Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Support/BLAKE3/blake3_avx512.c
35267 views
1
#include "blake3_impl.h"
2
3
#include <immintrin.h>
4
5
#define _mm_shuffle_ps2(a, b, c) \
6
(_mm_castps_si128( \
7
_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
8
9
INLINE __m128i loadu_128(const uint8_t src[16]) {
10
return _mm_loadu_si128((const __m128i *)src);
11
}
12
13
INLINE __m256i loadu_256(const uint8_t src[32]) {
14
return _mm256_loadu_si256((const __m256i *)src);
15
}
16
17
INLINE __m512i loadu_512(const uint8_t src[64]) {
18
return _mm512_loadu_si512((const __m512i *)src);
19
}
20
21
INLINE void storeu_128(__m128i src, uint8_t dest[16]) {
22
_mm_storeu_si128((__m128i *)dest, src);
23
}
24
25
INLINE void storeu_256(__m256i src, uint8_t dest[16]) {
26
_mm256_storeu_si256((__m256i *)dest, src);
27
}
28
29
INLINE __m128i add_128(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
30
31
INLINE __m256i add_256(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); }
32
33
INLINE __m512i add_512(__m512i a, __m512i b) { return _mm512_add_epi32(a, b); }
34
35
INLINE __m128i xor_128(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
36
37
INLINE __m256i xor_256(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); }
38
39
INLINE __m512i xor_512(__m512i a, __m512i b) { return _mm512_xor_si512(a, b); }
40
41
INLINE __m128i set1_128(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
42
43
INLINE __m256i set1_256(uint32_t x) { return _mm256_set1_epi32((int32_t)x); }
44
45
INLINE __m512i set1_512(uint32_t x) { return _mm512_set1_epi32((int32_t)x); }
46
47
INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
48
return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
49
}
50
51
INLINE __m128i rot16_128(__m128i x) { return _mm_ror_epi32(x, 16); }
52
53
INLINE __m256i rot16_256(__m256i x) { return _mm256_ror_epi32(x, 16); }
54
55
INLINE __m512i rot16_512(__m512i x) { return _mm512_ror_epi32(x, 16); }
56
57
INLINE __m128i rot12_128(__m128i x) { return _mm_ror_epi32(x, 12); }
58
59
INLINE __m256i rot12_256(__m256i x) { return _mm256_ror_epi32(x, 12); }
60
61
INLINE __m512i rot12_512(__m512i x) { return _mm512_ror_epi32(x, 12); }
62
63
INLINE __m128i rot8_128(__m128i x) { return _mm_ror_epi32(x, 8); }
64
65
INLINE __m256i rot8_256(__m256i x) { return _mm256_ror_epi32(x, 8); }
66
67
INLINE __m512i rot8_512(__m512i x) { return _mm512_ror_epi32(x, 8); }
68
69
INLINE __m128i rot7_128(__m128i x) { return _mm_ror_epi32(x, 7); }
70
71
INLINE __m256i rot7_256(__m256i x) { return _mm256_ror_epi32(x, 7); }
72
73
INLINE __m512i rot7_512(__m512i x) { return _mm512_ror_epi32(x, 7); }
74
75
/*
76
* ----------------------------------------------------------------------------
77
* compress_avx512
78
* ----------------------------------------------------------------------------
79
*/
80
81
INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
82
__m128i m) {
83
*row0 = add_128(add_128(*row0, m), *row1);
84
*row3 = xor_128(*row3, *row0);
85
*row3 = rot16_128(*row3);
86
*row2 = add_128(*row2, *row3);
87
*row1 = xor_128(*row1, *row2);
88
*row1 = rot12_128(*row1);
89
}
90
91
INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
92
__m128i m) {
93
*row0 = add_128(add_128(*row0, m), *row1);
94
*row3 = xor_128(*row3, *row0);
95
*row3 = rot8_128(*row3);
96
*row2 = add_128(*row2, *row3);
97
*row1 = xor_128(*row1, *row2);
98
*row1 = rot7_128(*row1);
99
}
100
101
// Note the optimization here of leaving row1 as the unrotated row, rather than
102
// row0. All the message loads below are adjusted to compensate for this. See
103
// discussion at https://github.com/sneves/blake2-avx2/pull/4
104
INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
105
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
106
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
107
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
108
}
109
110
INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
111
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
112
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
113
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
114
}
115
116
INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
117
const uint8_t block[BLAKE3_BLOCK_LEN],
118
uint8_t block_len, uint64_t counter, uint8_t flags) {
119
rows[0] = loadu_128((uint8_t *)&cv[0]);
120
rows[1] = loadu_128((uint8_t *)&cv[4]);
121
rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
122
rows[3] = set4(counter_low(counter), counter_high(counter),
123
(uint32_t)block_len, (uint32_t)flags);
124
125
__m128i m0 = loadu_128(&block[sizeof(__m128i) * 0]);
126
__m128i m1 = loadu_128(&block[sizeof(__m128i) * 1]);
127
__m128i m2 = loadu_128(&block[sizeof(__m128i) * 2]);
128
__m128i m3 = loadu_128(&block[sizeof(__m128i) * 3]);
129
130
__m128i t0, t1, t2, t3, tt;
131
132
// Round 1. The first round permutes the message words from the original
133
// input order, into the groups that get mixed in parallel.
134
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0
135
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
136
t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1
137
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
138
diagonalize(&rows[0], &rows[2], &rows[3]);
139
t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8
140
t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14
141
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
142
t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9
143
t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15
144
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
145
undiagonalize(&rows[0], &rows[2], &rows[3]);
146
m0 = t0;
147
m1 = t1;
148
m2 = t2;
149
m3 = t3;
150
151
// Round 2. This round and all following rounds apply a fixed permutation
152
// to the message words from the round before.
153
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
154
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
155
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
156
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
157
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
158
t1 = _mm_blend_epi16(tt, t1, 0xCC);
159
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
160
diagonalize(&rows[0], &rows[2], &rows[3]);
161
t2 = _mm_unpacklo_epi64(m3, m1);
162
tt = _mm_blend_epi16(t2, m2, 0xC0);
163
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
164
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
165
t3 = _mm_unpackhi_epi32(m1, m3);
166
tt = _mm_unpacklo_epi32(m2, t3);
167
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
168
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
169
undiagonalize(&rows[0], &rows[2], &rows[3]);
170
m0 = t0;
171
m1 = t1;
172
m2 = t2;
173
m3 = t3;
174
175
// Round 3
176
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
177
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
178
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
179
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
180
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
181
t1 = _mm_blend_epi16(tt, t1, 0xCC);
182
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
183
diagonalize(&rows[0], &rows[2], &rows[3]);
184
t2 = _mm_unpacklo_epi64(m3, m1);
185
tt = _mm_blend_epi16(t2, m2, 0xC0);
186
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
187
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
188
t3 = _mm_unpackhi_epi32(m1, m3);
189
tt = _mm_unpacklo_epi32(m2, t3);
190
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
191
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
192
undiagonalize(&rows[0], &rows[2], &rows[3]);
193
m0 = t0;
194
m1 = t1;
195
m2 = t2;
196
m3 = t3;
197
198
// Round 4
199
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
200
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
201
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
202
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
203
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
204
t1 = _mm_blend_epi16(tt, t1, 0xCC);
205
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
206
diagonalize(&rows[0], &rows[2], &rows[3]);
207
t2 = _mm_unpacklo_epi64(m3, m1);
208
tt = _mm_blend_epi16(t2, m2, 0xC0);
209
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
210
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
211
t3 = _mm_unpackhi_epi32(m1, m3);
212
tt = _mm_unpacklo_epi32(m2, t3);
213
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
214
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
215
undiagonalize(&rows[0], &rows[2], &rows[3]);
216
m0 = t0;
217
m1 = t1;
218
m2 = t2;
219
m3 = t3;
220
221
// Round 5
222
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
223
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
224
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
225
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
226
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
227
t1 = _mm_blend_epi16(tt, t1, 0xCC);
228
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
229
diagonalize(&rows[0], &rows[2], &rows[3]);
230
t2 = _mm_unpacklo_epi64(m3, m1);
231
tt = _mm_blend_epi16(t2, m2, 0xC0);
232
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
233
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
234
t3 = _mm_unpackhi_epi32(m1, m3);
235
tt = _mm_unpacklo_epi32(m2, t3);
236
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
237
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
238
undiagonalize(&rows[0], &rows[2], &rows[3]);
239
m0 = t0;
240
m1 = t1;
241
m2 = t2;
242
m3 = t3;
243
244
// Round 6
245
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
246
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
247
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
248
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
249
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
250
t1 = _mm_blend_epi16(tt, t1, 0xCC);
251
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
252
diagonalize(&rows[0], &rows[2], &rows[3]);
253
t2 = _mm_unpacklo_epi64(m3, m1);
254
tt = _mm_blend_epi16(t2, m2, 0xC0);
255
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
256
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
257
t3 = _mm_unpackhi_epi32(m1, m3);
258
tt = _mm_unpacklo_epi32(m2, t3);
259
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
260
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
261
undiagonalize(&rows[0], &rows[2], &rows[3]);
262
m0 = t0;
263
m1 = t1;
264
m2 = t2;
265
m3 = t3;
266
267
// Round 7
268
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
269
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
270
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
271
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
272
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
273
t1 = _mm_blend_epi16(tt, t1, 0xCC);
274
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
275
diagonalize(&rows[0], &rows[2], &rows[3]);
276
t2 = _mm_unpacklo_epi64(m3, m1);
277
tt = _mm_blend_epi16(t2, m2, 0xC0);
278
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
279
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
280
t3 = _mm_unpackhi_epi32(m1, m3);
281
tt = _mm_unpacklo_epi32(m2, t3);
282
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
283
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
284
undiagonalize(&rows[0], &rows[2], &rows[3]);
285
}
286
287
void blake3_compress_xof_avx512(const uint32_t cv[8],
288
const uint8_t block[BLAKE3_BLOCK_LEN],
289
uint8_t block_len, uint64_t counter,
290
uint8_t flags, uint8_t out[64]) {
291
__m128i rows[4];
292
compress_pre(rows, cv, block, block_len, counter, flags);
293
storeu_128(xor_128(rows[0], rows[2]), &out[0]);
294
storeu_128(xor_128(rows[1], rows[3]), &out[16]);
295
storeu_128(xor_128(rows[2], loadu_128((uint8_t *)&cv[0])), &out[32]);
296
storeu_128(xor_128(rows[3], loadu_128((uint8_t *)&cv[4])), &out[48]);
297
}
298
299
void blake3_compress_in_place_avx512(uint32_t cv[8],
300
const uint8_t block[BLAKE3_BLOCK_LEN],
301
uint8_t block_len, uint64_t counter,
302
uint8_t flags) {
303
__m128i rows[4];
304
compress_pre(rows, cv, block, block_len, counter, flags);
305
storeu_128(xor_128(rows[0], rows[2]), (uint8_t *)&cv[0]);
306
storeu_128(xor_128(rows[1], rows[3]), (uint8_t *)&cv[4]);
307
}
308
309
/*
310
* ----------------------------------------------------------------------------
311
* hash4_avx512
312
* ----------------------------------------------------------------------------
313
*/
314
315
INLINE void round_fn4(__m128i v[16], __m128i m[16], size_t r) {
316
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
317
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
318
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
319
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
320
v[0] = add_128(v[0], v[4]);
321
v[1] = add_128(v[1], v[5]);
322
v[2] = add_128(v[2], v[6]);
323
v[3] = add_128(v[3], v[7]);
324
v[12] = xor_128(v[12], v[0]);
325
v[13] = xor_128(v[13], v[1]);
326
v[14] = xor_128(v[14], v[2]);
327
v[15] = xor_128(v[15], v[3]);
328
v[12] = rot16_128(v[12]);
329
v[13] = rot16_128(v[13]);
330
v[14] = rot16_128(v[14]);
331
v[15] = rot16_128(v[15]);
332
v[8] = add_128(v[8], v[12]);
333
v[9] = add_128(v[9], v[13]);
334
v[10] = add_128(v[10], v[14]);
335
v[11] = add_128(v[11], v[15]);
336
v[4] = xor_128(v[4], v[8]);
337
v[5] = xor_128(v[5], v[9]);
338
v[6] = xor_128(v[6], v[10]);
339
v[7] = xor_128(v[7], v[11]);
340
v[4] = rot12_128(v[4]);
341
v[5] = rot12_128(v[5]);
342
v[6] = rot12_128(v[6]);
343
v[7] = rot12_128(v[7]);
344
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
345
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
346
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
347
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
348
v[0] = add_128(v[0], v[4]);
349
v[1] = add_128(v[1], v[5]);
350
v[2] = add_128(v[2], v[6]);
351
v[3] = add_128(v[3], v[7]);
352
v[12] = xor_128(v[12], v[0]);
353
v[13] = xor_128(v[13], v[1]);
354
v[14] = xor_128(v[14], v[2]);
355
v[15] = xor_128(v[15], v[3]);
356
v[12] = rot8_128(v[12]);
357
v[13] = rot8_128(v[13]);
358
v[14] = rot8_128(v[14]);
359
v[15] = rot8_128(v[15]);
360
v[8] = add_128(v[8], v[12]);
361
v[9] = add_128(v[9], v[13]);
362
v[10] = add_128(v[10], v[14]);
363
v[11] = add_128(v[11], v[15]);
364
v[4] = xor_128(v[4], v[8]);
365
v[5] = xor_128(v[5], v[9]);
366
v[6] = xor_128(v[6], v[10]);
367
v[7] = xor_128(v[7], v[11]);
368
v[4] = rot7_128(v[4]);
369
v[5] = rot7_128(v[5]);
370
v[6] = rot7_128(v[6]);
371
v[7] = rot7_128(v[7]);
372
373
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
374
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
375
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
376
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
377
v[0] = add_128(v[0], v[5]);
378
v[1] = add_128(v[1], v[6]);
379
v[2] = add_128(v[2], v[7]);
380
v[3] = add_128(v[3], v[4]);
381
v[15] = xor_128(v[15], v[0]);
382
v[12] = xor_128(v[12], v[1]);
383
v[13] = xor_128(v[13], v[2]);
384
v[14] = xor_128(v[14], v[3]);
385
v[15] = rot16_128(v[15]);
386
v[12] = rot16_128(v[12]);
387
v[13] = rot16_128(v[13]);
388
v[14] = rot16_128(v[14]);
389
v[10] = add_128(v[10], v[15]);
390
v[11] = add_128(v[11], v[12]);
391
v[8] = add_128(v[8], v[13]);
392
v[9] = add_128(v[9], v[14]);
393
v[5] = xor_128(v[5], v[10]);
394
v[6] = xor_128(v[6], v[11]);
395
v[7] = xor_128(v[7], v[8]);
396
v[4] = xor_128(v[4], v[9]);
397
v[5] = rot12_128(v[5]);
398
v[6] = rot12_128(v[6]);
399
v[7] = rot12_128(v[7]);
400
v[4] = rot12_128(v[4]);
401
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
402
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
403
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
404
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
405
v[0] = add_128(v[0], v[5]);
406
v[1] = add_128(v[1], v[6]);
407
v[2] = add_128(v[2], v[7]);
408
v[3] = add_128(v[3], v[4]);
409
v[15] = xor_128(v[15], v[0]);
410
v[12] = xor_128(v[12], v[1]);
411
v[13] = xor_128(v[13], v[2]);
412
v[14] = xor_128(v[14], v[3]);
413
v[15] = rot8_128(v[15]);
414
v[12] = rot8_128(v[12]);
415
v[13] = rot8_128(v[13]);
416
v[14] = rot8_128(v[14]);
417
v[10] = add_128(v[10], v[15]);
418
v[11] = add_128(v[11], v[12]);
419
v[8] = add_128(v[8], v[13]);
420
v[9] = add_128(v[9], v[14]);
421
v[5] = xor_128(v[5], v[10]);
422
v[6] = xor_128(v[6], v[11]);
423
v[7] = xor_128(v[7], v[8]);
424
v[4] = xor_128(v[4], v[9]);
425
v[5] = rot7_128(v[5]);
426
v[6] = rot7_128(v[6]);
427
v[7] = rot7_128(v[7]);
428
v[4] = rot7_128(v[4]);
429
}
430
431
INLINE void transpose_vecs_128(__m128i vecs[4]) {
432
// Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
433
// 22/33. Note that this doesn't split the vector into two lanes, as the
434
// AVX2 counterparts do.
435
__m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
436
__m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
437
__m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
438
__m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
439
440
// Interleave 64-bit lanes.
441
__m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
442
__m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
443
__m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
444
__m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
445
446
vecs[0] = abcd_0;
447
vecs[1] = abcd_1;
448
vecs[2] = abcd_2;
449
vecs[3] = abcd_3;
450
}
451
452
INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
453
size_t block_offset, __m128i out[16]) {
454
out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
455
out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
456
out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
457
out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
458
out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
459
out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
460
out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
461
out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
462
out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
463
out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
464
out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
465
out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
466
out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
467
out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
468
out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
469
out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
470
for (size_t i = 0; i < 4; ++i) {
471
_mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
472
}
473
transpose_vecs_128(&out[0]);
474
transpose_vecs_128(&out[4]);
475
transpose_vecs_128(&out[8]);
476
transpose_vecs_128(&out[12]);
477
}
478
479
INLINE void load_counters4(uint64_t counter, bool increment_counter,
480
__m128i *out_lo, __m128i *out_hi) {
481
uint64_t mask = (increment_counter ? ~0 : 0);
482
__m256i mask_vec = _mm256_set1_epi64x(mask);
483
__m256i deltas = _mm256_setr_epi64x(0, 1, 2, 3);
484
deltas = _mm256_and_si256(mask_vec, deltas);
485
__m256i counters =
486
_mm256_add_epi64(_mm256_set1_epi64x((int64_t)counter), deltas);
487
*out_lo = _mm256_cvtepi64_epi32(counters);
488
*out_hi = _mm256_cvtepi64_epi32(_mm256_srli_epi64(counters, 32));
489
}
490
491
static
492
void blake3_hash4_avx512(const uint8_t *const *inputs, size_t blocks,
493
const uint32_t key[8], uint64_t counter,
494
bool increment_counter, uint8_t flags,
495
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
496
__m128i h_vecs[8] = {
497
set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]),
498
set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]),
499
};
500
__m128i counter_low_vec, counter_high_vec;
501
load_counters4(counter, increment_counter, &counter_low_vec,
502
&counter_high_vec);
503
uint8_t block_flags = flags | flags_start;
504
505
for (size_t block = 0; block < blocks; block++) {
506
if (block + 1 == blocks) {
507
block_flags |= flags_end;
508
}
509
__m128i block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
510
__m128i block_flags_vec = set1_128(block_flags);
511
__m128i msg_vecs[16];
512
transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
513
514
__m128i v[16] = {
515
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
516
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
517
set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]),
518
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
519
};
520
round_fn4(v, msg_vecs, 0);
521
round_fn4(v, msg_vecs, 1);
522
round_fn4(v, msg_vecs, 2);
523
round_fn4(v, msg_vecs, 3);
524
round_fn4(v, msg_vecs, 4);
525
round_fn4(v, msg_vecs, 5);
526
round_fn4(v, msg_vecs, 6);
527
h_vecs[0] = xor_128(v[0], v[8]);
528
h_vecs[1] = xor_128(v[1], v[9]);
529
h_vecs[2] = xor_128(v[2], v[10]);
530
h_vecs[3] = xor_128(v[3], v[11]);
531
h_vecs[4] = xor_128(v[4], v[12]);
532
h_vecs[5] = xor_128(v[5], v[13]);
533
h_vecs[6] = xor_128(v[6], v[14]);
534
h_vecs[7] = xor_128(v[7], v[15]);
535
536
block_flags = flags;
537
}
538
539
transpose_vecs_128(&h_vecs[0]);
540
transpose_vecs_128(&h_vecs[4]);
541
// The first four vecs now contain the first half of each output, and the
542
// second four vecs contain the second half of each output.
543
storeu_128(h_vecs[0], &out[0 * sizeof(__m128i)]);
544
storeu_128(h_vecs[4], &out[1 * sizeof(__m128i)]);
545
storeu_128(h_vecs[1], &out[2 * sizeof(__m128i)]);
546
storeu_128(h_vecs[5], &out[3 * sizeof(__m128i)]);
547
storeu_128(h_vecs[2], &out[4 * sizeof(__m128i)]);
548
storeu_128(h_vecs[6], &out[5 * sizeof(__m128i)]);
549
storeu_128(h_vecs[3], &out[6 * sizeof(__m128i)]);
550
storeu_128(h_vecs[7], &out[7 * sizeof(__m128i)]);
551
}
552
553
/*
554
* ----------------------------------------------------------------------------
555
* hash8_avx512
556
* ----------------------------------------------------------------------------
557
*/
558
559
INLINE void round_fn8(__m256i v[16], __m256i m[16], size_t r) {
560
v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
561
v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
562
v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
563
v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
564
v[0] = add_256(v[0], v[4]);
565
v[1] = add_256(v[1], v[5]);
566
v[2] = add_256(v[2], v[6]);
567
v[3] = add_256(v[3], v[7]);
568
v[12] = xor_256(v[12], v[0]);
569
v[13] = xor_256(v[13], v[1]);
570
v[14] = xor_256(v[14], v[2]);
571
v[15] = xor_256(v[15], v[3]);
572
v[12] = rot16_256(v[12]);
573
v[13] = rot16_256(v[13]);
574
v[14] = rot16_256(v[14]);
575
v[15] = rot16_256(v[15]);
576
v[8] = add_256(v[8], v[12]);
577
v[9] = add_256(v[9], v[13]);
578
v[10] = add_256(v[10], v[14]);
579
v[11] = add_256(v[11], v[15]);
580
v[4] = xor_256(v[4], v[8]);
581
v[5] = xor_256(v[5], v[9]);
582
v[6] = xor_256(v[6], v[10]);
583
v[7] = xor_256(v[7], v[11]);
584
v[4] = rot12_256(v[4]);
585
v[5] = rot12_256(v[5]);
586
v[6] = rot12_256(v[6]);
587
v[7] = rot12_256(v[7]);
588
v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
589
v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
590
v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
591
v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
592
v[0] = add_256(v[0], v[4]);
593
v[1] = add_256(v[1], v[5]);
594
v[2] = add_256(v[2], v[6]);
595
v[3] = add_256(v[3], v[7]);
596
v[12] = xor_256(v[12], v[0]);
597
v[13] = xor_256(v[13], v[1]);
598
v[14] = xor_256(v[14], v[2]);
599
v[15] = xor_256(v[15], v[3]);
600
v[12] = rot8_256(v[12]);
601
v[13] = rot8_256(v[13]);
602
v[14] = rot8_256(v[14]);
603
v[15] = rot8_256(v[15]);
604
v[8] = add_256(v[8], v[12]);
605
v[9] = add_256(v[9], v[13]);
606
v[10] = add_256(v[10], v[14]);
607
v[11] = add_256(v[11], v[15]);
608
v[4] = xor_256(v[4], v[8]);
609
v[5] = xor_256(v[5], v[9]);
610
v[6] = xor_256(v[6], v[10]);
611
v[7] = xor_256(v[7], v[11]);
612
v[4] = rot7_256(v[4]);
613
v[5] = rot7_256(v[5]);
614
v[6] = rot7_256(v[6]);
615
v[7] = rot7_256(v[7]);
616
617
v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
618
v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
619
v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
620
v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
621
v[0] = add_256(v[0], v[5]);
622
v[1] = add_256(v[1], v[6]);
623
v[2] = add_256(v[2], v[7]);
624
v[3] = add_256(v[3], v[4]);
625
v[15] = xor_256(v[15], v[0]);
626
v[12] = xor_256(v[12], v[1]);
627
v[13] = xor_256(v[13], v[2]);
628
v[14] = xor_256(v[14], v[3]);
629
v[15] = rot16_256(v[15]);
630
v[12] = rot16_256(v[12]);
631
v[13] = rot16_256(v[13]);
632
v[14] = rot16_256(v[14]);
633
v[10] = add_256(v[10], v[15]);
634
v[11] = add_256(v[11], v[12]);
635
v[8] = add_256(v[8], v[13]);
636
v[9] = add_256(v[9], v[14]);
637
v[5] = xor_256(v[5], v[10]);
638
v[6] = xor_256(v[6], v[11]);
639
v[7] = xor_256(v[7], v[8]);
640
v[4] = xor_256(v[4], v[9]);
641
v[5] = rot12_256(v[5]);
642
v[6] = rot12_256(v[6]);
643
v[7] = rot12_256(v[7]);
644
v[4] = rot12_256(v[4]);
645
v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
646
v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
647
v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
648
v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
649
v[0] = add_256(v[0], v[5]);
650
v[1] = add_256(v[1], v[6]);
651
v[2] = add_256(v[2], v[7]);
652
v[3] = add_256(v[3], v[4]);
653
v[15] = xor_256(v[15], v[0]);
654
v[12] = xor_256(v[12], v[1]);
655
v[13] = xor_256(v[13], v[2]);
656
v[14] = xor_256(v[14], v[3]);
657
v[15] = rot8_256(v[15]);
658
v[12] = rot8_256(v[12]);
659
v[13] = rot8_256(v[13]);
660
v[14] = rot8_256(v[14]);
661
v[10] = add_256(v[10], v[15]);
662
v[11] = add_256(v[11], v[12]);
663
v[8] = add_256(v[8], v[13]);
664
v[9] = add_256(v[9], v[14]);
665
v[5] = xor_256(v[5], v[10]);
666
v[6] = xor_256(v[6], v[11]);
667
v[7] = xor_256(v[7], v[8]);
668
v[4] = xor_256(v[4], v[9]);
669
v[5] = rot7_256(v[5]);
670
v[6] = rot7_256(v[6]);
671
v[7] = rot7_256(v[7]);
672
v[4] = rot7_256(v[4]);
673
}
674
675
INLINE void transpose_vecs_256(__m256i vecs[8]) {
676
// Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high
677
// is 22/33/66/77.
678
__m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]);
679
__m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]);
680
__m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]);
681
__m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]);
682
__m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]);
683
__m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]);
684
__m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]);
685
__m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]);
686
687
// Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is
688
// 11/33.
689
__m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145);
690
__m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145);
691
__m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367);
692
__m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367);
693
__m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145);
694
__m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145);
695
__m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367);
696
__m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367);
697
698
// Interleave 128-bit lanes.
699
vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20);
700
vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20);
701
vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20);
702
vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20);
703
vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31);
704
vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31);
705
vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31);
706
vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31);
707
}
708
709
INLINE void transpose_msg_vecs8(const uint8_t *const *inputs,
710
size_t block_offset, __m256i out[16]) {
711
out[0] = loadu_256(&inputs[0][block_offset + 0 * sizeof(__m256i)]);
712
out[1] = loadu_256(&inputs[1][block_offset + 0 * sizeof(__m256i)]);
713
out[2] = loadu_256(&inputs[2][block_offset + 0 * sizeof(__m256i)]);
714
out[3] = loadu_256(&inputs[3][block_offset + 0 * sizeof(__m256i)]);
715
out[4] = loadu_256(&inputs[4][block_offset + 0 * sizeof(__m256i)]);
716
out[5] = loadu_256(&inputs[5][block_offset + 0 * sizeof(__m256i)]);
717
out[6] = loadu_256(&inputs[6][block_offset + 0 * sizeof(__m256i)]);
718
out[7] = loadu_256(&inputs[7][block_offset + 0 * sizeof(__m256i)]);
719
out[8] = loadu_256(&inputs[0][block_offset + 1 * sizeof(__m256i)]);
720
out[9] = loadu_256(&inputs[1][block_offset + 1 * sizeof(__m256i)]);
721
out[10] = loadu_256(&inputs[2][block_offset + 1 * sizeof(__m256i)]);
722
out[11] = loadu_256(&inputs[3][block_offset + 1 * sizeof(__m256i)]);
723
out[12] = loadu_256(&inputs[4][block_offset + 1 * sizeof(__m256i)]);
724
out[13] = loadu_256(&inputs[5][block_offset + 1 * sizeof(__m256i)]);
725
out[14] = loadu_256(&inputs[6][block_offset + 1 * sizeof(__m256i)]);
726
out[15] = loadu_256(&inputs[7][block_offset + 1 * sizeof(__m256i)]);
727
for (size_t i = 0; i < 8; ++i) {
728
_mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
729
}
730
transpose_vecs_256(&out[0]);
731
transpose_vecs_256(&out[8]);
732
}
733
734
INLINE void load_counters8(uint64_t counter, bool increment_counter,
735
__m256i *out_lo, __m256i *out_hi) {
736
uint64_t mask = (increment_counter ? ~0 : 0);
737
__m512i mask_vec = _mm512_set1_epi64(mask);
738
__m512i deltas = _mm512_setr_epi64(0, 1, 2, 3, 4, 5, 6, 7);
739
deltas = _mm512_and_si512(mask_vec, deltas);
740
__m512i counters =
741
_mm512_add_epi64(_mm512_set1_epi64((int64_t)counter), deltas);
742
*out_lo = _mm512_cvtepi64_epi32(counters);
743
*out_hi = _mm512_cvtepi64_epi32(_mm512_srli_epi64(counters, 32));
744
}
745
746
static
747
void blake3_hash8_avx512(const uint8_t *const *inputs, size_t blocks,
748
const uint32_t key[8], uint64_t counter,
749
bool increment_counter, uint8_t flags,
750
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
751
__m256i h_vecs[8] = {
752
set1_256(key[0]), set1_256(key[1]), set1_256(key[2]), set1_256(key[3]),
753
set1_256(key[4]), set1_256(key[5]), set1_256(key[6]), set1_256(key[7]),
754
};
755
__m256i counter_low_vec, counter_high_vec;
756
load_counters8(counter, increment_counter, &counter_low_vec,
757
&counter_high_vec);
758
uint8_t block_flags = flags | flags_start;
759
760
for (size_t block = 0; block < blocks; block++) {
761
if (block + 1 == blocks) {
762
block_flags |= flags_end;
763
}
764
__m256i block_len_vec = set1_256(BLAKE3_BLOCK_LEN);
765
__m256i block_flags_vec = set1_256(block_flags);
766
__m256i msg_vecs[16];
767
transpose_msg_vecs8(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
768
769
__m256i v[16] = {
770
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
771
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
772
set1_256(IV[0]), set1_256(IV[1]), set1_256(IV[2]), set1_256(IV[3]),
773
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
774
};
775
round_fn8(v, msg_vecs, 0);
776
round_fn8(v, msg_vecs, 1);
777
round_fn8(v, msg_vecs, 2);
778
round_fn8(v, msg_vecs, 3);
779
round_fn8(v, msg_vecs, 4);
780
round_fn8(v, msg_vecs, 5);
781
round_fn8(v, msg_vecs, 6);
782
h_vecs[0] = xor_256(v[0], v[8]);
783
h_vecs[1] = xor_256(v[1], v[9]);
784
h_vecs[2] = xor_256(v[2], v[10]);
785
h_vecs[3] = xor_256(v[3], v[11]);
786
h_vecs[4] = xor_256(v[4], v[12]);
787
h_vecs[5] = xor_256(v[5], v[13]);
788
h_vecs[6] = xor_256(v[6], v[14]);
789
h_vecs[7] = xor_256(v[7], v[15]);
790
791
block_flags = flags;
792
}
793
794
transpose_vecs_256(h_vecs);
795
storeu_256(h_vecs[0], &out[0 * sizeof(__m256i)]);
796
storeu_256(h_vecs[1], &out[1 * sizeof(__m256i)]);
797
storeu_256(h_vecs[2], &out[2 * sizeof(__m256i)]);
798
storeu_256(h_vecs[3], &out[3 * sizeof(__m256i)]);
799
storeu_256(h_vecs[4], &out[4 * sizeof(__m256i)]);
800
storeu_256(h_vecs[5], &out[5 * sizeof(__m256i)]);
801
storeu_256(h_vecs[6], &out[6 * sizeof(__m256i)]);
802
storeu_256(h_vecs[7], &out[7 * sizeof(__m256i)]);
803
}
804
805
/*
806
* ----------------------------------------------------------------------------
807
* hash16_avx512
808
* ----------------------------------------------------------------------------
809
*/
810
811
INLINE void round_fn16(__m512i v[16], __m512i m[16], size_t r) {
812
v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
813
v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
814
v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
815
v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
816
v[0] = add_512(v[0], v[4]);
817
v[1] = add_512(v[1], v[5]);
818
v[2] = add_512(v[2], v[6]);
819
v[3] = add_512(v[3], v[7]);
820
v[12] = xor_512(v[12], v[0]);
821
v[13] = xor_512(v[13], v[1]);
822
v[14] = xor_512(v[14], v[2]);
823
v[15] = xor_512(v[15], v[3]);
824
v[12] = rot16_512(v[12]);
825
v[13] = rot16_512(v[13]);
826
v[14] = rot16_512(v[14]);
827
v[15] = rot16_512(v[15]);
828
v[8] = add_512(v[8], v[12]);
829
v[9] = add_512(v[9], v[13]);
830
v[10] = add_512(v[10], v[14]);
831
v[11] = add_512(v[11], v[15]);
832
v[4] = xor_512(v[4], v[8]);
833
v[5] = xor_512(v[5], v[9]);
834
v[6] = xor_512(v[6], v[10]);
835
v[7] = xor_512(v[7], v[11]);
836
v[4] = rot12_512(v[4]);
837
v[5] = rot12_512(v[5]);
838
v[6] = rot12_512(v[6]);
839
v[7] = rot12_512(v[7]);
840
v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
841
v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
842
v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
843
v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
844
v[0] = add_512(v[0], v[4]);
845
v[1] = add_512(v[1], v[5]);
846
v[2] = add_512(v[2], v[6]);
847
v[3] = add_512(v[3], v[7]);
848
v[12] = xor_512(v[12], v[0]);
849
v[13] = xor_512(v[13], v[1]);
850
v[14] = xor_512(v[14], v[2]);
851
v[15] = xor_512(v[15], v[3]);
852
v[12] = rot8_512(v[12]);
853
v[13] = rot8_512(v[13]);
854
v[14] = rot8_512(v[14]);
855
v[15] = rot8_512(v[15]);
856
v[8] = add_512(v[8], v[12]);
857
v[9] = add_512(v[9], v[13]);
858
v[10] = add_512(v[10], v[14]);
859
v[11] = add_512(v[11], v[15]);
860
v[4] = xor_512(v[4], v[8]);
861
v[5] = xor_512(v[5], v[9]);
862
v[6] = xor_512(v[6], v[10]);
863
v[7] = xor_512(v[7], v[11]);
864
v[4] = rot7_512(v[4]);
865
v[5] = rot7_512(v[5]);
866
v[6] = rot7_512(v[6]);
867
v[7] = rot7_512(v[7]);
868
869
v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
870
v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
871
v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
872
v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
873
v[0] = add_512(v[0], v[5]);
874
v[1] = add_512(v[1], v[6]);
875
v[2] = add_512(v[2], v[7]);
876
v[3] = add_512(v[3], v[4]);
877
v[15] = xor_512(v[15], v[0]);
878
v[12] = xor_512(v[12], v[1]);
879
v[13] = xor_512(v[13], v[2]);
880
v[14] = xor_512(v[14], v[3]);
881
v[15] = rot16_512(v[15]);
882
v[12] = rot16_512(v[12]);
883
v[13] = rot16_512(v[13]);
884
v[14] = rot16_512(v[14]);
885
v[10] = add_512(v[10], v[15]);
886
v[11] = add_512(v[11], v[12]);
887
v[8] = add_512(v[8], v[13]);
888
v[9] = add_512(v[9], v[14]);
889
v[5] = xor_512(v[5], v[10]);
890
v[6] = xor_512(v[6], v[11]);
891
v[7] = xor_512(v[7], v[8]);
892
v[4] = xor_512(v[4], v[9]);
893
v[5] = rot12_512(v[5]);
894
v[6] = rot12_512(v[6]);
895
v[7] = rot12_512(v[7]);
896
v[4] = rot12_512(v[4]);
897
v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
898
v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
899
v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
900
v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
901
v[0] = add_512(v[0], v[5]);
902
v[1] = add_512(v[1], v[6]);
903
v[2] = add_512(v[2], v[7]);
904
v[3] = add_512(v[3], v[4]);
905
v[15] = xor_512(v[15], v[0]);
906
v[12] = xor_512(v[12], v[1]);
907
v[13] = xor_512(v[13], v[2]);
908
v[14] = xor_512(v[14], v[3]);
909
v[15] = rot8_512(v[15]);
910
v[12] = rot8_512(v[12]);
911
v[13] = rot8_512(v[13]);
912
v[14] = rot8_512(v[14]);
913
v[10] = add_512(v[10], v[15]);
914
v[11] = add_512(v[11], v[12]);
915
v[8] = add_512(v[8], v[13]);
916
v[9] = add_512(v[9], v[14]);
917
v[5] = xor_512(v[5], v[10]);
918
v[6] = xor_512(v[6], v[11]);
919
v[7] = xor_512(v[7], v[8]);
920
v[4] = xor_512(v[4], v[9]);
921
v[5] = rot7_512(v[5]);
922
v[6] = rot7_512(v[6]);
923
v[7] = rot7_512(v[7]);
924
v[4] = rot7_512(v[4]);
925
}
926
927
// 0b10001000, or lanes a0/a2/b0/b2 in little-endian order
928
#define LO_IMM8 0x88
929
930
INLINE __m512i unpack_lo_128(__m512i a, __m512i b) {
931
return _mm512_shuffle_i32x4(a, b, LO_IMM8);
932
}
933
934
// 0b11011101, or lanes a1/a3/b1/b3 in little-endian order
935
#define HI_IMM8 0xdd
936
937
INLINE __m512i unpack_hi_128(__m512i a, __m512i b) {
938
return _mm512_shuffle_i32x4(a, b, HI_IMM8);
939
}
940
941
INLINE void transpose_vecs_512(__m512i vecs[16]) {
942
// Interleave 32-bit lanes. The _0 unpack is lanes
943
// 0/0/1/1/4/4/5/5/8/8/9/9/12/12/13/13, and the _2 unpack is lanes
944
// 2/2/3/3/6/6/7/7/10/10/11/11/14/14/15/15.
945
__m512i ab_0 = _mm512_unpacklo_epi32(vecs[0], vecs[1]);
946
__m512i ab_2 = _mm512_unpackhi_epi32(vecs[0], vecs[1]);
947
__m512i cd_0 = _mm512_unpacklo_epi32(vecs[2], vecs[3]);
948
__m512i cd_2 = _mm512_unpackhi_epi32(vecs[2], vecs[3]);
949
__m512i ef_0 = _mm512_unpacklo_epi32(vecs[4], vecs[5]);
950
__m512i ef_2 = _mm512_unpackhi_epi32(vecs[4], vecs[5]);
951
__m512i gh_0 = _mm512_unpacklo_epi32(vecs[6], vecs[7]);
952
__m512i gh_2 = _mm512_unpackhi_epi32(vecs[6], vecs[7]);
953
__m512i ij_0 = _mm512_unpacklo_epi32(vecs[8], vecs[9]);
954
__m512i ij_2 = _mm512_unpackhi_epi32(vecs[8], vecs[9]);
955
__m512i kl_0 = _mm512_unpacklo_epi32(vecs[10], vecs[11]);
956
__m512i kl_2 = _mm512_unpackhi_epi32(vecs[10], vecs[11]);
957
__m512i mn_0 = _mm512_unpacklo_epi32(vecs[12], vecs[13]);
958
__m512i mn_2 = _mm512_unpackhi_epi32(vecs[12], vecs[13]);
959
__m512i op_0 = _mm512_unpacklo_epi32(vecs[14], vecs[15]);
960
__m512i op_2 = _mm512_unpackhi_epi32(vecs[14], vecs[15]);
961
962
// Interleave 64-bit lates. The _0 unpack is lanes
963
// 0/0/0/0/4/4/4/4/8/8/8/8/12/12/12/12, the _1 unpack is lanes
964
// 1/1/1/1/5/5/5/5/9/9/9/9/13/13/13/13, the _2 unpack is lanes
965
// 2/2/2/2/6/6/6/6/10/10/10/10/14/14/14/14, and the _3 unpack is lanes
966
// 3/3/3/3/7/7/7/7/11/11/11/11/15/15/15/15.
967
__m512i abcd_0 = _mm512_unpacklo_epi64(ab_0, cd_0);
968
__m512i abcd_1 = _mm512_unpackhi_epi64(ab_0, cd_0);
969
__m512i abcd_2 = _mm512_unpacklo_epi64(ab_2, cd_2);
970
__m512i abcd_3 = _mm512_unpackhi_epi64(ab_2, cd_2);
971
__m512i efgh_0 = _mm512_unpacklo_epi64(ef_0, gh_0);
972
__m512i efgh_1 = _mm512_unpackhi_epi64(ef_0, gh_0);
973
__m512i efgh_2 = _mm512_unpacklo_epi64(ef_2, gh_2);
974
__m512i efgh_3 = _mm512_unpackhi_epi64(ef_2, gh_2);
975
__m512i ijkl_0 = _mm512_unpacklo_epi64(ij_0, kl_0);
976
__m512i ijkl_1 = _mm512_unpackhi_epi64(ij_0, kl_0);
977
__m512i ijkl_2 = _mm512_unpacklo_epi64(ij_2, kl_2);
978
__m512i ijkl_3 = _mm512_unpackhi_epi64(ij_2, kl_2);
979
__m512i mnop_0 = _mm512_unpacklo_epi64(mn_0, op_0);
980
__m512i mnop_1 = _mm512_unpackhi_epi64(mn_0, op_0);
981
__m512i mnop_2 = _mm512_unpacklo_epi64(mn_2, op_2);
982
__m512i mnop_3 = _mm512_unpackhi_epi64(mn_2, op_2);
983
984
// Interleave 128-bit lanes. The _0 unpack is
985
// 0/0/0/0/8/8/8/8/0/0/0/0/8/8/8/8, the _1 unpack is
986
// 1/1/1/1/9/9/9/9/1/1/1/1/9/9/9/9, and so on.
987
__m512i abcdefgh_0 = unpack_lo_128(abcd_0, efgh_0);
988
__m512i abcdefgh_1 = unpack_lo_128(abcd_1, efgh_1);
989
__m512i abcdefgh_2 = unpack_lo_128(abcd_2, efgh_2);
990
__m512i abcdefgh_3 = unpack_lo_128(abcd_3, efgh_3);
991
__m512i abcdefgh_4 = unpack_hi_128(abcd_0, efgh_0);
992
__m512i abcdefgh_5 = unpack_hi_128(abcd_1, efgh_1);
993
__m512i abcdefgh_6 = unpack_hi_128(abcd_2, efgh_2);
994
__m512i abcdefgh_7 = unpack_hi_128(abcd_3, efgh_3);
995
__m512i ijklmnop_0 = unpack_lo_128(ijkl_0, mnop_0);
996
__m512i ijklmnop_1 = unpack_lo_128(ijkl_1, mnop_1);
997
__m512i ijklmnop_2 = unpack_lo_128(ijkl_2, mnop_2);
998
__m512i ijklmnop_3 = unpack_lo_128(ijkl_3, mnop_3);
999
__m512i ijklmnop_4 = unpack_hi_128(ijkl_0, mnop_0);
1000
__m512i ijklmnop_5 = unpack_hi_128(ijkl_1, mnop_1);
1001
__m512i ijklmnop_6 = unpack_hi_128(ijkl_2, mnop_2);
1002
__m512i ijklmnop_7 = unpack_hi_128(ijkl_3, mnop_3);
1003
1004
// Interleave 128-bit lanes again for the final outputs.
1005
vecs[0] = unpack_lo_128(abcdefgh_0, ijklmnop_0);
1006
vecs[1] = unpack_lo_128(abcdefgh_1, ijklmnop_1);
1007
vecs[2] = unpack_lo_128(abcdefgh_2, ijklmnop_2);
1008
vecs[3] = unpack_lo_128(abcdefgh_3, ijklmnop_3);
1009
vecs[4] = unpack_lo_128(abcdefgh_4, ijklmnop_4);
1010
vecs[5] = unpack_lo_128(abcdefgh_5, ijklmnop_5);
1011
vecs[6] = unpack_lo_128(abcdefgh_6, ijklmnop_6);
1012
vecs[7] = unpack_lo_128(abcdefgh_7, ijklmnop_7);
1013
vecs[8] = unpack_hi_128(abcdefgh_0, ijklmnop_0);
1014
vecs[9] = unpack_hi_128(abcdefgh_1, ijklmnop_1);
1015
vecs[10] = unpack_hi_128(abcdefgh_2, ijklmnop_2);
1016
vecs[11] = unpack_hi_128(abcdefgh_3, ijklmnop_3);
1017
vecs[12] = unpack_hi_128(abcdefgh_4, ijklmnop_4);
1018
vecs[13] = unpack_hi_128(abcdefgh_5, ijklmnop_5);
1019
vecs[14] = unpack_hi_128(abcdefgh_6, ijklmnop_6);
1020
vecs[15] = unpack_hi_128(abcdefgh_7, ijklmnop_7);
1021
}
1022
1023
INLINE void transpose_msg_vecs16(const uint8_t *const *inputs,
1024
size_t block_offset, __m512i out[16]) {
1025
out[0] = loadu_512(&inputs[0][block_offset]);
1026
out[1] = loadu_512(&inputs[1][block_offset]);
1027
out[2] = loadu_512(&inputs[2][block_offset]);
1028
out[3] = loadu_512(&inputs[3][block_offset]);
1029
out[4] = loadu_512(&inputs[4][block_offset]);
1030
out[5] = loadu_512(&inputs[5][block_offset]);
1031
out[6] = loadu_512(&inputs[6][block_offset]);
1032
out[7] = loadu_512(&inputs[7][block_offset]);
1033
out[8] = loadu_512(&inputs[8][block_offset]);
1034
out[9] = loadu_512(&inputs[9][block_offset]);
1035
out[10] = loadu_512(&inputs[10][block_offset]);
1036
out[11] = loadu_512(&inputs[11][block_offset]);
1037
out[12] = loadu_512(&inputs[12][block_offset]);
1038
out[13] = loadu_512(&inputs[13][block_offset]);
1039
out[14] = loadu_512(&inputs[14][block_offset]);
1040
out[15] = loadu_512(&inputs[15][block_offset]);
1041
for (size_t i = 0; i < 16; ++i) {
1042
_mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
1043
}
1044
transpose_vecs_512(out);
1045
}
1046
1047
INLINE void load_counters16(uint64_t counter, bool increment_counter,
1048
__m512i *out_lo, __m512i *out_hi) {
1049
const __m512i mask = _mm512_set1_epi32(-(int32_t)increment_counter);
1050
const __m512i add0 = _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0);
1051
const __m512i add1 = _mm512_and_si512(mask, add0);
1052
__m512i l = _mm512_add_epi32(_mm512_set1_epi32((int32_t)counter), add1);
1053
__mmask16 carry = _mm512_cmp_epu32_mask(l, add1, _MM_CMPINT_LT);
1054
__m512i h = _mm512_mask_add_epi32(_mm512_set1_epi32((int32_t)(counter >> 32)), carry, _mm512_set1_epi32((int32_t)(counter >> 32)), _mm512_set1_epi32(1));
1055
*out_lo = l;
1056
*out_hi = h;
1057
}
1058
1059
static
1060
void blake3_hash16_avx512(const uint8_t *const *inputs, size_t blocks,
1061
const uint32_t key[8], uint64_t counter,
1062
bool increment_counter, uint8_t flags,
1063
uint8_t flags_start, uint8_t flags_end,
1064
uint8_t *out) {
1065
__m512i h_vecs[8] = {
1066
set1_512(key[0]), set1_512(key[1]), set1_512(key[2]), set1_512(key[3]),
1067
set1_512(key[4]), set1_512(key[5]), set1_512(key[6]), set1_512(key[7]),
1068
};
1069
__m512i counter_low_vec, counter_high_vec;
1070
load_counters16(counter, increment_counter, &counter_low_vec,
1071
&counter_high_vec);
1072
uint8_t block_flags = flags | flags_start;
1073
1074
for (size_t block = 0; block < blocks; block++) {
1075
if (block + 1 == blocks) {
1076
block_flags |= flags_end;
1077
}
1078
__m512i block_len_vec = set1_512(BLAKE3_BLOCK_LEN);
1079
__m512i block_flags_vec = set1_512(block_flags);
1080
__m512i msg_vecs[16];
1081
transpose_msg_vecs16(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
1082
1083
__m512i v[16] = {
1084
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
1085
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
1086
set1_512(IV[0]), set1_512(IV[1]), set1_512(IV[2]), set1_512(IV[3]),
1087
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
1088
};
1089
round_fn16(v, msg_vecs, 0);
1090
round_fn16(v, msg_vecs, 1);
1091
round_fn16(v, msg_vecs, 2);
1092
round_fn16(v, msg_vecs, 3);
1093
round_fn16(v, msg_vecs, 4);
1094
round_fn16(v, msg_vecs, 5);
1095
round_fn16(v, msg_vecs, 6);
1096
h_vecs[0] = xor_512(v[0], v[8]);
1097
h_vecs[1] = xor_512(v[1], v[9]);
1098
h_vecs[2] = xor_512(v[2], v[10]);
1099
h_vecs[3] = xor_512(v[3], v[11]);
1100
h_vecs[4] = xor_512(v[4], v[12]);
1101
h_vecs[5] = xor_512(v[5], v[13]);
1102
h_vecs[6] = xor_512(v[6], v[14]);
1103
h_vecs[7] = xor_512(v[7], v[15]);
1104
1105
block_flags = flags;
1106
}
1107
1108
// transpose_vecs_512 operates on a 16x16 matrix of words, but we only have 8
1109
// state vectors. Pad the matrix with zeros. After transposition, store the
1110
// lower half of each vector.
1111
__m512i padded[16] = {
1112
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
1113
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
1114
set1_512(0), set1_512(0), set1_512(0), set1_512(0),
1115
set1_512(0), set1_512(0), set1_512(0), set1_512(0),
1116
};
1117
transpose_vecs_512(padded);
1118
_mm256_mask_storeu_epi32(&out[0 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[0]));
1119
_mm256_mask_storeu_epi32(&out[1 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[1]));
1120
_mm256_mask_storeu_epi32(&out[2 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[2]));
1121
_mm256_mask_storeu_epi32(&out[3 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[3]));
1122
_mm256_mask_storeu_epi32(&out[4 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[4]));
1123
_mm256_mask_storeu_epi32(&out[5 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[5]));
1124
_mm256_mask_storeu_epi32(&out[6 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[6]));
1125
_mm256_mask_storeu_epi32(&out[7 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[7]));
1126
_mm256_mask_storeu_epi32(&out[8 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[8]));
1127
_mm256_mask_storeu_epi32(&out[9 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[9]));
1128
_mm256_mask_storeu_epi32(&out[10 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[10]));
1129
_mm256_mask_storeu_epi32(&out[11 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[11]));
1130
_mm256_mask_storeu_epi32(&out[12 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[12]));
1131
_mm256_mask_storeu_epi32(&out[13 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[13]));
1132
_mm256_mask_storeu_epi32(&out[14 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[14]));
1133
_mm256_mask_storeu_epi32(&out[15 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[15]));
1134
}
1135
1136
/*
1137
* ----------------------------------------------------------------------------
1138
* hash_many_avx512
1139
* ----------------------------------------------------------------------------
1140
*/
1141
1142
INLINE void hash_one_avx512(const uint8_t *input, size_t blocks,
1143
const uint32_t key[8], uint64_t counter,
1144
uint8_t flags, uint8_t flags_start,
1145
uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
1146
uint32_t cv[8];
1147
memcpy(cv, key, BLAKE3_KEY_LEN);
1148
uint8_t block_flags = flags | flags_start;
1149
while (blocks > 0) {
1150
if (blocks == 1) {
1151
block_flags |= flags_end;
1152
}
1153
blake3_compress_in_place_avx512(cv, input, BLAKE3_BLOCK_LEN, counter,
1154
block_flags);
1155
input = &input[BLAKE3_BLOCK_LEN];
1156
blocks -= 1;
1157
block_flags = flags;
1158
}
1159
memcpy(out, cv, BLAKE3_OUT_LEN);
1160
}
1161
1162
void blake3_hash_many_avx512(const uint8_t *const *inputs, size_t num_inputs,
1163
size_t blocks, const uint32_t key[8],
1164
uint64_t counter, bool increment_counter,
1165
uint8_t flags, uint8_t flags_start,
1166
uint8_t flags_end, uint8_t *out) {
1167
while (num_inputs >= 16) {
1168
blake3_hash16_avx512(inputs, blocks, key, counter, increment_counter, flags,
1169
flags_start, flags_end, out);
1170
if (increment_counter) {
1171
counter += 16;
1172
}
1173
inputs += 16;
1174
num_inputs -= 16;
1175
out = &out[16 * BLAKE3_OUT_LEN];
1176
}
1177
while (num_inputs >= 8) {
1178
blake3_hash8_avx512(inputs, blocks, key, counter, increment_counter, flags,
1179
flags_start, flags_end, out);
1180
if (increment_counter) {
1181
counter += 8;
1182
}
1183
inputs += 8;
1184
num_inputs -= 8;
1185
out = &out[8 * BLAKE3_OUT_LEN];
1186
}
1187
while (num_inputs >= 4) {
1188
blake3_hash4_avx512(inputs, blocks, key, counter, increment_counter, flags,
1189
flags_start, flags_end, out);
1190
if (increment_counter) {
1191
counter += 4;
1192
}
1193
inputs += 4;
1194
num_inputs -= 4;
1195
out = &out[4 * BLAKE3_OUT_LEN];
1196
}
1197
while (num_inputs > 0) {
1198
hash_one_avx512(inputs[0], blocks, key, counter, flags, flags_start,
1199
flags_end, out);
1200
if (increment_counter) {
1201
counter += 1;
1202
}
1203
inputs += 1;
1204
num_inputs -= 1;
1205
out = &out[BLAKE3_OUT_LEN];
1206
}
1207
}
1208
1209