Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
35269 views
1
//===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines an instruction selector for the AArch64 target.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "AArch64MachineFunctionInfo.h"
14
#include "AArch64TargetMachine.h"
15
#include "MCTargetDesc/AArch64AddressingModes.h"
16
#include "llvm/ADT/APSInt.h"
17
#include "llvm/CodeGen/ISDOpcodes.h"
18
#include "llvm/CodeGen/SelectionDAGISel.h"
19
#include "llvm/IR/Function.h" // To access function attributes.
20
#include "llvm/IR/GlobalValue.h"
21
#include "llvm/IR/Intrinsics.h"
22
#include "llvm/IR/IntrinsicsAArch64.h"
23
#include "llvm/Support/Debug.h"
24
#include "llvm/Support/ErrorHandling.h"
25
#include "llvm/Support/KnownBits.h"
26
#include "llvm/Support/MathExtras.h"
27
#include "llvm/Support/raw_ostream.h"
28
29
using namespace llvm;
30
31
#define DEBUG_TYPE "aarch64-isel"
32
#define PASS_NAME "AArch64 Instruction Selection"
33
34
//===--------------------------------------------------------------------===//
35
/// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
36
/// instructions for SelectionDAG operations.
37
///
38
namespace {
39
40
class AArch64DAGToDAGISel : public SelectionDAGISel {
41
42
/// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
43
/// make the right decision when generating code for different targets.
44
const AArch64Subtarget *Subtarget;
45
46
public:
47
AArch64DAGToDAGISel() = delete;
48
49
explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
50
CodeGenOptLevel OptLevel)
51
: SelectionDAGISel(tm, OptLevel), Subtarget(nullptr) {}
52
53
bool runOnMachineFunction(MachineFunction &MF) override {
54
Subtarget = &MF.getSubtarget<AArch64Subtarget>();
55
return SelectionDAGISel::runOnMachineFunction(MF);
56
}
57
58
void Select(SDNode *Node) override;
59
60
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
61
/// inline asm expressions.
62
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
63
InlineAsm::ConstraintCode ConstraintID,
64
std::vector<SDValue> &OutOps) override;
65
66
template <signed Low, signed High, signed Scale>
67
bool SelectRDVLImm(SDValue N, SDValue &Imm);
68
69
bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
70
bool SelectArithUXTXRegister(SDValue N, SDValue &Reg, SDValue &Shift);
71
bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
72
bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
73
bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
74
return SelectShiftedRegister(N, false, Reg, Shift);
75
}
76
bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
77
return SelectShiftedRegister(N, true, Reg, Shift);
78
}
79
bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
80
return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
81
}
82
bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
83
return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
84
}
85
bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
86
return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
87
}
88
bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
89
return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
90
}
91
bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
92
return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
93
}
94
bool SelectAddrModeIndexedS9S128(SDValue N, SDValue &Base, SDValue &OffImm) {
95
return SelectAddrModeIndexedBitWidth(N, true, 9, 16, Base, OffImm);
96
}
97
bool SelectAddrModeIndexedU6S128(SDValue N, SDValue &Base, SDValue &OffImm) {
98
return SelectAddrModeIndexedBitWidth(N, false, 6, 16, Base, OffImm);
99
}
100
bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
101
return SelectAddrModeIndexed(N, 1, Base, OffImm);
102
}
103
bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
104
return SelectAddrModeIndexed(N, 2, Base, OffImm);
105
}
106
bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
107
return SelectAddrModeIndexed(N, 4, Base, OffImm);
108
}
109
bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
110
return SelectAddrModeIndexed(N, 8, Base, OffImm);
111
}
112
bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
113
return SelectAddrModeIndexed(N, 16, Base, OffImm);
114
}
115
bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
116
return SelectAddrModeUnscaled(N, 1, Base, OffImm);
117
}
118
bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
119
return SelectAddrModeUnscaled(N, 2, Base, OffImm);
120
}
121
bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
122
return SelectAddrModeUnscaled(N, 4, Base, OffImm);
123
}
124
bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
125
return SelectAddrModeUnscaled(N, 8, Base, OffImm);
126
}
127
bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
128
return SelectAddrModeUnscaled(N, 16, Base, OffImm);
129
}
130
template <unsigned Size, unsigned Max>
131
bool SelectAddrModeIndexedUImm(SDValue N, SDValue &Base, SDValue &OffImm) {
132
// Test if there is an appropriate addressing mode and check if the
133
// immediate fits.
134
bool Found = SelectAddrModeIndexed(N, Size, Base, OffImm);
135
if (Found) {
136
if (auto *CI = dyn_cast<ConstantSDNode>(OffImm)) {
137
int64_t C = CI->getSExtValue();
138
if (C <= Max)
139
return true;
140
}
141
}
142
143
// Otherwise, base only, materialize address in register.
144
Base = N;
145
OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64);
146
return true;
147
}
148
149
template<int Width>
150
bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
151
SDValue &SignExtend, SDValue &DoShift) {
152
return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
153
}
154
155
template<int Width>
156
bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
157
SDValue &SignExtend, SDValue &DoShift) {
158
return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
159
}
160
161
bool SelectExtractHigh(SDValue N, SDValue &Res) {
162
if (Subtarget->isLittleEndian() && N->getOpcode() == ISD::BITCAST)
163
N = N->getOperand(0);
164
if (N->getOpcode() != ISD::EXTRACT_SUBVECTOR ||
165
!isa<ConstantSDNode>(N->getOperand(1)))
166
return false;
167
EVT VT = N->getValueType(0);
168
EVT LVT = N->getOperand(0).getValueType();
169
unsigned Index = N->getConstantOperandVal(1);
170
if (!VT.is64BitVector() || !LVT.is128BitVector() ||
171
Index != VT.getVectorNumElements())
172
return false;
173
Res = N->getOperand(0);
174
return true;
175
}
176
177
bool SelectRoundingVLShr(SDValue N, SDValue &Res1, SDValue &Res2) {
178
if (N.getOpcode() != AArch64ISD::VLSHR)
179
return false;
180
SDValue Op = N->getOperand(0);
181
EVT VT = Op.getValueType();
182
unsigned ShtAmt = N->getConstantOperandVal(1);
183
if (ShtAmt > VT.getScalarSizeInBits() / 2 || Op.getOpcode() != ISD::ADD)
184
return false;
185
186
APInt Imm;
187
if (Op.getOperand(1).getOpcode() == AArch64ISD::MOVIshift)
188
Imm = APInt(VT.getScalarSizeInBits(),
189
Op.getOperand(1).getConstantOperandVal(0)
190
<< Op.getOperand(1).getConstantOperandVal(1));
191
else if (Op.getOperand(1).getOpcode() == AArch64ISD::DUP &&
192
isa<ConstantSDNode>(Op.getOperand(1).getOperand(0)))
193
Imm = APInt(VT.getScalarSizeInBits(),
194
Op.getOperand(1).getConstantOperandVal(0));
195
else
196
return false;
197
198
if (Imm != 1ULL << (ShtAmt - 1))
199
return false;
200
201
Res1 = Op.getOperand(0);
202
Res2 = CurDAG->getTargetConstant(ShtAmt, SDLoc(N), MVT::i32);
203
return true;
204
}
205
206
bool SelectDupZeroOrUndef(SDValue N) {
207
switch(N->getOpcode()) {
208
case ISD::UNDEF:
209
return true;
210
case AArch64ISD::DUP:
211
case ISD::SPLAT_VECTOR: {
212
auto Opnd0 = N->getOperand(0);
213
if (isNullConstant(Opnd0))
214
return true;
215
if (isNullFPConstant(Opnd0))
216
return true;
217
break;
218
}
219
default:
220
break;
221
}
222
223
return false;
224
}
225
226
bool SelectDupZero(SDValue N) {
227
switch(N->getOpcode()) {
228
case AArch64ISD::DUP:
229
case ISD::SPLAT_VECTOR: {
230
auto Opnd0 = N->getOperand(0);
231
if (isNullConstant(Opnd0))
232
return true;
233
if (isNullFPConstant(Opnd0))
234
return true;
235
break;
236
}
237
}
238
239
return false;
240
}
241
242
bool SelectDupNegativeZero(SDValue N) {
243
switch(N->getOpcode()) {
244
case AArch64ISD::DUP:
245
case ISD::SPLAT_VECTOR: {
246
ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
247
return Const && Const->isZero() && Const->isNegative();
248
}
249
}
250
251
return false;
252
}
253
254
template<MVT::SimpleValueType VT>
255
bool SelectSVEAddSubImm(SDValue N, SDValue &Imm, SDValue &Shift) {
256
return SelectSVEAddSubImm(N, VT, Imm, Shift);
257
}
258
259
template <MVT::SimpleValueType VT, bool Negate>
260
bool SelectSVEAddSubSSatImm(SDValue N, SDValue &Imm, SDValue &Shift) {
261
return SelectSVEAddSubSSatImm(N, VT, Imm, Shift, Negate);
262
}
263
264
template <MVT::SimpleValueType VT>
265
bool SelectSVECpyDupImm(SDValue N, SDValue &Imm, SDValue &Shift) {
266
return SelectSVECpyDupImm(N, VT, Imm, Shift);
267
}
268
269
template <MVT::SimpleValueType VT, bool Invert = false>
270
bool SelectSVELogicalImm(SDValue N, SDValue &Imm) {
271
return SelectSVELogicalImm(N, VT, Imm, Invert);
272
}
273
274
template <MVT::SimpleValueType VT>
275
bool SelectSVEArithImm(SDValue N, SDValue &Imm) {
276
return SelectSVEArithImm(N, VT, Imm);
277
}
278
279
template <unsigned Low, unsigned High, bool AllowSaturation = false>
280
bool SelectSVEShiftImm(SDValue N, SDValue &Imm) {
281
return SelectSVEShiftImm(N, Low, High, AllowSaturation, Imm);
282
}
283
284
bool SelectSVEShiftSplatImmR(SDValue N, SDValue &Imm) {
285
if (N->getOpcode() != ISD::SPLAT_VECTOR)
286
return false;
287
288
EVT EltVT = N->getValueType(0).getVectorElementType();
289
return SelectSVEShiftImm(N->getOperand(0), /* Low */ 1,
290
/* High */ EltVT.getFixedSizeInBits(),
291
/* AllowSaturation */ true, Imm);
292
}
293
294
// Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
295
template<signed Min, signed Max, signed Scale, bool Shift>
296
bool SelectCntImm(SDValue N, SDValue &Imm) {
297
if (!isa<ConstantSDNode>(N))
298
return false;
299
300
int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
301
if (Shift)
302
MulImm = 1LL << MulImm;
303
304
if ((MulImm % std::abs(Scale)) != 0)
305
return false;
306
307
MulImm /= Scale;
308
if ((MulImm >= Min) && (MulImm <= Max)) {
309
Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32);
310
return true;
311
}
312
313
return false;
314
}
315
316
template <signed Max, signed Scale>
317
bool SelectEXTImm(SDValue N, SDValue &Imm) {
318
if (!isa<ConstantSDNode>(N))
319
return false;
320
321
int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
322
323
if (MulImm >= 0 && MulImm <= Max) {
324
MulImm *= Scale;
325
Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32);
326
return true;
327
}
328
329
return false;
330
}
331
332
template <unsigned BaseReg, unsigned Max>
333
bool ImmToReg(SDValue N, SDValue &Imm) {
334
if (auto *CI = dyn_cast<ConstantSDNode>(N)) {
335
uint64_t C = CI->getZExtValue();
336
337
if (C > Max)
338
return false;
339
340
Imm = CurDAG->getRegister(BaseReg + C, MVT::Other);
341
return true;
342
}
343
return false;
344
}
345
346
/// Form sequences of consecutive 64/128-bit registers for use in NEON
347
/// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
348
/// between 1 and 4 elements. If it contains a single element that is returned
349
/// unchanged; otherwise a REG_SEQUENCE value is returned.
350
SDValue createDTuple(ArrayRef<SDValue> Vecs);
351
SDValue createQTuple(ArrayRef<SDValue> Vecs);
352
// Form a sequence of SVE registers for instructions using list of vectors,
353
// e.g. structured loads and stores (ldN, stN).
354
SDValue createZTuple(ArrayRef<SDValue> Vecs);
355
356
// Similar to above, except the register must start at a multiple of the
357
// tuple, e.g. z2 for a 2-tuple, or z8 for a 4-tuple.
358
SDValue createZMulTuple(ArrayRef<SDValue> Regs);
359
360
/// Generic helper for the createDTuple/createQTuple
361
/// functions. Those should almost always be called instead.
362
SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
363
const unsigned SubRegs[]);
364
365
void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
366
367
bool tryIndexedLoad(SDNode *N);
368
369
void SelectPtrauthAuth(SDNode *N);
370
void SelectPtrauthResign(SDNode *N);
371
372
bool trySelectStackSlotTagP(SDNode *N);
373
void SelectTagP(SDNode *N);
374
375
void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
376
unsigned SubRegIdx);
377
void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
378
unsigned SubRegIdx);
379
void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
380
void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
381
void SelectPredicatedLoad(SDNode *N, unsigned NumVecs, unsigned Scale,
382
unsigned Opc_rr, unsigned Opc_ri,
383
bool IsIntr = false);
384
void SelectContiguousMultiVectorLoad(SDNode *N, unsigned NumVecs,
385
unsigned Scale, unsigned Opc_ri,
386
unsigned Opc_rr);
387
void SelectDestructiveMultiIntrinsic(SDNode *N, unsigned NumVecs,
388
bool IsZmMulti, unsigned Opcode,
389
bool HasPred = false);
390
void SelectPExtPair(SDNode *N, unsigned Opc);
391
void SelectWhilePair(SDNode *N, unsigned Opc);
392
void SelectCVTIntrinsic(SDNode *N, unsigned NumVecs, unsigned Opcode);
393
void SelectClamp(SDNode *N, unsigned NumVecs, unsigned Opcode);
394
void SelectUnaryMultiIntrinsic(SDNode *N, unsigned NumOutVecs,
395
bool IsTupleInput, unsigned Opc);
396
void SelectFrintFromVT(SDNode *N, unsigned NumVecs, unsigned Opcode);
397
398
template <unsigned MaxIdx, unsigned Scale>
399
void SelectMultiVectorMove(SDNode *N, unsigned NumVecs, unsigned BaseReg,
400
unsigned Op);
401
void SelectMultiVectorMoveZ(SDNode *N, unsigned NumVecs,
402
unsigned Op, unsigned MaxIdx, unsigned Scale,
403
unsigned BaseReg = 0);
404
bool SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base, SDValue &OffImm);
405
/// SVE Reg+Imm addressing mode.
406
template <int64_t Min, int64_t Max>
407
bool SelectAddrModeIndexedSVE(SDNode *Root, SDValue N, SDValue &Base,
408
SDValue &OffImm);
409
/// SVE Reg+Reg address mode.
410
template <unsigned Scale>
411
bool SelectSVERegRegAddrMode(SDValue N, SDValue &Base, SDValue &Offset) {
412
return SelectSVERegRegAddrMode(N, Scale, Base, Offset);
413
}
414
415
void SelectMultiVectorLuti(SDNode *Node, unsigned NumOutVecs, unsigned Opc,
416
uint32_t MaxImm);
417
418
template <unsigned MaxIdx, unsigned Scale>
419
bool SelectSMETileSlice(SDValue N, SDValue &Vector, SDValue &Offset) {
420
return SelectSMETileSlice(N, MaxIdx, Vector, Offset, Scale);
421
}
422
423
void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
424
void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
425
void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
426
void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
427
void SelectPredicatedStore(SDNode *N, unsigned NumVecs, unsigned Scale,
428
unsigned Opc_rr, unsigned Opc_ri);
429
std::tuple<unsigned, SDValue, SDValue>
430
findAddrModeSVELoadStore(SDNode *N, unsigned Opc_rr, unsigned Opc_ri,
431
const SDValue &OldBase, const SDValue &OldOffset,
432
unsigned Scale);
433
434
bool tryBitfieldExtractOp(SDNode *N);
435
bool tryBitfieldExtractOpFromSExt(SDNode *N);
436
bool tryBitfieldInsertOp(SDNode *N);
437
bool tryBitfieldInsertInZeroOp(SDNode *N);
438
bool tryShiftAmountMod(SDNode *N);
439
440
bool tryReadRegister(SDNode *N);
441
bool tryWriteRegister(SDNode *N);
442
443
bool trySelectCastFixedLengthToScalableVector(SDNode *N);
444
bool trySelectCastScalableToFixedLengthVector(SDNode *N);
445
446
bool trySelectXAR(SDNode *N);
447
448
// Include the pieces autogenerated from the target description.
449
#include "AArch64GenDAGISel.inc"
450
451
private:
452
bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
453
SDValue &Shift);
454
bool SelectShiftedRegisterFromAnd(SDValue N, SDValue &Reg, SDValue &Shift);
455
bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
456
SDValue &OffImm) {
457
return SelectAddrModeIndexedBitWidth(N, true, 7, Size, Base, OffImm);
458
}
459
bool SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, unsigned BW,
460
unsigned Size, SDValue &Base,
461
SDValue &OffImm);
462
bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
463
SDValue &OffImm);
464
bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
465
SDValue &OffImm);
466
bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
467
SDValue &Offset, SDValue &SignExtend,
468
SDValue &DoShift);
469
bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
470
SDValue &Offset, SDValue &SignExtend,
471
SDValue &DoShift);
472
bool isWorthFoldingALU(SDValue V, bool LSL = false) const;
473
bool isWorthFoldingAddr(SDValue V, unsigned Size) const;
474
bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
475
SDValue &Offset, SDValue &SignExtend);
476
477
template<unsigned RegWidth>
478
bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
479
return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
480
}
481
482
bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
483
484
template<unsigned RegWidth>
485
bool SelectCVTFixedPosRecipOperand(SDValue N, SDValue &FixedPos) {
486
return SelectCVTFixedPosRecipOperand(N, FixedPos, RegWidth);
487
}
488
489
bool SelectCVTFixedPosRecipOperand(SDValue N, SDValue &FixedPos,
490
unsigned Width);
491
492
bool SelectCMP_SWAP(SDNode *N);
493
494
bool SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift);
495
bool SelectSVEAddSubSSatImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift,
496
bool Negate);
497
bool SelectSVECpyDupImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift);
498
bool SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm, bool Invert);
499
500
bool SelectSVESignedArithImm(SDValue N, SDValue &Imm);
501
bool SelectSVEShiftImm(SDValue N, uint64_t Low, uint64_t High,
502
bool AllowSaturation, SDValue &Imm);
503
504
bool SelectSVEArithImm(SDValue N, MVT VT, SDValue &Imm);
505
bool SelectSVERegRegAddrMode(SDValue N, unsigned Scale, SDValue &Base,
506
SDValue &Offset);
507
bool SelectSMETileSlice(SDValue N, unsigned MaxSize, SDValue &Vector,
508
SDValue &Offset, unsigned Scale = 1);
509
510
bool SelectAllActivePredicate(SDValue N);
511
bool SelectAnyPredicate(SDValue N);
512
};
513
514
class AArch64DAGToDAGISelLegacy : public SelectionDAGISelLegacy {
515
public:
516
static char ID;
517
explicit AArch64DAGToDAGISelLegacy(AArch64TargetMachine &tm,
518
CodeGenOptLevel OptLevel)
519
: SelectionDAGISelLegacy(
520
ID, std::make_unique<AArch64DAGToDAGISel>(tm, OptLevel)) {}
521
};
522
} // end anonymous namespace
523
524
char AArch64DAGToDAGISelLegacy::ID = 0;
525
526
INITIALIZE_PASS(AArch64DAGToDAGISelLegacy, DEBUG_TYPE, PASS_NAME, false, false)
527
528
/// isIntImmediate - This method tests to see if the node is a constant
529
/// operand. If so Imm will receive the 32-bit value.
530
static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
531
if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
532
Imm = C->getZExtValue();
533
return true;
534
}
535
return false;
536
}
537
538
// isIntImmediate - This method tests to see if a constant operand.
539
// If so Imm will receive the value.
540
static bool isIntImmediate(SDValue N, uint64_t &Imm) {
541
return isIntImmediate(N.getNode(), Imm);
542
}
543
544
// isOpcWithIntImmediate - This method tests to see if the node is a specific
545
// opcode and that it has a immediate integer right operand.
546
// If so Imm will receive the 32 bit value.
547
static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
548
uint64_t &Imm) {
549
return N->getOpcode() == Opc &&
550
isIntImmediate(N->getOperand(1).getNode(), Imm);
551
}
552
553
// isIntImmediateEq - This method tests to see if N is a constant operand that
554
// is equivalent to 'ImmExpected'.
555
#ifndef NDEBUG
556
static bool isIntImmediateEq(SDValue N, const uint64_t ImmExpected) {
557
uint64_t Imm;
558
if (!isIntImmediate(N.getNode(), Imm))
559
return false;
560
return Imm == ImmExpected;
561
}
562
#endif
563
564
bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
565
const SDValue &Op, const InlineAsm::ConstraintCode ConstraintID,
566
std::vector<SDValue> &OutOps) {
567
switch(ConstraintID) {
568
default:
569
llvm_unreachable("Unexpected asm memory constraint");
570
case InlineAsm::ConstraintCode::m:
571
case InlineAsm::ConstraintCode::o:
572
case InlineAsm::ConstraintCode::Q:
573
// We need to make sure that this one operand does not end up in XZR, thus
574
// require the address to be in a PointerRegClass register.
575
const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
576
const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF);
577
SDLoc dl(Op);
578
SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64);
579
SDValue NewOp =
580
SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
581
dl, Op.getValueType(),
582
Op, RC), 0);
583
OutOps.push_back(NewOp);
584
return false;
585
}
586
return true;
587
}
588
589
/// SelectArithImmed - Select an immediate value that can be represented as
590
/// a 12-bit value shifted left by either 0 or 12. If so, return true with
591
/// Val set to the 12-bit value and Shift set to the shifter operand.
592
bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
593
SDValue &Shift) {
594
// This function is called from the addsub_shifted_imm ComplexPattern,
595
// which lists [imm] as the list of opcode it's interested in, however
596
// we still need to check whether the operand is actually an immediate
597
// here because the ComplexPattern opcode list is only used in
598
// root-level opcode matching.
599
if (!isa<ConstantSDNode>(N.getNode()))
600
return false;
601
602
uint64_t Immed = N.getNode()->getAsZExtVal();
603
unsigned ShiftAmt;
604
605
if (Immed >> 12 == 0) {
606
ShiftAmt = 0;
607
} else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
608
ShiftAmt = 12;
609
Immed = Immed >> 12;
610
} else
611
return false;
612
613
unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
614
SDLoc dl(N);
615
Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
616
Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
617
return true;
618
}
619
620
/// SelectNegArithImmed - As above, but negates the value before trying to
621
/// select it.
622
bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
623
SDValue &Shift) {
624
// This function is called from the addsub_shifted_imm ComplexPattern,
625
// which lists [imm] as the list of opcode it's interested in, however
626
// we still need to check whether the operand is actually an immediate
627
// here because the ComplexPattern opcode list is only used in
628
// root-level opcode matching.
629
if (!isa<ConstantSDNode>(N.getNode()))
630
return false;
631
632
// The immediate operand must be a 24-bit zero-extended immediate.
633
uint64_t Immed = N.getNode()->getAsZExtVal();
634
635
// This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
636
// have the opposite effect on the C flag, so this pattern mustn't match under
637
// those circumstances.
638
if (Immed == 0)
639
return false;
640
641
if (N.getValueType() == MVT::i32)
642
Immed = ~((uint32_t)Immed) + 1;
643
else
644
Immed = ~Immed + 1ULL;
645
if (Immed & 0xFFFFFFFFFF000000ULL)
646
return false;
647
648
Immed &= 0xFFFFFFULL;
649
return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
650
Shift);
651
}
652
653
/// getShiftTypeForNode - Translate a shift node to the corresponding
654
/// ShiftType value.
655
static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
656
switch (N.getOpcode()) {
657
default:
658
return AArch64_AM::InvalidShiftExtend;
659
case ISD::SHL:
660
return AArch64_AM::LSL;
661
case ISD::SRL:
662
return AArch64_AM::LSR;
663
case ISD::SRA:
664
return AArch64_AM::ASR;
665
case ISD::ROTR:
666
return AArch64_AM::ROR;
667
}
668
}
669
670
/// Determine whether it is worth it to fold SHL into the addressing
671
/// mode.
672
static bool isWorthFoldingSHL(SDValue V) {
673
assert(V.getOpcode() == ISD::SHL && "invalid opcode");
674
// It is worth folding logical shift of up to three places.
675
auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1));
676
if (!CSD)
677
return false;
678
unsigned ShiftVal = CSD->getZExtValue();
679
if (ShiftVal > 3)
680
return false;
681
682
// Check if this particular node is reused in any non-memory related
683
// operation. If yes, do not try to fold this node into the address
684
// computation, since the computation will be kept.
685
const SDNode *Node = V.getNode();
686
for (SDNode *UI : Node->uses())
687
if (!isa<MemSDNode>(*UI))
688
for (SDNode *UII : UI->uses())
689
if (!isa<MemSDNode>(*UII))
690
return false;
691
return true;
692
}
693
694
/// Determine whether it is worth to fold V into an extended register addressing
695
/// mode.
696
bool AArch64DAGToDAGISel::isWorthFoldingAddr(SDValue V, unsigned Size) const {
697
// Trivial if we are optimizing for code size or if there is only
698
// one use of the value.
699
if (CurDAG->shouldOptForSize() || V.hasOneUse())
700
return true;
701
702
// If a subtarget has a slow shift, folding a shift into multiple loads
703
// costs additional micro-ops.
704
if (Subtarget->hasAddrLSLSlow14() && (Size == 2 || Size == 16))
705
return false;
706
707
// Check whether we're going to emit the address arithmetic anyway because
708
// it's used by a non-address operation.
709
if (V.getOpcode() == ISD::SHL && isWorthFoldingSHL(V))
710
return true;
711
if (V.getOpcode() == ISD::ADD) {
712
const SDValue LHS = V.getOperand(0);
713
const SDValue RHS = V.getOperand(1);
714
if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS))
715
return true;
716
if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS))
717
return true;
718
}
719
720
// It hurts otherwise, since the value will be reused.
721
return false;
722
}
723
724
/// and (shl/srl/sra, x, c), mask --> shl (srl/sra, x, c1), c2
725
/// to select more shifted register
726
bool AArch64DAGToDAGISel::SelectShiftedRegisterFromAnd(SDValue N, SDValue &Reg,
727
SDValue &Shift) {
728
EVT VT = N.getValueType();
729
if (VT != MVT::i32 && VT != MVT::i64)
730
return false;
731
732
if (N->getOpcode() != ISD::AND || !N->hasOneUse())
733
return false;
734
SDValue LHS = N.getOperand(0);
735
if (!LHS->hasOneUse())
736
return false;
737
738
unsigned LHSOpcode = LHS->getOpcode();
739
if (LHSOpcode != ISD::SHL && LHSOpcode != ISD::SRL && LHSOpcode != ISD::SRA)
740
return false;
741
742
ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
743
if (!ShiftAmtNode)
744
return false;
745
746
uint64_t ShiftAmtC = ShiftAmtNode->getZExtValue();
747
ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N.getOperand(1));
748
if (!RHSC)
749
return false;
750
751
APInt AndMask = RHSC->getAPIntValue();
752
unsigned LowZBits, MaskLen;
753
if (!AndMask.isShiftedMask(LowZBits, MaskLen))
754
return false;
755
756
unsigned BitWidth = N.getValueSizeInBits();
757
SDLoc DL(LHS);
758
uint64_t NewShiftC;
759
unsigned NewShiftOp;
760
if (LHSOpcode == ISD::SHL) {
761
// LowZBits <= ShiftAmtC will fall into isBitfieldPositioningOp
762
// BitWidth != LowZBits + MaskLen doesn't match the pattern
763
if (LowZBits <= ShiftAmtC || (BitWidth != LowZBits + MaskLen))
764
return false;
765
766
NewShiftC = LowZBits - ShiftAmtC;
767
NewShiftOp = VT == MVT::i64 ? AArch64::UBFMXri : AArch64::UBFMWri;
768
} else {
769
if (LowZBits == 0)
770
return false;
771
772
// NewShiftC >= BitWidth will fall into isBitfieldExtractOp
773
NewShiftC = LowZBits + ShiftAmtC;
774
if (NewShiftC >= BitWidth)
775
return false;
776
777
// SRA need all high bits
778
if (LHSOpcode == ISD::SRA && (BitWidth != (LowZBits + MaskLen)))
779
return false;
780
781
// SRL high bits can be 0 or 1
782
if (LHSOpcode == ISD::SRL && (BitWidth > (NewShiftC + MaskLen)))
783
return false;
784
785
if (LHSOpcode == ISD::SRL)
786
NewShiftOp = VT == MVT::i64 ? AArch64::UBFMXri : AArch64::UBFMWri;
787
else
788
NewShiftOp = VT == MVT::i64 ? AArch64::SBFMXri : AArch64::SBFMWri;
789
}
790
791
assert(NewShiftC < BitWidth && "Invalid shift amount");
792
SDValue NewShiftAmt = CurDAG->getTargetConstant(NewShiftC, DL, VT);
793
SDValue BitWidthMinus1 = CurDAG->getTargetConstant(BitWidth - 1, DL, VT);
794
Reg = SDValue(CurDAG->getMachineNode(NewShiftOp, DL, VT, LHS->getOperand(0),
795
NewShiftAmt, BitWidthMinus1),
796
0);
797
unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, LowZBits);
798
Shift = CurDAG->getTargetConstant(ShVal, DL, MVT::i32);
799
return true;
800
}
801
802
/// getExtendTypeForNode - Translate an extend node to the corresponding
803
/// ExtendType value.
804
static AArch64_AM::ShiftExtendType
805
getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
806
if (N.getOpcode() == ISD::SIGN_EXTEND ||
807
N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
808
EVT SrcVT;
809
if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
810
SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
811
else
812
SrcVT = N.getOperand(0).getValueType();
813
814
if (!IsLoadStore && SrcVT == MVT::i8)
815
return AArch64_AM::SXTB;
816
else if (!IsLoadStore && SrcVT == MVT::i16)
817
return AArch64_AM::SXTH;
818
else if (SrcVT == MVT::i32)
819
return AArch64_AM::SXTW;
820
assert(SrcVT != MVT::i64 && "extend from 64-bits?");
821
822
return AArch64_AM::InvalidShiftExtend;
823
} else if (N.getOpcode() == ISD::ZERO_EXTEND ||
824
N.getOpcode() == ISD::ANY_EXTEND) {
825
EVT SrcVT = N.getOperand(0).getValueType();
826
if (!IsLoadStore && SrcVT == MVT::i8)
827
return AArch64_AM::UXTB;
828
else if (!IsLoadStore && SrcVT == MVT::i16)
829
return AArch64_AM::UXTH;
830
else if (SrcVT == MVT::i32)
831
return AArch64_AM::UXTW;
832
assert(SrcVT != MVT::i64 && "extend from 64-bits?");
833
834
return AArch64_AM::InvalidShiftExtend;
835
} else if (N.getOpcode() == ISD::AND) {
836
ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
837
if (!CSD)
838
return AArch64_AM::InvalidShiftExtend;
839
uint64_t AndMask = CSD->getZExtValue();
840
841
switch (AndMask) {
842
default:
843
return AArch64_AM::InvalidShiftExtend;
844
case 0xFF:
845
return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
846
case 0xFFFF:
847
return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
848
case 0xFFFFFFFF:
849
return AArch64_AM::UXTW;
850
}
851
}
852
853
return AArch64_AM::InvalidShiftExtend;
854
}
855
856
/// Determine whether it is worth to fold V into an extended register of an
857
/// Add/Sub. LSL means we are folding into an `add w0, w1, w2, lsl #N`
858
/// instruction, and the shift should be treated as worth folding even if has
859
/// multiple uses.
860
bool AArch64DAGToDAGISel::isWorthFoldingALU(SDValue V, bool LSL) const {
861
// Trivial if we are optimizing for code size or if there is only
862
// one use of the value.
863
if (CurDAG->shouldOptForSize() || V.hasOneUse())
864
return true;
865
866
// If a subtarget has a fastpath LSL we can fold a logical shift into
867
// the add/sub and save a cycle.
868
if (LSL && Subtarget->hasALULSLFast() && V.getOpcode() == ISD::SHL &&
869
V.getConstantOperandVal(1) <= 4 &&
870
getExtendTypeForNode(V.getOperand(0)) == AArch64_AM::InvalidShiftExtend)
871
return true;
872
873
// It hurts otherwise, since the value will be reused.
874
return false;
875
}
876
877
/// SelectShiftedRegister - Select a "shifted register" operand. If the value
878
/// is not shifted, set the Shift operand to default of "LSL 0". The logical
879
/// instructions allow the shifted register to be rotated, but the arithmetic
880
/// instructions do not. The AllowROR parameter specifies whether ROR is
881
/// supported.
882
bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
883
SDValue &Reg, SDValue &Shift) {
884
if (SelectShiftedRegisterFromAnd(N, Reg, Shift))
885
return true;
886
887
AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
888
if (ShType == AArch64_AM::InvalidShiftExtend)
889
return false;
890
if (!AllowROR && ShType == AArch64_AM::ROR)
891
return false;
892
893
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
894
unsigned BitSize = N.getValueSizeInBits();
895
unsigned Val = RHS->getZExtValue() & (BitSize - 1);
896
unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
897
898
Reg = N.getOperand(0);
899
Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
900
return isWorthFoldingALU(N, true);
901
}
902
903
return false;
904
}
905
906
/// Instructions that accept extend modifiers like UXTW expect the register
907
/// being extended to be a GPR32, but the incoming DAG might be acting on a
908
/// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
909
/// this is the case.
910
static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
911
if (N.getValueType() == MVT::i32)
912
return N;
913
914
SDLoc dl(N);
915
return CurDAG->getTargetExtractSubreg(AArch64::sub_32, dl, MVT::i32, N);
916
}
917
918
// Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
919
template<signed Low, signed High, signed Scale>
920
bool AArch64DAGToDAGISel::SelectRDVLImm(SDValue N, SDValue &Imm) {
921
if (!isa<ConstantSDNode>(N))
922
return false;
923
924
int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
925
if ((MulImm % std::abs(Scale)) == 0) {
926
int64_t RDVLImm = MulImm / Scale;
927
if ((RDVLImm >= Low) && (RDVLImm <= High)) {
928
Imm = CurDAG->getTargetConstant(RDVLImm, SDLoc(N), MVT::i32);
929
return true;
930
}
931
}
932
933
return false;
934
}
935
936
/// SelectArithExtendedRegister - Select a "extended register" operand. This
937
/// operand folds in an extend followed by an optional left shift.
938
bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
939
SDValue &Shift) {
940
unsigned ShiftVal = 0;
941
AArch64_AM::ShiftExtendType Ext;
942
943
if (N.getOpcode() == ISD::SHL) {
944
ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
945
if (!CSD)
946
return false;
947
ShiftVal = CSD->getZExtValue();
948
if (ShiftVal > 4)
949
return false;
950
951
Ext = getExtendTypeForNode(N.getOperand(0));
952
if (Ext == AArch64_AM::InvalidShiftExtend)
953
return false;
954
955
Reg = N.getOperand(0).getOperand(0);
956
} else {
957
Ext = getExtendTypeForNode(N);
958
if (Ext == AArch64_AM::InvalidShiftExtend)
959
return false;
960
961
Reg = N.getOperand(0);
962
963
// Don't match if free 32-bit -> 64-bit zext can be used instead. Use the
964
// isDef32 as a heuristic for when the operand is likely to be a 32bit def.
965
auto isDef32 = [](SDValue N) {
966
unsigned Opc = N.getOpcode();
967
return Opc != ISD::TRUNCATE && Opc != TargetOpcode::EXTRACT_SUBREG &&
968
Opc != ISD::CopyFromReg && Opc != ISD::AssertSext &&
969
Opc != ISD::AssertZext && Opc != ISD::AssertAlign &&
970
Opc != ISD::FREEZE;
971
};
972
if (Ext == AArch64_AM::UXTW && Reg->getValueType(0).getSizeInBits() == 32 &&
973
isDef32(Reg))
974
return false;
975
}
976
977
// AArch64 mandates that the RHS of the operation must use the smallest
978
// register class that could contain the size being extended from. Thus,
979
// if we're folding a (sext i8), we need the RHS to be a GPR32, even though
980
// there might not be an actual 32-bit value in the program. We can
981
// (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
982
assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
983
Reg = narrowIfNeeded(CurDAG, Reg);
984
Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
985
MVT::i32);
986
return isWorthFoldingALU(N);
987
}
988
989
/// SelectArithUXTXRegister - Select a "UXTX register" operand. This
990
/// operand is refered by the instructions have SP operand
991
bool AArch64DAGToDAGISel::SelectArithUXTXRegister(SDValue N, SDValue &Reg,
992
SDValue &Shift) {
993
unsigned ShiftVal = 0;
994
AArch64_AM::ShiftExtendType Ext;
995
996
if (N.getOpcode() != ISD::SHL)
997
return false;
998
999
ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
1000
if (!CSD)
1001
return false;
1002
ShiftVal = CSD->getZExtValue();
1003
if (ShiftVal > 4)
1004
return false;
1005
1006
Ext = AArch64_AM::UXTX;
1007
Reg = N.getOperand(0);
1008
Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
1009
MVT::i32);
1010
return isWorthFoldingALU(N);
1011
}
1012
1013
/// If there's a use of this ADDlow that's not itself a load/store then we'll
1014
/// need to create a real ADD instruction from it anyway and there's no point in
1015
/// folding it into the mem op. Theoretically, it shouldn't matter, but there's
1016
/// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
1017
/// leads to duplicated ADRP instructions.
1018
static bool isWorthFoldingADDlow(SDValue N) {
1019
for (auto *Use : N->uses()) {
1020
if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
1021
Use->getOpcode() != ISD::ATOMIC_LOAD &&
1022
Use->getOpcode() != ISD::ATOMIC_STORE)
1023
return false;
1024
1025
// ldar and stlr have much more restrictive addressing modes (just a
1026
// register).
1027
if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getSuccessOrdering()))
1028
return false;
1029
}
1030
1031
return true;
1032
}
1033
1034
/// Check if the immediate offset is valid as a scaled immediate.
1035
static bool isValidAsScaledImmediate(int64_t Offset, unsigned Range,
1036
unsigned Size) {
1037
if ((Offset & (Size - 1)) == 0 && Offset >= 0 &&
1038
Offset < (Range << Log2_32(Size)))
1039
return true;
1040
return false;
1041
}
1042
1043
/// SelectAddrModeIndexedBitWidth - Select a "register plus scaled (un)signed BW-bit
1044
/// immediate" address. The "Size" argument is the size in bytes of the memory
1045
/// reference, which determines the scale.
1046
bool AArch64DAGToDAGISel::SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm,
1047
unsigned BW, unsigned Size,
1048
SDValue &Base,
1049
SDValue &OffImm) {
1050
SDLoc dl(N);
1051
const DataLayout &DL = CurDAG->getDataLayout();
1052
const TargetLowering *TLI = getTargetLowering();
1053
if (N.getOpcode() == ISD::FrameIndex) {
1054
int FI = cast<FrameIndexSDNode>(N)->getIndex();
1055
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1056
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1057
return true;
1058
}
1059
1060
// As opposed to the (12-bit) Indexed addressing mode below, the 7/9-bit signed
1061
// selected here doesn't support labels/immediates, only base+offset.
1062
if (CurDAG->isBaseWithConstantOffset(N)) {
1063
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1064
if (IsSignedImm) {
1065
int64_t RHSC = RHS->getSExtValue();
1066
unsigned Scale = Log2_32(Size);
1067
int64_t Range = 0x1LL << (BW - 1);
1068
1069
if ((RHSC & (Size - 1)) == 0 && RHSC >= -(Range << Scale) &&
1070
RHSC < (Range << Scale)) {
1071
Base = N.getOperand(0);
1072
if (Base.getOpcode() == ISD::FrameIndex) {
1073
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1074
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1075
}
1076
OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
1077
return true;
1078
}
1079
} else {
1080
// unsigned Immediate
1081
uint64_t RHSC = RHS->getZExtValue();
1082
unsigned Scale = Log2_32(Size);
1083
uint64_t Range = 0x1ULL << BW;
1084
1085
if ((RHSC & (Size - 1)) == 0 && RHSC < (Range << Scale)) {
1086
Base = N.getOperand(0);
1087
if (Base.getOpcode() == ISD::FrameIndex) {
1088
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1089
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1090
}
1091
OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
1092
return true;
1093
}
1094
}
1095
}
1096
}
1097
// Base only. The address will be materialized into a register before
1098
// the memory is accessed.
1099
// add x0, Xbase, #offset
1100
// stp x1, x2, [x0]
1101
Base = N;
1102
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1103
return true;
1104
}
1105
1106
/// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
1107
/// immediate" address. The "Size" argument is the size in bytes of the memory
1108
/// reference, which determines the scale.
1109
bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
1110
SDValue &Base, SDValue &OffImm) {
1111
SDLoc dl(N);
1112
const DataLayout &DL = CurDAG->getDataLayout();
1113
const TargetLowering *TLI = getTargetLowering();
1114
if (N.getOpcode() == ISD::FrameIndex) {
1115
int FI = cast<FrameIndexSDNode>(N)->getIndex();
1116
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1117
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1118
return true;
1119
}
1120
1121
if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
1122
GlobalAddressSDNode *GAN =
1123
dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
1124
Base = N.getOperand(0);
1125
OffImm = N.getOperand(1);
1126
if (!GAN)
1127
return true;
1128
1129
if (GAN->getOffset() % Size == 0 &&
1130
GAN->getGlobal()->getPointerAlignment(DL) >= Size)
1131
return true;
1132
}
1133
1134
if (CurDAG->isBaseWithConstantOffset(N)) {
1135
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1136
int64_t RHSC = (int64_t)RHS->getZExtValue();
1137
unsigned Scale = Log2_32(Size);
1138
if (isValidAsScaledImmediate(RHSC, 0x1000, Size)) {
1139
Base = N.getOperand(0);
1140
if (Base.getOpcode() == ISD::FrameIndex) {
1141
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1142
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
1143
}
1144
OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
1145
return true;
1146
}
1147
}
1148
}
1149
1150
// Before falling back to our general case, check if the unscaled
1151
// instructions can handle this. If so, that's preferable.
1152
if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
1153
return false;
1154
1155
// Base only. The address will be materialized into a register before
1156
// the memory is accessed.
1157
// add x0, Xbase, #offset
1158
// ldr x0, [x0]
1159
Base = N;
1160
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
1161
return true;
1162
}
1163
1164
/// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
1165
/// immediate" address. This should only match when there is an offset that
1166
/// is not valid for a scaled immediate addressing mode. The "Size" argument
1167
/// is the size in bytes of the memory reference, which is needed here to know
1168
/// what is valid for a scaled immediate.
1169
bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
1170
SDValue &Base,
1171
SDValue &OffImm) {
1172
if (!CurDAG->isBaseWithConstantOffset(N))
1173
return false;
1174
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1175
int64_t RHSC = RHS->getSExtValue();
1176
if (RHSC >= -256 && RHSC < 256) {
1177
Base = N.getOperand(0);
1178
if (Base.getOpcode() == ISD::FrameIndex) {
1179
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1180
const TargetLowering *TLI = getTargetLowering();
1181
Base = CurDAG->getTargetFrameIndex(
1182
FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1183
}
1184
OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
1185
return true;
1186
}
1187
}
1188
return false;
1189
}
1190
1191
static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
1192
SDLoc dl(N);
1193
SDValue ImpDef = SDValue(
1194
CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
1195
return CurDAG->getTargetInsertSubreg(AArch64::sub_32, dl, MVT::i64, ImpDef,
1196
N);
1197
}
1198
1199
/// Check if the given SHL node (\p N), can be used to form an
1200
/// extended register for an addressing mode.
1201
bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
1202
bool WantExtend, SDValue &Offset,
1203
SDValue &SignExtend) {
1204
assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
1205
ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
1206
if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
1207
return false;
1208
1209
SDLoc dl(N);
1210
if (WantExtend) {
1211
AArch64_AM::ShiftExtendType Ext =
1212
getExtendTypeForNode(N.getOperand(0), true);
1213
if (Ext == AArch64_AM::InvalidShiftExtend)
1214
return false;
1215
1216
Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
1217
SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
1218
MVT::i32);
1219
} else {
1220
Offset = N.getOperand(0);
1221
SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
1222
}
1223
1224
unsigned LegalShiftVal = Log2_32(Size);
1225
unsigned ShiftVal = CSD->getZExtValue();
1226
1227
if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
1228
return false;
1229
1230
return isWorthFoldingAddr(N, Size);
1231
}
1232
1233
bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
1234
SDValue &Base, SDValue &Offset,
1235
SDValue &SignExtend,
1236
SDValue &DoShift) {
1237
if (N.getOpcode() != ISD::ADD)
1238
return false;
1239
SDValue LHS = N.getOperand(0);
1240
SDValue RHS = N.getOperand(1);
1241
SDLoc dl(N);
1242
1243
// We don't want to match immediate adds here, because they are better lowered
1244
// to the register-immediate addressing modes.
1245
if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
1246
return false;
1247
1248
// Check if this particular node is reused in any non-memory related
1249
// operation. If yes, do not try to fold this node into the address
1250
// computation, since the computation will be kept.
1251
const SDNode *Node = N.getNode();
1252
for (SDNode *UI : Node->uses()) {
1253
if (!isa<MemSDNode>(*UI))
1254
return false;
1255
}
1256
1257
// Remember if it is worth folding N when it produces extended register.
1258
bool IsExtendedRegisterWorthFolding = isWorthFoldingAddr(N, Size);
1259
1260
// Try to match a shifted extend on the RHS.
1261
if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
1262
SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
1263
Base = LHS;
1264
DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
1265
return true;
1266
}
1267
1268
// Try to match a shifted extend on the LHS.
1269
if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
1270
SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
1271
Base = RHS;
1272
DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
1273
return true;
1274
}
1275
1276
// There was no shift, whatever else we find.
1277
DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
1278
1279
AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
1280
// Try to match an unshifted extend on the LHS.
1281
if (IsExtendedRegisterWorthFolding &&
1282
(Ext = getExtendTypeForNode(LHS, true)) !=
1283
AArch64_AM::InvalidShiftExtend) {
1284
Base = RHS;
1285
Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
1286
SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
1287
MVT::i32);
1288
if (isWorthFoldingAddr(LHS, Size))
1289
return true;
1290
}
1291
1292
// Try to match an unshifted extend on the RHS.
1293
if (IsExtendedRegisterWorthFolding &&
1294
(Ext = getExtendTypeForNode(RHS, true)) !=
1295
AArch64_AM::InvalidShiftExtend) {
1296
Base = LHS;
1297
Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
1298
SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
1299
MVT::i32);
1300
if (isWorthFoldingAddr(RHS, Size))
1301
return true;
1302
}
1303
1304
return false;
1305
}
1306
1307
// Check if the given immediate is preferred by ADD. If an immediate can be
1308
// encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
1309
// encoded by one MOVZ, return true.
1310
static bool isPreferredADD(int64_t ImmOff) {
1311
// Constant in [0x0, 0xfff] can be encoded in ADD.
1312
if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
1313
return true;
1314
// Check if it can be encoded in an "ADD LSL #12".
1315
if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
1316
// As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
1317
return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
1318
(ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
1319
return false;
1320
}
1321
1322
bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
1323
SDValue &Base, SDValue &Offset,
1324
SDValue &SignExtend,
1325
SDValue &DoShift) {
1326
if (N.getOpcode() != ISD::ADD)
1327
return false;
1328
SDValue LHS = N.getOperand(0);
1329
SDValue RHS = N.getOperand(1);
1330
SDLoc DL(N);
1331
1332
// Check if this particular node is reused in any non-memory related
1333
// operation. If yes, do not try to fold this node into the address
1334
// computation, since the computation will be kept.
1335
const SDNode *Node = N.getNode();
1336
for (SDNode *UI : Node->uses()) {
1337
if (!isa<MemSDNode>(*UI))
1338
return false;
1339
}
1340
1341
// Watch out if RHS is a wide immediate, it can not be selected into
1342
// [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
1343
// ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
1344
// instructions like:
1345
// MOV X0, WideImmediate
1346
// ADD X1, BaseReg, X0
1347
// LDR X2, [X1, 0]
1348
// For such situation, using [BaseReg, XReg] addressing mode can save one
1349
// ADD/SUB:
1350
// MOV X0, WideImmediate
1351
// LDR X2, [BaseReg, X0]
1352
if (isa<ConstantSDNode>(RHS)) {
1353
int64_t ImmOff = (int64_t)RHS->getAsZExtVal();
1354
// Skip the immediate can be selected by load/store addressing mode.
1355
// Also skip the immediate can be encoded by a single ADD (SUB is also
1356
// checked by using -ImmOff).
1357
if (isValidAsScaledImmediate(ImmOff, 0x1000, Size) ||
1358
isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
1359
return false;
1360
1361
SDValue Ops[] = { RHS };
1362
SDNode *MOVI =
1363
CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
1364
SDValue MOVIV = SDValue(MOVI, 0);
1365
// This ADD of two X register will be selected into [Reg+Reg] mode.
1366
N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
1367
}
1368
1369
// Remember if it is worth folding N when it produces extended register.
1370
bool IsExtendedRegisterWorthFolding = isWorthFoldingAddr(N, Size);
1371
1372
// Try to match a shifted extend on the RHS.
1373
if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
1374
SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
1375
Base = LHS;
1376
DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1377
return true;
1378
}
1379
1380
// Try to match a shifted extend on the LHS.
1381
if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
1382
SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
1383
Base = RHS;
1384
DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
1385
return true;
1386
}
1387
1388
// Match any non-shifted, non-extend, non-immediate add expression.
1389
Base = LHS;
1390
Offset = RHS;
1391
SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
1392
DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
1393
// Reg1 + Reg2 is free: no check needed.
1394
return true;
1395
}
1396
1397
SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
1398
static const unsigned RegClassIDs[] = {
1399
AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
1400
static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
1401
AArch64::dsub2, AArch64::dsub3};
1402
1403
return createTuple(Regs, RegClassIDs, SubRegs);
1404
}
1405
1406
SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
1407
static const unsigned RegClassIDs[] = {
1408
AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
1409
static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
1410
AArch64::qsub2, AArch64::qsub3};
1411
1412
return createTuple(Regs, RegClassIDs, SubRegs);
1413
}
1414
1415
SDValue AArch64DAGToDAGISel::createZTuple(ArrayRef<SDValue> Regs) {
1416
static const unsigned RegClassIDs[] = {AArch64::ZPR2RegClassID,
1417
AArch64::ZPR3RegClassID,
1418
AArch64::ZPR4RegClassID};
1419
static const unsigned SubRegs[] = {AArch64::zsub0, AArch64::zsub1,
1420
AArch64::zsub2, AArch64::zsub3};
1421
1422
return createTuple(Regs, RegClassIDs, SubRegs);
1423
}
1424
1425
SDValue AArch64DAGToDAGISel::createZMulTuple(ArrayRef<SDValue> Regs) {
1426
assert(Regs.size() == 2 || Regs.size() == 4);
1427
1428
// The createTuple interface requires 3 RegClassIDs for each possible
1429
// tuple type even though we only have them for ZPR2 and ZPR4.
1430
static const unsigned RegClassIDs[] = {AArch64::ZPR2Mul2RegClassID, 0,
1431
AArch64::ZPR4Mul4RegClassID};
1432
static const unsigned SubRegs[] = {AArch64::zsub0, AArch64::zsub1,
1433
AArch64::zsub2, AArch64::zsub3};
1434
return createTuple(Regs, RegClassIDs, SubRegs);
1435
}
1436
1437
SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
1438
const unsigned RegClassIDs[],
1439
const unsigned SubRegs[]) {
1440
// There's no special register-class for a vector-list of 1 element: it's just
1441
// a vector.
1442
if (Regs.size() == 1)
1443
return Regs[0];
1444
1445
assert(Regs.size() >= 2 && Regs.size() <= 4);
1446
1447
SDLoc DL(Regs[0]);
1448
1449
SmallVector<SDValue, 4> Ops;
1450
1451
// First operand of REG_SEQUENCE is the desired RegClass.
1452
Ops.push_back(
1453
CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
1454
1455
// Then we get pairs of source & subregister-position for the components.
1456
for (unsigned i = 0; i < Regs.size(); ++i) {
1457
Ops.push_back(Regs[i]);
1458
Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
1459
}
1460
1461
SDNode *N =
1462
CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
1463
return SDValue(N, 0);
1464
}
1465
1466
void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc,
1467
bool isExt) {
1468
SDLoc dl(N);
1469
EVT VT = N->getValueType(0);
1470
1471
unsigned ExtOff = isExt;
1472
1473
// Form a REG_SEQUENCE to force register allocation.
1474
unsigned Vec0Off = ExtOff + 1;
1475
SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
1476
N->op_begin() + Vec0Off + NumVecs);
1477
SDValue RegSeq = createQTuple(Regs);
1478
1479
SmallVector<SDValue, 6> Ops;
1480
if (isExt)
1481
Ops.push_back(N->getOperand(1));
1482
Ops.push_back(RegSeq);
1483
Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
1484
ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
1485
}
1486
1487
static std::tuple<SDValue, SDValue>
1488
extractPtrauthBlendDiscriminators(SDValue Disc, SelectionDAG *DAG) {
1489
SDLoc DL(Disc);
1490
SDValue AddrDisc;
1491
SDValue ConstDisc;
1492
1493
// If this is a blend, remember the constant and address discriminators.
1494
// Otherwise, it's either a constant discriminator, or a non-blended
1495
// address discriminator.
1496
if (Disc->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
1497
Disc->getConstantOperandVal(0) == Intrinsic::ptrauth_blend) {
1498
AddrDisc = Disc->getOperand(1);
1499
ConstDisc = Disc->getOperand(2);
1500
} else {
1501
ConstDisc = Disc;
1502
}
1503
1504
// If the constant discriminator (either the blend RHS, or the entire
1505
// discriminator value) isn't a 16-bit constant, bail out, and let the
1506
// discriminator be computed separately.
1507
auto *ConstDiscN = dyn_cast<ConstantSDNode>(ConstDisc);
1508
if (!ConstDiscN || !isUInt<16>(ConstDiscN->getZExtValue()))
1509
return std::make_tuple(DAG->getTargetConstant(0, DL, MVT::i64), Disc);
1510
1511
// If there's no address discriminator, use XZR directly.
1512
if (!AddrDisc)
1513
AddrDisc = DAG->getRegister(AArch64::XZR, MVT::i64);
1514
1515
return std::make_tuple(
1516
DAG->getTargetConstant(ConstDiscN->getZExtValue(), DL, MVT::i64),
1517
AddrDisc);
1518
}
1519
1520
void AArch64DAGToDAGISel::SelectPtrauthAuth(SDNode *N) {
1521
SDLoc DL(N);
1522
// IntrinsicID is operand #0
1523
SDValue Val = N->getOperand(1);
1524
SDValue AUTKey = N->getOperand(2);
1525
SDValue AUTDisc = N->getOperand(3);
1526
1527
unsigned AUTKeyC = cast<ConstantSDNode>(AUTKey)->getZExtValue();
1528
AUTKey = CurDAG->getTargetConstant(AUTKeyC, DL, MVT::i64);
1529
1530
SDValue AUTAddrDisc, AUTConstDisc;
1531
std::tie(AUTConstDisc, AUTAddrDisc) =
1532
extractPtrauthBlendDiscriminators(AUTDisc, CurDAG);
1533
1534
SDValue X16Copy = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL,
1535
AArch64::X16, Val, SDValue());
1536
SDValue Ops[] = {AUTKey, AUTConstDisc, AUTAddrDisc, X16Copy.getValue(1)};
1537
1538
SDNode *AUT = CurDAG->getMachineNode(AArch64::AUT, DL, MVT::i64, Ops);
1539
ReplaceNode(N, AUT);
1540
return;
1541
}
1542
1543
void AArch64DAGToDAGISel::SelectPtrauthResign(SDNode *N) {
1544
SDLoc DL(N);
1545
// IntrinsicID is operand #0
1546
SDValue Val = N->getOperand(1);
1547
SDValue AUTKey = N->getOperand(2);
1548
SDValue AUTDisc = N->getOperand(3);
1549
SDValue PACKey = N->getOperand(4);
1550
SDValue PACDisc = N->getOperand(5);
1551
1552
unsigned AUTKeyC = cast<ConstantSDNode>(AUTKey)->getZExtValue();
1553
unsigned PACKeyC = cast<ConstantSDNode>(PACKey)->getZExtValue();
1554
1555
AUTKey = CurDAG->getTargetConstant(AUTKeyC, DL, MVT::i64);
1556
PACKey = CurDAG->getTargetConstant(PACKeyC, DL, MVT::i64);
1557
1558
SDValue AUTAddrDisc, AUTConstDisc;
1559
std::tie(AUTConstDisc, AUTAddrDisc) =
1560
extractPtrauthBlendDiscriminators(AUTDisc, CurDAG);
1561
1562
SDValue PACAddrDisc, PACConstDisc;
1563
std::tie(PACConstDisc, PACAddrDisc) =
1564
extractPtrauthBlendDiscriminators(PACDisc, CurDAG);
1565
1566
SDValue X16Copy = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL,
1567
AArch64::X16, Val, SDValue());
1568
1569
SDValue Ops[] = {AUTKey, AUTConstDisc, AUTAddrDisc, PACKey,
1570
PACConstDisc, PACAddrDisc, X16Copy.getValue(1)};
1571
1572
SDNode *AUTPAC = CurDAG->getMachineNode(AArch64::AUTPAC, DL, MVT::i64, Ops);
1573
ReplaceNode(N, AUTPAC);
1574
return;
1575
}
1576
1577
bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) {
1578
LoadSDNode *LD = cast<LoadSDNode>(N);
1579
if (LD->isUnindexed())
1580
return false;
1581
EVT VT = LD->getMemoryVT();
1582
EVT DstVT = N->getValueType(0);
1583
ISD::MemIndexedMode AM = LD->getAddressingMode();
1584
bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
1585
1586
// We're not doing validity checking here. That was done when checking
1587
// if we should mark the load as indexed or not. We're just selecting
1588
// the right instruction.
1589
unsigned Opcode = 0;
1590
1591
ISD::LoadExtType ExtType = LD->getExtensionType();
1592
bool InsertTo64 = false;
1593
if (VT == MVT::i64)
1594
Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
1595
else if (VT == MVT::i32) {
1596
if (ExtType == ISD::NON_EXTLOAD)
1597
Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1598
else if (ExtType == ISD::SEXTLOAD)
1599
Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
1600
else {
1601
Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
1602
InsertTo64 = true;
1603
// The result of the load is only i32. It's the subreg_to_reg that makes
1604
// it into an i64.
1605
DstVT = MVT::i32;
1606
}
1607
} else if (VT == MVT::i16) {
1608
if (ExtType == ISD::SEXTLOAD) {
1609
if (DstVT == MVT::i64)
1610
Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
1611
else
1612
Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
1613
} else {
1614
Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
1615
InsertTo64 = DstVT == MVT::i64;
1616
// The result of the load is only i32. It's the subreg_to_reg that makes
1617
// it into an i64.
1618
DstVT = MVT::i32;
1619
}
1620
} else if (VT == MVT::i8) {
1621
if (ExtType == ISD::SEXTLOAD) {
1622
if (DstVT == MVT::i64)
1623
Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
1624
else
1625
Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
1626
} else {
1627
Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
1628
InsertTo64 = DstVT == MVT::i64;
1629
// The result of the load is only i32. It's the subreg_to_reg that makes
1630
// it into an i64.
1631
DstVT = MVT::i32;
1632
}
1633
} else if (VT == MVT::f16) {
1634
Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
1635
} else if (VT == MVT::bf16) {
1636
Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
1637
} else if (VT == MVT::f32) {
1638
Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
1639
} else if (VT == MVT::f64 || VT.is64BitVector()) {
1640
Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
1641
} else if (VT.is128BitVector()) {
1642
Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
1643
} else
1644
return false;
1645
SDValue Chain = LD->getChain();
1646
SDValue Base = LD->getBasePtr();
1647
ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
1648
int OffsetVal = (int)OffsetOp->getZExtValue();
1649
SDLoc dl(N);
1650
SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
1651
SDValue Ops[] = { Base, Offset, Chain };
1652
SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
1653
MVT::Other, Ops);
1654
1655
// Transfer memoperands.
1656
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
1657
CurDAG->setNodeMemRefs(cast<MachineSDNode>(Res), {MemOp});
1658
1659
// Either way, we're replacing the node, so tell the caller that.
1660
SDValue LoadedVal = SDValue(Res, 1);
1661
if (InsertTo64) {
1662
SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
1663
LoadedVal =
1664
SDValue(CurDAG->getMachineNode(
1665
AArch64::SUBREG_TO_REG, dl, MVT::i64,
1666
CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
1667
SubReg),
1668
0);
1669
}
1670
1671
ReplaceUses(SDValue(N, 0), LoadedVal);
1672
ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
1673
ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
1674
CurDAG->RemoveDeadNode(N);
1675
return true;
1676
}
1677
1678
void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
1679
unsigned SubRegIdx) {
1680
SDLoc dl(N);
1681
EVT VT = N->getValueType(0);
1682
SDValue Chain = N->getOperand(0);
1683
1684
SDValue Ops[] = {N->getOperand(2), // Mem operand;
1685
Chain};
1686
1687
const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1688
1689
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1690
SDValue SuperReg = SDValue(Ld, 0);
1691
for (unsigned i = 0; i < NumVecs; ++i)
1692
ReplaceUses(SDValue(N, i),
1693
CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1694
1695
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
1696
1697
// Transfer memoperands. In the case of AArch64::LD64B, there won't be one,
1698
// because it's too simple to have needed special treatment during lowering.
1699
if (auto *MemIntr = dyn_cast<MemIntrinsicSDNode>(N)) {
1700
MachineMemOperand *MemOp = MemIntr->getMemOperand();
1701
CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
1702
}
1703
1704
CurDAG->RemoveDeadNode(N);
1705
}
1706
1707
void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
1708
unsigned Opc, unsigned SubRegIdx) {
1709
SDLoc dl(N);
1710
EVT VT = N->getValueType(0);
1711
SDValue Chain = N->getOperand(0);
1712
1713
SDValue Ops[] = {N->getOperand(1), // Mem operand
1714
N->getOperand(2), // Incremental
1715
Chain};
1716
1717
const EVT ResTys[] = {MVT::i64, // Type of the write back register
1718
MVT::Untyped, MVT::Other};
1719
1720
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
1721
1722
// Update uses of write back register
1723
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
1724
1725
// Update uses of vector list
1726
SDValue SuperReg = SDValue(Ld, 1);
1727
if (NumVecs == 1)
1728
ReplaceUses(SDValue(N, 0), SuperReg);
1729
else
1730
for (unsigned i = 0; i < NumVecs; ++i)
1731
ReplaceUses(SDValue(N, i),
1732
CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
1733
1734
// Update the chain
1735
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
1736
CurDAG->RemoveDeadNode(N);
1737
}
1738
1739
/// Optimize \param OldBase and \param OldOffset selecting the best addressing
1740
/// mode. Returns a tuple consisting of an Opcode, an SDValue representing the
1741
/// new Base and an SDValue representing the new offset.
1742
std::tuple<unsigned, SDValue, SDValue>
1743
AArch64DAGToDAGISel::findAddrModeSVELoadStore(SDNode *N, unsigned Opc_rr,
1744
unsigned Opc_ri,
1745
const SDValue &OldBase,
1746
const SDValue &OldOffset,
1747
unsigned Scale) {
1748
SDValue NewBase = OldBase;
1749
SDValue NewOffset = OldOffset;
1750
// Detect a possible Reg+Imm addressing mode.
1751
const bool IsRegImm = SelectAddrModeIndexedSVE</*Min=*/-8, /*Max=*/7>(
1752
N, OldBase, NewBase, NewOffset);
1753
1754
// Detect a possible reg+reg addressing mode, but only if we haven't already
1755
// detected a Reg+Imm one.
1756
const bool IsRegReg =
1757
!IsRegImm && SelectSVERegRegAddrMode(OldBase, Scale, NewBase, NewOffset);
1758
1759
// Select the instruction.
1760
return std::make_tuple(IsRegReg ? Opc_rr : Opc_ri, NewBase, NewOffset);
1761
}
1762
1763
enum class SelectTypeKind {
1764
Int1 = 0,
1765
Int = 1,
1766
FP = 2,
1767
AnyType = 3,
1768
};
1769
1770
/// This function selects an opcode from a list of opcodes, which is
1771
/// expected to be the opcode for { 8-bit, 16-bit, 32-bit, 64-bit }
1772
/// element types, in this order.
1773
template <SelectTypeKind Kind>
1774
static unsigned SelectOpcodeFromVT(EVT VT, ArrayRef<unsigned> Opcodes) {
1775
// Only match scalable vector VTs
1776
if (!VT.isScalableVector())
1777
return 0;
1778
1779
EVT EltVT = VT.getVectorElementType();
1780
unsigned Key = VT.getVectorMinNumElements();
1781
switch (Kind) {
1782
case SelectTypeKind::AnyType:
1783
break;
1784
case SelectTypeKind::Int:
1785
if (EltVT != MVT::i8 && EltVT != MVT::i16 && EltVT != MVT::i32 &&
1786
EltVT != MVT::i64)
1787
return 0;
1788
break;
1789
case SelectTypeKind::Int1:
1790
if (EltVT != MVT::i1)
1791
return 0;
1792
break;
1793
case SelectTypeKind::FP:
1794
if (EltVT == MVT::bf16)
1795
Key = 16;
1796
else if (EltVT != MVT::bf16 && EltVT != MVT::f16 && EltVT != MVT::f32 &&
1797
EltVT != MVT::f64)
1798
return 0;
1799
break;
1800
}
1801
1802
unsigned Offset;
1803
switch (Key) {
1804
case 16: // 8-bit or bf16
1805
Offset = 0;
1806
break;
1807
case 8: // 16-bit
1808
Offset = 1;
1809
break;
1810
case 4: // 32-bit
1811
Offset = 2;
1812
break;
1813
case 2: // 64-bit
1814
Offset = 3;
1815
break;
1816
default:
1817
return 0;
1818
}
1819
1820
return (Opcodes.size() <= Offset) ? 0 : Opcodes[Offset];
1821
}
1822
1823
// This function is almost identical to SelectWhilePair, but has an
1824
// extra check on the range of the immediate operand.
1825
// TODO: Merge these two functions together at some point?
1826
void AArch64DAGToDAGISel::SelectPExtPair(SDNode *N, unsigned Opc) {
1827
// Immediate can be either 0 or 1.
1828
if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1829
if (Imm->getZExtValue() > 1)
1830
return;
1831
1832
SDLoc DL(N);
1833
EVT VT = N->getValueType(0);
1834
SDValue Ops[] = {N->getOperand(1), N->getOperand(2)};
1835
SDNode *WhilePair = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops);
1836
SDValue SuperReg = SDValue(WhilePair, 0);
1837
1838
for (unsigned I = 0; I < 2; ++I)
1839
ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg(
1840
AArch64::psub0 + I, DL, VT, SuperReg));
1841
1842
CurDAG->RemoveDeadNode(N);
1843
}
1844
1845
void AArch64DAGToDAGISel::SelectWhilePair(SDNode *N, unsigned Opc) {
1846
SDLoc DL(N);
1847
EVT VT = N->getValueType(0);
1848
1849
SDValue Ops[] = {N->getOperand(1), N->getOperand(2)};
1850
1851
SDNode *WhilePair = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops);
1852
SDValue SuperReg = SDValue(WhilePair, 0);
1853
1854
for (unsigned I = 0; I < 2; ++I)
1855
ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg(
1856
AArch64::psub0 + I, DL, VT, SuperReg));
1857
1858
CurDAG->RemoveDeadNode(N);
1859
}
1860
1861
void AArch64DAGToDAGISel::SelectCVTIntrinsic(SDNode *N, unsigned NumVecs,
1862
unsigned Opcode) {
1863
EVT VT = N->getValueType(0);
1864
SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
1865
SDValue Ops = createZTuple(Regs);
1866
SDLoc DL(N);
1867
SDNode *Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped, Ops);
1868
SDValue SuperReg = SDValue(Intrinsic, 0);
1869
for (unsigned i = 0; i < NumVecs; ++i)
1870
ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1871
AArch64::zsub0 + i, DL, VT, SuperReg));
1872
1873
CurDAG->RemoveDeadNode(N);
1874
}
1875
1876
void AArch64DAGToDAGISel::SelectDestructiveMultiIntrinsic(SDNode *N,
1877
unsigned NumVecs,
1878
bool IsZmMulti,
1879
unsigned Opcode,
1880
bool HasPred) {
1881
assert(Opcode != 0 && "Unexpected opcode");
1882
1883
SDLoc DL(N);
1884
EVT VT = N->getValueType(0);
1885
unsigned FirstVecIdx = HasPred ? 2 : 1;
1886
1887
auto GetMultiVecOperand = [=](unsigned StartIdx) {
1888
SmallVector<SDValue, 4> Regs(N->op_begin() + StartIdx,
1889
N->op_begin() + StartIdx + NumVecs);
1890
return createZMulTuple(Regs);
1891
};
1892
1893
SDValue Zdn = GetMultiVecOperand(FirstVecIdx);
1894
1895
SDValue Zm;
1896
if (IsZmMulti)
1897
Zm = GetMultiVecOperand(NumVecs + FirstVecIdx);
1898
else
1899
Zm = N->getOperand(NumVecs + FirstVecIdx);
1900
1901
SDNode *Intrinsic;
1902
if (HasPred)
1903
Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped,
1904
N->getOperand(1), Zdn, Zm);
1905
else
1906
Intrinsic = CurDAG->getMachineNode(Opcode, DL, MVT::Untyped, Zdn, Zm);
1907
SDValue SuperReg = SDValue(Intrinsic, 0);
1908
for (unsigned i = 0; i < NumVecs; ++i)
1909
ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1910
AArch64::zsub0 + i, DL, VT, SuperReg));
1911
1912
CurDAG->RemoveDeadNode(N);
1913
}
1914
1915
void AArch64DAGToDAGISel::SelectPredicatedLoad(SDNode *N, unsigned NumVecs,
1916
unsigned Scale, unsigned Opc_ri,
1917
unsigned Opc_rr, bool IsIntr) {
1918
assert(Scale < 5 && "Invalid scaling value.");
1919
SDLoc DL(N);
1920
EVT VT = N->getValueType(0);
1921
SDValue Chain = N->getOperand(0);
1922
1923
// Optimize addressing mode.
1924
SDValue Base, Offset;
1925
unsigned Opc;
1926
std::tie(Opc, Base, Offset) = findAddrModeSVELoadStore(
1927
N, Opc_rr, Opc_ri, N->getOperand(IsIntr ? 3 : 2),
1928
CurDAG->getTargetConstant(0, DL, MVT::i64), Scale);
1929
1930
SDValue Ops[] = {N->getOperand(IsIntr ? 2 : 1), // Predicate
1931
Base, // Memory operand
1932
Offset, Chain};
1933
1934
const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1935
1936
SDNode *Load = CurDAG->getMachineNode(Opc, DL, ResTys, Ops);
1937
SDValue SuperReg = SDValue(Load, 0);
1938
for (unsigned i = 0; i < NumVecs; ++i)
1939
ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1940
AArch64::zsub0 + i, DL, VT, SuperReg));
1941
1942
// Copy chain
1943
unsigned ChainIdx = NumVecs;
1944
ReplaceUses(SDValue(N, ChainIdx), SDValue(Load, 1));
1945
CurDAG->RemoveDeadNode(N);
1946
}
1947
1948
void AArch64DAGToDAGISel::SelectContiguousMultiVectorLoad(SDNode *N,
1949
unsigned NumVecs,
1950
unsigned Scale,
1951
unsigned Opc_ri,
1952
unsigned Opc_rr) {
1953
assert(Scale < 4 && "Invalid scaling value.");
1954
SDLoc DL(N);
1955
EVT VT = N->getValueType(0);
1956
SDValue Chain = N->getOperand(0);
1957
1958
SDValue PNg = N->getOperand(2);
1959
SDValue Base = N->getOperand(3);
1960
SDValue Offset = CurDAG->getTargetConstant(0, DL, MVT::i64);
1961
unsigned Opc;
1962
std::tie(Opc, Base, Offset) =
1963
findAddrModeSVELoadStore(N, Opc_rr, Opc_ri, Base, Offset, Scale);
1964
1965
SDValue Ops[] = {PNg, // Predicate-as-counter
1966
Base, // Memory operand
1967
Offset, Chain};
1968
1969
const EVT ResTys[] = {MVT::Untyped, MVT::Other};
1970
1971
SDNode *Load = CurDAG->getMachineNode(Opc, DL, ResTys, Ops);
1972
SDValue SuperReg = SDValue(Load, 0);
1973
for (unsigned i = 0; i < NumVecs; ++i)
1974
ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
1975
AArch64::zsub0 + i, DL, VT, SuperReg));
1976
1977
// Copy chain
1978
unsigned ChainIdx = NumVecs;
1979
ReplaceUses(SDValue(N, ChainIdx), SDValue(Load, 1));
1980
CurDAG->RemoveDeadNode(N);
1981
}
1982
1983
void AArch64DAGToDAGISel::SelectFrintFromVT(SDNode *N, unsigned NumVecs,
1984
unsigned Opcode) {
1985
if (N->getValueType(0) != MVT::nxv4f32)
1986
return;
1987
SelectUnaryMultiIntrinsic(N, NumVecs, true, Opcode);
1988
}
1989
1990
void AArch64DAGToDAGISel::SelectMultiVectorLuti(SDNode *Node,
1991
unsigned NumOutVecs,
1992
unsigned Opc, uint32_t MaxImm) {
1993
if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Node->getOperand(4)))
1994
if (Imm->getZExtValue() > MaxImm)
1995
return;
1996
1997
SDValue ZtValue;
1998
if (!ImmToReg<AArch64::ZT0, 0>(Node->getOperand(2), ZtValue))
1999
return;
2000
SDValue Ops[] = {ZtValue, Node->getOperand(3), Node->getOperand(4)};
2001
SDLoc DL(Node);
2002
EVT VT = Node->getValueType(0);
2003
2004
SDNode *Instruction =
2005
CurDAG->getMachineNode(Opc, DL, {MVT::Untyped, MVT::Other}, Ops);
2006
SDValue SuperReg = SDValue(Instruction, 0);
2007
2008
for (unsigned I = 0; I < NumOutVecs; ++I)
2009
ReplaceUses(SDValue(Node, I), CurDAG->getTargetExtractSubreg(
2010
AArch64::zsub0 + I, DL, VT, SuperReg));
2011
2012
// Copy chain
2013
unsigned ChainIdx = NumOutVecs;
2014
ReplaceUses(SDValue(Node, ChainIdx), SDValue(Instruction, 1));
2015
CurDAG->RemoveDeadNode(Node);
2016
}
2017
2018
void AArch64DAGToDAGISel::SelectClamp(SDNode *N, unsigned NumVecs,
2019
unsigned Op) {
2020
SDLoc DL(N);
2021
EVT VT = N->getValueType(0);
2022
2023
SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
2024
SDValue Zd = createZMulTuple(Regs);
2025
SDValue Zn = N->getOperand(1 + NumVecs);
2026
SDValue Zm = N->getOperand(2 + NumVecs);
2027
2028
SDValue Ops[] = {Zd, Zn, Zm};
2029
2030
SDNode *Intrinsic = CurDAG->getMachineNode(Op, DL, MVT::Untyped, Ops);
2031
SDValue SuperReg = SDValue(Intrinsic, 0);
2032
for (unsigned i = 0; i < NumVecs; ++i)
2033
ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
2034
AArch64::zsub0 + i, DL, VT, SuperReg));
2035
2036
CurDAG->RemoveDeadNode(N);
2037
}
2038
2039
bool SelectSMETile(unsigned &BaseReg, unsigned TileNum) {
2040
switch (BaseReg) {
2041
default:
2042
return false;
2043
case AArch64::ZA:
2044
case AArch64::ZAB0:
2045
if (TileNum == 0)
2046
break;
2047
return false;
2048
case AArch64::ZAH0:
2049
if (TileNum <= 1)
2050
break;
2051
return false;
2052
case AArch64::ZAS0:
2053
if (TileNum <= 3)
2054
break;
2055
return false;
2056
case AArch64::ZAD0:
2057
if (TileNum <= 7)
2058
break;
2059
return false;
2060
}
2061
2062
BaseReg += TileNum;
2063
return true;
2064
}
2065
2066
template <unsigned MaxIdx, unsigned Scale>
2067
void AArch64DAGToDAGISel::SelectMultiVectorMove(SDNode *N, unsigned NumVecs,
2068
unsigned BaseReg, unsigned Op) {
2069
unsigned TileNum = 0;
2070
if (BaseReg != AArch64::ZA)
2071
TileNum = N->getConstantOperandVal(2);
2072
2073
if (!SelectSMETile(BaseReg, TileNum))
2074
return;
2075
2076
SDValue SliceBase, Base, Offset;
2077
if (BaseReg == AArch64::ZA)
2078
SliceBase = N->getOperand(2);
2079
else
2080
SliceBase = N->getOperand(3);
2081
2082
if (!SelectSMETileSlice(SliceBase, MaxIdx, Base, Offset, Scale))
2083
return;
2084
2085
SDLoc DL(N);
2086
SDValue SubReg = CurDAG->getRegister(BaseReg, MVT::Other);
2087
SDValue Ops[] = {SubReg, Base, Offset, /*Chain*/ N->getOperand(0)};
2088
SDNode *Mov = CurDAG->getMachineNode(Op, DL, {MVT::Untyped, MVT::Other}, Ops);
2089
2090
EVT VT = N->getValueType(0);
2091
for (unsigned I = 0; I < NumVecs; ++I)
2092
ReplaceUses(SDValue(N, I),
2093
CurDAG->getTargetExtractSubreg(AArch64::zsub0 + I, DL, VT,
2094
SDValue(Mov, 0)));
2095
// Copy chain
2096
unsigned ChainIdx = NumVecs;
2097
ReplaceUses(SDValue(N, ChainIdx), SDValue(Mov, 1));
2098
CurDAG->RemoveDeadNode(N);
2099
}
2100
2101
void AArch64DAGToDAGISel::SelectMultiVectorMoveZ(SDNode *N, unsigned NumVecs,
2102
unsigned Op, unsigned MaxIdx,
2103
unsigned Scale, unsigned BaseReg) {
2104
// Slice can be in different positions
2105
// The array to vector: llvm.aarch64.sme.readz.<h/v>.<sz>(slice)
2106
// The tile to vector: llvm.aarch64.sme.readz.<h/v>.<sz>(tile, slice)
2107
SDValue SliceBase = N->getOperand(2);
2108
if (BaseReg != AArch64::ZA)
2109
SliceBase = N->getOperand(3);
2110
2111
SDValue Base, Offset;
2112
if (!SelectSMETileSlice(SliceBase, MaxIdx, Base, Offset, Scale))
2113
return;
2114
// The correct Za tile number is computed in Machine Instruction
2115
// See EmitZAInstr
2116
// DAG cannot select Za tile as an output register with ZReg
2117
SDLoc DL(N);
2118
SmallVector<SDValue, 6> Ops;
2119
if (BaseReg != AArch64::ZA )
2120
Ops.push_back(N->getOperand(2));
2121
Ops.push_back(Base);
2122
Ops.push_back(Offset);
2123
Ops.push_back(N->getOperand(0)); //Chain
2124
SDNode *Mov = CurDAG->getMachineNode(Op, DL, {MVT::Untyped, MVT::Other}, Ops);
2125
2126
EVT VT = N->getValueType(0);
2127
for (unsigned I = 0; I < NumVecs; ++I)
2128
ReplaceUses(SDValue(N, I),
2129
CurDAG->getTargetExtractSubreg(AArch64::zsub0 + I, DL, VT,
2130
SDValue(Mov, 0)));
2131
2132
// Copy chain
2133
unsigned ChainIdx = NumVecs;
2134
ReplaceUses(SDValue(N, ChainIdx), SDValue(Mov, 1));
2135
CurDAG->RemoveDeadNode(N);
2136
}
2137
2138
void AArch64DAGToDAGISel::SelectUnaryMultiIntrinsic(SDNode *N,
2139
unsigned NumOutVecs,
2140
bool IsTupleInput,
2141
unsigned Opc) {
2142
SDLoc DL(N);
2143
EVT VT = N->getValueType(0);
2144
unsigned NumInVecs = N->getNumOperands() - 1;
2145
2146
SmallVector<SDValue, 6> Ops;
2147
if (IsTupleInput) {
2148
assert((NumInVecs == 2 || NumInVecs == 4) &&
2149
"Don't know how to handle multi-register input!");
2150
SmallVector<SDValue, 4> Regs(N->op_begin() + 1,
2151
N->op_begin() + 1 + NumInVecs);
2152
Ops.push_back(createZMulTuple(Regs));
2153
} else {
2154
// All intrinsic nodes have the ID as the first operand, hence the "1 + I".
2155
for (unsigned I = 0; I < NumInVecs; I++)
2156
Ops.push_back(N->getOperand(1 + I));
2157
}
2158
2159
SDNode *Res = CurDAG->getMachineNode(Opc, DL, MVT::Untyped, Ops);
2160
SDValue SuperReg = SDValue(Res, 0);
2161
2162
for (unsigned I = 0; I < NumOutVecs; I++)
2163
ReplaceUses(SDValue(N, I), CurDAG->getTargetExtractSubreg(
2164
AArch64::zsub0 + I, DL, VT, SuperReg));
2165
CurDAG->RemoveDeadNode(N);
2166
}
2167
2168
void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
2169
unsigned Opc) {
2170
SDLoc dl(N);
2171
EVT VT = N->getOperand(2)->getValueType(0);
2172
2173
// Form a REG_SEQUENCE to force register allocation.
2174
bool Is128Bit = VT.getSizeInBits() == 128;
2175
SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2176
SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
2177
2178
SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
2179
SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
2180
2181
// Transfer memoperands.
2182
MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2183
CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
2184
2185
ReplaceNode(N, St);
2186
}
2187
2188
void AArch64DAGToDAGISel::SelectPredicatedStore(SDNode *N, unsigned NumVecs,
2189
unsigned Scale, unsigned Opc_rr,
2190
unsigned Opc_ri) {
2191
SDLoc dl(N);
2192
2193
// Form a REG_SEQUENCE to force register allocation.
2194
SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2195
SDValue RegSeq = createZTuple(Regs);
2196
2197
// Optimize addressing mode.
2198
unsigned Opc;
2199
SDValue Offset, Base;
2200
std::tie(Opc, Base, Offset) = findAddrModeSVELoadStore(
2201
N, Opc_rr, Opc_ri, N->getOperand(NumVecs + 3),
2202
CurDAG->getTargetConstant(0, dl, MVT::i64), Scale);
2203
2204
SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), // predicate
2205
Base, // address
2206
Offset, // offset
2207
N->getOperand(0)}; // chain
2208
SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
2209
2210
ReplaceNode(N, St);
2211
}
2212
2213
bool AArch64DAGToDAGISel::SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base,
2214
SDValue &OffImm) {
2215
SDLoc dl(N);
2216
const DataLayout &DL = CurDAG->getDataLayout();
2217
const TargetLowering *TLI = getTargetLowering();
2218
2219
// Try to match it for the frame address
2220
if (auto FINode = dyn_cast<FrameIndexSDNode>(N)) {
2221
int FI = FINode->getIndex();
2222
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
2223
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
2224
return true;
2225
}
2226
2227
return false;
2228
}
2229
2230
void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
2231
unsigned Opc) {
2232
SDLoc dl(N);
2233
EVT VT = N->getOperand(2)->getValueType(0);
2234
const EVT ResTys[] = {MVT::i64, // Type of the write back register
2235
MVT::Other}; // Type for the Chain
2236
2237
// Form a REG_SEQUENCE to force register allocation.
2238
bool Is128Bit = VT.getSizeInBits() == 128;
2239
SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
2240
SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
2241
2242
SDValue Ops[] = {RegSeq,
2243
N->getOperand(NumVecs + 1), // base register
2244
N->getOperand(NumVecs + 2), // Incremental
2245
N->getOperand(0)}; // Chain
2246
SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2247
2248
ReplaceNode(N, St);
2249
}
2250
2251
namespace {
2252
/// WidenVector - Given a value in the V64 register class, produce the
2253
/// equivalent value in the V128 register class.
2254
class WidenVector {
2255
SelectionDAG &DAG;
2256
2257
public:
2258
WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
2259
2260
SDValue operator()(SDValue V64Reg) {
2261
EVT VT = V64Reg.getValueType();
2262
unsigned NarrowSize = VT.getVectorNumElements();
2263
MVT EltTy = VT.getVectorElementType().getSimpleVT();
2264
MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
2265
SDLoc DL(V64Reg);
2266
2267
SDValue Undef =
2268
SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
2269
return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
2270
}
2271
};
2272
} // namespace
2273
2274
/// NarrowVector - Given a value in the V128 register class, produce the
2275
/// equivalent value in the V64 register class.
2276
static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
2277
EVT VT = V128Reg.getValueType();
2278
unsigned WideSize = VT.getVectorNumElements();
2279
MVT EltTy = VT.getVectorElementType().getSimpleVT();
2280
MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
2281
2282
return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
2283
V128Reg);
2284
}
2285
2286
void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
2287
unsigned Opc) {
2288
SDLoc dl(N);
2289
EVT VT = N->getValueType(0);
2290
bool Narrow = VT.getSizeInBits() == 64;
2291
2292
// Form a REG_SEQUENCE to force register allocation.
2293
SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2294
2295
if (Narrow)
2296
transform(Regs, Regs.begin(),
2297
WidenVector(*CurDAG));
2298
2299
SDValue RegSeq = createQTuple(Regs);
2300
2301
const EVT ResTys[] = {MVT::Untyped, MVT::Other};
2302
2303
unsigned LaneNo = N->getConstantOperandVal(NumVecs + 2);
2304
2305
SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
2306
N->getOperand(NumVecs + 3), N->getOperand(0)};
2307
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2308
SDValue SuperReg = SDValue(Ld, 0);
2309
2310
EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
2311
static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
2312
AArch64::qsub2, AArch64::qsub3 };
2313
for (unsigned i = 0; i < NumVecs; ++i) {
2314
SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
2315
if (Narrow)
2316
NV = NarrowVector(NV, *CurDAG);
2317
ReplaceUses(SDValue(N, i), NV);
2318
}
2319
2320
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
2321
CurDAG->RemoveDeadNode(N);
2322
}
2323
2324
void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
2325
unsigned Opc) {
2326
SDLoc dl(N);
2327
EVT VT = N->getValueType(0);
2328
bool Narrow = VT.getSizeInBits() == 64;
2329
2330
// Form a REG_SEQUENCE to force register allocation.
2331
SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
2332
2333
if (Narrow)
2334
transform(Regs, Regs.begin(),
2335
WidenVector(*CurDAG));
2336
2337
SDValue RegSeq = createQTuple(Regs);
2338
2339
const EVT ResTys[] = {MVT::i64, // Type of the write back register
2340
RegSeq->getValueType(0), MVT::Other};
2341
2342
unsigned LaneNo = N->getConstantOperandVal(NumVecs + 1);
2343
2344
SDValue Ops[] = {RegSeq,
2345
CurDAG->getTargetConstant(LaneNo, dl,
2346
MVT::i64), // Lane Number
2347
N->getOperand(NumVecs + 2), // Base register
2348
N->getOperand(NumVecs + 3), // Incremental
2349
N->getOperand(0)};
2350
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2351
2352
// Update uses of the write back register
2353
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
2354
2355
// Update uses of the vector list
2356
SDValue SuperReg = SDValue(Ld, 1);
2357
if (NumVecs == 1) {
2358
ReplaceUses(SDValue(N, 0),
2359
Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
2360
} else {
2361
EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
2362
static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
2363
AArch64::qsub2, AArch64::qsub3 };
2364
for (unsigned i = 0; i < NumVecs; ++i) {
2365
SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
2366
SuperReg);
2367
if (Narrow)
2368
NV = NarrowVector(NV, *CurDAG);
2369
ReplaceUses(SDValue(N, i), NV);
2370
}
2371
}
2372
2373
// Update the Chain
2374
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
2375
CurDAG->RemoveDeadNode(N);
2376
}
2377
2378
void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
2379
unsigned Opc) {
2380
SDLoc dl(N);
2381
EVT VT = N->getOperand(2)->getValueType(0);
2382
bool Narrow = VT.getSizeInBits() == 64;
2383
2384
// Form a REG_SEQUENCE to force register allocation.
2385
SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
2386
2387
if (Narrow)
2388
transform(Regs, Regs.begin(),
2389
WidenVector(*CurDAG));
2390
2391
SDValue RegSeq = createQTuple(Regs);
2392
2393
unsigned LaneNo = N->getConstantOperandVal(NumVecs + 2);
2394
2395
SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
2396
N->getOperand(NumVecs + 3), N->getOperand(0)};
2397
SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
2398
2399
// Transfer memoperands.
2400
MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2401
CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
2402
2403
ReplaceNode(N, St);
2404
}
2405
2406
void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
2407
unsigned Opc) {
2408
SDLoc dl(N);
2409
EVT VT = N->getOperand(2)->getValueType(0);
2410
bool Narrow = VT.getSizeInBits() == 64;
2411
2412
// Form a REG_SEQUENCE to force register allocation.
2413
SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
2414
2415
if (Narrow)
2416
transform(Regs, Regs.begin(),
2417
WidenVector(*CurDAG));
2418
2419
SDValue RegSeq = createQTuple(Regs);
2420
2421
const EVT ResTys[] = {MVT::i64, // Type of the write back register
2422
MVT::Other};
2423
2424
unsigned LaneNo = N->getConstantOperandVal(NumVecs + 1);
2425
2426
SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
2427
N->getOperand(NumVecs + 2), // Base Register
2428
N->getOperand(NumVecs + 3), // Incremental
2429
N->getOperand(0)};
2430
SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2431
2432
// Transfer memoperands.
2433
MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2434
CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
2435
2436
ReplaceNode(N, St);
2437
}
2438
2439
static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
2440
unsigned &Opc, SDValue &Opd0,
2441
unsigned &LSB, unsigned &MSB,
2442
unsigned NumberOfIgnoredLowBits,
2443
bool BiggerPattern) {
2444
assert(N->getOpcode() == ISD::AND &&
2445
"N must be a AND operation to call this function");
2446
2447
EVT VT = N->getValueType(0);
2448
2449
// Here we can test the type of VT and return false when the type does not
2450
// match, but since it is done prior to that call in the current context
2451
// we turned that into an assert to avoid redundant code.
2452
assert((VT == MVT::i32 || VT == MVT::i64) &&
2453
"Type checking must have been done before calling this function");
2454
2455
// FIXME: simplify-demanded-bits in DAGCombine will probably have
2456
// changed the AND node to a 32-bit mask operation. We'll have to
2457
// undo that as part of the transform here if we want to catch all
2458
// the opportunities.
2459
// Currently the NumberOfIgnoredLowBits argument helps to recover
2460
// from these situations when matching bigger pattern (bitfield insert).
2461
2462
// For unsigned extracts, check for a shift right and mask
2463
uint64_t AndImm = 0;
2464
if (!isOpcWithIntImmediate(N, ISD::AND, AndImm))
2465
return false;
2466
2467
const SDNode *Op0 = N->getOperand(0).getNode();
2468
2469
// Because of simplify-demanded-bits in DAGCombine, the mask may have been
2470
// simplified. Try to undo that
2471
AndImm |= maskTrailingOnes<uint64_t>(NumberOfIgnoredLowBits);
2472
2473
// The immediate is a mask of the low bits iff imm & (imm+1) == 0
2474
if (AndImm & (AndImm + 1))
2475
return false;
2476
2477
bool ClampMSB = false;
2478
uint64_t SrlImm = 0;
2479
// Handle the SRL + ANY_EXTEND case.
2480
if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
2481
isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) {
2482
// Extend the incoming operand of the SRL to 64-bit.
2483
Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
2484
// Make sure to clamp the MSB so that we preserve the semantics of the
2485
// original operations.
2486
ClampMSB = true;
2487
} else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
2488
isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
2489
SrlImm)) {
2490
// If the shift result was truncated, we can still combine them.
2491
Opd0 = Op0->getOperand(0).getOperand(0);
2492
2493
// Use the type of SRL node.
2494
VT = Opd0->getValueType(0);
2495
} else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) {
2496
Opd0 = Op0->getOperand(0);
2497
ClampMSB = (VT == MVT::i32);
2498
} else if (BiggerPattern) {
2499
// Let's pretend a 0 shift right has been performed.
2500
// The resulting code will be at least as good as the original one
2501
// plus it may expose more opportunities for bitfield insert pattern.
2502
// FIXME: Currently we limit this to the bigger pattern, because
2503
// some optimizations expect AND and not UBFM.
2504
Opd0 = N->getOperand(0);
2505
} else
2506
return false;
2507
2508
// Bail out on large immediates. This happens when no proper
2509
// combining/constant folding was performed.
2510
if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) {
2511
LLVM_DEBUG(
2512
(dbgs() << N
2513
<< ": Found large shift immediate, this should not happen\n"));
2514
return false;
2515
}
2516
2517
LSB = SrlImm;
2518
MSB = SrlImm +
2519
(VT == MVT::i32 ? llvm::countr_one<uint32_t>(AndImm)
2520
: llvm::countr_one<uint64_t>(AndImm)) -
2521
1;
2522
if (ClampMSB)
2523
// Since we're moving the extend before the right shift operation, we need
2524
// to clamp the MSB to make sure we don't shift in undefined bits instead of
2525
// the zeros which would get shifted in with the original right shift
2526
// operation.
2527
MSB = MSB > 31 ? 31 : MSB;
2528
2529
Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
2530
return true;
2531
}
2532
2533
static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc,
2534
SDValue &Opd0, unsigned &Immr,
2535
unsigned &Imms) {
2536
assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
2537
2538
EVT VT = N->getValueType(0);
2539
unsigned BitWidth = VT.getSizeInBits();
2540
assert((VT == MVT::i32 || VT == MVT::i64) &&
2541
"Type checking must have been done before calling this function");
2542
2543
SDValue Op = N->getOperand(0);
2544
if (Op->getOpcode() == ISD::TRUNCATE) {
2545
Op = Op->getOperand(0);
2546
VT = Op->getValueType(0);
2547
BitWidth = VT.getSizeInBits();
2548
}
2549
2550
uint64_t ShiftImm;
2551
if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) &&
2552
!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
2553
return false;
2554
2555
unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2556
if (ShiftImm + Width > BitWidth)
2557
return false;
2558
2559
Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri;
2560
Opd0 = Op.getOperand(0);
2561
Immr = ShiftImm;
2562
Imms = ShiftImm + Width - 1;
2563
return true;
2564
}
2565
2566
static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
2567
SDValue &Opd0, unsigned &LSB,
2568
unsigned &MSB) {
2569
// We are looking for the following pattern which basically extracts several
2570
// continuous bits from the source value and places it from the LSB of the
2571
// destination value, all other bits of the destination value or set to zero:
2572
//
2573
// Value2 = AND Value, MaskImm
2574
// SRL Value2, ShiftImm
2575
//
2576
// with MaskImm >> ShiftImm to search for the bit width.
2577
//
2578
// This gets selected into a single UBFM:
2579
//
2580
// UBFM Value, ShiftImm, Log2_64(MaskImm)
2581
//
2582
2583
if (N->getOpcode() != ISD::SRL)
2584
return false;
2585
2586
uint64_t AndMask = 0;
2587
if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask))
2588
return false;
2589
2590
Opd0 = N->getOperand(0).getOperand(0);
2591
2592
uint64_t SrlImm = 0;
2593
if (!isIntImmediate(N->getOperand(1), SrlImm))
2594
return false;
2595
2596
// Check whether we really have several bits extract here.
2597
if (!isMask_64(AndMask >> SrlImm))
2598
return false;
2599
2600
Opc = N->getValueType(0) == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
2601
LSB = SrlImm;
2602
MSB = llvm::Log2_64(AndMask);
2603
return true;
2604
}
2605
2606
static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
2607
unsigned &Immr, unsigned &Imms,
2608
bool BiggerPattern) {
2609
assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
2610
"N must be a SHR/SRA operation to call this function");
2611
2612
EVT VT = N->getValueType(0);
2613
2614
// Here we can test the type of VT and return false when the type does not
2615
// match, but since it is done prior to that call in the current context
2616
// we turned that into an assert to avoid redundant code.
2617
assert((VT == MVT::i32 || VT == MVT::i64) &&
2618
"Type checking must have been done before calling this function");
2619
2620
// Check for AND + SRL doing several bits extract.
2621
if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
2622
return true;
2623
2624
// We're looking for a shift of a shift.
2625
uint64_t ShlImm = 0;
2626
uint64_t TruncBits = 0;
2627
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) {
2628
Opd0 = N->getOperand(0).getOperand(0);
2629
} else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
2630
N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
2631
// We are looking for a shift of truncate. Truncate from i64 to i32 could
2632
// be considered as setting high 32 bits as zero. Our strategy here is to
2633
// always generate 64bit UBFM. This consistency will help the CSE pass
2634
// later find more redundancy.
2635
Opd0 = N->getOperand(0).getOperand(0);
2636
TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
2637
VT = Opd0.getValueType();
2638
assert(VT == MVT::i64 && "the promoted type should be i64");
2639
} else if (BiggerPattern) {
2640
// Let's pretend a 0 shift left has been performed.
2641
// FIXME: Currently we limit this to the bigger pattern case,
2642
// because some optimizations expect AND and not UBFM
2643
Opd0 = N->getOperand(0);
2644
} else
2645
return false;
2646
2647
// Missing combines/constant folding may have left us with strange
2648
// constants.
2649
if (ShlImm >= VT.getSizeInBits()) {
2650
LLVM_DEBUG(
2651
(dbgs() << N
2652
<< ": Found large shift immediate, this should not happen\n"));
2653
return false;
2654
}
2655
2656
uint64_t SrlImm = 0;
2657
if (!isIntImmediate(N->getOperand(1), SrlImm))
2658
return false;
2659
2660
assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() &&
2661
"bad amount in shift node!");
2662
int immr = SrlImm - ShlImm;
2663
Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
2664
Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1;
2665
// SRA requires a signed extraction
2666
if (VT == MVT::i32)
2667
Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
2668
else
2669
Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
2670
return true;
2671
}
2672
2673
bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) {
2674
assert(N->getOpcode() == ISD::SIGN_EXTEND);
2675
2676
EVT VT = N->getValueType(0);
2677
EVT NarrowVT = N->getOperand(0)->getValueType(0);
2678
if (VT != MVT::i64 || NarrowVT != MVT::i32)
2679
return false;
2680
2681
uint64_t ShiftImm;
2682
SDValue Op = N->getOperand(0);
2683
if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
2684
return false;
2685
2686
SDLoc dl(N);
2687
// Extend the incoming operand of the shift to 64-bits.
2688
SDValue Opd0 = Widen(CurDAG, Op.getOperand(0));
2689
unsigned Immr = ShiftImm;
2690
unsigned Imms = NarrowVT.getSizeInBits() - 1;
2691
SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
2692
CurDAG->getTargetConstant(Imms, dl, VT)};
2693
CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops);
2694
return true;
2695
}
2696
2697
static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
2698
SDValue &Opd0, unsigned &Immr, unsigned &Imms,
2699
unsigned NumberOfIgnoredLowBits = 0,
2700
bool BiggerPattern = false) {
2701
if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
2702
return false;
2703
2704
switch (N->getOpcode()) {
2705
default:
2706
if (!N->isMachineOpcode())
2707
return false;
2708
break;
2709
case ISD::AND:
2710
return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
2711
NumberOfIgnoredLowBits, BiggerPattern);
2712
case ISD::SRL:
2713
case ISD::SRA:
2714
return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
2715
2716
case ISD::SIGN_EXTEND_INREG:
2717
return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms);
2718
}
2719
2720
unsigned NOpc = N->getMachineOpcode();
2721
switch (NOpc) {
2722
default:
2723
return false;
2724
case AArch64::SBFMWri:
2725
case AArch64::UBFMWri:
2726
case AArch64::SBFMXri:
2727
case AArch64::UBFMXri:
2728
Opc = NOpc;
2729
Opd0 = N->getOperand(0);
2730
Immr = N->getConstantOperandVal(1);
2731
Imms = N->getConstantOperandVal(2);
2732
return true;
2733
}
2734
// Unreachable
2735
return false;
2736
}
2737
2738
bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) {
2739
unsigned Opc, Immr, Imms;
2740
SDValue Opd0;
2741
if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
2742
return false;
2743
2744
EVT VT = N->getValueType(0);
2745
SDLoc dl(N);
2746
2747
// If the bit extract operation is 64bit but the original type is 32bit, we
2748
// need to add one EXTRACT_SUBREG.
2749
if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
2750
SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
2751
CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
2752
2753
SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
2754
SDValue Inner = CurDAG->getTargetExtractSubreg(AArch64::sub_32, dl,
2755
MVT::i32, SDValue(BFM, 0));
2756
ReplaceNode(N, Inner.getNode());
2757
return true;
2758
}
2759
2760
SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
2761
CurDAG->getTargetConstant(Imms, dl, VT)};
2762
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
2763
return true;
2764
}
2765
2766
/// Does DstMask form a complementary pair with the mask provided by
2767
/// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
2768
/// this asks whether DstMask zeroes precisely those bits that will be set by
2769
/// the other half.
2770
static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted,
2771
unsigned NumberOfIgnoredHighBits, EVT VT) {
2772
assert((VT == MVT::i32 || VT == MVT::i64) &&
2773
"i32 or i64 mask type expected!");
2774
unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
2775
2776
APInt SignificantDstMask = APInt(BitWidth, DstMask);
2777
APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
2778
2779
return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
2780
(SignificantDstMask | SignificantBitsToBeInserted).isAllOnes();
2781
}
2782
2783
// Look for bits that will be useful for later uses.
2784
// A bit is consider useless as soon as it is dropped and never used
2785
// before it as been dropped.
2786
// E.g., looking for useful bit of x
2787
// 1. y = x & 0x7
2788
// 2. z = y >> 2
2789
// After #1, x useful bits are 0x7, then the useful bits of x, live through
2790
// y.
2791
// After #2, the useful bits of x are 0x4.
2792
// However, if x is used on an unpredicatable instruction, then all its bits
2793
// are useful.
2794
// E.g.
2795
// 1. y = x & 0x7
2796
// 2. z = y >> 2
2797
// 3. str x, [@x]
2798
static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
2799
2800
static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
2801
unsigned Depth) {
2802
uint64_t Imm =
2803
cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
2804
Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
2805
UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
2806
getUsefulBits(Op, UsefulBits, Depth + 1);
2807
}
2808
2809
static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
2810
uint64_t Imm, uint64_t MSB,
2811
unsigned Depth) {
2812
// inherit the bitwidth value
2813
APInt OpUsefulBits(UsefulBits);
2814
OpUsefulBits = 1;
2815
2816
if (MSB >= Imm) {
2817
OpUsefulBits <<= MSB - Imm + 1;
2818
--OpUsefulBits;
2819
// The interesting part will be in the lower part of the result
2820
getUsefulBits(Op, OpUsefulBits, Depth + 1);
2821
// The interesting part was starting at Imm in the argument
2822
OpUsefulBits <<= Imm;
2823
} else {
2824
OpUsefulBits <<= MSB + 1;
2825
--OpUsefulBits;
2826
// The interesting part will be shifted in the result
2827
OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm;
2828
getUsefulBits(Op, OpUsefulBits, Depth + 1);
2829
// The interesting part was at zero in the argument
2830
OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm);
2831
}
2832
2833
UsefulBits &= OpUsefulBits;
2834
}
2835
2836
static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
2837
unsigned Depth) {
2838
uint64_t Imm =
2839
cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
2840
uint64_t MSB =
2841
cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2842
2843
getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
2844
}
2845
2846
static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
2847
unsigned Depth) {
2848
uint64_t ShiftTypeAndValue =
2849
cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2850
APInt Mask(UsefulBits);
2851
Mask.clearAllBits();
2852
Mask.flipAllBits();
2853
2854
if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
2855
// Shift Left
2856
uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
2857
Mask <<= ShiftAmt;
2858
getUsefulBits(Op, Mask, Depth + 1);
2859
Mask.lshrInPlace(ShiftAmt);
2860
} else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
2861
// Shift Right
2862
// We do not handle AArch64_AM::ASR, because the sign will change the
2863
// number of useful bits
2864
uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
2865
Mask.lshrInPlace(ShiftAmt);
2866
getUsefulBits(Op, Mask, Depth + 1);
2867
Mask <<= ShiftAmt;
2868
} else
2869
return;
2870
2871
UsefulBits &= Mask;
2872
}
2873
2874
static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
2875
unsigned Depth) {
2876
uint64_t Imm =
2877
cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
2878
uint64_t MSB =
2879
cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
2880
2881
APInt OpUsefulBits(UsefulBits);
2882
OpUsefulBits = 1;
2883
2884
APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0);
2885
ResultUsefulBits.flipAllBits();
2886
APInt Mask(UsefulBits.getBitWidth(), 0);
2887
2888
getUsefulBits(Op, ResultUsefulBits, Depth + 1);
2889
2890
if (MSB >= Imm) {
2891
// The instruction is a BFXIL.
2892
uint64_t Width = MSB - Imm + 1;
2893
uint64_t LSB = Imm;
2894
2895
OpUsefulBits <<= Width;
2896
--OpUsefulBits;
2897
2898
if (Op.getOperand(1) == Orig) {
2899
// Copy the low bits from the result to bits starting from LSB.
2900
Mask = ResultUsefulBits & OpUsefulBits;
2901
Mask <<= LSB;
2902
}
2903
2904
if (Op.getOperand(0) == Orig)
2905
// Bits starting from LSB in the input contribute to the result.
2906
Mask |= (ResultUsefulBits & ~OpUsefulBits);
2907
} else {
2908
// The instruction is a BFI.
2909
uint64_t Width = MSB + 1;
2910
uint64_t LSB = UsefulBits.getBitWidth() - Imm;
2911
2912
OpUsefulBits <<= Width;
2913
--OpUsefulBits;
2914
OpUsefulBits <<= LSB;
2915
2916
if (Op.getOperand(1) == Orig) {
2917
// Copy the bits from the result to the zero bits.
2918
Mask = ResultUsefulBits & OpUsefulBits;
2919
Mask.lshrInPlace(LSB);
2920
}
2921
2922
if (Op.getOperand(0) == Orig)
2923
Mask |= (ResultUsefulBits & ~OpUsefulBits);
2924
}
2925
2926
UsefulBits &= Mask;
2927
}
2928
2929
static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
2930
SDValue Orig, unsigned Depth) {
2931
2932
// Users of this node should have already been instruction selected
2933
// FIXME: Can we turn that into an assert?
2934
if (!UserNode->isMachineOpcode())
2935
return;
2936
2937
switch (UserNode->getMachineOpcode()) {
2938
default:
2939
return;
2940
case AArch64::ANDSWri:
2941
case AArch64::ANDSXri:
2942
case AArch64::ANDWri:
2943
case AArch64::ANDXri:
2944
// We increment Depth only when we call the getUsefulBits
2945
return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
2946
Depth);
2947
case AArch64::UBFMWri:
2948
case AArch64::UBFMXri:
2949
return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
2950
2951
case AArch64::ORRWrs:
2952
case AArch64::ORRXrs:
2953
if (UserNode->getOperand(0) != Orig && UserNode->getOperand(1) == Orig)
2954
getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
2955
Depth);
2956
return;
2957
case AArch64::BFMWri:
2958
case AArch64::BFMXri:
2959
return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
2960
2961
case AArch64::STRBBui:
2962
case AArch64::STURBBi:
2963
if (UserNode->getOperand(0) != Orig)
2964
return;
2965
UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff);
2966
return;
2967
2968
case AArch64::STRHHui:
2969
case AArch64::STURHHi:
2970
if (UserNode->getOperand(0) != Orig)
2971
return;
2972
UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff);
2973
return;
2974
}
2975
}
2976
2977
static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
2978
if (Depth >= SelectionDAG::MaxRecursionDepth)
2979
return;
2980
// Initialize UsefulBits
2981
if (!Depth) {
2982
unsigned Bitwidth = Op.getScalarValueSizeInBits();
2983
// At the beginning, assume every produced bits is useful
2984
UsefulBits = APInt(Bitwidth, 0);
2985
UsefulBits.flipAllBits();
2986
}
2987
APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
2988
2989
for (SDNode *Node : Op.getNode()->uses()) {
2990
// A use cannot produce useful bits
2991
APInt UsefulBitsForUse = APInt(UsefulBits);
2992
getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
2993
UsersUsefulBits |= UsefulBitsForUse;
2994
}
2995
// UsefulBits contains the produced bits that are meaningful for the
2996
// current definition, thus a user cannot make a bit meaningful at
2997
// this point
2998
UsefulBits &= UsersUsefulBits;
2999
}
3000
3001
/// Create a machine node performing a notional SHL of Op by ShlAmount. If
3002
/// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
3003
/// 0, return Op unchanged.
3004
static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
3005
if (ShlAmount == 0)
3006
return Op;
3007
3008
EVT VT = Op.getValueType();
3009
SDLoc dl(Op);
3010
unsigned BitWidth = VT.getSizeInBits();
3011
unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
3012
3013
SDNode *ShiftNode;
3014
if (ShlAmount > 0) {
3015
// LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
3016
ShiftNode = CurDAG->getMachineNode(
3017
UBFMOpc, dl, VT, Op,
3018
CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
3019
CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
3020
} else {
3021
// LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
3022
assert(ShlAmount < 0 && "expected right shift");
3023
int ShrAmount = -ShlAmount;
3024
ShiftNode = CurDAG->getMachineNode(
3025
UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
3026
CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
3027
}
3028
3029
return SDValue(ShiftNode, 0);
3030
}
3031
3032
// For bit-field-positioning pattern "(and (shl VAL, N), ShiftedMask)".
3033
static bool isBitfieldPositioningOpFromAnd(SelectionDAG *CurDAG, SDValue Op,
3034
bool BiggerPattern,
3035
const uint64_t NonZeroBits,
3036
SDValue &Src, int &DstLSB,
3037
int &Width);
3038
3039
// For bit-field-positioning pattern "shl VAL, N)".
3040
static bool isBitfieldPositioningOpFromShl(SelectionDAG *CurDAG, SDValue Op,
3041
bool BiggerPattern,
3042
const uint64_t NonZeroBits,
3043
SDValue &Src, int &DstLSB,
3044
int &Width);
3045
3046
/// Does this tree qualify as an attempt to move a bitfield into position,
3047
/// essentially "(and (shl VAL, N), Mask)" or (shl VAL, N).
3048
static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
3049
bool BiggerPattern, SDValue &Src,
3050
int &DstLSB, int &Width) {
3051
EVT VT = Op.getValueType();
3052
unsigned BitWidth = VT.getSizeInBits();
3053
(void)BitWidth;
3054
assert(BitWidth == 32 || BitWidth == 64);
3055
3056
KnownBits Known = CurDAG->computeKnownBits(Op);
3057
3058
// Non-zero in the sense that they're not provably zero, which is the key
3059
// point if we want to use this value
3060
const uint64_t NonZeroBits = (~Known.Zero).getZExtValue();
3061
if (!isShiftedMask_64(NonZeroBits))
3062
return false;
3063
3064
switch (Op.getOpcode()) {
3065
default:
3066
break;
3067
case ISD::AND:
3068
return isBitfieldPositioningOpFromAnd(CurDAG, Op, BiggerPattern,
3069
NonZeroBits, Src, DstLSB, Width);
3070
case ISD::SHL:
3071
return isBitfieldPositioningOpFromShl(CurDAG, Op, BiggerPattern,
3072
NonZeroBits, Src, DstLSB, Width);
3073
}
3074
3075
return false;
3076
}
3077
3078
static bool isBitfieldPositioningOpFromAnd(SelectionDAG *CurDAG, SDValue Op,
3079
bool BiggerPattern,
3080
const uint64_t NonZeroBits,
3081
SDValue &Src, int &DstLSB,
3082
int &Width) {
3083
assert(isShiftedMask_64(NonZeroBits) && "Caller guaranteed");
3084
3085
EVT VT = Op.getValueType();
3086
assert((VT == MVT::i32 || VT == MVT::i64) &&
3087
"Caller guarantees VT is one of i32 or i64");
3088
(void)VT;
3089
3090
uint64_t AndImm;
3091
if (!isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm))
3092
return false;
3093
3094
// If (~AndImm & NonZeroBits) is not zero at POS, we know that
3095
// 1) (AndImm & (1 << POS) == 0)
3096
// 2) the result of AND is not zero at POS bit (according to NonZeroBits)
3097
//
3098
// 1) and 2) don't agree so something must be wrong (e.g., in
3099
// 'SelectionDAG::computeKnownBits')
3100
assert((~AndImm & NonZeroBits) == 0 &&
3101
"Something must be wrong (e.g., in SelectionDAG::computeKnownBits)");
3102
3103
SDValue AndOp0 = Op.getOperand(0);
3104
3105
uint64_t ShlImm;
3106
SDValue ShlOp0;
3107
if (isOpcWithIntImmediate(AndOp0.getNode(), ISD::SHL, ShlImm)) {
3108
// For pattern "and(shl(val, N), shifted-mask)", 'ShlOp0' is set to 'val'.
3109
ShlOp0 = AndOp0.getOperand(0);
3110
} else if (VT == MVT::i64 && AndOp0.getOpcode() == ISD::ANY_EXTEND &&
3111
isOpcWithIntImmediate(AndOp0.getOperand(0).getNode(), ISD::SHL,
3112
ShlImm)) {
3113
// For pattern "and(any_extend(shl(val, N)), shifted-mask)"
3114
3115
// ShlVal == shl(val, N), which is a left shift on a smaller type.
3116
SDValue ShlVal = AndOp0.getOperand(0);
3117
3118
// Since this is after type legalization and ShlVal is extended to MVT::i64,
3119
// expect VT to be MVT::i32.
3120
assert((ShlVal.getValueType() == MVT::i32) && "Expect VT to be MVT::i32.");
3121
3122
// Widens 'val' to MVT::i64 as the source of bit field positioning.
3123
ShlOp0 = Widen(CurDAG, ShlVal.getOperand(0));
3124
} else
3125
return false;
3126
3127
// For !BiggerPattern, bail out if the AndOp0 has more than one use, since
3128
// then we'll end up generating AndOp0+UBFIZ instead of just keeping
3129
// AndOp0+AND.
3130
if (!BiggerPattern && !AndOp0.hasOneUse())
3131
return false;
3132
3133
DstLSB = llvm::countr_zero(NonZeroBits);
3134
Width = llvm::countr_one(NonZeroBits >> DstLSB);
3135
3136
// Bail out on large Width. This happens when no proper combining / constant
3137
// folding was performed.
3138
if (Width >= (int)VT.getSizeInBits()) {
3139
// If VT is i64, Width > 64 is insensible since NonZeroBits is uint64_t, and
3140
// Width == 64 indicates a missed dag-combine from "(and val, AllOnes)" to
3141
// "val".
3142
// If VT is i32, what Width >= 32 means:
3143
// - For "(and (any_extend(shl val, N)), shifted-mask)", the`and` Op
3144
// demands at least 'Width' bits (after dag-combiner). This together with
3145
// `any_extend` Op (undefined higher bits) indicates missed combination
3146
// when lowering the 'and' IR instruction to an machine IR instruction.
3147
LLVM_DEBUG(
3148
dbgs()
3149
<< "Found large Width in bit-field-positioning -- this indicates no "
3150
"proper combining / constant folding was performed\n");
3151
return false;
3152
}
3153
3154
// BFI encompasses sufficiently many nodes that it's worth inserting an extra
3155
// LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
3156
// amount. BiggerPattern is true when this pattern is being matched for BFI,
3157
// BiggerPattern is false when this pattern is being matched for UBFIZ, in
3158
// which case it is not profitable to insert an extra shift.
3159
if (ShlImm != uint64_t(DstLSB) && !BiggerPattern)
3160
return false;
3161
3162
Src = getLeftShift(CurDAG, ShlOp0, ShlImm - DstLSB);
3163
return true;
3164
}
3165
3166
// For node (shl (and val, mask), N)), returns true if the node is equivalent to
3167
// UBFIZ.
3168
static bool isSeveralBitsPositioningOpFromShl(const uint64_t ShlImm, SDValue Op,
3169
SDValue &Src, int &DstLSB,
3170
int &Width) {
3171
// Caller should have verified that N is a left shift with constant shift
3172
// amount; asserts that.
3173
assert(Op.getOpcode() == ISD::SHL &&
3174
"Op.getNode() should be a SHL node to call this function");
3175
assert(isIntImmediateEq(Op.getOperand(1), ShlImm) &&
3176
"Op.getNode() should shift ShlImm to call this function");
3177
3178
uint64_t AndImm = 0;
3179
SDValue Op0 = Op.getOperand(0);
3180
if (!isOpcWithIntImmediate(Op0.getNode(), ISD::AND, AndImm))
3181
return false;
3182
3183
const uint64_t ShiftedAndImm = ((AndImm << ShlImm) >> ShlImm);
3184
if (isMask_64(ShiftedAndImm)) {
3185
// AndImm is a superset of (AllOnes >> ShlImm); in other words, AndImm
3186
// should end with Mask, and could be prefixed with random bits if those
3187
// bits are shifted out.
3188
//
3189
// For example, xyz11111 (with {x,y,z} being 0 or 1) is fine if ShlImm >= 3;
3190
// the AND result corresponding to those bits are shifted out, so it's fine
3191
// to not extract them.
3192
Width = llvm::countr_one(ShiftedAndImm);
3193
DstLSB = ShlImm;
3194
Src = Op0.getOperand(0);
3195
return true;
3196
}
3197
return false;
3198
}
3199
3200
static bool isBitfieldPositioningOpFromShl(SelectionDAG *CurDAG, SDValue Op,
3201
bool BiggerPattern,
3202
const uint64_t NonZeroBits,
3203
SDValue &Src, int &DstLSB,
3204
int &Width) {
3205
assert(isShiftedMask_64(NonZeroBits) && "Caller guaranteed");
3206
3207
EVT VT = Op.getValueType();
3208
assert((VT == MVT::i32 || VT == MVT::i64) &&
3209
"Caller guarantees that type is i32 or i64");
3210
(void)VT;
3211
3212
uint64_t ShlImm;
3213
if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
3214
return false;
3215
3216
if (!BiggerPattern && !Op.hasOneUse())
3217
return false;
3218
3219
if (isSeveralBitsPositioningOpFromShl(ShlImm, Op, Src, DstLSB, Width))
3220
return true;
3221
3222
DstLSB = llvm::countr_zero(NonZeroBits);
3223
Width = llvm::countr_one(NonZeroBits >> DstLSB);
3224
3225
if (ShlImm != uint64_t(DstLSB) && !BiggerPattern)
3226
return false;
3227
3228
Src = getLeftShift(CurDAG, Op.getOperand(0), ShlImm - DstLSB);
3229
return true;
3230
}
3231
3232
static bool isShiftedMask(uint64_t Mask, EVT VT) {
3233
assert(VT == MVT::i32 || VT == MVT::i64);
3234
if (VT == MVT::i32)
3235
return isShiftedMask_32(Mask);
3236
return isShiftedMask_64(Mask);
3237
}
3238
3239
// Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
3240
// inserted only sets known zero bits.
3241
static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) {
3242
assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
3243
3244
EVT VT = N->getValueType(0);
3245
if (VT != MVT::i32 && VT != MVT::i64)
3246
return false;
3247
3248
unsigned BitWidth = VT.getSizeInBits();
3249
3250
uint64_t OrImm;
3251
if (!isOpcWithIntImmediate(N, ISD::OR, OrImm))
3252
return false;
3253
3254
// Skip this transformation if the ORR immediate can be encoded in the ORR.
3255
// Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
3256
// performance neutral.
3257
if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth))
3258
return false;
3259
3260
uint64_t MaskImm;
3261
SDValue And = N->getOperand(0);
3262
// Must be a single use AND with an immediate operand.
3263
if (!And.hasOneUse() ||
3264
!isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm))
3265
return false;
3266
3267
// Compute the Known Zero for the AND as this allows us to catch more general
3268
// cases than just looking for AND with imm.
3269
KnownBits Known = CurDAG->computeKnownBits(And);
3270
3271
// Non-zero in the sense that they're not provably zero, which is the key
3272
// point if we want to use this value.
3273
uint64_t NotKnownZero = (~Known.Zero).getZExtValue();
3274
3275
// The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
3276
if (!isShiftedMask(Known.Zero.getZExtValue(), VT))
3277
return false;
3278
3279
// The bits being inserted must only set those bits that are known to be zero.
3280
if ((OrImm & NotKnownZero) != 0) {
3281
// FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
3282
// currently handle this case.
3283
return false;
3284
}
3285
3286
// BFI/BFXIL dst, src, #lsb, #width.
3287
int LSB = llvm::countr_one(NotKnownZero);
3288
int Width = BitWidth - APInt(BitWidth, NotKnownZero).popcount();
3289
3290
// BFI/BFXIL is an alias of BFM, so translate to BFM operands.
3291
unsigned ImmR = (BitWidth - LSB) % BitWidth;
3292
unsigned ImmS = Width - 1;
3293
3294
// If we're creating a BFI instruction avoid cases where we need more
3295
// instructions to materialize the BFI constant as compared to the original
3296
// ORR. A BFXIL will use the same constant as the original ORR, so the code
3297
// should be no worse in this case.
3298
bool IsBFI = LSB != 0;
3299
uint64_t BFIImm = OrImm >> LSB;
3300
if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) {
3301
// We have a BFI instruction and we know the constant can't be materialized
3302
// with a ORR-immediate with the zero register.
3303
unsigned OrChunks = 0, BFIChunks = 0;
3304
for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) {
3305
if (((OrImm >> Shift) & 0xFFFF) != 0)
3306
++OrChunks;
3307
if (((BFIImm >> Shift) & 0xFFFF) != 0)
3308
++BFIChunks;
3309
}
3310
if (BFIChunks > OrChunks)
3311
return false;
3312
}
3313
3314
// Materialize the constant to be inserted.
3315
SDLoc DL(N);
3316
unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm;
3317
SDNode *MOVI = CurDAG->getMachineNode(
3318
MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT));
3319
3320
// Create the BFI/BFXIL instruction.
3321
SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0),
3322
CurDAG->getTargetConstant(ImmR, DL, VT),
3323
CurDAG->getTargetConstant(ImmS, DL, VT)};
3324
unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
3325
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3326
return true;
3327
}
3328
3329
static bool isWorthFoldingIntoOrrWithShift(SDValue Dst, SelectionDAG *CurDAG,
3330
SDValue &ShiftedOperand,
3331
uint64_t &EncodedShiftImm) {
3332
// Avoid folding Dst into ORR-with-shift if Dst has other uses than ORR.
3333
if (!Dst.hasOneUse())
3334
return false;
3335
3336
EVT VT = Dst.getValueType();
3337
assert((VT == MVT::i32 || VT == MVT::i64) &&
3338
"Caller should guarantee that VT is one of i32 or i64");
3339
const unsigned SizeInBits = VT.getSizeInBits();
3340
3341
SDLoc DL(Dst.getNode());
3342
uint64_t AndImm, ShlImm;
3343
if (isOpcWithIntImmediate(Dst.getNode(), ISD::AND, AndImm) &&
3344
isShiftedMask_64(AndImm)) {
3345
// Avoid transforming 'DstOp0' if it has other uses than the AND node.
3346
SDValue DstOp0 = Dst.getOperand(0);
3347
if (!DstOp0.hasOneUse())
3348
return false;
3349
3350
// An example to illustrate the transformation
3351
// From:
3352
// lsr x8, x1, #1
3353
// and x8, x8, #0x3f80
3354
// bfxil x8, x1, #0, #7
3355
// To:
3356
// and x8, x23, #0x7f
3357
// ubfx x9, x23, #8, #7
3358
// orr x23, x8, x9, lsl #7
3359
//
3360
// The number of instructions remains the same, but ORR is faster than BFXIL
3361
// on many AArch64 processors (or as good as BFXIL if not faster). Besides,
3362
// the dependency chain is improved after the transformation.
3363
uint64_t SrlImm;
3364
if (isOpcWithIntImmediate(DstOp0.getNode(), ISD::SRL, SrlImm)) {
3365
uint64_t NumTrailingZeroInShiftedMask = llvm::countr_zero(AndImm);
3366
if ((SrlImm + NumTrailingZeroInShiftedMask) < SizeInBits) {
3367
unsigned MaskWidth =
3368
llvm::countr_one(AndImm >> NumTrailingZeroInShiftedMask);
3369
unsigned UBFMOpc =
3370
(VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
3371
SDNode *UBFMNode = CurDAG->getMachineNode(
3372
UBFMOpc, DL, VT, DstOp0.getOperand(0),
3373
CurDAG->getTargetConstant(SrlImm + NumTrailingZeroInShiftedMask, DL,
3374
VT),
3375
CurDAG->getTargetConstant(
3376
SrlImm + NumTrailingZeroInShiftedMask + MaskWidth - 1, DL, VT));
3377
ShiftedOperand = SDValue(UBFMNode, 0);
3378
EncodedShiftImm = AArch64_AM::getShifterImm(
3379
AArch64_AM::LSL, NumTrailingZeroInShiftedMask);
3380
return true;
3381
}
3382
}
3383
return false;
3384
}
3385
3386
if (isOpcWithIntImmediate(Dst.getNode(), ISD::SHL, ShlImm)) {
3387
ShiftedOperand = Dst.getOperand(0);
3388
EncodedShiftImm = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm);
3389
return true;
3390
}
3391
3392
uint64_t SrlImm;
3393
if (isOpcWithIntImmediate(Dst.getNode(), ISD::SRL, SrlImm)) {
3394
ShiftedOperand = Dst.getOperand(0);
3395
EncodedShiftImm = AArch64_AM::getShifterImm(AArch64_AM::LSR, SrlImm);
3396
return true;
3397
}
3398
return false;
3399
}
3400
3401
// Given an 'ISD::OR' node that is going to be selected as BFM, analyze
3402
// the operands and select it to AArch64::ORR with shifted registers if
3403
// that's more efficient. Returns true iff selection to AArch64::ORR happens.
3404
static bool tryOrrWithShift(SDNode *N, SDValue OrOpd0, SDValue OrOpd1,
3405
SDValue Src, SDValue Dst, SelectionDAG *CurDAG,
3406
const bool BiggerPattern) {
3407
EVT VT = N->getValueType(0);
3408
assert(N->getOpcode() == ISD::OR && "Expect N to be an OR node");
3409
assert(((N->getOperand(0) == OrOpd0 && N->getOperand(1) == OrOpd1) ||
3410
(N->getOperand(1) == OrOpd0 && N->getOperand(0) == OrOpd1)) &&
3411
"Expect OrOpd0 and OrOpd1 to be operands of ISD::OR");
3412
assert((VT == MVT::i32 || VT == MVT::i64) &&
3413
"Expect result type to be i32 or i64 since N is combinable to BFM");
3414
SDLoc DL(N);
3415
3416
// Bail out if BFM simplifies away one node in BFM Dst.
3417
if (OrOpd1 != Dst)
3418
return false;
3419
3420
const unsigned OrrOpc = (VT == MVT::i32) ? AArch64::ORRWrs : AArch64::ORRXrs;
3421
// For "BFM Rd, Rn, #immr, #imms", it's known that BFM simplifies away fewer
3422
// nodes from Rn (or inserts additional shift node) if BiggerPattern is true.
3423
if (BiggerPattern) {
3424
uint64_t SrcAndImm;
3425
if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::AND, SrcAndImm) &&
3426
isMask_64(SrcAndImm) && OrOpd0.getOperand(0) == Src) {
3427
// OrOpd0 = AND Src, #Mask
3428
// So BFM simplifies away one AND node from Src and doesn't simplify away
3429
// nodes from Dst. If ORR with left-shifted operand also simplifies away
3430
// one node (from Rd), ORR is better since it has higher throughput and
3431
// smaller latency than BFM on many AArch64 processors (and for the rest
3432
// ORR is at least as good as BFM).
3433
SDValue ShiftedOperand;
3434
uint64_t EncodedShiftImm;
3435
if (isWorthFoldingIntoOrrWithShift(Dst, CurDAG, ShiftedOperand,
3436
EncodedShiftImm)) {
3437
SDValue Ops[] = {OrOpd0, ShiftedOperand,
3438
CurDAG->getTargetConstant(EncodedShiftImm, DL, VT)};
3439
CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3440
return true;
3441
}
3442
}
3443
return false;
3444
}
3445
3446
assert((!BiggerPattern) && "BiggerPattern should be handled above");
3447
3448
uint64_t ShlImm;
3449
if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::SHL, ShlImm)) {
3450
if (OrOpd0.getOperand(0) == Src && OrOpd0.hasOneUse()) {
3451
SDValue Ops[] = {
3452
Dst, Src,
3453
CurDAG->getTargetConstant(
3454
AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm), DL, VT)};
3455
CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3456
return true;
3457
}
3458
3459
// Select the following pattern to left-shifted operand rather than BFI.
3460
// %val1 = op ..
3461
// %val2 = shl %val1, #imm
3462
// %res = or %val1, %val2
3463
//
3464
// If N is selected to be BFI, we know that
3465
// 1) OrOpd0 would be the operand from which extract bits (i.e., folded into
3466
// BFI) 2) OrOpd1 would be the destination operand (i.e., preserved)
3467
//
3468
// Instead of selecting N to BFI, fold OrOpd0 as a left shift directly.
3469
if (OrOpd0.getOperand(0) == OrOpd1) {
3470
SDValue Ops[] = {
3471
OrOpd1, OrOpd1,
3472
CurDAG->getTargetConstant(
3473
AArch64_AM::getShifterImm(AArch64_AM::LSL, ShlImm), DL, VT)};
3474
CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3475
return true;
3476
}
3477
}
3478
3479
uint64_t SrlImm;
3480
if (isOpcWithIntImmediate(OrOpd0.getNode(), ISD::SRL, SrlImm)) {
3481
// Select the following pattern to right-shifted operand rather than BFXIL.
3482
// %val1 = op ..
3483
// %val2 = lshr %val1, #imm
3484
// %res = or %val1, %val2
3485
//
3486
// If N is selected to be BFXIL, we know that
3487
// 1) OrOpd0 would be the operand from which extract bits (i.e., folded into
3488
// BFXIL) 2) OrOpd1 would be the destination operand (i.e., preserved)
3489
//
3490
// Instead of selecting N to BFXIL, fold OrOpd0 as a right shift directly.
3491
if (OrOpd0.getOperand(0) == OrOpd1) {
3492
SDValue Ops[] = {
3493
OrOpd1, OrOpd1,
3494
CurDAG->getTargetConstant(
3495
AArch64_AM::getShifterImm(AArch64_AM::LSR, SrlImm), DL, VT)};
3496
CurDAG->SelectNodeTo(N, OrrOpc, VT, Ops);
3497
return true;
3498
}
3499
}
3500
3501
return false;
3502
}
3503
3504
static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits,
3505
SelectionDAG *CurDAG) {
3506
assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
3507
3508
EVT VT = N->getValueType(0);
3509
if (VT != MVT::i32 && VT != MVT::i64)
3510
return false;
3511
3512
unsigned BitWidth = VT.getSizeInBits();
3513
3514
// Because of simplify-demanded-bits in DAGCombine, involved masks may not
3515
// have the expected shape. Try to undo that.
3516
3517
unsigned NumberOfIgnoredLowBits = UsefulBits.countr_zero();
3518
unsigned NumberOfIgnoredHighBits = UsefulBits.countl_zero();
3519
3520
// Given a OR operation, check if we have the following pattern
3521
// ubfm c, b, imm, imm2 (or something that does the same jobs, see
3522
// isBitfieldExtractOp)
3523
// d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
3524
// countTrailingZeros(mask2) == imm2 - imm + 1
3525
// f = d | c
3526
// if yes, replace the OR instruction with:
3527
// f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
3528
3529
// OR is commutative, check all combinations of operand order and values of
3530
// BiggerPattern, i.e.
3531
// Opd0, Opd1, BiggerPattern=false
3532
// Opd1, Opd0, BiggerPattern=false
3533
// Opd0, Opd1, BiggerPattern=true
3534
// Opd1, Opd0, BiggerPattern=true
3535
// Several of these combinations may match, so check with BiggerPattern=false
3536
// first since that will produce better results by matching more instructions
3537
// and/or inserting fewer extra instructions.
3538
for (int I = 0; I < 4; ++I) {
3539
3540
SDValue Dst, Src;
3541
unsigned ImmR, ImmS;
3542
bool BiggerPattern = I / 2;
3543
SDValue OrOpd0Val = N->getOperand(I % 2);
3544
SDNode *OrOpd0 = OrOpd0Val.getNode();
3545
SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
3546
SDNode *OrOpd1 = OrOpd1Val.getNode();
3547
3548
unsigned BFXOpc;
3549
int DstLSB, Width;
3550
if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
3551
NumberOfIgnoredLowBits, BiggerPattern)) {
3552
// Check that the returned opcode is compatible with the pattern,
3553
// i.e., same type and zero extended (U and not S)
3554
if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
3555
(BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
3556
continue;
3557
3558
// Compute the width of the bitfield insertion
3559
DstLSB = 0;
3560
Width = ImmS - ImmR + 1;
3561
// FIXME: This constraint is to catch bitfield insertion we may
3562
// want to widen the pattern if we want to grab general bitfied
3563
// move case
3564
if (Width <= 0)
3565
continue;
3566
3567
// If the mask on the insertee is correct, we have a BFXIL operation. We
3568
// can share the ImmR and ImmS values from the already-computed UBFM.
3569
} else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val,
3570
BiggerPattern,
3571
Src, DstLSB, Width)) {
3572
ImmR = (BitWidth - DstLSB) % BitWidth;
3573
ImmS = Width - 1;
3574
} else
3575
continue;
3576
3577
// Check the second part of the pattern
3578
EVT VT = OrOpd1Val.getValueType();
3579
assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
3580
3581
// Compute the Known Zero for the candidate of the first operand.
3582
// This allows to catch more general case than just looking for
3583
// AND with imm. Indeed, simplify-demanded-bits may have removed
3584
// the AND instruction because it proves it was useless.
3585
KnownBits Known = CurDAG->computeKnownBits(OrOpd1Val);
3586
3587
// Check if there is enough room for the second operand to appear
3588
// in the first one
3589
APInt BitsToBeInserted =
3590
APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width);
3591
3592
if ((BitsToBeInserted & ~Known.Zero) != 0)
3593
continue;
3594
3595
// Set the first operand
3596
uint64_t Imm;
3597
if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
3598
isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
3599
// In that case, we can eliminate the AND
3600
Dst = OrOpd1->getOperand(0);
3601
else
3602
// Maybe the AND has been removed by simplify-demanded-bits
3603
// or is useful because it discards more bits
3604
Dst = OrOpd1Val;
3605
3606
// Before selecting ISD::OR node to AArch64::BFM, see if an AArch64::ORR
3607
// with shifted operand is more efficient.
3608
if (tryOrrWithShift(N, OrOpd0Val, OrOpd1Val, Src, Dst, CurDAG,
3609
BiggerPattern))
3610
return true;
3611
3612
// both parts match
3613
SDLoc DL(N);
3614
SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT),
3615
CurDAG->getTargetConstant(ImmS, DL, VT)};
3616
unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
3617
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3618
return true;
3619
}
3620
3621
// Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
3622
// Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
3623
// mask (e.g., 0x000ffff0).
3624
uint64_t Mask0Imm, Mask1Imm;
3625
SDValue And0 = N->getOperand(0);
3626
SDValue And1 = N->getOperand(1);
3627
if (And0.hasOneUse() && And1.hasOneUse() &&
3628
isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) &&
3629
isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) &&
3630
APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) &&
3631
(isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) {
3632
3633
// ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
3634
// (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
3635
// bits to be inserted.
3636
if (isShiftedMask(Mask0Imm, VT)) {
3637
std::swap(And0, And1);
3638
std::swap(Mask0Imm, Mask1Imm);
3639
}
3640
3641
SDValue Src = And1->getOperand(0);
3642
SDValue Dst = And0->getOperand(0);
3643
unsigned LSB = llvm::countr_zero(Mask1Imm);
3644
int Width = BitWidth - APInt(BitWidth, Mask0Imm).popcount();
3645
3646
// The BFXIL inserts the low-order bits from a source register, so right
3647
// shift the needed bits into place.
3648
SDLoc DL(N);
3649
unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
3650
uint64_t LsrImm = LSB;
3651
if (Src->hasOneUse() &&
3652
isOpcWithIntImmediate(Src.getNode(), ISD::SRL, LsrImm) &&
3653
(LsrImm + LSB) < BitWidth) {
3654
Src = Src->getOperand(0);
3655
LsrImm += LSB;
3656
}
3657
3658
SDNode *LSR = CurDAG->getMachineNode(
3659
ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LsrImm, DL, VT),
3660
CurDAG->getTargetConstant(BitWidth - 1, DL, VT));
3661
3662
// BFXIL is an alias of BFM, so translate to BFM operands.
3663
unsigned ImmR = (BitWidth - LSB) % BitWidth;
3664
unsigned ImmS = Width - 1;
3665
3666
// Create the BFXIL instruction.
3667
SDValue Ops[] = {Dst, SDValue(LSR, 0),
3668
CurDAG->getTargetConstant(ImmR, DL, VT),
3669
CurDAG->getTargetConstant(ImmS, DL, VT)};
3670
unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
3671
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3672
return true;
3673
}
3674
3675
return false;
3676
}
3677
3678
bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) {
3679
if (N->getOpcode() != ISD::OR)
3680
return false;
3681
3682
APInt NUsefulBits;
3683
getUsefulBits(SDValue(N, 0), NUsefulBits);
3684
3685
// If all bits are not useful, just return UNDEF.
3686
if (!NUsefulBits) {
3687
CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
3688
return true;
3689
}
3690
3691
if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG))
3692
return true;
3693
3694
return tryBitfieldInsertOpFromOrAndImm(N, CurDAG);
3695
}
3696
3697
/// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
3698
/// equivalent of a left shift by a constant amount followed by an and masking
3699
/// out a contiguous set of bits.
3700
bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) {
3701
if (N->getOpcode() != ISD::AND)
3702
return false;
3703
3704
EVT VT = N->getValueType(0);
3705
if (VT != MVT::i32 && VT != MVT::i64)
3706
return false;
3707
3708
SDValue Op0;
3709
int DstLSB, Width;
3710
if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
3711
Op0, DstLSB, Width))
3712
return false;
3713
3714
// ImmR is the rotate right amount.
3715
unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
3716
// ImmS is the most significant bit of the source to be moved.
3717
unsigned ImmS = Width - 1;
3718
3719
SDLoc DL(N);
3720
SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
3721
CurDAG->getTargetConstant(ImmS, DL, VT)};
3722
unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
3723
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3724
return true;
3725
}
3726
3727
/// tryShiftAmountMod - Take advantage of built-in mod of shift amount in
3728
/// variable shift/rotate instructions.
3729
bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
3730
EVT VT = N->getValueType(0);
3731
3732
unsigned Opc;
3733
switch (N->getOpcode()) {
3734
case ISD::ROTR:
3735
Opc = (VT == MVT::i32) ? AArch64::RORVWr : AArch64::RORVXr;
3736
break;
3737
case ISD::SHL:
3738
Opc = (VT == MVT::i32) ? AArch64::LSLVWr : AArch64::LSLVXr;
3739
break;
3740
case ISD::SRL:
3741
Opc = (VT == MVT::i32) ? AArch64::LSRVWr : AArch64::LSRVXr;
3742
break;
3743
case ISD::SRA:
3744
Opc = (VT == MVT::i32) ? AArch64::ASRVWr : AArch64::ASRVXr;
3745
break;
3746
default:
3747
return false;
3748
}
3749
3750
uint64_t Size;
3751
uint64_t Bits;
3752
if (VT == MVT::i32) {
3753
Bits = 5;
3754
Size = 32;
3755
} else if (VT == MVT::i64) {
3756
Bits = 6;
3757
Size = 64;
3758
} else
3759
return false;
3760
3761
SDValue ShiftAmt = N->getOperand(1);
3762
SDLoc DL(N);
3763
SDValue NewShiftAmt;
3764
3765
// Skip over an extend of the shift amount.
3766
if (ShiftAmt->getOpcode() == ISD::ZERO_EXTEND ||
3767
ShiftAmt->getOpcode() == ISD::ANY_EXTEND)
3768
ShiftAmt = ShiftAmt->getOperand(0);
3769
3770
if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
3771
SDValue Add0 = ShiftAmt->getOperand(0);
3772
SDValue Add1 = ShiftAmt->getOperand(1);
3773
uint64_t Add0Imm;
3774
uint64_t Add1Imm;
3775
if (isIntImmediate(Add1, Add1Imm) && (Add1Imm % Size == 0)) {
3776
// If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
3777
// to avoid the ADD/SUB.
3778
NewShiftAmt = Add0;
3779
} else if (ShiftAmt->getOpcode() == ISD::SUB &&
3780
isIntImmediate(Add0, Add0Imm) && Add0Imm != 0 &&
3781
(Add0Imm % Size == 0)) {
3782
// If we are shifting by N-X where N == 0 mod Size, then just shift by -X
3783
// to generate a NEG instead of a SUB from a constant.
3784
unsigned NegOpc;
3785
unsigned ZeroReg;
3786
EVT SubVT = ShiftAmt->getValueType(0);
3787
if (SubVT == MVT::i32) {
3788
NegOpc = AArch64::SUBWrr;
3789
ZeroReg = AArch64::WZR;
3790
} else {
3791
assert(SubVT == MVT::i64);
3792
NegOpc = AArch64::SUBXrr;
3793
ZeroReg = AArch64::XZR;
3794
}
3795
SDValue Zero =
3796
CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT);
3797
MachineSDNode *Neg =
3798
CurDAG->getMachineNode(NegOpc, DL, SubVT, Zero, Add1);
3799
NewShiftAmt = SDValue(Neg, 0);
3800
} else if (ShiftAmt->getOpcode() == ISD::SUB &&
3801
isIntImmediate(Add0, Add0Imm) && (Add0Imm % Size == Size - 1)) {
3802
// If we are shifting by N-X where N == -1 mod Size, then just shift by ~X
3803
// to generate a NOT instead of a SUB from a constant.
3804
unsigned NotOpc;
3805
unsigned ZeroReg;
3806
EVT SubVT = ShiftAmt->getValueType(0);
3807
if (SubVT == MVT::i32) {
3808
NotOpc = AArch64::ORNWrr;
3809
ZeroReg = AArch64::WZR;
3810
} else {
3811
assert(SubVT == MVT::i64);
3812
NotOpc = AArch64::ORNXrr;
3813
ZeroReg = AArch64::XZR;
3814
}
3815
SDValue Zero =
3816
CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT);
3817
MachineSDNode *Not =
3818
CurDAG->getMachineNode(NotOpc, DL, SubVT, Zero, Add1);
3819
NewShiftAmt = SDValue(Not, 0);
3820
} else
3821
return false;
3822
} else {
3823
// If the shift amount is masked with an AND, check that the mask covers the
3824
// bits that are implicitly ANDed off by the above opcodes and if so, skip
3825
// the AND.
3826
uint64_t MaskImm;
3827
if (!isOpcWithIntImmediate(ShiftAmt.getNode(), ISD::AND, MaskImm) &&
3828
!isOpcWithIntImmediate(ShiftAmt.getNode(), AArch64ISD::ANDS, MaskImm))
3829
return false;
3830
3831
if ((unsigned)llvm::countr_one(MaskImm) < Bits)
3832
return false;
3833
3834
NewShiftAmt = ShiftAmt->getOperand(0);
3835
}
3836
3837
// Narrow/widen the shift amount to match the size of the shift operation.
3838
if (VT == MVT::i32)
3839
NewShiftAmt = narrowIfNeeded(CurDAG, NewShiftAmt);
3840
else if (VT == MVT::i64 && NewShiftAmt->getValueType(0) == MVT::i32) {
3841
SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, DL, MVT::i32);
3842
MachineSDNode *Ext = CurDAG->getMachineNode(
3843
AArch64::SUBREG_TO_REG, DL, VT,
3844
CurDAG->getTargetConstant(0, DL, MVT::i64), NewShiftAmt, SubReg);
3845
NewShiftAmt = SDValue(Ext, 0);
3846
}
3847
3848
SDValue Ops[] = {N->getOperand(0), NewShiftAmt};
3849
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
3850
return true;
3851
}
3852
3853
static bool checkCVTFixedPointOperandWithFBits(SelectionDAG *CurDAG, SDValue N,
3854
SDValue &FixedPos,
3855
unsigned RegWidth,
3856
bool isReciprocal) {
3857
APFloat FVal(0.0);
3858
if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
3859
FVal = CN->getValueAPF();
3860
else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
3861
// Some otherwise illegal constants are allowed in this case.
3862
if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
3863
!isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
3864
return false;
3865
3866
ConstantPoolSDNode *CN =
3867
dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
3868
FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
3869
} else
3870
return false;
3871
3872
// An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
3873
// is between 1 and 32 for a destination w-register, or 1 and 64 for an
3874
// x-register.
3875
//
3876
// By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
3877
// want THIS_NODE to be 2^fbits. This is much easier to deal with using
3878
// integers.
3879
bool IsExact;
3880
3881
if (isReciprocal)
3882
if (!FVal.getExactInverse(&FVal))
3883
return false;
3884
3885
// fbits is between 1 and 64 in the worst-case, which means the fmul
3886
// could have 2^64 as an actual operand. Need 65 bits of precision.
3887
APSInt IntVal(65, true);
3888
FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
3889
3890
// N.b. isPowerOf2 also checks for > 0.
3891
if (!IsExact || !IntVal.isPowerOf2())
3892
return false;
3893
unsigned FBits = IntVal.logBase2();
3894
3895
// Checks above should have guaranteed that we haven't lost information in
3896
// finding FBits, but it must still be in range.
3897
if (FBits == 0 || FBits > RegWidth) return false;
3898
3899
FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
3900
return true;
3901
}
3902
3903
bool AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
3904
unsigned RegWidth) {
3905
return checkCVTFixedPointOperandWithFBits(CurDAG, N, FixedPos, RegWidth,
3906
false);
3907
}
3908
3909
bool AArch64DAGToDAGISel::SelectCVTFixedPosRecipOperand(SDValue N,
3910
SDValue &FixedPos,
3911
unsigned RegWidth) {
3912
return checkCVTFixedPointOperandWithFBits(CurDAG, N, FixedPos, RegWidth,
3913
true);
3914
}
3915
3916
// Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
3917
// of the string and obtains the integer values from them and combines these
3918
// into a single value to be used in the MRS/MSR instruction.
3919
static int getIntOperandFromRegisterString(StringRef RegString) {
3920
SmallVector<StringRef, 5> Fields;
3921
RegString.split(Fields, ':');
3922
3923
if (Fields.size() == 1)
3924
return -1;
3925
3926
assert(Fields.size() == 5
3927
&& "Invalid number of fields in read register string");
3928
3929
SmallVector<int, 5> Ops;
3930
bool AllIntFields = true;
3931
3932
for (StringRef Field : Fields) {
3933
unsigned IntField;
3934
AllIntFields &= !Field.getAsInteger(10, IntField);
3935
Ops.push_back(IntField);
3936
}
3937
3938
assert(AllIntFields &&
3939
"Unexpected non-integer value in special register string.");
3940
(void)AllIntFields;
3941
3942
// Need to combine the integer fields of the string into a single value
3943
// based on the bit encoding of MRS/MSR instruction.
3944
return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
3945
(Ops[3] << 3) | (Ops[4]);
3946
}
3947
3948
// Lower the read_register intrinsic to an MRS instruction node if the special
3949
// register string argument is either of the form detailed in the ALCE (the
3950
// form described in getIntOperandsFromRegsterString) or is a named register
3951
// known by the MRS SysReg mapper.
3952
bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) {
3953
const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
3954
const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
3955
SDLoc DL(N);
3956
3957
bool ReadIs128Bit = N->getOpcode() == AArch64ISD::MRRS;
3958
3959
unsigned Opcode64Bit = AArch64::MRS;
3960
int Imm = getIntOperandFromRegisterString(RegString->getString());
3961
if (Imm == -1) {
3962
// No match, Use the sysreg mapper to map the remaining possible strings to
3963
// the value for the register to be used for the instruction operand.
3964
const auto *TheReg =
3965
AArch64SysReg::lookupSysRegByName(RegString->getString());
3966
if (TheReg && TheReg->Readable &&
3967
TheReg->haveFeatures(Subtarget->getFeatureBits()))
3968
Imm = TheReg->Encoding;
3969
else
3970
Imm = AArch64SysReg::parseGenericRegister(RegString->getString());
3971
3972
if (Imm == -1) {
3973
// Still no match, see if this is "pc" or give up.
3974
if (!ReadIs128Bit && RegString->getString() == "pc") {
3975
Opcode64Bit = AArch64::ADR;
3976
Imm = 0;
3977
} else {
3978
return false;
3979
}
3980
}
3981
}
3982
3983
SDValue InChain = N->getOperand(0);
3984
SDValue SysRegImm = CurDAG->getTargetConstant(Imm, DL, MVT::i32);
3985
if (!ReadIs128Bit) {
3986
CurDAG->SelectNodeTo(N, Opcode64Bit, MVT::i64, MVT::Other /* Chain */,
3987
{SysRegImm, InChain});
3988
} else {
3989
SDNode *MRRS = CurDAG->getMachineNode(
3990
AArch64::MRRS, DL,
3991
{MVT::Untyped /* XSeqPair */, MVT::Other /* Chain */},
3992
{SysRegImm, InChain});
3993
3994
// Sysregs are not endian. The even register always contains the low half
3995
// of the register.
3996
SDValue Lo = CurDAG->getTargetExtractSubreg(AArch64::sube64, DL, MVT::i64,
3997
SDValue(MRRS, 0));
3998
SDValue Hi = CurDAG->getTargetExtractSubreg(AArch64::subo64, DL, MVT::i64,
3999
SDValue(MRRS, 0));
4000
SDValue OutChain = SDValue(MRRS, 1);
4001
4002
ReplaceUses(SDValue(N, 0), Lo);
4003
ReplaceUses(SDValue(N, 1), Hi);
4004
ReplaceUses(SDValue(N, 2), OutChain);
4005
};
4006
return true;
4007
}
4008
4009
// Lower the write_register intrinsic to an MSR instruction node if the special
4010
// register string argument is either of the form detailed in the ALCE (the
4011
// form described in getIntOperandsFromRegsterString) or is a named register
4012
// known by the MSR SysReg mapper.
4013
bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) {
4014
const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
4015
const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
4016
SDLoc DL(N);
4017
4018
bool WriteIs128Bit = N->getOpcode() == AArch64ISD::MSRR;
4019
4020
if (!WriteIs128Bit) {
4021
// Check if the register was one of those allowed as the pstatefield value
4022
// in the MSR (immediate) instruction. To accept the values allowed in the
4023
// pstatefield for the MSR (immediate) instruction, we also require that an
4024
// immediate value has been provided as an argument, we know that this is
4025
// the case as it has been ensured by semantic checking.
4026
auto trySelectPState = [&](auto PMapper, unsigned State) {
4027
if (PMapper) {
4028
assert(isa<ConstantSDNode>(N->getOperand(2)) &&
4029
"Expected a constant integer expression.");
4030
unsigned Reg = PMapper->Encoding;
4031
uint64_t Immed = N->getConstantOperandVal(2);
4032
CurDAG->SelectNodeTo(
4033
N, State, MVT::Other, CurDAG->getTargetConstant(Reg, DL, MVT::i32),
4034
CurDAG->getTargetConstant(Immed, DL, MVT::i16), N->getOperand(0));
4035
return true;
4036
}
4037
return false;
4038
};
4039
4040
if (trySelectPState(
4041
AArch64PState::lookupPStateImm0_15ByName(RegString->getString()),
4042
AArch64::MSRpstateImm4))
4043
return true;
4044
if (trySelectPState(
4045
AArch64PState::lookupPStateImm0_1ByName(RegString->getString()),
4046
AArch64::MSRpstateImm1))
4047
return true;
4048
}
4049
4050
int Imm = getIntOperandFromRegisterString(RegString->getString());
4051
if (Imm == -1) {
4052
// Use the sysreg mapper to attempt to map the remaining possible strings
4053
// to the value for the register to be used for the MSR (register)
4054
// instruction operand.
4055
auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
4056
if (TheReg && TheReg->Writeable &&
4057
TheReg->haveFeatures(Subtarget->getFeatureBits()))
4058
Imm = TheReg->Encoding;
4059
else
4060
Imm = AArch64SysReg::parseGenericRegister(RegString->getString());
4061
4062
if (Imm == -1)
4063
return false;
4064
}
4065
4066
SDValue InChain = N->getOperand(0);
4067
if (!WriteIs128Bit) {
4068
CurDAG->SelectNodeTo(N, AArch64::MSR, MVT::Other,
4069
CurDAG->getTargetConstant(Imm, DL, MVT::i32),
4070
N->getOperand(2), InChain);
4071
} else {
4072
// No endian swap. The lower half always goes into the even subreg, and the
4073
// higher half always into the odd supreg.
4074
SDNode *Pair = CurDAG->getMachineNode(
4075
TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped /* XSeqPair */,
4076
{CurDAG->getTargetConstant(AArch64::XSeqPairsClassRegClass.getID(), DL,
4077
MVT::i32),
4078
N->getOperand(2),
4079
CurDAG->getTargetConstant(AArch64::sube64, DL, MVT::i32),
4080
N->getOperand(3),
4081
CurDAG->getTargetConstant(AArch64::subo64, DL, MVT::i32)});
4082
4083
CurDAG->SelectNodeTo(N, AArch64::MSRR, MVT::Other,
4084
CurDAG->getTargetConstant(Imm, DL, MVT::i32),
4085
SDValue(Pair, 0), InChain);
4086
}
4087
4088
return true;
4089
}
4090
4091
/// We've got special pseudo-instructions for these
4092
bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
4093
unsigned Opcode;
4094
EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
4095
4096
// Leave IR for LSE if subtarget supports it.
4097
if (Subtarget->hasLSE()) return false;
4098
4099
if (MemTy == MVT::i8)
4100
Opcode = AArch64::CMP_SWAP_8;
4101
else if (MemTy == MVT::i16)
4102
Opcode = AArch64::CMP_SWAP_16;
4103
else if (MemTy == MVT::i32)
4104
Opcode = AArch64::CMP_SWAP_32;
4105
else if (MemTy == MVT::i64)
4106
Opcode = AArch64::CMP_SWAP_64;
4107
else
4108
llvm_unreachable("Unknown AtomicCmpSwap type");
4109
4110
MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32;
4111
SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
4112
N->getOperand(0)};
4113
SDNode *CmpSwap = CurDAG->getMachineNode(
4114
Opcode, SDLoc(N),
4115
CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops);
4116
4117
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4118
CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
4119
4120
ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
4121
ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
4122
CurDAG->RemoveDeadNode(N);
4123
4124
return true;
4125
}
4126
4127
bool AArch64DAGToDAGISel::SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm,
4128
SDValue &Shift) {
4129
if (!isa<ConstantSDNode>(N))
4130
return false;
4131
4132
SDLoc DL(N);
4133
uint64_t Val = cast<ConstantSDNode>(N)
4134
->getAPIntValue()
4135
.trunc(VT.getFixedSizeInBits())
4136
.getZExtValue();
4137
4138
switch (VT.SimpleTy) {
4139
case MVT::i8:
4140
// All immediates are supported.
4141
Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
4142
Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32);
4143
return true;
4144
case MVT::i16:
4145
case MVT::i32:
4146
case MVT::i64:
4147
// Support 8bit unsigned immediates.
4148
if (Val <= 255) {
4149
Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
4150
Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32);
4151
return true;
4152
}
4153
// Support 16bit unsigned immediates that are a multiple of 256.
4154
if (Val <= 65280 && Val % 256 == 0) {
4155
Shift = CurDAG->getTargetConstant(8, DL, MVT::i32);
4156
Imm = CurDAG->getTargetConstant(Val >> 8, DL, MVT::i32);
4157
return true;
4158
}
4159
break;
4160
default:
4161
break;
4162
}
4163
4164
return false;
4165
}
4166
4167
bool AArch64DAGToDAGISel::SelectSVEAddSubSSatImm(SDValue N, MVT VT,
4168
SDValue &Imm, SDValue &Shift,
4169
bool Negate) {
4170
if (!isa<ConstantSDNode>(N))
4171
return false;
4172
4173
SDLoc DL(N);
4174
int64_t Val = cast<ConstantSDNode>(N)
4175
->getAPIntValue()
4176
.trunc(VT.getFixedSizeInBits())
4177
.getSExtValue();
4178
4179
if (Negate)
4180
Val = -Val;
4181
4182
// Signed saturating instructions treat their immediate operand as unsigned,
4183
// whereas the related intrinsics define their operands to be signed. This
4184
// means we can only use the immediate form when the operand is non-negative.
4185
if (Val < 0)
4186
return false;
4187
4188
switch (VT.SimpleTy) {
4189
case MVT::i8:
4190
// All positive immediates are supported.
4191
Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
4192
Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32);
4193
return true;
4194
case MVT::i16:
4195
case MVT::i32:
4196
case MVT::i64:
4197
// Support 8bit positive immediates.
4198
if (Val <= 255) {
4199
Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
4200
Imm = CurDAG->getTargetConstant(Val, DL, MVT::i32);
4201
return true;
4202
}
4203
// Support 16bit positive immediates that are a multiple of 256.
4204
if (Val <= 65280 && Val % 256 == 0) {
4205
Shift = CurDAG->getTargetConstant(8, DL, MVT::i32);
4206
Imm = CurDAG->getTargetConstant(Val >> 8, DL, MVT::i32);
4207
return true;
4208
}
4209
break;
4210
default:
4211
break;
4212
}
4213
4214
return false;
4215
}
4216
4217
bool AArch64DAGToDAGISel::SelectSVECpyDupImm(SDValue N, MVT VT, SDValue &Imm,
4218
SDValue &Shift) {
4219
if (!isa<ConstantSDNode>(N))
4220
return false;
4221
4222
SDLoc DL(N);
4223
int64_t Val = cast<ConstantSDNode>(N)
4224
->getAPIntValue()
4225
.trunc(VT.getFixedSizeInBits())
4226
.getSExtValue();
4227
4228
switch (VT.SimpleTy) {
4229
case MVT::i8:
4230
// All immediates are supported.
4231
Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
4232
Imm = CurDAG->getTargetConstant(Val & 0xFF, DL, MVT::i32);
4233
return true;
4234
case MVT::i16:
4235
case MVT::i32:
4236
case MVT::i64:
4237
// Support 8bit signed immediates.
4238
if (Val >= -128 && Val <= 127) {
4239
Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
4240
Imm = CurDAG->getTargetConstant(Val & 0xFF, DL, MVT::i32);
4241
return true;
4242
}
4243
// Support 16bit signed immediates that are a multiple of 256.
4244
if (Val >= -32768 && Val <= 32512 && Val % 256 == 0) {
4245
Shift = CurDAG->getTargetConstant(8, DL, MVT::i32);
4246
Imm = CurDAG->getTargetConstant((Val >> 8) & 0xFF, DL, MVT::i32);
4247
return true;
4248
}
4249
break;
4250
default:
4251
break;
4252
}
4253
4254
return false;
4255
}
4256
4257
bool AArch64DAGToDAGISel::SelectSVESignedArithImm(SDValue N, SDValue &Imm) {
4258
if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
4259
int64_t ImmVal = CNode->getSExtValue();
4260
SDLoc DL(N);
4261
if (ImmVal >= -128 && ImmVal < 128) {
4262
Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32);
4263
return true;
4264
}
4265
}
4266
return false;
4267
}
4268
4269
bool AArch64DAGToDAGISel::SelectSVEArithImm(SDValue N, MVT VT, SDValue &Imm) {
4270
if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
4271
uint64_t ImmVal = CNode->getZExtValue();
4272
4273
switch (VT.SimpleTy) {
4274
case MVT::i8:
4275
ImmVal &= 0xFF;
4276
break;
4277
case MVT::i16:
4278
ImmVal &= 0xFFFF;
4279
break;
4280
case MVT::i32:
4281
ImmVal &= 0xFFFFFFFF;
4282
break;
4283
case MVT::i64:
4284
break;
4285
default:
4286
llvm_unreachable("Unexpected type");
4287
}
4288
4289
if (ImmVal < 256) {
4290
Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i32);
4291
return true;
4292
}
4293
}
4294
return false;
4295
}
4296
4297
bool AArch64DAGToDAGISel::SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm,
4298
bool Invert) {
4299
if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
4300
uint64_t ImmVal = CNode->getZExtValue();
4301
SDLoc DL(N);
4302
4303
if (Invert)
4304
ImmVal = ~ImmVal;
4305
4306
// Shift mask depending on type size.
4307
switch (VT.SimpleTy) {
4308
case MVT::i8:
4309
ImmVal &= 0xFF;
4310
ImmVal |= ImmVal << 8;
4311
ImmVal |= ImmVal << 16;
4312
ImmVal |= ImmVal << 32;
4313
break;
4314
case MVT::i16:
4315
ImmVal &= 0xFFFF;
4316
ImmVal |= ImmVal << 16;
4317
ImmVal |= ImmVal << 32;
4318
break;
4319
case MVT::i32:
4320
ImmVal &= 0xFFFFFFFF;
4321
ImmVal |= ImmVal << 32;
4322
break;
4323
case MVT::i64:
4324
break;
4325
default:
4326
llvm_unreachable("Unexpected type");
4327
}
4328
4329
uint64_t encoding;
4330
if (AArch64_AM::processLogicalImmediate(ImmVal, 64, encoding)) {
4331
Imm = CurDAG->getTargetConstant(encoding, DL, MVT::i64);
4332
return true;
4333
}
4334
}
4335
return false;
4336
}
4337
4338
// SVE shift intrinsics allow shift amounts larger than the element's bitwidth.
4339
// Rather than attempt to normalise everything we can sometimes saturate the
4340
// shift amount during selection. This function also allows for consistent
4341
// isel patterns by ensuring the resulting "Imm" node is of the i32 type
4342
// required by the instructions.
4343
bool AArch64DAGToDAGISel::SelectSVEShiftImm(SDValue N, uint64_t Low,
4344
uint64_t High, bool AllowSaturation,
4345
SDValue &Imm) {
4346
if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
4347
uint64_t ImmVal = CN->getZExtValue();
4348
4349
// Reject shift amounts that are too small.
4350
if (ImmVal < Low)
4351
return false;
4352
4353
// Reject or saturate shift amounts that are too big.
4354
if (ImmVal > High) {
4355
if (!AllowSaturation)
4356
return false;
4357
ImmVal = High;
4358
}
4359
4360
Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i32);
4361
return true;
4362
}
4363
4364
return false;
4365
}
4366
4367
bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode *N) {
4368
// tagp(FrameIndex, IRGstack, tag_offset):
4369
// since the offset between FrameIndex and IRGstack is a compile-time
4370
// constant, this can be lowered to a single ADDG instruction.
4371
if (!(isa<FrameIndexSDNode>(N->getOperand(1)))) {
4372
return false;
4373
}
4374
4375
SDValue IRG_SP = N->getOperand(2);
4376
if (IRG_SP->getOpcode() != ISD::INTRINSIC_W_CHAIN ||
4377
IRG_SP->getConstantOperandVal(1) != Intrinsic::aarch64_irg_sp) {
4378
return false;
4379
}
4380
4381
const TargetLowering *TLI = getTargetLowering();
4382
SDLoc DL(N);
4383
int FI = cast<FrameIndexSDNode>(N->getOperand(1))->getIndex();
4384
SDValue FiOp = CurDAG->getTargetFrameIndex(
4385
FI, TLI->getPointerTy(CurDAG->getDataLayout()));
4386
int TagOffset = N->getConstantOperandVal(3);
4387
4388
SDNode *Out = CurDAG->getMachineNode(
4389
AArch64::TAGPstack, DL, MVT::i64,
4390
{FiOp, CurDAG->getTargetConstant(0, DL, MVT::i64), N->getOperand(2),
4391
CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
4392
ReplaceNode(N, Out);
4393
return true;
4394
}
4395
4396
void AArch64DAGToDAGISel::SelectTagP(SDNode *N) {
4397
assert(isa<ConstantSDNode>(N->getOperand(3)) &&
4398
"llvm.aarch64.tagp third argument must be an immediate");
4399
if (trySelectStackSlotTagP(N))
4400
return;
4401
// FIXME: above applies in any case when offset between Op1 and Op2 is a
4402
// compile-time constant, not just for stack allocations.
4403
4404
// General case for unrelated pointers in Op1 and Op2.
4405
SDLoc DL(N);
4406
int TagOffset = N->getConstantOperandVal(3);
4407
SDNode *N1 = CurDAG->getMachineNode(AArch64::SUBP, DL, MVT::i64,
4408
{N->getOperand(1), N->getOperand(2)});
4409
SDNode *N2 = CurDAG->getMachineNode(AArch64::ADDXrr, DL, MVT::i64,
4410
{SDValue(N1, 0), N->getOperand(2)});
4411
SDNode *N3 = CurDAG->getMachineNode(
4412
AArch64::ADDG, DL, MVT::i64,
4413
{SDValue(N2, 0), CurDAG->getTargetConstant(0, DL, MVT::i64),
4414
CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
4415
ReplaceNode(N, N3);
4416
}
4417
4418
bool AArch64DAGToDAGISel::trySelectCastFixedLengthToScalableVector(SDNode *N) {
4419
assert(N->getOpcode() == ISD::INSERT_SUBVECTOR && "Invalid Node!");
4420
4421
// Bail when not a "cast" like insert_subvector.
4422
if (N->getConstantOperandVal(2) != 0)
4423
return false;
4424
if (!N->getOperand(0).isUndef())
4425
return false;
4426
4427
// Bail when normal isel should do the job.
4428
EVT VT = N->getValueType(0);
4429
EVT InVT = N->getOperand(1).getValueType();
4430
if (VT.isFixedLengthVector() || InVT.isScalableVector())
4431
return false;
4432
if (InVT.getSizeInBits() <= 128)
4433
return false;
4434
4435
// NOTE: We can only get here when doing fixed length SVE code generation.
4436
// We do manual selection because the types involved are not linked to real
4437
// registers (despite being legal) and must be coerced into SVE registers.
4438
4439
assert(VT.getSizeInBits().getKnownMinValue() == AArch64::SVEBitsPerBlock &&
4440
"Expected to insert into a packed scalable vector!");
4441
4442
SDLoc DL(N);
4443
auto RC = CurDAG->getTargetConstant(AArch64::ZPRRegClassID, DL, MVT::i64);
4444
ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT,
4445
N->getOperand(1), RC));
4446
return true;
4447
}
4448
4449
bool AArch64DAGToDAGISel::trySelectCastScalableToFixedLengthVector(SDNode *N) {
4450
assert(N->getOpcode() == ISD::EXTRACT_SUBVECTOR && "Invalid Node!");
4451
4452
// Bail when not a "cast" like extract_subvector.
4453
if (N->getConstantOperandVal(1) != 0)
4454
return false;
4455
4456
// Bail when normal isel can do the job.
4457
EVT VT = N->getValueType(0);
4458
EVT InVT = N->getOperand(0).getValueType();
4459
if (VT.isScalableVector() || InVT.isFixedLengthVector())
4460
return false;
4461
if (VT.getSizeInBits() <= 128)
4462
return false;
4463
4464
// NOTE: We can only get here when doing fixed length SVE code generation.
4465
// We do manual selection because the types involved are not linked to real
4466
// registers (despite being legal) and must be coerced into SVE registers.
4467
4468
assert(InVT.getSizeInBits().getKnownMinValue() == AArch64::SVEBitsPerBlock &&
4469
"Expected to extract from a packed scalable vector!");
4470
4471
SDLoc DL(N);
4472
auto RC = CurDAG->getTargetConstant(AArch64::ZPRRegClassID, DL, MVT::i64);
4473
ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT,
4474
N->getOperand(0), RC));
4475
return true;
4476
}
4477
4478
bool AArch64DAGToDAGISel::trySelectXAR(SDNode *N) {
4479
assert(N->getOpcode() == ISD::OR && "Expected OR instruction");
4480
4481
SDValue N0 = N->getOperand(0);
4482
SDValue N1 = N->getOperand(1);
4483
EVT VT = N->getValueType(0);
4484
4485
// Essentially: rotr (xor(x, y), imm) -> xar (x, y, imm)
4486
// Rotate by a constant is a funnel shift in IR which is exanded to
4487
// an OR with shifted operands.
4488
// We do the following transform:
4489
// OR N0, N1 -> xar (x, y, imm)
4490
// Where:
4491
// N1 = SRL_PRED true, V, splat(imm) --> rotr amount
4492
// N0 = SHL_PRED true, V, splat(bits-imm)
4493
// V = (xor x, y)
4494
if (VT.isScalableVector() &&
4495
(Subtarget->hasSVE2() ||
4496
(Subtarget->hasSME() && Subtarget->isStreaming()))) {
4497
if (N0.getOpcode() != AArch64ISD::SHL_PRED ||
4498
N1.getOpcode() != AArch64ISD::SRL_PRED)
4499
std::swap(N0, N1);
4500
if (N0.getOpcode() != AArch64ISD::SHL_PRED ||
4501
N1.getOpcode() != AArch64ISD::SRL_PRED)
4502
return false;
4503
4504
auto *TLI = static_cast<const AArch64TargetLowering *>(getTargetLowering());
4505
if (!TLI->isAllActivePredicate(*CurDAG, N0.getOperand(0)) ||
4506
!TLI->isAllActivePredicate(*CurDAG, N1.getOperand(0)))
4507
return false;
4508
4509
SDValue XOR = N0.getOperand(1);
4510
if (XOR.getOpcode() != ISD::XOR || XOR != N1.getOperand(1))
4511
return false;
4512
4513
APInt ShlAmt, ShrAmt;
4514
if (!ISD::isConstantSplatVector(N0.getOperand(2).getNode(), ShlAmt) ||
4515
!ISD::isConstantSplatVector(N1.getOperand(2).getNode(), ShrAmt))
4516
return false;
4517
4518
if (ShlAmt + ShrAmt != VT.getScalarSizeInBits())
4519
return false;
4520
4521
SDLoc DL(N);
4522
SDValue Imm =
4523
CurDAG->getTargetConstant(ShrAmt.getZExtValue(), DL, MVT::i32);
4524
4525
SDValue Ops[] = {XOR.getOperand(0), XOR.getOperand(1), Imm};
4526
if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::Int>(
4527
VT, {AArch64::XAR_ZZZI_B, AArch64::XAR_ZZZI_H, AArch64::XAR_ZZZI_S,
4528
AArch64::XAR_ZZZI_D})) {
4529
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
4530
return true;
4531
}
4532
return false;
4533
}
4534
4535
if (!Subtarget->hasSHA3())
4536
return false;
4537
4538
if (N0->getOpcode() != AArch64ISD::VSHL ||
4539
N1->getOpcode() != AArch64ISD::VLSHR)
4540
return false;
4541
4542
if (N0->getOperand(0) != N1->getOperand(0) ||
4543
N1->getOperand(0)->getOpcode() != ISD::XOR)
4544
return false;
4545
4546
SDValue XOR = N0.getOperand(0);
4547
SDValue R1 = XOR.getOperand(0);
4548
SDValue R2 = XOR.getOperand(1);
4549
4550
unsigned HsAmt = N0.getConstantOperandVal(1);
4551
unsigned ShAmt = N1.getConstantOperandVal(1);
4552
4553
SDLoc DL = SDLoc(N0.getOperand(1));
4554
SDValue Imm = CurDAG->getTargetConstant(
4555
ShAmt, DL, N0.getOperand(1).getValueType(), false);
4556
4557
if (ShAmt + HsAmt != 64)
4558
return false;
4559
4560
SDValue Ops[] = {R1, R2, Imm};
4561
CurDAG->SelectNodeTo(N, AArch64::XAR, N0.getValueType(), Ops);
4562
4563
return true;
4564
}
4565
4566
void AArch64DAGToDAGISel::Select(SDNode *Node) {
4567
// If we have a custom node, we already have selected!
4568
if (Node->isMachineOpcode()) {
4569
LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
4570
Node->setNodeId(-1);
4571
return;
4572
}
4573
4574
// Few custom selection stuff.
4575
EVT VT = Node->getValueType(0);
4576
4577
switch (Node->getOpcode()) {
4578
default:
4579
break;
4580
4581
case ISD::ATOMIC_CMP_SWAP:
4582
if (SelectCMP_SWAP(Node))
4583
return;
4584
break;
4585
4586
case ISD::READ_REGISTER:
4587
case AArch64ISD::MRRS:
4588
if (tryReadRegister(Node))
4589
return;
4590
break;
4591
4592
case ISD::WRITE_REGISTER:
4593
case AArch64ISD::MSRR:
4594
if (tryWriteRegister(Node))
4595
return;
4596
break;
4597
4598
case ISD::LOAD: {
4599
// Try to select as an indexed load. Fall through to normal processing
4600
// if we can't.
4601
if (tryIndexedLoad(Node))
4602
return;
4603
break;
4604
}
4605
4606
case ISD::SRL:
4607
case ISD::AND:
4608
case ISD::SRA:
4609
case ISD::SIGN_EXTEND_INREG:
4610
if (tryBitfieldExtractOp(Node))
4611
return;
4612
if (tryBitfieldInsertInZeroOp(Node))
4613
return;
4614
[[fallthrough]];
4615
case ISD::ROTR:
4616
case ISD::SHL:
4617
if (tryShiftAmountMod(Node))
4618
return;
4619
break;
4620
4621
case ISD::SIGN_EXTEND:
4622
if (tryBitfieldExtractOpFromSExt(Node))
4623
return;
4624
break;
4625
4626
case ISD::OR:
4627
if (tryBitfieldInsertOp(Node))
4628
return;
4629
if (trySelectXAR(Node))
4630
return;
4631
break;
4632
4633
case ISD::EXTRACT_SUBVECTOR: {
4634
if (trySelectCastScalableToFixedLengthVector(Node))
4635
return;
4636
break;
4637
}
4638
4639
case ISD::INSERT_SUBVECTOR: {
4640
if (trySelectCastFixedLengthToScalableVector(Node))
4641
return;
4642
break;
4643
}
4644
4645
case ISD::Constant: {
4646
// Materialize zero constants as copies from WZR/XZR. This allows
4647
// the coalescer to propagate these into other instructions.
4648
ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
4649
if (ConstNode->isZero()) {
4650
if (VT == MVT::i32) {
4651
SDValue New = CurDAG->getCopyFromReg(
4652
CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32);
4653
ReplaceNode(Node, New.getNode());
4654
return;
4655
} else if (VT == MVT::i64) {
4656
SDValue New = CurDAG->getCopyFromReg(
4657
CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64);
4658
ReplaceNode(Node, New.getNode());
4659
return;
4660
}
4661
}
4662
break;
4663
}
4664
4665
case ISD::FrameIndex: {
4666
// Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
4667
int FI = cast<FrameIndexSDNode>(Node)->getIndex();
4668
unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
4669
const TargetLowering *TLI = getTargetLowering();
4670
SDValue TFI = CurDAG->getTargetFrameIndex(
4671
FI, TLI->getPointerTy(CurDAG->getDataLayout()));
4672
SDLoc DL(Node);
4673
SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
4674
CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
4675
CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
4676
return;
4677
}
4678
case ISD::INTRINSIC_W_CHAIN: {
4679
unsigned IntNo = Node->getConstantOperandVal(1);
4680
switch (IntNo) {
4681
default:
4682
break;
4683
case Intrinsic::aarch64_gcsss: {
4684
SDLoc DL(Node);
4685
SDValue Chain = Node->getOperand(0);
4686
SDValue Val = Node->getOperand(2);
4687
SDValue Zero = CurDAG->getCopyFromReg(Chain, DL, AArch64::XZR, MVT::i64);
4688
SDNode *SS1 =
4689
CurDAG->getMachineNode(AArch64::GCSSS1, DL, MVT::Other, Val, Chain);
4690
SDNode *SS2 = CurDAG->getMachineNode(AArch64::GCSSS2, DL, MVT::i64,
4691
MVT::Other, Zero, SDValue(SS1, 0));
4692
ReplaceNode(Node, SS2);
4693
return;
4694
}
4695
case Intrinsic::aarch64_ldaxp:
4696
case Intrinsic::aarch64_ldxp: {
4697
unsigned Op =
4698
IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
4699
SDValue MemAddr = Node->getOperand(2);
4700
SDLoc DL(Node);
4701
SDValue Chain = Node->getOperand(0);
4702
4703
SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
4704
MVT::Other, MemAddr, Chain);
4705
4706
// Transfer memoperands.
4707
MachineMemOperand *MemOp =
4708
cast<MemIntrinsicSDNode>(Node)->getMemOperand();
4709
CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
4710
ReplaceNode(Node, Ld);
4711
return;
4712
}
4713
case Intrinsic::aarch64_stlxp:
4714
case Intrinsic::aarch64_stxp: {
4715
unsigned Op =
4716
IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
4717
SDLoc DL(Node);
4718
SDValue Chain = Node->getOperand(0);
4719
SDValue ValLo = Node->getOperand(2);
4720
SDValue ValHi = Node->getOperand(3);
4721
SDValue MemAddr = Node->getOperand(4);
4722
4723
// Place arguments in the right order.
4724
SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
4725
4726
SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
4727
// Transfer memoperands.
4728
MachineMemOperand *MemOp =
4729
cast<MemIntrinsicSDNode>(Node)->getMemOperand();
4730
CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
4731
4732
ReplaceNode(Node, St);
4733
return;
4734
}
4735
case Intrinsic::aarch64_neon_ld1x2:
4736
if (VT == MVT::v8i8) {
4737
SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
4738
return;
4739
} else if (VT == MVT::v16i8) {
4740
SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
4741
return;
4742
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4743
SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
4744
return;
4745
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4746
SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
4747
return;
4748
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4749
SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
4750
return;
4751
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4752
SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
4753
return;
4754
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4755
SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
4756
return;
4757
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4758
SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
4759
return;
4760
}
4761
break;
4762
case Intrinsic::aarch64_neon_ld1x3:
4763
if (VT == MVT::v8i8) {
4764
SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
4765
return;
4766
} else if (VT == MVT::v16i8) {
4767
SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
4768
return;
4769
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4770
SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
4771
return;
4772
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4773
SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
4774
return;
4775
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4776
SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
4777
return;
4778
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4779
SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
4780
return;
4781
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4782
SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
4783
return;
4784
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4785
SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
4786
return;
4787
}
4788
break;
4789
case Intrinsic::aarch64_neon_ld1x4:
4790
if (VT == MVT::v8i8) {
4791
SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
4792
return;
4793
} else if (VT == MVT::v16i8) {
4794
SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
4795
return;
4796
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4797
SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
4798
return;
4799
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4800
SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
4801
return;
4802
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4803
SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
4804
return;
4805
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4806
SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
4807
return;
4808
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4809
SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
4810
return;
4811
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4812
SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
4813
return;
4814
}
4815
break;
4816
case Intrinsic::aarch64_neon_ld2:
4817
if (VT == MVT::v8i8) {
4818
SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
4819
return;
4820
} else if (VT == MVT::v16i8) {
4821
SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
4822
return;
4823
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4824
SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
4825
return;
4826
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4827
SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
4828
return;
4829
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4830
SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
4831
return;
4832
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4833
SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
4834
return;
4835
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4836
SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
4837
return;
4838
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4839
SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
4840
return;
4841
}
4842
break;
4843
case Intrinsic::aarch64_neon_ld3:
4844
if (VT == MVT::v8i8) {
4845
SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
4846
return;
4847
} else if (VT == MVT::v16i8) {
4848
SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
4849
return;
4850
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4851
SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
4852
return;
4853
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4854
SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
4855
return;
4856
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4857
SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
4858
return;
4859
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4860
SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
4861
return;
4862
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4863
SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
4864
return;
4865
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4866
SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
4867
return;
4868
}
4869
break;
4870
case Intrinsic::aarch64_neon_ld4:
4871
if (VT == MVT::v8i8) {
4872
SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
4873
return;
4874
} else if (VT == MVT::v16i8) {
4875
SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
4876
return;
4877
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4878
SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
4879
return;
4880
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4881
SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
4882
return;
4883
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4884
SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
4885
return;
4886
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4887
SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
4888
return;
4889
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4890
SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
4891
return;
4892
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4893
SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
4894
return;
4895
}
4896
break;
4897
case Intrinsic::aarch64_neon_ld2r:
4898
if (VT == MVT::v8i8) {
4899
SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
4900
return;
4901
} else if (VT == MVT::v16i8) {
4902
SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
4903
return;
4904
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4905
SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
4906
return;
4907
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4908
SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
4909
return;
4910
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4911
SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
4912
return;
4913
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4914
SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
4915
return;
4916
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4917
SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
4918
return;
4919
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4920
SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
4921
return;
4922
}
4923
break;
4924
case Intrinsic::aarch64_neon_ld3r:
4925
if (VT == MVT::v8i8) {
4926
SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
4927
return;
4928
} else if (VT == MVT::v16i8) {
4929
SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
4930
return;
4931
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4932
SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
4933
return;
4934
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4935
SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
4936
return;
4937
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4938
SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
4939
return;
4940
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4941
SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
4942
return;
4943
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4944
SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
4945
return;
4946
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4947
SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
4948
return;
4949
}
4950
break;
4951
case Intrinsic::aarch64_neon_ld4r:
4952
if (VT == MVT::v8i8) {
4953
SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
4954
return;
4955
} else if (VT == MVT::v16i8) {
4956
SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
4957
return;
4958
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
4959
SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
4960
return;
4961
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
4962
SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
4963
return;
4964
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
4965
SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
4966
return;
4967
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
4968
SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
4969
return;
4970
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
4971
SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
4972
return;
4973
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
4974
SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
4975
return;
4976
}
4977
break;
4978
case Intrinsic::aarch64_neon_ld2lane:
4979
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4980
SelectLoadLane(Node, 2, AArch64::LD2i8);
4981
return;
4982
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
4983
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
4984
SelectLoadLane(Node, 2, AArch64::LD2i16);
4985
return;
4986
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
4987
VT == MVT::v2f32) {
4988
SelectLoadLane(Node, 2, AArch64::LD2i32);
4989
return;
4990
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
4991
VT == MVT::v1f64) {
4992
SelectLoadLane(Node, 2, AArch64::LD2i64);
4993
return;
4994
}
4995
break;
4996
case Intrinsic::aarch64_neon_ld3lane:
4997
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
4998
SelectLoadLane(Node, 3, AArch64::LD3i8);
4999
return;
5000
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
5001
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
5002
SelectLoadLane(Node, 3, AArch64::LD3i16);
5003
return;
5004
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
5005
VT == MVT::v2f32) {
5006
SelectLoadLane(Node, 3, AArch64::LD3i32);
5007
return;
5008
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
5009
VT == MVT::v1f64) {
5010
SelectLoadLane(Node, 3, AArch64::LD3i64);
5011
return;
5012
}
5013
break;
5014
case Intrinsic::aarch64_neon_ld4lane:
5015
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
5016
SelectLoadLane(Node, 4, AArch64::LD4i8);
5017
return;
5018
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
5019
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
5020
SelectLoadLane(Node, 4, AArch64::LD4i16);
5021
return;
5022
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
5023
VT == MVT::v2f32) {
5024
SelectLoadLane(Node, 4, AArch64::LD4i32);
5025
return;
5026
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
5027
VT == MVT::v1f64) {
5028
SelectLoadLane(Node, 4, AArch64::LD4i64);
5029
return;
5030
}
5031
break;
5032
case Intrinsic::aarch64_ld64b:
5033
SelectLoad(Node, 8, AArch64::LD64B, AArch64::x8sub_0);
5034
return;
5035
case Intrinsic::aarch64_sve_ld2q_sret: {
5036
SelectPredicatedLoad(Node, 2, 4, AArch64::LD2Q_IMM, AArch64::LD2Q, true);
5037
return;
5038
}
5039
case Intrinsic::aarch64_sve_ld3q_sret: {
5040
SelectPredicatedLoad(Node, 3, 4, AArch64::LD3Q_IMM, AArch64::LD3Q, true);
5041
return;
5042
}
5043
case Intrinsic::aarch64_sve_ld4q_sret: {
5044
SelectPredicatedLoad(Node, 4, 4, AArch64::LD4Q_IMM, AArch64::LD4Q, true);
5045
return;
5046
}
5047
case Intrinsic::aarch64_sve_ld2_sret: {
5048
if (VT == MVT::nxv16i8) {
5049
SelectPredicatedLoad(Node, 2, 0, AArch64::LD2B_IMM, AArch64::LD2B,
5050
true);
5051
return;
5052
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5053
VT == MVT::nxv8bf16) {
5054
SelectPredicatedLoad(Node, 2, 1, AArch64::LD2H_IMM, AArch64::LD2H,
5055
true);
5056
return;
5057
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5058
SelectPredicatedLoad(Node, 2, 2, AArch64::LD2W_IMM, AArch64::LD2W,
5059
true);
5060
return;
5061
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5062
SelectPredicatedLoad(Node, 2, 3, AArch64::LD2D_IMM, AArch64::LD2D,
5063
true);
5064
return;
5065
}
5066
break;
5067
}
5068
case Intrinsic::aarch64_sve_ld1_pn_x2: {
5069
if (VT == MVT::nxv16i8) {
5070
if (Subtarget->hasSME2())
5071
SelectContiguousMultiVectorLoad(
5072
Node, 2, 0, AArch64::LD1B_2Z_IMM_PSEUDO, AArch64::LD1B_2Z_PSEUDO);
5073
else if (Subtarget->hasSVE2p1())
5074
SelectContiguousMultiVectorLoad(Node, 2, 0, AArch64::LD1B_2Z_IMM,
5075
AArch64::LD1B_2Z);
5076
else
5077
break;
5078
return;
5079
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5080
VT == MVT::nxv8bf16) {
5081
if (Subtarget->hasSME2())
5082
SelectContiguousMultiVectorLoad(
5083
Node, 2, 1, AArch64::LD1H_2Z_IMM_PSEUDO, AArch64::LD1H_2Z_PSEUDO);
5084
else if (Subtarget->hasSVE2p1())
5085
SelectContiguousMultiVectorLoad(Node, 2, 1, AArch64::LD1H_2Z_IMM,
5086
AArch64::LD1H_2Z);
5087
else
5088
break;
5089
return;
5090
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5091
if (Subtarget->hasSME2())
5092
SelectContiguousMultiVectorLoad(
5093
Node, 2, 2, AArch64::LD1W_2Z_IMM_PSEUDO, AArch64::LD1W_2Z_PSEUDO);
5094
else if (Subtarget->hasSVE2p1())
5095
SelectContiguousMultiVectorLoad(Node, 2, 2, AArch64::LD1W_2Z_IMM,
5096
AArch64::LD1W_2Z);
5097
else
5098
break;
5099
return;
5100
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5101
if (Subtarget->hasSME2())
5102
SelectContiguousMultiVectorLoad(
5103
Node, 2, 3, AArch64::LD1D_2Z_IMM_PSEUDO, AArch64::LD1D_2Z_PSEUDO);
5104
else if (Subtarget->hasSVE2p1())
5105
SelectContiguousMultiVectorLoad(Node, 2, 3, AArch64::LD1D_2Z_IMM,
5106
AArch64::LD1D_2Z);
5107
else
5108
break;
5109
return;
5110
}
5111
break;
5112
}
5113
case Intrinsic::aarch64_sve_ld1_pn_x4: {
5114
if (VT == MVT::nxv16i8) {
5115
if (Subtarget->hasSME2())
5116
SelectContiguousMultiVectorLoad(
5117
Node, 4, 0, AArch64::LD1B_4Z_IMM_PSEUDO, AArch64::LD1B_4Z_PSEUDO);
5118
else if (Subtarget->hasSVE2p1())
5119
SelectContiguousMultiVectorLoad(Node, 4, 0, AArch64::LD1B_4Z_IMM,
5120
AArch64::LD1B_4Z);
5121
else
5122
break;
5123
return;
5124
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5125
VT == MVT::nxv8bf16) {
5126
if (Subtarget->hasSME2())
5127
SelectContiguousMultiVectorLoad(
5128
Node, 4, 1, AArch64::LD1H_4Z_IMM_PSEUDO, AArch64::LD1H_4Z_PSEUDO);
5129
else if (Subtarget->hasSVE2p1())
5130
SelectContiguousMultiVectorLoad(Node, 4, 1, AArch64::LD1H_4Z_IMM,
5131
AArch64::LD1H_4Z);
5132
else
5133
break;
5134
return;
5135
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5136
if (Subtarget->hasSME2())
5137
SelectContiguousMultiVectorLoad(
5138
Node, 4, 2, AArch64::LD1W_4Z_IMM_PSEUDO, AArch64::LD1W_4Z_PSEUDO);
5139
else if (Subtarget->hasSVE2p1())
5140
SelectContiguousMultiVectorLoad(Node, 4, 2, AArch64::LD1W_4Z_IMM,
5141
AArch64::LD1W_4Z);
5142
else
5143
break;
5144
return;
5145
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5146
if (Subtarget->hasSME2())
5147
SelectContiguousMultiVectorLoad(
5148
Node, 4, 3, AArch64::LD1D_4Z_IMM_PSEUDO, AArch64::LD1D_4Z_PSEUDO);
5149
else if (Subtarget->hasSVE2p1())
5150
SelectContiguousMultiVectorLoad(Node, 4, 3, AArch64::LD1D_4Z_IMM,
5151
AArch64::LD1D_4Z);
5152
else
5153
break;
5154
return;
5155
}
5156
break;
5157
}
5158
case Intrinsic::aarch64_sve_ldnt1_pn_x2: {
5159
if (VT == MVT::nxv16i8) {
5160
if (Subtarget->hasSME2())
5161
SelectContiguousMultiVectorLoad(Node, 2, 0,
5162
AArch64::LDNT1B_2Z_IMM_PSEUDO,
5163
AArch64::LDNT1B_2Z_PSEUDO);
5164
else if (Subtarget->hasSVE2p1())
5165
SelectContiguousMultiVectorLoad(Node, 2, 0, AArch64::LDNT1B_2Z_IMM,
5166
AArch64::LDNT1B_2Z);
5167
else
5168
break;
5169
return;
5170
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5171
VT == MVT::nxv8bf16) {
5172
if (Subtarget->hasSME2())
5173
SelectContiguousMultiVectorLoad(Node, 2, 1,
5174
AArch64::LDNT1H_2Z_IMM_PSEUDO,
5175
AArch64::LDNT1H_2Z_PSEUDO);
5176
else if (Subtarget->hasSVE2p1())
5177
SelectContiguousMultiVectorLoad(Node, 2, 1, AArch64::LDNT1H_2Z_IMM,
5178
AArch64::LDNT1H_2Z);
5179
else
5180
break;
5181
return;
5182
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5183
if (Subtarget->hasSME2())
5184
SelectContiguousMultiVectorLoad(Node, 2, 2,
5185
AArch64::LDNT1W_2Z_IMM_PSEUDO,
5186
AArch64::LDNT1W_2Z_PSEUDO);
5187
else if (Subtarget->hasSVE2p1())
5188
SelectContiguousMultiVectorLoad(Node, 2, 2, AArch64::LDNT1W_2Z_IMM,
5189
AArch64::LDNT1W_2Z);
5190
else
5191
break;
5192
return;
5193
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5194
if (Subtarget->hasSME2())
5195
SelectContiguousMultiVectorLoad(Node, 2, 3,
5196
AArch64::LDNT1D_2Z_IMM_PSEUDO,
5197
AArch64::LDNT1D_2Z_PSEUDO);
5198
else if (Subtarget->hasSVE2p1())
5199
SelectContiguousMultiVectorLoad(Node, 2, 3, AArch64::LDNT1D_2Z_IMM,
5200
AArch64::LDNT1D_2Z);
5201
else
5202
break;
5203
return;
5204
}
5205
break;
5206
}
5207
case Intrinsic::aarch64_sve_ldnt1_pn_x4: {
5208
if (VT == MVT::nxv16i8) {
5209
if (Subtarget->hasSME2())
5210
SelectContiguousMultiVectorLoad(Node, 4, 0,
5211
AArch64::LDNT1B_4Z_IMM_PSEUDO,
5212
AArch64::LDNT1B_4Z_PSEUDO);
5213
else if (Subtarget->hasSVE2p1())
5214
SelectContiguousMultiVectorLoad(Node, 4, 0, AArch64::LDNT1B_4Z_IMM,
5215
AArch64::LDNT1B_4Z);
5216
else
5217
break;
5218
return;
5219
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5220
VT == MVT::nxv8bf16) {
5221
if (Subtarget->hasSME2())
5222
SelectContiguousMultiVectorLoad(Node, 4, 1,
5223
AArch64::LDNT1H_4Z_IMM_PSEUDO,
5224
AArch64::LDNT1H_4Z_PSEUDO);
5225
else if (Subtarget->hasSVE2p1())
5226
SelectContiguousMultiVectorLoad(Node, 4, 1, AArch64::LDNT1H_4Z_IMM,
5227
AArch64::LDNT1H_4Z);
5228
else
5229
break;
5230
return;
5231
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5232
if (Subtarget->hasSME2())
5233
SelectContiguousMultiVectorLoad(Node, 4, 2,
5234
AArch64::LDNT1W_4Z_IMM_PSEUDO,
5235
AArch64::LDNT1W_4Z_PSEUDO);
5236
else if (Subtarget->hasSVE2p1())
5237
SelectContiguousMultiVectorLoad(Node, 4, 2, AArch64::LDNT1W_4Z_IMM,
5238
AArch64::LDNT1W_4Z);
5239
else
5240
break;
5241
return;
5242
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5243
if (Subtarget->hasSME2())
5244
SelectContiguousMultiVectorLoad(Node, 4, 3,
5245
AArch64::LDNT1D_4Z_IMM_PSEUDO,
5246
AArch64::LDNT1D_4Z_PSEUDO);
5247
else if (Subtarget->hasSVE2p1())
5248
SelectContiguousMultiVectorLoad(Node, 4, 3, AArch64::LDNT1D_4Z_IMM,
5249
AArch64::LDNT1D_4Z);
5250
else
5251
break;
5252
return;
5253
}
5254
break;
5255
}
5256
case Intrinsic::aarch64_sve_ld3_sret: {
5257
if (VT == MVT::nxv16i8) {
5258
SelectPredicatedLoad(Node, 3, 0, AArch64::LD3B_IMM, AArch64::LD3B,
5259
true);
5260
return;
5261
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5262
VT == MVT::nxv8bf16) {
5263
SelectPredicatedLoad(Node, 3, 1, AArch64::LD3H_IMM, AArch64::LD3H,
5264
true);
5265
return;
5266
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5267
SelectPredicatedLoad(Node, 3, 2, AArch64::LD3W_IMM, AArch64::LD3W,
5268
true);
5269
return;
5270
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5271
SelectPredicatedLoad(Node, 3, 3, AArch64::LD3D_IMM, AArch64::LD3D,
5272
true);
5273
return;
5274
}
5275
break;
5276
}
5277
case Intrinsic::aarch64_sve_ld4_sret: {
5278
if (VT == MVT::nxv16i8) {
5279
SelectPredicatedLoad(Node, 4, 0, AArch64::LD4B_IMM, AArch64::LD4B,
5280
true);
5281
return;
5282
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5283
VT == MVT::nxv8bf16) {
5284
SelectPredicatedLoad(Node, 4, 1, AArch64::LD4H_IMM, AArch64::LD4H,
5285
true);
5286
return;
5287
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5288
SelectPredicatedLoad(Node, 4, 2, AArch64::LD4W_IMM, AArch64::LD4W,
5289
true);
5290
return;
5291
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5292
SelectPredicatedLoad(Node, 4, 3, AArch64::LD4D_IMM, AArch64::LD4D,
5293
true);
5294
return;
5295
}
5296
break;
5297
}
5298
case Intrinsic::aarch64_sme_read_hor_vg2: {
5299
if (VT == MVT::nxv16i8) {
5300
SelectMultiVectorMove<14, 2>(Node, 2, AArch64::ZAB0,
5301
AArch64::MOVA_2ZMXI_H_B);
5302
return;
5303
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5304
VT == MVT::nxv8bf16) {
5305
SelectMultiVectorMove<6, 2>(Node, 2, AArch64::ZAH0,
5306
AArch64::MOVA_2ZMXI_H_H);
5307
return;
5308
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5309
SelectMultiVectorMove<2, 2>(Node, 2, AArch64::ZAS0,
5310
AArch64::MOVA_2ZMXI_H_S);
5311
return;
5312
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5313
SelectMultiVectorMove<0, 2>(Node, 2, AArch64::ZAD0,
5314
AArch64::MOVA_2ZMXI_H_D);
5315
return;
5316
}
5317
break;
5318
}
5319
case Intrinsic::aarch64_sme_read_ver_vg2: {
5320
if (VT == MVT::nxv16i8) {
5321
SelectMultiVectorMove<14, 2>(Node, 2, AArch64::ZAB0,
5322
AArch64::MOVA_2ZMXI_V_B);
5323
return;
5324
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5325
VT == MVT::nxv8bf16) {
5326
SelectMultiVectorMove<6, 2>(Node, 2, AArch64::ZAH0,
5327
AArch64::MOVA_2ZMXI_V_H);
5328
return;
5329
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5330
SelectMultiVectorMove<2, 2>(Node, 2, AArch64::ZAS0,
5331
AArch64::MOVA_2ZMXI_V_S);
5332
return;
5333
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5334
SelectMultiVectorMove<0, 2>(Node, 2, AArch64::ZAD0,
5335
AArch64::MOVA_2ZMXI_V_D);
5336
return;
5337
}
5338
break;
5339
}
5340
case Intrinsic::aarch64_sme_read_hor_vg4: {
5341
if (VT == MVT::nxv16i8) {
5342
SelectMultiVectorMove<12, 4>(Node, 4, AArch64::ZAB0,
5343
AArch64::MOVA_4ZMXI_H_B);
5344
return;
5345
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5346
VT == MVT::nxv8bf16) {
5347
SelectMultiVectorMove<4, 4>(Node, 4, AArch64::ZAH0,
5348
AArch64::MOVA_4ZMXI_H_H);
5349
return;
5350
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5351
SelectMultiVectorMove<0, 2>(Node, 4, AArch64::ZAS0,
5352
AArch64::MOVA_4ZMXI_H_S);
5353
return;
5354
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5355
SelectMultiVectorMove<0, 2>(Node, 4, AArch64::ZAD0,
5356
AArch64::MOVA_4ZMXI_H_D);
5357
return;
5358
}
5359
break;
5360
}
5361
case Intrinsic::aarch64_sme_read_ver_vg4: {
5362
if (VT == MVT::nxv16i8) {
5363
SelectMultiVectorMove<12, 4>(Node, 4, AArch64::ZAB0,
5364
AArch64::MOVA_4ZMXI_V_B);
5365
return;
5366
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5367
VT == MVT::nxv8bf16) {
5368
SelectMultiVectorMove<4, 4>(Node, 4, AArch64::ZAH0,
5369
AArch64::MOVA_4ZMXI_V_H);
5370
return;
5371
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5372
SelectMultiVectorMove<0, 4>(Node, 4, AArch64::ZAS0,
5373
AArch64::MOVA_4ZMXI_V_S);
5374
return;
5375
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5376
SelectMultiVectorMove<0, 4>(Node, 4, AArch64::ZAD0,
5377
AArch64::MOVA_4ZMXI_V_D);
5378
return;
5379
}
5380
break;
5381
}
5382
case Intrinsic::aarch64_sme_read_vg1x2: {
5383
SelectMultiVectorMove<7, 1>(Node, 2, AArch64::ZA,
5384
AArch64::MOVA_VG2_2ZMXI);
5385
return;
5386
}
5387
case Intrinsic::aarch64_sme_read_vg1x4: {
5388
SelectMultiVectorMove<7, 1>(Node, 4, AArch64::ZA,
5389
AArch64::MOVA_VG4_4ZMXI);
5390
return;
5391
}
5392
case Intrinsic::aarch64_sme_readz_horiz_x2: {
5393
if (VT == MVT::nxv16i8) {
5394
SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_H_B_PSEUDO, 14, 2);
5395
return;
5396
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5397
VT == MVT::nxv8bf16) {
5398
SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_H_H_PSEUDO, 6, 2);
5399
return;
5400
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5401
SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_H_S_PSEUDO, 2, 2);
5402
return;
5403
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5404
SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_H_D_PSEUDO, 0, 2);
5405
return;
5406
}
5407
break;
5408
}
5409
case Intrinsic::aarch64_sme_readz_vert_x2: {
5410
if (VT == MVT::nxv16i8) {
5411
SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_V_B_PSEUDO, 14, 2);
5412
return;
5413
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5414
VT == MVT::nxv8bf16) {
5415
SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_V_H_PSEUDO, 6, 2);
5416
return;
5417
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5418
SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_V_S_PSEUDO, 2, 2);
5419
return;
5420
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5421
SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_2ZMI_V_D_PSEUDO, 0, 2);
5422
return;
5423
}
5424
break;
5425
}
5426
case Intrinsic::aarch64_sme_readz_horiz_x4: {
5427
if (VT == MVT::nxv16i8) {
5428
SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_H_B_PSEUDO, 12, 4);
5429
return;
5430
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5431
VT == MVT::nxv8bf16) {
5432
SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_H_H_PSEUDO, 4, 4);
5433
return;
5434
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5435
SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_H_S_PSEUDO, 0, 4);
5436
return;
5437
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5438
SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_H_D_PSEUDO, 0, 4);
5439
return;
5440
}
5441
break;
5442
}
5443
case Intrinsic::aarch64_sme_readz_vert_x4: {
5444
if (VT == MVT::nxv16i8) {
5445
SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_V_B_PSEUDO, 12, 4);
5446
return;
5447
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
5448
VT == MVT::nxv8bf16) {
5449
SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_V_H_PSEUDO, 4, 4);
5450
return;
5451
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
5452
SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_V_S_PSEUDO, 0, 4);
5453
return;
5454
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
5455
SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_4ZMI_V_D_PSEUDO, 0, 4);
5456
return;
5457
}
5458
break;
5459
}
5460
case Intrinsic::aarch64_sme_readz_x2: {
5461
SelectMultiVectorMoveZ(Node, 2, AArch64::MOVAZ_VG2_2ZMXI_PSEUDO, 7, 1,
5462
AArch64::ZA);
5463
return;
5464
}
5465
case Intrinsic::aarch64_sme_readz_x4: {
5466
SelectMultiVectorMoveZ(Node, 4, AArch64::MOVAZ_VG4_4ZMXI_PSEUDO, 7, 1,
5467
AArch64::ZA);
5468
return;
5469
}
5470
case Intrinsic::swift_async_context_addr: {
5471
SDLoc DL(Node);
5472
SDValue Chain = Node->getOperand(0);
5473
SDValue CopyFP = CurDAG->getCopyFromReg(Chain, DL, AArch64::FP, MVT::i64);
5474
SDValue Res = SDValue(
5475
CurDAG->getMachineNode(AArch64::SUBXri, DL, MVT::i64, CopyFP,
5476
CurDAG->getTargetConstant(8, DL, MVT::i32),
5477
CurDAG->getTargetConstant(0, DL, MVT::i32)),
5478
0);
5479
ReplaceUses(SDValue(Node, 0), Res);
5480
ReplaceUses(SDValue(Node, 1), CopyFP.getValue(1));
5481
CurDAG->RemoveDeadNode(Node);
5482
5483
auto &MF = CurDAG->getMachineFunction();
5484
MF.getFrameInfo().setFrameAddressIsTaken(true);
5485
MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
5486
return;
5487
}
5488
case Intrinsic::aarch64_sme_luti2_lane_zt_x4: {
5489
if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5490
Node->getValueType(0),
5491
{AArch64::LUTI2_4ZTZI_B, AArch64::LUTI2_4ZTZI_H,
5492
AArch64::LUTI2_4ZTZI_S}))
5493
// Second Immediate must be <= 3:
5494
SelectMultiVectorLuti(Node, 4, Opc, 3);
5495
return;
5496
}
5497
case Intrinsic::aarch64_sme_luti4_lane_zt_x4: {
5498
if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5499
Node->getValueType(0),
5500
{0, AArch64::LUTI4_4ZTZI_H, AArch64::LUTI4_4ZTZI_S}))
5501
// Second Immediate must be <= 1:
5502
SelectMultiVectorLuti(Node, 4, Opc, 1);
5503
return;
5504
}
5505
case Intrinsic::aarch64_sme_luti2_lane_zt_x2: {
5506
if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5507
Node->getValueType(0),
5508
{AArch64::LUTI2_2ZTZI_B, AArch64::LUTI2_2ZTZI_H,
5509
AArch64::LUTI2_2ZTZI_S}))
5510
// Second Immediate must be <= 7:
5511
SelectMultiVectorLuti(Node, 2, Opc, 7);
5512
return;
5513
}
5514
case Intrinsic::aarch64_sme_luti4_lane_zt_x2: {
5515
if (auto Opc = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
5516
Node->getValueType(0),
5517
{AArch64::LUTI4_2ZTZI_B, AArch64::LUTI4_2ZTZI_H,
5518
AArch64::LUTI4_2ZTZI_S}))
5519
// Second Immediate must be <= 3:
5520
SelectMultiVectorLuti(Node, 2, Opc, 3);
5521
return;
5522
}
5523
}
5524
} break;
5525
case ISD::INTRINSIC_WO_CHAIN: {
5526
unsigned IntNo = Node->getConstantOperandVal(0);
5527
switch (IntNo) {
5528
default:
5529
break;
5530
case Intrinsic::aarch64_tagp:
5531
SelectTagP(Node);
5532
return;
5533
5534
case Intrinsic::ptrauth_auth:
5535
SelectPtrauthAuth(Node);
5536
return;
5537
5538
case Intrinsic::ptrauth_resign:
5539
SelectPtrauthResign(Node);
5540
return;
5541
5542
case Intrinsic::aarch64_neon_tbl2:
5543
SelectTable(Node, 2,
5544
VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two,
5545
false);
5546
return;
5547
case Intrinsic::aarch64_neon_tbl3:
5548
SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
5549
: AArch64::TBLv16i8Three,
5550
false);
5551
return;
5552
case Intrinsic::aarch64_neon_tbl4:
5553
SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
5554
: AArch64::TBLv16i8Four,
5555
false);
5556
return;
5557
case Intrinsic::aarch64_neon_tbx2:
5558
SelectTable(Node, 2,
5559
VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two,
5560
true);
5561
return;
5562
case Intrinsic::aarch64_neon_tbx3:
5563
SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
5564
: AArch64::TBXv16i8Three,
5565
true);
5566
return;
5567
case Intrinsic::aarch64_neon_tbx4:
5568
SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
5569
: AArch64::TBXv16i8Four,
5570
true);
5571
return;
5572
case Intrinsic::aarch64_sve_srshl_single_x2:
5573
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5574
Node->getValueType(0),
5575
{AArch64::SRSHL_VG2_2ZZ_B, AArch64::SRSHL_VG2_2ZZ_H,
5576
AArch64::SRSHL_VG2_2ZZ_S, AArch64::SRSHL_VG2_2ZZ_D}))
5577
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5578
return;
5579
case Intrinsic::aarch64_sve_srshl_single_x4:
5580
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5581
Node->getValueType(0),
5582
{AArch64::SRSHL_VG4_4ZZ_B, AArch64::SRSHL_VG4_4ZZ_H,
5583
AArch64::SRSHL_VG4_4ZZ_S, AArch64::SRSHL_VG4_4ZZ_D}))
5584
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5585
return;
5586
case Intrinsic::aarch64_sve_urshl_single_x2:
5587
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5588
Node->getValueType(0),
5589
{AArch64::URSHL_VG2_2ZZ_B, AArch64::URSHL_VG2_2ZZ_H,
5590
AArch64::URSHL_VG2_2ZZ_S, AArch64::URSHL_VG2_2ZZ_D}))
5591
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5592
return;
5593
case Intrinsic::aarch64_sve_urshl_single_x4:
5594
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5595
Node->getValueType(0),
5596
{AArch64::URSHL_VG4_4ZZ_B, AArch64::URSHL_VG4_4ZZ_H,
5597
AArch64::URSHL_VG4_4ZZ_S, AArch64::URSHL_VG4_4ZZ_D}))
5598
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5599
return;
5600
case Intrinsic::aarch64_sve_srshl_x2:
5601
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5602
Node->getValueType(0),
5603
{AArch64::SRSHL_VG2_2Z2Z_B, AArch64::SRSHL_VG2_2Z2Z_H,
5604
AArch64::SRSHL_VG2_2Z2Z_S, AArch64::SRSHL_VG2_2Z2Z_D}))
5605
SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5606
return;
5607
case Intrinsic::aarch64_sve_srshl_x4:
5608
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5609
Node->getValueType(0),
5610
{AArch64::SRSHL_VG4_4Z4Z_B, AArch64::SRSHL_VG4_4Z4Z_H,
5611
AArch64::SRSHL_VG4_4Z4Z_S, AArch64::SRSHL_VG4_4Z4Z_D}))
5612
SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5613
return;
5614
case Intrinsic::aarch64_sve_urshl_x2:
5615
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5616
Node->getValueType(0),
5617
{AArch64::URSHL_VG2_2Z2Z_B, AArch64::URSHL_VG2_2Z2Z_H,
5618
AArch64::URSHL_VG2_2Z2Z_S, AArch64::URSHL_VG2_2Z2Z_D}))
5619
SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5620
return;
5621
case Intrinsic::aarch64_sve_urshl_x4:
5622
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5623
Node->getValueType(0),
5624
{AArch64::URSHL_VG4_4Z4Z_B, AArch64::URSHL_VG4_4Z4Z_H,
5625
AArch64::URSHL_VG4_4Z4Z_S, AArch64::URSHL_VG4_4Z4Z_D}))
5626
SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5627
return;
5628
case Intrinsic::aarch64_sve_sqdmulh_single_vgx2:
5629
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5630
Node->getValueType(0),
5631
{AArch64::SQDMULH_VG2_2ZZ_B, AArch64::SQDMULH_VG2_2ZZ_H,
5632
AArch64::SQDMULH_VG2_2ZZ_S, AArch64::SQDMULH_VG2_2ZZ_D}))
5633
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5634
return;
5635
case Intrinsic::aarch64_sve_sqdmulh_single_vgx4:
5636
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5637
Node->getValueType(0),
5638
{AArch64::SQDMULH_VG4_4ZZ_B, AArch64::SQDMULH_VG4_4ZZ_H,
5639
AArch64::SQDMULH_VG4_4ZZ_S, AArch64::SQDMULH_VG4_4ZZ_D}))
5640
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5641
return;
5642
case Intrinsic::aarch64_sve_sqdmulh_vgx2:
5643
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5644
Node->getValueType(0),
5645
{AArch64::SQDMULH_VG2_2Z2Z_B, AArch64::SQDMULH_VG2_2Z2Z_H,
5646
AArch64::SQDMULH_VG2_2Z2Z_S, AArch64::SQDMULH_VG2_2Z2Z_D}))
5647
SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5648
return;
5649
case Intrinsic::aarch64_sve_sqdmulh_vgx4:
5650
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5651
Node->getValueType(0),
5652
{AArch64::SQDMULH_VG4_4Z4Z_B, AArch64::SQDMULH_VG4_4Z4Z_H,
5653
AArch64::SQDMULH_VG4_4Z4Z_S, AArch64::SQDMULH_VG4_4Z4Z_D}))
5654
SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5655
return;
5656
case Intrinsic::aarch64_sve_whilege_x2:
5657
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5658
Node->getValueType(0),
5659
{AArch64::WHILEGE_2PXX_B, AArch64::WHILEGE_2PXX_H,
5660
AArch64::WHILEGE_2PXX_S, AArch64::WHILEGE_2PXX_D}))
5661
SelectWhilePair(Node, Op);
5662
return;
5663
case Intrinsic::aarch64_sve_whilegt_x2:
5664
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5665
Node->getValueType(0),
5666
{AArch64::WHILEGT_2PXX_B, AArch64::WHILEGT_2PXX_H,
5667
AArch64::WHILEGT_2PXX_S, AArch64::WHILEGT_2PXX_D}))
5668
SelectWhilePair(Node, Op);
5669
return;
5670
case Intrinsic::aarch64_sve_whilehi_x2:
5671
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5672
Node->getValueType(0),
5673
{AArch64::WHILEHI_2PXX_B, AArch64::WHILEHI_2PXX_H,
5674
AArch64::WHILEHI_2PXX_S, AArch64::WHILEHI_2PXX_D}))
5675
SelectWhilePair(Node, Op);
5676
return;
5677
case Intrinsic::aarch64_sve_whilehs_x2:
5678
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5679
Node->getValueType(0),
5680
{AArch64::WHILEHS_2PXX_B, AArch64::WHILEHS_2PXX_H,
5681
AArch64::WHILEHS_2PXX_S, AArch64::WHILEHS_2PXX_D}))
5682
SelectWhilePair(Node, Op);
5683
return;
5684
case Intrinsic::aarch64_sve_whilele_x2:
5685
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5686
Node->getValueType(0),
5687
{AArch64::WHILELE_2PXX_B, AArch64::WHILELE_2PXX_H,
5688
AArch64::WHILELE_2PXX_S, AArch64::WHILELE_2PXX_D}))
5689
SelectWhilePair(Node, Op);
5690
return;
5691
case Intrinsic::aarch64_sve_whilelo_x2:
5692
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5693
Node->getValueType(0),
5694
{AArch64::WHILELO_2PXX_B, AArch64::WHILELO_2PXX_H,
5695
AArch64::WHILELO_2PXX_S, AArch64::WHILELO_2PXX_D}))
5696
SelectWhilePair(Node, Op);
5697
return;
5698
case Intrinsic::aarch64_sve_whilels_x2:
5699
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5700
Node->getValueType(0),
5701
{AArch64::WHILELS_2PXX_B, AArch64::WHILELS_2PXX_H,
5702
AArch64::WHILELS_2PXX_S, AArch64::WHILELS_2PXX_D}))
5703
SelectWhilePair(Node, Op);
5704
return;
5705
case Intrinsic::aarch64_sve_whilelt_x2:
5706
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int1>(
5707
Node->getValueType(0),
5708
{AArch64::WHILELT_2PXX_B, AArch64::WHILELT_2PXX_H,
5709
AArch64::WHILELT_2PXX_S, AArch64::WHILELT_2PXX_D}))
5710
SelectWhilePair(Node, Op);
5711
return;
5712
case Intrinsic::aarch64_sve_smax_single_x2:
5713
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5714
Node->getValueType(0),
5715
{AArch64::SMAX_VG2_2ZZ_B, AArch64::SMAX_VG2_2ZZ_H,
5716
AArch64::SMAX_VG2_2ZZ_S, AArch64::SMAX_VG2_2ZZ_D}))
5717
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5718
return;
5719
case Intrinsic::aarch64_sve_umax_single_x2:
5720
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5721
Node->getValueType(0),
5722
{AArch64::UMAX_VG2_2ZZ_B, AArch64::UMAX_VG2_2ZZ_H,
5723
AArch64::UMAX_VG2_2ZZ_S, AArch64::UMAX_VG2_2ZZ_D}))
5724
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5725
return;
5726
case Intrinsic::aarch64_sve_fmax_single_x2:
5727
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5728
Node->getValueType(0),
5729
{AArch64::BFMAX_VG2_2ZZ_H, AArch64::FMAX_VG2_2ZZ_H,
5730
AArch64::FMAX_VG2_2ZZ_S, AArch64::FMAX_VG2_2ZZ_D}))
5731
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5732
return;
5733
case Intrinsic::aarch64_sve_smax_single_x4:
5734
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5735
Node->getValueType(0),
5736
{AArch64::SMAX_VG4_4ZZ_B, AArch64::SMAX_VG4_4ZZ_H,
5737
AArch64::SMAX_VG4_4ZZ_S, AArch64::SMAX_VG4_4ZZ_D}))
5738
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5739
return;
5740
case Intrinsic::aarch64_sve_umax_single_x4:
5741
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5742
Node->getValueType(0),
5743
{AArch64::UMAX_VG4_4ZZ_B, AArch64::UMAX_VG4_4ZZ_H,
5744
AArch64::UMAX_VG4_4ZZ_S, AArch64::UMAX_VG4_4ZZ_D}))
5745
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5746
return;
5747
case Intrinsic::aarch64_sve_fmax_single_x4:
5748
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5749
Node->getValueType(0),
5750
{AArch64::BFMAX_VG4_4ZZ_H, AArch64::FMAX_VG4_4ZZ_H,
5751
AArch64::FMAX_VG4_4ZZ_S, AArch64::FMAX_VG4_4ZZ_D}))
5752
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5753
return;
5754
case Intrinsic::aarch64_sve_smin_single_x2:
5755
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5756
Node->getValueType(0),
5757
{AArch64::SMIN_VG2_2ZZ_B, AArch64::SMIN_VG2_2ZZ_H,
5758
AArch64::SMIN_VG2_2ZZ_S, AArch64::SMIN_VG2_2ZZ_D}))
5759
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5760
return;
5761
case Intrinsic::aarch64_sve_umin_single_x2:
5762
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5763
Node->getValueType(0),
5764
{AArch64::UMIN_VG2_2ZZ_B, AArch64::UMIN_VG2_2ZZ_H,
5765
AArch64::UMIN_VG2_2ZZ_S, AArch64::UMIN_VG2_2ZZ_D}))
5766
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5767
return;
5768
case Intrinsic::aarch64_sve_fmin_single_x2:
5769
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5770
Node->getValueType(0),
5771
{AArch64::BFMIN_VG2_2ZZ_H, AArch64::FMIN_VG2_2ZZ_H,
5772
AArch64::FMIN_VG2_2ZZ_S, AArch64::FMIN_VG2_2ZZ_D}))
5773
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5774
return;
5775
case Intrinsic::aarch64_sve_smin_single_x4:
5776
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5777
Node->getValueType(0),
5778
{AArch64::SMIN_VG4_4ZZ_B, AArch64::SMIN_VG4_4ZZ_H,
5779
AArch64::SMIN_VG4_4ZZ_S, AArch64::SMIN_VG4_4ZZ_D}))
5780
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5781
return;
5782
case Intrinsic::aarch64_sve_umin_single_x4:
5783
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5784
Node->getValueType(0),
5785
{AArch64::UMIN_VG4_4ZZ_B, AArch64::UMIN_VG4_4ZZ_H,
5786
AArch64::UMIN_VG4_4ZZ_S, AArch64::UMIN_VG4_4ZZ_D}))
5787
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5788
return;
5789
case Intrinsic::aarch64_sve_fmin_single_x4:
5790
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5791
Node->getValueType(0),
5792
{AArch64::BFMIN_VG4_4ZZ_H, AArch64::FMIN_VG4_4ZZ_H,
5793
AArch64::FMIN_VG4_4ZZ_S, AArch64::FMIN_VG4_4ZZ_D}))
5794
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5795
return;
5796
case Intrinsic::aarch64_sve_smax_x2:
5797
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5798
Node->getValueType(0),
5799
{AArch64::SMAX_VG2_2Z2Z_B, AArch64::SMAX_VG2_2Z2Z_H,
5800
AArch64::SMAX_VG2_2Z2Z_S, AArch64::SMAX_VG2_2Z2Z_D}))
5801
SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5802
return;
5803
case Intrinsic::aarch64_sve_umax_x2:
5804
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5805
Node->getValueType(0),
5806
{AArch64::UMAX_VG2_2Z2Z_B, AArch64::UMAX_VG2_2Z2Z_H,
5807
AArch64::UMAX_VG2_2Z2Z_S, AArch64::UMAX_VG2_2Z2Z_D}))
5808
SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5809
return;
5810
case Intrinsic::aarch64_sve_fmax_x2:
5811
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5812
Node->getValueType(0),
5813
{AArch64::BFMAX_VG2_2Z2Z_H, AArch64::FMAX_VG2_2Z2Z_H,
5814
AArch64::FMAX_VG2_2Z2Z_S, AArch64::FMAX_VG2_2Z2Z_D}))
5815
SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5816
return;
5817
case Intrinsic::aarch64_sve_smax_x4:
5818
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5819
Node->getValueType(0),
5820
{AArch64::SMAX_VG4_4Z4Z_B, AArch64::SMAX_VG4_4Z4Z_H,
5821
AArch64::SMAX_VG4_4Z4Z_S, AArch64::SMAX_VG4_4Z4Z_D}))
5822
SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5823
return;
5824
case Intrinsic::aarch64_sve_umax_x4:
5825
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5826
Node->getValueType(0),
5827
{AArch64::UMAX_VG4_4Z4Z_B, AArch64::UMAX_VG4_4Z4Z_H,
5828
AArch64::UMAX_VG4_4Z4Z_S, AArch64::UMAX_VG4_4Z4Z_D}))
5829
SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5830
return;
5831
case Intrinsic::aarch64_sve_fmax_x4:
5832
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5833
Node->getValueType(0),
5834
{AArch64::BFMAX_VG4_4Z2Z_H, AArch64::FMAX_VG4_4Z4Z_H,
5835
AArch64::FMAX_VG4_4Z4Z_S, AArch64::FMAX_VG4_4Z4Z_D}))
5836
SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5837
return;
5838
case Intrinsic::aarch64_sve_smin_x2:
5839
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5840
Node->getValueType(0),
5841
{AArch64::SMIN_VG2_2Z2Z_B, AArch64::SMIN_VG2_2Z2Z_H,
5842
AArch64::SMIN_VG2_2Z2Z_S, AArch64::SMIN_VG2_2Z2Z_D}))
5843
SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5844
return;
5845
case Intrinsic::aarch64_sve_umin_x2:
5846
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5847
Node->getValueType(0),
5848
{AArch64::UMIN_VG2_2Z2Z_B, AArch64::UMIN_VG2_2Z2Z_H,
5849
AArch64::UMIN_VG2_2Z2Z_S, AArch64::UMIN_VG2_2Z2Z_D}))
5850
SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5851
return;
5852
case Intrinsic::aarch64_sve_fmin_x2:
5853
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5854
Node->getValueType(0),
5855
{AArch64::BFMIN_VG2_2Z2Z_H, AArch64::FMIN_VG2_2Z2Z_H,
5856
AArch64::FMIN_VG2_2Z2Z_S, AArch64::FMIN_VG2_2Z2Z_D}))
5857
SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5858
return;
5859
case Intrinsic::aarch64_sve_smin_x4:
5860
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5861
Node->getValueType(0),
5862
{AArch64::SMIN_VG4_4Z4Z_B, AArch64::SMIN_VG4_4Z4Z_H,
5863
AArch64::SMIN_VG4_4Z4Z_S, AArch64::SMIN_VG4_4Z4Z_D}))
5864
SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5865
return;
5866
case Intrinsic::aarch64_sve_umin_x4:
5867
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5868
Node->getValueType(0),
5869
{AArch64::UMIN_VG4_4Z4Z_B, AArch64::UMIN_VG4_4Z4Z_H,
5870
AArch64::UMIN_VG4_4Z4Z_S, AArch64::UMIN_VG4_4Z4Z_D}))
5871
SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5872
return;
5873
case Intrinsic::aarch64_sve_fmin_x4:
5874
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5875
Node->getValueType(0),
5876
{AArch64::BFMIN_VG4_4Z2Z_H, AArch64::FMIN_VG4_4Z4Z_H,
5877
AArch64::FMIN_VG4_4Z4Z_S, AArch64::FMIN_VG4_4Z4Z_D}))
5878
SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5879
return;
5880
case Intrinsic::aarch64_sve_fmaxnm_single_x2 :
5881
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5882
Node->getValueType(0),
5883
{AArch64::BFMAXNM_VG2_2ZZ_H, AArch64::FMAXNM_VG2_2ZZ_H,
5884
AArch64::FMAXNM_VG2_2ZZ_S, AArch64::FMAXNM_VG2_2ZZ_D}))
5885
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5886
return;
5887
case Intrinsic::aarch64_sve_fmaxnm_single_x4 :
5888
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5889
Node->getValueType(0),
5890
{AArch64::BFMAXNM_VG4_4ZZ_H, AArch64::FMAXNM_VG4_4ZZ_H,
5891
AArch64::FMAXNM_VG4_4ZZ_S, AArch64::FMAXNM_VG4_4ZZ_D}))
5892
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5893
return;
5894
case Intrinsic::aarch64_sve_fminnm_single_x2:
5895
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5896
Node->getValueType(0),
5897
{AArch64::BFMINNM_VG2_2ZZ_H, AArch64::FMINNM_VG2_2ZZ_H,
5898
AArch64::FMINNM_VG2_2ZZ_S, AArch64::FMINNM_VG2_2ZZ_D}))
5899
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
5900
return;
5901
case Intrinsic::aarch64_sve_fminnm_single_x4:
5902
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5903
Node->getValueType(0),
5904
{AArch64::BFMINNM_VG4_4ZZ_H, AArch64::FMINNM_VG4_4ZZ_H,
5905
AArch64::FMINNM_VG4_4ZZ_S, AArch64::FMINNM_VG4_4ZZ_D}))
5906
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
5907
return;
5908
case Intrinsic::aarch64_sve_fmaxnm_x2:
5909
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5910
Node->getValueType(0),
5911
{AArch64::BFMAXNM_VG2_2Z2Z_H, AArch64::FMAXNM_VG2_2Z2Z_H,
5912
AArch64::FMAXNM_VG2_2Z2Z_S, AArch64::FMAXNM_VG2_2Z2Z_D}))
5913
SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5914
return;
5915
case Intrinsic::aarch64_sve_fmaxnm_x4:
5916
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5917
Node->getValueType(0),
5918
{AArch64::BFMAXNM_VG4_4Z2Z_H, AArch64::FMAXNM_VG4_4Z4Z_H,
5919
AArch64::FMAXNM_VG4_4Z4Z_S, AArch64::FMAXNM_VG4_4Z4Z_D}))
5920
SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5921
return;
5922
case Intrinsic::aarch64_sve_fminnm_x2:
5923
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5924
Node->getValueType(0),
5925
{AArch64::BFMINNM_VG2_2Z2Z_H, AArch64::FMINNM_VG2_2Z2Z_H,
5926
AArch64::FMINNM_VG2_2Z2Z_S, AArch64::FMINNM_VG2_2Z2Z_D}))
5927
SelectDestructiveMultiIntrinsic(Node, 2, true, Op);
5928
return;
5929
case Intrinsic::aarch64_sve_fminnm_x4:
5930
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5931
Node->getValueType(0),
5932
{AArch64::BFMINNM_VG4_4Z2Z_H, AArch64::FMINNM_VG4_4Z4Z_H,
5933
AArch64::FMINNM_VG4_4Z4Z_S, AArch64::FMINNM_VG4_4Z4Z_D}))
5934
SelectDestructiveMultiIntrinsic(Node, 4, true, Op);
5935
return;
5936
case Intrinsic::aarch64_sve_fcvtzs_x2:
5937
SelectCVTIntrinsic(Node, 2, AArch64::FCVTZS_2Z2Z_StoS);
5938
return;
5939
case Intrinsic::aarch64_sve_scvtf_x2:
5940
SelectCVTIntrinsic(Node, 2, AArch64::SCVTF_2Z2Z_StoS);
5941
return;
5942
case Intrinsic::aarch64_sve_fcvtzu_x2:
5943
SelectCVTIntrinsic(Node, 2, AArch64::FCVTZU_2Z2Z_StoS);
5944
return;
5945
case Intrinsic::aarch64_sve_ucvtf_x2:
5946
SelectCVTIntrinsic(Node, 2, AArch64::UCVTF_2Z2Z_StoS);
5947
return;
5948
case Intrinsic::aarch64_sve_fcvtzs_x4:
5949
SelectCVTIntrinsic(Node, 4, AArch64::FCVTZS_4Z4Z_StoS);
5950
return;
5951
case Intrinsic::aarch64_sve_scvtf_x4:
5952
SelectCVTIntrinsic(Node, 4, AArch64::SCVTF_4Z4Z_StoS);
5953
return;
5954
case Intrinsic::aarch64_sve_fcvtzu_x4:
5955
SelectCVTIntrinsic(Node, 4, AArch64::FCVTZU_4Z4Z_StoS);
5956
return;
5957
case Intrinsic::aarch64_sve_ucvtf_x4:
5958
SelectCVTIntrinsic(Node, 4, AArch64::UCVTF_4Z4Z_StoS);
5959
return;
5960
case Intrinsic::aarch64_sve_fcvt_widen_x2:
5961
SelectUnaryMultiIntrinsic(Node, 2, false, AArch64::FCVT_2ZZ_H_S);
5962
return;
5963
case Intrinsic::aarch64_sve_fcvtl_widen_x2:
5964
SelectUnaryMultiIntrinsic(Node, 2, false, AArch64::FCVTL_2ZZ_H_S);
5965
return;
5966
case Intrinsic::aarch64_sve_sclamp_single_x2:
5967
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5968
Node->getValueType(0),
5969
{AArch64::SCLAMP_VG2_2Z2Z_B, AArch64::SCLAMP_VG2_2Z2Z_H,
5970
AArch64::SCLAMP_VG2_2Z2Z_S, AArch64::SCLAMP_VG2_2Z2Z_D}))
5971
SelectClamp(Node, 2, Op);
5972
return;
5973
case Intrinsic::aarch64_sve_uclamp_single_x2:
5974
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5975
Node->getValueType(0),
5976
{AArch64::UCLAMP_VG2_2Z2Z_B, AArch64::UCLAMP_VG2_2Z2Z_H,
5977
AArch64::UCLAMP_VG2_2Z2Z_S, AArch64::UCLAMP_VG2_2Z2Z_D}))
5978
SelectClamp(Node, 2, Op);
5979
return;
5980
case Intrinsic::aarch64_sve_fclamp_single_x2:
5981
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
5982
Node->getValueType(0),
5983
{0, AArch64::FCLAMP_VG2_2Z2Z_H, AArch64::FCLAMP_VG2_2Z2Z_S,
5984
AArch64::FCLAMP_VG2_2Z2Z_D}))
5985
SelectClamp(Node, 2, Op);
5986
return;
5987
case Intrinsic::aarch64_sve_bfclamp_single_x2:
5988
SelectClamp(Node, 2, AArch64::BFCLAMP_VG2_2ZZZ_H);
5989
return;
5990
case Intrinsic::aarch64_sve_sclamp_single_x4:
5991
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5992
Node->getValueType(0),
5993
{AArch64::SCLAMP_VG4_4Z4Z_B, AArch64::SCLAMP_VG4_4Z4Z_H,
5994
AArch64::SCLAMP_VG4_4Z4Z_S, AArch64::SCLAMP_VG4_4Z4Z_D}))
5995
SelectClamp(Node, 4, Op);
5996
return;
5997
case Intrinsic::aarch64_sve_uclamp_single_x4:
5998
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
5999
Node->getValueType(0),
6000
{AArch64::UCLAMP_VG4_4Z4Z_B, AArch64::UCLAMP_VG4_4Z4Z_H,
6001
AArch64::UCLAMP_VG4_4Z4Z_S, AArch64::UCLAMP_VG4_4Z4Z_D}))
6002
SelectClamp(Node, 4, Op);
6003
return;
6004
case Intrinsic::aarch64_sve_fclamp_single_x4:
6005
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::FP>(
6006
Node->getValueType(0),
6007
{0, AArch64::FCLAMP_VG4_4Z4Z_H, AArch64::FCLAMP_VG4_4Z4Z_S,
6008
AArch64::FCLAMP_VG4_4Z4Z_D}))
6009
SelectClamp(Node, 4, Op);
6010
return;
6011
case Intrinsic::aarch64_sve_bfclamp_single_x4:
6012
SelectClamp(Node, 4, AArch64::BFCLAMP_VG4_4ZZZ_H);
6013
return;
6014
case Intrinsic::aarch64_sve_add_single_x2:
6015
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
6016
Node->getValueType(0),
6017
{AArch64::ADD_VG2_2ZZ_B, AArch64::ADD_VG2_2ZZ_H,
6018
AArch64::ADD_VG2_2ZZ_S, AArch64::ADD_VG2_2ZZ_D}))
6019
SelectDestructiveMultiIntrinsic(Node, 2, false, Op);
6020
return;
6021
case Intrinsic::aarch64_sve_add_single_x4:
6022
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
6023
Node->getValueType(0),
6024
{AArch64::ADD_VG4_4ZZ_B, AArch64::ADD_VG4_4ZZ_H,
6025
AArch64::ADD_VG4_4ZZ_S, AArch64::ADD_VG4_4ZZ_D}))
6026
SelectDestructiveMultiIntrinsic(Node, 4, false, Op);
6027
return;
6028
case Intrinsic::aarch64_sve_zip_x2:
6029
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
6030
Node->getValueType(0),
6031
{AArch64::ZIP_VG2_2ZZZ_B, AArch64::ZIP_VG2_2ZZZ_H,
6032
AArch64::ZIP_VG2_2ZZZ_S, AArch64::ZIP_VG2_2ZZZ_D}))
6033
SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
6034
return;
6035
case Intrinsic::aarch64_sve_zipq_x2:
6036
SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false,
6037
AArch64::ZIP_VG2_2ZZZ_Q);
6038
return;
6039
case Intrinsic::aarch64_sve_zip_x4:
6040
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
6041
Node->getValueType(0),
6042
{AArch64::ZIP_VG4_4Z4Z_B, AArch64::ZIP_VG4_4Z4Z_H,
6043
AArch64::ZIP_VG4_4Z4Z_S, AArch64::ZIP_VG4_4Z4Z_D}))
6044
SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
6045
return;
6046
case Intrinsic::aarch64_sve_zipq_x4:
6047
SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true,
6048
AArch64::ZIP_VG4_4Z4Z_Q);
6049
return;
6050
case Intrinsic::aarch64_sve_uzp_x2:
6051
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
6052
Node->getValueType(0),
6053
{AArch64::UZP_VG2_2ZZZ_B, AArch64::UZP_VG2_2ZZZ_H,
6054
AArch64::UZP_VG2_2ZZZ_S, AArch64::UZP_VG2_2ZZZ_D}))
6055
SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
6056
return;
6057
case Intrinsic::aarch64_sve_uzpq_x2:
6058
SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false,
6059
AArch64::UZP_VG2_2ZZZ_Q);
6060
return;
6061
case Intrinsic::aarch64_sve_uzp_x4:
6062
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
6063
Node->getValueType(0),
6064
{AArch64::UZP_VG4_4Z4Z_B, AArch64::UZP_VG4_4Z4Z_H,
6065
AArch64::UZP_VG4_4Z4Z_S, AArch64::UZP_VG4_4Z4Z_D}))
6066
SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
6067
return;
6068
case Intrinsic::aarch64_sve_uzpq_x4:
6069
SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true,
6070
AArch64::UZP_VG4_4Z4Z_Q);
6071
return;
6072
case Intrinsic::aarch64_sve_sel_x2:
6073
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
6074
Node->getValueType(0),
6075
{AArch64::SEL_VG2_2ZC2Z2Z_B, AArch64::SEL_VG2_2ZC2Z2Z_H,
6076
AArch64::SEL_VG2_2ZC2Z2Z_S, AArch64::SEL_VG2_2ZC2Z2Z_D}))
6077
SelectDestructiveMultiIntrinsic(Node, 2, true, Op, /*HasPred=*/true);
6078
return;
6079
case Intrinsic::aarch64_sve_sel_x4:
6080
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
6081
Node->getValueType(0),
6082
{AArch64::SEL_VG4_4ZC4Z4Z_B, AArch64::SEL_VG4_4ZC4Z4Z_H,
6083
AArch64::SEL_VG4_4ZC4Z4Z_S, AArch64::SEL_VG4_4ZC4Z4Z_D}))
6084
SelectDestructiveMultiIntrinsic(Node, 4, true, Op, /*HasPred=*/true);
6085
return;
6086
case Intrinsic::aarch64_sve_frinta_x2:
6087
SelectFrintFromVT(Node, 2, AArch64::FRINTA_2Z2Z_S);
6088
return;
6089
case Intrinsic::aarch64_sve_frinta_x4:
6090
SelectFrintFromVT(Node, 4, AArch64::FRINTA_4Z4Z_S);
6091
return;
6092
case Intrinsic::aarch64_sve_frintm_x2:
6093
SelectFrintFromVT(Node, 2, AArch64::FRINTM_2Z2Z_S);
6094
return;
6095
case Intrinsic::aarch64_sve_frintm_x4:
6096
SelectFrintFromVT(Node, 4, AArch64::FRINTM_4Z4Z_S);
6097
return;
6098
case Intrinsic::aarch64_sve_frintn_x2:
6099
SelectFrintFromVT(Node, 2, AArch64::FRINTN_2Z2Z_S);
6100
return;
6101
case Intrinsic::aarch64_sve_frintn_x4:
6102
SelectFrintFromVT(Node, 4, AArch64::FRINTN_4Z4Z_S);
6103
return;
6104
case Intrinsic::aarch64_sve_frintp_x2:
6105
SelectFrintFromVT(Node, 2, AArch64::FRINTP_2Z2Z_S);
6106
return;
6107
case Intrinsic::aarch64_sve_frintp_x4:
6108
SelectFrintFromVT(Node, 4, AArch64::FRINTP_4Z4Z_S);
6109
return;
6110
case Intrinsic::aarch64_sve_sunpk_x2:
6111
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
6112
Node->getValueType(0),
6113
{0, AArch64::SUNPK_VG2_2ZZ_H, AArch64::SUNPK_VG2_2ZZ_S,
6114
AArch64::SUNPK_VG2_2ZZ_D}))
6115
SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
6116
return;
6117
case Intrinsic::aarch64_sve_uunpk_x2:
6118
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
6119
Node->getValueType(0),
6120
{0, AArch64::UUNPK_VG2_2ZZ_H, AArch64::UUNPK_VG2_2ZZ_S,
6121
AArch64::UUNPK_VG2_2ZZ_D}))
6122
SelectUnaryMultiIntrinsic(Node, 2, /*IsTupleInput=*/false, Op);
6123
return;
6124
case Intrinsic::aarch64_sve_sunpk_x4:
6125
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
6126
Node->getValueType(0),
6127
{0, AArch64::SUNPK_VG4_4Z2Z_H, AArch64::SUNPK_VG4_4Z2Z_S,
6128
AArch64::SUNPK_VG4_4Z2Z_D}))
6129
SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
6130
return;
6131
case Intrinsic::aarch64_sve_uunpk_x4:
6132
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::Int>(
6133
Node->getValueType(0),
6134
{0, AArch64::UUNPK_VG4_4Z2Z_H, AArch64::UUNPK_VG4_4Z2Z_S,
6135
AArch64::UUNPK_VG4_4Z2Z_D}))
6136
SelectUnaryMultiIntrinsic(Node, 4, /*IsTupleInput=*/true, Op);
6137
return;
6138
case Intrinsic::aarch64_sve_pext_x2: {
6139
if (auto Op = SelectOpcodeFromVT<SelectTypeKind::AnyType>(
6140
Node->getValueType(0),
6141
{AArch64::PEXT_2PCI_B, AArch64::PEXT_2PCI_H, AArch64::PEXT_2PCI_S,
6142
AArch64::PEXT_2PCI_D}))
6143
SelectPExtPair(Node, Op);
6144
return;
6145
}
6146
}
6147
break;
6148
}
6149
case ISD::INTRINSIC_VOID: {
6150
unsigned IntNo = Node->getConstantOperandVal(1);
6151
if (Node->getNumOperands() >= 3)
6152
VT = Node->getOperand(2)->getValueType(0);
6153
switch (IntNo) {
6154
default:
6155
break;
6156
case Intrinsic::aarch64_neon_st1x2: {
6157
if (VT == MVT::v8i8) {
6158
SelectStore(Node, 2, AArch64::ST1Twov8b);
6159
return;
6160
} else if (VT == MVT::v16i8) {
6161
SelectStore(Node, 2, AArch64::ST1Twov16b);
6162
return;
6163
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
6164
VT == MVT::v4bf16) {
6165
SelectStore(Node, 2, AArch64::ST1Twov4h);
6166
return;
6167
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
6168
VT == MVT::v8bf16) {
6169
SelectStore(Node, 2, AArch64::ST1Twov8h);
6170
return;
6171
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6172
SelectStore(Node, 2, AArch64::ST1Twov2s);
6173
return;
6174
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6175
SelectStore(Node, 2, AArch64::ST1Twov4s);
6176
return;
6177
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6178
SelectStore(Node, 2, AArch64::ST1Twov2d);
6179
return;
6180
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6181
SelectStore(Node, 2, AArch64::ST1Twov1d);
6182
return;
6183
}
6184
break;
6185
}
6186
case Intrinsic::aarch64_neon_st1x3: {
6187
if (VT == MVT::v8i8) {
6188
SelectStore(Node, 3, AArch64::ST1Threev8b);
6189
return;
6190
} else if (VT == MVT::v16i8) {
6191
SelectStore(Node, 3, AArch64::ST1Threev16b);
6192
return;
6193
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
6194
VT == MVT::v4bf16) {
6195
SelectStore(Node, 3, AArch64::ST1Threev4h);
6196
return;
6197
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
6198
VT == MVT::v8bf16) {
6199
SelectStore(Node, 3, AArch64::ST1Threev8h);
6200
return;
6201
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6202
SelectStore(Node, 3, AArch64::ST1Threev2s);
6203
return;
6204
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6205
SelectStore(Node, 3, AArch64::ST1Threev4s);
6206
return;
6207
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6208
SelectStore(Node, 3, AArch64::ST1Threev2d);
6209
return;
6210
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6211
SelectStore(Node, 3, AArch64::ST1Threev1d);
6212
return;
6213
}
6214
break;
6215
}
6216
case Intrinsic::aarch64_neon_st1x4: {
6217
if (VT == MVT::v8i8) {
6218
SelectStore(Node, 4, AArch64::ST1Fourv8b);
6219
return;
6220
} else if (VT == MVT::v16i8) {
6221
SelectStore(Node, 4, AArch64::ST1Fourv16b);
6222
return;
6223
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
6224
VT == MVT::v4bf16) {
6225
SelectStore(Node, 4, AArch64::ST1Fourv4h);
6226
return;
6227
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
6228
VT == MVT::v8bf16) {
6229
SelectStore(Node, 4, AArch64::ST1Fourv8h);
6230
return;
6231
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6232
SelectStore(Node, 4, AArch64::ST1Fourv2s);
6233
return;
6234
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6235
SelectStore(Node, 4, AArch64::ST1Fourv4s);
6236
return;
6237
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6238
SelectStore(Node, 4, AArch64::ST1Fourv2d);
6239
return;
6240
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6241
SelectStore(Node, 4, AArch64::ST1Fourv1d);
6242
return;
6243
}
6244
break;
6245
}
6246
case Intrinsic::aarch64_neon_st2: {
6247
if (VT == MVT::v8i8) {
6248
SelectStore(Node, 2, AArch64::ST2Twov8b);
6249
return;
6250
} else if (VT == MVT::v16i8) {
6251
SelectStore(Node, 2, AArch64::ST2Twov16b);
6252
return;
6253
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
6254
VT == MVT::v4bf16) {
6255
SelectStore(Node, 2, AArch64::ST2Twov4h);
6256
return;
6257
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
6258
VT == MVT::v8bf16) {
6259
SelectStore(Node, 2, AArch64::ST2Twov8h);
6260
return;
6261
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6262
SelectStore(Node, 2, AArch64::ST2Twov2s);
6263
return;
6264
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6265
SelectStore(Node, 2, AArch64::ST2Twov4s);
6266
return;
6267
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6268
SelectStore(Node, 2, AArch64::ST2Twov2d);
6269
return;
6270
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6271
SelectStore(Node, 2, AArch64::ST1Twov1d);
6272
return;
6273
}
6274
break;
6275
}
6276
case Intrinsic::aarch64_neon_st3: {
6277
if (VT == MVT::v8i8) {
6278
SelectStore(Node, 3, AArch64::ST3Threev8b);
6279
return;
6280
} else if (VT == MVT::v16i8) {
6281
SelectStore(Node, 3, AArch64::ST3Threev16b);
6282
return;
6283
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
6284
VT == MVT::v4bf16) {
6285
SelectStore(Node, 3, AArch64::ST3Threev4h);
6286
return;
6287
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
6288
VT == MVT::v8bf16) {
6289
SelectStore(Node, 3, AArch64::ST3Threev8h);
6290
return;
6291
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6292
SelectStore(Node, 3, AArch64::ST3Threev2s);
6293
return;
6294
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6295
SelectStore(Node, 3, AArch64::ST3Threev4s);
6296
return;
6297
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6298
SelectStore(Node, 3, AArch64::ST3Threev2d);
6299
return;
6300
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6301
SelectStore(Node, 3, AArch64::ST1Threev1d);
6302
return;
6303
}
6304
break;
6305
}
6306
case Intrinsic::aarch64_neon_st4: {
6307
if (VT == MVT::v8i8) {
6308
SelectStore(Node, 4, AArch64::ST4Fourv8b);
6309
return;
6310
} else if (VT == MVT::v16i8) {
6311
SelectStore(Node, 4, AArch64::ST4Fourv16b);
6312
return;
6313
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
6314
VT == MVT::v4bf16) {
6315
SelectStore(Node, 4, AArch64::ST4Fourv4h);
6316
return;
6317
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
6318
VT == MVT::v8bf16) {
6319
SelectStore(Node, 4, AArch64::ST4Fourv8h);
6320
return;
6321
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6322
SelectStore(Node, 4, AArch64::ST4Fourv2s);
6323
return;
6324
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6325
SelectStore(Node, 4, AArch64::ST4Fourv4s);
6326
return;
6327
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6328
SelectStore(Node, 4, AArch64::ST4Fourv2d);
6329
return;
6330
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6331
SelectStore(Node, 4, AArch64::ST1Fourv1d);
6332
return;
6333
}
6334
break;
6335
}
6336
case Intrinsic::aarch64_neon_st2lane: {
6337
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6338
SelectStoreLane(Node, 2, AArch64::ST2i8);
6339
return;
6340
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6341
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6342
SelectStoreLane(Node, 2, AArch64::ST2i16);
6343
return;
6344
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6345
VT == MVT::v2f32) {
6346
SelectStoreLane(Node, 2, AArch64::ST2i32);
6347
return;
6348
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6349
VT == MVT::v1f64) {
6350
SelectStoreLane(Node, 2, AArch64::ST2i64);
6351
return;
6352
}
6353
break;
6354
}
6355
case Intrinsic::aarch64_neon_st3lane: {
6356
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6357
SelectStoreLane(Node, 3, AArch64::ST3i8);
6358
return;
6359
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6360
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6361
SelectStoreLane(Node, 3, AArch64::ST3i16);
6362
return;
6363
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6364
VT == MVT::v2f32) {
6365
SelectStoreLane(Node, 3, AArch64::ST3i32);
6366
return;
6367
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6368
VT == MVT::v1f64) {
6369
SelectStoreLane(Node, 3, AArch64::ST3i64);
6370
return;
6371
}
6372
break;
6373
}
6374
case Intrinsic::aarch64_neon_st4lane: {
6375
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6376
SelectStoreLane(Node, 4, AArch64::ST4i8);
6377
return;
6378
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6379
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6380
SelectStoreLane(Node, 4, AArch64::ST4i16);
6381
return;
6382
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6383
VT == MVT::v2f32) {
6384
SelectStoreLane(Node, 4, AArch64::ST4i32);
6385
return;
6386
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6387
VT == MVT::v1f64) {
6388
SelectStoreLane(Node, 4, AArch64::ST4i64);
6389
return;
6390
}
6391
break;
6392
}
6393
case Intrinsic::aarch64_sve_st2q: {
6394
SelectPredicatedStore(Node, 2, 4, AArch64::ST2Q, AArch64::ST2Q_IMM);
6395
return;
6396
}
6397
case Intrinsic::aarch64_sve_st3q: {
6398
SelectPredicatedStore(Node, 3, 4, AArch64::ST3Q, AArch64::ST3Q_IMM);
6399
return;
6400
}
6401
case Intrinsic::aarch64_sve_st4q: {
6402
SelectPredicatedStore(Node, 4, 4, AArch64::ST4Q, AArch64::ST4Q_IMM);
6403
return;
6404
}
6405
case Intrinsic::aarch64_sve_st2: {
6406
if (VT == MVT::nxv16i8) {
6407
SelectPredicatedStore(Node, 2, 0, AArch64::ST2B, AArch64::ST2B_IMM);
6408
return;
6409
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6410
VT == MVT::nxv8bf16) {
6411
SelectPredicatedStore(Node, 2, 1, AArch64::ST2H, AArch64::ST2H_IMM);
6412
return;
6413
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6414
SelectPredicatedStore(Node, 2, 2, AArch64::ST2W, AArch64::ST2W_IMM);
6415
return;
6416
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6417
SelectPredicatedStore(Node, 2, 3, AArch64::ST2D, AArch64::ST2D_IMM);
6418
return;
6419
}
6420
break;
6421
}
6422
case Intrinsic::aarch64_sve_st3: {
6423
if (VT == MVT::nxv16i8) {
6424
SelectPredicatedStore(Node, 3, 0, AArch64::ST3B, AArch64::ST3B_IMM);
6425
return;
6426
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6427
VT == MVT::nxv8bf16) {
6428
SelectPredicatedStore(Node, 3, 1, AArch64::ST3H, AArch64::ST3H_IMM);
6429
return;
6430
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6431
SelectPredicatedStore(Node, 3, 2, AArch64::ST3W, AArch64::ST3W_IMM);
6432
return;
6433
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6434
SelectPredicatedStore(Node, 3, 3, AArch64::ST3D, AArch64::ST3D_IMM);
6435
return;
6436
}
6437
break;
6438
}
6439
case Intrinsic::aarch64_sve_st4: {
6440
if (VT == MVT::nxv16i8) {
6441
SelectPredicatedStore(Node, 4, 0, AArch64::ST4B, AArch64::ST4B_IMM);
6442
return;
6443
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
6444
VT == MVT::nxv8bf16) {
6445
SelectPredicatedStore(Node, 4, 1, AArch64::ST4H, AArch64::ST4H_IMM);
6446
return;
6447
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
6448
SelectPredicatedStore(Node, 4, 2, AArch64::ST4W, AArch64::ST4W_IMM);
6449
return;
6450
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
6451
SelectPredicatedStore(Node, 4, 3, AArch64::ST4D, AArch64::ST4D_IMM);
6452
return;
6453
}
6454
break;
6455
}
6456
}
6457
break;
6458
}
6459
case AArch64ISD::LD2post: {
6460
if (VT == MVT::v8i8) {
6461
SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
6462
return;
6463
} else if (VT == MVT::v16i8) {
6464
SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
6465
return;
6466
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6467
SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
6468
return;
6469
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6470
SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
6471
return;
6472
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6473
SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
6474
return;
6475
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6476
SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
6477
return;
6478
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6479
SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
6480
return;
6481
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6482
SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
6483
return;
6484
}
6485
break;
6486
}
6487
case AArch64ISD::LD3post: {
6488
if (VT == MVT::v8i8) {
6489
SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
6490
return;
6491
} else if (VT == MVT::v16i8) {
6492
SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
6493
return;
6494
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6495
SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
6496
return;
6497
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6498
SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
6499
return;
6500
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6501
SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
6502
return;
6503
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6504
SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
6505
return;
6506
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6507
SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
6508
return;
6509
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6510
SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
6511
return;
6512
}
6513
break;
6514
}
6515
case AArch64ISD::LD4post: {
6516
if (VT == MVT::v8i8) {
6517
SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
6518
return;
6519
} else if (VT == MVT::v16i8) {
6520
SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
6521
return;
6522
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6523
SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
6524
return;
6525
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6526
SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
6527
return;
6528
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6529
SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
6530
return;
6531
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6532
SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
6533
return;
6534
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6535
SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
6536
return;
6537
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6538
SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
6539
return;
6540
}
6541
break;
6542
}
6543
case AArch64ISD::LD1x2post: {
6544
if (VT == MVT::v8i8) {
6545
SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
6546
return;
6547
} else if (VT == MVT::v16i8) {
6548
SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
6549
return;
6550
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6551
SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
6552
return;
6553
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6554
SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
6555
return;
6556
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6557
SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
6558
return;
6559
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6560
SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
6561
return;
6562
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6563
SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
6564
return;
6565
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6566
SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
6567
return;
6568
}
6569
break;
6570
}
6571
case AArch64ISD::LD1x3post: {
6572
if (VT == MVT::v8i8) {
6573
SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
6574
return;
6575
} else if (VT == MVT::v16i8) {
6576
SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
6577
return;
6578
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6579
SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
6580
return;
6581
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6582
SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
6583
return;
6584
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6585
SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
6586
return;
6587
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6588
SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
6589
return;
6590
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6591
SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
6592
return;
6593
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6594
SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
6595
return;
6596
}
6597
break;
6598
}
6599
case AArch64ISD::LD1x4post: {
6600
if (VT == MVT::v8i8) {
6601
SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
6602
return;
6603
} else if (VT == MVT::v16i8) {
6604
SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
6605
return;
6606
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6607
SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
6608
return;
6609
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6610
SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
6611
return;
6612
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6613
SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
6614
return;
6615
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6616
SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
6617
return;
6618
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6619
SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
6620
return;
6621
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6622
SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
6623
return;
6624
}
6625
break;
6626
}
6627
case AArch64ISD::LD1DUPpost: {
6628
if (VT == MVT::v8i8) {
6629
SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
6630
return;
6631
} else if (VT == MVT::v16i8) {
6632
SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
6633
return;
6634
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6635
SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
6636
return;
6637
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6638
SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
6639
return;
6640
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6641
SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
6642
return;
6643
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6644
SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
6645
return;
6646
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6647
SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
6648
return;
6649
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6650
SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
6651
return;
6652
}
6653
break;
6654
}
6655
case AArch64ISD::LD2DUPpost: {
6656
if (VT == MVT::v8i8) {
6657
SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
6658
return;
6659
} else if (VT == MVT::v16i8) {
6660
SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
6661
return;
6662
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6663
SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
6664
return;
6665
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6666
SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
6667
return;
6668
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6669
SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
6670
return;
6671
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6672
SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
6673
return;
6674
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6675
SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
6676
return;
6677
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6678
SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
6679
return;
6680
}
6681
break;
6682
}
6683
case AArch64ISD::LD3DUPpost: {
6684
if (VT == MVT::v8i8) {
6685
SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
6686
return;
6687
} else if (VT == MVT::v16i8) {
6688
SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
6689
return;
6690
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6691
SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
6692
return;
6693
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6694
SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
6695
return;
6696
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6697
SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
6698
return;
6699
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6700
SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
6701
return;
6702
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6703
SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
6704
return;
6705
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6706
SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
6707
return;
6708
}
6709
break;
6710
}
6711
case AArch64ISD::LD4DUPpost: {
6712
if (VT == MVT::v8i8) {
6713
SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
6714
return;
6715
} else if (VT == MVT::v16i8) {
6716
SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
6717
return;
6718
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6719
SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
6720
return;
6721
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6722
SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
6723
return;
6724
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6725
SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
6726
return;
6727
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6728
SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
6729
return;
6730
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6731
SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
6732
return;
6733
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6734
SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
6735
return;
6736
}
6737
break;
6738
}
6739
case AArch64ISD::LD1LANEpost: {
6740
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6741
SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
6742
return;
6743
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6744
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6745
SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
6746
return;
6747
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6748
VT == MVT::v2f32) {
6749
SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
6750
return;
6751
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6752
VT == MVT::v1f64) {
6753
SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
6754
return;
6755
}
6756
break;
6757
}
6758
case AArch64ISD::LD2LANEpost: {
6759
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6760
SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
6761
return;
6762
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6763
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6764
SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
6765
return;
6766
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6767
VT == MVT::v2f32) {
6768
SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
6769
return;
6770
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6771
VT == MVT::v1f64) {
6772
SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
6773
return;
6774
}
6775
break;
6776
}
6777
case AArch64ISD::LD3LANEpost: {
6778
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6779
SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
6780
return;
6781
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6782
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6783
SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
6784
return;
6785
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6786
VT == MVT::v2f32) {
6787
SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
6788
return;
6789
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6790
VT == MVT::v1f64) {
6791
SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
6792
return;
6793
}
6794
break;
6795
}
6796
case AArch64ISD::LD4LANEpost: {
6797
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6798
SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
6799
return;
6800
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6801
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6802
SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
6803
return;
6804
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6805
VT == MVT::v2f32) {
6806
SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
6807
return;
6808
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
6809
VT == MVT::v1f64) {
6810
SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
6811
return;
6812
}
6813
break;
6814
}
6815
case AArch64ISD::ST2post: {
6816
VT = Node->getOperand(1).getValueType();
6817
if (VT == MVT::v8i8) {
6818
SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
6819
return;
6820
} else if (VT == MVT::v16i8) {
6821
SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
6822
return;
6823
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6824
SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
6825
return;
6826
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6827
SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
6828
return;
6829
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6830
SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
6831
return;
6832
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6833
SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
6834
return;
6835
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6836
SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
6837
return;
6838
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6839
SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
6840
return;
6841
}
6842
break;
6843
}
6844
case AArch64ISD::ST3post: {
6845
VT = Node->getOperand(1).getValueType();
6846
if (VT == MVT::v8i8) {
6847
SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
6848
return;
6849
} else if (VT == MVT::v16i8) {
6850
SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
6851
return;
6852
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6853
SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
6854
return;
6855
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6856
SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
6857
return;
6858
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6859
SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
6860
return;
6861
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6862
SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
6863
return;
6864
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6865
SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
6866
return;
6867
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6868
SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
6869
return;
6870
}
6871
break;
6872
}
6873
case AArch64ISD::ST4post: {
6874
VT = Node->getOperand(1).getValueType();
6875
if (VT == MVT::v8i8) {
6876
SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
6877
return;
6878
} else if (VT == MVT::v16i8) {
6879
SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
6880
return;
6881
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6882
SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
6883
return;
6884
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6885
SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
6886
return;
6887
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6888
SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
6889
return;
6890
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6891
SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
6892
return;
6893
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6894
SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
6895
return;
6896
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6897
SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
6898
return;
6899
}
6900
break;
6901
}
6902
case AArch64ISD::ST1x2post: {
6903
VT = Node->getOperand(1).getValueType();
6904
if (VT == MVT::v8i8) {
6905
SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
6906
return;
6907
} else if (VT == MVT::v16i8) {
6908
SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
6909
return;
6910
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6911
SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
6912
return;
6913
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6914
SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
6915
return;
6916
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6917
SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
6918
return;
6919
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6920
SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
6921
return;
6922
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6923
SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
6924
return;
6925
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6926
SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
6927
return;
6928
}
6929
break;
6930
}
6931
case AArch64ISD::ST1x3post: {
6932
VT = Node->getOperand(1).getValueType();
6933
if (VT == MVT::v8i8) {
6934
SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
6935
return;
6936
} else if (VT == MVT::v16i8) {
6937
SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
6938
return;
6939
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6940
SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
6941
return;
6942
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16 ) {
6943
SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
6944
return;
6945
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6946
SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
6947
return;
6948
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6949
SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
6950
return;
6951
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6952
SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
6953
return;
6954
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6955
SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
6956
return;
6957
}
6958
break;
6959
}
6960
case AArch64ISD::ST1x4post: {
6961
VT = Node->getOperand(1).getValueType();
6962
if (VT == MVT::v8i8) {
6963
SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
6964
return;
6965
} else if (VT == MVT::v16i8) {
6966
SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
6967
return;
6968
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
6969
SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
6970
return;
6971
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
6972
SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
6973
return;
6974
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
6975
SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
6976
return;
6977
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
6978
SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
6979
return;
6980
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
6981
SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
6982
return;
6983
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
6984
SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
6985
return;
6986
}
6987
break;
6988
}
6989
case AArch64ISD::ST2LANEpost: {
6990
VT = Node->getOperand(1).getValueType();
6991
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
6992
SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
6993
return;
6994
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
6995
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
6996
SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
6997
return;
6998
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
6999
VT == MVT::v2f32) {
7000
SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
7001
return;
7002
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
7003
VT == MVT::v1f64) {
7004
SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
7005
return;
7006
}
7007
break;
7008
}
7009
case AArch64ISD::ST3LANEpost: {
7010
VT = Node->getOperand(1).getValueType();
7011
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
7012
SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
7013
return;
7014
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
7015
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
7016
SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
7017
return;
7018
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
7019
VT == MVT::v2f32) {
7020
SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
7021
return;
7022
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
7023
VT == MVT::v1f64) {
7024
SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
7025
return;
7026
}
7027
break;
7028
}
7029
case AArch64ISD::ST4LANEpost: {
7030
VT = Node->getOperand(1).getValueType();
7031
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
7032
SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
7033
return;
7034
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
7035
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
7036
SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
7037
return;
7038
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
7039
VT == MVT::v2f32) {
7040
SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
7041
return;
7042
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
7043
VT == MVT::v1f64) {
7044
SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
7045
return;
7046
}
7047
break;
7048
}
7049
case AArch64ISD::SVE_LD2_MERGE_ZERO: {
7050
if (VT == MVT::nxv16i8) {
7051
SelectPredicatedLoad(Node, 2, 0, AArch64::LD2B_IMM, AArch64::LD2B);
7052
return;
7053
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
7054
VT == MVT::nxv8bf16) {
7055
SelectPredicatedLoad(Node, 2, 1, AArch64::LD2H_IMM, AArch64::LD2H);
7056
return;
7057
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
7058
SelectPredicatedLoad(Node, 2, 2, AArch64::LD2W_IMM, AArch64::LD2W);
7059
return;
7060
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
7061
SelectPredicatedLoad(Node, 2, 3, AArch64::LD2D_IMM, AArch64::LD2D);
7062
return;
7063
}
7064
break;
7065
}
7066
case AArch64ISD::SVE_LD3_MERGE_ZERO: {
7067
if (VT == MVT::nxv16i8) {
7068
SelectPredicatedLoad(Node, 3, 0, AArch64::LD3B_IMM, AArch64::LD3B);
7069
return;
7070
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
7071
VT == MVT::nxv8bf16) {
7072
SelectPredicatedLoad(Node, 3, 1, AArch64::LD3H_IMM, AArch64::LD3H);
7073
return;
7074
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
7075
SelectPredicatedLoad(Node, 3, 2, AArch64::LD3W_IMM, AArch64::LD3W);
7076
return;
7077
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
7078
SelectPredicatedLoad(Node, 3, 3, AArch64::LD3D_IMM, AArch64::LD3D);
7079
return;
7080
}
7081
break;
7082
}
7083
case AArch64ISD::SVE_LD4_MERGE_ZERO: {
7084
if (VT == MVT::nxv16i8) {
7085
SelectPredicatedLoad(Node, 4, 0, AArch64::LD4B_IMM, AArch64::LD4B);
7086
return;
7087
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
7088
VT == MVT::nxv8bf16) {
7089
SelectPredicatedLoad(Node, 4, 1, AArch64::LD4H_IMM, AArch64::LD4H);
7090
return;
7091
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
7092
SelectPredicatedLoad(Node, 4, 2, AArch64::LD4W_IMM, AArch64::LD4W);
7093
return;
7094
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
7095
SelectPredicatedLoad(Node, 4, 3, AArch64::LD4D_IMM, AArch64::LD4D);
7096
return;
7097
}
7098
break;
7099
}
7100
}
7101
7102
// Select the default instruction
7103
SelectCode(Node);
7104
}
7105
7106
/// createAArch64ISelDag - This pass converts a legalized DAG into a
7107
/// AArch64-specific DAG, ready for instruction scheduling.
7108
FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
7109
CodeGenOptLevel OptLevel) {
7110
return new AArch64DAGToDAGISelLegacy(TM, OptLevel);
7111
}
7112
7113
/// When \p PredVT is a scalable vector predicate in the form
7114
/// MVT::nx<M>xi1, it builds the correspondent scalable vector of
7115
/// integers MVT::nx<M>xi<bits> s.t. M x bits = 128. When targeting
7116
/// structured vectors (NumVec >1), the output data type is
7117
/// MVT::nx<M*NumVec>xi<bits> s.t. M x bits = 128. If the input
7118
/// PredVT is not in the form MVT::nx<M>xi1, it returns an invalid
7119
/// EVT.
7120
static EVT getPackedVectorTypeFromPredicateType(LLVMContext &Ctx, EVT PredVT,
7121
unsigned NumVec) {
7122
assert(NumVec > 0 && NumVec < 5 && "Invalid number of vectors.");
7123
if (!PredVT.isScalableVector() || PredVT.getVectorElementType() != MVT::i1)
7124
return EVT();
7125
7126
if (PredVT != MVT::nxv16i1 && PredVT != MVT::nxv8i1 &&
7127
PredVT != MVT::nxv4i1 && PredVT != MVT::nxv2i1)
7128
return EVT();
7129
7130
ElementCount EC = PredVT.getVectorElementCount();
7131
EVT ScalarVT =
7132
EVT::getIntegerVT(Ctx, AArch64::SVEBitsPerBlock / EC.getKnownMinValue());
7133
EVT MemVT = EVT::getVectorVT(Ctx, ScalarVT, EC * NumVec);
7134
7135
return MemVT;
7136
}
7137
7138
/// Return the EVT of the data associated to a memory operation in \p
7139
/// Root. If such EVT cannot be retrived, it returns an invalid EVT.
7140
static EVT getMemVTFromNode(LLVMContext &Ctx, SDNode *Root) {
7141
if (isa<MemSDNode>(Root))
7142
return cast<MemSDNode>(Root)->getMemoryVT();
7143
7144
if (isa<MemIntrinsicSDNode>(Root))
7145
return cast<MemIntrinsicSDNode>(Root)->getMemoryVT();
7146
7147
const unsigned Opcode = Root->getOpcode();
7148
// For custom ISD nodes, we have to look at them individually to extract the
7149
// type of the data moved to/from memory.
7150
switch (Opcode) {
7151
case AArch64ISD::LD1_MERGE_ZERO:
7152
case AArch64ISD::LD1S_MERGE_ZERO:
7153
case AArch64ISD::LDNF1_MERGE_ZERO:
7154
case AArch64ISD::LDNF1S_MERGE_ZERO:
7155
return cast<VTSDNode>(Root->getOperand(3))->getVT();
7156
case AArch64ISD::ST1_PRED:
7157
return cast<VTSDNode>(Root->getOperand(4))->getVT();
7158
case AArch64ISD::SVE_LD2_MERGE_ZERO:
7159
return getPackedVectorTypeFromPredicateType(
7160
Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/2);
7161
case AArch64ISD::SVE_LD3_MERGE_ZERO:
7162
return getPackedVectorTypeFromPredicateType(
7163
Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/3);
7164
case AArch64ISD::SVE_LD4_MERGE_ZERO:
7165
return getPackedVectorTypeFromPredicateType(
7166
Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/4);
7167
default:
7168
break;
7169
}
7170
7171
if (Opcode != ISD::INTRINSIC_VOID && Opcode != ISD::INTRINSIC_W_CHAIN)
7172
return EVT();
7173
7174
switch (Root->getConstantOperandVal(1)) {
7175
default:
7176
return EVT();
7177
case Intrinsic::aarch64_sme_ldr:
7178
case Intrinsic::aarch64_sme_str:
7179
return MVT::nxv16i8;
7180
case Intrinsic::aarch64_sve_prf:
7181
// We are using an SVE prefetch intrinsic. Type must be inferred from the
7182
// width of the predicate.
7183
return getPackedVectorTypeFromPredicateType(
7184
Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/1);
7185
case Intrinsic::aarch64_sve_ld2_sret:
7186
case Intrinsic::aarch64_sve_ld2q_sret:
7187
return getPackedVectorTypeFromPredicateType(
7188
Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/2);
7189
case Intrinsic::aarch64_sve_st2q:
7190
return getPackedVectorTypeFromPredicateType(
7191
Ctx, Root->getOperand(4)->getValueType(0), /*NumVec=*/2);
7192
case Intrinsic::aarch64_sve_ld3_sret:
7193
case Intrinsic::aarch64_sve_ld3q_sret:
7194
return getPackedVectorTypeFromPredicateType(
7195
Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/3);
7196
case Intrinsic::aarch64_sve_st3q:
7197
return getPackedVectorTypeFromPredicateType(
7198
Ctx, Root->getOperand(5)->getValueType(0), /*NumVec=*/3);
7199
case Intrinsic::aarch64_sve_ld4_sret:
7200
case Intrinsic::aarch64_sve_ld4q_sret:
7201
return getPackedVectorTypeFromPredicateType(
7202
Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/4);
7203
case Intrinsic::aarch64_sve_st4q:
7204
return getPackedVectorTypeFromPredicateType(
7205
Ctx, Root->getOperand(6)->getValueType(0), /*NumVec=*/4);
7206
case Intrinsic::aarch64_sve_ld1udq:
7207
case Intrinsic::aarch64_sve_st1dq:
7208
return EVT(MVT::nxv1i64);
7209
case Intrinsic::aarch64_sve_ld1uwq:
7210
case Intrinsic::aarch64_sve_st1wq:
7211
return EVT(MVT::nxv1i32);
7212
}
7213
}
7214
7215
/// SelectAddrModeIndexedSVE - Attempt selection of the addressing mode:
7216
/// Base + OffImm * sizeof(MemVT) for Min >= OffImm <= Max
7217
/// where Root is the memory access using N for its address.
7218
template <int64_t Min, int64_t Max>
7219
bool AArch64DAGToDAGISel::SelectAddrModeIndexedSVE(SDNode *Root, SDValue N,
7220
SDValue &Base,
7221
SDValue &OffImm) {
7222
const EVT MemVT = getMemVTFromNode(*(CurDAG->getContext()), Root);
7223
const DataLayout &DL = CurDAG->getDataLayout();
7224
const MachineFrameInfo &MFI = MF->getFrameInfo();
7225
7226
if (N.getOpcode() == ISD::FrameIndex) {
7227
int FI = cast<FrameIndexSDNode>(N)->getIndex();
7228
// We can only encode VL scaled offsets, so only fold in frame indexes
7229
// referencing SVE objects.
7230
if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
7231
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
7232
OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64);
7233
return true;
7234
}
7235
7236
return false;
7237
}
7238
7239
if (MemVT == EVT())
7240
return false;
7241
7242
if (N.getOpcode() != ISD::ADD)
7243
return false;
7244
7245
SDValue VScale = N.getOperand(1);
7246
if (VScale.getOpcode() != ISD::VSCALE)
7247
return false;
7248
7249
TypeSize TS = MemVT.getSizeInBits();
7250
int64_t MemWidthBytes = static_cast<int64_t>(TS.getKnownMinValue()) / 8;
7251
int64_t MulImm = cast<ConstantSDNode>(VScale.getOperand(0))->getSExtValue();
7252
7253
if ((MulImm % MemWidthBytes) != 0)
7254
return false;
7255
7256
int64_t Offset = MulImm / MemWidthBytes;
7257
if (Offset < Min || Offset > Max)
7258
return false;
7259
7260
Base = N.getOperand(0);
7261
if (Base.getOpcode() == ISD::FrameIndex) {
7262
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
7263
// We can only encode VL scaled offsets, so only fold in frame indexes
7264
// referencing SVE objects.
7265
if (MFI.getStackID(FI) == TargetStackID::ScalableVector)
7266
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
7267
}
7268
7269
OffImm = CurDAG->getTargetConstant(Offset, SDLoc(N), MVT::i64);
7270
return true;
7271
}
7272
7273
/// Select register plus register addressing mode for SVE, with scaled
7274
/// offset.
7275
bool AArch64DAGToDAGISel::SelectSVERegRegAddrMode(SDValue N, unsigned Scale,
7276
SDValue &Base,
7277
SDValue &Offset) {
7278
if (N.getOpcode() != ISD::ADD)
7279
return false;
7280
7281
// Process an ADD node.
7282
const SDValue LHS = N.getOperand(0);
7283
const SDValue RHS = N.getOperand(1);
7284
7285
// 8 bit data does not come with the SHL node, so it is treated
7286
// separately.
7287
if (Scale == 0) {
7288
Base = LHS;
7289
Offset = RHS;
7290
return true;
7291
}
7292
7293
if (auto C = dyn_cast<ConstantSDNode>(RHS)) {
7294
int64_t ImmOff = C->getSExtValue();
7295
unsigned Size = 1 << Scale;
7296
7297
// To use the reg+reg addressing mode, the immediate must be a multiple of
7298
// the vector element's byte size.
7299
if (ImmOff % Size)
7300
return false;
7301
7302
SDLoc DL(N);
7303
Base = LHS;
7304
Offset = CurDAG->getTargetConstant(ImmOff >> Scale, DL, MVT::i64);
7305
SDValue Ops[] = {Offset};
7306
SDNode *MI = CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
7307
Offset = SDValue(MI, 0);
7308
return true;
7309
}
7310
7311
// Check if the RHS is a shift node with a constant.
7312
if (RHS.getOpcode() != ISD::SHL)
7313
return false;
7314
7315
const SDValue ShiftRHS = RHS.getOperand(1);
7316
if (auto *C = dyn_cast<ConstantSDNode>(ShiftRHS))
7317
if (C->getZExtValue() == Scale) {
7318
Base = LHS;
7319
Offset = RHS.getOperand(0);
7320
return true;
7321
}
7322
7323
return false;
7324
}
7325
7326
bool AArch64DAGToDAGISel::SelectAllActivePredicate(SDValue N) {
7327
const AArch64TargetLowering *TLI =
7328
static_cast<const AArch64TargetLowering *>(getTargetLowering());
7329
7330
return TLI->isAllActivePredicate(*CurDAG, N);
7331
}
7332
7333
bool AArch64DAGToDAGISel::SelectAnyPredicate(SDValue N) {
7334
EVT VT = N.getValueType();
7335
return VT.isScalableVector() && VT.getVectorElementType() == MVT::i1;
7336
}
7337
7338
bool AArch64DAGToDAGISel::SelectSMETileSlice(SDValue N, unsigned MaxSize,
7339
SDValue &Base, SDValue &Offset,
7340
unsigned Scale) {
7341
// Try to untangle an ADD node into a 'reg + offset'
7342
if (N.getOpcode() == ISD::ADD)
7343
if (auto C = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
7344
int64_t ImmOff = C->getSExtValue();
7345
if ((ImmOff > 0 && ImmOff <= MaxSize && (ImmOff % Scale == 0))) {
7346
Base = N.getOperand(0);
7347
Offset = CurDAG->getTargetConstant(ImmOff / Scale, SDLoc(N), MVT::i64);
7348
return true;
7349
}
7350
}
7351
7352
// By default, just match reg + 0.
7353
Base = N;
7354
Offset = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64);
7355
return true;
7356
}
7357
7358