Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Support/BLAKE3/blake3_sse41.c
35267 views
1
#include "blake3_impl.h"
2
3
#include <immintrin.h>
4
5
#define DEGREE 4
6
7
#define _mm_shuffle_ps2(a, b, c) \
8
(_mm_castps_si128( \
9
_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
10
11
INLINE __m128i loadu(const uint8_t src[16]) {
12
return _mm_loadu_si128((const __m128i *)src);
13
}
14
15
INLINE void storeu(__m128i src, uint8_t dest[16]) {
16
_mm_storeu_si128((__m128i *)dest, src);
17
}
18
19
INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
20
21
// Note that clang-format doesn't like the name "xor" for some reason.
22
INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
23
24
INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
25
26
INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
27
return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
28
}
29
30
INLINE __m128i rot16(__m128i x) {
31
return _mm_shuffle_epi8(
32
x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2));
33
}
34
35
INLINE __m128i rot12(__m128i x) {
36
return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12));
37
}
38
39
INLINE __m128i rot8(__m128i x) {
40
return _mm_shuffle_epi8(
41
x, _mm_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1));
42
}
43
44
INLINE __m128i rot7(__m128i x) {
45
return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7));
46
}
47
48
INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
49
__m128i m) {
50
*row0 = addv(addv(*row0, m), *row1);
51
*row3 = xorv(*row3, *row0);
52
*row3 = rot16(*row3);
53
*row2 = addv(*row2, *row3);
54
*row1 = xorv(*row1, *row2);
55
*row1 = rot12(*row1);
56
}
57
58
INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
59
__m128i m) {
60
*row0 = addv(addv(*row0, m), *row1);
61
*row3 = xorv(*row3, *row0);
62
*row3 = rot8(*row3);
63
*row2 = addv(*row2, *row3);
64
*row1 = xorv(*row1, *row2);
65
*row1 = rot7(*row1);
66
}
67
68
// Note the optimization here of leaving row1 as the unrotated row, rather than
69
// row0. All the message loads below are adjusted to compensate for this. See
70
// discussion at https://github.com/sneves/blake2-avx2/pull/4
71
INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
72
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
73
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
74
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
75
}
76
77
INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
78
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
79
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
80
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
81
}
82
83
INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
84
const uint8_t block[BLAKE3_BLOCK_LEN],
85
uint8_t block_len, uint64_t counter, uint8_t flags) {
86
rows[0] = loadu((uint8_t *)&cv[0]);
87
rows[1] = loadu((uint8_t *)&cv[4]);
88
rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
89
rows[3] = set4(counter_low(counter), counter_high(counter),
90
(uint32_t)block_len, (uint32_t)flags);
91
92
__m128i m0 = loadu(&block[sizeof(__m128i) * 0]);
93
__m128i m1 = loadu(&block[sizeof(__m128i) * 1]);
94
__m128i m2 = loadu(&block[sizeof(__m128i) * 2]);
95
__m128i m3 = loadu(&block[sizeof(__m128i) * 3]);
96
97
__m128i t0, t1, t2, t3, tt;
98
99
// Round 1. The first round permutes the message words from the original
100
// input order, into the groups that get mixed in parallel.
101
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0
102
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
103
t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1
104
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
105
diagonalize(&rows[0], &rows[2], &rows[3]);
106
t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8
107
t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14
108
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
109
t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9
110
t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15
111
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
112
undiagonalize(&rows[0], &rows[2], &rows[3]);
113
m0 = t0;
114
m1 = t1;
115
m2 = t2;
116
m3 = t3;
117
118
// Round 2. This round and all following rounds apply a fixed permutation
119
// to the message words from the round before.
120
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
121
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
122
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
123
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
124
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
125
t1 = _mm_blend_epi16(tt, t1, 0xCC);
126
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
127
diagonalize(&rows[0], &rows[2], &rows[3]);
128
t2 = _mm_unpacklo_epi64(m3, m1);
129
tt = _mm_blend_epi16(t2, m2, 0xC0);
130
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
131
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
132
t3 = _mm_unpackhi_epi32(m1, m3);
133
tt = _mm_unpacklo_epi32(m2, t3);
134
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
135
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
136
undiagonalize(&rows[0], &rows[2], &rows[3]);
137
m0 = t0;
138
m1 = t1;
139
m2 = t2;
140
m3 = t3;
141
142
// Round 3
143
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
144
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
145
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
146
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
147
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
148
t1 = _mm_blend_epi16(tt, t1, 0xCC);
149
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
150
diagonalize(&rows[0], &rows[2], &rows[3]);
151
t2 = _mm_unpacklo_epi64(m3, m1);
152
tt = _mm_blend_epi16(t2, m2, 0xC0);
153
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
154
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
155
t3 = _mm_unpackhi_epi32(m1, m3);
156
tt = _mm_unpacklo_epi32(m2, t3);
157
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
158
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
159
undiagonalize(&rows[0], &rows[2], &rows[3]);
160
m0 = t0;
161
m1 = t1;
162
m2 = t2;
163
m3 = t3;
164
165
// Round 4
166
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
167
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
168
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
169
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
170
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
171
t1 = _mm_blend_epi16(tt, t1, 0xCC);
172
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
173
diagonalize(&rows[0], &rows[2], &rows[3]);
174
t2 = _mm_unpacklo_epi64(m3, m1);
175
tt = _mm_blend_epi16(t2, m2, 0xC0);
176
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
177
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
178
t3 = _mm_unpackhi_epi32(m1, m3);
179
tt = _mm_unpacklo_epi32(m2, t3);
180
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
181
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
182
undiagonalize(&rows[0], &rows[2], &rows[3]);
183
m0 = t0;
184
m1 = t1;
185
m2 = t2;
186
m3 = t3;
187
188
// Round 5
189
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
190
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
191
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
192
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
193
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
194
t1 = _mm_blend_epi16(tt, t1, 0xCC);
195
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
196
diagonalize(&rows[0], &rows[2], &rows[3]);
197
t2 = _mm_unpacklo_epi64(m3, m1);
198
tt = _mm_blend_epi16(t2, m2, 0xC0);
199
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
200
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
201
t3 = _mm_unpackhi_epi32(m1, m3);
202
tt = _mm_unpacklo_epi32(m2, t3);
203
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
204
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
205
undiagonalize(&rows[0], &rows[2], &rows[3]);
206
m0 = t0;
207
m1 = t1;
208
m2 = t2;
209
m3 = t3;
210
211
// Round 6
212
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
213
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
214
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
215
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
216
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
217
t1 = _mm_blend_epi16(tt, t1, 0xCC);
218
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
219
diagonalize(&rows[0], &rows[2], &rows[3]);
220
t2 = _mm_unpacklo_epi64(m3, m1);
221
tt = _mm_blend_epi16(t2, m2, 0xC0);
222
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
223
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
224
t3 = _mm_unpackhi_epi32(m1, m3);
225
tt = _mm_unpacklo_epi32(m2, t3);
226
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
227
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
228
undiagonalize(&rows[0], &rows[2], &rows[3]);
229
m0 = t0;
230
m1 = t1;
231
m2 = t2;
232
m3 = t3;
233
234
// Round 7
235
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
236
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
237
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
238
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
239
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
240
t1 = _mm_blend_epi16(tt, t1, 0xCC);
241
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
242
diagonalize(&rows[0], &rows[2], &rows[3]);
243
t2 = _mm_unpacklo_epi64(m3, m1);
244
tt = _mm_blend_epi16(t2, m2, 0xC0);
245
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
246
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
247
t3 = _mm_unpackhi_epi32(m1, m3);
248
tt = _mm_unpacklo_epi32(m2, t3);
249
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
250
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
251
undiagonalize(&rows[0], &rows[2], &rows[3]);
252
}
253
254
void blake3_compress_in_place_sse41(uint32_t cv[8],
255
const uint8_t block[BLAKE3_BLOCK_LEN],
256
uint8_t block_len, uint64_t counter,
257
uint8_t flags) {
258
__m128i rows[4];
259
compress_pre(rows, cv, block, block_len, counter, flags);
260
storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]);
261
storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]);
262
}
263
264
void blake3_compress_xof_sse41(const uint32_t cv[8],
265
const uint8_t block[BLAKE3_BLOCK_LEN],
266
uint8_t block_len, uint64_t counter,
267
uint8_t flags, uint8_t out[64]) {
268
__m128i rows[4];
269
compress_pre(rows, cv, block, block_len, counter, flags);
270
storeu(xorv(rows[0], rows[2]), &out[0]);
271
storeu(xorv(rows[1], rows[3]), &out[16]);
272
storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]);
273
storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]);
274
}
275
276
INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) {
277
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
278
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
279
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
280
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
281
v[0] = addv(v[0], v[4]);
282
v[1] = addv(v[1], v[5]);
283
v[2] = addv(v[2], v[6]);
284
v[3] = addv(v[3], v[7]);
285
v[12] = xorv(v[12], v[0]);
286
v[13] = xorv(v[13], v[1]);
287
v[14] = xorv(v[14], v[2]);
288
v[15] = xorv(v[15], v[3]);
289
v[12] = rot16(v[12]);
290
v[13] = rot16(v[13]);
291
v[14] = rot16(v[14]);
292
v[15] = rot16(v[15]);
293
v[8] = addv(v[8], v[12]);
294
v[9] = addv(v[9], v[13]);
295
v[10] = addv(v[10], v[14]);
296
v[11] = addv(v[11], v[15]);
297
v[4] = xorv(v[4], v[8]);
298
v[5] = xorv(v[5], v[9]);
299
v[6] = xorv(v[6], v[10]);
300
v[7] = xorv(v[7], v[11]);
301
v[4] = rot12(v[4]);
302
v[5] = rot12(v[5]);
303
v[6] = rot12(v[6]);
304
v[7] = rot12(v[7]);
305
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
306
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
307
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
308
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
309
v[0] = addv(v[0], v[4]);
310
v[1] = addv(v[1], v[5]);
311
v[2] = addv(v[2], v[6]);
312
v[3] = addv(v[3], v[7]);
313
v[12] = xorv(v[12], v[0]);
314
v[13] = xorv(v[13], v[1]);
315
v[14] = xorv(v[14], v[2]);
316
v[15] = xorv(v[15], v[3]);
317
v[12] = rot8(v[12]);
318
v[13] = rot8(v[13]);
319
v[14] = rot8(v[14]);
320
v[15] = rot8(v[15]);
321
v[8] = addv(v[8], v[12]);
322
v[9] = addv(v[9], v[13]);
323
v[10] = addv(v[10], v[14]);
324
v[11] = addv(v[11], v[15]);
325
v[4] = xorv(v[4], v[8]);
326
v[5] = xorv(v[5], v[9]);
327
v[6] = xorv(v[6], v[10]);
328
v[7] = xorv(v[7], v[11]);
329
v[4] = rot7(v[4]);
330
v[5] = rot7(v[5]);
331
v[6] = rot7(v[6]);
332
v[7] = rot7(v[7]);
333
334
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
335
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
336
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
337
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
338
v[0] = addv(v[0], v[5]);
339
v[1] = addv(v[1], v[6]);
340
v[2] = addv(v[2], v[7]);
341
v[3] = addv(v[3], v[4]);
342
v[15] = xorv(v[15], v[0]);
343
v[12] = xorv(v[12], v[1]);
344
v[13] = xorv(v[13], v[2]);
345
v[14] = xorv(v[14], v[3]);
346
v[15] = rot16(v[15]);
347
v[12] = rot16(v[12]);
348
v[13] = rot16(v[13]);
349
v[14] = rot16(v[14]);
350
v[10] = addv(v[10], v[15]);
351
v[11] = addv(v[11], v[12]);
352
v[8] = addv(v[8], v[13]);
353
v[9] = addv(v[9], v[14]);
354
v[5] = xorv(v[5], v[10]);
355
v[6] = xorv(v[6], v[11]);
356
v[7] = xorv(v[7], v[8]);
357
v[4] = xorv(v[4], v[9]);
358
v[5] = rot12(v[5]);
359
v[6] = rot12(v[6]);
360
v[7] = rot12(v[7]);
361
v[4] = rot12(v[4]);
362
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
363
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
364
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
365
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
366
v[0] = addv(v[0], v[5]);
367
v[1] = addv(v[1], v[6]);
368
v[2] = addv(v[2], v[7]);
369
v[3] = addv(v[3], v[4]);
370
v[15] = xorv(v[15], v[0]);
371
v[12] = xorv(v[12], v[1]);
372
v[13] = xorv(v[13], v[2]);
373
v[14] = xorv(v[14], v[3]);
374
v[15] = rot8(v[15]);
375
v[12] = rot8(v[12]);
376
v[13] = rot8(v[13]);
377
v[14] = rot8(v[14]);
378
v[10] = addv(v[10], v[15]);
379
v[11] = addv(v[11], v[12]);
380
v[8] = addv(v[8], v[13]);
381
v[9] = addv(v[9], v[14]);
382
v[5] = xorv(v[5], v[10]);
383
v[6] = xorv(v[6], v[11]);
384
v[7] = xorv(v[7], v[8]);
385
v[4] = xorv(v[4], v[9]);
386
v[5] = rot7(v[5]);
387
v[6] = rot7(v[6]);
388
v[7] = rot7(v[7]);
389
v[4] = rot7(v[4]);
390
}
391
392
INLINE void transpose_vecs(__m128i vecs[DEGREE]) {
393
// Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
394
// 22/33. Note that this doesn't split the vector into two lanes, as the
395
// AVX2 counterparts do.
396
__m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
397
__m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
398
__m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
399
__m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
400
401
// Interleave 64-bit lanes.
402
__m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
403
__m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
404
__m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
405
__m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
406
407
vecs[0] = abcd_0;
408
vecs[1] = abcd_1;
409
vecs[2] = abcd_2;
410
vecs[3] = abcd_3;
411
}
412
413
INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
414
size_t block_offset, __m128i out[16]) {
415
out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
416
out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
417
out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
418
out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
419
out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
420
out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
421
out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
422
out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
423
out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
424
out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
425
out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
426
out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
427
out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
428
out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
429
out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
430
out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
431
for (size_t i = 0; i < 4; ++i) {
432
_mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
433
}
434
transpose_vecs(&out[0]);
435
transpose_vecs(&out[4]);
436
transpose_vecs(&out[8]);
437
transpose_vecs(&out[12]);
438
}
439
440
INLINE void load_counters(uint64_t counter, bool increment_counter,
441
__m128i *out_lo, __m128i *out_hi) {
442
const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter);
443
const __m128i add0 = _mm_set_epi32(3, 2, 1, 0);
444
const __m128i add1 = _mm_and_si128(mask, add0);
445
__m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1);
446
__m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)),
447
_mm_xor_si128( l, _mm_set1_epi32(0x80000000)));
448
__m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry);
449
*out_lo = l;
450
*out_hi = h;
451
}
452
453
static
454
void blake3_hash4_sse41(const uint8_t *const *inputs, size_t blocks,
455
const uint32_t key[8], uint64_t counter,
456
bool increment_counter, uint8_t flags,
457
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
458
__m128i h_vecs[8] = {
459
set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
460
set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
461
};
462
__m128i counter_low_vec, counter_high_vec;
463
load_counters(counter, increment_counter, &counter_low_vec,
464
&counter_high_vec);
465
uint8_t block_flags = flags | flags_start;
466
467
for (size_t block = 0; block < blocks; block++) {
468
if (block + 1 == blocks) {
469
block_flags |= flags_end;
470
}
471
__m128i block_len_vec = set1(BLAKE3_BLOCK_LEN);
472
__m128i block_flags_vec = set1(block_flags);
473
__m128i msg_vecs[16];
474
transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
475
476
__m128i v[16] = {
477
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
478
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
479
set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]),
480
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
481
};
482
round_fn(v, msg_vecs, 0);
483
round_fn(v, msg_vecs, 1);
484
round_fn(v, msg_vecs, 2);
485
round_fn(v, msg_vecs, 3);
486
round_fn(v, msg_vecs, 4);
487
round_fn(v, msg_vecs, 5);
488
round_fn(v, msg_vecs, 6);
489
h_vecs[0] = xorv(v[0], v[8]);
490
h_vecs[1] = xorv(v[1], v[9]);
491
h_vecs[2] = xorv(v[2], v[10]);
492
h_vecs[3] = xorv(v[3], v[11]);
493
h_vecs[4] = xorv(v[4], v[12]);
494
h_vecs[5] = xorv(v[5], v[13]);
495
h_vecs[6] = xorv(v[6], v[14]);
496
h_vecs[7] = xorv(v[7], v[15]);
497
498
block_flags = flags;
499
}
500
501
transpose_vecs(&h_vecs[0]);
502
transpose_vecs(&h_vecs[4]);
503
// The first four vecs now contain the first half of each output, and the
504
// second four vecs contain the second half of each output.
505
storeu(h_vecs[0], &out[0 * sizeof(__m128i)]);
506
storeu(h_vecs[4], &out[1 * sizeof(__m128i)]);
507
storeu(h_vecs[1], &out[2 * sizeof(__m128i)]);
508
storeu(h_vecs[5], &out[3 * sizeof(__m128i)]);
509
storeu(h_vecs[2], &out[4 * sizeof(__m128i)]);
510
storeu(h_vecs[6], &out[5 * sizeof(__m128i)]);
511
storeu(h_vecs[3], &out[6 * sizeof(__m128i)]);
512
storeu(h_vecs[7], &out[7 * sizeof(__m128i)]);
513
}
514
515
INLINE void hash_one_sse41(const uint8_t *input, size_t blocks,
516
const uint32_t key[8], uint64_t counter,
517
uint8_t flags, uint8_t flags_start,
518
uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
519
uint32_t cv[8];
520
memcpy(cv, key, BLAKE3_KEY_LEN);
521
uint8_t block_flags = flags | flags_start;
522
while (blocks > 0) {
523
if (blocks == 1) {
524
block_flags |= flags_end;
525
}
526
blake3_compress_in_place_sse41(cv, input, BLAKE3_BLOCK_LEN, counter,
527
block_flags);
528
input = &input[BLAKE3_BLOCK_LEN];
529
blocks -= 1;
530
block_flags = flags;
531
}
532
memcpy(out, cv, BLAKE3_OUT_LEN);
533
}
534
535
void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
536
size_t blocks, const uint32_t key[8],
537
uint64_t counter, bool increment_counter,
538
uint8_t flags, uint8_t flags_start,
539
uint8_t flags_end, uint8_t *out) {
540
while (num_inputs >= DEGREE) {
541
blake3_hash4_sse41(inputs, blocks, key, counter, increment_counter, flags,
542
flags_start, flags_end, out);
543
if (increment_counter) {
544
counter += DEGREE;
545
}
546
inputs += DEGREE;
547
num_inputs -= DEGREE;
548
out = &out[DEGREE * BLAKE3_OUT_LEN];
549
}
550
while (num_inputs > 0) {
551
hash_one_sse41(inputs[0], blocks, key, counter, flags, flags_start,
552
flags_end, out);
553
if (increment_counter) {
554
counter += 1;
555
}
556
inputs += 1;
557
num_inputs -= 1;
558
out = &out[BLAKE3_OUT_LEN];
559
}
560
}
561
562