Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64A57FPLoadBalancing.cpp
35269 views
1
//===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
// For best-case performance on Cortex-A57, we should try to use a balanced
9
// mix of odd and even D-registers when performing a critical sequence of
10
// independent, non-quadword FP/ASIMD floating-point multiply or
11
// multiply-accumulate operations.
12
//
13
// This pass attempts to detect situations where the register allocation may
14
// adversely affect this load balancing and to change the registers used so as
15
// to better utilize the CPU.
16
//
17
// Ideally we'd just take each multiply or multiply-accumulate in turn and
18
// allocate it alternating even or odd registers. However, multiply-accumulates
19
// are most efficiently performed in the same functional unit as their
20
// accumulation operand. Therefore this pass tries to find maximal sequences
21
// ("Chains") of multiply-accumulates linked via their accumulation operand,
22
// and assign them all the same "color" (oddness/evenness).
23
//
24
// This optimization affects S-register and D-register floating point
25
// multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
26
// FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
27
// not affected.
28
//===----------------------------------------------------------------------===//
29
30
#include "AArch64.h"
31
#include "AArch64InstrInfo.h"
32
#include "AArch64Subtarget.h"
33
#include "llvm/ADT/EquivalenceClasses.h"
34
#include "llvm/CodeGen/MachineFunction.h"
35
#include "llvm/CodeGen/MachineFunctionPass.h"
36
#include "llvm/CodeGen/MachineInstr.h"
37
#include "llvm/CodeGen/MachineInstrBuilder.h"
38
#include "llvm/CodeGen/MachineRegisterInfo.h"
39
#include "llvm/CodeGen/RegisterClassInfo.h"
40
#include "llvm/CodeGen/RegisterScavenging.h"
41
#include "llvm/Support/CommandLine.h"
42
#include "llvm/Support/Debug.h"
43
#include "llvm/Support/raw_ostream.h"
44
using namespace llvm;
45
46
#define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
47
48
// Enforce the algorithm to use the scavenged register even when the original
49
// destination register is the correct color. Used for testing.
50
static cl::opt<bool>
51
TransformAll("aarch64-a57-fp-load-balancing-force-all",
52
cl::desc("Always modify dest registers regardless of color"),
53
cl::init(false), cl::Hidden);
54
55
// Never use the balance information obtained from chains - return a specific
56
// color always. Used for testing.
57
static cl::opt<unsigned>
58
OverrideBalance("aarch64-a57-fp-load-balancing-override",
59
cl::desc("Ignore balance information, always return "
60
"(1: Even, 2: Odd)."),
61
cl::init(0), cl::Hidden);
62
63
//===----------------------------------------------------------------------===//
64
// Helper functions
65
66
// Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
67
static bool isMul(MachineInstr *MI) {
68
switch (MI->getOpcode()) {
69
case AArch64::FMULSrr:
70
case AArch64::FNMULSrr:
71
case AArch64::FMULDrr:
72
case AArch64::FNMULDrr:
73
return true;
74
default:
75
return false;
76
}
77
}
78
79
// Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
80
static bool isMla(MachineInstr *MI) {
81
switch (MI->getOpcode()) {
82
case AArch64::FMSUBSrrr:
83
case AArch64::FMADDSrrr:
84
case AArch64::FNMSUBSrrr:
85
case AArch64::FNMADDSrrr:
86
case AArch64::FMSUBDrrr:
87
case AArch64::FMADDDrrr:
88
case AArch64::FNMSUBDrrr:
89
case AArch64::FNMADDDrrr:
90
return true;
91
default:
92
return false;
93
}
94
}
95
96
//===----------------------------------------------------------------------===//
97
98
namespace {
99
/// A "color", which is either even or odd. Yes, these aren't really colors
100
/// but the algorithm is conceptually doing two-color graph coloring.
101
enum class Color { Even, Odd };
102
#ifndef NDEBUG
103
static const char *ColorNames[2] = { "Even", "Odd" };
104
#endif
105
106
class Chain;
107
108
class AArch64A57FPLoadBalancing : public MachineFunctionPass {
109
MachineRegisterInfo *MRI;
110
const TargetRegisterInfo *TRI;
111
RegisterClassInfo RCI;
112
113
public:
114
static char ID;
115
explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
116
initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
117
}
118
119
bool runOnMachineFunction(MachineFunction &F) override;
120
121
MachineFunctionProperties getRequiredProperties() const override {
122
return MachineFunctionProperties().set(
123
MachineFunctionProperties::Property::NoVRegs);
124
}
125
126
StringRef getPassName() const override {
127
return "A57 FP Anti-dependency breaker";
128
}
129
130
void getAnalysisUsage(AnalysisUsage &AU) const override {
131
AU.setPreservesCFG();
132
MachineFunctionPass::getAnalysisUsage(AU);
133
}
134
135
private:
136
bool runOnBasicBlock(MachineBasicBlock &MBB);
137
bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
138
int &Balance);
139
bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
140
int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
141
void scanInstruction(MachineInstr *MI, unsigned Idx,
142
std::map<unsigned, Chain*> &Active,
143
std::vector<std::unique_ptr<Chain>> &AllChains);
144
void maybeKillChain(MachineOperand &MO, unsigned Idx,
145
std::map<unsigned, Chain*> &RegChains);
146
Color getColor(unsigned Register);
147
Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
148
};
149
}
150
151
char AArch64A57FPLoadBalancing::ID = 0;
152
153
INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
154
"AArch64 A57 FP Load-Balancing", false, false)
155
INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
156
"AArch64 A57 FP Load-Balancing", false, false)
157
158
namespace {
159
/// A Chain is a sequence of instructions that are linked together by
160
/// an accumulation operand. For example:
161
///
162
/// fmul def d0, ?
163
/// fmla def d1, ?, ?, killed d0
164
/// fmla def d2, ?, ?, killed d1
165
///
166
/// There may be other instructions interleaved in the sequence that
167
/// do not belong to the chain. These other instructions must not use
168
/// the "chain" register at any point.
169
///
170
/// We currently only support chains where the "chain" operand is killed
171
/// at each link in the chain for simplicity.
172
/// A chain has three important instructions - Start, Last and Kill.
173
/// * The start instruction is the first instruction in the chain.
174
/// * Last is the final instruction in the chain.
175
/// * Kill may or may not be defined. If defined, Kill is the instruction
176
/// where the outgoing value of the Last instruction is killed.
177
/// This information is important as if we know the outgoing value is
178
/// killed with no intervening uses, we can safely change its register.
179
///
180
/// Without a kill instruction, we must assume the outgoing value escapes
181
/// beyond our model and either must not change its register or must
182
/// create a fixup FMOV to keep the old register value consistent.
183
///
184
class Chain {
185
public:
186
/// The important (marker) instructions.
187
MachineInstr *StartInst, *LastInst, *KillInst;
188
/// The index, from the start of the basic block, that each marker
189
/// appears. These are stored so we can do quick interval tests.
190
unsigned StartInstIdx, LastInstIdx, KillInstIdx;
191
/// All instructions in the chain.
192
std::set<MachineInstr*> Insts;
193
/// True if KillInst cannot be modified. If this is true,
194
/// we cannot change LastInst's outgoing register.
195
/// This will be true for tied values and regmasks.
196
bool KillIsImmutable;
197
/// The "color" of LastInst. This will be the preferred chain color,
198
/// as changing intermediate nodes is easy but changing the last
199
/// instruction can be more tricky.
200
Color LastColor;
201
202
Chain(MachineInstr *MI, unsigned Idx, Color C)
203
: StartInst(MI), LastInst(MI), KillInst(nullptr),
204
StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
205
LastColor(C) {
206
Insts.insert(MI);
207
}
208
209
/// Add a new instruction into the chain. The instruction's dest operand
210
/// has the given color.
211
void add(MachineInstr *MI, unsigned Idx, Color C) {
212
LastInst = MI;
213
LastInstIdx = Idx;
214
LastColor = C;
215
assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
216
"Chain: broken invariant. A Chain can only be killed after its last "
217
"def");
218
219
Insts.insert(MI);
220
}
221
222
/// Return true if MI is a member of the chain.
223
bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; }
224
225
/// Return the number of instructions in the chain.
226
unsigned size() const {
227
return Insts.size();
228
}
229
230
/// Inform the chain that its last active register (the dest register of
231
/// LastInst) is killed by MI with no intervening uses or defs.
232
void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
233
KillInst = MI;
234
KillInstIdx = Idx;
235
KillIsImmutable = Immutable;
236
assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
237
"Chain: broken invariant. A Chain can only be killed after its last "
238
"def");
239
}
240
241
/// Return the first instruction in the chain.
242
MachineInstr *getStart() const { return StartInst; }
243
/// Return the last instruction in the chain.
244
MachineInstr *getLast() const { return LastInst; }
245
/// Return the "kill" instruction (as set with setKill()) or NULL.
246
MachineInstr *getKill() const { return KillInst; }
247
/// Return an instruction that can be used as an iterator for the end
248
/// of the chain. This is the maximum of KillInst (if set) and LastInst.
249
MachineBasicBlock::iterator end() const {
250
return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
251
}
252
MachineBasicBlock::iterator begin() const { return getStart(); }
253
254
/// Can the Kill instruction (assuming one exists) be modified?
255
bool isKillImmutable() const { return KillIsImmutable; }
256
257
/// Return the preferred color of this chain.
258
Color getPreferredColor() {
259
if (OverrideBalance != 0)
260
return OverrideBalance == 1 ? Color::Even : Color::Odd;
261
return LastColor;
262
}
263
264
/// Return true if this chain (StartInst..KillInst) overlaps with Other.
265
bool rangeOverlapsWith(const Chain &Other) const {
266
unsigned End = KillInst ? KillInstIdx : LastInstIdx;
267
unsigned OtherEnd = Other.KillInst ?
268
Other.KillInstIdx : Other.LastInstIdx;
269
270
return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
271
}
272
273
/// Return true if this chain starts before Other.
274
bool startsBefore(const Chain *Other) const {
275
return StartInstIdx < Other->StartInstIdx;
276
}
277
278
/// Return true if the group will require a fixup MOV at the end.
279
bool requiresFixup() const {
280
return (getKill() && isKillImmutable()) || !getKill();
281
}
282
283
/// Return a simple string representation of the chain.
284
std::string str() const {
285
std::string S;
286
raw_string_ostream OS(S);
287
288
OS << "{";
289
StartInst->print(OS, /* SkipOpers= */true);
290
OS << " -> ";
291
LastInst->print(OS, /* SkipOpers= */true);
292
if (KillInst) {
293
OS << " (kill @ ";
294
KillInst->print(OS, /* SkipOpers= */true);
295
OS << ")";
296
}
297
OS << "}";
298
299
return OS.str();
300
}
301
302
};
303
304
} // end anonymous namespace
305
306
//===----------------------------------------------------------------------===//
307
308
bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
309
if (skipFunction(F.getFunction()))
310
return false;
311
312
if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps())
313
return false;
314
315
bool Changed = false;
316
LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
317
318
MRI = &F.getRegInfo();
319
TRI = F.getRegInfo().getTargetRegisterInfo();
320
RCI.runOnMachineFunction(F);
321
322
for (auto &MBB : F) {
323
Changed |= runOnBasicBlock(MBB);
324
}
325
326
return Changed;
327
}
328
329
bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
330
bool Changed = false;
331
LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB
332
<< " - scanning instructions...\n");
333
334
// First, scan the basic block producing a set of chains.
335
336
// The currently "active" chains - chains that can be added to and haven't
337
// been killed yet. This is keyed by register - all chains can only have one
338
// "link" register between each inst in the chain.
339
std::map<unsigned, Chain*> ActiveChains;
340
std::vector<std::unique_ptr<Chain>> AllChains;
341
unsigned Idx = 0;
342
for (auto &MI : MBB)
343
scanInstruction(&MI, Idx++, ActiveChains, AllChains);
344
345
LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains.size()
346
<< " chains created.\n");
347
348
// Group the chains into disjoint sets based on their liveness range. This is
349
// a poor-man's version of graph coloring. Ideally we'd create an interference
350
// graph and perform full-on graph coloring on that, but;
351
// (a) That's rather heavyweight for only two colors.
352
// (b) We expect multiple disjoint interference regions - in practice the live
353
// range of chains is quite small and they are clustered between loads
354
// and stores.
355
EquivalenceClasses<Chain*> EC;
356
for (auto &I : AllChains)
357
EC.insert(I.get());
358
359
for (auto &I : AllChains)
360
for (auto &J : AllChains)
361
if (I != J && I->rangeOverlapsWith(*J))
362
EC.unionSets(I.get(), J.get());
363
LLVM_DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
364
365
// Now we assume that every member of an equivalence class interferes
366
// with every other member of that class, and with no members of other classes.
367
368
// Convert the EquivalenceClasses to a simpler set of sets.
369
std::vector<std::vector<Chain*> > V;
370
for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
371
std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
372
if (Cs.empty()) continue;
373
V.push_back(std::move(Cs));
374
}
375
376
// Now we have a set of sets, order them by start address so
377
// we can iterate over them sequentially.
378
llvm::sort(V,
379
[](const std::vector<Chain *> &A, const std::vector<Chain *> &B) {
380
return A.front()->startsBefore(B.front());
381
});
382
383
// As we only have two colors, we can track the global (BB-level) balance of
384
// odds versus evens. We aim to keep this near zero to keep both execution
385
// units fed.
386
// Positive means we're even-heavy, negative we're odd-heavy.
387
//
388
// FIXME: If chains have interdependencies, for example:
389
// mul r0, r1, r2
390
// mul r3, r0, r1
391
// We do not model this and may color each one differently, assuming we'll
392
// get ILP when we obviously can't. This hasn't been seen to be a problem
393
// in practice so far, so we simplify the algorithm by ignoring it.
394
int Parity = 0;
395
396
for (auto &I : V)
397
Changed |= colorChainSet(std::move(I), MBB, Parity);
398
399
return Changed;
400
}
401
402
Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
403
std::vector<Chain*> &L) {
404
if (L.empty())
405
return nullptr;
406
407
// We try and get the best candidate from L to color next, given that our
408
// preferred color is "PreferredColor". L is ordered from larger to smaller
409
// chains. It is beneficial to color the large chains before the small chains,
410
// but if we can't find a chain of the maximum length with the preferred color,
411
// we fuzz the size and look for slightly smaller chains before giving up and
412
// returning a chain that must be recolored.
413
414
// FIXME: Does this need to be configurable?
415
const unsigned SizeFuzz = 1;
416
unsigned MinSize = L.front()->size() - SizeFuzz;
417
for (auto I = L.begin(), E = L.end(); I != E; ++I) {
418
if ((*I)->size() <= MinSize) {
419
// We've gone past the size limit. Return the previous item.
420
Chain *Ch = *--I;
421
L.erase(I);
422
return Ch;
423
}
424
425
if ((*I)->getPreferredColor() == PreferredColor) {
426
Chain *Ch = *I;
427
L.erase(I);
428
return Ch;
429
}
430
}
431
432
// Bailout case - just return the first item.
433
Chain *Ch = L.front();
434
L.erase(L.begin());
435
return Ch;
436
}
437
438
bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
439
MachineBasicBlock &MBB,
440
int &Parity) {
441
bool Changed = false;
442
LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
443
444
// Sort by descending size order so that we allocate the most important
445
// sets first.
446
// Tie-break equivalent sizes by sorting chains requiring fixups before
447
// those without fixups. The logic here is that we should look at the
448
// chains that we cannot change before we look at those we can,
449
// so the parity counter is updated and we know what color we should
450
// change them to!
451
// Final tie-break with instruction order so pass output is stable (i.e. not
452
// dependent on malloc'd pointer values).
453
llvm::sort(GV, [](const Chain *G1, const Chain *G2) {
454
if (G1->size() != G2->size())
455
return G1->size() > G2->size();
456
if (G1->requiresFixup() != G2->requiresFixup())
457
return G1->requiresFixup() > G2->requiresFixup();
458
// Make sure startsBefore() produces a stable final order.
459
assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
460
"Starts before not total order!");
461
return G1->startsBefore(G2);
462
});
463
464
Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
465
while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
466
// Start off by assuming we'll color to our own preferred color.
467
Color C = PreferredColor;
468
if (Parity == 0)
469
// But if we really don't care, use the chain's preferred color.
470
C = G->getPreferredColor();
471
472
LLVM_DEBUG(dbgs() << " - Parity=" << Parity
473
<< ", Color=" << ColorNames[(int)C] << "\n");
474
475
// If we'll need a fixup FMOV, don't bother. Testing has shown that this
476
// happens infrequently and when it does it has at least a 50% chance of
477
// slowing code down instead of speeding it up.
478
if (G->requiresFixup() && C != G->getPreferredColor()) {
479
C = G->getPreferredColor();
480
LLVM_DEBUG(dbgs() << " - " << G->str()
481
<< " - not worthwhile changing; "
482
"color remains "
483
<< ColorNames[(int)C] << "\n");
484
}
485
486
Changed |= colorChain(G, C, MBB);
487
488
Parity += (C == Color::Even) ? G->size() : -G->size();
489
PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
490
}
491
492
return Changed;
493
}
494
495
int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
496
MachineBasicBlock &MBB) {
497
// Can we find an appropriate register that is available throughout the life
498
// of the chain? Simulate liveness backwards until the end of the chain.
499
LiveRegUnits Units(*TRI);
500
Units.addLiveOuts(MBB);
501
MachineBasicBlock::iterator I = MBB.end();
502
MachineBasicBlock::iterator ChainEnd = G->end();
503
while (I != ChainEnd) {
504
--I;
505
Units.stepBackward(*I);
506
}
507
508
// Check which register units are alive throughout the chain.
509
MachineBasicBlock::iterator ChainBegin = G->begin();
510
assert(ChainBegin != ChainEnd && "Chain should contain instructions");
511
do {
512
--I;
513
Units.accumulate(*I);
514
} while (I != ChainBegin);
515
516
// Make sure we allocate in-order, to get the cheapest registers first.
517
unsigned RegClassID = ChainBegin->getDesc().operands()[0].RegClass;
518
auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
519
for (auto Reg : Ord) {
520
if (!Units.available(Reg))
521
continue;
522
if (C == getColor(Reg))
523
return Reg;
524
}
525
526
return -1;
527
}
528
529
bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
530
MachineBasicBlock &MBB) {
531
bool Changed = false;
532
LLVM_DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
533
<< ColorNames[(int)C] << ")\n");
534
535
// Try and obtain a free register of the right class. Without a register
536
// to play with we cannot continue.
537
int Reg = scavengeRegister(G, C, MBB);
538
if (Reg == -1) {
539
LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
540
return false;
541
}
542
LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg, TRI) << "\n");
543
544
std::map<unsigned, unsigned> Substs;
545
for (MachineInstr &I : *G) {
546
if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable()))
547
continue;
548
549
// I is a member of G, or I is a mutable instruction that kills G.
550
551
std::vector<unsigned> ToErase;
552
for (auto &U : I.operands()) {
553
if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
554
Register OrigReg = U.getReg();
555
U.setReg(Substs[OrigReg]);
556
if (U.isKill())
557
// Don't erase straight away, because there may be other operands
558
// that also reference this substitution!
559
ToErase.push_back(OrigReg);
560
} else if (U.isRegMask()) {
561
for (auto J : Substs) {
562
if (U.clobbersPhysReg(J.first))
563
ToErase.push_back(J.first);
564
}
565
}
566
}
567
// Now it's safe to remove the substs identified earlier.
568
for (auto J : ToErase)
569
Substs.erase(J);
570
571
// Only change the def if this isn't the last instruction.
572
if (&I != G->getKill()) {
573
MachineOperand &MO = I.getOperand(0);
574
575
bool Change = TransformAll || getColor(MO.getReg()) != C;
576
if (G->requiresFixup() && &I == G->getLast())
577
Change = false;
578
579
if (Change) {
580
Substs[MO.getReg()] = Reg;
581
MO.setReg(Reg);
582
583
Changed = true;
584
}
585
}
586
}
587
assert(Substs.size() == 0 && "No substitutions should be left active!");
588
589
if (G->getKill()) {
590
LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n");
591
} else {
592
// We didn't have a kill instruction, but we didn't seem to need to change
593
// the destination register anyway.
594
LLVM_DEBUG(dbgs() << " - Destination register not changed.\n");
595
}
596
return Changed;
597
}
598
599
void AArch64A57FPLoadBalancing::scanInstruction(
600
MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
601
std::vector<std::unique_ptr<Chain>> &AllChains) {
602
// Inspect "MI", updating ActiveChains and AllChains.
603
604
if (isMul(MI)) {
605
606
for (auto &I : MI->uses())
607
maybeKillChain(I, Idx, ActiveChains);
608
for (auto &I : MI->defs())
609
maybeKillChain(I, Idx, ActiveChains);
610
611
// Create a new chain. Multiplies don't require forwarding so can go on any
612
// unit.
613
Register DestReg = MI->getOperand(0).getReg();
614
615
LLVM_DEBUG(dbgs() << "New chain started for register "
616
<< printReg(DestReg, TRI) << " at " << *MI);
617
618
auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
619
ActiveChains[DestReg] = G.get();
620
AllChains.push_back(std::move(G));
621
622
} else if (isMla(MI)) {
623
624
// It is beneficial to keep MLAs on the same functional unit as their
625
// accumulator operand.
626
Register DestReg = MI->getOperand(0).getReg();
627
Register AccumReg = MI->getOperand(3).getReg();
628
629
maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
630
maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
631
if (DestReg != AccumReg)
632
maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
633
634
if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
635
LLVM_DEBUG(dbgs() << "Chain found for accumulator register "
636
<< printReg(AccumReg, TRI) << " in MI " << *MI);
637
638
// For simplicity we only chain together sequences of MULs/MLAs where the
639
// accumulator register is killed on each instruction. This means we don't
640
// need to track other uses of the registers we want to rewrite.
641
//
642
// FIXME: We could extend to handle the non-kill cases for more coverage.
643
if (MI->getOperand(3).isKill()) {
644
// Add to chain.
645
LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
646
ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
647
// Handle cases where the destination is not the same as the accumulator.
648
if (DestReg != AccumReg) {
649
ActiveChains[DestReg] = ActiveChains[AccumReg];
650
ActiveChains.erase(AccumReg);
651
}
652
return;
653
}
654
655
LLVM_DEBUG(
656
dbgs() << "Cannot add to chain because accumulator operand wasn't "
657
<< "marked <kill>!\n");
658
maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
659
}
660
661
LLVM_DEBUG(dbgs() << "Creating new chain for dest register "
662
<< printReg(DestReg, TRI) << "\n");
663
auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
664
ActiveChains[DestReg] = G.get();
665
AllChains.push_back(std::move(G));
666
667
} else {
668
669
// Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
670
// lists.
671
for (auto &I : MI->uses())
672
maybeKillChain(I, Idx, ActiveChains);
673
for (auto &I : MI->defs())
674
maybeKillChain(I, Idx, ActiveChains);
675
676
}
677
}
678
679
void AArch64A57FPLoadBalancing::
680
maybeKillChain(MachineOperand &MO, unsigned Idx,
681
std::map<unsigned, Chain*> &ActiveChains) {
682
// Given an operand and the set of active chains (keyed by register),
683
// determine if a chain should be ended and remove from ActiveChains.
684
MachineInstr *MI = MO.getParent();
685
686
if (MO.isReg()) {
687
688
// If this is a KILL of a current chain, record it.
689
if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
690
LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO.getReg(), TRI)
691
<< "\n");
692
ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
693
}
694
ActiveChains.erase(MO.getReg());
695
696
} else if (MO.isRegMask()) {
697
698
for (auto I = ActiveChains.begin(), E = ActiveChains.end();
699
I != E;) {
700
if (MO.clobbersPhysReg(I->first)) {
701
LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain "
702
<< printReg(I->first, TRI) << "\n");
703
I->second->setKill(MI, Idx, /*Immutable=*/true);
704
ActiveChains.erase(I++);
705
} else
706
++I;
707
}
708
709
}
710
}
711
712
Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
713
if ((TRI->getEncodingValue(Reg) % 2) == 0)
714
return Color::Even;
715
else
716
return Color::Odd;
717
}
718
719
// Factory function used by AArch64TargetMachine to add the pass to the passmanager.
720
FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
721
return new AArch64A57FPLoadBalancing();
722
}
723
724