Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Support/BLAKE3/blake3_neon.c
35266 views
1
#include "blake3_impl.h"
2
3
#if BLAKE3_USE_NEON
4
5
#include <arm_neon.h>
6
7
#ifdef __ARM_BIG_ENDIAN
8
#error "This implementation only supports little-endian ARM."
9
// It might be that all we need for big-endian support here is to get the loads
10
// and stores right, but step zero would be finding a way to test it in CI.
11
#endif
12
13
INLINE uint32x4_t loadu_128(const uint8_t src[16]) {
14
// vld1q_u32 has alignment requirements. Don't use it.
15
uint32x4_t x;
16
memcpy(&x, src, 16);
17
return x;
18
}
19
20
INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) {
21
// vst1q_u32 has alignment requirements. Don't use it.
22
memcpy(dest, &src, 16);
23
}
24
25
INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) {
26
return vaddq_u32(a, b);
27
}
28
29
INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) {
30
return veorq_u32(a, b);
31
}
32
33
INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); }
34
35
INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
36
uint32_t array[4] = {a, b, c, d};
37
return vld1q_u32(array);
38
}
39
40
INLINE uint32x4_t rot16_128(uint32x4_t x) {
41
return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16));
42
}
43
44
INLINE uint32x4_t rot12_128(uint32x4_t x) {
45
return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12));
46
}
47
48
INLINE uint32x4_t rot8_128(uint32x4_t x) {
49
return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8));
50
}
51
52
INLINE uint32x4_t rot7_128(uint32x4_t x) {
53
return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7));
54
}
55
56
// TODO: compress_neon
57
58
// TODO: hash2_neon
59
60
/*
61
* ----------------------------------------------------------------------------
62
* hash4_neon
63
* ----------------------------------------------------------------------------
64
*/
65
66
INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) {
67
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
68
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
69
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
70
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
71
v[0] = add_128(v[0], v[4]);
72
v[1] = add_128(v[1], v[5]);
73
v[2] = add_128(v[2], v[6]);
74
v[3] = add_128(v[3], v[7]);
75
v[12] = xor_128(v[12], v[0]);
76
v[13] = xor_128(v[13], v[1]);
77
v[14] = xor_128(v[14], v[2]);
78
v[15] = xor_128(v[15], v[3]);
79
v[12] = rot16_128(v[12]);
80
v[13] = rot16_128(v[13]);
81
v[14] = rot16_128(v[14]);
82
v[15] = rot16_128(v[15]);
83
v[8] = add_128(v[8], v[12]);
84
v[9] = add_128(v[9], v[13]);
85
v[10] = add_128(v[10], v[14]);
86
v[11] = add_128(v[11], v[15]);
87
v[4] = xor_128(v[4], v[8]);
88
v[5] = xor_128(v[5], v[9]);
89
v[6] = xor_128(v[6], v[10]);
90
v[7] = xor_128(v[7], v[11]);
91
v[4] = rot12_128(v[4]);
92
v[5] = rot12_128(v[5]);
93
v[6] = rot12_128(v[6]);
94
v[7] = rot12_128(v[7]);
95
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
96
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
97
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
98
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
99
v[0] = add_128(v[0], v[4]);
100
v[1] = add_128(v[1], v[5]);
101
v[2] = add_128(v[2], v[6]);
102
v[3] = add_128(v[3], v[7]);
103
v[12] = xor_128(v[12], v[0]);
104
v[13] = xor_128(v[13], v[1]);
105
v[14] = xor_128(v[14], v[2]);
106
v[15] = xor_128(v[15], v[3]);
107
v[12] = rot8_128(v[12]);
108
v[13] = rot8_128(v[13]);
109
v[14] = rot8_128(v[14]);
110
v[15] = rot8_128(v[15]);
111
v[8] = add_128(v[8], v[12]);
112
v[9] = add_128(v[9], v[13]);
113
v[10] = add_128(v[10], v[14]);
114
v[11] = add_128(v[11], v[15]);
115
v[4] = xor_128(v[4], v[8]);
116
v[5] = xor_128(v[5], v[9]);
117
v[6] = xor_128(v[6], v[10]);
118
v[7] = xor_128(v[7], v[11]);
119
v[4] = rot7_128(v[4]);
120
v[5] = rot7_128(v[5]);
121
v[6] = rot7_128(v[6]);
122
v[7] = rot7_128(v[7]);
123
124
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
125
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
126
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
127
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
128
v[0] = add_128(v[0], v[5]);
129
v[1] = add_128(v[1], v[6]);
130
v[2] = add_128(v[2], v[7]);
131
v[3] = add_128(v[3], v[4]);
132
v[15] = xor_128(v[15], v[0]);
133
v[12] = xor_128(v[12], v[1]);
134
v[13] = xor_128(v[13], v[2]);
135
v[14] = xor_128(v[14], v[3]);
136
v[15] = rot16_128(v[15]);
137
v[12] = rot16_128(v[12]);
138
v[13] = rot16_128(v[13]);
139
v[14] = rot16_128(v[14]);
140
v[10] = add_128(v[10], v[15]);
141
v[11] = add_128(v[11], v[12]);
142
v[8] = add_128(v[8], v[13]);
143
v[9] = add_128(v[9], v[14]);
144
v[5] = xor_128(v[5], v[10]);
145
v[6] = xor_128(v[6], v[11]);
146
v[7] = xor_128(v[7], v[8]);
147
v[4] = xor_128(v[4], v[9]);
148
v[5] = rot12_128(v[5]);
149
v[6] = rot12_128(v[6]);
150
v[7] = rot12_128(v[7]);
151
v[4] = rot12_128(v[4]);
152
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
153
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
154
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
155
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
156
v[0] = add_128(v[0], v[5]);
157
v[1] = add_128(v[1], v[6]);
158
v[2] = add_128(v[2], v[7]);
159
v[3] = add_128(v[3], v[4]);
160
v[15] = xor_128(v[15], v[0]);
161
v[12] = xor_128(v[12], v[1]);
162
v[13] = xor_128(v[13], v[2]);
163
v[14] = xor_128(v[14], v[3]);
164
v[15] = rot8_128(v[15]);
165
v[12] = rot8_128(v[12]);
166
v[13] = rot8_128(v[13]);
167
v[14] = rot8_128(v[14]);
168
v[10] = add_128(v[10], v[15]);
169
v[11] = add_128(v[11], v[12]);
170
v[8] = add_128(v[8], v[13]);
171
v[9] = add_128(v[9], v[14]);
172
v[5] = xor_128(v[5], v[10]);
173
v[6] = xor_128(v[6], v[11]);
174
v[7] = xor_128(v[7], v[8]);
175
v[4] = xor_128(v[4], v[9]);
176
v[5] = rot7_128(v[5]);
177
v[6] = rot7_128(v[6]);
178
v[7] = rot7_128(v[7]);
179
v[4] = rot7_128(v[4]);
180
}
181
182
INLINE void transpose_vecs_128(uint32x4_t vecs[4]) {
183
// Individually transpose the four 2x2 sub-matrices in each corner.
184
uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]);
185
uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]);
186
187
// Swap the top-right and bottom-left 2x2s (which just got transposed).
188
vecs[0] =
189
vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0]));
190
vecs[1] =
191
vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1]));
192
vecs[2] =
193
vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0]));
194
vecs[3] =
195
vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1]));
196
}
197
198
INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
199
size_t block_offset, uint32x4_t out[16]) {
200
out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]);
201
out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]);
202
out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]);
203
out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]);
204
out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]);
205
out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]);
206
out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]);
207
out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]);
208
out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]);
209
out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]);
210
out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]);
211
out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]);
212
out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]);
213
out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]);
214
out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]);
215
out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]);
216
transpose_vecs_128(&out[0]);
217
transpose_vecs_128(&out[4]);
218
transpose_vecs_128(&out[8]);
219
transpose_vecs_128(&out[12]);
220
}
221
222
INLINE void load_counters4(uint64_t counter, bool increment_counter,
223
uint32x4_t *out_low, uint32x4_t *out_high) {
224
uint64_t mask = (increment_counter ? ~0 : 0);
225
*out_low = set4(
226
counter_low(counter + (mask & 0)), counter_low(counter + (mask & 1)),
227
counter_low(counter + (mask & 2)), counter_low(counter + (mask & 3)));
228
*out_high = set4(
229
counter_high(counter + (mask & 0)), counter_high(counter + (mask & 1)),
230
counter_high(counter + (mask & 2)), counter_high(counter + (mask & 3)));
231
}
232
233
static
234
void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks,
235
const uint32_t key[8], uint64_t counter,
236
bool increment_counter, uint8_t flags,
237
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
238
uint32x4_t h_vecs[8] = {
239
set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]),
240
set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]),
241
};
242
uint32x4_t counter_low_vec, counter_high_vec;
243
load_counters4(counter, increment_counter, &counter_low_vec,
244
&counter_high_vec);
245
uint8_t block_flags = flags | flags_start;
246
247
for (size_t block = 0; block < blocks; block++) {
248
if (block + 1 == blocks) {
249
block_flags |= flags_end;
250
}
251
uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
252
uint32x4_t block_flags_vec = set1_128(block_flags);
253
uint32x4_t msg_vecs[16];
254
transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
255
256
uint32x4_t v[16] = {
257
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
258
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
259
set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]),
260
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
261
};
262
round_fn4(v, msg_vecs, 0);
263
round_fn4(v, msg_vecs, 1);
264
round_fn4(v, msg_vecs, 2);
265
round_fn4(v, msg_vecs, 3);
266
round_fn4(v, msg_vecs, 4);
267
round_fn4(v, msg_vecs, 5);
268
round_fn4(v, msg_vecs, 6);
269
h_vecs[0] = xor_128(v[0], v[8]);
270
h_vecs[1] = xor_128(v[1], v[9]);
271
h_vecs[2] = xor_128(v[2], v[10]);
272
h_vecs[3] = xor_128(v[3], v[11]);
273
h_vecs[4] = xor_128(v[4], v[12]);
274
h_vecs[5] = xor_128(v[5], v[13]);
275
h_vecs[6] = xor_128(v[6], v[14]);
276
h_vecs[7] = xor_128(v[7], v[15]);
277
278
block_flags = flags;
279
}
280
281
transpose_vecs_128(&h_vecs[0]);
282
transpose_vecs_128(&h_vecs[4]);
283
// The first four vecs now contain the first half of each output, and the
284
// second four vecs contain the second half of each output.
285
storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]);
286
storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]);
287
storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]);
288
storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]);
289
storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]);
290
storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]);
291
storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]);
292
storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]);
293
}
294
295
/*
296
* ----------------------------------------------------------------------------
297
* hash_many_neon
298
* ----------------------------------------------------------------------------
299
*/
300
301
void blake3_compress_in_place_portable(uint32_t cv[8],
302
const uint8_t block[BLAKE3_BLOCK_LEN],
303
uint8_t block_len, uint64_t counter,
304
uint8_t flags);
305
306
INLINE void hash_one_neon(const uint8_t *input, size_t blocks,
307
const uint32_t key[8], uint64_t counter,
308
uint8_t flags, uint8_t flags_start, uint8_t flags_end,
309
uint8_t out[BLAKE3_OUT_LEN]) {
310
uint32_t cv[8];
311
memcpy(cv, key, BLAKE3_KEY_LEN);
312
uint8_t block_flags = flags | flags_start;
313
while (blocks > 0) {
314
if (blocks == 1) {
315
block_flags |= flags_end;
316
}
317
// TODO: Implement compress_neon. However note that according to
318
// https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227,
319
// compress_neon might not be any faster than compress_portable.
320
blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter,
321
block_flags);
322
input = &input[BLAKE3_BLOCK_LEN];
323
blocks -= 1;
324
block_flags = flags;
325
}
326
memcpy(out, cv, BLAKE3_OUT_LEN);
327
}
328
329
void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
330
size_t blocks, const uint32_t key[8],
331
uint64_t counter, bool increment_counter,
332
uint8_t flags, uint8_t flags_start,
333
uint8_t flags_end, uint8_t *out) {
334
while (num_inputs >= 4) {
335
blake3_hash4_neon(inputs, blocks, key, counter, increment_counter, flags,
336
flags_start, flags_end, out);
337
if (increment_counter) {
338
counter += 4;
339
}
340
inputs += 4;
341
num_inputs -= 4;
342
out = &out[4 * BLAKE3_OUT_LEN];
343
}
344
while (num_inputs > 0) {
345
hash_one_neon(inputs[0], blocks, key, counter, flags, flags_start,
346
flags_end, out);
347
if (increment_counter) {
348
counter += 1;
349
}
350
inputs += 1;
351
num_inputs -= 1;
352
out = &out[BLAKE3_OUT_LEN];
353
}
354
}
355
356
#endif // BLAKE3_USE_NEON
357
358