Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64ExpandImm.cpp
35267 views
1
//===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the AArch64ExpandImm stuff.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "AArch64.h"
14
#include "AArch64ExpandImm.h"
15
#include "MCTargetDesc/AArch64AddressingModes.h"
16
17
using namespace llvm;
18
using namespace llvm::AArch64_IMM;
19
20
/// Helper function which extracts the specified 16-bit chunk from a
21
/// 64-bit value.
22
static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
23
assert(ChunkIdx < 4 && "Out of range chunk index specified!");
24
25
return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
26
}
27
28
/// Check whether the given 16-bit chunk replicated to full 64-bit width
29
/// can be materialized with an ORR instruction.
30
static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
31
Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
32
33
return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
34
}
35
36
/// Check for identical 16-bit chunks within the constant and if so
37
/// materialize them with a single ORR instruction. The remaining one or two
38
/// 16-bit chunks will be materialized with MOVK instructions.
39
///
40
/// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
41
/// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
42
/// an ORR instruction.
43
static bool tryToreplicateChunks(uint64_t UImm,
44
SmallVectorImpl<ImmInsnModel> &Insn) {
45
using CountMap = DenseMap<uint64_t, unsigned>;
46
47
CountMap Counts;
48
49
// Scan the constant and count how often every chunk occurs.
50
for (unsigned Idx = 0; Idx < 4; ++Idx)
51
++Counts[getChunk(UImm, Idx)];
52
53
// Traverse the chunks to find one which occurs more than once.
54
for (const auto &Chunk : Counts) {
55
const uint64_t ChunkVal = Chunk.first;
56
const unsigned Count = Chunk.second;
57
58
uint64_t Encoding = 0;
59
60
// We are looking for chunks which have two or three instances and can be
61
// materialized with an ORR instruction.
62
if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
63
continue;
64
65
const bool CountThree = Count == 3;
66
67
Insn.push_back({ AArch64::ORRXri, 0, Encoding });
68
69
unsigned ShiftAmt = 0;
70
uint64_t Imm16 = 0;
71
// Find the first chunk not materialized with the ORR instruction.
72
for (; ShiftAmt < 64; ShiftAmt += 16) {
73
Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
74
75
if (Imm16 != ChunkVal)
76
break;
77
}
78
79
// Create the first MOVK instruction.
80
Insn.push_back({ AArch64::MOVKXi, Imm16,
81
AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
82
83
// In case we have three instances the whole constant is now materialized
84
// and we can exit.
85
if (CountThree)
86
return true;
87
88
// Find the remaining chunk which needs to be materialized.
89
for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
90
Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
91
92
if (Imm16 != ChunkVal)
93
break;
94
}
95
Insn.push_back({ AArch64::MOVKXi, Imm16,
96
AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
97
return true;
98
}
99
100
return false;
101
}
102
103
/// Check whether this chunk matches the pattern '1...0...'. This pattern
104
/// starts a contiguous sequence of ones if we look at the bits from the LSB
105
/// towards the MSB.
106
static bool isStartChunk(uint64_t Chunk) {
107
if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
108
return false;
109
110
return isMask_64(~Chunk);
111
}
112
113
/// Check whether this chunk matches the pattern '0...1...' This pattern
114
/// ends a contiguous sequence of ones if we look at the bits from the LSB
115
/// towards the MSB.
116
static bool isEndChunk(uint64_t Chunk) {
117
if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
118
return false;
119
120
return isMask_64(Chunk);
121
}
122
123
/// Clear or set all bits in the chunk at the given index.
124
static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
125
const uint64_t Mask = 0xFFFF;
126
127
if (Clear)
128
// Clear chunk in the immediate.
129
Imm &= ~(Mask << (Idx * 16));
130
else
131
// Set all bits in the immediate for the particular chunk.
132
Imm |= Mask << (Idx * 16);
133
134
return Imm;
135
}
136
137
/// Check whether the constant contains a sequence of contiguous ones,
138
/// which might be interrupted by one or two chunks. If so, materialize the
139
/// sequence of contiguous ones with an ORR instruction.
140
/// Materialize the chunks which are either interrupting the sequence or outside
141
/// of the sequence with a MOVK instruction.
142
///
143
/// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
144
/// which ends the sequence (0...1...). Then we are looking for constants which
145
/// contain at least one S and E chunk.
146
/// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
147
///
148
/// We are also looking for constants like |S|A|B|E| where the contiguous
149
/// sequence of ones wraps around the MSB into the LSB.
150
static bool trySequenceOfOnes(uint64_t UImm,
151
SmallVectorImpl<ImmInsnModel> &Insn) {
152
const int NotSet = -1;
153
const uint64_t Mask = 0xFFFF;
154
155
int StartIdx = NotSet;
156
int EndIdx = NotSet;
157
// Try to find the chunks which start/end a contiguous sequence of ones.
158
for (int Idx = 0; Idx < 4; ++Idx) {
159
int64_t Chunk = getChunk(UImm, Idx);
160
// Sign extend the 16-bit chunk to 64-bit.
161
Chunk = (Chunk << 48) >> 48;
162
163
if (isStartChunk(Chunk))
164
StartIdx = Idx;
165
else if (isEndChunk(Chunk))
166
EndIdx = Idx;
167
}
168
169
// Early exit in case we can't find a start/end chunk.
170
if (StartIdx == NotSet || EndIdx == NotSet)
171
return false;
172
173
// Outside of the contiguous sequence of ones everything needs to be zero.
174
uint64_t Outside = 0;
175
// Chunks between the start and end chunk need to have all their bits set.
176
uint64_t Inside = Mask;
177
178
// If our contiguous sequence of ones wraps around from the MSB into the LSB,
179
// just swap indices and pretend we are materializing a contiguous sequence
180
// of zeros surrounded by a contiguous sequence of ones.
181
if (StartIdx > EndIdx) {
182
std::swap(StartIdx, EndIdx);
183
std::swap(Outside, Inside);
184
}
185
186
uint64_t OrrImm = UImm;
187
int FirstMovkIdx = NotSet;
188
int SecondMovkIdx = NotSet;
189
190
// Find out which chunks we need to patch up to obtain a contiguous sequence
191
// of ones.
192
for (int Idx = 0; Idx < 4; ++Idx) {
193
const uint64_t Chunk = getChunk(UImm, Idx);
194
195
// Check whether we are looking at a chunk which is not part of the
196
// contiguous sequence of ones.
197
if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
198
OrrImm = updateImm(OrrImm, Idx, Outside == 0);
199
200
// Remember the index we need to patch.
201
if (FirstMovkIdx == NotSet)
202
FirstMovkIdx = Idx;
203
else
204
SecondMovkIdx = Idx;
205
206
// Check whether we are looking a chunk which is part of the contiguous
207
// sequence of ones.
208
} else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
209
OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
210
211
// Remember the index we need to patch.
212
if (FirstMovkIdx == NotSet)
213
FirstMovkIdx = Idx;
214
else
215
SecondMovkIdx = Idx;
216
}
217
}
218
assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
219
220
// Create the ORR-immediate instruction.
221
uint64_t Encoding = 0;
222
AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
223
Insn.push_back({ AArch64::ORRXri, 0, Encoding });
224
225
const bool SingleMovk = SecondMovkIdx == NotSet;
226
Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx),
227
AArch64_AM::getShifterImm(AArch64_AM::LSL,
228
FirstMovkIdx * 16) });
229
230
// Early exit in case we only need to emit a single MOVK instruction.
231
if (SingleMovk)
232
return true;
233
234
// Create the second MOVK instruction.
235
Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx),
236
AArch64_AM::getShifterImm(AArch64_AM::LSL,
237
SecondMovkIdx * 16) });
238
239
return true;
240
}
241
242
static uint64_t GetRunOfOnesStartingAt(uint64_t V, uint64_t StartPosition) {
243
uint64_t NumOnes = llvm::countr_one(V >> StartPosition);
244
245
uint64_t UnshiftedOnes;
246
if (NumOnes == 64) {
247
UnshiftedOnes = ~0ULL;
248
} else {
249
UnshiftedOnes = (1ULL << NumOnes) - 1;
250
}
251
return UnshiftedOnes << StartPosition;
252
}
253
254
static uint64_t MaximallyReplicateSubImmediate(uint64_t V, uint64_t Subset) {
255
uint64_t Result = Subset;
256
257
// 64, 32, 16, 8, 4, 2
258
for (uint64_t i = 0; i < 6; ++i) {
259
uint64_t Rotation = 1ULL << (6 - i);
260
uint64_t Closure = Result | llvm::rotl<uint64_t>(Result, Rotation);
261
if (Closure != (Closure & V)) {
262
break;
263
}
264
Result = Closure;
265
}
266
267
return Result;
268
}
269
270
// Find the logical immediate that covers the most bits in RemainingBits,
271
// allowing for additional bits to be set that were set in OriginalBits.
272
static uint64_t maximalLogicalImmWithin(uint64_t RemainingBits,
273
uint64_t OriginalBits) {
274
// Find the first set bit.
275
uint32_t Position = llvm::countr_zero(RemainingBits);
276
277
// Get the first run of set bits.
278
uint64_t FirstRun = GetRunOfOnesStartingAt(OriginalBits, Position);
279
280
// Replicate the run as many times as possible, as long as the bits are set in
281
// RemainingBits.
282
uint64_t MaximalImm = MaximallyReplicateSubImmediate(OriginalBits, FirstRun);
283
284
return MaximalImm;
285
}
286
287
static std::optional<std::pair<uint64_t, uint64_t>>
288
decomposeIntoOrrOfLogicalImmediates(uint64_t UImm) {
289
if (UImm == 0 || ~UImm == 0)
290
return std::nullopt;
291
292
// Make sure we don't have a run of ones split around the rotation boundary.
293
uint32_t InitialTrailingOnes = llvm::countr_one(UImm);
294
uint64_t RotatedBits = llvm::rotr<uint64_t>(UImm, InitialTrailingOnes);
295
296
// Find the largest logical immediate that fits within the full immediate.
297
uint64_t MaximalImm1 = maximalLogicalImmWithin(RotatedBits, RotatedBits);
298
299
// Remove all bits that are set by this mask.
300
uint64_t RemainingBits = RotatedBits & ~MaximalImm1;
301
302
// Find the largest logical immediate covering the remaining bits, allowing
303
// for additional bits to be set that were also set in the original immediate.
304
uint64_t MaximalImm2 = maximalLogicalImmWithin(RemainingBits, RotatedBits);
305
306
// If any bits still haven't been covered, then give up.
307
if (RemainingBits & ~MaximalImm2)
308
return std::nullopt;
309
310
// Make sure to un-rotate the immediates.
311
return std::make_pair(rotl(MaximalImm1, InitialTrailingOnes),
312
rotl(MaximalImm2, InitialTrailingOnes));
313
}
314
315
// Attempt to expand an immediate as the ORR of a pair of logical immediates.
316
static bool tryOrrOfLogicalImmediates(uint64_t UImm,
317
SmallVectorImpl<ImmInsnModel> &Insn) {
318
auto MaybeDecomposition = decomposeIntoOrrOfLogicalImmediates(UImm);
319
if (MaybeDecomposition == std::nullopt)
320
return false;
321
uint64_t Imm1 = MaybeDecomposition->first;
322
uint64_t Imm2 = MaybeDecomposition->second;
323
324
uint64_t Encoding1, Encoding2;
325
bool Imm1Success = AArch64_AM::processLogicalImmediate(Imm1, 64, Encoding1);
326
bool Imm2Success = AArch64_AM::processLogicalImmediate(Imm2, 64, Encoding2);
327
328
if (Imm1Success && Imm2Success) {
329
// Create the ORR-immediate instructions.
330
Insn.push_back({AArch64::ORRXri, 0, Encoding1});
331
Insn.push_back({AArch64::ORRXri, 1, Encoding2});
332
return true;
333
}
334
335
return false;
336
}
337
338
// Attempt to expand an immediate as the AND of a pair of logical immediates.
339
// This is done by applying DeMorgan's law, under which logical immediates
340
// are closed.
341
static bool tryAndOfLogicalImmediates(uint64_t UImm,
342
SmallVectorImpl<ImmInsnModel> &Insn) {
343
// Apply DeMorgan's law to turn this into an ORR problem.
344
auto MaybeDecomposition = decomposeIntoOrrOfLogicalImmediates(~UImm);
345
if (MaybeDecomposition == std::nullopt)
346
return false;
347
uint64_t Imm1 = MaybeDecomposition->first;
348
uint64_t Imm2 = MaybeDecomposition->second;
349
350
uint64_t Encoding1, Encoding2;
351
bool Imm1Success = AArch64_AM::processLogicalImmediate(~Imm1, 64, Encoding1);
352
bool Imm2Success = AArch64_AM::processLogicalImmediate(~Imm2, 64, Encoding2);
353
354
if (Imm1Success && Imm2Success) {
355
// Materialize Imm1, the LHS of the AND
356
Insn.push_back({AArch64::ORRXri, 0, Encoding1});
357
// AND Imm1 with Imm2
358
Insn.push_back({AArch64::ANDXri, 1, Encoding2});
359
return true;
360
}
361
362
return false;
363
}
364
365
// Check whether the constant can be represented by exclusive-or of two 64-bit
366
// logical immediates. If so, materialize it with an ORR instruction followed
367
// by an EOR instruction.
368
//
369
// This encoding allows all remaining repeated byte patterns, and many repeated
370
// 16-bit values, to be encoded without needing four instructions. It can also
371
// represent some irregular bitmasks (although those would mostly only need
372
// three instructions otherwise).
373
static bool tryEorOfLogicalImmediates(uint64_t Imm,
374
SmallVectorImpl<ImmInsnModel> &Insn) {
375
// Determine the larger repetition size of the two possible logical
376
// immediates, by finding the repetition size of Imm.
377
unsigned BigSize = 64;
378
379
do {
380
BigSize /= 2;
381
uint64_t Mask = (1ULL << BigSize) - 1;
382
383
if ((Imm & Mask) != ((Imm >> BigSize) & Mask)) {
384
BigSize *= 2;
385
break;
386
}
387
} while (BigSize > 2);
388
389
uint64_t BigMask = ((uint64_t)-1LL) >> (64 - BigSize);
390
391
// Find the last bit of each run of ones, circularly. For runs which wrap
392
// around from bit 0 to bit 63, this is the bit before the most-significant
393
// zero, otherwise it is the least-significant bit in the run of ones.
394
uint64_t RunStarts = Imm & ~rotl<uint64_t>(Imm, 1);
395
396
// Find the smaller repetition size of the two possible logical immediates by
397
// counting the number of runs of one-bits within the BigSize-bit value. Both
398
// sizes may be the same. The EOR may add one or subtract one from the
399
// power-of-two count that can be represented by a logical immediate, or it
400
// may be left unchanged.
401
int RunsPerBigChunk = popcount(RunStarts & BigMask);
402
403
static const int8_t BigToSmallSizeTable[32] = {
404
-1, -1, 0, 1, 2, 2, -1, 3, 3, 3, -1, -1, -1, -1, -1, 4,
405
4, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5,
406
};
407
408
int BigToSmallShift = BigToSmallSizeTable[RunsPerBigChunk];
409
410
// Early-exit if the big chunk couldn't be a power-of-two number of runs
411
// EORed with another single run.
412
if (BigToSmallShift == -1)
413
return false;
414
415
unsigned SmallSize = BigSize >> BigToSmallShift;
416
417
// 64-bit values with a bit set every (1 << index) bits.
418
static const uint64_t RepeatedOnesTable[] = {
419
0xffffffffffffffff, 0x5555555555555555, 0x1111111111111111,
420
0x0101010101010101, 0x0001000100010001, 0x0000000100000001,
421
0x0000000000000001,
422
};
423
424
// This RepeatedOnesTable lookup is a faster implementation of the division
425
// 0xffffffffffffffff / ((1 << SmallSize) - 1), and can be thought of as
426
// dividing the 64-bit value into fields of width SmallSize, and placing a
427
// one in the least significant bit of each field.
428
uint64_t SmallOnes = RepeatedOnesTable[countr_zero(SmallSize)];
429
430
// Now we try to find the number of ones in each of the smaller repetitions,
431
// by looking at runs of ones in Imm. This can take three attempts, as the
432
// EOR may have changed the length of the first two runs we find.
433
434
// Rotate a run of ones so we can count the number of trailing set bits.
435
int Rotation = countr_zero(RunStarts);
436
uint64_t RotatedImm = rotr<uint64_t>(Imm, Rotation);
437
for (int Attempt = 0; Attempt < 3; ++Attempt) {
438
unsigned RunLength = countr_one(RotatedImm);
439
440
// Construct candidate values BigImm and SmallImm, such that if these two
441
// values are encodable, we have a solution. (SmallImm is constructed to be
442
// encodable, but this isn't guaranteed when RunLength >= SmallSize)
443
uint64_t SmallImm =
444
rotl<uint64_t>((SmallOnes << RunLength) - SmallOnes, Rotation);
445
uint64_t BigImm = Imm ^ SmallImm;
446
447
uint64_t BigEncoding = 0;
448
uint64_t SmallEncoding = 0;
449
if (AArch64_AM::processLogicalImmediate(BigImm, 64, BigEncoding) &&
450
AArch64_AM::processLogicalImmediate(SmallImm, 64, SmallEncoding)) {
451
Insn.push_back({AArch64::ORRXri, 0, SmallEncoding});
452
Insn.push_back({AArch64::EORXri, 1, BigEncoding});
453
return true;
454
}
455
456
// Rotate to the next run of ones
457
Rotation += countr_zero(rotr<uint64_t>(RunStarts, Rotation) & ~1);
458
RotatedImm = rotr<uint64_t>(Imm, Rotation);
459
}
460
461
return false;
462
}
463
464
/// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
465
/// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
466
static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize,
467
unsigned OneChunks, unsigned ZeroChunks,
468
SmallVectorImpl<ImmInsnModel> &Insn) {
469
const unsigned Mask = 0xFFFF;
470
471
// Use a MOVZ or MOVN instruction to set the high bits, followed by one or
472
// more MOVK instructions to insert additional 16-bit portions into the
473
// lower bits.
474
bool isNeg = false;
475
476
// Use MOVN to materialize the high bits if we have more all one chunks
477
// than all zero chunks.
478
if (OneChunks > ZeroChunks) {
479
isNeg = true;
480
Imm = ~Imm;
481
}
482
483
unsigned FirstOpc;
484
if (BitSize == 32) {
485
Imm &= (1LL << 32) - 1;
486
FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
487
} else {
488
FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
489
}
490
unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN
491
unsigned LastShift = 0; // LSL amount for last MOVK
492
if (Imm != 0) {
493
unsigned LZ = llvm::countl_zero(Imm);
494
unsigned TZ = llvm::countr_zero(Imm);
495
Shift = (TZ / 16) * 16;
496
LastShift = ((63 - LZ) / 16) * 16;
497
}
498
unsigned Imm16 = (Imm >> Shift) & Mask;
499
500
Insn.push_back({ FirstOpc, Imm16,
501
AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
502
503
if (Shift == LastShift)
504
return;
505
506
// If a MOVN was used for the high bits of a negative value, flip the rest
507
// of the bits back for use with MOVK.
508
if (isNeg)
509
Imm = ~Imm;
510
511
unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
512
while (Shift < LastShift) {
513
Shift += 16;
514
Imm16 = (Imm >> Shift) & Mask;
515
if (Imm16 == (isNeg ? Mask : 0))
516
continue; // This 16-bit portion is already set correctly.
517
518
Insn.push_back({ Opc, Imm16,
519
AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
520
}
521
522
// Now, we get 16-bit divided Imm. If high and low bits are same in
523
// 32-bit, there is an opportunity to reduce instruction.
524
if (Insn.size() > 2 && (Imm >> 32) == (Imm & 0xffffffffULL)) {
525
for (int Size = Insn.size(); Size > 2; Size--)
526
Insn.pop_back();
527
Insn.push_back({AArch64::ORRXrs, 0, 32});
528
}
529
}
530
531
/// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
532
/// real move-immediate instructions to synthesize the immediate.
533
void AArch64_IMM::expandMOVImm(uint64_t Imm, unsigned BitSize,
534
SmallVectorImpl<ImmInsnModel> &Insn) {
535
const unsigned Mask = 0xFFFF;
536
537
// Scan the immediate and count the number of 16-bit chunks which are either
538
// all ones or all zeros.
539
unsigned OneChunks = 0;
540
unsigned ZeroChunks = 0;
541
for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
542
const unsigned Chunk = (Imm >> Shift) & Mask;
543
if (Chunk == Mask)
544
OneChunks++;
545
else if (Chunk == 0)
546
ZeroChunks++;
547
}
548
549
// Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias.
550
if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) {
551
expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
552
return;
553
}
554
555
// Try a single ORR.
556
uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
557
uint64_t Encoding;
558
if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
559
unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
560
Insn.push_back({ Opc, 0, Encoding });
561
return;
562
}
563
564
// One to up three instruction sequences.
565
//
566
// Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
567
// fastest sequence with fast literal generation.
568
if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) {
569
expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
570
return;
571
}
572
573
assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
574
"MOVZ/MOVK pair");
575
576
// Try other two-instruction sequences.
577
578
// 64-bit ORR followed by MOVK.
579
// We try to construct the ORR immediate in three different ways: either we
580
// zero out the chunk which will be replaced, we fill the chunk which will
581
// be replaced with ones, or we take the bit pattern from the other half of
582
// the 64-bit immediate. This is comprehensive because of the way ORR
583
// immediates are constructed.
584
for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
585
uint64_t ShiftedMask = (0xFFFFULL << Shift);
586
uint64_t ZeroChunk = UImm & ~ShiftedMask;
587
uint64_t OneChunk = UImm | ShiftedMask;
588
uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
589
uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
590
if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
591
AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
592
AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize,
593
Encoding)) {
594
// Create the ORR-immediate instruction.
595
Insn.push_back({ AArch64::ORRXri, 0, Encoding });
596
597
// Create the MOVK instruction.
598
const unsigned Imm16 = getChunk(UImm, Shift / 16);
599
Insn.push_back({ AArch64::MOVKXi, Imm16,
600
AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
601
return;
602
}
603
}
604
605
// Attempt to use a sequence of two ORR-immediate instructions.
606
if (tryOrrOfLogicalImmediates(Imm, Insn))
607
return;
608
609
// Attempt to use a sequence of ORR-immediate followed by AND-immediate.
610
if (tryAndOfLogicalImmediates(Imm, Insn))
611
return;
612
613
// Attempt to use a sequence of ORR-immediate followed by EOR-immediate.
614
if (tryEorOfLogicalImmediates(UImm, Insn))
615
return;
616
617
// FIXME: Add more two-instruction sequences.
618
619
// Three instruction sequences.
620
//
621
// Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
622
// the fastest sequence with fast literal generation. (If neither MOVK is
623
// part of a fast literal generation pair, it could be slower than the
624
// four-instruction sequence, but we won't worry about that for now.)
625
if (OneChunks || ZeroChunks) {
626
expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
627
return;
628
}
629
630
// Check for identical 16-bit chunks within the constant and if so materialize
631
// them with a single ORR instruction. The remaining one or two 16-bit chunks
632
// will be materialized with MOVK instructions.
633
if (BitSize == 64 && tryToreplicateChunks(UImm, Insn))
634
return;
635
636
// Check whether the constant contains a sequence of contiguous ones, which
637
// might be interrupted by one or two chunks. If so, materialize the sequence
638
// of contiguous ones with an ORR instruction. Materialize the chunks which
639
// are either interrupting the sequence or outside of the sequence with a
640
// MOVK instruction.
641
if (BitSize == 64 && trySequenceOfOnes(UImm, Insn))
642
return;
643
644
// We found no possible two or three instruction sequence; use the general
645
// four-instruction sequence.
646
expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
647
}
648
649