Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/ProfileData/ProfileSummaryBuilder.cpp
35233 views
1
//=-- ProfilesummaryBuilder.cpp - Profile summary computation ---------------=//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains support for computing profile summary data.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/IR/ProfileSummary.h"
14
#include "llvm/ProfileData/InstrProf.h"
15
#include "llvm/ProfileData/ProfileCommon.h"
16
#include "llvm/ProfileData/SampleProf.h"
17
#include "llvm/Support/CommandLine.h"
18
19
using namespace llvm;
20
21
namespace llvm {
22
cl::opt<bool> UseContextLessSummary(
23
"profile-summary-contextless", cl::Hidden,
24
cl::desc("Merge context profiles before calculating thresholds."));
25
26
// The following two parameters determine the threshold for a count to be
27
// considered hot/cold. These two parameters are percentile values (multiplied
28
// by 10000). If the counts are sorted in descending order, the minimum count to
29
// reach ProfileSummaryCutoffHot gives the threshold to determine a hot count.
30
// Similarly, the minimum count to reach ProfileSummaryCutoffCold gives the
31
// threshold for determining cold count (everything <= this threshold is
32
// considered cold).
33
cl::opt<int> ProfileSummaryCutoffHot(
34
"profile-summary-cutoff-hot", cl::Hidden, cl::init(990000),
35
cl::desc("A count is hot if it exceeds the minimum count to"
36
" reach this percentile of total counts."));
37
38
cl::opt<int> ProfileSummaryCutoffCold(
39
"profile-summary-cutoff-cold", cl::Hidden, cl::init(999999),
40
cl::desc("A count is cold if it is below the minimum count"
41
" to reach this percentile of total counts."));
42
43
cl::opt<unsigned> ProfileSummaryHugeWorkingSetSizeThreshold(
44
"profile-summary-huge-working-set-size-threshold", cl::Hidden,
45
cl::init(15000),
46
cl::desc("The code working set size is considered huge if the number of"
47
" blocks required to reach the -profile-summary-cutoff-hot"
48
" percentile exceeds this count."));
49
50
cl::opt<unsigned> ProfileSummaryLargeWorkingSetSizeThreshold(
51
"profile-summary-large-working-set-size-threshold", cl::Hidden,
52
cl::init(12500),
53
cl::desc("The code working set size is considered large if the number of"
54
" blocks required to reach the -profile-summary-cutoff-hot"
55
" percentile exceeds this count."));
56
57
// The next two options override the counts derived from summary computation and
58
// are useful for debugging purposes.
59
cl::opt<uint64_t> ProfileSummaryHotCount(
60
"profile-summary-hot-count", cl::ReallyHidden,
61
cl::desc("A fixed hot count that overrides the count derived from"
62
" profile-summary-cutoff-hot"));
63
64
cl::opt<uint64_t> ProfileSummaryColdCount(
65
"profile-summary-cold-count", cl::ReallyHidden,
66
cl::desc("A fixed cold count that overrides the count derived from"
67
" profile-summary-cutoff-cold"));
68
} // namespace llvm
69
70
// A set of cutoff values. Each value, when divided by ProfileSummary::Scale
71
// (which is 1000000) is a desired percentile of total counts.
72
static const uint32_t DefaultCutoffsData[] = {
73
10000, /* 1% */
74
100000, /* 10% */
75
200000, 300000, 400000, 500000, 600000, 700000, 800000,
76
900000, 950000, 990000, 999000, 999900, 999990, 999999};
77
const ArrayRef<uint32_t> ProfileSummaryBuilder::DefaultCutoffs =
78
DefaultCutoffsData;
79
80
const ProfileSummaryEntry &
81
ProfileSummaryBuilder::getEntryForPercentile(const SummaryEntryVector &DS,
82
uint64_t Percentile) {
83
auto It = partition_point(DS, [=](const ProfileSummaryEntry &Entry) {
84
return Entry.Cutoff < Percentile;
85
});
86
// The required percentile has to be <= one of the percentiles in the
87
// detailed summary.
88
if (It == DS.end())
89
report_fatal_error("Desired percentile exceeds the maximum cutoff");
90
return *It;
91
}
92
93
void InstrProfSummaryBuilder::addRecord(const InstrProfRecord &R) {
94
// The first counter is not necessarily an entry count for IR
95
// instrumentation profiles.
96
// Eventually MaxFunctionCount will become obsolete and this can be
97
// removed.
98
99
if (R.getCountPseudoKind() != InstrProfRecord::NotPseudo)
100
return;
101
102
addEntryCount(R.Counts[0]);
103
for (size_t I = 1, E = R.Counts.size(); I < E; ++I)
104
addInternalCount(R.Counts[I]);
105
}
106
107
// To compute the detailed summary, we consider each line containing samples as
108
// equivalent to a block with a count in the instrumented profile.
109
void SampleProfileSummaryBuilder::addRecord(
110
const sampleprof::FunctionSamples &FS, bool isCallsiteSample) {
111
if (!isCallsiteSample) {
112
NumFunctions++;
113
if (FS.getHeadSamples() > MaxFunctionCount)
114
MaxFunctionCount = FS.getHeadSamples();
115
} else if (FS.getContext().hasAttribute(
116
sampleprof::ContextDuplicatedIntoBase)) {
117
// Do not recount callee samples if they are already merged into their base
118
// profiles. This can happen to CS nested profile.
119
return;
120
}
121
122
for (const auto &I : FS.getBodySamples()) {
123
uint64_t Count = I.second.getSamples();
124
addCount(Count);
125
}
126
for (const auto &I : FS.getCallsiteSamples())
127
for (const auto &CS : I.second)
128
addRecord(CS.second, true);
129
}
130
131
// The argument to this method is a vector of cutoff percentages and the return
132
// value is a vector of (Cutoff, MinCount, NumCounts) triplets.
133
void ProfileSummaryBuilder::computeDetailedSummary() {
134
if (DetailedSummaryCutoffs.empty())
135
return;
136
llvm::sort(DetailedSummaryCutoffs);
137
auto Iter = CountFrequencies.begin();
138
const auto End = CountFrequencies.end();
139
140
uint32_t CountsSeen = 0;
141
uint64_t CurrSum = 0, Count = 0;
142
143
for (const uint32_t Cutoff : DetailedSummaryCutoffs) {
144
assert(Cutoff <= 999999);
145
APInt Temp(128, TotalCount);
146
APInt N(128, Cutoff);
147
APInt D(128, ProfileSummary::Scale);
148
Temp *= N;
149
Temp = Temp.sdiv(D);
150
uint64_t DesiredCount = Temp.getZExtValue();
151
assert(DesiredCount <= TotalCount);
152
while (CurrSum < DesiredCount && Iter != End) {
153
Count = Iter->first;
154
uint32_t Freq = Iter->second;
155
CurrSum += (Count * Freq);
156
CountsSeen += Freq;
157
Iter++;
158
}
159
assert(CurrSum >= DesiredCount);
160
ProfileSummaryEntry PSE = {Cutoff, Count, CountsSeen};
161
DetailedSummary.push_back(PSE);
162
}
163
}
164
165
uint64_t
166
ProfileSummaryBuilder::getHotCountThreshold(const SummaryEntryVector &DS) {
167
auto &HotEntry =
168
ProfileSummaryBuilder::getEntryForPercentile(DS, ProfileSummaryCutoffHot);
169
uint64_t HotCountThreshold = HotEntry.MinCount;
170
if (ProfileSummaryHotCount.getNumOccurrences() > 0)
171
HotCountThreshold = ProfileSummaryHotCount;
172
return HotCountThreshold;
173
}
174
175
uint64_t
176
ProfileSummaryBuilder::getColdCountThreshold(const SummaryEntryVector &DS) {
177
auto &ColdEntry = ProfileSummaryBuilder::getEntryForPercentile(
178
DS, ProfileSummaryCutoffCold);
179
uint64_t ColdCountThreshold = ColdEntry.MinCount;
180
if (ProfileSummaryColdCount.getNumOccurrences() > 0)
181
ColdCountThreshold = ProfileSummaryColdCount;
182
return ColdCountThreshold;
183
}
184
185
std::unique_ptr<ProfileSummary> SampleProfileSummaryBuilder::getSummary() {
186
computeDetailedSummary();
187
return std::make_unique<ProfileSummary>(
188
ProfileSummary::PSK_Sample, DetailedSummary, TotalCount, MaxCount, 0,
189
MaxFunctionCount, NumCounts, NumFunctions);
190
}
191
192
std::unique_ptr<ProfileSummary>
193
SampleProfileSummaryBuilder::computeSummaryForProfiles(
194
const SampleProfileMap &Profiles) {
195
assert(NumFunctions == 0 &&
196
"This can only be called on an empty summary builder");
197
sampleprof::SampleProfileMap ContextLessProfiles;
198
const sampleprof::SampleProfileMap *ProfilesToUse = &Profiles;
199
// For CSSPGO, context-sensitive profile effectively split a function profile
200
// into many copies each representing the CFG profile of a particular calling
201
// context. That makes the count distribution looks more flat as we now have
202
// more function profiles each with lower counts, which in turn leads to lower
203
// hot thresholds. To compensate for that, by default we merge context
204
// profiles before computing profile summary.
205
if (UseContextLessSummary || (sampleprof::FunctionSamples::ProfileIsCS &&
206
!UseContextLessSummary.getNumOccurrences())) {
207
ProfileConverter::flattenProfile(Profiles, ContextLessProfiles, true);
208
ProfilesToUse = &ContextLessProfiles;
209
}
210
211
for (const auto &I : *ProfilesToUse) {
212
const sampleprof::FunctionSamples &Profile = I.second;
213
addRecord(Profile);
214
}
215
216
return getSummary();
217
}
218
219
std::unique_ptr<ProfileSummary> InstrProfSummaryBuilder::getSummary() {
220
computeDetailedSummary();
221
return std::make_unique<ProfileSummary>(
222
ProfileSummary::PSK_Instr, DetailedSummary, TotalCount, MaxCount,
223
MaxInternalBlockCount, MaxFunctionCount, NumCounts, NumFunctions);
224
}
225
226
void InstrProfSummaryBuilder::addEntryCount(uint64_t Count) {
227
assert(Count <= getInstrMaxCountValue() &&
228
"Count value should be less than the max count value.");
229
NumFunctions++;
230
addCount(Count);
231
if (Count > MaxFunctionCount)
232
MaxFunctionCount = Count;
233
}
234
235
void InstrProfSummaryBuilder::addInternalCount(uint64_t Count) {
236
assert(Count <= getInstrMaxCountValue() &&
237
"Count value should be less than the max count value.");
238
addCount(Count);
239
if (Count > MaxInternalBlockCount)
240
MaxInternalBlockCount = Count;
241
}
242
243