_back(CR);
1503
1504
LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
1505
<< Expansion.FileID << "\n");
1506
ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
1507
1508
return ExpansionCoverage;
1509
}
1510
1511
LineCoverageStats::LineCoverageStats(
1512
ArrayRef<const CoverageSegment *> LineSegments,
1513
const CoverageSegment *WrappedSegment, unsigned Line)
1514
: ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
1515
LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
1516
// Find the minimum number of regions which start in this line.
1517
unsigned MinRegionCount = 0;
1518
auto isStartOfRegion = [](const CoverageSegment *S) {
1519
return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
1520
};
1521
for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
1522
if (isStartOfRegion(LineSegments[I]))
1523
++MinRegionCount;
1524
1525
bool StartOfSkippedRegion = !LineSegments.empty() &&
1526
!LineSegments.front()->HasCount &&
1527
LineSegments.front()->IsRegionEntry;
1528
1529
HasMultipleRegions = MinRegionCount > 1;
1530
Mapped =
1531
!StartOfSkippedRegion &&
1532
((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
1533
1534
// if there is any starting segment at this line with a counter, it must be
1535
// mapped
1536
Mapped |= std::any_of(
1537
LineSegments.begin(), LineSegments.end(),
1538
[](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; });
1539
1540
if (!Mapped) {
1541
return;
1542
}
1543
1544
// Pick the max count from the non-gap, region entry segments and the
1545
// wrapped count.
1546
if (WrappedSegment)
1547
ExecutionCount = WrappedSegment->Count;
1548
if (!MinRegionCount)
1549
return;
1550
for (const auto *LS : LineSegments)
1551
if (isStartOfRegion(LS))
1552
ExecutionCount = std::max(ExecutionCount, LS->Count);
1553
}
1554
1555
LineCoverageIterator &LineCoverageIterator::operator++() {
1556
if (Next == CD.end()) {
1557
Stats = LineCoverageStats();
1558
Ended = true;
1559
return *this;
1560
}
1561
if (Segments.size())
1562
WrappedSegment = Segments.back();
1563
Segments.clear();
1564
while (Next != CD.end() && Next->Line == Line)
1565
Segments.push_back(&*Next++);
1566
Stats = LineCoverageStats(Segments, WrappedSegment, Line);
1567
++Line;
1568
return *this;
1569
}
1570
1571
static std::string getCoverageMapErrString(coveragemap_error Err,
1572
const std::string &ErrMsg = "") {
1573
std::string Msg;
1574
raw_string_ostream OS(Msg);
1575
1576
switch (Err) {
1577
case coveragemap_error::success:
1578
OS << "success";
1579
break;
1580
case coveragemap_error::eof:
1581
OS << "end of File";
1582
break;
1583
case coveragemap_error::no_data_found:
1584
OS << "no coverage data found";
1585
break;
1586
case coveragemap_error::unsupported_version:
1587
OS << "unsupported coverage format version";
1588
break;
1589
case coveragemap_error::truncated:
1590
OS << "truncated coverage data";
1591
break;
1592
case coveragemap_error::malformed:
1593
OS << "malformed coverage data";
1594
break;
1595
case coveragemap_error::decompression_failed:
1596
OS << "failed to decompress coverage data (zlib)";
1597
break;
1598
case coveragemap_error::invalid_or_missing_arch_specifier:
1599
OS << "`-arch` specifier is invalid or missing for universal binary";
1600
break;
1601
}
1602
1603
// If optional error message is not empty, append it to the message.
1604
if (!ErrMsg.empty())
1605
OS << ": " << ErrMsg;
1606
1607
return Msg;
1608
}
1609
1610
namespace {
1611
1612
// FIXME: This class is only here to support the transition to llvm::Error. It
1613
// will be removed once this transition is complete. Clients should prefer to
1614
// deal with the Error value directly, rather than converting to error_code.
1615
class CoverageMappingErrorCategoryType : public std::error_category {
1616
const char *name() const noexcept override { return "llvm.coveragemap"; }
1617
std::string message(int IE) const override {
1618
return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
1619
}
1620
};
1621
1622
} // end anonymous namespace
1623
1624
std::string CoverageMapError::message() const {
1625
return getCoverageMapErrString(Err, Msg);
1626
}
1627
1628
const std::error_category &llvm::coverage::coveragemap_category() {
1629
static CoverageMappingErrorCategoryType ErrorCategory;
1630
return ErrorCategory;
1631
}
1632
1633
char CoverageMapError::ID = 0;
1634
1635