Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Support/BLAKE3/blake3_sse2.c
35267 views
1
#include "blake3_impl.h"
2
3
#include <immintrin.h>
4
5
#define DEGREE 4
6
7
#define _mm_shuffle_ps2(a, b, c) \
8
(_mm_castps_si128( \
9
_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
10
11
INLINE __m128i loadu(const uint8_t src[16]) {
12
return _mm_loadu_si128((const __m128i *)src);
13
}
14
15
INLINE void storeu(__m128i src, uint8_t dest[16]) {
16
_mm_storeu_si128((__m128i *)dest, src);
17
}
18
19
INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
20
21
// Note that clang-format doesn't like the name "xor" for some reason.
22
INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
23
24
INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
25
26
INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
27
return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
28
}
29
30
INLINE __m128i rot16(__m128i x) {
31
return _mm_shufflehi_epi16(_mm_shufflelo_epi16(x, 0xB1), 0xB1);
32
}
33
34
INLINE __m128i rot12(__m128i x) {
35
return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12));
36
}
37
38
INLINE __m128i rot8(__m128i x) {
39
return xorv(_mm_srli_epi32(x, 8), _mm_slli_epi32(x, 32 - 8));
40
}
41
42
INLINE __m128i rot7(__m128i x) {
43
return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7));
44
}
45
46
INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
47
__m128i m) {
48
*row0 = addv(addv(*row0, m), *row1);
49
*row3 = xorv(*row3, *row0);
50
*row3 = rot16(*row3);
51
*row2 = addv(*row2, *row3);
52
*row1 = xorv(*row1, *row2);
53
*row1 = rot12(*row1);
54
}
55
56
INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
57
__m128i m) {
58
*row0 = addv(addv(*row0, m), *row1);
59
*row3 = xorv(*row3, *row0);
60
*row3 = rot8(*row3);
61
*row2 = addv(*row2, *row3);
62
*row1 = xorv(*row1, *row2);
63
*row1 = rot7(*row1);
64
}
65
66
// Note the optimization here of leaving row1 as the unrotated row, rather than
67
// row0. All the message loads below are adjusted to compensate for this. See
68
// discussion at https://github.com/sneves/blake2-avx2/pull/4
69
INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
70
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
71
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
72
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
73
}
74
75
INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
76
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
77
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
78
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
79
}
80
81
INLINE __m128i blend_epi16(__m128i a, __m128i b, const int16_t imm8) {
82
const __m128i bits = _mm_set_epi16(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01);
83
__m128i mask = _mm_set1_epi16(imm8);
84
mask = _mm_and_si128(mask, bits);
85
mask = _mm_cmpeq_epi16(mask, bits);
86
return _mm_or_si128(_mm_and_si128(mask, b), _mm_andnot_si128(mask, a));
87
}
88
89
INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
90
const uint8_t block[BLAKE3_BLOCK_LEN],
91
uint8_t block_len, uint64_t counter, uint8_t flags) {
92
rows[0] = loadu((uint8_t *)&cv[0]);
93
rows[1] = loadu((uint8_t *)&cv[4]);
94
rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
95
rows[3] = set4(counter_low(counter), counter_high(counter),
96
(uint32_t)block_len, (uint32_t)flags);
97
98
__m128i m0 = loadu(&block[sizeof(__m128i) * 0]);
99
__m128i m1 = loadu(&block[sizeof(__m128i) * 1]);
100
__m128i m2 = loadu(&block[sizeof(__m128i) * 2]);
101
__m128i m3 = loadu(&block[sizeof(__m128i) * 3]);
102
103
__m128i t0, t1, t2, t3, tt;
104
105
// Round 1. The first round permutes the message words from the original
106
// input order, into the groups that get mixed in parallel.
107
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0
108
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
109
t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1
110
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
111
diagonalize(&rows[0], &rows[2], &rows[3]);
112
t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8
113
t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14
114
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
115
t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9
116
t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15
117
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
118
undiagonalize(&rows[0], &rows[2], &rows[3]);
119
m0 = t0;
120
m1 = t1;
121
m2 = t2;
122
m3 = t3;
123
124
// Round 2. This round and all following rounds apply a fixed permutation
125
// to the message words from the round before.
126
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
127
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
128
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
129
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
130
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
131
t1 = blend_epi16(tt, t1, 0xCC);
132
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
133
diagonalize(&rows[0], &rows[2], &rows[3]);
134
t2 = _mm_unpacklo_epi64(m3, m1);
135
tt = blend_epi16(t2, m2, 0xC0);
136
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
137
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
138
t3 = _mm_unpackhi_epi32(m1, m3);
139
tt = _mm_unpacklo_epi32(m2, t3);
140
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
141
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
142
undiagonalize(&rows[0], &rows[2], &rows[3]);
143
m0 = t0;
144
m1 = t1;
145
m2 = t2;
146
m3 = t3;
147
148
// Round 3
149
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
150
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
151
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
152
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
153
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
154
t1 = blend_epi16(tt, t1, 0xCC);
155
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
156
diagonalize(&rows[0], &rows[2], &rows[3]);
157
t2 = _mm_unpacklo_epi64(m3, m1);
158
tt = blend_epi16(t2, m2, 0xC0);
159
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
160
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
161
t3 = _mm_unpackhi_epi32(m1, m3);
162
tt = _mm_unpacklo_epi32(m2, t3);
163
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
164
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
165
undiagonalize(&rows[0], &rows[2], &rows[3]);
166
m0 = t0;
167
m1 = t1;
168
m2 = t2;
169
m3 = t3;
170
171
// Round 4
172
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
173
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
174
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
175
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
176
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
177
t1 = blend_epi16(tt, t1, 0xCC);
178
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
179
diagonalize(&rows[0], &rows[2], &rows[3]);
180
t2 = _mm_unpacklo_epi64(m3, m1);
181
tt = blend_epi16(t2, m2, 0xC0);
182
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
183
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
184
t3 = _mm_unpackhi_epi32(m1, m3);
185
tt = _mm_unpacklo_epi32(m2, t3);
186
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
187
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
188
undiagonalize(&rows[0], &rows[2], &rows[3]);
189
m0 = t0;
190
m1 = t1;
191
m2 = t2;
192
m3 = t3;
193
194
// Round 5
195
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
196
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
197
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
198
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
199
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
200
t1 = blend_epi16(tt, t1, 0xCC);
201
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
202
diagonalize(&rows[0], &rows[2], &rows[3]);
203
t2 = _mm_unpacklo_epi64(m3, m1);
204
tt = blend_epi16(t2, m2, 0xC0);
205
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
206
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
207
t3 = _mm_unpackhi_epi32(m1, m3);
208
tt = _mm_unpacklo_epi32(m2, t3);
209
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
210
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
211
undiagonalize(&rows[0], &rows[2], &rows[3]);
212
m0 = t0;
213
m1 = t1;
214
m2 = t2;
215
m3 = t3;
216
217
// Round 6
218
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
219
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
220
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
221
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
222
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
223
t1 = blend_epi16(tt, t1, 0xCC);
224
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
225
diagonalize(&rows[0], &rows[2], &rows[3]);
226
t2 = _mm_unpacklo_epi64(m3, m1);
227
tt = blend_epi16(t2, m2, 0xC0);
228
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
229
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
230
t3 = _mm_unpackhi_epi32(m1, m3);
231
tt = _mm_unpacklo_epi32(m2, t3);
232
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
233
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
234
undiagonalize(&rows[0], &rows[2], &rows[3]);
235
m0 = t0;
236
m1 = t1;
237
m2 = t2;
238
m3 = t3;
239
240
// Round 7
241
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
242
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
243
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
244
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
245
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
246
t1 = blend_epi16(tt, t1, 0xCC);
247
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
248
diagonalize(&rows[0], &rows[2], &rows[3]);
249
t2 = _mm_unpacklo_epi64(m3, m1);
250
tt = blend_epi16(t2, m2, 0xC0);
251
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
252
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
253
t3 = _mm_unpackhi_epi32(m1, m3);
254
tt = _mm_unpacklo_epi32(m2, t3);
255
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
256
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
257
undiagonalize(&rows[0], &rows[2], &rows[3]);
258
}
259
260
void blake3_compress_in_place_sse2(uint32_t cv[8],
261
const uint8_t block[BLAKE3_BLOCK_LEN],
262
uint8_t block_len, uint64_t counter,
263
uint8_t flags) {
264
__m128i rows[4];
265
compress_pre(rows, cv, block, block_len, counter, flags);
266
storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]);
267
storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]);
268
}
269
270
void blake3_compress_xof_sse2(const uint32_t cv[8],
271
const uint8_t block[BLAKE3_BLOCK_LEN],
272
uint8_t block_len, uint64_t counter,
273
uint8_t flags, uint8_t out[64]) {
274
__m128i rows[4];
275
compress_pre(rows, cv, block, block_len, counter, flags);
276
storeu(xorv(rows[0], rows[2]), &out[0]);
277
storeu(xorv(rows[1], rows[3]), &out[16]);
278
storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]);
279
storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]);
280
}
281
282
INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) {
283
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
284
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
285
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
286
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
287
v[0] = addv(v[0], v[4]);
288
v[1] = addv(v[1], v[5]);
289
v[2] = addv(v[2], v[6]);
290
v[3] = addv(v[3], v[7]);
291
v[12] = xorv(v[12], v[0]);
292
v[13] = xorv(v[13], v[1]);
293
v[14] = xorv(v[14], v[2]);
294
v[15] = xorv(v[15], v[3]);
295
v[12] = rot16(v[12]);
296
v[13] = rot16(v[13]);
297
v[14] = rot16(v[14]);
298
v[15] = rot16(v[15]);
299
v[8] = addv(v[8], v[12]);
300
v[9] = addv(v[9], v[13]);
301
v[10] = addv(v[10], v[14]);
302
v[11] = addv(v[11], v[15]);
303
v[4] = xorv(v[4], v[8]);
304
v[5] = xorv(v[5], v[9]);
305
v[6] = xorv(v[6], v[10]);
306
v[7] = xorv(v[7], v[11]);
307
v[4] = rot12(v[4]);
308
v[5] = rot12(v[5]);
309
v[6] = rot12(v[6]);
310
v[7] = rot12(v[7]);
311
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
312
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
313
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
314
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
315
v[0] = addv(v[0], v[4]);
316
v[1] = addv(v[1], v[5]);
317
v[2] = addv(v[2], v[6]);
318
v[3] = addv(v[3], v[7]);
319
v[12] = xorv(v[12], v[0]);
320
v[13] = xorv(v[13], v[1]);
321
v[14] = xorv(v[14], v[2]);
322
v[15] = xorv(v[15], v[3]);
323
v[12] = rot8(v[12]);
324
v[13] = rot8(v[13]);
325
v[14] = rot8(v[14]);
326
v[15] = rot8(v[15]);
327
v[8] = addv(v[8], v[12]);
328
v[9] = addv(v[9], v[13]);
329
v[10] = addv(v[10], v[14]);
330
v[11] = addv(v[11], v[15]);
331
v[4] = xorv(v[4], v[8]);
332
v[5] = xorv(v[5], v[9]);
333
v[6] = xorv(v[6], v[10]);
334
v[7] = xorv(v[7], v[11]);
335
v[4] = rot7(v[4]);
336
v[5] = rot7(v[5]);
337
v[6] = rot7(v[6]);
338
v[7] = rot7(v[7]);
339
340
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
341
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
342
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
343
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
344
v[0] = addv(v[0], v[5]);
345
v[1] = addv(v[1], v[6]);
346
v[2] = addv(v[2], v[7]);
347
v[3] = addv(v[3], v[4]);
348
v[15] = xorv(v[15], v[0]);
349
v[12] = xorv(v[12], v[1]);
350
v[13] = xorv(v[13], v[2]);
351
v[14] = xorv(v[14], v[3]);
352
v[15] = rot16(v[15]);
353
v[12] = rot16(v[12]);
354
v[13] = rot16(v[13]);
355
v[14] = rot16(v[14]);
356
v[10] = addv(v[10], v[15]);
357
v[11] = addv(v[11], v[12]);
358
v[8] = addv(v[8], v[13]);
359
v[9] = addv(v[9], v[14]);
360
v[5] = xorv(v[5], v[10]);
361
v[6] = xorv(v[6], v[11]);
362
v[7] = xorv(v[7], v[8]);
363
v[4] = xorv(v[4], v[9]);
364
v[5] = rot12(v[5]);
365
v[6] = rot12(v[6]);
366
v[7] = rot12(v[7]);
367
v[4] = rot12(v[4]);
368
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
369
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
370
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
371
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
372
v[0] = addv(v[0], v[5]);
373
v[1] = addv(v[1], v[6]);
374
v[2] = addv(v[2], v[7]);
375
v[3] = addv(v[3], v[4]);
376
v[15] = xorv(v[15], v[0]);
377
v[12] = xorv(v[12], v[1]);
378
v[13] = xorv(v[13], v[2]);
379
v[14] = xorv(v[14], v[3]);
380
v[15] = rot8(v[15]);
381
v[12] = rot8(v[12]);
382
v[13] = rot8(v[13]);
383
v[14] = rot8(v[14]);
384
v[10] = addv(v[10], v[15]);
385
v[11] = addv(v[11], v[12]);
386
v[8] = addv(v[8], v[13]);
387
v[9] = addv(v[9], v[14]);
388
v[5] = xorv(v[5], v[10]);
389
v[6] = xorv(v[6], v[11]);
390
v[7] = xorv(v[7], v[8]);
391
v[4] = xorv(v[4], v[9]);
392
v[5] = rot7(v[5]);
393
v[6] = rot7(v[6]);
394
v[7] = rot7(v[7]);
395
v[4] = rot7(v[4]);
396
}
397
398
INLINE void transpose_vecs(__m128i vecs[DEGREE]) {
399
// Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
400
// 22/33. Note that this doesn't split the vector into two lanes, as the
401
// AVX2 counterparts do.
402
__m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
403
__m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
404
__m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
405
__m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
406
407
// Interleave 64-bit lanes.
408
__m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
409
__m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
410
__m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
411
__m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
412
413
vecs[0] = abcd_0;
414
vecs[1] = abcd_1;
415
vecs[2] = abcd_2;
416
vecs[3] = abcd_3;
417
}
418
419
INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
420
size_t block_offset, __m128i out[16]) {
421
out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
422
out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
423
out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
424
out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
425
out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
426
out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
427
out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
428
out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
429
out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
430
out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
431
out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
432
out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
433
out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
434
out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
435
out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
436
out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
437
for (size_t i = 0; i < 4; ++i) {
438
_mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
439
}
440
transpose_vecs(&out[0]);
441
transpose_vecs(&out[4]);
442
transpose_vecs(&out[8]);
443
transpose_vecs(&out[12]);
444
}
445
446
INLINE void load_counters(uint64_t counter, bool increment_counter,
447
__m128i *out_lo, __m128i *out_hi) {
448
const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter);
449
const __m128i add0 = _mm_set_epi32(3, 2, 1, 0);
450
const __m128i add1 = _mm_and_si128(mask, add0);
451
__m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1);
452
__m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)),
453
_mm_xor_si128( l, _mm_set1_epi32(0x80000000)));
454
__m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry);
455
*out_lo = l;
456
*out_hi = h;
457
}
458
459
static
460
void blake3_hash4_sse2(const uint8_t *const *inputs, size_t blocks,
461
const uint32_t key[8], uint64_t counter,
462
bool increment_counter, uint8_t flags,
463
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
464
__m128i h_vecs[8] = {
465
set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
466
set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
467
};
468
__m128i counter_low_vec, counter_high_vec;
469
load_counters(counter, increment_counter, &counter_low_vec,
470
&counter_high_vec);
471
uint8_t block_flags = flags | flags_start;
472
473
for (size_t block = 0; block < blocks; block++) {
474
if (block + 1 == blocks) {
475
block_flags |= flags_end;
476
}
477
__m128i block_len_vec = set1(BLAKE3_BLOCK_LEN);
478
__m128i block_flags_vec = set1(block_flags);
479
__m128i msg_vecs[16];
480
transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
481
482
__m128i v[16] = {
483
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
484
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
485
set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]),
486
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
487
};
488
round_fn(v, msg_vecs, 0);
489
round_fn(v, msg_vecs, 1);
490
round_fn(v, msg_vecs, 2);
491
round_fn(v, msg_vecs, 3);
492
round_fn(v, msg_vecs, 4);
493
round_fn(v, msg_vecs, 5);
494
round_fn(v, msg_vecs, 6);
495
h_vecs[0] = xorv(v[0], v[8]);
496
h_vecs[1] = xorv(v[1], v[9]);
497
h_vecs[2] = xorv(v[2], v[10]);
498
h_vecs[3] = xorv(v[3], v[11]);
499
h_vecs[4] = xorv(v[4], v[12]);
500
h_vecs[5] = xorv(v[5], v[13]);
501
h_vecs[6] = xorv(v[6], v[14]);
502
h_vecs[7] = xorv(v[7], v[15]);
503
504
block_flags = flags;
505
}
506
507
transpose_vecs(&h_vecs[0]);
508
transpose_vecs(&h_vecs[4]);
509
// The first four vecs now contain the first half of each output, and the
510
// second four vecs contain the second half of each output.
511
storeu(h_vecs[0], &out[0 * sizeof(__m128i)]);
512
storeu(h_vecs[4], &out[1 * sizeof(__m128i)]);
513
storeu(h_vecs[1], &out[2 * sizeof(__m128i)]);
514
storeu(h_vecs[5], &out[3 * sizeof(__m128i)]);
515
storeu(h_vecs[2], &out[4 * sizeof(__m128i)]);
516
storeu(h_vecs[6], &out[5 * sizeof(__m128i)]);
517
storeu(h_vecs[3], &out[6 * sizeof(__m128i)]);
518
storeu(h_vecs[7], &out[7 * sizeof(__m128i)]);
519
}
520
521
INLINE void hash_one_sse2(const uint8_t *input, size_t blocks,
522
const uint32_t key[8], uint64_t counter,
523
uint8_t flags, uint8_t flags_start,
524
uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
525
uint32_t cv[8];
526
memcpy(cv, key, BLAKE3_KEY_LEN);
527
uint8_t block_flags = flags | flags_start;
528
while (blocks > 0) {
529
if (blocks == 1) {
530
block_flags |= flags_end;
531
}
532
blake3_compress_in_place_sse2(cv, input, BLAKE3_BLOCK_LEN, counter,
533
block_flags);
534
input = &input[BLAKE3_BLOCK_LEN];
535
blocks -= 1;
536
block_flags = flags;
537
}
538
memcpy(out, cv, BLAKE3_OUT_LEN);
539
}
540
541
void blake3_hash_many_sse2(const uint8_t *const *inputs, size_t num_inputs,
542
size_t blocks, const uint32_t key[8],
543
uint64_t counter, bool increment_counter,
544
uint8_t flags, uint8_t flags_start,
545
uint8_t flags_end, uint8_t *out) {
546
while (num_inputs >= DEGREE) {
547
blake3_hash4_sse2(inputs, blocks, key, counter, increment_counter, flags,
548
flags_start, flags_end, out);
549
if (increment_counter) {
550
counter += DEGREE;
551
}
552
inputs += DEGREE;
553
num_inputs -= DEGREE;
554
out = &out[DEGREE * BLAKE3_OUT_LEN];
555
}
556
while (num_inputs > 0) {
557
hash_one_sse2(inputs[0], blocks, key, counter, flags, flags_start,
558
flags_end, out);
559
if (increment_counter) {
560
counter += 1;
561
}
562
inputs += 1;
563
num_inputs -= 1;
564
out = &out[BLAKE3_OUT_LEN];
565
}
566
}
567
568