Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64FrameLowering.cpp
35266 views
1
//===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the AArch64 implementation of TargetFrameLowering class.
10
//
11
// On AArch64, stack frames are structured as follows:
12
//
13
// The stack grows downward.
14
//
15
// All of the individual frame areas on the frame below are optional, i.e. it's
16
// possible to create a function so that the particular area isn't present
17
// in the frame.
18
//
19
// At function entry, the "frame" looks as follows:
20
//
21
// | | Higher address
22
// |-----------------------------------|
23
// | |
24
// | arguments passed on the stack |
25
// | |
26
// |-----------------------------------| <- sp
27
// | | Lower address
28
//
29
//
30
// After the prologue has run, the frame has the following general structure.
31
// Note that this doesn't depict the case where a red-zone is used. Also,
32
// technically the last frame area (VLAs) doesn't get created until in the
33
// main function body, after the prologue is run. However, it's depicted here
34
// for completeness.
35
//
36
// | | Higher address
37
// |-----------------------------------|
38
// | |
39
// | arguments passed on the stack |
40
// | |
41
// |-----------------------------------|
42
// | |
43
// | (Win64 only) varargs from reg |
44
// | |
45
// |-----------------------------------|
46
// | |
47
// | callee-saved gpr registers | <--.
48
// | | | On Darwin platforms these
49
// |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
50
// | prev_lr | | (frame record first)
51
// | prev_fp | <--'
52
// | async context if needed |
53
// | (a.k.a. "frame record") |
54
// |-----------------------------------| <- fp(=x29)
55
// | <hazard padding> |
56
// |-----------------------------------|
57
// | |
58
// | callee-saved fp/simd/SVE regs |
59
// | |
60
// |-----------------------------------|
61
// | |
62
// | SVE stack objects |
63
// | |
64
// |-----------------------------------|
65
// |.empty.space.to.make.part.below....|
66
// |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
67
// |.the.standard.16-byte.alignment....| compile time; if present)
68
// |-----------------------------------|
69
// | local variables of fixed size |
70
// | including spill slots |
71
// | <FPR> |
72
// | <hazard padding> |
73
// | <GPR> |
74
// |-----------------------------------| <- bp(not defined by ABI,
75
// |.variable-sized.local.variables....| LLVM chooses X19)
76
// |.(VLAs)............................| (size of this area is unknown at
77
// |...................................| compile time)
78
// |-----------------------------------| <- sp
79
// | | Lower address
80
//
81
//
82
// To access the data in a frame, at-compile time, a constant offset must be
83
// computable from one of the pointers (fp, bp, sp) to access it. The size
84
// of the areas with a dotted background cannot be computed at compile-time
85
// if they are present, making it required to have all three of fp, bp and
86
// sp to be set up to be able to access all contents in the frame areas,
87
// assuming all of the frame areas are non-empty.
88
//
89
// For most functions, some of the frame areas are empty. For those functions,
90
// it may not be necessary to set up fp or bp:
91
// * A base pointer is definitely needed when there are both VLAs and local
92
// variables with more-than-default alignment requirements.
93
// * A frame pointer is definitely needed when there are local variables with
94
// more-than-default alignment requirements.
95
//
96
// For Darwin platforms the frame-record (fp, lr) is stored at the top of the
97
// callee-saved area, since the unwind encoding does not allow for encoding
98
// this dynamically and existing tools depend on this layout. For other
99
// platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
100
// area to allow SVE stack objects (allocated directly below the callee-saves,
101
// if available) to be accessed directly from the framepointer.
102
// The SVE spill/fill instructions have VL-scaled addressing modes such
103
// as:
104
// ldr z8, [fp, #-7 mul vl]
105
// For SVE the size of the vector length (VL) is not known at compile-time, so
106
// '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
107
// layout, we don't need to add an unscaled offset to the framepointer before
108
// accessing the SVE object in the frame.
109
//
110
// In some cases when a base pointer is not strictly needed, it is generated
111
// anyway when offsets from the frame pointer to access local variables become
112
// so large that the offset can't be encoded in the immediate fields of loads
113
// or stores.
114
//
115
// Outgoing function arguments must be at the bottom of the stack frame when
116
// calling another function. If we do not have variable-sized stack objects, we
117
// can allocate a "reserved call frame" area at the bottom of the local
118
// variable area, large enough for all outgoing calls. If we do have VLAs, then
119
// the stack pointer must be decremented and incremented around each call to
120
// make space for the arguments below the VLAs.
121
//
122
// FIXME: also explain the redzone concept.
123
//
124
// About stack hazards: Under some SME contexts, a coprocessor with its own
125
// separate cache can used for FP operations. This can create hazards if the CPU
126
// and the SME unit try to access the same area of memory, including if the
127
// access is to an area of the stack. To try to alleviate this we attempt to
128
// introduce extra padding into the stack frame between FP and GPR accesses,
129
// controlled by the StackHazardSize option. Without changing the layout of the
130
// stack frame in the diagram above, a stack object of size StackHazardSize is
131
// added between GPR and FPR CSRs. Another is added to the stack objects
132
// section, and stack objects are sorted so that FPR > Hazard padding slot >
133
// GPRs (where possible). Unfortunately some things are not handled well (VLA
134
// area, arguments on the stack, object with both GPR and FPR accesses), but if
135
// those are controlled by the user then the entire stack frame becomes GPR at
136
// the start/end with FPR in the middle, surrounded by Hazard padding.
137
//
138
// An example of the prologue:
139
//
140
// .globl __foo
141
// .align 2
142
// __foo:
143
// Ltmp0:
144
// .cfi_startproc
145
// .cfi_personality 155, ___gxx_personality_v0
146
// Leh_func_begin:
147
// .cfi_lsda 16, Lexception33
148
//
149
// stp xa,bx, [sp, -#offset]!
150
// ...
151
// stp x28, x27, [sp, #offset-32]
152
// stp fp, lr, [sp, #offset-16]
153
// add fp, sp, #offset - 16
154
// sub sp, sp, #1360
155
//
156
// The Stack:
157
// +-------------------------------------------+
158
// 10000 | ........ | ........ | ........ | ........ |
159
// 10004 | ........ | ........ | ........ | ........ |
160
// +-------------------------------------------+
161
// 10008 | ........ | ........ | ........ | ........ |
162
// 1000c | ........ | ........ | ........ | ........ |
163
// +===========================================+
164
// 10010 | X28 Register |
165
// 10014 | X28 Register |
166
// +-------------------------------------------+
167
// 10018 | X27 Register |
168
// 1001c | X27 Register |
169
// +===========================================+
170
// 10020 | Frame Pointer |
171
// 10024 | Frame Pointer |
172
// +-------------------------------------------+
173
// 10028 | Link Register |
174
// 1002c | Link Register |
175
// +===========================================+
176
// 10030 | ........ | ........ | ........ | ........ |
177
// 10034 | ........ | ........ | ........ | ........ |
178
// +-------------------------------------------+
179
// 10038 | ........ | ........ | ........ | ........ |
180
// 1003c | ........ | ........ | ........ | ........ |
181
// +-------------------------------------------+
182
//
183
// [sp] = 10030 :: >>initial value<<
184
// sp = 10020 :: stp fp, lr, [sp, #-16]!
185
// fp = sp == 10020 :: mov fp, sp
186
// [sp] == 10020 :: stp x28, x27, [sp, #-16]!
187
// sp == 10010 :: >>final value<<
188
//
189
// The frame pointer (w29) points to address 10020. If we use an offset of
190
// '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
191
// for w27, and -32 for w28:
192
//
193
// Ltmp1:
194
// .cfi_def_cfa w29, 16
195
// Ltmp2:
196
// .cfi_offset w30, -8
197
// Ltmp3:
198
// .cfi_offset w29, -16
199
// Ltmp4:
200
// .cfi_offset w27, -24
201
// Ltmp5:
202
// .cfi_offset w28, -32
203
//
204
//===----------------------------------------------------------------------===//
205
206
#include "AArch64FrameLowering.h"
207
#include "AArch64InstrInfo.h"
208
#include "AArch64MachineFunctionInfo.h"
209
#include "AArch64RegisterInfo.h"
210
#include "AArch64Subtarget.h"
211
#include "AArch64TargetMachine.h"
212
#include "MCTargetDesc/AArch64AddressingModes.h"
213
#include "MCTargetDesc/AArch64MCTargetDesc.h"
214
#include "llvm/ADT/ScopeExit.h"
215
#include "llvm/ADT/SmallVector.h"
216
#include "llvm/ADT/Statistic.h"
217
#include "llvm/Analysis/ValueTracking.h"
218
#include "llvm/CodeGen/LivePhysRegs.h"
219
#include "llvm/CodeGen/MachineBasicBlock.h"
220
#include "llvm/CodeGen/MachineFrameInfo.h"
221
#include "llvm/CodeGen/MachineFunction.h"
222
#include "llvm/CodeGen/MachineInstr.h"
223
#include "llvm/CodeGen/MachineInstrBuilder.h"
224
#include "llvm/CodeGen/MachineMemOperand.h"
225
#include "llvm/CodeGen/MachineModuleInfo.h"
226
#include "llvm/CodeGen/MachineOperand.h"
227
#include "llvm/CodeGen/MachineRegisterInfo.h"
228
#include "llvm/CodeGen/RegisterScavenging.h"
229
#include "llvm/CodeGen/TargetInstrInfo.h"
230
#include "llvm/CodeGen/TargetRegisterInfo.h"
231
#include "llvm/CodeGen/TargetSubtargetInfo.h"
232
#include "llvm/CodeGen/WinEHFuncInfo.h"
233
#include "llvm/IR/Attributes.h"
234
#include "llvm/IR/CallingConv.h"
235
#include "llvm/IR/DataLayout.h"
236
#include "llvm/IR/DebugLoc.h"
237
#include "llvm/IR/Function.h"
238
#include "llvm/MC/MCAsmInfo.h"
239
#include "llvm/MC/MCDwarf.h"
240
#include "llvm/Support/CommandLine.h"
241
#include "llvm/Support/Debug.h"
242
#include "llvm/Support/ErrorHandling.h"
243
#include "llvm/Support/FormatVariadic.h"
244
#include "llvm/Support/MathExtras.h"
245
#include "llvm/Support/raw_ostream.h"
246
#include "llvm/Target/TargetMachine.h"
247
#include "llvm/Target/TargetOptions.h"
248
#include <cassert>
249
#include <cstdint>
250
#include <iterator>
251
#include <optional>
252
#include <vector>
253
254
using namespace llvm;
255
256
#define DEBUG_TYPE "frame-info"
257
258
static cl::opt<bool> EnableRedZone("aarch64-redzone",
259
cl::desc("enable use of redzone on AArch64"),
260
cl::init(false), cl::Hidden);
261
262
static cl::opt<bool> StackTaggingMergeSetTag(
263
"stack-tagging-merge-settag",
264
cl::desc("merge settag instruction in function epilog"), cl::init(true),
265
cl::Hidden);
266
267
static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
268
cl::desc("sort stack allocations"),
269
cl::init(true), cl::Hidden);
270
271
cl::opt<bool> EnableHomogeneousPrologEpilog(
272
"homogeneous-prolog-epilog", cl::Hidden,
273
cl::desc("Emit homogeneous prologue and epilogue for the size "
274
"optimization (default = off)"));
275
276
// Stack hazard padding size. 0 = disabled.
277
static cl::opt<unsigned> StackHazardSize("aarch64-stack-hazard-size",
278
cl::init(0), cl::Hidden);
279
// Stack hazard size for analysis remarks. StackHazardSize takes precedence.
280
static cl::opt<unsigned>
281
StackHazardRemarkSize("aarch64-stack-hazard-remark-size", cl::init(0),
282
cl::Hidden);
283
// Whether to insert padding into non-streaming functions (for testing).
284
static cl::opt<bool>
285
StackHazardInNonStreaming("aarch64-stack-hazard-in-non-streaming",
286
cl::init(false), cl::Hidden);
287
288
STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
289
290
/// Returns how much of the incoming argument stack area (in bytes) we should
291
/// clean up in an epilogue. For the C calling convention this will be 0, for
292
/// guaranteed tail call conventions it can be positive (a normal return or a
293
/// tail call to a function that uses less stack space for arguments) or
294
/// negative (for a tail call to a function that needs more stack space than us
295
/// for arguments).
296
static int64_t getArgumentStackToRestore(MachineFunction &MF,
297
MachineBasicBlock &MBB) {
298
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
299
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
300
bool IsTailCallReturn = (MBB.end() != MBBI)
301
? AArch64InstrInfo::isTailCallReturnInst(*MBBI)
302
: false;
303
304
int64_t ArgumentPopSize = 0;
305
if (IsTailCallReturn) {
306
MachineOperand &StackAdjust = MBBI->getOperand(1);
307
308
// For a tail-call in a callee-pops-arguments environment, some or all of
309
// the stack may actually be in use for the call's arguments, this is
310
// calculated during LowerCall and consumed here...
311
ArgumentPopSize = StackAdjust.getImm();
312
} else {
313
// ... otherwise the amount to pop is *all* of the argument space,
314
// conveniently stored in the MachineFunctionInfo by
315
// LowerFormalArguments. This will, of course, be zero for the C calling
316
// convention.
317
ArgumentPopSize = AFI->getArgumentStackToRestore();
318
}
319
320
return ArgumentPopSize;
321
}
322
323
static bool produceCompactUnwindFrame(MachineFunction &MF);
324
static bool needsWinCFI(const MachineFunction &MF);
325
static StackOffset getSVEStackSize(const MachineFunction &MF);
326
static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB);
327
328
/// Returns true if a homogeneous prolog or epilog code can be emitted
329
/// for the size optimization. If possible, a frame helper call is injected.
330
/// When Exit block is given, this check is for epilog.
331
bool AArch64FrameLowering::homogeneousPrologEpilog(
332
MachineFunction &MF, MachineBasicBlock *Exit) const {
333
if (!MF.getFunction().hasMinSize())
334
return false;
335
if (!EnableHomogeneousPrologEpilog)
336
return false;
337
if (EnableRedZone)
338
return false;
339
340
// TODO: Window is supported yet.
341
if (needsWinCFI(MF))
342
return false;
343
// TODO: SVE is not supported yet.
344
if (getSVEStackSize(MF))
345
return false;
346
347
// Bail on stack adjustment needed on return for simplicity.
348
const MachineFrameInfo &MFI = MF.getFrameInfo();
349
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
350
if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
351
return false;
352
if (Exit && getArgumentStackToRestore(MF, *Exit))
353
return false;
354
355
auto *AFI = MF.getInfo<AArch64FunctionInfo>();
356
if (AFI->hasSwiftAsyncContext() || AFI->hasStreamingModeChanges())
357
return false;
358
359
// If there are an odd number of GPRs before LR and FP in the CSRs list,
360
// they will not be paired into one RegPairInfo, which is incompatible with
361
// the assumption made by the homogeneous prolog epilog pass.
362
const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
363
unsigned NumGPRs = 0;
364
for (unsigned I = 0; CSRegs[I]; ++I) {
365
Register Reg = CSRegs[I];
366
if (Reg == AArch64::LR) {
367
assert(CSRegs[I + 1] == AArch64::FP);
368
if (NumGPRs % 2 != 0)
369
return false;
370
break;
371
}
372
if (AArch64::GPR64RegClass.contains(Reg))
373
++NumGPRs;
374
}
375
376
return true;
377
}
378
379
/// Returns true if CSRs should be paired.
380
bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
381
return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF);
382
}
383
384
/// This is the biggest offset to the stack pointer we can encode in aarch64
385
/// instructions (without using a separate calculation and a temp register).
386
/// Note that the exception here are vector stores/loads which cannot encode any
387
/// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
388
static const unsigned DefaultSafeSPDisplacement = 255;
389
390
/// Look at each instruction that references stack frames and return the stack
391
/// size limit beyond which some of these instructions will require a scratch
392
/// register during their expansion later.
393
static unsigned estimateRSStackSizeLimit(MachineFunction &MF) {
394
// FIXME: For now, just conservatively guestimate based on unscaled indexing
395
// range. We'll end up allocating an unnecessary spill slot a lot, but
396
// realistically that's not a big deal at this stage of the game.
397
for (MachineBasicBlock &MBB : MF) {
398
for (MachineInstr &MI : MBB) {
399
if (MI.isDebugInstr() || MI.isPseudo() ||
400
MI.getOpcode() == AArch64::ADDXri ||
401
MI.getOpcode() == AArch64::ADDSXri)
402
continue;
403
404
for (const MachineOperand &MO : MI.operands()) {
405
if (!MO.isFI())
406
continue;
407
408
StackOffset Offset;
409
if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
410
AArch64FrameOffsetCannotUpdate)
411
return 0;
412
}
413
}
414
}
415
return DefaultSafeSPDisplacement;
416
}
417
418
TargetStackID::Value
419
AArch64FrameLowering::getStackIDForScalableVectors() const {
420
return TargetStackID::ScalableVector;
421
}
422
423
/// Returns the size of the fixed object area (allocated next to sp on entry)
424
/// On Win64 this may include a var args area and an UnwindHelp object for EH.
425
static unsigned getFixedObjectSize(const MachineFunction &MF,
426
const AArch64FunctionInfo *AFI, bool IsWin64,
427
bool IsFunclet) {
428
if (!IsWin64 || IsFunclet) {
429
return AFI->getTailCallReservedStack();
430
} else {
431
if (AFI->getTailCallReservedStack() != 0 &&
432
!MF.getFunction().getAttributes().hasAttrSomewhere(
433
Attribute::SwiftAsync))
434
report_fatal_error("cannot generate ABI-changing tail call for Win64");
435
// Var args are stored here in the primary function.
436
const unsigned VarArgsArea = AFI->getVarArgsGPRSize();
437
// To support EH funclets we allocate an UnwindHelp object
438
const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0);
439
return AFI->getTailCallReservedStack() +
440
alignTo(VarArgsArea + UnwindHelpObject, 16);
441
}
442
}
443
444
/// Returns the size of the entire SVE stackframe (calleesaves + spills).
445
static StackOffset getSVEStackSize(const MachineFunction &MF) {
446
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
447
return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE());
448
}
449
450
bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
451
if (!EnableRedZone)
452
return false;
453
454
// Don't use the red zone if the function explicitly asks us not to.
455
// This is typically used for kernel code.
456
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
457
const unsigned RedZoneSize =
458
Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
459
if (!RedZoneSize)
460
return false;
461
462
const MachineFrameInfo &MFI = MF.getFrameInfo();
463
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
464
uint64_t NumBytes = AFI->getLocalStackSize();
465
466
// If neither NEON or SVE are available, a COPY from one Q-reg to
467
// another requires a spill -> reload sequence. We can do that
468
// using a pre-decrementing store/post-decrementing load, but
469
// if we do so, we can't use the Red Zone.
470
bool LowerQRegCopyThroughMem = Subtarget.hasFPARMv8() &&
471
!Subtarget.isNeonAvailable() &&
472
!Subtarget.hasSVE();
473
474
return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
475
getSVEStackSize(MF) || LowerQRegCopyThroughMem);
476
}
477
478
/// hasFP - Return true if the specified function should have a dedicated frame
479
/// pointer register.
480
bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
481
const MachineFrameInfo &MFI = MF.getFrameInfo();
482
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
483
484
// Win64 EH requires a frame pointer if funclets are present, as the locals
485
// are accessed off the frame pointer in both the parent function and the
486
// funclets.
487
if (MF.hasEHFunclets())
488
return true;
489
// Retain behavior of always omitting the FP for leaf functions when possible.
490
if (MF.getTarget().Options.DisableFramePointerElim(MF))
491
return true;
492
if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
493
MFI.hasStackMap() || MFI.hasPatchPoint() ||
494
RegInfo->hasStackRealignment(MF))
495
return true;
496
// With large callframes around we may need to use FP to access the scavenging
497
// emergency spillslot.
498
//
499
// Unfortunately some calls to hasFP() like machine verifier ->
500
// getReservedReg() -> hasFP in the middle of global isel are too early
501
// to know the max call frame size. Hopefully conservatively returning "true"
502
// in those cases is fine.
503
// DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
504
if (!MFI.isMaxCallFrameSizeComputed() ||
505
MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement)
506
return true;
507
508
return false;
509
}
510
511
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
512
/// not required, we reserve argument space for call sites in the function
513
/// immediately on entry to the current function. This eliminates the need for
514
/// add/sub sp brackets around call sites. Returns true if the call frame is
515
/// included as part of the stack frame.
516
bool AArch64FrameLowering::hasReservedCallFrame(
517
const MachineFunction &MF) const {
518
// The stack probing code for the dynamically allocated outgoing arguments
519
// area assumes that the stack is probed at the top - either by the prologue
520
// code, which issues a probe if `hasVarSizedObjects` return true, or by the
521
// most recent variable-sized object allocation. Changing the condition here
522
// may need to be followed up by changes to the probe issuing logic.
523
return !MF.getFrameInfo().hasVarSizedObjects();
524
}
525
526
MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr(
527
MachineFunction &MF, MachineBasicBlock &MBB,
528
MachineBasicBlock::iterator I) const {
529
const AArch64InstrInfo *TII =
530
static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
531
const AArch64TargetLowering *TLI =
532
MF.getSubtarget<AArch64Subtarget>().getTargetLowering();
533
[[maybe_unused]] MachineFrameInfo &MFI = MF.getFrameInfo();
534
DebugLoc DL = I->getDebugLoc();
535
unsigned Opc = I->getOpcode();
536
bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
537
uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
538
539
if (!hasReservedCallFrame(MF)) {
540
int64_t Amount = I->getOperand(0).getImm();
541
Amount = alignTo(Amount, getStackAlign());
542
if (!IsDestroy)
543
Amount = -Amount;
544
545
// N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
546
// doesn't have to pop anything), then the first operand will be zero too so
547
// this adjustment is a no-op.
548
if (CalleePopAmount == 0) {
549
// FIXME: in-function stack adjustment for calls is limited to 24-bits
550
// because there's no guaranteed temporary register available.
551
//
552
// ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
553
// 1) For offset <= 12-bit, we use LSL #0
554
// 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
555
// LSL #0, and the other uses LSL #12.
556
//
557
// Most call frames will be allocated at the start of a function so
558
// this is OK, but it is a limitation that needs dealing with.
559
assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
560
561
if (TLI->hasInlineStackProbe(MF) &&
562
-Amount >= AArch64::StackProbeMaxUnprobedStack) {
563
// When stack probing is enabled, the decrement of SP may need to be
564
// probed. We only need to do this if the call site needs 1024 bytes of
565
// space or more, because a region smaller than that is allowed to be
566
// unprobed at an ABI boundary. We rely on the fact that SP has been
567
// probed exactly at this point, either by the prologue or most recent
568
// dynamic allocation.
569
assert(MFI.hasVarSizedObjects() &&
570
"non-reserved call frame without var sized objects?");
571
Register ScratchReg =
572
MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
573
inlineStackProbeFixed(I, ScratchReg, -Amount, StackOffset::get(0, 0));
574
} else {
575
emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
576
StackOffset::getFixed(Amount), TII);
577
}
578
}
579
} else if (CalleePopAmount != 0) {
580
// If the calling convention demands that the callee pops arguments from the
581
// stack, we want to add it back if we have a reserved call frame.
582
assert(CalleePopAmount < 0xffffff && "call frame too large");
583
emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
584
StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
585
}
586
return MBB.erase(I);
587
}
588
589
void AArch64FrameLowering::emitCalleeSavedGPRLocations(
590
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
591
MachineFunction &MF = *MBB.getParent();
592
MachineFrameInfo &MFI = MF.getFrameInfo();
593
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
594
SMEAttrs Attrs(MF.getFunction());
595
bool LocallyStreaming =
596
Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface();
597
598
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
599
if (CSI.empty())
600
return;
601
602
const TargetSubtargetInfo &STI = MF.getSubtarget();
603
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
604
const TargetInstrInfo &TII = *STI.getInstrInfo();
605
DebugLoc DL = MBB.findDebugLoc(MBBI);
606
607
for (const auto &Info : CSI) {
608
unsigned FrameIdx = Info.getFrameIdx();
609
if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector)
610
continue;
611
612
assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
613
int64_t DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true);
614
int64_t Offset = MFI.getObjectOffset(FrameIdx) - getOffsetOfLocalArea();
615
616
// The location of VG will be emitted before each streaming-mode change in
617
// the function. Only locally-streaming functions require emitting the
618
// non-streaming VG location here.
619
if ((LocallyStreaming && FrameIdx == AFI->getStreamingVGIdx()) ||
620
(!LocallyStreaming &&
621
DwarfReg == TRI.getDwarfRegNum(AArch64::VG, true)))
622
continue;
623
624
unsigned CFIIndex = MF.addFrameInst(
625
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
626
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
627
.addCFIIndex(CFIIndex)
628
.setMIFlags(MachineInstr::FrameSetup);
629
}
630
}
631
632
void AArch64FrameLowering::emitCalleeSavedSVELocations(
633
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
634
MachineFunction &MF = *MBB.getParent();
635
MachineFrameInfo &MFI = MF.getFrameInfo();
636
637
// Add callee saved registers to move list.
638
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
639
if (CSI.empty())
640
return;
641
642
const TargetSubtargetInfo &STI = MF.getSubtarget();
643
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
644
const TargetInstrInfo &TII = *STI.getInstrInfo();
645
DebugLoc DL = MBB.findDebugLoc(MBBI);
646
AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
647
648
for (const auto &Info : CSI) {
649
if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
650
continue;
651
652
// Not all unwinders may know about SVE registers, so assume the lowest
653
// common demoninator.
654
assert(!Info.isSpilledToReg() && "Spilling to registers not implemented");
655
unsigned Reg = Info.getReg();
656
if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
657
continue;
658
659
StackOffset Offset =
660
StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) -
661
StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI));
662
663
unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset));
664
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
665
.addCFIIndex(CFIIndex)
666
.setMIFlags(MachineInstr::FrameSetup);
667
}
668
}
669
670
static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF,
671
MachineBasicBlock &MBB,
672
MachineBasicBlock::iterator InsertPt,
673
unsigned DwarfReg) {
674
unsigned CFIIndex =
675
MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg));
676
BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex);
677
}
678
679
void AArch64FrameLowering::resetCFIToInitialState(
680
MachineBasicBlock &MBB) const {
681
682
MachineFunction &MF = *MBB.getParent();
683
const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
684
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
685
const auto &TRI =
686
static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo());
687
const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
688
689
const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION);
690
DebugLoc DL;
691
692
// Reset the CFA to `SP + 0`.
693
MachineBasicBlock::iterator InsertPt = MBB.begin();
694
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
695
nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0));
696
BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
697
698
// Flip the RA sign state.
699
if (MFI.shouldSignReturnAddress(MF)) {
700
CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
701
BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex);
702
}
703
704
// Shadow call stack uses X18, reset it.
705
if (MFI.needsShadowCallStackPrologueEpilogue(MF))
706
insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
707
TRI.getDwarfRegNum(AArch64::X18, true));
708
709
// Emit .cfi_same_value for callee-saved registers.
710
const std::vector<CalleeSavedInfo> &CSI =
711
MF.getFrameInfo().getCalleeSavedInfo();
712
for (const auto &Info : CSI) {
713
unsigned Reg = Info.getReg();
714
if (!TRI.regNeedsCFI(Reg, Reg))
715
continue;
716
insertCFISameValue(CFIDesc, MF, MBB, InsertPt,
717
TRI.getDwarfRegNum(Reg, true));
718
}
719
}
720
721
static void emitCalleeSavedRestores(MachineBasicBlock &MBB,
722
MachineBasicBlock::iterator MBBI,
723
bool SVE) {
724
MachineFunction &MF = *MBB.getParent();
725
MachineFrameInfo &MFI = MF.getFrameInfo();
726
727
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
728
if (CSI.empty())
729
return;
730
731
const TargetSubtargetInfo &STI = MF.getSubtarget();
732
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
733
const TargetInstrInfo &TII = *STI.getInstrInfo();
734
DebugLoc DL = MBB.findDebugLoc(MBBI);
735
736
for (const auto &Info : CSI) {
737
if (SVE !=
738
(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector))
739
continue;
740
741
unsigned Reg = Info.getReg();
742
if (SVE &&
743
!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg))
744
continue;
745
746
if (!Info.isRestored())
747
continue;
748
749
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(
750
nullptr, TRI.getDwarfRegNum(Info.getReg(), true)));
751
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
752
.addCFIIndex(CFIIndex)
753
.setMIFlags(MachineInstr::FrameDestroy);
754
}
755
}
756
757
void AArch64FrameLowering::emitCalleeSavedGPRRestores(
758
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
759
emitCalleeSavedRestores(MBB, MBBI, false);
760
}
761
762
void AArch64FrameLowering::emitCalleeSavedSVERestores(
763
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const {
764
emitCalleeSavedRestores(MBB, MBBI, true);
765
}
766
767
// Return the maximum possible number of bytes for `Size` due to the
768
// architectural limit on the size of a SVE register.
769
static int64_t upperBound(StackOffset Size) {
770
static const int64_t MAX_BYTES_PER_SCALABLE_BYTE = 16;
771
return Size.getScalable() * MAX_BYTES_PER_SCALABLE_BYTE + Size.getFixed();
772
}
773
774
void AArch64FrameLowering::allocateStackSpace(
775
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
776
int64_t RealignmentPadding, StackOffset AllocSize, bool NeedsWinCFI,
777
bool *HasWinCFI, bool EmitCFI, StackOffset InitialOffset,
778
bool FollowupAllocs) const {
779
780
if (!AllocSize)
781
return;
782
783
DebugLoc DL;
784
MachineFunction &MF = *MBB.getParent();
785
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
786
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
787
AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
788
const MachineFrameInfo &MFI = MF.getFrameInfo();
789
790
const int64_t MaxAlign = MFI.getMaxAlign().value();
791
const uint64_t AndMask = ~(MaxAlign - 1);
792
793
if (!Subtarget.getTargetLowering()->hasInlineStackProbe(MF)) {
794
Register TargetReg = RealignmentPadding
795
? findScratchNonCalleeSaveRegister(&MBB)
796
: AArch64::SP;
797
// SUB Xd/SP, SP, AllocSize
798
emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII,
799
MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
800
EmitCFI, InitialOffset);
801
802
if (RealignmentPadding) {
803
// AND SP, X9, 0b11111...0000
804
BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP)
805
.addReg(TargetReg, RegState::Kill)
806
.addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
807
.setMIFlags(MachineInstr::FrameSetup);
808
AFI.setStackRealigned(true);
809
810
// No need for SEH instructions here; if we're realigning the stack,
811
// we've set a frame pointer and already finished the SEH prologue.
812
assert(!NeedsWinCFI);
813
}
814
return;
815
}
816
817
//
818
// Stack probing allocation.
819
//
820
821
// Fixed length allocation. If we don't need to re-align the stack and don't
822
// have SVE objects, we can use a more efficient sequence for stack probing.
823
if (AllocSize.getScalable() == 0 && RealignmentPadding == 0) {
824
Register ScratchReg = findScratchNonCalleeSaveRegister(&MBB);
825
assert(ScratchReg != AArch64::NoRegister);
826
BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC))
827
.addDef(ScratchReg)
828
.addImm(AllocSize.getFixed())
829
.addImm(InitialOffset.getFixed())
830
.addImm(InitialOffset.getScalable());
831
// The fixed allocation may leave unprobed bytes at the top of the
832
// stack. If we have subsequent alocation (e.g. if we have variable-sized
833
// objects), we need to issue an extra probe, so these allocations start in
834
// a known state.
835
if (FollowupAllocs) {
836
// STR XZR, [SP]
837
BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui))
838
.addReg(AArch64::XZR)
839
.addReg(AArch64::SP)
840
.addImm(0)
841
.setMIFlags(MachineInstr::FrameSetup);
842
}
843
844
return;
845
}
846
847
// Variable length allocation.
848
849
// If the (unknown) allocation size cannot exceed the probe size, decrement
850
// the stack pointer right away.
851
int64_t ProbeSize = AFI.getStackProbeSize();
852
if (upperBound(AllocSize) + RealignmentPadding <= ProbeSize) {
853
Register ScratchReg = RealignmentPadding
854
? findScratchNonCalleeSaveRegister(&MBB)
855
: AArch64::SP;
856
assert(ScratchReg != AArch64::NoRegister);
857
// SUB Xd, SP, AllocSize
858
emitFrameOffset(MBB, MBBI, DL, ScratchReg, AArch64::SP, -AllocSize, &TII,
859
MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
860
EmitCFI, InitialOffset);
861
if (RealignmentPadding) {
862
// AND SP, Xn, 0b11111...0000
863
BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP)
864
.addReg(ScratchReg, RegState::Kill)
865
.addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
866
.setMIFlags(MachineInstr::FrameSetup);
867
AFI.setStackRealigned(true);
868
}
869
if (FollowupAllocs || upperBound(AllocSize) + RealignmentPadding >
870
AArch64::StackProbeMaxUnprobedStack) {
871
// STR XZR, [SP]
872
BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui))
873
.addReg(AArch64::XZR)
874
.addReg(AArch64::SP)
875
.addImm(0)
876
.setMIFlags(MachineInstr::FrameSetup);
877
}
878
return;
879
}
880
881
// Emit a variable-length allocation probing loop.
882
// TODO: As an optimisation, the loop can be "unrolled" into a few parts,
883
// each of them guaranteed to adjust the stack by less than the probe size.
884
Register TargetReg = findScratchNonCalleeSaveRegister(&MBB);
885
assert(TargetReg != AArch64::NoRegister);
886
// SUB Xd, SP, AllocSize
887
emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII,
888
MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI,
889
EmitCFI, InitialOffset);
890
if (RealignmentPadding) {
891
// AND Xn, Xn, 0b11111...0000
892
BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), TargetReg)
893
.addReg(TargetReg, RegState::Kill)
894
.addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64))
895
.setMIFlags(MachineInstr::FrameSetup);
896
}
897
898
BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC_VAR))
899
.addReg(TargetReg);
900
if (EmitCFI) {
901
// Set the CFA register back to SP.
902
unsigned Reg =
903
Subtarget.getRegisterInfo()->getDwarfRegNum(AArch64::SP, true);
904
unsigned CFIIndex =
905
MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
906
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
907
.addCFIIndex(CFIIndex)
908
.setMIFlags(MachineInstr::FrameSetup);
909
}
910
if (RealignmentPadding)
911
AFI.setStackRealigned(true);
912
}
913
914
static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) {
915
switch (Reg.id()) {
916
default:
917
// The called routine is expected to preserve r19-r28
918
// r29 and r30 are used as frame pointer and link register resp.
919
return 0;
920
921
// GPRs
922
#define CASE(n) \
923
case AArch64::W##n: \
924
case AArch64::X##n: \
925
return AArch64::X##n
926
CASE(0);
927
CASE(1);
928
CASE(2);
929
CASE(3);
930
CASE(4);
931
CASE(5);
932
CASE(6);
933
CASE(7);
934
CASE(8);
935
CASE(9);
936
CASE(10);
937
CASE(11);
938
CASE(12);
939
CASE(13);
940
CASE(14);
941
CASE(15);
942
CASE(16);
943
CASE(17);
944
CASE(18);
945
#undef CASE
946
947
// FPRs
948
#define CASE(n) \
949
case AArch64::B##n: \
950
case AArch64::H##n: \
951
case AArch64::S##n: \
952
case AArch64::D##n: \
953
case AArch64::Q##n: \
954
return HasSVE ? AArch64::Z##n : AArch64::Q##n
955
CASE(0);
956
CASE(1);
957
CASE(2);
958
CASE(3);
959
CASE(4);
960
CASE(5);
961
CASE(6);
962
CASE(7);
963
CASE(8);
964
CASE(9);
965
CASE(10);
966
CASE(11);
967
CASE(12);
968
CASE(13);
969
CASE(14);
970
CASE(15);
971
CASE(16);
972
CASE(17);
973
CASE(18);
974
CASE(19);
975
CASE(20);
976
CASE(21);
977
CASE(22);
978
CASE(23);
979
CASE(24);
980
CASE(25);
981
CASE(26);
982
CASE(27);
983
CASE(28);
984
CASE(29);
985
CASE(30);
986
CASE(31);
987
#undef CASE
988
}
989
}
990
991
void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
992
MachineBasicBlock &MBB) const {
993
// Insertion point.
994
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
995
996
// Fake a debug loc.
997
DebugLoc DL;
998
if (MBBI != MBB.end())
999
DL = MBBI->getDebugLoc();
1000
1001
const MachineFunction &MF = *MBB.getParent();
1002
const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
1003
const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
1004
1005
BitVector GPRsToZero(TRI.getNumRegs());
1006
BitVector FPRsToZero(TRI.getNumRegs());
1007
bool HasSVE = STI.hasSVE();
1008
for (MCRegister Reg : RegsToZero.set_bits()) {
1009
if (TRI.isGeneralPurposeRegister(MF, Reg)) {
1010
// For GPRs, we only care to clear out the 64-bit register.
1011
if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
1012
GPRsToZero.set(XReg);
1013
} else if (AArch64InstrInfo::isFpOrNEON(Reg)) {
1014
// For FPRs,
1015
if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
1016
FPRsToZero.set(XReg);
1017
}
1018
}
1019
1020
const AArch64InstrInfo &TII = *STI.getInstrInfo();
1021
1022
// Zero out GPRs.
1023
for (MCRegister Reg : GPRsToZero.set_bits())
1024
TII.buildClearRegister(Reg, MBB, MBBI, DL);
1025
1026
// Zero out FP/vector registers.
1027
for (MCRegister Reg : FPRsToZero.set_bits())
1028
TII.buildClearRegister(Reg, MBB, MBBI, DL);
1029
1030
if (HasSVE) {
1031
for (MCRegister PReg :
1032
{AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
1033
AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
1034
AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
1035
AArch64::P15}) {
1036
if (RegsToZero[PReg])
1037
BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
1038
}
1039
}
1040
}
1041
1042
static void getLiveRegsForEntryMBB(LivePhysRegs &LiveRegs,
1043
const MachineBasicBlock &MBB) {
1044
const MachineFunction *MF = MBB.getParent();
1045
LiveRegs.addLiveIns(MBB);
1046
// Mark callee saved registers as used so we will not choose them.
1047
const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
1048
for (unsigned i = 0; CSRegs[i]; ++i)
1049
LiveRegs.addReg(CSRegs[i]);
1050
}
1051
1052
// Find a scratch register that we can use at the start of the prologue to
1053
// re-align the stack pointer. We avoid using callee-save registers since they
1054
// may appear to be free when this is called from canUseAsPrologue (during
1055
// shrink wrapping), but then no longer be free when this is called from
1056
// emitPrologue.
1057
//
1058
// FIXME: This is a bit conservative, since in the above case we could use one
1059
// of the callee-save registers as a scratch temp to re-align the stack pointer,
1060
// but we would then have to make sure that we were in fact saving at least one
1061
// callee-save register in the prologue, which is additional complexity that
1062
// doesn't seem worth the benefit.
1063
static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) {
1064
MachineFunction *MF = MBB->getParent();
1065
1066
// If MBB is an entry block, use X9 as the scratch register
1067
// preserve_none functions may be using X9 to pass arguments,
1068
// so prefer to pick an available register below.
1069
if (&MF->front() == MBB &&
1070
MF->getFunction().getCallingConv() != CallingConv::PreserveNone)
1071
return AArch64::X9;
1072
1073
const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
1074
const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
1075
LivePhysRegs LiveRegs(TRI);
1076
getLiveRegsForEntryMBB(LiveRegs, *MBB);
1077
1078
// Prefer X9 since it was historically used for the prologue scratch reg.
1079
const MachineRegisterInfo &MRI = MF->getRegInfo();
1080
if (LiveRegs.available(MRI, AArch64::X9))
1081
return AArch64::X9;
1082
1083
for (unsigned Reg : AArch64::GPR64RegClass) {
1084
if (LiveRegs.available(MRI, Reg))
1085
return Reg;
1086
}
1087
return AArch64::NoRegister;
1088
}
1089
1090
bool AArch64FrameLowering::canUseAsPrologue(
1091
const MachineBasicBlock &MBB) const {
1092
const MachineFunction *MF = MBB.getParent();
1093
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
1094
const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
1095
const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1096
const AArch64TargetLowering *TLI = Subtarget.getTargetLowering();
1097
const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>();
1098
1099
if (AFI->hasSwiftAsyncContext()) {
1100
const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
1101
const MachineRegisterInfo &MRI = MF->getRegInfo();
1102
LivePhysRegs LiveRegs(TRI);
1103
getLiveRegsForEntryMBB(LiveRegs, MBB);
1104
// The StoreSwiftAsyncContext clobbers X16 and X17. Make sure they are
1105
// available.
1106
if (!LiveRegs.available(MRI, AArch64::X16) ||
1107
!LiveRegs.available(MRI, AArch64::X17))
1108
return false;
1109
}
1110
1111
// Certain stack probing sequences might clobber flags, then we can't use
1112
// the block as a prologue if the flags register is a live-in.
1113
if (MF->getInfo<AArch64FunctionInfo>()->hasStackProbing() &&
1114
MBB.isLiveIn(AArch64::NZCV))
1115
return false;
1116
1117
// Don't need a scratch register if we're not going to re-align the stack or
1118
// emit stack probes.
1119
if (!RegInfo->hasStackRealignment(*MF) && !TLI->hasInlineStackProbe(*MF))
1120
return true;
1121
// Otherwise, we can use any block as long as it has a scratch register
1122
// available.
1123
return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister;
1124
}
1125
1126
static bool windowsRequiresStackProbe(MachineFunction &MF,
1127
uint64_t StackSizeInBytes) {
1128
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1129
const AArch64FunctionInfo &MFI = *MF.getInfo<AArch64FunctionInfo>();
1130
// TODO: When implementing stack protectors, take that into account
1131
// for the probe threshold.
1132
return Subtarget.isTargetWindows() && MFI.hasStackProbing() &&
1133
StackSizeInBytes >= uint64_t(MFI.getStackProbeSize());
1134
}
1135
1136
static bool needsWinCFI(const MachineFunction &MF) {
1137
const Function &F = MF.getFunction();
1138
return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
1139
F.needsUnwindTableEntry();
1140
}
1141
1142
bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
1143
MachineFunction &MF, uint64_t StackBumpBytes) const {
1144
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1145
const MachineFrameInfo &MFI = MF.getFrameInfo();
1146
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1147
const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1148
if (homogeneousPrologEpilog(MF))
1149
return false;
1150
1151
if (AFI->getLocalStackSize() == 0)
1152
return false;
1153
1154
// For WinCFI, if optimizing for size, prefer to not combine the stack bump
1155
// (to force a stp with predecrement) to match the packed unwind format,
1156
// provided that there actually are any callee saved registers to merge the
1157
// decrement with.
1158
// This is potentially marginally slower, but allows using the packed
1159
// unwind format for functions that both have a local area and callee saved
1160
// registers. Using the packed unwind format notably reduces the size of
1161
// the unwind info.
1162
if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 &&
1163
MF.getFunction().hasOptSize())
1164
return false;
1165
1166
// 512 is the maximum immediate for stp/ldp that will be used for
1167
// callee-save save/restores
1168
if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes))
1169
return false;
1170
1171
if (MFI.hasVarSizedObjects())
1172
return false;
1173
1174
if (RegInfo->hasStackRealignment(MF))
1175
return false;
1176
1177
// This isn't strictly necessary, but it simplifies things a bit since the
1178
// current RedZone handling code assumes the SP is adjusted by the
1179
// callee-save save/restore code.
1180
if (canUseRedZone(MF))
1181
return false;
1182
1183
// When there is an SVE area on the stack, always allocate the
1184
// callee-saves and spills/locals separately.
1185
if (getSVEStackSize(MF))
1186
return false;
1187
1188
return true;
1189
}
1190
1191
bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
1192
MachineBasicBlock &MBB, unsigned StackBumpBytes) const {
1193
if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes))
1194
return false;
1195
1196
if (MBB.empty())
1197
return true;
1198
1199
// Disable combined SP bump if the last instruction is an MTE tag store. It
1200
// is almost always better to merge SP adjustment into those instructions.
1201
MachineBasicBlock::iterator LastI = MBB.getFirstTerminator();
1202
MachineBasicBlock::iterator Begin = MBB.begin();
1203
while (LastI != Begin) {
1204
--LastI;
1205
if (LastI->isTransient())
1206
continue;
1207
if (!LastI->getFlag(MachineInstr::FrameDestroy))
1208
break;
1209
}
1210
switch (LastI->getOpcode()) {
1211
case AArch64::STGloop:
1212
case AArch64::STZGloop:
1213
case AArch64::STGi:
1214
case AArch64::STZGi:
1215
case AArch64::ST2Gi:
1216
case AArch64::STZ2Gi:
1217
return false;
1218
default:
1219
return true;
1220
}
1221
llvm_unreachable("unreachable");
1222
}
1223
1224
// Given a load or a store instruction, generate an appropriate unwinding SEH
1225
// code on Windows.
1226
static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI,
1227
const TargetInstrInfo &TII,
1228
MachineInstr::MIFlag Flag) {
1229
unsigned Opc = MBBI->getOpcode();
1230
MachineBasicBlock *MBB = MBBI->getParent();
1231
MachineFunction &MF = *MBB->getParent();
1232
DebugLoc DL = MBBI->getDebugLoc();
1233
unsigned ImmIdx = MBBI->getNumOperands() - 1;
1234
int Imm = MBBI->getOperand(ImmIdx).getImm();
1235
MachineInstrBuilder MIB;
1236
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1237
const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1238
1239
switch (Opc) {
1240
default:
1241
llvm_unreachable("No SEH Opcode for this instruction");
1242
case AArch64::LDPDpost:
1243
Imm = -Imm;
1244
[[fallthrough]];
1245
case AArch64::STPDpre: {
1246
unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1247
unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1248
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
1249
.addImm(Reg0)
1250
.addImm(Reg1)
1251
.addImm(Imm * 8)
1252
.setMIFlag(Flag);
1253
break;
1254
}
1255
case AArch64::LDPXpost:
1256
Imm = -Imm;
1257
[[fallthrough]];
1258
case AArch64::STPXpre: {
1259
Register Reg0 = MBBI->getOperand(1).getReg();
1260
Register Reg1 = MBBI->getOperand(2).getReg();
1261
if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1262
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1263
.addImm(Imm * 8)
1264
.setMIFlag(Flag);
1265
else
1266
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1267
.addImm(RegInfo->getSEHRegNum(Reg0))
1268
.addImm(RegInfo->getSEHRegNum(Reg1))
1269
.addImm(Imm * 8)
1270
.setMIFlag(Flag);
1271
break;
1272
}
1273
case AArch64::LDRDpost:
1274
Imm = -Imm;
1275
[[fallthrough]];
1276
case AArch64::STRDpre: {
1277
unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1278
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1279
.addImm(Reg)
1280
.addImm(Imm)
1281
.setMIFlag(Flag);
1282
break;
1283
}
1284
case AArch64::LDRXpost:
1285
Imm = -Imm;
1286
[[fallthrough]];
1287
case AArch64::STRXpre: {
1288
unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1289
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1290
.addImm(Reg)
1291
.addImm(Imm)
1292
.setMIFlag(Flag);
1293
break;
1294
}
1295
case AArch64::STPDi:
1296
case AArch64::LDPDi: {
1297
unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1298
unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1299
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1300
.addImm(Reg0)
1301
.addImm(Reg1)
1302
.addImm(Imm * 8)
1303
.setMIFlag(Flag);
1304
break;
1305
}
1306
case AArch64::STPXi:
1307
case AArch64::LDPXi: {
1308
Register Reg0 = MBBI->getOperand(0).getReg();
1309
Register Reg1 = MBBI->getOperand(1).getReg();
1310
if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1311
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1312
.addImm(Imm * 8)
1313
.setMIFlag(Flag);
1314
else
1315
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1316
.addImm(RegInfo->getSEHRegNum(Reg0))
1317
.addImm(RegInfo->getSEHRegNum(Reg1))
1318
.addImm(Imm * 8)
1319
.setMIFlag(Flag);
1320
break;
1321
}
1322
case AArch64::STRXui:
1323
case AArch64::LDRXui: {
1324
int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1325
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1326
.addImm(Reg)
1327
.addImm(Imm * 8)
1328
.setMIFlag(Flag);
1329
break;
1330
}
1331
case AArch64::STRDui:
1332
case AArch64::LDRDui: {
1333
unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1334
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1335
.addImm(Reg)
1336
.addImm(Imm * 8)
1337
.setMIFlag(Flag);
1338
break;
1339
}
1340
case AArch64::STPQi:
1341
case AArch64::LDPQi: {
1342
unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1343
unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1344
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQP))
1345
.addImm(Reg0)
1346
.addImm(Reg1)
1347
.addImm(Imm * 16)
1348
.setMIFlag(Flag);
1349
break;
1350
}
1351
case AArch64::LDPQpost:
1352
Imm = -Imm;
1353
[[fallthrough]];
1354
case AArch64::STPQpre: {
1355
unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1356
unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1357
MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQPX))
1358
.addImm(Reg0)
1359
.addImm(Reg1)
1360
.addImm(Imm * 16)
1361
.setMIFlag(Flag);
1362
break;
1363
}
1364
}
1365
auto I = MBB->insertAfter(MBBI, MIB);
1366
return I;
1367
}
1368
1369
// Fix up the SEH opcode associated with the save/restore instruction.
1370
static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI,
1371
unsigned LocalStackSize) {
1372
MachineOperand *ImmOpnd = nullptr;
1373
unsigned ImmIdx = MBBI->getNumOperands() - 1;
1374
switch (MBBI->getOpcode()) {
1375
default:
1376
llvm_unreachable("Fix the offset in the SEH instruction");
1377
case AArch64::SEH_SaveFPLR:
1378
case AArch64::SEH_SaveRegP:
1379
case AArch64::SEH_SaveReg:
1380
case AArch64::SEH_SaveFRegP:
1381
case AArch64::SEH_SaveFReg:
1382
case AArch64::SEH_SaveAnyRegQP:
1383
case AArch64::SEH_SaveAnyRegQPX:
1384
ImmOpnd = &MBBI->getOperand(ImmIdx);
1385
break;
1386
}
1387
if (ImmOpnd)
1388
ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize);
1389
}
1390
1391
bool requiresGetVGCall(MachineFunction &MF) {
1392
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1393
return AFI->hasStreamingModeChanges() &&
1394
!MF.getSubtarget<AArch64Subtarget>().hasSVE();
1395
}
1396
1397
static bool requiresSaveVG(MachineFunction &MF) {
1398
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1399
// For Darwin platforms we don't save VG for non-SVE functions, even if SME
1400
// is enabled with streaming mode changes.
1401
if (!AFI->hasStreamingModeChanges())
1402
return false;
1403
auto &ST = MF.getSubtarget<AArch64Subtarget>();
1404
if (ST.isTargetDarwin())
1405
return ST.hasSVE();
1406
return true;
1407
}
1408
1409
bool isVGInstruction(MachineBasicBlock::iterator MBBI) {
1410
unsigned Opc = MBBI->getOpcode();
1411
if (Opc == AArch64::CNTD_XPiI || Opc == AArch64::RDSVLI_XI ||
1412
Opc == AArch64::UBFMXri)
1413
return true;
1414
1415
if (requiresGetVGCall(*MBBI->getMF())) {
1416
if (Opc == AArch64::ORRXrr)
1417
return true;
1418
1419
if (Opc == AArch64::BL) {
1420
auto Op1 = MBBI->getOperand(0);
1421
return Op1.isSymbol() &&
1422
(StringRef(Op1.getSymbolName()) == "__arm_get_current_vg");
1423
}
1424
}
1425
1426
return false;
1427
}
1428
1429
// Convert callee-save register save/restore instruction to do stack pointer
1430
// decrement/increment to allocate/deallocate the callee-save stack area by
1431
// converting store/load to use pre/post increment version.
1432
static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec(
1433
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
1434
const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc,
1435
bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI,
1436
MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup,
1437
int CFAOffset = 0) {
1438
unsigned NewOpc;
1439
1440
// If the function contains streaming mode changes, we expect instructions
1441
// to calculate the value of VG before spilling. For locally-streaming
1442
// functions, we need to do this for both the streaming and non-streaming
1443
// vector length. Move past these instructions if necessary.
1444
MachineFunction &MF = *MBB.getParent();
1445
if (requiresSaveVG(MF))
1446
while (isVGInstruction(MBBI))
1447
++MBBI;
1448
1449
switch (MBBI->getOpcode()) {
1450
default:
1451
llvm_unreachable("Unexpected callee-save save/restore opcode!");
1452
case AArch64::STPXi:
1453
NewOpc = AArch64::STPXpre;
1454
break;
1455
case AArch64::STPDi:
1456
NewOpc = AArch64::STPDpre;
1457
break;
1458
case AArch64::STPQi:
1459
NewOpc = AArch64::STPQpre;
1460
break;
1461
case AArch64::STRXui:
1462
NewOpc = AArch64::STRXpre;
1463
break;
1464
case AArch64::STRDui:
1465
NewOpc = AArch64::STRDpre;
1466
break;
1467
case AArch64::STRQui:
1468
NewOpc = AArch64::STRQpre;
1469
break;
1470
case AArch64::LDPXi:
1471
NewOpc = AArch64::LDPXpost;
1472
break;
1473
case AArch64::LDPDi:
1474
NewOpc = AArch64::LDPDpost;
1475
break;
1476
case AArch64::LDPQi:
1477
NewOpc = AArch64::LDPQpost;
1478
break;
1479
case AArch64::LDRXui:
1480
NewOpc = AArch64::LDRXpost;
1481
break;
1482
case AArch64::LDRDui:
1483
NewOpc = AArch64::LDRDpost;
1484
break;
1485
case AArch64::LDRQui:
1486
NewOpc = AArch64::LDRQpost;
1487
break;
1488
}
1489
// Get rid of the SEH code associated with the old instruction.
1490
if (NeedsWinCFI) {
1491
auto SEH = std::next(MBBI);
1492
if (AArch64InstrInfo::isSEHInstruction(*SEH))
1493
SEH->eraseFromParent();
1494
}
1495
1496
TypeSize Scale = TypeSize::getFixed(1), Width = TypeSize::getFixed(0);
1497
int64_t MinOffset, MaxOffset;
1498
bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo(
1499
NewOpc, Scale, Width, MinOffset, MaxOffset);
1500
(void)Success;
1501
assert(Success && "unknown load/store opcode");
1502
1503
// If the first store isn't right where we want SP then we can't fold the
1504
// update in so create a normal arithmetic instruction instead.
1505
if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 ||
1506
CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) {
1507
// If we are destroying the frame, make sure we add the increment after the
1508
// last frame operation.
1509
if (FrameFlag == MachineInstr::FrameDestroy)
1510
++MBBI;
1511
emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1512
StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag,
1513
false, false, nullptr, EmitCFI,
1514
StackOffset::getFixed(CFAOffset));
1515
1516
return std::prev(MBBI);
1517
}
1518
1519
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1520
MIB.addReg(AArch64::SP, RegState::Define);
1521
1522
// Copy all operands other than the immediate offset.
1523
unsigned OpndIdx = 0;
1524
for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd;
1525
++OpndIdx)
1526
MIB.add(MBBI->getOperand(OpndIdx));
1527
1528
assert(MBBI->getOperand(OpndIdx).getImm() == 0 &&
1529
"Unexpected immediate offset in first/last callee-save save/restore "
1530
"instruction!");
1531
assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP &&
1532
"Unexpected base register in callee-save save/restore instruction!");
1533
assert(CSStackSizeInc % Scale == 0);
1534
MIB.addImm(CSStackSizeInc / (int)Scale);
1535
1536
MIB.setMIFlags(MBBI->getFlags());
1537
MIB.setMemRefs(MBBI->memoperands());
1538
1539
// Generate a new SEH code that corresponds to the new instruction.
1540
if (NeedsWinCFI) {
1541
*HasWinCFI = true;
1542
InsertSEH(*MIB, *TII, FrameFlag);
1543
}
1544
1545
if (EmitCFI) {
1546
unsigned CFIIndex = MF.addFrameInst(
1547
MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc));
1548
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1549
.addCFIIndex(CFIIndex)
1550
.setMIFlags(FrameFlag);
1551
}
1552
1553
return std::prev(MBB.erase(MBBI));
1554
}
1555
1556
// Fixup callee-save register save/restore instructions to take into account
1557
// combined SP bump by adding the local stack size to the stack offsets.
1558
static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI,
1559
uint64_t LocalStackSize,
1560
bool NeedsWinCFI,
1561
bool *HasWinCFI) {
1562
if (AArch64InstrInfo::isSEHInstruction(MI))
1563
return;
1564
1565
unsigned Opc = MI.getOpcode();
1566
unsigned Scale;
1567
switch (Opc) {
1568
case AArch64::STPXi:
1569
case AArch64::STRXui:
1570
case AArch64::STPDi:
1571
case AArch64::STRDui:
1572
case AArch64::LDPXi:
1573
case AArch64::LDRXui:
1574
case AArch64::LDPDi:
1575
case AArch64::LDRDui:
1576
Scale = 8;
1577
break;
1578
case AArch64::STPQi:
1579
case AArch64::STRQui:
1580
case AArch64::LDPQi:
1581
case AArch64::LDRQui:
1582
Scale = 16;
1583
break;
1584
default:
1585
llvm_unreachable("Unexpected callee-save save/restore opcode!");
1586
}
1587
1588
unsigned OffsetIdx = MI.getNumExplicitOperands() - 1;
1589
assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP &&
1590
"Unexpected base register in callee-save save/restore instruction!");
1591
// Last operand is immediate offset that needs fixing.
1592
MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx);
1593
// All generated opcodes have scaled offsets.
1594
assert(LocalStackSize % Scale == 0);
1595
OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale);
1596
1597
if (NeedsWinCFI) {
1598
*HasWinCFI = true;
1599
auto MBBI = std::next(MachineBasicBlock::iterator(MI));
1600
assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction");
1601
assert(AArch64InstrInfo::isSEHInstruction(*MBBI) &&
1602
"Expecting a SEH instruction");
1603
fixupSEHOpcode(MBBI, LocalStackSize);
1604
}
1605
}
1606
1607
static bool isTargetWindows(const MachineFunction &MF) {
1608
return MF.getSubtarget<AArch64Subtarget>().isTargetWindows();
1609
}
1610
1611
// Convenience function to determine whether I is an SVE callee save.
1612
static bool IsSVECalleeSave(MachineBasicBlock::iterator I) {
1613
switch (I->getOpcode()) {
1614
default:
1615
return false;
1616
case AArch64::PTRUE_C_B:
1617
case AArch64::LD1B_2Z_IMM:
1618
case AArch64::ST1B_2Z_IMM:
1619
case AArch64::STR_ZXI:
1620
case AArch64::STR_PXI:
1621
case AArch64::LDR_ZXI:
1622
case AArch64::LDR_PXI:
1623
return I->getFlag(MachineInstr::FrameSetup) ||
1624
I->getFlag(MachineInstr::FrameDestroy);
1625
}
1626
}
1627
1628
static void emitShadowCallStackPrologue(const TargetInstrInfo &TII,
1629
MachineFunction &MF,
1630
MachineBasicBlock &MBB,
1631
MachineBasicBlock::iterator MBBI,
1632
const DebugLoc &DL, bool NeedsWinCFI,
1633
bool NeedsUnwindInfo) {
1634
// Shadow call stack prolog: str x30, [x18], #8
1635
BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost))
1636
.addReg(AArch64::X18, RegState::Define)
1637
.addReg(AArch64::LR)
1638
.addReg(AArch64::X18)
1639
.addImm(8)
1640
.setMIFlag(MachineInstr::FrameSetup);
1641
1642
// This instruction also makes x18 live-in to the entry block.
1643
MBB.addLiveIn(AArch64::X18);
1644
1645
if (NeedsWinCFI)
1646
BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop))
1647
.setMIFlag(MachineInstr::FrameSetup);
1648
1649
if (NeedsUnwindInfo) {
1650
// Emit a CFI instruction that causes 8 to be subtracted from the value of
1651
// x18 when unwinding past this frame.
1652
static const char CFIInst[] = {
1653
dwarf::DW_CFA_val_expression,
1654
18, // register
1655
2, // length
1656
static_cast<char>(unsigned(dwarf::DW_OP_breg18)),
1657
static_cast<char>(-8) & 0x7f, // addend (sleb128)
1658
};
1659
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(
1660
nullptr, StringRef(CFIInst, sizeof(CFIInst))));
1661
BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION))
1662
.addCFIIndex(CFIIndex)
1663
.setMIFlag(MachineInstr::FrameSetup);
1664
}
1665
}
1666
1667
static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII,
1668
MachineFunction &MF,
1669
MachineBasicBlock &MBB,
1670
MachineBasicBlock::iterator MBBI,
1671
const DebugLoc &DL) {
1672
// Shadow call stack epilog: ldr x30, [x18, #-8]!
1673
BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre))
1674
.addReg(AArch64::X18, RegState::Define)
1675
.addReg(AArch64::LR, RegState::Define)
1676
.addReg(AArch64::X18)
1677
.addImm(-8)
1678
.setMIFlag(MachineInstr::FrameDestroy);
1679
1680
if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) {
1681
unsigned CFIIndex =
1682
MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18));
1683
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1684
.addCFIIndex(CFIIndex)
1685
.setMIFlags(MachineInstr::FrameDestroy);
1686
}
1687
}
1688
1689
// Define the current CFA rule to use the provided FP.
1690
static void emitDefineCFAWithFP(MachineFunction &MF, MachineBasicBlock &MBB,
1691
MachineBasicBlock::iterator MBBI,
1692
const DebugLoc &DL, unsigned FixedObject) {
1693
const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
1694
const AArch64RegisterInfo *TRI = STI.getRegisterInfo();
1695
const TargetInstrInfo *TII = STI.getInstrInfo();
1696
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1697
1698
const int OffsetToFirstCalleeSaveFromFP =
1699
AFI->getCalleeSaveBaseToFrameRecordOffset() -
1700
AFI->getCalleeSavedStackSize();
1701
Register FramePtr = TRI->getFrameRegister(MF);
1702
unsigned Reg = TRI->getDwarfRegNum(FramePtr, true);
1703
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1704
nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP));
1705
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1706
.addCFIIndex(CFIIndex)
1707
.setMIFlags(MachineInstr::FrameSetup);
1708
}
1709
1710
#ifndef NDEBUG
1711
/// Collect live registers from the end of \p MI's parent up to (including) \p
1712
/// MI in \p LiveRegs.
1713
static void getLivePhysRegsUpTo(MachineInstr &MI, const TargetRegisterInfo &TRI,
1714
LivePhysRegs &LiveRegs) {
1715
1716
MachineBasicBlock &MBB = *MI.getParent();
1717
LiveRegs.addLiveOuts(MBB);
1718
for (const MachineInstr &MI :
1719
reverse(make_range(MI.getIterator(), MBB.instr_end())))
1720
LiveRegs.stepBackward(MI);
1721
}
1722
#endif
1723
1724
void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
1725
MachineBasicBlock &MBB) const {
1726
MachineBasicBlock::iterator MBBI = MBB.begin();
1727
const MachineFrameInfo &MFI = MF.getFrameInfo();
1728
const Function &F = MF.getFunction();
1729
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1730
const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1731
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1732
1733
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
1734
bool EmitCFI = AFI->needsDwarfUnwindInfo(MF);
1735
bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
1736
bool HasFP = hasFP(MF);
1737
bool NeedsWinCFI = needsWinCFI(MF);
1738
bool HasWinCFI = false;
1739
auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); });
1740
1741
MachineBasicBlock::iterator End = MBB.end();
1742
#ifndef NDEBUG
1743
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1744
// Collect live register from the end of MBB up to the start of the existing
1745
// frame setup instructions.
1746
MachineBasicBlock::iterator NonFrameStart = MBB.begin();
1747
while (NonFrameStart != End &&
1748
NonFrameStart->getFlag(MachineInstr::FrameSetup))
1749
++NonFrameStart;
1750
1751
LivePhysRegs LiveRegs(*TRI);
1752
if (NonFrameStart != MBB.end()) {
1753
getLivePhysRegsUpTo(*NonFrameStart, *TRI, LiveRegs);
1754
// Ignore registers used for stack management for now.
1755
LiveRegs.removeReg(AArch64::SP);
1756
LiveRegs.removeReg(AArch64::X19);
1757
LiveRegs.removeReg(AArch64::FP);
1758
LiveRegs.removeReg(AArch64::LR);
1759
1760
// X0 will be clobbered by a call to __arm_get_current_vg in the prologue.
1761
// This is necessary to spill VG if required where SVE is unavailable, but
1762
// X0 is preserved around this call.
1763
if (requiresGetVGCall(MF))
1764
LiveRegs.removeReg(AArch64::X0);
1765
}
1766
1767
auto VerifyClobberOnExit = make_scope_exit([&]() {
1768
if (NonFrameStart == MBB.end())
1769
return;
1770
// Check if any of the newly instructions clobber any of the live registers.
1771
for (MachineInstr &MI :
1772
make_range(MBB.instr_begin(), NonFrameStart->getIterator())) {
1773
for (auto &Op : MI.operands())
1774
if (Op.isReg() && Op.isDef())
1775
assert(!LiveRegs.contains(Op.getReg()) &&
1776
"live register clobbered by inserted prologue instructions");
1777
}
1778
});
1779
#endif
1780
1781
bool IsFunclet = MBB.isEHFuncletEntry();
1782
1783
// At this point, we're going to decide whether or not the function uses a
1784
// redzone. In most cases, the function doesn't have a redzone so let's
1785
// assume that's false and set it to true in the case that there's a redzone.
1786
AFI->setHasRedZone(false);
1787
1788
// Debug location must be unknown since the first debug location is used
1789
// to determine the end of the prologue.
1790
DebugLoc DL;
1791
1792
const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
1793
if (MFnI.needsShadowCallStackPrologueEpilogue(MF))
1794
emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI,
1795
MFnI.needsDwarfUnwindInfo(MF));
1796
1797
if (MFnI.shouldSignReturnAddress(MF)) {
1798
BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_PROLOGUE))
1799
.setMIFlag(MachineInstr::FrameSetup);
1800
if (NeedsWinCFI)
1801
HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR
1802
}
1803
1804
if (EmitCFI && MFnI.isMTETagged()) {
1805
BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED))
1806
.setMIFlag(MachineInstr::FrameSetup);
1807
}
1808
1809
// We signal the presence of a Swift extended frame to external tools by
1810
// storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1811
// ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1812
// bits so that is still true.
1813
if (HasFP && AFI->hasSwiftAsyncContext()) {
1814
switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
1815
case SwiftAsyncFramePointerMode::DeploymentBased:
1816
if (Subtarget.swiftAsyncContextIsDynamicallySet()) {
1817
// The special symbol below is absolute and has a *value* that can be
1818
// combined with the frame pointer to signal an extended frame.
1819
BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16)
1820
.addExternalSymbol("swift_async_extendedFramePointerFlags",
1821
AArch64II::MO_GOT);
1822
if (NeedsWinCFI) {
1823
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1824
.setMIFlags(MachineInstr::FrameSetup);
1825
HasWinCFI = true;
1826
}
1827
BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP)
1828
.addUse(AArch64::FP)
1829
.addUse(AArch64::X16)
1830
.addImm(Subtarget.isTargetILP32() ? 32 : 0);
1831
if (NeedsWinCFI) {
1832
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1833
.setMIFlags(MachineInstr::FrameSetup);
1834
HasWinCFI = true;
1835
}
1836
break;
1837
}
1838
[[fallthrough]];
1839
1840
case SwiftAsyncFramePointerMode::Always:
1841
// ORR x29, x29, #0x1000_0000_0000_0000
1842
BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP)
1843
.addUse(AArch64::FP)
1844
.addImm(0x1100)
1845
.setMIFlag(MachineInstr::FrameSetup);
1846
if (NeedsWinCFI) {
1847
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1848
.setMIFlags(MachineInstr::FrameSetup);
1849
HasWinCFI = true;
1850
}
1851
break;
1852
1853
case SwiftAsyncFramePointerMode::Never:
1854
break;
1855
}
1856
}
1857
1858
// All calls are tail calls in GHC calling conv, and functions have no
1859
// prologue/epilogue.
1860
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1861
return;
1862
1863
// Set tagged base pointer to the requested stack slot.
1864
// Ideally it should match SP value after prologue.
1865
std::optional<int> TBPI = AFI->getTaggedBasePointerIndex();
1866
if (TBPI)
1867
AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI));
1868
else
1869
AFI->setTaggedBasePointerOffset(MFI.getStackSize());
1870
1871
const StackOffset &SVEStackSize = getSVEStackSize(MF);
1872
1873
// getStackSize() includes all the locals in its size calculation. We don't
1874
// include these locals when computing the stack size of a funclet, as they
1875
// are allocated in the parent's stack frame and accessed via the frame
1876
// pointer from the funclet. We only save the callee saved registers in the
1877
// funclet, which are really the callee saved registers of the parent
1878
// function, including the funclet.
1879
int64_t NumBytes =
1880
IsFunclet ? getWinEHFuncletFrameSize(MF) : MFI.getStackSize();
1881
if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) {
1882
assert(!HasFP && "unexpected function without stack frame but with FP");
1883
assert(!SVEStackSize &&
1884
"unexpected function without stack frame but with SVE objects");
1885
// All of the stack allocation is for locals.
1886
AFI->setLocalStackSize(NumBytes);
1887
if (!NumBytes)
1888
return;
1889
// REDZONE: If the stack size is less than 128 bytes, we don't need
1890
// to actually allocate.
1891
if (canUseRedZone(MF)) {
1892
AFI->setHasRedZone(true);
1893
++NumRedZoneFunctions;
1894
} else {
1895
emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1896
StackOffset::getFixed(-NumBytes), TII,
1897
MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
1898
if (EmitCFI) {
1899
// Label used to tie together the PROLOG_LABEL and the MachineMoves.
1900
MCSymbol *FrameLabel = MF.getContext().createTempSymbol();
1901
// Encode the stack size of the leaf function.
1902
unsigned CFIIndex = MF.addFrameInst(
1903
MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes));
1904
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
1905
.addCFIIndex(CFIIndex)
1906
.setMIFlags(MachineInstr::FrameSetup);
1907
}
1908
}
1909
1910
if (NeedsWinCFI) {
1911
HasWinCFI = true;
1912
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
1913
.setMIFlag(MachineInstr::FrameSetup);
1914
}
1915
1916
return;
1917
}
1918
1919
bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg());
1920
unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
1921
1922
auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
1923
// All of the remaining stack allocations are for locals.
1924
AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
1925
bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes);
1926
bool HomPrologEpilog = homogeneousPrologEpilog(MF);
1927
if (CombineSPBump) {
1928
assert(!SVEStackSize && "Cannot combine SP bump with SVE");
1929
emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP,
1930
StackOffset::getFixed(-NumBytes), TII,
1931
MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI,
1932
EmitAsyncCFI);
1933
NumBytes = 0;
1934
} else if (HomPrologEpilog) {
1935
// Stack has been already adjusted.
1936
NumBytes -= PrologueSaveSize;
1937
} else if (PrologueSaveSize != 0) {
1938
MBBI = convertCalleeSaveRestoreToSPPrePostIncDec(
1939
MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI,
1940
EmitAsyncCFI);
1941
NumBytes -= PrologueSaveSize;
1942
}
1943
assert(NumBytes >= 0 && "Negative stack allocation size!?");
1944
1945
// Move past the saves of the callee-saved registers, fixing up the offsets
1946
// and pre-inc if we decided to combine the callee-save and local stack
1947
// pointer bump above.
1948
while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) &&
1949
!IsSVECalleeSave(MBBI)) {
1950
if (CombineSPBump &&
1951
// Only fix-up frame-setup load/store instructions.
1952
(!requiresSaveVG(MF) || !isVGInstruction(MBBI)))
1953
fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(),
1954
NeedsWinCFI, &HasWinCFI);
1955
++MBBI;
1956
}
1957
1958
// For funclets the FP belongs to the containing function.
1959
if (!IsFunclet && HasFP) {
1960
// Only set up FP if we actually need to.
1961
int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset();
1962
1963
if (CombineSPBump)
1964
FPOffset += AFI->getLocalStackSize();
1965
1966
if (AFI->hasSwiftAsyncContext()) {
1967
// Before we update the live FP we have to ensure there's a valid (or
1968
// null) asynchronous context in its slot just before FP in the frame
1969
// record, so store it now.
1970
const auto &Attrs = MF.getFunction().getAttributes();
1971
bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync);
1972
if (HaveInitialContext)
1973
MBB.addLiveIn(AArch64::X22);
1974
Register Reg = HaveInitialContext ? AArch64::X22 : AArch64::XZR;
1975
BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext))
1976
.addUse(Reg)
1977
.addUse(AArch64::SP)
1978
.addImm(FPOffset - 8)
1979
.setMIFlags(MachineInstr::FrameSetup);
1980
if (NeedsWinCFI) {
1981
// WinCFI and arm64e, where StoreSwiftAsyncContext is expanded
1982
// to multiple instructions, should be mutually-exclusive.
1983
assert(Subtarget.getTargetTriple().getArchName() != "arm64e");
1984
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
1985
.setMIFlags(MachineInstr::FrameSetup);
1986
HasWinCFI = true;
1987
}
1988
}
1989
1990
if (HomPrologEpilog) {
1991
auto Prolog = MBBI;
1992
--Prolog;
1993
assert(Prolog->getOpcode() == AArch64::HOM_Prolog);
1994
Prolog->addOperand(MachineOperand::CreateImm(FPOffset));
1995
} else {
1996
// Issue sub fp, sp, FPOffset or
1997
// mov fp,sp when FPOffset is zero.
1998
// Note: All stores of callee-saved registers are marked as "FrameSetup".
1999
// This code marks the instruction(s) that set the FP also.
2000
emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP,
2001
StackOffset::getFixed(FPOffset), TII,
2002
MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI);
2003
if (NeedsWinCFI && HasWinCFI) {
2004
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
2005
.setMIFlag(MachineInstr::FrameSetup);
2006
// After setting up the FP, the rest of the prolog doesn't need to be
2007
// included in the SEH unwind info.
2008
NeedsWinCFI = false;
2009
}
2010
}
2011
if (EmitAsyncCFI)
2012
emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
2013
}
2014
2015
// Now emit the moves for whatever callee saved regs we have (including FP,
2016
// LR if those are saved). Frame instructions for SVE register are emitted
2017
// later, after the instruction which actually save SVE regs.
2018
if (EmitAsyncCFI)
2019
emitCalleeSavedGPRLocations(MBB, MBBI);
2020
2021
// Alignment is required for the parent frame, not the funclet
2022
const bool NeedsRealignment =
2023
NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF);
2024
const int64_t RealignmentPadding =
2025
(NeedsRealignment && MFI.getMaxAlign() > Align(16))
2026
? MFI.getMaxAlign().value() - 16
2027
: 0;
2028
2029
if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) {
2030
uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4;
2031
if (NeedsWinCFI) {
2032
HasWinCFI = true;
2033
// alloc_l can hold at most 256MB, so assume that NumBytes doesn't
2034
// exceed this amount. We need to move at most 2^24 - 1 into x15.
2035
// This is at most two instructions, MOVZ follwed by MOVK.
2036
// TODO: Fix to use multiple stack alloc unwind codes for stacks
2037
// exceeding 256MB in size.
2038
if (NumBytes >= (1 << 28))
2039
report_fatal_error("Stack size cannot exceed 256MB for stack "
2040
"unwinding purposes");
2041
2042
uint32_t LowNumWords = NumWords & 0xFFFF;
2043
BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15)
2044
.addImm(LowNumWords)
2045
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0))
2046
.setMIFlag(MachineInstr::FrameSetup);
2047
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2048
.setMIFlag(MachineInstr::FrameSetup);
2049
if ((NumWords & 0xFFFF0000) != 0) {
2050
BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15)
2051
.addReg(AArch64::X15)
2052
.addImm((NumWords & 0xFFFF0000) >> 16) // High half
2053
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16))
2054
.setMIFlag(MachineInstr::FrameSetup);
2055
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2056
.setMIFlag(MachineInstr::FrameSetup);
2057
}
2058
} else {
2059
BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15)
2060
.addImm(NumWords)
2061
.setMIFlags(MachineInstr::FrameSetup);
2062
}
2063
2064
const char *ChkStk = Subtarget.getChkStkName();
2065
switch (MF.getTarget().getCodeModel()) {
2066
case CodeModel::Tiny:
2067
case CodeModel::Small:
2068
case CodeModel::Medium:
2069
case CodeModel::Kernel:
2070
BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL))
2071
.addExternalSymbol(ChkStk)
2072
.addReg(AArch64::X15, RegState::Implicit)
2073
.addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
2074
.addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
2075
.addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
2076
.setMIFlags(MachineInstr::FrameSetup);
2077
if (NeedsWinCFI) {
2078
HasWinCFI = true;
2079
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2080
.setMIFlag(MachineInstr::FrameSetup);
2081
}
2082
break;
2083
case CodeModel::Large:
2084
BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT))
2085
.addReg(AArch64::X16, RegState::Define)
2086
.addExternalSymbol(ChkStk)
2087
.addExternalSymbol(ChkStk)
2088
.setMIFlags(MachineInstr::FrameSetup);
2089
if (NeedsWinCFI) {
2090
HasWinCFI = true;
2091
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2092
.setMIFlag(MachineInstr::FrameSetup);
2093
}
2094
2095
BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF)))
2096
.addReg(AArch64::X16, RegState::Kill)
2097
.addReg(AArch64::X15, RegState::Implicit | RegState::Define)
2098
.addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead)
2099
.addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead)
2100
.addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead)
2101
.setMIFlags(MachineInstr::FrameSetup);
2102
if (NeedsWinCFI) {
2103
HasWinCFI = true;
2104
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2105
.setMIFlag(MachineInstr::FrameSetup);
2106
}
2107
break;
2108
}
2109
2110
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP)
2111
.addReg(AArch64::SP, RegState::Kill)
2112
.addReg(AArch64::X15, RegState::Kill)
2113
.addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4))
2114
.setMIFlags(MachineInstr::FrameSetup);
2115
if (NeedsWinCFI) {
2116
HasWinCFI = true;
2117
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc))
2118
.addImm(NumBytes)
2119
.setMIFlag(MachineInstr::FrameSetup);
2120
}
2121
NumBytes = 0;
2122
2123
if (RealignmentPadding > 0) {
2124
if (RealignmentPadding >= 4096) {
2125
BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm))
2126
.addReg(AArch64::X16, RegState::Define)
2127
.addImm(RealignmentPadding)
2128
.setMIFlags(MachineInstr::FrameSetup);
2129
BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXrx64), AArch64::X15)
2130
.addReg(AArch64::SP)
2131
.addReg(AArch64::X16, RegState::Kill)
2132
.addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0))
2133
.setMIFlag(MachineInstr::FrameSetup);
2134
} else {
2135
BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15)
2136
.addReg(AArch64::SP)
2137
.addImm(RealignmentPadding)
2138
.addImm(0)
2139
.setMIFlag(MachineInstr::FrameSetup);
2140
}
2141
2142
uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1);
2143
BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
2144
.addReg(AArch64::X15, RegState::Kill)
2145
.addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64));
2146
AFI->setStackRealigned(true);
2147
2148
// No need for SEH instructions here; if we're realigning the stack,
2149
// we've set a frame pointer and already finished the SEH prologue.
2150
assert(!NeedsWinCFI);
2151
}
2152
}
2153
2154
StackOffset SVECalleeSavesSize = {}, SVELocalsSize = SVEStackSize;
2155
MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI;
2156
2157
// Process the SVE callee-saves to determine what space needs to be
2158
// allocated.
2159
if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2160
LLVM_DEBUG(dbgs() << "SVECalleeSavedStackSize = " << CalleeSavedSize
2161
<< "\n");
2162
// Find callee save instructions in frame.
2163
CalleeSavesBegin = MBBI;
2164
assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction");
2165
while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator())
2166
++MBBI;
2167
CalleeSavesEnd = MBBI;
2168
2169
SVECalleeSavesSize = StackOffset::getScalable(CalleeSavedSize);
2170
SVELocalsSize = SVEStackSize - SVECalleeSavesSize;
2171
}
2172
2173
// Allocate space for the callee saves (if any).
2174
StackOffset CFAOffset =
2175
StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes);
2176
StackOffset LocalsSize = SVELocalsSize + StackOffset::getFixed(NumBytes);
2177
allocateStackSpace(MBB, CalleeSavesBegin, 0, SVECalleeSavesSize, false,
2178
nullptr, EmitAsyncCFI && !HasFP, CFAOffset,
2179
MFI.hasVarSizedObjects() || LocalsSize);
2180
CFAOffset += SVECalleeSavesSize;
2181
2182
if (EmitAsyncCFI)
2183
emitCalleeSavedSVELocations(MBB, CalleeSavesEnd);
2184
2185
// Allocate space for the rest of the frame including SVE locals. Align the
2186
// stack as necessary.
2187
assert(!(canUseRedZone(MF) && NeedsRealignment) &&
2188
"Cannot use redzone with stack realignment");
2189
if (!canUseRedZone(MF)) {
2190
// FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
2191
// the correct value here, as NumBytes also includes padding bytes,
2192
// which shouldn't be counted here.
2193
allocateStackSpace(MBB, CalleeSavesEnd, RealignmentPadding,
2194
SVELocalsSize + StackOffset::getFixed(NumBytes),
2195
NeedsWinCFI, &HasWinCFI, EmitAsyncCFI && !HasFP,
2196
CFAOffset, MFI.hasVarSizedObjects());
2197
}
2198
2199
// If we need a base pointer, set it up here. It's whatever the value of the
2200
// stack pointer is at this point. Any variable size objects will be allocated
2201
// after this, so we can still use the base pointer to reference locals.
2202
//
2203
// FIXME: Clarify FrameSetup flags here.
2204
// Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
2205
// needed.
2206
// For funclets the BP belongs to the containing function.
2207
if (!IsFunclet && RegInfo->hasBasePointer(MF)) {
2208
TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
2209
false);
2210
if (NeedsWinCFI) {
2211
HasWinCFI = true;
2212
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2213
.setMIFlag(MachineInstr::FrameSetup);
2214
}
2215
}
2216
2217
// The very last FrameSetup instruction indicates the end of prologue. Emit a
2218
// SEH opcode indicating the prologue end.
2219
if (NeedsWinCFI && HasWinCFI) {
2220
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd))
2221
.setMIFlag(MachineInstr::FrameSetup);
2222
}
2223
2224
// SEH funclets are passed the frame pointer in X1. If the parent
2225
// function uses the base register, then the base register is used
2226
// directly, and is not retrieved from X1.
2227
if (IsFunclet && F.hasPersonalityFn()) {
2228
EHPersonality Per = classifyEHPersonality(F.getPersonalityFn());
2229
if (isAsynchronousEHPersonality(Per)) {
2230
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP)
2231
.addReg(AArch64::X1)
2232
.setMIFlag(MachineInstr::FrameSetup);
2233
MBB.addLiveIn(AArch64::X1);
2234
}
2235
}
2236
2237
if (EmitCFI && !EmitAsyncCFI) {
2238
if (HasFP) {
2239
emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject);
2240
} else {
2241
StackOffset TotalSize =
2242
SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize());
2243
unsigned CFIIndex = MF.addFrameInst(createDefCFA(
2244
*RegInfo, /*FrameReg=*/AArch64::SP, /*Reg=*/AArch64::SP, TotalSize,
2245
/*LastAdjustmentWasScalable=*/false));
2246
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2247
.addCFIIndex(CFIIndex)
2248
.setMIFlags(MachineInstr::FrameSetup);
2249
}
2250
emitCalleeSavedGPRLocations(MBB, MBBI);
2251
emitCalleeSavedSVELocations(MBB, MBBI);
2252
}
2253
}
2254
2255
static bool isFuncletReturnInstr(const MachineInstr &MI) {
2256
switch (MI.getOpcode()) {
2257
default:
2258
return false;
2259
case AArch64::CATCHRET:
2260
case AArch64::CLEANUPRET:
2261
return true;
2262
}
2263
}
2264
2265
void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
2266
MachineBasicBlock &MBB) const {
2267
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
2268
MachineFrameInfo &MFI = MF.getFrameInfo();
2269
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2270
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2271
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
2272
DebugLoc DL;
2273
bool NeedsWinCFI = needsWinCFI(MF);
2274
bool EmitCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
2275
bool HasWinCFI = false;
2276
bool IsFunclet = false;
2277
2278
if (MBB.end() != MBBI) {
2279
DL = MBBI->getDebugLoc();
2280
IsFunclet = isFuncletReturnInstr(*MBBI);
2281
}
2282
2283
MachineBasicBlock::iterator EpilogStartI = MBB.end();
2284
2285
auto FinishingTouches = make_scope_exit([&]() {
2286
if (AFI->shouldSignReturnAddress(MF)) {
2287
BuildMI(MBB, MBB.getFirstTerminator(), DL,
2288
TII->get(AArch64::PAUTH_EPILOGUE))
2289
.setMIFlag(MachineInstr::FrameDestroy);
2290
if (NeedsWinCFI)
2291
HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR
2292
}
2293
if (AFI->needsShadowCallStackPrologueEpilogue(MF))
2294
emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL);
2295
if (EmitCFI)
2296
emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator());
2297
if (HasWinCFI) {
2298
BuildMI(MBB, MBB.getFirstTerminator(), DL,
2299
TII->get(AArch64::SEH_EpilogEnd))
2300
.setMIFlag(MachineInstr::FrameDestroy);
2301
if (!MF.hasWinCFI())
2302
MF.setHasWinCFI(true);
2303
}
2304
if (NeedsWinCFI) {
2305
assert(EpilogStartI != MBB.end());
2306
if (!HasWinCFI)
2307
MBB.erase(EpilogStartI);
2308
}
2309
});
2310
2311
int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF)
2312
: MFI.getStackSize();
2313
2314
// All calls are tail calls in GHC calling conv, and functions have no
2315
// prologue/epilogue.
2316
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
2317
return;
2318
2319
// How much of the stack used by incoming arguments this function is expected
2320
// to restore in this particular epilogue.
2321
int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB);
2322
bool IsWin64 = Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(),
2323
MF.getFunction().isVarArg());
2324
unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet);
2325
2326
int64_t AfterCSRPopSize = ArgumentStackToRestore;
2327
auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject;
2328
// We cannot rely on the local stack size set in emitPrologue if the function
2329
// has funclets, as funclets have different local stack size requirements, and
2330
// the current value set in emitPrologue may be that of the containing
2331
// function.
2332
if (MF.hasEHFunclets())
2333
AFI->setLocalStackSize(NumBytes - PrologueSaveSize);
2334
if (homogeneousPrologEpilog(MF, &MBB)) {
2335
assert(!NeedsWinCFI);
2336
auto LastPopI = MBB.getFirstTerminator();
2337
if (LastPopI != MBB.begin()) {
2338
auto HomogeneousEpilog = std::prev(LastPopI);
2339
if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog)
2340
LastPopI = HomogeneousEpilog;
2341
}
2342
2343
// Adjust local stack
2344
emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2345
StackOffset::getFixed(AFI->getLocalStackSize()), TII,
2346
MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2347
2348
// SP has been already adjusted while restoring callee save regs.
2349
// We've bailed-out the case with adjusting SP for arguments.
2350
assert(AfterCSRPopSize == 0);
2351
return;
2352
}
2353
bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes);
2354
// Assume we can't combine the last pop with the sp restore.
2355
2356
bool CombineAfterCSRBump = false;
2357
if (!CombineSPBump && PrologueSaveSize != 0) {
2358
MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator());
2359
while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION ||
2360
AArch64InstrInfo::isSEHInstruction(*Pop))
2361
Pop = std::prev(Pop);
2362
// Converting the last ldp to a post-index ldp is valid only if the last
2363
// ldp's offset is 0.
2364
const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1);
2365
// If the offset is 0 and the AfterCSR pop is not actually trying to
2366
// allocate more stack for arguments (in space that an untimely interrupt
2367
// may clobber), convert it to a post-index ldp.
2368
if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) {
2369
convertCalleeSaveRestoreToSPPrePostIncDec(
2370
MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI,
2371
MachineInstr::FrameDestroy, PrologueSaveSize);
2372
} else {
2373
// If not, make sure to emit an add after the last ldp.
2374
// We're doing this by transfering the size to be restored from the
2375
// adjustment *before* the CSR pops to the adjustment *after* the CSR
2376
// pops.
2377
AfterCSRPopSize += PrologueSaveSize;
2378
CombineAfterCSRBump = true;
2379
}
2380
}
2381
2382
// Move past the restores of the callee-saved registers.
2383
// If we plan on combining the sp bump of the local stack size and the callee
2384
// save stack size, we might need to adjust the CSR save and restore offsets.
2385
MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
2386
MachineBasicBlock::iterator Begin = MBB.begin();
2387
while (LastPopI != Begin) {
2388
--LastPopI;
2389
if (!LastPopI->getFlag(MachineInstr::FrameDestroy) ||
2390
IsSVECalleeSave(LastPopI)) {
2391
++LastPopI;
2392
break;
2393
} else if (CombineSPBump)
2394
fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(),
2395
NeedsWinCFI, &HasWinCFI);
2396
}
2397
2398
if (NeedsWinCFI) {
2399
// Note that there are cases where we insert SEH opcodes in the
2400
// epilogue when we had no SEH opcodes in the prologue. For
2401
// example, when there is no stack frame but there are stack
2402
// arguments. Insert the SEH_EpilogStart and remove it later if it
2403
// we didn't emit any SEH opcodes to avoid generating WinCFI for
2404
// functions that don't need it.
2405
BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart))
2406
.setMIFlag(MachineInstr::FrameDestroy);
2407
EpilogStartI = LastPopI;
2408
--EpilogStartI;
2409
}
2410
2411
if (hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2412
switch (MF.getTarget().Options.SwiftAsyncFramePointer) {
2413
case SwiftAsyncFramePointerMode::DeploymentBased:
2414
// Avoid the reload as it is GOT relative, and instead fall back to the
2415
// hardcoded value below. This allows a mismatch between the OS and
2416
// application without immediately terminating on the difference.
2417
[[fallthrough]];
2418
case SwiftAsyncFramePointerMode::Always:
2419
// We need to reset FP to its untagged state on return. Bit 60 is
2420
// currently used to show the presence of an extended frame.
2421
2422
// BIC x29, x29, #0x1000_0000_0000_0000
2423
BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri),
2424
AArch64::FP)
2425
.addUse(AArch64::FP)
2426
.addImm(0x10fe)
2427
.setMIFlag(MachineInstr::FrameDestroy);
2428
if (NeedsWinCFI) {
2429
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop))
2430
.setMIFlags(MachineInstr::FrameDestroy);
2431
HasWinCFI = true;
2432
}
2433
break;
2434
2435
case SwiftAsyncFramePointerMode::Never:
2436
break;
2437
}
2438
}
2439
2440
const StackOffset &SVEStackSize = getSVEStackSize(MF);
2441
2442
// If there is a single SP update, insert it before the ret and we're done.
2443
if (CombineSPBump) {
2444
assert(!SVEStackSize && "Cannot combine SP bump with SVE");
2445
2446
// When we are about to restore the CSRs, the CFA register is SP again.
2447
if (EmitCFI && hasFP(MF)) {
2448
const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2449
unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2450
unsigned CFIIndex =
2451
MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes));
2452
BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2453
.addCFIIndex(CFIIndex)
2454
.setMIFlags(MachineInstr::FrameDestroy);
2455
}
2456
2457
emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2458
StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize),
2459
TII, MachineInstr::FrameDestroy, false, NeedsWinCFI,
2460
&HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes));
2461
return;
2462
}
2463
2464
NumBytes -= PrologueSaveSize;
2465
assert(NumBytes >= 0 && "Negative stack allocation size!?");
2466
2467
// Process the SVE callee-saves to determine what space needs to be
2468
// deallocated.
2469
StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize;
2470
MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI;
2471
if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2472
RestoreBegin = std::prev(RestoreEnd);
2473
while (RestoreBegin != MBB.begin() &&
2474
IsSVECalleeSave(std::prev(RestoreBegin)))
2475
--RestoreBegin;
2476
2477
assert(IsSVECalleeSave(RestoreBegin) &&
2478
IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction");
2479
2480
StackOffset CalleeSavedSizeAsOffset =
2481
StackOffset::getScalable(CalleeSavedSize);
2482
DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset;
2483
DeallocateAfter = CalleeSavedSizeAsOffset;
2484
}
2485
2486
// Deallocate the SVE area.
2487
if (SVEStackSize) {
2488
// If we have stack realignment or variable sized objects on the stack,
2489
// restore the stack pointer from the frame pointer prior to SVE CSR
2490
// restoration.
2491
if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) {
2492
if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) {
2493
// Set SP to start of SVE callee-save area from which they can
2494
// be reloaded. The code below will deallocate the stack space
2495
// space by moving FP -> SP.
2496
emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP,
2497
StackOffset::getScalable(-CalleeSavedSize), TII,
2498
MachineInstr::FrameDestroy);
2499
}
2500
} else {
2501
if (AFI->getSVECalleeSavedStackSize()) {
2502
// Deallocate the non-SVE locals first before we can deallocate (and
2503
// restore callee saves) from the SVE area.
2504
emitFrameOffset(
2505
MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2506
StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy,
2507
false, false, nullptr, EmitCFI && !hasFP(MF),
2508
SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize));
2509
NumBytes = 0;
2510
}
2511
2512
emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP,
2513
DeallocateBefore, TII, MachineInstr::FrameDestroy, false,
2514
false, nullptr, EmitCFI && !hasFP(MF),
2515
SVEStackSize +
2516
StackOffset::getFixed(NumBytes + PrologueSaveSize));
2517
2518
emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP,
2519
DeallocateAfter, TII, MachineInstr::FrameDestroy, false,
2520
false, nullptr, EmitCFI && !hasFP(MF),
2521
DeallocateAfter +
2522
StackOffset::getFixed(NumBytes + PrologueSaveSize));
2523
}
2524
if (EmitCFI)
2525
emitCalleeSavedSVERestores(MBB, RestoreEnd);
2526
}
2527
2528
if (!hasFP(MF)) {
2529
bool RedZone = canUseRedZone(MF);
2530
// If this was a redzone leaf function, we don't need to restore the
2531
// stack pointer (but we may need to pop stack args for fastcc).
2532
if (RedZone && AfterCSRPopSize == 0)
2533
return;
2534
2535
// Pop the local variables off the stack. If there are no callee-saved
2536
// registers, it means we are actually positioned at the terminator and can
2537
// combine stack increment for the locals and the stack increment for
2538
// callee-popped arguments into (possibly) a single instruction and be done.
2539
bool NoCalleeSaveRestore = PrologueSaveSize == 0;
2540
int64_t StackRestoreBytes = RedZone ? 0 : NumBytes;
2541
if (NoCalleeSaveRestore)
2542
StackRestoreBytes += AfterCSRPopSize;
2543
2544
emitFrameOffset(
2545
MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2546
StackOffset::getFixed(StackRestoreBytes), TII,
2547
MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2548
StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize));
2549
2550
// If we were able to combine the local stack pop with the argument pop,
2551
// then we're done.
2552
if (NoCalleeSaveRestore || AfterCSRPopSize == 0) {
2553
return;
2554
}
2555
2556
NumBytes = 0;
2557
}
2558
2559
// Restore the original stack pointer.
2560
// FIXME: Rather than doing the math here, we should instead just use
2561
// non-post-indexed loads for the restores if we aren't actually going to
2562
// be able to save any instructions.
2563
if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) {
2564
emitFrameOffset(
2565
MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
2566
StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()),
2567
TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2568
} else if (NumBytes)
2569
emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP,
2570
StackOffset::getFixed(NumBytes), TII,
2571
MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI);
2572
2573
// When we are about to restore the CSRs, the CFA register is SP again.
2574
if (EmitCFI && hasFP(MF)) {
2575
const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo();
2576
unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
2577
unsigned CFIIndex = MF.addFrameInst(
2578
MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize));
2579
BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
2580
.addCFIIndex(CFIIndex)
2581
.setMIFlags(MachineInstr::FrameDestroy);
2582
}
2583
2584
// This must be placed after the callee-save restore code because that code
2585
// assumes the SP is at the same location as it was after the callee-save save
2586
// code in the prologue.
2587
if (AfterCSRPopSize) {
2588
assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an "
2589
"interrupt may have clobbered");
2590
2591
emitFrameOffset(
2592
MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP,
2593
StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy,
2594
false, NeedsWinCFI, &HasWinCFI, EmitCFI,
2595
StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0));
2596
}
2597
}
2598
2599
bool AArch64FrameLowering::enableCFIFixup(MachineFunction &MF) const {
2600
return TargetFrameLowering::enableCFIFixup(MF) &&
2601
MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
2602
}
2603
2604
/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
2605
/// debug info. It's the same as what we use for resolving the code-gen
2606
/// references for now. FIXME: This can go wrong when references are
2607
/// SP-relative and simple call frames aren't used.
2608
StackOffset
2609
AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
2610
Register &FrameReg) const {
2611
return resolveFrameIndexReference(
2612
MF, FI, FrameReg,
2613
/*PreferFP=*/
2614
MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress) ||
2615
MF.getFunction().hasFnAttribute(Attribute::SanitizeMemTag),
2616
/*ForSimm=*/false);
2617
}
2618
2619
StackOffset
2620
AArch64FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF,
2621
int FI) const {
2622
// This function serves to provide a comparable offset from a single reference
2623
// point (the value of SP at function entry) that can be used for analysis,
2624
// e.g. the stack-frame-layout analysis pass. It is not guaranteed to be
2625
// correct for all objects in the presence of VLA-area objects or dynamic
2626
// stack re-alignment.
2627
2628
const auto &MFI = MF.getFrameInfo();
2629
2630
int64_t ObjectOffset = MFI.getObjectOffset(FI);
2631
StackOffset SVEStackSize = getSVEStackSize(MF);
2632
2633
// For VLA-area objects, just emit an offset at the end of the stack frame.
2634
// Whilst not quite correct, these objects do live at the end of the frame and
2635
// so it is more useful for analysis for the offset to reflect this.
2636
if (MFI.isVariableSizedObjectIndex(FI)) {
2637
return StackOffset::getFixed(-((int64_t)MFI.getStackSize())) - SVEStackSize;
2638
}
2639
2640
// This is correct in the absence of any SVE stack objects.
2641
if (!SVEStackSize)
2642
return StackOffset::getFixed(ObjectOffset - getOffsetOfLocalArea());
2643
2644
const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2645
if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
2646
return StackOffset::get(-((int64_t)AFI->getCalleeSavedStackSize()),
2647
ObjectOffset);
2648
}
2649
2650
bool IsFixed = MFI.isFixedObjectIndex(FI);
2651
bool IsCSR =
2652
!IsFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2653
2654
StackOffset ScalableOffset = {};
2655
if (!IsFixed && !IsCSR)
2656
ScalableOffset = -SVEStackSize;
2657
2658
return StackOffset::getFixed(ObjectOffset) + ScalableOffset;
2659
}
2660
2661
StackOffset
2662
AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF,
2663
int FI) const {
2664
return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI));
2665
}
2666
2667
static StackOffset getFPOffset(const MachineFunction &MF,
2668
int64_t ObjectOffset) {
2669
const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2670
const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2671
const Function &F = MF.getFunction();
2672
bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg());
2673
unsigned FixedObject =
2674
getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
2675
int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
2676
int64_t FPAdjust =
2677
CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
2678
return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
2679
}
2680
2681
static StackOffset getStackOffset(const MachineFunction &MF,
2682
int64_t ObjectOffset) {
2683
const auto &MFI = MF.getFrameInfo();
2684
return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
2685
}
2686
2687
// TODO: This function currently does not work for scalable vectors.
2688
int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF,
2689
int FI) const {
2690
const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2691
MF.getSubtarget().getRegisterInfo());
2692
int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
2693
return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
2694
? getFPOffset(MF, ObjectOffset).getFixed()
2695
: getStackOffset(MF, ObjectOffset).getFixed();
2696
}
2697
2698
StackOffset AArch64FrameLowering::resolveFrameIndexReference(
2699
const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
2700
bool ForSimm) const {
2701
const auto &MFI = MF.getFrameInfo();
2702
int64_t ObjectOffset = MFI.getObjectOffset(FI);
2703
bool isFixed = MFI.isFixedObjectIndex(FI);
2704
bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector;
2705
return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg,
2706
PreferFP, ForSimm);
2707
}
2708
2709
StackOffset AArch64FrameLowering::resolveFrameOffsetReference(
2710
const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE,
2711
Register &FrameReg, bool PreferFP, bool ForSimm) const {
2712
const auto &MFI = MF.getFrameInfo();
2713
const auto *RegInfo = static_cast<const AArch64RegisterInfo *>(
2714
MF.getSubtarget().getRegisterInfo());
2715
const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2716
const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2717
2718
int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
2719
int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
2720
bool isCSR =
2721
!isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
2722
2723
const StackOffset &SVEStackSize = getSVEStackSize(MF);
2724
2725
// Use frame pointer to reference fixed objects. Use it for locals if
2726
// there are VLAs or a dynamically realigned SP (and thus the SP isn't
2727
// reliable as a base). Make sure useFPForScavengingIndex() does the
2728
// right thing for the emergency spill slot.
2729
bool UseFP = false;
2730
if (AFI->hasStackFrame() && !isSVE) {
2731
// We shouldn't prefer using the FP to access fixed-sized stack objects when
2732
// there are scalable (SVE) objects in between the FP and the fixed-sized
2733
// objects.
2734
PreferFP &= !SVEStackSize;
2735
2736
// Note: Keeping the following as multiple 'if' statements rather than
2737
// merging to a single expression for readability.
2738
//
2739
// Argument access should always use the FP.
2740
if (isFixed) {
2741
UseFP = hasFP(MF);
2742
} else if (isCSR && RegInfo->hasStackRealignment(MF)) {
2743
// References to the CSR area must use FP if we're re-aligning the stack
2744
// since the dynamically-sized alignment padding is between the SP/BP and
2745
// the CSR area.
2746
assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
2747
UseFP = true;
2748
} else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
2749
// If the FPOffset is negative and we're producing a signed immediate, we
2750
// have to keep in mind that the available offset range for negative
2751
// offsets is smaller than for positive ones. If an offset is available
2752
// via the FP and the SP, use whichever is closest.
2753
bool FPOffsetFits = !ForSimm || FPOffset >= -256;
2754
PreferFP |= Offset > -FPOffset && !SVEStackSize;
2755
2756
if (MFI.hasVarSizedObjects()) {
2757
// If we have variable sized objects, we can use either FP or BP, as the
2758
// SP offset is unknown. We can use the base pointer if we have one and
2759
// FP is not preferred. If not, we're stuck with using FP.
2760
bool CanUseBP = RegInfo->hasBasePointer(MF);
2761
if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
2762
UseFP = PreferFP;
2763
else if (!CanUseBP) // Can't use BP. Forced to use FP.
2764
UseFP = true;
2765
// else we can use BP and FP, but the offset from FP won't fit.
2766
// That will make us scavenge registers which we can probably avoid by
2767
// using BP. If it won't fit for BP either, we'll scavenge anyway.
2768
} else if (FPOffset >= 0) {
2769
// Use SP or FP, whichever gives us the best chance of the offset
2770
// being in range for direct access. If the FPOffset is positive,
2771
// that'll always be best, as the SP will be even further away.
2772
UseFP = true;
2773
} else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
2774
// Funclets access the locals contained in the parent's stack frame
2775
// via the frame pointer, so we have to use the FP in the parent
2776
// function.
2777
(void) Subtarget;
2778
assert(Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(),
2779
MF.getFunction().isVarArg()) &&
2780
"Funclets should only be present on Win64");
2781
UseFP = true;
2782
} else {
2783
// We have the choice between FP and (SP or BP).
2784
if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
2785
UseFP = true;
2786
}
2787
}
2788
}
2789
2790
assert(
2791
((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
2792
"In the presence of dynamic stack pointer realignment, "
2793
"non-argument/CSR objects cannot be accessed through the frame pointer");
2794
2795
if (isSVE) {
2796
StackOffset FPOffset =
2797
StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
2798
StackOffset SPOffset =
2799
SVEStackSize +
2800
StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
2801
ObjectOffset);
2802
// Always use the FP for SVE spills if available and beneficial.
2803
if (hasFP(MF) && (SPOffset.getFixed() ||
2804
FPOffset.getScalable() < SPOffset.getScalable() ||
2805
RegInfo->hasStackRealignment(MF))) {
2806
FrameReg = RegInfo->getFrameRegister(MF);
2807
return FPOffset;
2808
}
2809
2810
FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
2811
: (unsigned)AArch64::SP;
2812
return SPOffset;
2813
}
2814
2815
StackOffset ScalableOffset = {};
2816
if (UseFP && !(isFixed || isCSR))
2817
ScalableOffset = -SVEStackSize;
2818
if (!UseFP && (isFixed || isCSR))
2819
ScalableOffset = SVEStackSize;
2820
2821
if (UseFP) {
2822
FrameReg = RegInfo->getFrameRegister(MF);
2823
return StackOffset::getFixed(FPOffset) + ScalableOffset;
2824
}
2825
2826
// Use the base pointer if we have one.
2827
if (RegInfo->hasBasePointer(MF))
2828
FrameReg = RegInfo->getBaseRegister();
2829
else {
2830
assert(!MFI.hasVarSizedObjects() &&
2831
"Can't use SP when we have var sized objects.");
2832
FrameReg = AArch64::SP;
2833
// If we're using the red zone for this function, the SP won't actually
2834
// be adjusted, so the offsets will be negative. They're also all
2835
// within range of the signed 9-bit immediate instructions.
2836
if (canUseRedZone(MF))
2837
Offset -= AFI->getLocalStackSize();
2838
}
2839
2840
return StackOffset::getFixed(Offset) + ScalableOffset;
2841
}
2842
2843
static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
2844
// Do not set a kill flag on values that are also marked as live-in. This
2845
// happens with the @llvm-returnaddress intrinsic and with arguments passed in
2846
// callee saved registers.
2847
// Omitting the kill flags is conservatively correct even if the live-in
2848
// is not used after all.
2849
bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
2850
return getKillRegState(!IsLiveIn);
2851
}
2852
2853
static bool produceCompactUnwindFrame(MachineFunction &MF) {
2854
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2855
AttributeList Attrs = MF.getFunction().getAttributes();
2856
return Subtarget.isTargetMachO() &&
2857
!(Subtarget.getTargetLowering()->supportSwiftError() &&
2858
Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
2859
MF.getFunction().getCallingConv() != CallingConv::SwiftTail &&
2860
!requiresSaveVG(MF);
2861
}
2862
2863
static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2,
2864
bool NeedsWinCFI, bool IsFirst,
2865
const TargetRegisterInfo *TRI) {
2866
// If we are generating register pairs for a Windows function that requires
2867
// EH support, then pair consecutive registers only. There are no unwind
2868
// opcodes for saves/restores of non-consectuve register pairs.
2869
// The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2870
// save_lrpair.
2871
// https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2872
2873
if (Reg2 == AArch64::FP)
2874
return true;
2875
if (!NeedsWinCFI)
2876
return false;
2877
if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1)
2878
return false;
2879
// If pairing a GPR with LR, the pair can be described by the save_lrpair
2880
// opcode. If this is the first register pair, it would end up with a
2881
// predecrement, but there's no save_lrpair_x opcode, so we can only do this
2882
// if LR is paired with something else than the first register.
2883
// The save_lrpair opcode requires the first register to be an odd one.
2884
if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
2885
(Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
2886
return false;
2887
return true;
2888
}
2889
2890
/// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2891
/// WindowsCFI requires that only consecutive registers can be paired.
2892
/// LR and FP need to be allocated together when the frame needs to save
2893
/// the frame-record. This means any other register pairing with LR is invalid.
2894
static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2,
2895
bool UsesWinAAPCS, bool NeedsWinCFI,
2896
bool NeedsFrameRecord, bool IsFirst,
2897
const TargetRegisterInfo *TRI) {
2898
if (UsesWinAAPCS)
2899
return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst,
2900
TRI);
2901
2902
// If we need to store the frame record, don't pair any register
2903
// with LR other than FP.
2904
if (NeedsFrameRecord)
2905
return Reg2 == AArch64::LR;
2906
2907
return false;
2908
}
2909
2910
namespace {
2911
2912
struct RegPairInfo {
2913
unsigned Reg1 = AArch64::NoRegister;
2914
unsigned Reg2 = AArch64::NoRegister;
2915
int FrameIdx;
2916
int Offset;
2917
enum RegType { GPR, FPR64, FPR128, PPR, ZPR, VG } Type;
2918
2919
RegPairInfo() = default;
2920
2921
bool isPaired() const { return Reg2 != AArch64::NoRegister; }
2922
2923
unsigned getScale() const {
2924
switch (Type) {
2925
case PPR:
2926
return 2;
2927
case GPR:
2928
case FPR64:
2929
case VG:
2930
return 8;
2931
case ZPR:
2932
case FPR128:
2933
return 16;
2934
}
2935
llvm_unreachable("Unsupported type");
2936
}
2937
2938
bool isScalable() const { return Type == PPR || Type == ZPR; }
2939
};
2940
2941
} // end anonymous namespace
2942
2943
static void computeCalleeSaveRegisterPairs(
2944
MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI,
2945
const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs,
2946
bool NeedsFrameRecord) {
2947
2948
if (CSI.empty())
2949
return;
2950
2951
bool IsWindows = isTargetWindows(MF);
2952
bool NeedsWinCFI = needsWinCFI(MF);
2953
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2954
MachineFrameInfo &MFI = MF.getFrameInfo();
2955
CallingConv::ID CC = MF.getFunction().getCallingConv();
2956
unsigned Count = CSI.size();
2957
(void)CC;
2958
// MachO's compact unwind format relies on all registers being stored in
2959
// pairs.
2960
assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
2961
CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
2962
CC == CallingConv::Win64 || (Count & 1) == 0) &&
2963
"Odd number of callee-saved regs to spill!");
2964
int ByteOffset = AFI->getCalleeSavedStackSize();
2965
int StackFillDir = -1;
2966
int RegInc = 1;
2967
unsigned FirstReg = 0;
2968
if (NeedsWinCFI) {
2969
// For WinCFI, fill the stack from the bottom up.
2970
ByteOffset = 0;
2971
StackFillDir = 1;
2972
// As the CSI array is reversed to match PrologEpilogInserter, iterate
2973
// backwards, to pair up registers starting from lower numbered registers.
2974
RegInc = -1;
2975
FirstReg = Count - 1;
2976
}
2977
int ScalableByteOffset = AFI->getSVECalleeSavedStackSize();
2978
bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
2979
Register LastReg = 0;
2980
2981
// When iterating backwards, the loop condition relies on unsigned wraparound.
2982
for (unsigned i = FirstReg; i < Count; i += RegInc) {
2983
RegPairInfo RPI;
2984
RPI.Reg1 = CSI[i].getReg();
2985
2986
if (AArch64::GPR64RegClass.contains(RPI.Reg1))
2987
RPI.Type = RegPairInfo::GPR;
2988
else if (AArch64::FPR64RegClass.contains(RPI.Reg1))
2989
RPI.Type = RegPairInfo::FPR64;
2990
else if (AArch64::FPR128RegClass.contains(RPI.Reg1))
2991
RPI.Type = RegPairInfo::FPR128;
2992
else if (AArch64::ZPRRegClass.contains(RPI.Reg1))
2993
RPI.Type = RegPairInfo::ZPR;
2994
else if (AArch64::PPRRegClass.contains(RPI.Reg1))
2995
RPI.Type = RegPairInfo::PPR;
2996
else if (RPI.Reg1 == AArch64::VG)
2997
RPI.Type = RegPairInfo::VG;
2998
else
2999
llvm_unreachable("Unsupported register class.");
3000
3001
// Add the stack hazard size as we transition from GPR->FPR CSRs.
3002
if (AFI->hasStackHazardSlotIndex() &&
3003
(!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) &&
3004
AArch64InstrInfo::isFpOrNEON(RPI.Reg1))
3005
ByteOffset += StackFillDir * StackHazardSize;
3006
LastReg = RPI.Reg1;
3007
3008
// Add the next reg to the pair if it is in the same register class.
3009
if (unsigned(i + RegInc) < Count && !AFI->hasStackHazardSlotIndex()) {
3010
Register NextReg = CSI[i + RegInc].getReg();
3011
bool IsFirst = i == FirstReg;
3012
switch (RPI.Type) {
3013
case RegPairInfo::GPR:
3014
if (AArch64::GPR64RegClass.contains(NextReg) &&
3015
!invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows,
3016
NeedsWinCFI, NeedsFrameRecord, IsFirst,
3017
TRI))
3018
RPI.Reg2 = NextReg;
3019
break;
3020
case RegPairInfo::FPR64:
3021
if (AArch64::FPR64RegClass.contains(NextReg) &&
3022
!invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI,
3023
IsFirst, TRI))
3024
RPI.Reg2 = NextReg;
3025
break;
3026
case RegPairInfo::FPR128:
3027
if (AArch64::FPR128RegClass.contains(NextReg))
3028
RPI.Reg2 = NextReg;
3029
break;
3030
case RegPairInfo::PPR:
3031
break;
3032
case RegPairInfo::ZPR:
3033
if (AFI->getPredicateRegForFillSpill() != 0)
3034
if (((RPI.Reg1 - AArch64::Z0) & 1) == 0 && (NextReg == RPI.Reg1 + 1))
3035
RPI.Reg2 = NextReg;
3036
break;
3037
case RegPairInfo::VG:
3038
break;
3039
}
3040
}
3041
3042
// GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
3043
// list to come in sorted by frame index so that we can issue the store
3044
// pair instructions directly. Assert if we see anything otherwise.
3045
//
3046
// The order of the registers in the list is controlled by
3047
// getCalleeSavedRegs(), so they will always be in-order, as well.
3048
assert((!RPI.isPaired() ||
3049
(CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
3050
"Out of order callee saved regs!");
3051
3052
assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
3053
RPI.Reg1 == AArch64::LR) &&
3054
"FrameRecord must be allocated together with LR");
3055
3056
// Windows AAPCS has FP and LR reversed.
3057
assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
3058
RPI.Reg2 == AArch64::LR) &&
3059
"FrameRecord must be allocated together with LR");
3060
3061
// MachO's compact unwind format relies on all registers being stored in
3062
// adjacent register pairs.
3063
assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost ||
3064
CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS ||
3065
CC == CallingConv::Win64 ||
3066
(RPI.isPaired() &&
3067
((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
3068
RPI.Reg1 + 1 == RPI.Reg2))) &&
3069
"Callee-save registers not saved as adjacent register pair!");
3070
3071
RPI.FrameIdx = CSI[i].getFrameIdx();
3072
if (NeedsWinCFI &&
3073
RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
3074
RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
3075
int Scale = RPI.getScale();
3076
3077
int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
3078
assert(OffsetPre % Scale == 0);
3079
3080
if (RPI.isScalable())
3081
ScalableByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
3082
else
3083
ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
3084
3085
// Swift's async context is directly before FP, so allocate an extra
3086
// 8 bytes for it.
3087
if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
3088
((!IsWindows && RPI.Reg2 == AArch64::FP) ||
3089
(IsWindows && RPI.Reg2 == AArch64::LR)))
3090
ByteOffset += StackFillDir * 8;
3091
3092
// Round up size of non-pair to pair size if we need to pad the
3093
// callee-save area to ensure 16-byte alignment.
3094
if (NeedGapToAlignStack && !NeedsWinCFI && !RPI.isScalable() &&
3095
RPI.Type != RegPairInfo::FPR128 && !RPI.isPaired() &&
3096
ByteOffset % 16 != 0) {
3097
ByteOffset += 8 * StackFillDir;
3098
assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
3099
// A stack frame with a gap looks like this, bottom up:
3100
// d9, d8. x21, gap, x20, x19.
3101
// Set extra alignment on the x21 object to create the gap above it.
3102
MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
3103
NeedGapToAlignStack = false;
3104
}
3105
3106
int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
3107
assert(OffsetPost % Scale == 0);
3108
// If filling top down (default), we want the offset after incrementing it.
3109
// If filling bottom up (WinCFI) we need the original offset.
3110
int Offset = NeedsWinCFI ? OffsetPre : OffsetPost;
3111
3112
// The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
3113
// Swift context can directly precede FP.
3114
if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
3115
((!IsWindows && RPI.Reg2 == AArch64::FP) ||
3116
(IsWindows && RPI.Reg2 == AArch64::LR)))
3117
Offset += 8;
3118
RPI.Offset = Offset / Scale;
3119
3120
assert((!RPI.isPaired() ||
3121
(!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
3122
(RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
3123
"Offset out of bounds for LDP/STP immediate");
3124
3125
// Save the offset to frame record so that the FP register can point to the
3126
// innermost frame record (spilled FP and LR registers).
3127
if (NeedsFrameRecord &&
3128
((!IsWindows && RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
3129
(IsWindows && RPI.Reg1 == AArch64::FP && RPI.Reg2 == AArch64::LR)))
3130
AFI->setCalleeSaveBaseToFrameRecordOffset(Offset);
3131
3132
RegPairs.push_back(RPI);
3133
if (RPI.isPaired())
3134
i += RegInc;
3135
}
3136
if (NeedsWinCFI) {
3137
// If we need an alignment gap in the stack, align the topmost stack
3138
// object. A stack frame with a gap looks like this, bottom up:
3139
// x19, d8. d9, gap.
3140
// Set extra alignment on the topmost stack object (the first element in
3141
// CSI, which goes top down), to create the gap above it.
3142
if (AFI->hasCalleeSaveStackFreeSpace())
3143
MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
3144
// We iterated bottom up over the registers; flip RegPairs back to top
3145
// down order.
3146
std::reverse(RegPairs.begin(), RegPairs.end());
3147
}
3148
}
3149
3150
bool AArch64FrameLowering::spillCalleeSavedRegisters(
3151
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
3152
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
3153
MachineFunction &MF = *MBB.getParent();
3154
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3155
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3156
bool NeedsWinCFI = needsWinCFI(MF);
3157
DebugLoc DL;
3158
SmallVector<RegPairInfo, 8> RegPairs;
3159
3160
computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
3161
3162
MachineRegisterInfo &MRI = MF.getRegInfo();
3163
// Refresh the reserved regs in case there are any potential changes since the
3164
// last freeze.
3165
MRI.freezeReservedRegs();
3166
3167
if (homogeneousPrologEpilog(MF)) {
3168
auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
3169
.setMIFlag(MachineInstr::FrameSetup);
3170
3171
for (auto &RPI : RegPairs) {
3172
MIB.addReg(RPI.Reg1);
3173
MIB.addReg(RPI.Reg2);
3174
3175
// Update register live in.
3176
if (!MRI.isReserved(RPI.Reg1))
3177
MBB.addLiveIn(RPI.Reg1);
3178
if (RPI.isPaired() && !MRI.isReserved(RPI.Reg2))
3179
MBB.addLiveIn(RPI.Reg2);
3180
}
3181
return true;
3182
}
3183
bool PTrueCreated = false;
3184
for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
3185
unsigned Reg1 = RPI.Reg1;
3186
unsigned Reg2 = RPI.Reg2;
3187
unsigned StrOpc;
3188
3189
// Issue sequence of spills for cs regs. The first spill may be converted
3190
// to a pre-decrement store later by emitPrologue if the callee-save stack
3191
// area allocation can't be combined with the local stack area allocation.
3192
// For example:
3193
// stp x22, x21, [sp, #0] // addImm(+0)
3194
// stp x20, x19, [sp, #16] // addImm(+2)
3195
// stp fp, lr, [sp, #32] // addImm(+4)
3196
// Rationale: This sequence saves uop updates compared to a sequence of
3197
// pre-increment spills like stp xi,xj,[sp,#-16]!
3198
// Note: Similar rationale and sequence for restores in epilog.
3199
unsigned Size;
3200
Align Alignment;
3201
switch (RPI.Type) {
3202
case RegPairInfo::GPR:
3203
StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
3204
Size = 8;
3205
Alignment = Align(8);
3206
break;
3207
case RegPairInfo::FPR64:
3208
StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
3209
Size = 8;
3210
Alignment = Align(8);
3211
break;
3212
case RegPairInfo::FPR128:
3213
StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
3214
Size = 16;
3215
Alignment = Align(16);
3216
break;
3217
case RegPairInfo::ZPR:
3218
StrOpc = RPI.isPaired() ? AArch64::ST1B_2Z_IMM : AArch64::STR_ZXI;
3219
Size = 16;
3220
Alignment = Align(16);
3221
break;
3222
case RegPairInfo::PPR:
3223
StrOpc = AArch64::STR_PXI;
3224
Size = 2;
3225
Alignment = Align(2);
3226
break;
3227
case RegPairInfo::VG:
3228
StrOpc = AArch64::STRXui;
3229
Size = 8;
3230
Alignment = Align(8);
3231
break;
3232
}
3233
3234
unsigned X0Scratch = AArch64::NoRegister;
3235
if (Reg1 == AArch64::VG) {
3236
// Find an available register to store value of VG to.
3237
Reg1 = findScratchNonCalleeSaveRegister(&MBB);
3238
assert(Reg1 != AArch64::NoRegister);
3239
SMEAttrs Attrs(MF.getFunction());
3240
3241
if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface() &&
3242
AFI->getStreamingVGIdx() == std::numeric_limits<int>::max()) {
3243
// For locally-streaming functions, we need to store both the streaming
3244
// & non-streaming VG. Spill the streaming value first.
3245
BuildMI(MBB, MI, DL, TII.get(AArch64::RDSVLI_XI), Reg1)
3246
.addImm(1)
3247
.setMIFlag(MachineInstr::FrameSetup);
3248
BuildMI(MBB, MI, DL, TII.get(AArch64::UBFMXri), Reg1)
3249
.addReg(Reg1)
3250
.addImm(3)
3251
.addImm(63)
3252
.setMIFlag(MachineInstr::FrameSetup);
3253
3254
AFI->setStreamingVGIdx(RPI.FrameIdx);
3255
} else if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) {
3256
BuildMI(MBB, MI, DL, TII.get(AArch64::CNTD_XPiI), Reg1)
3257
.addImm(31)
3258
.addImm(1)
3259
.setMIFlag(MachineInstr::FrameSetup);
3260
AFI->setVGIdx(RPI.FrameIdx);
3261
} else {
3262
const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
3263
if (llvm::any_of(
3264
MBB.liveins(),
3265
[&STI](const MachineBasicBlock::RegisterMaskPair &LiveIn) {
3266
return STI.getRegisterInfo()->isSuperOrSubRegisterEq(
3267
AArch64::X0, LiveIn.PhysReg);
3268
}))
3269
X0Scratch = Reg1;
3270
3271
if (X0Scratch != AArch64::NoRegister)
3272
BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), Reg1)
3273
.addReg(AArch64::XZR)
3274
.addReg(AArch64::X0, RegState::Undef)
3275
.addReg(AArch64::X0, RegState::Implicit)
3276
.setMIFlag(MachineInstr::FrameSetup);
3277
3278
const uint32_t *RegMask = TRI->getCallPreservedMask(
3279
MF,
3280
CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1);
3281
BuildMI(MBB, MI, DL, TII.get(AArch64::BL))
3282
.addExternalSymbol("__arm_get_current_vg")
3283
.addRegMask(RegMask)
3284
.addReg(AArch64::X0, RegState::ImplicitDefine)
3285
.setMIFlag(MachineInstr::FrameSetup);
3286
Reg1 = AArch64::X0;
3287
AFI->setVGIdx(RPI.FrameIdx);
3288
}
3289
}
3290
3291
LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
3292
if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
3293
dbgs() << ") -> fi#(" << RPI.FrameIdx;
3294
if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
3295
dbgs() << ")\n");
3296
3297
assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
3298
"Windows unwdinding requires a consecutive (FP,LR) pair");
3299
// Windows unwind codes require consecutive registers if registers are
3300
// paired. Make the switch here, so that the code below will save (x,x+1)
3301
// and not (x+1,x).
3302
unsigned FrameIdxReg1 = RPI.FrameIdx;
3303
unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
3304
if (NeedsWinCFI && RPI.isPaired()) {
3305
std::swap(Reg1, Reg2);
3306
std::swap(FrameIdxReg1, FrameIdxReg2);
3307
}
3308
3309
if (RPI.isPaired() && RPI.isScalable()) {
3310
[[maybe_unused]] const AArch64Subtarget &Subtarget =
3311
MF.getSubtarget<AArch64Subtarget>();
3312
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3313
unsigned PnReg = AFI->getPredicateRegForFillSpill();
3314
assert(((Subtarget.hasSVE2p1() || Subtarget.hasSME2()) && PnReg != 0) &&
3315
"Expects SVE2.1 or SME2 target and a predicate register");
3316
#ifdef EXPENSIVE_CHECKS
3317
auto IsPPR = [](const RegPairInfo &c) {
3318
return c.Reg1 == RegPairInfo::PPR;
3319
};
3320
auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR);
3321
auto IsZPR = [](const RegPairInfo &c) {
3322
return c.Type == RegPairInfo::ZPR;
3323
};
3324
auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR);
3325
assert(!(PPRBegin < ZPRBegin) &&
3326
"Expected callee save predicate to be handled first");
3327
#endif
3328
if (!PTrueCreated) {
3329
PTrueCreated = true;
3330
BuildMI(MBB, MI, DL, TII.get(AArch64::PTRUE_C_B), PnReg)
3331
.setMIFlags(MachineInstr::FrameSetup);
3332
}
3333
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
3334
if (!MRI.isReserved(Reg1))
3335
MBB.addLiveIn(Reg1);
3336
if (!MRI.isReserved(Reg2))
3337
MBB.addLiveIn(Reg2);
3338
MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0));
3339
MIB.addMemOperand(MF.getMachineMemOperand(
3340
MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3341
MachineMemOperand::MOStore, Size, Alignment));
3342
MIB.addReg(PnReg);
3343
MIB.addReg(AArch64::SP)
3344
.addImm(RPI.Offset) // [sp, #offset*scale],
3345
// where factor*scale is implicit
3346
.setMIFlag(MachineInstr::FrameSetup);
3347
MIB.addMemOperand(MF.getMachineMemOperand(
3348
MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3349
MachineMemOperand::MOStore, Size, Alignment));
3350
if (NeedsWinCFI)
3351
InsertSEH(MIB, TII, MachineInstr::FrameSetup);
3352
} else { // The code when the pair of ZReg is not present
3353
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
3354
if (!MRI.isReserved(Reg1))
3355
MBB.addLiveIn(Reg1);
3356
if (RPI.isPaired()) {
3357
if (!MRI.isReserved(Reg2))
3358
MBB.addLiveIn(Reg2);
3359
MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
3360
MIB.addMemOperand(MF.getMachineMemOperand(
3361
MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3362
MachineMemOperand::MOStore, Size, Alignment));
3363
}
3364
MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
3365
.addReg(AArch64::SP)
3366
.addImm(RPI.Offset) // [sp, #offset*scale],
3367
// where factor*scale is implicit
3368
.setMIFlag(MachineInstr::FrameSetup);
3369
MIB.addMemOperand(MF.getMachineMemOperand(
3370
MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3371
MachineMemOperand::MOStore, Size, Alignment));
3372
if (NeedsWinCFI)
3373
InsertSEH(MIB, TII, MachineInstr::FrameSetup);
3374
}
3375
// Update the StackIDs of the SVE stack slots.
3376
MachineFrameInfo &MFI = MF.getFrameInfo();
3377
if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) {
3378
MFI.setStackID(FrameIdxReg1, TargetStackID::ScalableVector);
3379
if (RPI.isPaired())
3380
MFI.setStackID(FrameIdxReg2, TargetStackID::ScalableVector);
3381
}
3382
3383
if (X0Scratch != AArch64::NoRegister)
3384
BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), AArch64::X0)
3385
.addReg(AArch64::XZR)
3386
.addReg(X0Scratch, RegState::Undef)
3387
.addReg(X0Scratch, RegState::Implicit)
3388
.setMIFlag(MachineInstr::FrameSetup);
3389
}
3390
return true;
3391
}
3392
3393
bool AArch64FrameLowering::restoreCalleeSavedRegisters(
3394
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
3395
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
3396
MachineFunction &MF = *MBB.getParent();
3397
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
3398
DebugLoc DL;
3399
SmallVector<RegPairInfo, 8> RegPairs;
3400
bool NeedsWinCFI = needsWinCFI(MF);
3401
3402
if (MBBI != MBB.end())
3403
DL = MBBI->getDebugLoc();
3404
3405
computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF));
3406
if (homogeneousPrologEpilog(MF, &MBB)) {
3407
auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
3408
.setMIFlag(MachineInstr::FrameDestroy);
3409
for (auto &RPI : RegPairs) {
3410
MIB.addReg(RPI.Reg1, RegState::Define);
3411
MIB.addReg(RPI.Reg2, RegState::Define);
3412
}
3413
return true;
3414
}
3415
3416
// For performance reasons restore SVE register in increasing order
3417
auto IsPPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::PPR; };
3418
auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR);
3419
auto PPREnd = std::find_if_not(PPRBegin, RegPairs.end(), IsPPR);
3420
std::reverse(PPRBegin, PPREnd);
3421
auto IsZPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::ZPR; };
3422
auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR);
3423
auto ZPREnd = std::find_if_not(ZPRBegin, RegPairs.end(), IsZPR);
3424
std::reverse(ZPRBegin, ZPREnd);
3425
3426
bool PTrueCreated = false;
3427
for (const RegPairInfo &RPI : RegPairs) {
3428
unsigned Reg1 = RPI.Reg1;
3429
unsigned Reg2 = RPI.Reg2;
3430
3431
// Issue sequence of restores for cs regs. The last restore may be converted
3432
// to a post-increment load later by emitEpilogue if the callee-save stack
3433
// area allocation can't be combined with the local stack area allocation.
3434
// For example:
3435
// ldp fp, lr, [sp, #32] // addImm(+4)
3436
// ldp x20, x19, [sp, #16] // addImm(+2)
3437
// ldp x22, x21, [sp, #0] // addImm(+0)
3438
// Note: see comment in spillCalleeSavedRegisters()
3439
unsigned LdrOpc;
3440
unsigned Size;
3441
Align Alignment;
3442
switch (RPI.Type) {
3443
case RegPairInfo::GPR:
3444
LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
3445
Size = 8;
3446
Alignment = Align(8);
3447
break;
3448
case RegPairInfo::FPR64:
3449
LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
3450
Size = 8;
3451
Alignment = Align(8);
3452
break;
3453
case RegPairInfo::FPR128:
3454
LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
3455
Size = 16;
3456
Alignment = Align(16);
3457
break;
3458
case RegPairInfo::ZPR:
3459
LdrOpc = RPI.isPaired() ? AArch64::LD1B_2Z_IMM : AArch64::LDR_ZXI;
3460
Size = 16;
3461
Alignment = Align(16);
3462
break;
3463
case RegPairInfo::PPR:
3464
LdrOpc = AArch64::LDR_PXI;
3465
Size = 2;
3466
Alignment = Align(2);
3467
break;
3468
case RegPairInfo::VG:
3469
continue;
3470
}
3471
LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
3472
if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI);
3473
dbgs() << ") -> fi#(" << RPI.FrameIdx;
3474
if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1;
3475
dbgs() << ")\n");
3476
3477
// Windows unwind codes require consecutive registers if registers are
3478
// paired. Make the switch here, so that the code below will save (x,x+1)
3479
// and not (x+1,x).
3480
unsigned FrameIdxReg1 = RPI.FrameIdx;
3481
unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
3482
if (NeedsWinCFI && RPI.isPaired()) {
3483
std::swap(Reg1, Reg2);
3484
std::swap(FrameIdxReg1, FrameIdxReg2);
3485
}
3486
3487
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3488
if (RPI.isPaired() && RPI.isScalable()) {
3489
[[maybe_unused]] const AArch64Subtarget &Subtarget =
3490
MF.getSubtarget<AArch64Subtarget>();
3491
unsigned PnReg = AFI->getPredicateRegForFillSpill();
3492
assert(((Subtarget.hasSVE2p1() || Subtarget.hasSME2()) && PnReg != 0) &&
3493
"Expects SVE2.1 or SME2 target and a predicate register");
3494
#ifdef EXPENSIVE_CHECKS
3495
assert(!(PPRBegin < ZPRBegin) &&
3496
"Expected callee save predicate to be handled first");
3497
#endif
3498
if (!PTrueCreated) {
3499
PTrueCreated = true;
3500
BuildMI(MBB, MBBI, DL, TII.get(AArch64::PTRUE_C_B), PnReg)
3501
.setMIFlags(MachineInstr::FrameDestroy);
3502
}
3503
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
3504
MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0),
3505
getDefRegState(true));
3506
MIB.addMemOperand(MF.getMachineMemOperand(
3507
MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3508
MachineMemOperand::MOLoad, Size, Alignment));
3509
MIB.addReg(PnReg);
3510
MIB.addReg(AArch64::SP)
3511
.addImm(RPI.Offset) // [sp, #offset*scale]
3512
// where factor*scale is implicit
3513
.setMIFlag(MachineInstr::FrameDestroy);
3514
MIB.addMemOperand(MF.getMachineMemOperand(
3515
MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3516
MachineMemOperand::MOLoad, Size, Alignment));
3517
if (NeedsWinCFI)
3518
InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
3519
} else {
3520
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
3521
if (RPI.isPaired()) {
3522
MIB.addReg(Reg2, getDefRegState(true));
3523
MIB.addMemOperand(MF.getMachineMemOperand(
3524
MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
3525
MachineMemOperand::MOLoad, Size, Alignment));
3526
}
3527
MIB.addReg(Reg1, getDefRegState(true));
3528
MIB.addReg(AArch64::SP)
3529
.addImm(RPI.Offset) // [sp, #offset*scale]
3530
// where factor*scale is implicit
3531
.setMIFlag(MachineInstr::FrameDestroy);
3532
MIB.addMemOperand(MF.getMachineMemOperand(
3533
MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
3534
MachineMemOperand::MOLoad, Size, Alignment));
3535
if (NeedsWinCFI)
3536
InsertSEH(MIB, TII, MachineInstr::FrameDestroy);
3537
}
3538
}
3539
return true;
3540
}
3541
3542
// Return the FrameID for a MMO.
3543
static std::optional<int> getMMOFrameID(MachineMemOperand *MMO,
3544
const MachineFrameInfo &MFI) {
3545
auto *PSV =
3546
dyn_cast_or_null<FixedStackPseudoSourceValue>(MMO->getPseudoValue());
3547
if (PSV)
3548
return std::optional<int>(PSV->getFrameIndex());
3549
3550
if (MMO->getValue()) {
3551
if (auto *Al = dyn_cast<AllocaInst>(getUnderlyingObject(MMO->getValue()))) {
3552
for (int FI = MFI.getObjectIndexBegin(); FI < MFI.getObjectIndexEnd();
3553
FI++)
3554
if (MFI.getObjectAllocation(FI) == Al)
3555
return FI;
3556
}
3557
}
3558
3559
return std::nullopt;
3560
}
3561
3562
// Return the FrameID for a Load/Store instruction by looking at the first MMO.
3563
static std::optional<int> getLdStFrameID(const MachineInstr &MI,
3564
const MachineFrameInfo &MFI) {
3565
if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1)
3566
return std::nullopt;
3567
3568
return getMMOFrameID(*MI.memoperands_begin(), MFI);
3569
}
3570
3571
// Check if a Hazard slot is needed for the current function, and if so create
3572
// one for it. The index is stored in AArch64FunctionInfo->StackHazardSlotIndex,
3573
// which can be used to determine if any hazard padding is needed.
3574
void AArch64FrameLowering::determineStackHazardSlot(
3575
MachineFunction &MF, BitVector &SavedRegs) const {
3576
if (StackHazardSize == 0 || StackHazardSize % 16 != 0 ||
3577
MF.getInfo<AArch64FunctionInfo>()->hasStackHazardSlotIndex())
3578
return;
3579
3580
// Stack hazards are only needed in streaming functions.
3581
SMEAttrs Attrs(MF.getFunction());
3582
if (!StackHazardInNonStreaming && Attrs.hasNonStreamingInterfaceAndBody())
3583
return;
3584
3585
MachineFrameInfo &MFI = MF.getFrameInfo();
3586
3587
// Add a hazard slot if there are any CSR FPR registers, or are any fp-only
3588
// stack objects.
3589
bool HasFPRCSRs = any_of(SavedRegs.set_bits(), [](unsigned Reg) {
3590
return AArch64::FPR64RegClass.contains(Reg) ||
3591
AArch64::FPR128RegClass.contains(Reg) ||
3592
AArch64::ZPRRegClass.contains(Reg) ||
3593
AArch64::PPRRegClass.contains(Reg);
3594
});
3595
bool HasFPRStackObjects = false;
3596
if (!HasFPRCSRs) {
3597
std::vector<unsigned> FrameObjects(MFI.getObjectIndexEnd());
3598
for (auto &MBB : MF) {
3599
for (auto &MI : MBB) {
3600
std::optional<int> FI = getLdStFrameID(MI, MFI);
3601
if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) {
3602
if (MFI.getStackID(*FI) == TargetStackID::ScalableVector ||
3603
AArch64InstrInfo::isFpOrNEON(MI))
3604
FrameObjects[*FI] |= 2;
3605
else
3606
FrameObjects[*FI] |= 1;
3607
}
3608
}
3609
}
3610
HasFPRStackObjects =
3611
any_of(FrameObjects, [](unsigned B) { return (B & 3) == 2; });
3612
}
3613
3614
if (HasFPRCSRs || HasFPRStackObjects) {
3615
int ID = MFI.CreateStackObject(StackHazardSize, Align(16), false);
3616
LLVM_DEBUG(dbgs() << "Created Hazard slot at " << ID << " size "
3617
<< StackHazardSize << "\n");
3618
MF.getInfo<AArch64FunctionInfo>()->setStackHazardSlotIndex(ID);
3619
}
3620
}
3621
3622
void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
3623
BitVector &SavedRegs,
3624
RegScavenger *RS) const {
3625
// All calls are tail calls in GHC calling conv, and functions have no
3626
// prologue/epilogue.
3627
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
3628
return;
3629
3630
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
3631
const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
3632
MF.getSubtarget().getRegisterInfo());
3633
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
3634
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3635
unsigned UnspilledCSGPR = AArch64::NoRegister;
3636
unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
3637
3638
MachineFrameInfo &MFI = MF.getFrameInfo();
3639
const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
3640
3641
unsigned BasePointerReg = RegInfo->hasBasePointer(MF)
3642
? RegInfo->getBaseRegister()
3643
: (unsigned)AArch64::NoRegister;
3644
3645
unsigned ExtraCSSpill = 0;
3646
bool HasUnpairedGPR64 = false;
3647
// Figure out which callee-saved registers to save/restore.
3648
for (unsigned i = 0; CSRegs[i]; ++i) {
3649
const unsigned Reg = CSRegs[i];
3650
3651
// Add the base pointer register to SavedRegs if it is callee-save.
3652
if (Reg == BasePointerReg)
3653
SavedRegs.set(Reg);
3654
3655
bool RegUsed = SavedRegs.test(Reg);
3656
unsigned PairedReg = AArch64::NoRegister;
3657
const bool RegIsGPR64 = AArch64::GPR64RegClass.contains(Reg);
3658
if (RegIsGPR64 || AArch64::FPR64RegClass.contains(Reg) ||
3659
AArch64::FPR128RegClass.contains(Reg)) {
3660
// Compensate for odd numbers of GP CSRs.
3661
// For now, all the known cases of odd number of CSRs are of GPRs.
3662
if (HasUnpairedGPR64)
3663
PairedReg = CSRegs[i % 2 == 0 ? i - 1 : i + 1];
3664
else
3665
PairedReg = CSRegs[i ^ 1];
3666
}
3667
3668
// If the function requires all the GP registers to save (SavedRegs),
3669
// and there are an odd number of GP CSRs at the same time (CSRegs),
3670
// PairedReg could be in a different register class from Reg, which would
3671
// lead to a FPR (usually D8) accidentally being marked saved.
3672
if (RegIsGPR64 && !AArch64::GPR64RegClass.contains(PairedReg)) {
3673
PairedReg = AArch64::NoRegister;
3674
HasUnpairedGPR64 = true;
3675
}
3676
assert(PairedReg == AArch64::NoRegister ||
3677
AArch64::GPR64RegClass.contains(Reg, PairedReg) ||
3678
AArch64::FPR64RegClass.contains(Reg, PairedReg) ||
3679
AArch64::FPR128RegClass.contains(Reg, PairedReg));
3680
3681
if (!RegUsed) {
3682
if (AArch64::GPR64RegClass.contains(Reg) &&
3683
!RegInfo->isReservedReg(MF, Reg)) {
3684
UnspilledCSGPR = Reg;
3685
UnspilledCSGPRPaired = PairedReg;
3686
}
3687
continue;
3688
}
3689
3690
// MachO's compact unwind format relies on all registers being stored in
3691
// pairs.
3692
// FIXME: the usual format is actually better if unwinding isn't needed.
3693
if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
3694
!SavedRegs.test(PairedReg)) {
3695
SavedRegs.set(PairedReg);
3696
if (AArch64::GPR64RegClass.contains(PairedReg) &&
3697
!RegInfo->isReservedReg(MF, PairedReg))
3698
ExtraCSSpill = PairedReg;
3699
}
3700
}
3701
3702
if (MF.getFunction().getCallingConv() == CallingConv::Win64 &&
3703
!Subtarget.isTargetWindows()) {
3704
// For Windows calling convention on a non-windows OS, where X18 is treated
3705
// as reserved, back up X18 when entering non-windows code (marked with the
3706
// Windows calling convention) and restore when returning regardless of
3707
// whether the individual function uses it - it might call other functions
3708
// that clobber it.
3709
SavedRegs.set(AArch64::X18);
3710
}
3711
3712
// Calculates the callee saved stack size.
3713
unsigned CSStackSize = 0;
3714
unsigned SVECSStackSize = 0;
3715
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3716
const MachineRegisterInfo &MRI = MF.getRegInfo();
3717
for (unsigned Reg : SavedRegs.set_bits()) {
3718
auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8;
3719
if (AArch64::PPRRegClass.contains(Reg) ||
3720
AArch64::ZPRRegClass.contains(Reg))
3721
SVECSStackSize += RegSize;
3722
else
3723
CSStackSize += RegSize;
3724
}
3725
3726
// Increase the callee-saved stack size if the function has streaming mode
3727
// changes, as we will need to spill the value of the VG register.
3728
// For locally streaming functions, we spill both the streaming and
3729
// non-streaming VG value.
3730
const Function &F = MF.getFunction();
3731
SMEAttrs Attrs(F);
3732
if (requiresSaveVG(MF)) {
3733
if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface())
3734
CSStackSize += 16;
3735
else
3736
CSStackSize += 8;
3737
}
3738
3739
// Determine if a Hazard slot should be used, and increase the CSStackSize by
3740
// StackHazardSize if so.
3741
determineStackHazardSlot(MF, SavedRegs);
3742
if (AFI->hasStackHazardSlotIndex())
3743
CSStackSize += StackHazardSize;
3744
3745
// Save number of saved regs, so we can easily update CSStackSize later.
3746
unsigned NumSavedRegs = SavedRegs.count();
3747
3748
// The frame record needs to be created by saving the appropriate registers
3749
uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
3750
if (hasFP(MF) ||
3751
windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
3752
SavedRegs.set(AArch64::FP);
3753
SavedRegs.set(AArch64::LR);
3754
}
3755
3756
LLVM_DEBUG({
3757
dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
3758
for (unsigned Reg : SavedRegs.set_bits())
3759
dbgs() << ' ' << printReg(Reg, RegInfo);
3760
dbgs() << "\n";
3761
});
3762
3763
// If any callee-saved registers are used, the frame cannot be eliminated.
3764
int64_t SVEStackSize =
3765
alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16);
3766
bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
3767
3768
// The CSR spill slots have not been allocated yet, so estimateStackSize
3769
// won't include them.
3770
unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
3771
3772
// We may address some of the stack above the canonical frame address, either
3773
// for our own arguments or during a call. Include that in calculating whether
3774
// we have complicated addressing concerns.
3775
int64_t CalleeStackUsed = 0;
3776
for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) {
3777
int64_t FixedOff = MFI.getObjectOffset(I);
3778
if (FixedOff > CalleeStackUsed)
3779
CalleeStackUsed = FixedOff;
3780
}
3781
3782
// Conservatively always assume BigStack when there are SVE spills.
3783
bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize +
3784
CalleeStackUsed) > EstimatedStackSizeLimit;
3785
if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
3786
AFI->setHasStackFrame(true);
3787
3788
// Estimate if we might need to scavenge a register at some point in order
3789
// to materialize a stack offset. If so, either spill one additional
3790
// callee-saved register or reserve a special spill slot to facilitate
3791
// register scavenging. If we already spilled an extra callee-saved register
3792
// above to keep the number of spills even, we don't need to do anything else
3793
// here.
3794
if (BigStack) {
3795
if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
3796
LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
3797
<< " to get a scratch register.\n");
3798
SavedRegs.set(UnspilledCSGPR);
3799
ExtraCSSpill = UnspilledCSGPR;
3800
3801
// MachO's compact unwind format relies on all registers being stored in
3802
// pairs, so if we need to spill one extra for BigStack, then we need to
3803
// store the pair.
3804
if (producePairRegisters(MF)) {
3805
if (UnspilledCSGPRPaired == AArch64::NoRegister) {
3806
// Failed to make a pair for compact unwind format, revert spilling.
3807
if (produceCompactUnwindFrame(MF)) {
3808
SavedRegs.reset(UnspilledCSGPR);
3809
ExtraCSSpill = AArch64::NoRegister;
3810
}
3811
} else
3812
SavedRegs.set(UnspilledCSGPRPaired);
3813
}
3814
}
3815
3816
// If we didn't find an extra callee-saved register to spill, create
3817
// an emergency spill slot.
3818
if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
3819
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3820
const TargetRegisterClass &RC = AArch64::GPR64RegClass;
3821
unsigned Size = TRI->getSpillSize(RC);
3822
Align Alignment = TRI->getSpillAlign(RC);
3823
int FI = MFI.CreateStackObject(Size, Alignment, false);
3824
RS->addScavengingFrameIndex(FI);
3825
LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
3826
<< " as the emergency spill slot.\n");
3827
}
3828
}
3829
3830
// Adding the size of additional 64bit GPR saves.
3831
CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
3832
3833
// A Swift asynchronous context extends the frame record with a pointer
3834
// directly before FP.
3835
if (hasFP(MF) && AFI->hasSwiftAsyncContext())
3836
CSStackSize += 8;
3837
3838
uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
3839
LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
3840
<< EstimatedStackSize + AlignedCSStackSize << " bytes.\n");
3841
3842
assert((!MFI.isCalleeSavedInfoValid() ||
3843
AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
3844
"Should not invalidate callee saved info");
3845
3846
// Round up to register pair alignment to avoid additional SP adjustment
3847
// instructions.
3848
AFI->setCalleeSavedStackSize(AlignedCSStackSize);
3849
AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
3850
AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16));
3851
}
3852
3853
bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
3854
MachineFunction &MF, const TargetRegisterInfo *RegInfo,
3855
std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
3856
unsigned &MaxCSFrameIndex) const {
3857
bool NeedsWinCFI = needsWinCFI(MF);
3858
// To match the canonical windows frame layout, reverse the list of
3859
// callee saved registers to get them laid out by PrologEpilogInserter
3860
// in the right order. (PrologEpilogInserter allocates stack objects top
3861
// down. Windows canonical prologs store higher numbered registers at
3862
// the top, thus have the CSI array start from the highest registers.)
3863
if (NeedsWinCFI)
3864
std::reverse(CSI.begin(), CSI.end());
3865
3866
if (CSI.empty())
3867
return true; // Early exit if no callee saved registers are modified!
3868
3869
// Now that we know which registers need to be saved and restored, allocate
3870
// stack slots for them.
3871
MachineFrameInfo &MFI = MF.getFrameInfo();
3872
auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3873
3874
bool UsesWinAAPCS = isTargetWindows(MF);
3875
if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
3876
int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
3877
AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3878
if ((unsigned)FrameIdx < MinCSFrameIndex)
3879
MinCSFrameIndex = FrameIdx;
3880
if ((unsigned)FrameIdx > MaxCSFrameIndex)
3881
MaxCSFrameIndex = FrameIdx;
3882
}
3883
3884
// Insert VG into the list of CSRs, immediately before LR if saved.
3885
if (requiresSaveVG(MF)) {
3886
std::vector<CalleeSavedInfo> VGSaves;
3887
SMEAttrs Attrs(MF.getFunction());
3888
3889
auto VGInfo = CalleeSavedInfo(AArch64::VG);
3890
VGInfo.setRestored(false);
3891
VGSaves.push_back(VGInfo);
3892
3893
// Add VG again if the function is locally-streaming, as we will spill two
3894
// values.
3895
if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface())
3896
VGSaves.push_back(VGInfo);
3897
3898
bool InsertBeforeLR = false;
3899
3900
for (unsigned I = 0; I < CSI.size(); I++)
3901
if (CSI[I].getReg() == AArch64::LR) {
3902
InsertBeforeLR = true;
3903
CSI.insert(CSI.begin() + I, VGSaves.begin(), VGSaves.end());
3904
break;
3905
}
3906
3907
if (!InsertBeforeLR)
3908
CSI.insert(CSI.end(), VGSaves.begin(), VGSaves.end());
3909
}
3910
3911
Register LastReg = 0;
3912
int HazardSlotIndex = std::numeric_limits<int>::max();
3913
for (auto &CS : CSI) {
3914
Register Reg = CS.getReg();
3915
const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
3916
3917
// Create a hazard slot as we switch between GPR and FPR CSRs.
3918
if (AFI->hasStackHazardSlotIndex() &&
3919
(!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) &&
3920
AArch64InstrInfo::isFpOrNEON(Reg)) {
3921
assert(HazardSlotIndex == std::numeric_limits<int>::max() &&
3922
"Unexpected register order for hazard slot");
3923
HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true);
3924
LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex
3925
<< "\n");
3926
AFI->setStackHazardCSRSlotIndex(HazardSlotIndex);
3927
if ((unsigned)HazardSlotIndex < MinCSFrameIndex)
3928
MinCSFrameIndex = HazardSlotIndex;
3929
if ((unsigned)HazardSlotIndex > MaxCSFrameIndex)
3930
MaxCSFrameIndex = HazardSlotIndex;
3931
}
3932
3933
unsigned Size = RegInfo->getSpillSize(*RC);
3934
Align Alignment(RegInfo->getSpillAlign(*RC));
3935
int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
3936
CS.setFrameIdx(FrameIdx);
3937
3938
if ((unsigned)FrameIdx < MinCSFrameIndex)
3939
MinCSFrameIndex = FrameIdx;
3940
if ((unsigned)FrameIdx > MaxCSFrameIndex)
3941
MaxCSFrameIndex = FrameIdx;
3942
3943
// Grab 8 bytes below FP for the extended asynchronous frame info.
3944
if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS &&
3945
Reg == AArch64::FP) {
3946
FrameIdx = MFI.CreateStackObject(8, Alignment, true);
3947
AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
3948
if ((unsigned)FrameIdx < MinCSFrameIndex)
3949
MinCSFrameIndex = FrameIdx;
3950
if ((unsigned)FrameIdx > MaxCSFrameIndex)
3951
MaxCSFrameIndex = FrameIdx;
3952
}
3953
LastReg = Reg;
3954
}
3955
3956
// Add hazard slot in the case where no FPR CSRs are present.
3957
if (AFI->hasStackHazardSlotIndex() &&
3958
HazardSlotIndex == std::numeric_limits<int>::max()) {
3959
HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true);
3960
LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex
3961
<< "\n");
3962
AFI->setStackHazardCSRSlotIndex(HazardSlotIndex);
3963
if ((unsigned)HazardSlotIndex < MinCSFrameIndex)
3964
MinCSFrameIndex = HazardSlotIndex;
3965
if ((unsigned)HazardSlotIndex > MaxCSFrameIndex)
3966
MaxCSFrameIndex = HazardSlotIndex;
3967
}
3968
3969
return true;
3970
}
3971
3972
bool AArch64FrameLowering::enableStackSlotScavenging(
3973
const MachineFunction &MF) const {
3974
const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3975
// If the function has streaming-mode changes, don't scavenge a
3976
// spillslot in the callee-save area, as that might require an
3977
// 'addvl' in the streaming-mode-changing call-sequence when the
3978
// function doesn't use a FP.
3979
if (AFI->hasStreamingModeChanges() && !hasFP(MF))
3980
return false;
3981
// Don't allow register salvaging with hazard slots, in case it moves objects
3982
// into the wrong place.
3983
if (AFI->hasStackHazardSlotIndex())
3984
return false;
3985
return AFI->hasCalleeSaveStackFreeSpace();
3986
}
3987
3988
/// returns true if there are any SVE callee saves.
3989
static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI,
3990
int &Min, int &Max) {
3991
Min = std::numeric_limits<int>::max();
3992
Max = std::numeric_limits<int>::min();
3993
3994
if (!MFI.isCalleeSavedInfoValid())
3995
return false;
3996
3997
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
3998
for (auto &CS : CSI) {
3999
if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
4000
AArch64::PPRRegClass.contains(CS.getReg())) {
4001
assert((Max == std::numeric_limits<int>::min() ||
4002
Max + 1 == CS.getFrameIdx()) &&
4003
"SVE CalleeSaves are not consecutive");
4004
4005
Min = std::min(Min, CS.getFrameIdx());
4006
Max = std::max(Max, CS.getFrameIdx());
4007
}
4008
}
4009
return Min != std::numeric_limits<int>::max();
4010
}
4011
4012
// Process all the SVE stack objects and determine offsets for each
4013
// object. If AssignOffsets is true, the offsets get assigned.
4014
// Fills in the first and last callee-saved frame indices into
4015
// Min/MaxCSFrameIndex, respectively.
4016
// Returns the size of the stack.
4017
static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI,
4018
int &MinCSFrameIndex,
4019
int &MaxCSFrameIndex,
4020
bool AssignOffsets) {
4021
#ifndef NDEBUG
4022
// First process all fixed stack objects.
4023
for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
4024
assert(MFI.getStackID(I) != TargetStackID::ScalableVector &&
4025
"SVE vectors should never be passed on the stack by value, only by "
4026
"reference.");
4027
#endif
4028
4029
auto Assign = [&MFI](int FI, int64_t Offset) {
4030
LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
4031
MFI.setObjectOffset(FI, Offset);
4032
};
4033
4034
int64_t Offset = 0;
4035
4036
// Then process all callee saved slots.
4037
if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
4038
// Assign offsets to the callee save slots.
4039
for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) {
4040
Offset += MFI.getObjectSize(I);
4041
Offset = alignTo(Offset, MFI.getObjectAlign(I));
4042
if (AssignOffsets)
4043
Assign(I, -Offset);
4044
}
4045
}
4046
4047
// Ensure that the Callee-save area is aligned to 16bytes.
4048
Offset = alignTo(Offset, Align(16U));
4049
4050
// Create a buffer of SVE objects to allocate and sort it.
4051
SmallVector<int, 8> ObjectsToAllocate;
4052
// If we have a stack protector, and we've previously decided that we have SVE
4053
// objects on the stack and thus need it to go in the SVE stack area, then it
4054
// needs to go first.
4055
int StackProtectorFI = -1;
4056
if (MFI.hasStackProtectorIndex()) {
4057
StackProtectorFI = MFI.getStackProtectorIndex();
4058
if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
4059
ObjectsToAllocate.push_back(StackProtectorFI);
4060
}
4061
for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
4062
unsigned StackID = MFI.getStackID(I);
4063
if (StackID != TargetStackID::ScalableVector)
4064
continue;
4065
if (I == StackProtectorFI)
4066
continue;
4067
if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex)
4068
continue;
4069
if (MFI.isDeadObjectIndex(I))
4070
continue;
4071
4072
ObjectsToAllocate.push_back(I);
4073
}
4074
4075
// Allocate all SVE locals and spills
4076
for (unsigned FI : ObjectsToAllocate) {
4077
Align Alignment = MFI.getObjectAlign(FI);
4078
// FIXME: Given that the length of SVE vectors is not necessarily a power of
4079
// two, we'd need to align every object dynamically at runtime if the
4080
// alignment is larger than 16. This is not yet supported.
4081
if (Alignment > Align(16))
4082
report_fatal_error(
4083
"Alignment of scalable vectors > 16 bytes is not yet supported");
4084
4085
Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment);
4086
if (AssignOffsets)
4087
Assign(FI, -Offset);
4088
}
4089
4090
return Offset;
4091
}
4092
4093
int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
4094
MachineFrameInfo &MFI) const {
4095
int MinCSFrameIndex, MaxCSFrameIndex;
4096
return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false);
4097
}
4098
4099
int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
4100
MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const {
4101
return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex,
4102
true);
4103
}
4104
4105
void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
4106
MachineFunction &MF, RegScavenger *RS) const {
4107
MachineFrameInfo &MFI = MF.getFrameInfo();
4108
4109
assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown &&
4110
"Upwards growing stack unsupported");
4111
4112
int MinCSFrameIndex, MaxCSFrameIndex;
4113
int64_t SVEStackSize =
4114
assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex);
4115
4116
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
4117
AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U));
4118
AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex);
4119
4120
// If this function isn't doing Win64-style C++ EH, we don't need to do
4121
// anything.
4122
if (!MF.hasEHFunclets())
4123
return;
4124
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
4125
WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
4126
4127
MachineBasicBlock &MBB = MF.front();
4128
auto MBBI = MBB.begin();
4129
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
4130
++MBBI;
4131
4132
// Create an UnwindHelp object.
4133
// The UnwindHelp object is allocated at the start of the fixed object area
4134
int64_t FixedObject =
4135
getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false);
4136
int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8,
4137
/*SPOffset*/ -FixedObject,
4138
/*IsImmutable=*/false);
4139
EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
4140
4141
// We need to store -2 into the UnwindHelp object at the start of the
4142
// function.
4143
DebugLoc DL;
4144
RS->enterBasicBlockEnd(MBB);
4145
RS->backward(MBBI);
4146
Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
4147
assert(DstReg && "There must be a free register after frame setup");
4148
BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
4149
BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
4150
.addReg(DstReg, getKillRegState(true))
4151
.addFrameIndex(UnwindHelpFI)
4152
.addImm(0);
4153
}
4154
4155
namespace {
4156
struct TagStoreInstr {
4157
MachineInstr *MI;
4158
int64_t Offset, Size;
4159
explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
4160
: MI(MI), Offset(Offset), Size(Size) {}
4161
};
4162
4163
class TagStoreEdit {
4164
MachineFunction *MF;
4165
MachineBasicBlock *MBB;
4166
MachineRegisterInfo *MRI;
4167
// Tag store instructions that are being replaced.
4168
SmallVector<TagStoreInstr, 8> TagStores;
4169
// Combined memref arguments of the above instructions.
4170
SmallVector<MachineMemOperand *, 8> CombinedMemRefs;
4171
4172
// Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
4173
// FrameRegOffset + Size) with the address tag of SP.
4174
Register FrameReg;
4175
StackOffset FrameRegOffset;
4176
int64_t Size;
4177
// If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the
4178
// end.
4179
std::optional<int64_t> FrameRegUpdate;
4180
// MIFlags for any FrameReg updating instructions.
4181
unsigned FrameRegUpdateFlags;
4182
4183
// Use zeroing instruction variants.
4184
bool ZeroData;
4185
DebugLoc DL;
4186
4187
void emitUnrolled(MachineBasicBlock::iterator InsertI);
4188
void emitLoop(MachineBasicBlock::iterator InsertI);
4189
4190
public:
4191
TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
4192
: MBB(MBB), ZeroData(ZeroData) {
4193
MF = MBB->getParent();
4194
MRI = &MF->getRegInfo();
4195
}
4196
// Add an instruction to be replaced. Instructions must be added in the
4197
// ascending order of Offset, and have to be adjacent.
4198
void addInstruction(TagStoreInstr I) {
4199
assert((TagStores.empty() ||
4200
TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
4201
"Non-adjacent tag store instructions.");
4202
TagStores.push_back(I);
4203
}
4204
void clear() { TagStores.clear(); }
4205
// Emit equivalent code at the given location, and erase the current set of
4206
// instructions. May skip if the replacement is not profitable. May invalidate
4207
// the input iterator and replace it with a valid one.
4208
void emitCode(MachineBasicBlock::iterator &InsertI,
4209
const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
4210
};
4211
4212
void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
4213
const AArch64InstrInfo *TII =
4214
MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
4215
4216
const int64_t kMinOffset = -256 * 16;
4217
const int64_t kMaxOffset = 255 * 16;
4218
4219
Register BaseReg = FrameReg;
4220
int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
4221
if (BaseRegOffsetBytes < kMinOffset ||
4222
BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset ||
4223
// BaseReg can be FP, which is not necessarily aligned to 16-bytes. In
4224
// that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which
4225
// is required for the offset of ST2G.
4226
BaseRegOffsetBytes % 16 != 0) {
4227
Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
4228
emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
4229
StackOffset::getFixed(BaseRegOffsetBytes), TII);
4230
BaseReg = ScratchReg;
4231
BaseRegOffsetBytes = 0;
4232
}
4233
4234
MachineInstr *LastI = nullptr;
4235
while (Size) {
4236
int64_t InstrSize = (Size > 16) ? 32 : 16;
4237
unsigned Opcode =
4238
InstrSize == 16
4239
? (ZeroData ? AArch64::STZGi : AArch64::STGi)
4240
: (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi);
4241
assert(BaseRegOffsetBytes % 16 == 0);
4242
MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
4243
.addReg(AArch64::SP)
4244
.addReg(BaseReg)
4245
.addImm(BaseRegOffsetBytes / 16)
4246
.setMemRefs(CombinedMemRefs);
4247
// A store to [BaseReg, #0] should go last for an opportunity to fold the
4248
// final SP adjustment in the epilogue.
4249
if (BaseRegOffsetBytes == 0)
4250
LastI = I;
4251
BaseRegOffsetBytes += InstrSize;
4252
Size -= InstrSize;
4253
}
4254
4255
if (LastI)
4256
MBB->splice(InsertI, MBB, LastI);
4257
}
4258
4259
void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
4260
const AArch64InstrInfo *TII =
4261
MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
4262
4263
Register BaseReg = FrameRegUpdate
4264
? FrameReg
4265
: MRI->createVirtualRegister(&AArch64::GPR64RegClass);
4266
Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
4267
4268
emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
4269
4270
int64_t LoopSize = Size;
4271
// If the loop size is not a multiple of 32, split off one 16-byte store at
4272
// the end to fold BaseReg update into.
4273
if (FrameRegUpdate && *FrameRegUpdate)
4274
LoopSize -= LoopSize % 32;
4275
MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
4276
TII->get(ZeroData ? AArch64::STZGloop_wback
4277
: AArch64::STGloop_wback))
4278
.addDef(SizeReg)
4279
.addDef(BaseReg)
4280
.addImm(LoopSize)
4281
.addReg(BaseReg)
4282
.setMemRefs(CombinedMemRefs);
4283
if (FrameRegUpdate)
4284
LoopI->setFlags(FrameRegUpdateFlags);
4285
4286
int64_t ExtraBaseRegUpdate =
4287
FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
4288
if (LoopSize < Size) {
4289
assert(FrameRegUpdate);
4290
assert(Size - LoopSize == 16);
4291
// Tag 16 more bytes at BaseReg and update BaseReg.
4292
BuildMI(*MBB, InsertI, DL,
4293
TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
4294
.addDef(BaseReg)
4295
.addReg(BaseReg)
4296
.addReg(BaseReg)
4297
.addImm(1 + ExtraBaseRegUpdate / 16)
4298
.setMemRefs(CombinedMemRefs)
4299
.setMIFlags(FrameRegUpdateFlags);
4300
} else if (ExtraBaseRegUpdate) {
4301
// Update BaseReg.
4302
BuildMI(
4303
*MBB, InsertI, DL,
4304
TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
4305
.addDef(BaseReg)
4306
.addReg(BaseReg)
4307
.addImm(std::abs(ExtraBaseRegUpdate))
4308
.addImm(0)
4309
.setMIFlags(FrameRegUpdateFlags);
4310
}
4311
}
4312
4313
// Check if *II is a register update that can be merged into STGloop that ends
4314
// at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
4315
// end of the loop.
4316
bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
4317
int64_t Size, int64_t *TotalOffset) {
4318
MachineInstr &MI = *II;
4319
if ((MI.getOpcode() == AArch64::ADDXri ||
4320
MI.getOpcode() == AArch64::SUBXri) &&
4321
MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
4322
unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
4323
int64_t Offset = MI.getOperand(2).getImm() << Shift;
4324
if (MI.getOpcode() == AArch64::SUBXri)
4325
Offset = -Offset;
4326
int64_t AbsPostOffset = std::abs(Offset - Size);
4327
const int64_t kMaxOffset =
4328
0xFFF; // Max encoding for unshifted ADDXri / SUBXri
4329
if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) {
4330
*TotalOffset = Offset;
4331
return true;
4332
}
4333
}
4334
return false;
4335
}
4336
4337
void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
4338
SmallVectorImpl<MachineMemOperand *> &MemRefs) {
4339
MemRefs.clear();
4340
for (auto &TS : TSE) {
4341
MachineInstr *MI = TS.MI;
4342
// An instruction without memory operands may access anything. Be
4343
// conservative and return an empty list.
4344
if (MI->memoperands_empty()) {
4345
MemRefs.clear();
4346
return;
4347
}
4348
MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
4349
}
4350
}
4351
4352
void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
4353
const AArch64FrameLowering *TFI,
4354
bool TryMergeSPUpdate) {
4355
if (TagStores.empty())
4356
return;
4357
TagStoreInstr &FirstTagStore = TagStores[0];
4358
TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
4359
Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
4360
DL = TagStores[0].MI->getDebugLoc();
4361
4362
Register Reg;
4363
FrameRegOffset = TFI->resolveFrameOffsetReference(
4364
*MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg,
4365
/*PreferFP=*/false, /*ForSimm=*/true);
4366
FrameReg = Reg;
4367
FrameRegUpdate = std::nullopt;
4368
4369
mergeMemRefs(TagStores, CombinedMemRefs);
4370
4371
LLVM_DEBUG({
4372
dbgs() << "Replacing adjacent STG instructions:\n";
4373
for (const auto &Instr : TagStores) {
4374
dbgs() << " " << *Instr.MI;
4375
}
4376
});
4377
4378
// Size threshold where a loop becomes shorter than a linear sequence of
4379
// tagging instructions.
4380
const int kSetTagLoopThreshold = 176;
4381
if (Size < kSetTagLoopThreshold) {
4382
if (TagStores.size() < 2)
4383
return;
4384
emitUnrolled(InsertI);
4385
} else {
4386
MachineInstr *UpdateInstr = nullptr;
4387
int64_t TotalOffset = 0;
4388
if (TryMergeSPUpdate) {
4389
// See if we can merge base register update into the STGloop.
4390
// This is done in AArch64LoadStoreOptimizer for "normal" stores,
4391
// but STGloop is way too unusual for that, and also it only
4392
// realistically happens in function epilogue. Also, STGloop is expanded
4393
// before that pass.
4394
if (InsertI != MBB->end() &&
4395
canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
4396
&TotalOffset)) {
4397
UpdateInstr = &*InsertI++;
4398
LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
4399
<< *UpdateInstr);
4400
}
4401
}
4402
4403
if (!UpdateInstr && TagStores.size() < 2)
4404
return;
4405
4406
if (UpdateInstr) {
4407
FrameRegUpdate = TotalOffset;
4408
FrameRegUpdateFlags = UpdateInstr->getFlags();
4409
}
4410
emitLoop(InsertI);
4411
if (UpdateInstr)
4412
UpdateInstr->eraseFromParent();
4413
}
4414
4415
for (auto &TS : TagStores)
4416
TS.MI->eraseFromParent();
4417
}
4418
4419
bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
4420
int64_t &Size, bool &ZeroData) {
4421
MachineFunction &MF = *MI.getParent()->getParent();
4422
const MachineFrameInfo &MFI = MF.getFrameInfo();
4423
4424
unsigned Opcode = MI.getOpcode();
4425
ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi ||
4426
Opcode == AArch64::STZ2Gi);
4427
4428
if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
4429
if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
4430
return false;
4431
if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
4432
return false;
4433
Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
4434
Size = MI.getOperand(2).getImm();
4435
return true;
4436
}
4437
4438
if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi)
4439
Size = 16;
4440
else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi)
4441
Size = 32;
4442
else
4443
return false;
4444
4445
if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
4446
return false;
4447
4448
Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
4449
16 * MI.getOperand(2).getImm();
4450
return true;
4451
}
4452
4453
// Detect a run of memory tagging instructions for adjacent stack frame slots,
4454
// and replace them with a shorter instruction sequence:
4455
// * replace STG + STG with ST2G
4456
// * replace STGloop + STGloop with STGloop
4457
// This code needs to run when stack slot offsets are already known, but before
4458
// FrameIndex operands in STG instructions are eliminated.
4459
MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II,
4460
const AArch64FrameLowering *TFI,
4461
RegScavenger *RS) {
4462
bool FirstZeroData;
4463
int64_t Size, Offset;
4464
MachineInstr &MI = *II;
4465
MachineBasicBlock *MBB = MI.getParent();
4466
MachineBasicBlock::iterator NextI = ++II;
4467
if (&MI == &MBB->instr_back())
4468
return II;
4469
if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
4470
return II;
4471
4472
SmallVector<TagStoreInstr, 4> Instrs;
4473
Instrs.emplace_back(&MI, Offset, Size);
4474
4475
constexpr int kScanLimit = 10;
4476
int Count = 0;
4477
for (MachineBasicBlock::iterator E = MBB->end();
4478
NextI != E && Count < kScanLimit; ++NextI) {
4479
MachineInstr &MI = *NextI;
4480
bool ZeroData;
4481
int64_t Size, Offset;
4482
// Collect instructions that update memory tags with a FrameIndex operand
4483
// and (when applicable) constant size, and whose output registers are dead
4484
// (the latter is almost always the case in practice). Since these
4485
// instructions effectively have no inputs or outputs, we are free to skip
4486
// any non-aliasing instructions in between without tracking used registers.
4487
if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
4488
if (ZeroData != FirstZeroData)
4489
break;
4490
Instrs.emplace_back(&MI, Offset, Size);
4491
continue;
4492
}
4493
4494
// Only count non-transient, non-tagging instructions toward the scan
4495
// limit.
4496
if (!MI.isTransient())
4497
++Count;
4498
4499
// Just in case, stop before the epilogue code starts.
4500
if (MI.getFlag(MachineInstr::FrameSetup) ||
4501
MI.getFlag(MachineInstr::FrameDestroy))
4502
break;
4503
4504
// Reject anything that may alias the collected instructions.
4505
if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects())
4506
break;
4507
}
4508
4509
// New code will be inserted after the last tagging instruction we've found.
4510
MachineBasicBlock::iterator InsertI = Instrs.back().MI;
4511
4512
// All the gathered stack tag instructions are merged and placed after
4513
// last tag store in the list. The check should be made if the nzcv
4514
// flag is live at the point where we are trying to insert. Otherwise
4515
// the nzcv flag might get clobbered if any stg loops are present.
4516
4517
// FIXME : This approach of bailing out from merge is conservative in
4518
// some ways like even if stg loops are not present after merge the
4519
// insert list, this liveness check is done (which is not needed).
4520
LivePhysRegs LiveRegs(*(MBB->getParent()->getSubtarget().getRegisterInfo()));
4521
LiveRegs.addLiveOuts(*MBB);
4522
for (auto I = MBB->rbegin();; ++I) {
4523
MachineInstr &MI = *I;
4524
if (MI == InsertI)
4525
break;
4526
LiveRegs.stepBackward(*I);
4527
}
4528
InsertI++;
4529
if (LiveRegs.contains(AArch64::NZCV))
4530
return InsertI;
4531
4532
llvm::stable_sort(Instrs,
4533
[](const TagStoreInstr &Left, const TagStoreInstr &Right) {
4534
return Left.Offset < Right.Offset;
4535
});
4536
4537
// Make sure that we don't have any overlapping stores.
4538
int64_t CurOffset = Instrs[0].Offset;
4539
for (auto &Instr : Instrs) {
4540
if (CurOffset > Instr.Offset)
4541
return NextI;
4542
CurOffset = Instr.Offset + Instr.Size;
4543
}
4544
4545
// Find contiguous runs of tagged memory and emit shorter instruction
4546
// sequencies for them when possible.
4547
TagStoreEdit TSE(MBB, FirstZeroData);
4548
std::optional<int64_t> EndOffset;
4549
for (auto &Instr : Instrs) {
4550
if (EndOffset && *EndOffset != Instr.Offset) {
4551
// Found a gap.
4552
TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
4553
TSE.clear();
4554
}
4555
4556
TSE.addInstruction(Instr);
4557
EndOffset = Instr.Offset + Instr.Size;
4558
}
4559
4560
const MachineFunction *MF = MBB->getParent();
4561
// Multiple FP/SP updates in a loop cannot be described by CFI instructions.
4562
TSE.emitCode(
4563
InsertI, TFI, /*TryMergeSPUpdate = */
4564
!MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF));
4565
4566
return InsertI;
4567
}
4568
} // namespace
4569
4570
MachineBasicBlock::iterator emitVGSaveRestore(MachineBasicBlock::iterator II,
4571
const AArch64FrameLowering *TFI) {
4572
MachineInstr &MI = *II;
4573
MachineBasicBlock *MBB = MI.getParent();
4574
MachineFunction *MF = MBB->getParent();
4575
4576
if (MI.getOpcode() != AArch64::VGSavePseudo &&
4577
MI.getOpcode() != AArch64::VGRestorePseudo)
4578
return II;
4579
4580
SMEAttrs FuncAttrs(MF->getFunction());
4581
bool LocallyStreaming =
4582
FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface();
4583
const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>();
4584
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
4585
const AArch64InstrInfo *TII =
4586
MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
4587
4588
int64_t VGFrameIdx =
4589
LocallyStreaming ? AFI->getStreamingVGIdx() : AFI->getVGIdx();
4590
assert(VGFrameIdx != std::numeric_limits<int>::max() &&
4591
"Expected FrameIdx for VG");
4592
4593
unsigned CFIIndex;
4594
if (MI.getOpcode() == AArch64::VGSavePseudo) {
4595
const MachineFrameInfo &MFI = MF->getFrameInfo();
4596
int64_t Offset =
4597
MFI.getObjectOffset(VGFrameIdx) - TFI->getOffsetOfLocalArea();
4598
CFIIndex = MF->addFrameInst(MCCFIInstruction::createOffset(
4599
nullptr, TRI->getDwarfRegNum(AArch64::VG, true), Offset));
4600
} else
4601
CFIIndex = MF->addFrameInst(MCCFIInstruction::createRestore(
4602
nullptr, TRI->getDwarfRegNum(AArch64::VG, true)));
4603
4604
MachineInstr *UnwindInst = BuildMI(*MBB, II, II->getDebugLoc(),
4605
TII->get(TargetOpcode::CFI_INSTRUCTION))
4606
.addCFIIndex(CFIIndex);
4607
4608
MI.eraseFromParent();
4609
return UnwindInst->getIterator();
4610
}
4611
4612
void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
4613
MachineFunction &MF, RegScavenger *RS = nullptr) const {
4614
for (auto &BB : MF)
4615
for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) {
4616
if (requiresSaveVG(MF))
4617
II = emitVGSaveRestore(II, this);
4618
if (StackTaggingMergeSetTag)
4619
II = tryMergeAdjacentSTG(II, this, RS);
4620
}
4621
}
4622
4623
/// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
4624
/// before the update. This is easily retrieved as it is exactly the offset
4625
/// that is set in processFunctionBeforeFrameFinalized.
4626
StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP(
4627
const MachineFunction &MF, int FI, Register &FrameReg,
4628
bool IgnoreSPUpdates) const {
4629
const MachineFrameInfo &MFI = MF.getFrameInfo();
4630
if (IgnoreSPUpdates) {
4631
LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
4632
<< MFI.getObjectOffset(FI) << "\n");
4633
FrameReg = AArch64::SP;
4634
return StackOffset::getFixed(MFI.getObjectOffset(FI));
4635
}
4636
4637
// Go to common code if we cannot provide sp + offset.
4638
if (MFI.hasVarSizedObjects() ||
4639
MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() ||
4640
MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF))
4641
return getFrameIndexReference(MF, FI, FrameReg);
4642
4643
FrameReg = AArch64::SP;
4644
return getStackOffset(MF, MFI.getObjectOffset(FI));
4645
}
4646
4647
/// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
4648
/// the parent's frame pointer
4649
unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
4650
const MachineFunction &MF) const {
4651
return 0;
4652
}
4653
4654
/// Funclets only need to account for space for the callee saved registers,
4655
/// as the locals are accounted for in the parent's stack frame.
4656
unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
4657
const MachineFunction &MF) const {
4658
// This is the size of the pushed CSRs.
4659
unsigned CSSize =
4660
MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
4661
// This is the amount of stack a funclet needs to allocate.
4662
return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
4663
getStackAlign());
4664
}
4665
4666
namespace {
4667
struct FrameObject {
4668
bool IsValid = false;
4669
// Index of the object in MFI.
4670
int ObjectIndex = 0;
4671
// Group ID this object belongs to.
4672
int GroupIndex = -1;
4673
// This object should be placed first (closest to SP).
4674
bool ObjectFirst = false;
4675
// This object's group (which always contains the object with
4676
// ObjectFirst==true) should be placed first.
4677
bool GroupFirst = false;
4678
4679
// Used to distinguish between FP and GPR accesses. The values are decided so
4680
// that they sort FPR < Hazard < GPR and they can be or'd together.
4681
unsigned Accesses = 0;
4682
enum { AccessFPR = 1, AccessHazard = 2, AccessGPR = 4 };
4683
};
4684
4685
class GroupBuilder {
4686
SmallVector<int, 8> CurrentMembers;
4687
int NextGroupIndex = 0;
4688
std::vector<FrameObject> &Objects;
4689
4690
public:
4691
GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
4692
void AddMember(int Index) { CurrentMembers.push_back(Index); }
4693
void EndCurrentGroup() {
4694
if (CurrentMembers.size() > 1) {
4695
// Create a new group with the current member list. This might remove them
4696
// from their pre-existing groups. That's OK, dealing with overlapping
4697
// groups is too hard and unlikely to make a difference.
4698
LLVM_DEBUG(dbgs() << "group:");
4699
for (int Index : CurrentMembers) {
4700
Objects[Index].GroupIndex = NextGroupIndex;
4701
LLVM_DEBUG(dbgs() << " " << Index);
4702
}
4703
LLVM_DEBUG(dbgs() << "\n");
4704
NextGroupIndex++;
4705
}
4706
CurrentMembers.clear();
4707
}
4708
};
4709
4710
bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
4711
// Objects at a lower index are closer to FP; objects at a higher index are
4712
// closer to SP.
4713
//
4714
// For consistency in our comparison, all invalid objects are placed
4715
// at the end. This also allows us to stop walking when we hit the
4716
// first invalid item after it's all sorted.
4717
//
4718
// If we want to include a stack hazard region, order FPR accesses < the
4719
// hazard object < GPRs accesses in order to create a separation between the
4720
// two. For the Accesses field 1 = FPR, 2 = Hazard Object, 4 = GPR.
4721
//
4722
// Otherwise the "first" object goes first (closest to SP), followed by the
4723
// members of the "first" group.
4724
//
4725
// The rest are sorted by the group index to keep the groups together.
4726
// Higher numbered groups are more likely to be around longer (i.e. untagged
4727
// in the function epilogue and not at some earlier point). Place them closer
4728
// to SP.
4729
//
4730
// If all else equal, sort by the object index to keep the objects in the
4731
// original order.
4732
return std::make_tuple(!A.IsValid, A.Accesses, A.ObjectFirst, A.GroupFirst,
4733
A.GroupIndex, A.ObjectIndex) <
4734
std::make_tuple(!B.IsValid, B.Accesses, B.ObjectFirst, B.GroupFirst,
4735
B.GroupIndex, B.ObjectIndex);
4736
}
4737
} // namespace
4738
4739
void AArch64FrameLowering::orderFrameObjects(
4740
const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
4741
if (!OrderFrameObjects || ObjectsToAllocate.empty())
4742
return;
4743
4744
const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
4745
const MachineFrameInfo &MFI = MF.getFrameInfo();
4746
std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
4747
for (auto &Obj : ObjectsToAllocate) {
4748
FrameObjects[Obj].IsValid = true;
4749
FrameObjects[Obj].ObjectIndex = Obj;
4750
}
4751
4752
// Identify FPR vs GPR slots for hazards, and stack slots that are tagged at
4753
// the same time.
4754
GroupBuilder GB(FrameObjects);
4755
for (auto &MBB : MF) {
4756
for (auto &MI : MBB) {
4757
if (MI.isDebugInstr())
4758
continue;
4759
4760
if (AFI.hasStackHazardSlotIndex()) {
4761
std::optional<int> FI = getLdStFrameID(MI, MFI);
4762
if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) {
4763
if (MFI.getStackID(*FI) == TargetStackID::ScalableVector ||
4764
AArch64InstrInfo::isFpOrNEON(MI))
4765
FrameObjects[*FI].Accesses |= FrameObject::AccessFPR;
4766
else
4767
FrameObjects[*FI].Accesses |= FrameObject::AccessGPR;
4768
}
4769
}
4770
4771
int OpIndex;
4772
switch (MI.getOpcode()) {
4773
case AArch64::STGloop:
4774
case AArch64::STZGloop:
4775
OpIndex = 3;
4776
break;
4777
case AArch64::STGi:
4778
case AArch64::STZGi:
4779
case AArch64::ST2Gi:
4780
case AArch64::STZ2Gi:
4781
OpIndex = 1;
4782
break;
4783
default:
4784
OpIndex = -1;
4785
}
4786
4787
int TaggedFI = -1;
4788
if (OpIndex >= 0) {
4789
const MachineOperand &MO = MI.getOperand(OpIndex);
4790
if (MO.isFI()) {
4791
int FI = MO.getIndex();
4792
if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
4793
FrameObjects[FI].IsValid)
4794
TaggedFI = FI;
4795
}
4796
}
4797
4798
// If this is a stack tagging instruction for a slot that is not part of a
4799
// group yet, either start a new group or add it to the current one.
4800
if (TaggedFI >= 0)
4801
GB.AddMember(TaggedFI);
4802
else
4803
GB.EndCurrentGroup();
4804
}
4805
// Groups should never span multiple basic blocks.
4806
GB.EndCurrentGroup();
4807
}
4808
4809
if (AFI.hasStackHazardSlotIndex()) {
4810
FrameObjects[AFI.getStackHazardSlotIndex()].Accesses =
4811
FrameObject::AccessHazard;
4812
// If a stack object is unknown or both GPR and FPR, sort it into GPR.
4813
for (auto &Obj : FrameObjects)
4814
if (!Obj.Accesses ||
4815
Obj.Accesses == (FrameObject::AccessGPR | FrameObject::AccessFPR))
4816
Obj.Accesses = FrameObject::AccessGPR;
4817
}
4818
4819
// If the function's tagged base pointer is pinned to a stack slot, we want to
4820
// put that slot first when possible. This will likely place it at SP + 0,
4821
// and save one instruction when generating the base pointer because IRG does
4822
// not allow an immediate offset.
4823
std::optional<int> TBPI = AFI.getTaggedBasePointerIndex();
4824
if (TBPI) {
4825
FrameObjects[*TBPI].ObjectFirst = true;
4826
FrameObjects[*TBPI].GroupFirst = true;
4827
int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
4828
if (FirstGroupIndex >= 0)
4829
for (FrameObject &Object : FrameObjects)
4830
if (Object.GroupIndex == FirstGroupIndex)
4831
Object.GroupFirst = true;
4832
}
4833
4834
llvm::stable_sort(FrameObjects, FrameObjectCompare);
4835
4836
int i = 0;
4837
for (auto &Obj : FrameObjects) {
4838
// All invalid items are sorted at the end, so it's safe to stop.
4839
if (!Obj.IsValid)
4840
break;
4841
ObjectsToAllocate[i++] = Obj.ObjectIndex;
4842
}
4843
4844
LLVM_DEBUG({
4845
dbgs() << "Final frame order:\n";
4846
for (auto &Obj : FrameObjects) {
4847
if (!Obj.IsValid)
4848
break;
4849
dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
4850
if (Obj.ObjectFirst)
4851
dbgs() << ", first";
4852
if (Obj.GroupFirst)
4853
dbgs() << ", group-first";
4854
dbgs() << "\n";
4855
}
4856
});
4857
}
4858
4859
/// Emit a loop to decrement SP until it is equal to TargetReg, with probes at
4860
/// least every ProbeSize bytes. Returns an iterator of the first instruction
4861
/// after the loop. The difference between SP and TargetReg must be an exact
4862
/// multiple of ProbeSize.
4863
MachineBasicBlock::iterator
4864
AArch64FrameLowering::inlineStackProbeLoopExactMultiple(
4865
MachineBasicBlock::iterator MBBI, int64_t ProbeSize,
4866
Register TargetReg) const {
4867
MachineBasicBlock &MBB = *MBBI->getParent();
4868
MachineFunction &MF = *MBB.getParent();
4869
const AArch64InstrInfo *TII =
4870
MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
4871
DebugLoc DL = MBB.findDebugLoc(MBBI);
4872
4873
MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
4874
MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
4875
MF.insert(MBBInsertPoint, LoopMBB);
4876
MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
4877
MF.insert(MBBInsertPoint, ExitMBB);
4878
4879
// SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not encodable
4880
// in SUB).
4881
emitFrameOffset(*LoopMBB, LoopMBB->end(), DL, AArch64::SP, AArch64::SP,
4882
StackOffset::getFixed(-ProbeSize), TII,
4883
MachineInstr::FrameSetup);
4884
// STR XZR, [SP]
4885
BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::STRXui))
4886
.addReg(AArch64::XZR)
4887
.addReg(AArch64::SP)
4888
.addImm(0)
4889
.setMIFlags(MachineInstr::FrameSetup);
4890
// CMP SP, TargetReg
4891
BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::SUBSXrx64),
4892
AArch64::XZR)
4893
.addReg(AArch64::SP)
4894
.addReg(TargetReg)
4895
.addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0))
4896
.setMIFlags(MachineInstr::FrameSetup);
4897
// B.CC Loop
4898
BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::Bcc))
4899
.addImm(AArch64CC::NE)
4900
.addMBB(LoopMBB)
4901
.setMIFlags(MachineInstr::FrameSetup);
4902
4903
LoopMBB->addSuccessor(ExitMBB);
4904
LoopMBB->addSuccessor(LoopMBB);
4905
// Synthesize the exit MBB.
4906
ExitMBB->splice(ExitMBB->end(), &MBB, MBBI, MBB.end());
4907
ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
4908
MBB.addSuccessor(LoopMBB);
4909
// Update liveins.
4910
fullyRecomputeLiveIns({ExitMBB, LoopMBB});
4911
4912
return ExitMBB->begin();
4913
}
4914
4915
void AArch64FrameLowering::inlineStackProbeFixed(
4916
MachineBasicBlock::iterator MBBI, Register ScratchReg, int64_t FrameSize,
4917
StackOffset CFAOffset) const {
4918
MachineBasicBlock *MBB = MBBI->getParent();
4919
MachineFunction &MF = *MBB->getParent();
4920
const AArch64InstrInfo *TII =
4921
MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
4922
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
4923
bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
4924
bool HasFP = hasFP(MF);
4925
4926
DebugLoc DL;
4927
int64_t ProbeSize = MF.getInfo<AArch64FunctionInfo>()->getStackProbeSize();
4928
int64_t NumBlocks = FrameSize / ProbeSize;
4929
int64_t ResidualSize = FrameSize % ProbeSize;
4930
4931
LLVM_DEBUG(dbgs() << "Stack probing: total " << FrameSize << " bytes, "
4932
<< NumBlocks << " blocks of " << ProbeSize
4933
<< " bytes, plus " << ResidualSize << " bytes\n");
4934
4935
// Decrement SP by NumBlock * ProbeSize bytes, with either unrolled or
4936
// ordinary loop.
4937
if (NumBlocks <= AArch64::StackProbeMaxLoopUnroll) {
4938
for (int i = 0; i < NumBlocks; ++i) {
4939
// SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not
4940
// encodable in a SUB).
4941
emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
4942
StackOffset::getFixed(-ProbeSize), TII,
4943
MachineInstr::FrameSetup, false, false, nullptr,
4944
EmitAsyncCFI && !HasFP, CFAOffset);
4945
CFAOffset += StackOffset::getFixed(ProbeSize);
4946
// STR XZR, [SP]
4947
BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui))
4948
.addReg(AArch64::XZR)
4949
.addReg(AArch64::SP)
4950
.addImm(0)
4951
.setMIFlags(MachineInstr::FrameSetup);
4952
}
4953
} else if (NumBlocks != 0) {
4954
// SUB ScratchReg, SP, #FrameSize (or equivalent if FrameSize is not
4955
// encodable in ADD). ScrathReg may temporarily become the CFA register.
4956
emitFrameOffset(*MBB, MBBI, DL, ScratchReg, AArch64::SP,
4957
StackOffset::getFixed(-ProbeSize * NumBlocks), TII,
4958
MachineInstr::FrameSetup, false, false, nullptr,
4959
EmitAsyncCFI && !HasFP, CFAOffset);
4960
CFAOffset += StackOffset::getFixed(ProbeSize * NumBlocks);
4961
MBBI = inlineStackProbeLoopExactMultiple(MBBI, ProbeSize, ScratchReg);
4962
MBB = MBBI->getParent();
4963
if (EmitAsyncCFI && !HasFP) {
4964
// Set the CFA register back to SP.
4965
const AArch64RegisterInfo &RegInfo =
4966
*MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
4967
unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true);
4968
unsigned CFIIndex =
4969
MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
4970
BuildMI(*MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
4971
.addCFIIndex(CFIIndex)
4972
.setMIFlags(MachineInstr::FrameSetup);
4973
}
4974
}
4975
4976
if (ResidualSize != 0) {
4977
// SUB SP, SP, #ResidualSize (or equivalent if ResidualSize is not encodable
4978
// in SUB).
4979
emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
4980
StackOffset::getFixed(-ResidualSize), TII,
4981
MachineInstr::FrameSetup, false, false, nullptr,
4982
EmitAsyncCFI && !HasFP, CFAOffset);
4983
if (ResidualSize > AArch64::StackProbeMaxUnprobedStack) {
4984
// STR XZR, [SP]
4985
BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui))
4986
.addReg(AArch64::XZR)
4987
.addReg(AArch64::SP)
4988
.addImm(0)
4989
.setMIFlags(MachineInstr::FrameSetup);
4990
}
4991
}
4992
}
4993
4994
void AArch64FrameLowering::inlineStackProbe(MachineFunction &MF,
4995
MachineBasicBlock &MBB) const {
4996
// Get the instructions that need to be replaced. We emit at most two of
4997
// these. Remember them in order to avoid complications coming from the need
4998
// to traverse the block while potentially creating more blocks.
4999
SmallVector<MachineInstr *, 4> ToReplace;
5000
for (MachineInstr &MI : MBB)
5001
if (MI.getOpcode() == AArch64::PROBED_STACKALLOC ||
5002
MI.getOpcode() == AArch64::PROBED_STACKALLOC_VAR)
5003
ToReplace.push_back(&MI);
5004
5005
for (MachineInstr *MI : ToReplace) {
5006
if (MI->getOpcode() == AArch64::PROBED_STACKALLOC) {
5007
Register ScratchReg = MI->getOperand(0).getReg();
5008
int64_t FrameSize = MI->getOperand(1).getImm();
5009
StackOffset CFAOffset = StackOffset::get(MI->getOperand(2).getImm(),
5010
MI->getOperand(3).getImm());
5011
inlineStackProbeFixed(MI->getIterator(), ScratchReg, FrameSize,
5012
CFAOffset);
5013
} else {
5014
assert(MI->getOpcode() == AArch64::PROBED_STACKALLOC_VAR &&
5015
"Stack probe pseudo-instruction expected");
5016
const AArch64InstrInfo *TII =
5017
MI->getMF()->getSubtarget<AArch64Subtarget>().getInstrInfo();
5018
Register TargetReg = MI->getOperand(0).getReg();
5019
(void)TII->probedStackAlloc(MI->getIterator(), TargetReg, true);
5020
}
5021
MI->eraseFromParent();
5022
}
5023
}
5024
5025
struct StackAccess {
5026
enum AccessType {
5027
NotAccessed = 0, // Stack object not accessed by load/store instructions.
5028
GPR = 1 << 0, // A general purpose register.
5029
PPR = 1 << 1, // A predicate register.
5030
FPR = 1 << 2, // A floating point/Neon/SVE register.
5031
};
5032
5033
int Idx;
5034
StackOffset Offset;
5035
int64_t Size;
5036
unsigned AccessTypes;
5037
5038
StackAccess() : Idx(0), Offset(), Size(0), AccessTypes(NotAccessed) {}
5039
5040
bool operator<(const StackAccess &Rhs) const {
5041
return std::make_tuple(start(), Idx) <
5042
std::make_tuple(Rhs.start(), Rhs.Idx);
5043
}
5044
5045
bool isCPU() const {
5046
// Predicate register load and store instructions execute on the CPU.
5047
return AccessTypes & (AccessType::GPR | AccessType::PPR);
5048
}
5049
bool isSME() const { return AccessTypes & AccessType::FPR; }
5050
bool isMixed() const { return isCPU() && isSME(); }
5051
5052
int64_t start() const { return Offset.getFixed() + Offset.getScalable(); }
5053
int64_t end() const { return start() + Size; }
5054
5055
std::string getTypeString() const {
5056
switch (AccessTypes) {
5057
case AccessType::FPR:
5058
return "FPR";
5059
case AccessType::PPR:
5060
return "PPR";
5061
case AccessType::GPR:
5062
return "GPR";
5063
case AccessType::NotAccessed:
5064
return "NA";
5065
default:
5066
return "Mixed";
5067
}
5068
}
5069
5070
void print(raw_ostream &OS) const {
5071
OS << getTypeString() << " stack object at [SP"
5072
<< (Offset.getFixed() < 0 ? "" : "+") << Offset.getFixed();
5073
if (Offset.getScalable())
5074
OS << (Offset.getScalable() < 0 ? "" : "+") << Offset.getScalable()
5075
<< " * vscale";
5076
OS << "]";
5077
}
5078
};
5079
5080
static inline raw_ostream &operator<<(raw_ostream &OS, const StackAccess &SA) {
5081
SA.print(OS);
5082
return OS;
5083
}
5084
5085
void AArch64FrameLowering::emitRemarks(
5086
const MachineFunction &MF, MachineOptimizationRemarkEmitter *ORE) const {
5087
5088
SMEAttrs Attrs(MF.getFunction());
5089
if (Attrs.hasNonStreamingInterfaceAndBody())
5090
return;
5091
5092
const uint64_t HazardSize =
5093
(StackHazardSize) ? StackHazardSize : StackHazardRemarkSize;
5094
5095
if (HazardSize == 0)
5096
return;
5097
5098
const MachineFrameInfo &MFI = MF.getFrameInfo();
5099
// Bail if function has no stack objects.
5100
if (!MFI.hasStackObjects())
5101
return;
5102
5103
std::vector<StackAccess> StackAccesses(MFI.getNumObjects());
5104
5105
size_t NumFPLdSt = 0;
5106
size_t NumNonFPLdSt = 0;
5107
5108
// Collect stack accesses via Load/Store instructions.
5109
for (const MachineBasicBlock &MBB : MF) {
5110
for (const MachineInstr &MI : MBB) {
5111
if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1)
5112
continue;
5113
for (MachineMemOperand *MMO : MI.memoperands()) {
5114
std::optional<int> FI = getMMOFrameID(MMO, MFI);
5115
if (FI && !MFI.isDeadObjectIndex(*FI)) {
5116
int FrameIdx = *FI;
5117
5118
size_t ArrIdx = FrameIdx + MFI.getNumFixedObjects();
5119
if (StackAccesses[ArrIdx].AccessTypes == StackAccess::NotAccessed) {
5120
StackAccesses[ArrIdx].Idx = FrameIdx;
5121
StackAccesses[ArrIdx].Offset =
5122
getFrameIndexReferenceFromSP(MF, FrameIdx);
5123
StackAccesses[ArrIdx].Size = MFI.getObjectSize(FrameIdx);
5124
}
5125
5126
unsigned RegTy = StackAccess::AccessType::GPR;
5127
if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector) {
5128
if (AArch64::PPRRegClass.contains(MI.getOperand(0).getReg()))
5129
RegTy = StackAccess::PPR;
5130
else
5131
RegTy = StackAccess::FPR;
5132
} else if (AArch64InstrInfo::isFpOrNEON(MI)) {
5133
RegTy = StackAccess::FPR;
5134
}
5135
5136
StackAccesses[ArrIdx].AccessTypes |= RegTy;
5137
5138
if (RegTy == StackAccess::FPR)
5139
++NumFPLdSt;
5140
else
5141
++NumNonFPLdSt;
5142
}
5143
}
5144
}
5145
}
5146
5147
if (NumFPLdSt == 0 || NumNonFPLdSt == 0)
5148
return;
5149
5150
llvm::sort(StackAccesses);
5151
StackAccesses.erase(llvm::remove_if(StackAccesses,
5152
[](const StackAccess &S) {
5153
return S.AccessTypes ==
5154
StackAccess::NotAccessed;
5155
}),
5156
StackAccesses.end());
5157
5158
SmallVector<const StackAccess *> MixedObjects;
5159
SmallVector<std::pair<const StackAccess *, const StackAccess *>> HazardPairs;
5160
5161
if (StackAccesses.front().isMixed())
5162
MixedObjects.push_back(&StackAccesses.front());
5163
5164
for (auto It = StackAccesses.begin(), End = std::prev(StackAccesses.end());
5165
It != End; ++It) {
5166
const auto &First = *It;
5167
const auto &Second = *(It + 1);
5168
5169
if (Second.isMixed())
5170
MixedObjects.push_back(&Second);
5171
5172
if ((First.isSME() && Second.isCPU()) ||
5173
(First.isCPU() && Second.isSME())) {
5174
uint64_t Distance = static_cast<uint64_t>(Second.start() - First.end());
5175
if (Distance < HazardSize)
5176
HazardPairs.emplace_back(&First, &Second);
5177
}
5178
}
5179
5180
auto EmitRemark = [&](llvm::StringRef Str) {
5181
ORE->emit([&]() {
5182
auto R = MachineOptimizationRemarkAnalysis(
5183
"sme", "StackHazard", MF.getFunction().getSubprogram(), &MF.front());
5184
return R << formatv("stack hazard in '{0}': ", MF.getName()).str() << Str;
5185
});
5186
};
5187
5188
for (const auto &P : HazardPairs)
5189
EmitRemark(formatv("{0} is too close to {1}", *P.first, *P.second).str());
5190
5191
for (const auto *Obj : MixedObjects)
5192
EmitRemark(
5193
formatv("{0} accessed by both GP and FP instructions", *Obj).str());
5194
}
5195
5196