Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Support/DivisionByConstantInfo.cpp
35233 views
1
//===----- DivisionByConstantInfo.cpp - division by constant -*- C++ -*----===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// This file implements support for optimizing divisions by a constant
10
///
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/Support/DivisionByConstantInfo.h"
14
15
using namespace llvm;
16
17
/// Calculate the magic numbers required to implement a signed integer division
18
/// by a constant as a sequence of multiplies, adds and shifts. Requires that
19
/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
20
/// Warren, Jr., Chapter 10.
21
SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) {
22
assert(!D.isZero() && "Precondition violation.");
23
24
// We'd be endlessly stuck in the loop.
25
assert(D.getBitWidth() >= 3 && "Does not work at smaller bitwidths.");
26
27
APInt Delta;
28
APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
29
struct SignedDivisionByConstantInfo Retval;
30
31
APInt AD = D.abs();
32
APInt T = SignedMin + (D.lshr(D.getBitWidth() - 1));
33
APInt ANC = T - 1 - T.urem(AD); // absolute value of NC
34
unsigned P = D.getBitWidth() - 1; // initialize P
35
APInt Q1, R1, Q2, R2;
36
// initialize Q1 = 2P/abs(NC); R1 = rem(2P,abs(NC))
37
APInt::udivrem(SignedMin, ANC, Q1, R1);
38
// initialize Q2 = 2P/abs(D); R2 = rem(2P,abs(D))
39
APInt::udivrem(SignedMin, AD, Q2, R2);
40
do {
41
P = P + 1;
42
Q1 <<= 1; // update Q1 = 2P/abs(NC)
43
R1 <<= 1; // update R1 = rem(2P/abs(NC))
44
if (R1.uge(ANC)) { // must be unsigned comparison
45
++Q1;
46
R1 -= ANC;
47
}
48
Q2 <<= 1; // update Q2 = 2P/abs(D)
49
R2 <<= 1; // update R2 = rem(2P/abs(D))
50
if (R2.uge(AD)) { // must be unsigned comparison
51
++Q2;
52
R2 -= AD;
53
}
54
// Delta = AD - R2
55
Delta = AD;
56
Delta -= R2;
57
} while (Q1.ult(Delta) || (Q1 == Delta && R1.isZero()));
58
59
Retval.Magic = std::move(Q2);
60
++Retval.Magic;
61
if (D.isNegative())
62
Retval.Magic.negate(); // resulting magic number
63
Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
64
return Retval;
65
}
66
67
/// Calculate the magic numbers required to implement an unsigned integer
68
/// division by a constant as a sequence of multiplies, adds and shifts.
69
/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
70
/// S. Warren, Jr., chapter 10.
71
/// LeadingZeros can be used to simplify the calculation if the upper bits
72
/// of the divided value are known zero.
73
UnsignedDivisionByConstantInfo
74
UnsignedDivisionByConstantInfo::get(const APInt &D, unsigned LeadingZeros,
75
bool AllowEvenDivisorOptimization) {
76
assert(!D.isZero() && !D.isOne() && "Precondition violation.");
77
assert(D.getBitWidth() > 1 && "Does not work at smaller bitwidths.");
78
79
APInt Delta;
80
struct UnsignedDivisionByConstantInfo Retval;
81
Retval.IsAdd = false; // initialize "add" indicator
82
APInt AllOnes =
83
APInt::getLowBitsSet(D.getBitWidth(), D.getBitWidth() - LeadingZeros);
84
APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
85
APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth());
86
87
// Calculate NC, the largest dividend such that NC.urem(D) == D-1.
88
APInt NC = AllOnes - (AllOnes + 1 - D).urem(D);
89
assert(NC.urem(D) == D - 1 && "Unexpected NC value");
90
unsigned P = D.getBitWidth() - 1; // initialize P
91
APInt Q1, R1, Q2, R2;
92
// initialize Q1 = 2P/NC; R1 = rem(2P,NC)
93
APInt::udivrem(SignedMin, NC, Q1, R1);
94
// initialize Q2 = (2P-1)/D; R2 = rem((2P-1),D)
95
APInt::udivrem(SignedMax, D, Q2, R2);
96
do {
97
P = P + 1;
98
if (R1.uge(NC - R1)) {
99
// update Q1
100
Q1 <<= 1;
101
++Q1;
102
// update R1
103
R1 <<= 1;
104
R1 -= NC;
105
} else {
106
Q1 <<= 1; // update Q1
107
R1 <<= 1; // update R1
108
}
109
if ((R2 + 1).uge(D - R2)) {
110
if (Q2.uge(SignedMax))
111
Retval.IsAdd = true;
112
// update Q2
113
Q2 <<= 1;
114
++Q2;
115
// update R2
116
R2 <<= 1;
117
++R2;
118
R2 -= D;
119
} else {
120
if (Q2.uge(SignedMin))
121
Retval.IsAdd = true;
122
// update Q2
123
Q2 <<= 1;
124
// update R2
125
R2 <<= 1;
126
++R2;
127
}
128
// Delta = D - 1 - R2
129
Delta = D;
130
--Delta;
131
Delta -= R2;
132
} while (P < D.getBitWidth() * 2 &&
133
(Q1.ult(Delta) || (Q1 == Delta && R1.isZero())));
134
135
if (Retval.IsAdd && !D[0] && AllowEvenDivisorOptimization) {
136
unsigned PreShift = D.countr_zero();
137
APInt ShiftedD = D.lshr(PreShift);
138
Retval =
139
UnsignedDivisionByConstantInfo::get(ShiftedD, LeadingZeros + PreShift);
140
assert(Retval.IsAdd == 0 && Retval.PreShift == 0);
141
Retval.PreShift = PreShift;
142
return Retval;
143
}
144
145
Retval.Magic = std::move(Q2); // resulting magic number
146
++Retval.Magic;
147
Retval.PostShift = P - D.getBitWidth(); // resulting shift
148
// Reduce shift amount for IsAdd.
149
if (Retval.IsAdd) {
150
assert(Retval.PostShift > 0 && "Unexpected shift");
151
Retval.PostShift -= 1;
152
}
153
Retval.PreShift = 0;
154
return Retval;
155
}
156
157