Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp
35269 views
1
//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file
10
/// This pass does misc. AMDGPU optimizations on IR before instruction
11
/// selection.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "AMDGPU.h"
16
#include "AMDGPUTargetMachine.h"
17
#include "SIModeRegisterDefaults.h"
18
#include "llvm/Analysis/AssumptionCache.h"
19
#include "llvm/Analysis/ConstantFolding.h"
20
#include "llvm/Analysis/TargetLibraryInfo.h"
21
#include "llvm/Analysis/UniformityAnalysis.h"
22
#include "llvm/Analysis/ValueTracking.h"
23
#include "llvm/CodeGen/TargetPassConfig.h"
24
#include "llvm/IR/Dominators.h"
25
#include "llvm/IR/IRBuilder.h"
26
#include "llvm/IR/InstVisitor.h"
27
#include "llvm/IR/IntrinsicsAMDGPU.h"
28
#include "llvm/IR/PatternMatch.h"
29
#include "llvm/InitializePasses.h"
30
#include "llvm/Pass.h"
31
#include "llvm/Support/KnownBits.h"
32
#include "llvm/Transforms/Utils/IntegerDivision.h"
33
#include "llvm/Transforms/Utils/Local.h"
34
35
#define DEBUG_TYPE "amdgpu-codegenprepare"
36
37
using namespace llvm;
38
using namespace llvm::PatternMatch;
39
40
namespace {
41
42
static cl::opt<bool> WidenLoads(
43
"amdgpu-codegenprepare-widen-constant-loads",
44
cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
45
cl::ReallyHidden,
46
cl::init(false));
47
48
static cl::opt<bool> Widen16BitOps(
49
"amdgpu-codegenprepare-widen-16-bit-ops",
50
cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
51
cl::ReallyHidden,
52
cl::init(true));
53
54
static cl::opt<bool>
55
BreakLargePHIs("amdgpu-codegenprepare-break-large-phis",
56
cl::desc("Break large PHI nodes for DAGISel"),
57
cl::ReallyHidden, cl::init(true));
58
59
static cl::opt<bool>
60
ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis",
61
cl::desc("For testing purposes, always break large "
62
"PHIs even if it isn't profitable."),
63
cl::ReallyHidden, cl::init(false));
64
65
static cl::opt<unsigned> BreakLargePHIsThreshold(
66
"amdgpu-codegenprepare-break-large-phis-threshold",
67
cl::desc("Minimum type size in bits for breaking large PHI nodes"),
68
cl::ReallyHidden, cl::init(32));
69
70
static cl::opt<bool> UseMul24Intrin(
71
"amdgpu-codegenprepare-mul24",
72
cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
73
cl::ReallyHidden,
74
cl::init(true));
75
76
// Legalize 64-bit division by using the generic IR expansion.
77
static cl::opt<bool> ExpandDiv64InIR(
78
"amdgpu-codegenprepare-expand-div64",
79
cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
80
cl::ReallyHidden,
81
cl::init(false));
82
83
// Leave all division operations as they are. This supersedes ExpandDiv64InIR
84
// and is used for testing the legalizer.
85
static cl::opt<bool> DisableIDivExpand(
86
"amdgpu-codegenprepare-disable-idiv-expansion",
87
cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
88
cl::ReallyHidden,
89
cl::init(false));
90
91
// Disable processing of fdiv so we can better test the backend implementations.
92
static cl::opt<bool> DisableFDivExpand(
93
"amdgpu-codegenprepare-disable-fdiv-expansion",
94
cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"),
95
cl::ReallyHidden,
96
cl::init(false));
97
98
class AMDGPUCodeGenPrepareImpl
99
: public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> {
100
public:
101
const GCNSubtarget *ST = nullptr;
102
const AMDGPUTargetMachine *TM = nullptr;
103
const TargetLibraryInfo *TLInfo = nullptr;
104
AssumptionCache *AC = nullptr;
105
DominatorTree *DT = nullptr;
106
UniformityInfo *UA = nullptr;
107
Module *Mod = nullptr;
108
const DataLayout *DL = nullptr;
109
bool HasUnsafeFPMath = false;
110
bool HasFP32DenormalFlush = false;
111
bool FlowChanged = false;
112
mutable Function *SqrtF32 = nullptr;
113
mutable Function *LdexpF32 = nullptr;
114
115
DenseMap<const PHINode *, bool> BreakPhiNodesCache;
116
117
Function *getSqrtF32() const {
118
if (SqrtF32)
119
return SqrtF32;
120
121
LLVMContext &Ctx = Mod->getContext();
122
SqrtF32 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_sqrt,
123
{Type::getFloatTy(Ctx)});
124
return SqrtF32;
125
}
126
127
Function *getLdexpF32() const {
128
if (LdexpF32)
129
return LdexpF32;
130
131
LLVMContext &Ctx = Mod->getContext();
132
LdexpF32 = Intrinsic::getDeclaration(
133
Mod, Intrinsic::ldexp, {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)});
134
return LdexpF32;
135
}
136
137
bool canBreakPHINode(const PHINode &I);
138
139
/// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
140
/// binary operation \p V.
141
///
142
/// \returns Binary operation \p V.
143
/// \returns \p T's base element bit width.
144
unsigned getBaseElementBitWidth(const Type *T) const;
145
146
/// \returns Equivalent 32 bit integer type for given type \p T. For example,
147
/// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
148
/// is returned.
149
Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
150
151
/// \returns True if binary operation \p I is a signed binary operation, false
152
/// otherwise.
153
bool isSigned(const BinaryOperator &I) const;
154
155
/// \returns True if the condition of 'select' operation \p I comes from a
156
/// signed 'icmp' operation, false otherwise.
157
bool isSigned(const SelectInst &I) const;
158
159
/// \returns True if type \p T needs to be promoted to 32 bit integer type,
160
/// false otherwise.
161
bool needsPromotionToI32(const Type *T) const;
162
163
/// Return true if \p T is a legal scalar floating point type.
164
bool isLegalFloatingTy(const Type *T) const;
165
166
/// Wrapper to pass all the arguments to computeKnownFPClass
167
KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested,
168
const Instruction *CtxI) const {
169
return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI,
170
DT);
171
}
172
173
bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const {
174
return HasFP32DenormalFlush ||
175
computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal();
176
}
177
178
/// Promotes uniform binary operation \p I to equivalent 32 bit binary
179
/// operation.
180
///
181
/// \details \p I's base element bit width must be greater than 1 and less
182
/// than or equal 16. Promotion is done by sign or zero extending operands to
183
/// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
184
/// truncating the result of 32 bit binary operation back to \p I's original
185
/// type. Division operation is not promoted.
186
///
187
/// \returns True if \p I is promoted to equivalent 32 bit binary operation,
188
/// false otherwise.
189
bool promoteUniformOpToI32(BinaryOperator &I) const;
190
191
/// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
192
///
193
/// \details \p I's base element bit width must be greater than 1 and less
194
/// than or equal 16. Promotion is done by sign or zero extending operands to
195
/// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
196
///
197
/// \returns True.
198
bool promoteUniformOpToI32(ICmpInst &I) const;
199
200
/// Promotes uniform 'select' operation \p I to 32 bit 'select'
201
/// operation.
202
///
203
/// \details \p I's base element bit width must be greater than 1 and less
204
/// than or equal 16. Promotion is done by sign or zero extending operands to
205
/// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
206
/// result of 32 bit 'select' operation back to \p I's original type.
207
///
208
/// \returns True.
209
bool promoteUniformOpToI32(SelectInst &I) const;
210
211
/// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
212
/// intrinsic.
213
///
214
/// \details \p I's base element bit width must be greater than 1 and less
215
/// than or equal 16. Promotion is done by zero extending the operand to 32
216
/// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
217
/// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
218
/// shift amount is 32 minus \p I's base element bit width), and truncating
219
/// the result of the shift operation back to \p I's original type.
220
///
221
/// \returns True.
222
bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
223
224
/// \returns The minimum number of bits needed to store the value of \Op as an
225
/// unsigned integer. Truncating to this size and then zero-extending to
226
/// the original will not change the value.
227
unsigned numBitsUnsigned(Value *Op) const;
228
229
/// \returns The minimum number of bits needed to store the value of \Op as a
230
/// signed integer. Truncating to this size and then sign-extending to
231
/// the original size will not change the value.
232
unsigned numBitsSigned(Value *Op) const;
233
234
/// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
235
/// SelectionDAG has an issue where an and asserting the bits are known
236
bool replaceMulWithMul24(BinaryOperator &I) const;
237
238
/// Perform same function as equivalently named function in DAGCombiner. Since
239
/// we expand some divisions here, we need to perform this before obscuring.
240
bool foldBinOpIntoSelect(BinaryOperator &I) const;
241
242
bool divHasSpecialOptimization(BinaryOperator &I,
243
Value *Num, Value *Den) const;
244
int getDivNumBits(BinaryOperator &I,
245
Value *Num, Value *Den,
246
unsigned AtLeast, bool Signed) const;
247
248
/// Expands 24 bit div or rem.
249
Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
250
Value *Num, Value *Den,
251
bool IsDiv, bool IsSigned) const;
252
253
Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
254
Value *Num, Value *Den, unsigned NumBits,
255
bool IsDiv, bool IsSigned) const;
256
257
/// Expands 32 bit div or rem.
258
Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
259
Value *Num, Value *Den) const;
260
261
Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
262
Value *Num, Value *Den) const;
263
void expandDivRem64(BinaryOperator &I) const;
264
265
/// Widen a scalar load.
266
///
267
/// \details \p Widen scalar load for uniform, small type loads from constant
268
// memory / to a full 32-bits and then truncate the input to allow a scalar
269
// load instead of a vector load.
270
//
271
/// \returns True.
272
273
bool canWidenScalarExtLoad(LoadInst &I) const;
274
275
Value *matchFractPat(IntrinsicInst &I);
276
Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg);
277
278
bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF,
279
FastMathFlags SqrtFMF) const;
280
281
Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den,
282
FastMathFlags DivFMF, FastMathFlags SqrtFMF,
283
const Instruction *CtxI) const;
284
285
Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den,
286
FastMathFlags FMF, const Instruction *CtxI) const;
287
Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den,
288
float ReqdAccuracy) const;
289
290
Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den,
291
FastMathFlags DivFMF, FastMathFlags SqrtFMF,
292
Value *RsqOp, const Instruction *FDiv,
293
float ReqdAccuracy) const;
294
295
std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder,
296
Value *Src) const;
297
298
Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src,
299
bool IsNegative) const;
300
Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS,
301
FastMathFlags FMF) const;
302
Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src,
303
FastMathFlags FMF) const;
304
305
public:
306
bool visitFDiv(BinaryOperator &I);
307
308
bool visitInstruction(Instruction &I) { return false; }
309
bool visitBinaryOperator(BinaryOperator &I);
310
bool visitLoadInst(LoadInst &I);
311
bool visitICmpInst(ICmpInst &I);
312
bool visitSelectInst(SelectInst &I);
313
bool visitPHINode(PHINode &I);
314
bool visitAddrSpaceCastInst(AddrSpaceCastInst &I);
315
316
bool visitIntrinsicInst(IntrinsicInst &I);
317
bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
318
bool visitMinNum(IntrinsicInst &I);
319
bool visitSqrt(IntrinsicInst &I);
320
bool run(Function &F);
321
};
322
323
class AMDGPUCodeGenPrepare : public FunctionPass {
324
private:
325
AMDGPUCodeGenPrepareImpl Impl;
326
327
public:
328
static char ID;
329
AMDGPUCodeGenPrepare() : FunctionPass(ID) {
330
initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry());
331
}
332
void getAnalysisUsage(AnalysisUsage &AU) const override {
333
AU.addRequired<AssumptionCacheTracker>();
334
AU.addRequired<UniformityInfoWrapperPass>();
335
AU.addRequired<TargetLibraryInfoWrapperPass>();
336
337
// FIXME: Division expansion needs to preserve the dominator tree.
338
if (!ExpandDiv64InIR)
339
AU.setPreservesAll();
340
}
341
bool runOnFunction(Function &F) override;
342
bool doInitialization(Module &M) override;
343
StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
344
};
345
346
} // end anonymous namespace
347
348
bool AMDGPUCodeGenPrepareImpl::run(Function &F) {
349
BreakPhiNodesCache.clear();
350
bool MadeChange = false;
351
352
Function::iterator NextBB;
353
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
354
BasicBlock *BB = &*FI;
355
NextBB = std::next(FI);
356
357
BasicBlock::iterator Next;
358
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
359
I = Next) {
360
Next = std::next(I);
361
362
MadeChange |= visit(*I);
363
364
if (Next != E) { // Control flow changed
365
BasicBlock *NextInstBB = Next->getParent();
366
if (NextInstBB != BB) {
367
BB = NextInstBB;
368
E = BB->end();
369
FE = F.end();
370
}
371
}
372
}
373
}
374
return MadeChange;
375
}
376
377
unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const {
378
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
379
380
if (T->isIntegerTy())
381
return T->getIntegerBitWidth();
382
return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
383
}
384
385
Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const {
386
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
387
388
if (T->isIntegerTy())
389
return B.getInt32Ty();
390
return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
391
}
392
393
bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const {
394
return I.getOpcode() == Instruction::AShr ||
395
I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
396
}
397
398
bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const {
399
return isa<ICmpInst>(I.getOperand(0)) ?
400
cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
401
}
402
403
bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const {
404
if (!Widen16BitOps)
405
return false;
406
407
const IntegerType *IntTy = dyn_cast<IntegerType>(T);
408
if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
409
return true;
410
411
if (const VectorType *VT = dyn_cast<VectorType>(T)) {
412
// TODO: The set of packed operations is more limited, so may want to
413
// promote some anyway.
414
if (ST->hasVOP3PInsts())
415
return false;
416
417
return needsPromotionToI32(VT->getElementType());
418
}
419
420
return false;
421
}
422
423
bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const {
424
return Ty->isFloatTy() || Ty->isDoubleTy() ||
425
(Ty->isHalfTy() && ST->has16BitInsts());
426
}
427
428
// Return true if the op promoted to i32 should have nsw set.
429
static bool promotedOpIsNSW(const Instruction &I) {
430
switch (I.getOpcode()) {
431
case Instruction::Shl:
432
case Instruction::Add:
433
case Instruction::Sub:
434
return true;
435
case Instruction::Mul:
436
return I.hasNoUnsignedWrap();
437
default:
438
return false;
439
}
440
}
441
442
// Return true if the op promoted to i32 should have nuw set.
443
static bool promotedOpIsNUW(const Instruction &I) {
444
switch (I.getOpcode()) {
445
case Instruction::Shl:
446
case Instruction::Add:
447
case Instruction::Mul:
448
return true;
449
case Instruction::Sub:
450
return I.hasNoUnsignedWrap();
451
default:
452
return false;
453
}
454
}
455
456
bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const {
457
Type *Ty = I.getType();
458
const DataLayout &DL = Mod->getDataLayout();
459
int TySize = DL.getTypeSizeInBits(Ty);
460
Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
461
462
return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I);
463
}
464
465
bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const {
466
assert(needsPromotionToI32(I.getType()) &&
467
"I does not need promotion to i32");
468
469
if (I.getOpcode() == Instruction::SDiv ||
470
I.getOpcode() == Instruction::UDiv ||
471
I.getOpcode() == Instruction::SRem ||
472
I.getOpcode() == Instruction::URem)
473
return false;
474
475
IRBuilder<> Builder(&I);
476
Builder.SetCurrentDebugLocation(I.getDebugLoc());
477
478
Type *I32Ty = getI32Ty(Builder, I.getType());
479
Value *ExtOp0 = nullptr;
480
Value *ExtOp1 = nullptr;
481
Value *ExtRes = nullptr;
482
Value *TruncRes = nullptr;
483
484
if (isSigned(I)) {
485
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
486
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
487
} else {
488
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
489
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
490
}
491
492
ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
493
if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
494
if (promotedOpIsNSW(cast<Instruction>(I)))
495
Inst->setHasNoSignedWrap();
496
497
if (promotedOpIsNUW(cast<Instruction>(I)))
498
Inst->setHasNoUnsignedWrap();
499
500
if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
501
Inst->setIsExact(ExactOp->isExact());
502
}
503
504
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
505
506
I.replaceAllUsesWith(TruncRes);
507
I.eraseFromParent();
508
509
return true;
510
}
511
512
bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const {
513
assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
514
"I does not need promotion to i32");
515
516
IRBuilder<> Builder(&I);
517
Builder.SetCurrentDebugLocation(I.getDebugLoc());
518
519
Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
520
Value *ExtOp0 = nullptr;
521
Value *ExtOp1 = nullptr;
522
Value *NewICmp = nullptr;
523
524
if (I.isSigned()) {
525
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
526
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
527
} else {
528
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
529
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
530
}
531
NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
532
533
I.replaceAllUsesWith(NewICmp);
534
I.eraseFromParent();
535
536
return true;
537
}
538
539
bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const {
540
assert(needsPromotionToI32(I.getType()) &&
541
"I does not need promotion to i32");
542
543
IRBuilder<> Builder(&I);
544
Builder.SetCurrentDebugLocation(I.getDebugLoc());
545
546
Type *I32Ty = getI32Ty(Builder, I.getType());
547
Value *ExtOp1 = nullptr;
548
Value *ExtOp2 = nullptr;
549
Value *ExtRes = nullptr;
550
Value *TruncRes = nullptr;
551
552
if (isSigned(I)) {
553
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
554
ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
555
} else {
556
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
557
ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
558
}
559
ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
560
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
561
562
I.replaceAllUsesWith(TruncRes);
563
I.eraseFromParent();
564
565
return true;
566
}
567
568
bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32(
569
IntrinsicInst &I) const {
570
assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
571
"I must be bitreverse intrinsic");
572
assert(needsPromotionToI32(I.getType()) &&
573
"I does not need promotion to i32");
574
575
IRBuilder<> Builder(&I);
576
Builder.SetCurrentDebugLocation(I.getDebugLoc());
577
578
Type *I32Ty = getI32Ty(Builder, I.getType());
579
Function *I32 =
580
Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
581
Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
582
Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
583
Value *LShrOp =
584
Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
585
Value *TruncRes =
586
Builder.CreateTrunc(LShrOp, I.getType());
587
588
I.replaceAllUsesWith(TruncRes);
589
I.eraseFromParent();
590
591
return true;
592
}
593
594
unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const {
595
return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits();
596
}
597
598
unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const {
599
return ComputeMaxSignificantBits(Op, *DL, 0, AC);
600
}
601
602
static void extractValues(IRBuilder<> &Builder,
603
SmallVectorImpl<Value *> &Values, Value *V) {
604
auto *VT = dyn_cast<FixedVectorType>(V->getType());
605
if (!VT) {
606
Values.push_back(V);
607
return;
608
}
609
610
for (int I = 0, E = VT->getNumElements(); I != E; ++I)
611
Values.push_back(Builder.CreateExtractElement(V, I));
612
}
613
614
static Value *insertValues(IRBuilder<> &Builder,
615
Type *Ty,
616
SmallVectorImpl<Value *> &Values) {
617
if (!Ty->isVectorTy()) {
618
assert(Values.size() == 1);
619
return Values[0];
620
}
621
622
Value *NewVal = PoisonValue::get(Ty);
623
for (int I = 0, E = Values.size(); I != E; ++I)
624
NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
625
626
return NewVal;
627
}
628
629
bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const {
630
if (I.getOpcode() != Instruction::Mul)
631
return false;
632
633
Type *Ty = I.getType();
634
unsigned Size = Ty->getScalarSizeInBits();
635
if (Size <= 16 && ST->has16BitInsts())
636
return false;
637
638
// Prefer scalar if this could be s_mul_i32
639
if (UA->isUniform(&I))
640
return false;
641
642
Value *LHS = I.getOperand(0);
643
Value *RHS = I.getOperand(1);
644
IRBuilder<> Builder(&I);
645
Builder.SetCurrentDebugLocation(I.getDebugLoc());
646
647
unsigned LHSBits = 0, RHSBits = 0;
648
bool IsSigned = false;
649
650
if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 &&
651
(RHSBits = numBitsUnsigned(RHS)) <= 24) {
652
IsSigned = false;
653
654
} else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 &&
655
(RHSBits = numBitsSigned(RHS)) <= 24) {
656
IsSigned = true;
657
658
} else
659
return false;
660
661
SmallVector<Value *, 4> LHSVals;
662
SmallVector<Value *, 4> RHSVals;
663
SmallVector<Value *, 4> ResultVals;
664
extractValues(Builder, LHSVals, LHS);
665
extractValues(Builder, RHSVals, RHS);
666
667
IntegerType *I32Ty = Builder.getInt32Ty();
668
IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty;
669
Type *DstTy = LHSVals[0]->getType();
670
671
for (int I = 0, E = LHSVals.size(); I != E; ++I) {
672
Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty)
673
: Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
674
Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty)
675
: Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
676
Intrinsic::ID ID =
677
IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
678
Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS});
679
Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy)
680
: Builder.CreateZExtOrTrunc(Result, DstTy);
681
ResultVals.push_back(Result);
682
}
683
684
Value *NewVal = insertValues(Builder, Ty, ResultVals);
685
NewVal->takeName(&I);
686
I.replaceAllUsesWith(NewVal);
687
I.eraseFromParent();
688
689
return true;
690
}
691
692
// Find a select instruction, which may have been casted. This is mostly to deal
693
// with cases where i16 selects were promoted here to i32.
694
static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
695
Cast = nullptr;
696
if (SelectInst *Sel = dyn_cast<SelectInst>(V))
697
return Sel;
698
699
if ((Cast = dyn_cast<CastInst>(V))) {
700
if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
701
return Sel;
702
}
703
704
return nullptr;
705
}
706
707
bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const {
708
// Don't do this unless the old select is going away. We want to eliminate the
709
// binary operator, not replace a binop with a select.
710
int SelOpNo = 0;
711
712
CastInst *CastOp;
713
714
// TODO: Should probably try to handle some cases with multiple
715
// users. Duplicating the select may be profitable for division.
716
SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
717
if (!Sel || !Sel->hasOneUse()) {
718
SelOpNo = 1;
719
Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
720
}
721
722
if (!Sel || !Sel->hasOneUse())
723
return false;
724
725
Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
726
Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
727
Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
728
if (!CBO || !CT || !CF)
729
return false;
730
731
if (CastOp) {
732
if (!CastOp->hasOneUse())
733
return false;
734
CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
735
CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
736
}
737
738
// TODO: Handle special 0/-1 cases DAG combine does, although we only really
739
// need to handle divisions here.
740
Constant *FoldedT = SelOpNo ?
741
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
742
ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
743
if (!FoldedT || isa<ConstantExpr>(FoldedT))
744
return false;
745
746
Constant *FoldedF = SelOpNo ?
747
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
748
ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
749
if (!FoldedF || isa<ConstantExpr>(FoldedF))
750
return false;
751
752
IRBuilder<> Builder(&BO);
753
Builder.SetCurrentDebugLocation(BO.getDebugLoc());
754
if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
755
Builder.setFastMathFlags(FPOp->getFastMathFlags());
756
757
Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
758
FoldedT, FoldedF);
759
NewSelect->takeName(&BO);
760
BO.replaceAllUsesWith(NewSelect);
761
BO.eraseFromParent();
762
if (CastOp)
763
CastOp->eraseFromParent();
764
Sel->eraseFromParent();
765
return true;
766
}
767
768
std::pair<Value *, Value *>
769
AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder,
770
Value *Src) const {
771
Type *Ty = Src->getType();
772
Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp,
773
{Ty, Builder.getInt32Ty()}, Src);
774
Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0});
775
776
// Bypass the bug workaround for the exponent result since it doesn't matter.
777
// TODO: Does the bug workaround even really need to consider the exponent
778
// result? It's unspecified by the spec.
779
780
Value *FrexpExp =
781
ST->hasFractBug()
782
? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp,
783
{Builder.getInt32Ty(), Ty}, Src)
784
: Builder.CreateExtractValue(Frexp, {1});
785
return {FrexpMant, FrexpExp};
786
}
787
788
/// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals.
789
Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder,
790
Value *Src,
791
bool IsNegative) const {
792
// Same as for 1.0, but expand the sign out of the constant.
793
// -1.0 / x -> rcp (fneg x)
794
if (IsNegative)
795
Src = Builder.CreateFNeg(Src);
796
797
// The rcp instruction doesn't support denormals, so scale the input
798
// out of the denormal range and convert at the end.
799
//
800
// Expand as 2^-n * (1.0 / (x * 2^n))
801
802
// TODO: Skip scaling if input is known never denormal and the input
803
// range won't underflow to denormal. The hard part is knowing the
804
// result. We need a range check, the result could be denormal for
805
// 0x1p+126 < den <= 0x1p+127.
806
auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src);
807
Value *ScaleFactor = Builder.CreateNeg(FrexpExp);
808
Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant);
809
return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor});
810
}
811
812
/// Emit a 2ulp expansion for fdiv by using frexp for input scaling.
813
Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS,
814
Value *RHS,
815
FastMathFlags FMF) const {
816
// If we have have to work around the fract/frexp bug, we're worse off than
817
// using the fdiv.fast expansion. The full safe expansion is faster if we have
818
// fast FMA.
819
if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() &&
820
(!FMF.noNaNs() || !FMF.noInfs()))
821
return nullptr;
822
823
// We're scaling the LHS to avoid a denormal input, and scale the denominator
824
// to avoid large values underflowing the result.
825
auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS);
826
827
Value *Rcp =
828
Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS);
829
830
auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS);
831
Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp);
832
833
// We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the
834
// result.
835
Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS);
836
return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff});
837
}
838
839
/// Emit a sqrt that handles denormals and is accurate to 2ulp.
840
Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder,
841
Value *Src,
842
FastMathFlags FMF) const {
843
Type *Ty = Src->getType();
844
APFloat SmallestNormal =
845
APFloat::getSmallestNormalized(Ty->getFltSemantics());
846
Value *NeedScale =
847
Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal));
848
849
ConstantInt *Zero = Builder.getInt32(0);
850
Value *InputScaleFactor =
851
Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero);
852
853
Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor});
854
855
Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled);
856
857
Value *OutputScaleFactor =
858
Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero);
859
return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor});
860
}
861
862
/// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals.
863
static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src,
864
bool IsNegative) {
865
// bool need_scale = x < 0x1p-126f;
866
// float input_scale = need_scale ? 0x1.0p+24f : 1.0f;
867
// float output_scale = need_scale ? 0x1.0p+12f : 1.0f;
868
// rsq(x * input_scale) * output_scale;
869
870
Type *Ty = Src->getType();
871
APFloat SmallestNormal =
872
APFloat::getSmallestNormalized(Ty->getFltSemantics());
873
Value *NeedScale =
874
Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal));
875
Constant *One = ConstantFP::get(Ty, 1.0);
876
Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24);
877
Constant *OutputScale =
878
ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12);
879
880
Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One);
881
882
Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor);
883
Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput);
884
Value *OutputScaleFactor = Builder.CreateSelect(
885
NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One);
886
887
return Builder.CreateFMul(Rsq, OutputScaleFactor);
888
}
889
890
bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp,
891
FastMathFlags DivFMF,
892
FastMathFlags SqrtFMF) const {
893
// The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
894
if (!DivFMF.allowContract() || !SqrtFMF.allowContract())
895
return false;
896
897
// v_rsq_f32 gives 1ulp
898
return SqrtFMF.approxFunc() || HasUnsafeFPMath ||
899
SqrtOp->getFPAccuracy() >= 1.0f;
900
}
901
902
Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq(
903
IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF,
904
const FastMathFlags SqrtFMF, const Instruction *CtxI) const {
905
// The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
906
assert(DivFMF.allowContract() && SqrtFMF.allowContract());
907
908
// rsq_f16 is accurate to 0.51 ulp.
909
// rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
910
// rsq_f64 is never accurate.
911
const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num);
912
if (!CLHS)
913
return nullptr;
914
915
assert(Den->getType()->isFloatTy());
916
917
bool IsNegative = false;
918
919
// TODO: Handle other numerator values with arcp.
920
if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) {
921
// Add in the sqrt flags.
922
IRBuilder<>::FastMathFlagGuard Guard(Builder);
923
Builder.setFastMathFlags(DivFMF | SqrtFMF);
924
925
if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath ||
926
canIgnoreDenormalInput(Den, CtxI)) {
927
Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den);
928
// -1.0 / sqrt(x) -> fneg(rsq(x))
929
return IsNegative ? Builder.CreateFNeg(Result) : Result;
930
}
931
932
return emitRsqIEEE1ULP(Builder, Den, IsNegative);
933
}
934
935
return nullptr;
936
}
937
938
// Optimize fdiv with rcp:
939
//
940
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
941
// allowed with unsafe-fp-math or afn.
942
//
943
// a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0
944
Value *
945
AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num,
946
Value *Den, FastMathFlags FMF,
947
const Instruction *CtxI) const {
948
// rcp_f16 is accurate to 0.51 ulp.
949
// rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
950
// rcp_f64 is never accurate.
951
assert(Den->getType()->isFloatTy());
952
953
if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
954
bool IsNegative = false;
955
if (CLHS->isExactlyValue(1.0) ||
956
(IsNegative = CLHS->isExactlyValue(-1.0))) {
957
Value *Src = Den;
958
959
if (HasFP32DenormalFlush || FMF.approxFunc()) {
960
// -1.0 / x -> 1.0 / fneg(x)
961
if (IsNegative)
962
Src = Builder.CreateFNeg(Src);
963
964
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
965
// the CI documentation has a worst case error of 1 ulp.
966
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK
967
// to use it as long as we aren't trying to use denormals.
968
//
969
// v_rcp_f16 and v_rsq_f16 DO support denormals.
970
971
// NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
972
// insert rsq intrinsic here.
973
974
// 1.0 / x -> rcp(x)
975
return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src);
976
}
977
978
// TODO: If the input isn't denormal, and we know the input exponent isn't
979
// big enough to introduce a denormal we can avoid the scaling.
980
return emitRcpIEEE1ULP(Builder, Src, IsNegative);
981
}
982
}
983
984
if (FMF.allowReciprocal()) {
985
// x / y -> x * (1.0 / y)
986
987
// TODO: Could avoid denormal scaling and use raw rcp if we knew the output
988
// will never underflow.
989
if (HasFP32DenormalFlush || FMF.approxFunc()) {
990
Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den);
991
return Builder.CreateFMul(Num, Recip);
992
}
993
994
Value *Recip = emitRcpIEEE1ULP(Builder, Den, false);
995
return Builder.CreateFMul(Num, Recip);
996
}
997
998
return nullptr;
999
}
1000
1001
// optimize with fdiv.fast:
1002
//
1003
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
1004
//
1005
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
1006
//
1007
// NOTE: optimizeWithRcp should be tried first because rcp is the preference.
1008
Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast(
1009
IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const {
1010
// fdiv.fast can achieve 2.5 ULP accuracy.
1011
if (ReqdAccuracy < 2.5f)
1012
return nullptr;
1013
1014
// Only have fdiv.fast for f32.
1015
assert(Den->getType()->isFloatTy());
1016
1017
bool NumIsOne = false;
1018
if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
1019
if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
1020
NumIsOne = true;
1021
}
1022
1023
// fdiv does not support denormals. But 1.0/x is always fine to use it.
1024
//
1025
// TODO: This works for any value with a specific known exponent range, don't
1026
// just limit to constant 1.
1027
if (!HasFP32DenormalFlush && !NumIsOne)
1028
return nullptr;
1029
1030
return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den});
1031
}
1032
1033
Value *AMDGPUCodeGenPrepareImpl::visitFDivElement(
1034
IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF,
1035
FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst,
1036
float ReqdDivAccuracy) const {
1037
if (RsqOp) {
1038
Value *Rsq =
1039
optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst);
1040
if (Rsq)
1041
return Rsq;
1042
}
1043
1044
Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst);
1045
if (Rcp)
1046
return Rcp;
1047
1048
// In the basic case fdiv_fast has the same instruction count as the frexp div
1049
// expansion. Slightly prefer fdiv_fast since it ends in an fmul that can
1050
// potentially be fused into a user. Also, materialization of the constants
1051
// can be reused for multiple instances.
1052
Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy);
1053
if (FDivFast)
1054
return FDivFast;
1055
1056
return emitFrexpDiv(Builder, Num, Den, DivFMF);
1057
}
1058
1059
// Optimizations is performed based on fpmath, fast math flags as well as
1060
// denormals to optimize fdiv with either rcp or fdiv.fast.
1061
//
1062
// With rcp:
1063
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
1064
// allowed with unsafe-fp-math or afn.
1065
//
1066
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
1067
//
1068
// With fdiv.fast:
1069
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
1070
//
1071
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
1072
//
1073
// NOTE: rcp is the preference in cases that both are legal.
1074
bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) {
1075
if (DisableFDivExpand)
1076
return false;
1077
1078
Type *Ty = FDiv.getType()->getScalarType();
1079
if (!Ty->isFloatTy())
1080
return false;
1081
1082
// The f64 rcp/rsq approximations are pretty inaccurate. We can do an
1083
// expansion around them in codegen. f16 is good enough to always use.
1084
1085
const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
1086
const FastMathFlags DivFMF = FPOp->getFastMathFlags();
1087
const float ReqdAccuracy = FPOp->getFPAccuracy();
1088
1089
FastMathFlags SqrtFMF;
1090
1091
Value *Num = FDiv.getOperand(0);
1092
Value *Den = FDiv.getOperand(1);
1093
1094
Value *RsqOp = nullptr;
1095
auto *DenII = dyn_cast<IntrinsicInst>(Den);
1096
if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt &&
1097
DenII->hasOneUse()) {
1098
const auto *SqrtOp = cast<FPMathOperator>(DenII);
1099
SqrtFMF = SqrtOp->getFastMathFlags();
1100
if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF))
1101
RsqOp = SqrtOp->getOperand(0);
1102
}
1103
1104
// Inaccurate rcp is allowed with unsafe-fp-math or afn.
1105
//
1106
// Defer to codegen to handle this.
1107
//
1108
// TODO: Decide on an interpretation for interactions between afn + arcp +
1109
// !fpmath, and make it consistent between here and codegen. For now, defer
1110
// expansion of afn to codegen. The current interpretation is so aggressive we
1111
// don't need any pre-consideration here when we have better information. A
1112
// more conservative interpretation could use handling here.
1113
const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc();
1114
if (!RsqOp && AllowInaccurateRcp)
1115
return false;
1116
1117
// Defer the correct implementations to codegen.
1118
if (ReqdAccuracy < 1.0f)
1119
return false;
1120
1121
IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
1122
Builder.setFastMathFlags(DivFMF);
1123
Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
1124
1125
SmallVector<Value *, 4> NumVals;
1126
SmallVector<Value *, 4> DenVals;
1127
SmallVector<Value *, 4> RsqDenVals;
1128
extractValues(Builder, NumVals, Num);
1129
extractValues(Builder, DenVals, Den);
1130
1131
if (RsqOp)
1132
extractValues(Builder, RsqDenVals, RsqOp);
1133
1134
SmallVector<Value *, 4> ResultVals(NumVals.size());
1135
for (int I = 0, E = NumVals.size(); I != E; ++I) {
1136
Value *NumElt = NumVals[I];
1137
Value *DenElt = DenVals[I];
1138
Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr;
1139
1140
Value *NewElt =
1141
visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt,
1142
cast<Instruction>(FPOp), ReqdAccuracy);
1143
if (!NewElt) {
1144
// Keep the original, but scalarized.
1145
1146
// This has the unfortunate side effect of sometimes scalarizing when
1147
// we're not going to do anything.
1148
NewElt = Builder.CreateFDiv(NumElt, DenElt);
1149
if (auto *NewEltInst = dyn_cast<Instruction>(NewElt))
1150
NewEltInst->copyMetadata(FDiv);
1151
}
1152
1153
ResultVals[I] = NewElt;
1154
}
1155
1156
Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals);
1157
1158
if (NewVal) {
1159
FDiv.replaceAllUsesWith(NewVal);
1160
NewVal->takeName(&FDiv);
1161
RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo);
1162
}
1163
1164
return true;
1165
}
1166
1167
static bool hasUnsafeFPMath(const Function &F) {
1168
Attribute Attr = F.getFnAttribute("unsafe-fp-math");
1169
return Attr.getValueAsBool();
1170
}
1171
1172
static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
1173
Value *LHS, Value *RHS) {
1174
Type *I32Ty = Builder.getInt32Ty();
1175
Type *I64Ty = Builder.getInt64Ty();
1176
1177
Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
1178
Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
1179
Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
1180
Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
1181
Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
1182
Hi = Builder.CreateTrunc(Hi, I32Ty);
1183
return std::pair(Lo, Hi);
1184
}
1185
1186
static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
1187
return getMul64(Builder, LHS, RHS).second;
1188
}
1189
1190
/// Figure out how many bits are really needed for this division. \p AtLeast is
1191
/// an optimization hint to bypass the second ComputeNumSignBits call if we the
1192
/// first one is insufficient. Returns -1 on failure.
1193
int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num,
1194
Value *Den, unsigned AtLeast,
1195
bool IsSigned) const {
1196
const DataLayout &DL = Mod->getDataLayout();
1197
unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
1198
if (LHSSignBits < AtLeast)
1199
return -1;
1200
1201
unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
1202
if (RHSSignBits < AtLeast)
1203
return -1;
1204
1205
unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1206
unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
1207
if (IsSigned)
1208
++DivBits;
1209
return DivBits;
1210
}
1211
1212
// The fractional part of a float is enough to accurately represent up to
1213
// a 24-bit signed integer.
1214
Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder,
1215
BinaryOperator &I, Value *Num,
1216
Value *Den, bool IsDiv,
1217
bool IsSigned) const {
1218
unsigned SSBits = Num->getType()->getScalarSizeInBits();
1219
// If Num bits <= 24, assume 0 signbits.
1220
unsigned AtLeast = (SSBits <= 24) ? 0 : (SSBits - 24 + IsSigned);
1221
int DivBits = getDivNumBits(I, Num, Den, AtLeast, IsSigned);
1222
if (DivBits == -1)
1223
return nullptr;
1224
return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
1225
}
1226
1227
Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl(
1228
IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den,
1229
unsigned DivBits, bool IsDiv, bool IsSigned) const {
1230
Type *I32Ty = Builder.getInt32Ty();
1231
Num = Builder.CreateTrunc(Num, I32Ty);
1232
Den = Builder.CreateTrunc(Den, I32Ty);
1233
1234
Type *F32Ty = Builder.getFloatTy();
1235
ConstantInt *One = Builder.getInt32(1);
1236
Value *JQ = One;
1237
1238
if (IsSigned) {
1239
// char|short jq = ia ^ ib;
1240
JQ = Builder.CreateXor(Num, Den);
1241
1242
// jq = jq >> (bitsize - 2)
1243
JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
1244
1245
// jq = jq | 0x1
1246
JQ = Builder.CreateOr(JQ, One);
1247
}
1248
1249
// int ia = (int)LHS;
1250
Value *IA = Num;
1251
1252
// int ib, (int)RHS;
1253
Value *IB = Den;
1254
1255
// float fa = (float)ia;
1256
Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
1257
: Builder.CreateUIToFP(IA, F32Ty);
1258
1259
// float fb = (float)ib;
1260
Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
1261
: Builder.CreateUIToFP(IB,F32Ty);
1262
1263
Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
1264
Builder.getFloatTy());
1265
Value *RCP = Builder.CreateCall(RcpDecl, { FB });
1266
Value *FQM = Builder.CreateFMul(FA, RCP);
1267
1268
// fq = trunc(fqm);
1269
CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
1270
FQ->copyFastMathFlags(Builder.getFastMathFlags());
1271
1272
// float fqneg = -fq;
1273
Value *FQNeg = Builder.CreateFNeg(FQ);
1274
1275
// float fr = mad(fqneg, fb, fa);
1276
auto FMAD = !ST->hasMadMacF32Insts()
1277
? Intrinsic::fma
1278
: (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
1279
Value *FR = Builder.CreateIntrinsic(FMAD,
1280
{FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
1281
1282
// int iq = (int)fq;
1283
Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
1284
: Builder.CreateFPToUI(FQ, I32Ty);
1285
1286
// fr = fabs(fr);
1287
FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
1288
1289
// fb = fabs(fb);
1290
FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
1291
1292
// int cv = fr >= fb;
1293
Value *CV = Builder.CreateFCmpOGE(FR, FB);
1294
1295
// jq = (cv ? jq : 0);
1296
JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
1297
1298
// dst = iq + jq;
1299
Value *Div = Builder.CreateAdd(IQ, JQ);
1300
1301
Value *Res = Div;
1302
if (!IsDiv) {
1303
// Rem needs compensation, it's easier to recompute it
1304
Value *Rem = Builder.CreateMul(Div, Den);
1305
Res = Builder.CreateSub(Num, Rem);
1306
}
1307
1308
if (DivBits != 0 && DivBits < 32) {
1309
// Extend in register from the number of bits this divide really is.
1310
if (IsSigned) {
1311
int InRegBits = 32 - DivBits;
1312
1313
Res = Builder.CreateShl(Res, InRegBits);
1314
Res = Builder.CreateAShr(Res, InRegBits);
1315
} else {
1316
ConstantInt *TruncMask
1317
= Builder.getInt32((UINT64_C(1) << DivBits) - 1);
1318
Res = Builder.CreateAnd(Res, TruncMask);
1319
}
1320
}
1321
1322
return Res;
1323
}
1324
1325
// Try to recognize special cases the DAG will emit special, better expansions
1326
// than the general expansion we do here.
1327
1328
// TODO: It would be better to just directly handle those optimizations here.
1329
bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I,
1330
Value *Num,
1331
Value *Den) const {
1332
if (Constant *C = dyn_cast<Constant>(Den)) {
1333
// Arbitrary constants get a better expansion as long as a wider mulhi is
1334
// legal.
1335
if (C->getType()->getScalarSizeInBits() <= 32)
1336
return true;
1337
1338
// TODO: Sdiv check for not exact for some reason.
1339
1340
// If there's no wider mulhi, there's only a better expansion for powers of
1341
// two.
1342
// TODO: Should really know for each vector element.
1343
if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
1344
return true;
1345
1346
return false;
1347
}
1348
1349
if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
1350
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1351
if (BinOpDen->getOpcode() == Instruction::Shl &&
1352
isa<Constant>(BinOpDen->getOperand(0)) &&
1353
isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
1354
0, AC, &I, DT)) {
1355
return true;
1356
}
1357
}
1358
1359
return false;
1360
}
1361
1362
static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
1363
// Check whether the sign can be determined statically.
1364
KnownBits Known = computeKnownBits(V, *DL);
1365
if (Known.isNegative())
1366
return Constant::getAllOnesValue(V->getType());
1367
if (Known.isNonNegative())
1368
return Constant::getNullValue(V->getType());
1369
return Builder.CreateAShr(V, Builder.getInt32(31));
1370
}
1371
1372
Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder,
1373
BinaryOperator &I, Value *X,
1374
Value *Y) const {
1375
Instruction::BinaryOps Opc = I.getOpcode();
1376
assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
1377
Opc == Instruction::SRem || Opc == Instruction::SDiv);
1378
1379
FastMathFlags FMF;
1380
FMF.setFast();
1381
Builder.setFastMathFlags(FMF);
1382
1383
if (divHasSpecialOptimization(I, X, Y))
1384
return nullptr; // Keep it for later optimization.
1385
1386
bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
1387
bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
1388
1389
Type *Ty = X->getType();
1390
Type *I32Ty = Builder.getInt32Ty();
1391
Type *F32Ty = Builder.getFloatTy();
1392
1393
if (Ty->getScalarSizeInBits() != 32) {
1394
if (IsSigned) {
1395
X = Builder.CreateSExtOrTrunc(X, I32Ty);
1396
Y = Builder.CreateSExtOrTrunc(Y, I32Ty);
1397
} else {
1398
X = Builder.CreateZExtOrTrunc(X, I32Ty);
1399
Y = Builder.CreateZExtOrTrunc(Y, I32Ty);
1400
}
1401
}
1402
1403
if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
1404
return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
1405
Builder.CreateZExtOrTrunc(Res, Ty);
1406
}
1407
1408
ConstantInt *Zero = Builder.getInt32(0);
1409
ConstantInt *One = Builder.getInt32(1);
1410
1411
Value *Sign = nullptr;
1412
if (IsSigned) {
1413
Value *SignX = getSign32(X, Builder, DL);
1414
Value *SignY = getSign32(Y, Builder, DL);
1415
// Remainder sign is the same as LHS
1416
Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
1417
1418
X = Builder.CreateAdd(X, SignX);
1419
Y = Builder.CreateAdd(Y, SignY);
1420
1421
X = Builder.CreateXor(X, SignX);
1422
Y = Builder.CreateXor(Y, SignY);
1423
}
1424
1425
// The algorithm here is based on ideas from "Software Integer Division", Tom
1426
// Rodeheffer, August 2008.
1427
//
1428
// unsigned udiv(unsigned x, unsigned y) {
1429
// // Initial estimate of inv(y). The constant is less than 2^32 to ensure
1430
// // that this is a lower bound on inv(y), even if some of the calculations
1431
// // round up.
1432
// unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
1433
//
1434
// // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
1435
// // Empirically this is guaranteed to give a "two-y" lower bound on
1436
// // inv(y).
1437
// z += umulh(z, -y * z);
1438
//
1439
// // Quotient/remainder estimate.
1440
// unsigned q = umulh(x, z);
1441
// unsigned r = x - q * y;
1442
//
1443
// // Two rounds of quotient/remainder refinement.
1444
// if (r >= y) {
1445
// ++q;
1446
// r -= y;
1447
// }
1448
// if (r >= y) {
1449
// ++q;
1450
// r -= y;
1451
// }
1452
//
1453
// return q;
1454
// }
1455
1456
// Initial estimate of inv(y).
1457
Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
1458
Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
1459
Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
1460
Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE));
1461
Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
1462
Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
1463
1464
// One round of UNR.
1465
Value *NegY = Builder.CreateSub(Zero, Y);
1466
Value *NegYZ = Builder.CreateMul(NegY, Z);
1467
Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
1468
1469
// Quotient/remainder estimate.
1470
Value *Q = getMulHu(Builder, X, Z);
1471
Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
1472
1473
// First quotient/remainder refinement.
1474
Value *Cond = Builder.CreateICmpUGE(R, Y);
1475
if (IsDiv)
1476
Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1477
R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1478
1479
// Second quotient/remainder refinement.
1480
Cond = Builder.CreateICmpUGE(R, Y);
1481
Value *Res;
1482
if (IsDiv)
1483
Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1484
else
1485
Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1486
1487
if (IsSigned) {
1488
Res = Builder.CreateXor(Res, Sign);
1489
Res = Builder.CreateSub(Res, Sign);
1490
Res = Builder.CreateSExtOrTrunc(Res, Ty);
1491
} else {
1492
Res = Builder.CreateZExtOrTrunc(Res, Ty);
1493
}
1494
return Res;
1495
}
1496
1497
Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder,
1498
BinaryOperator &I, Value *Num,
1499
Value *Den) const {
1500
if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
1501
return nullptr; // Keep it for later optimization.
1502
1503
Instruction::BinaryOps Opc = I.getOpcode();
1504
1505
bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
1506
bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
1507
1508
int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
1509
if (NumDivBits == -1)
1510
return nullptr;
1511
1512
Value *Narrowed = nullptr;
1513
if (NumDivBits <= 24) {
1514
Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
1515
IsDiv, IsSigned);
1516
} else if (NumDivBits <= 32) {
1517
Narrowed = expandDivRem32(Builder, I, Num, Den);
1518
}
1519
1520
if (Narrowed) {
1521
return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
1522
Builder.CreateZExt(Narrowed, Num->getType());
1523
}
1524
1525
return nullptr;
1526
}
1527
1528
void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const {
1529
Instruction::BinaryOps Opc = I.getOpcode();
1530
// Do the general expansion.
1531
if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
1532
expandDivisionUpTo64Bits(&I);
1533
return;
1534
}
1535
1536
if (Opc == Instruction::URem || Opc == Instruction::SRem) {
1537
expandRemainderUpTo64Bits(&I);
1538
return;
1539
}
1540
1541
llvm_unreachable("not a division");
1542
}
1543
1544
bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) {
1545
if (foldBinOpIntoSelect(I))
1546
return true;
1547
1548
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1549
UA->isUniform(&I) && promoteUniformOpToI32(I))
1550
return true;
1551
1552
if (UseMul24Intrin && replaceMulWithMul24(I))
1553
return true;
1554
1555
bool Changed = false;
1556
Instruction::BinaryOps Opc = I.getOpcode();
1557
Type *Ty = I.getType();
1558
Value *NewDiv = nullptr;
1559
unsigned ScalarSize = Ty->getScalarSizeInBits();
1560
1561
SmallVector<BinaryOperator *, 8> Div64ToExpand;
1562
1563
if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
1564
Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
1565
ScalarSize <= 64 &&
1566
!DisableIDivExpand) {
1567
Value *Num = I.getOperand(0);
1568
Value *Den = I.getOperand(1);
1569
IRBuilder<> Builder(&I);
1570
Builder.SetCurrentDebugLocation(I.getDebugLoc());
1571
1572
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1573
NewDiv = PoisonValue::get(VT);
1574
1575
for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
1576
Value *NumEltN = Builder.CreateExtractElement(Num, N);
1577
Value *DenEltN = Builder.CreateExtractElement(Den, N);
1578
1579
Value *NewElt;
1580
if (ScalarSize <= 32) {
1581
NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
1582
if (!NewElt)
1583
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1584
} else {
1585
// See if this 64-bit division can be shrunk to 32/24-bits before
1586
// producing the general expansion.
1587
NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
1588
if (!NewElt) {
1589
// The general 64-bit expansion introduces control flow and doesn't
1590
// return the new value. Just insert a scalar copy and defer
1591
// expanding it.
1592
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1593
Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
1594
}
1595
}
1596
1597
if (auto *NewEltI = dyn_cast<Instruction>(NewElt))
1598
NewEltI->copyIRFlags(&I);
1599
1600
NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
1601
}
1602
} else {
1603
if (ScalarSize <= 32)
1604
NewDiv = expandDivRem32(Builder, I, Num, Den);
1605
else {
1606
NewDiv = shrinkDivRem64(Builder, I, Num, Den);
1607
if (!NewDiv)
1608
Div64ToExpand.push_back(&I);
1609
}
1610
}
1611
1612
if (NewDiv) {
1613
I.replaceAllUsesWith(NewDiv);
1614
I.eraseFromParent();
1615
Changed = true;
1616
}
1617
}
1618
1619
if (ExpandDiv64InIR) {
1620
// TODO: We get much worse code in specially handled constant cases.
1621
for (BinaryOperator *Div : Div64ToExpand) {
1622
expandDivRem64(*Div);
1623
FlowChanged = true;
1624
Changed = true;
1625
}
1626
}
1627
1628
return Changed;
1629
}
1630
1631
bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) {
1632
if (!WidenLoads)
1633
return false;
1634
1635
if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
1636
I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1637
canWidenScalarExtLoad(I)) {
1638
IRBuilder<> Builder(&I);
1639
Builder.SetCurrentDebugLocation(I.getDebugLoc());
1640
1641
Type *I32Ty = Builder.getInt32Ty();
1642
LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand());
1643
WidenLoad->copyMetadata(I);
1644
1645
// If we have range metadata, we need to convert the type, and not make
1646
// assumptions about the high bits.
1647
if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1648
ConstantInt *Lower =
1649
mdconst::extract<ConstantInt>(Range->getOperand(0));
1650
1651
if (Lower->isNullValue()) {
1652
WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1653
} else {
1654
Metadata *LowAndHigh[] = {
1655
ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1656
// Don't make assumptions about the high bits.
1657
ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1658
};
1659
1660
WidenLoad->setMetadata(LLVMContext::MD_range,
1661
MDNode::get(Mod->getContext(), LowAndHigh));
1662
}
1663
}
1664
1665
int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1666
Type *IntNTy = Builder.getIntNTy(TySize);
1667
Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1668
Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1669
I.replaceAllUsesWith(ValOrig);
1670
I.eraseFromParent();
1671
return true;
1672
}
1673
1674
return false;
1675
}
1676
1677
bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) {
1678
bool Changed = false;
1679
1680
if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1681
UA->isUniform(&I))
1682
Changed |= promoteUniformOpToI32(I);
1683
1684
return Changed;
1685
}
1686
1687
bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) {
1688
Value *Cond = I.getCondition();
1689
Value *TrueVal = I.getTrueValue();
1690
Value *FalseVal = I.getFalseValue();
1691
Value *CmpVal;
1692
FCmpInst::Predicate Pred;
1693
1694
if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) {
1695
if (UA->isUniform(&I))
1696
return promoteUniformOpToI32(I);
1697
return false;
1698
}
1699
1700
// Match fract pattern with nan check.
1701
if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN())))
1702
return false;
1703
1704
FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I);
1705
if (!FPOp)
1706
return false;
1707
1708
IRBuilder<> Builder(&I);
1709
Builder.setFastMathFlags(FPOp->getFastMathFlags());
1710
1711
auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal);
1712
auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal);
1713
1714
Value *Fract = nullptr;
1715
if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse &&
1716
CmpVal == matchFractPat(*IIFalse)) {
1717
// isnan(x) ? x : fract(x)
1718
Fract = applyFractPat(Builder, CmpVal);
1719
} else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue &&
1720
CmpVal == matchFractPat(*IITrue)) {
1721
// !isnan(x) ? fract(x) : x
1722
Fract = applyFractPat(Builder, CmpVal);
1723
} else
1724
return false;
1725
1726
Fract->takeName(&I);
1727
I.replaceAllUsesWith(Fract);
1728
RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
1729
return true;
1730
}
1731
1732
static bool areInSameBB(const Value *A, const Value *B) {
1733
const auto *IA = dyn_cast<Instruction>(A);
1734
const auto *IB = dyn_cast<Instruction>(B);
1735
return IA && IB && IA->getParent() == IB->getParent();
1736
}
1737
1738
// Helper for breaking large PHIs that returns true when an extractelement on V
1739
// is likely to be folded away by the DAG combiner.
1740
static bool isInterestingPHIIncomingValue(const Value *V) {
1741
const auto *FVT = dyn_cast<FixedVectorType>(V->getType());
1742
if (!FVT)
1743
return false;
1744
1745
const Value *CurVal = V;
1746
1747
// Check for insertelements, keeping track of the elements covered.
1748
BitVector EltsCovered(FVT->getNumElements());
1749
while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) {
1750
const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2));
1751
1752
// Non constant index/out of bounds index -> folding is unlikely.
1753
// The latter is more of a sanity check because canonical IR should just
1754
// have replaced those with poison.
1755
if (!Idx || Idx->getZExtValue() >= FVT->getNumElements())
1756
return false;
1757
1758
const auto *VecSrc = IE->getOperand(0);
1759
1760
// If the vector source is another instruction, it must be in the same basic
1761
// block. Otherwise, the DAGCombiner won't see the whole thing and is
1762
// unlikely to be able to do anything interesting here.
1763
if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE))
1764
return false;
1765
1766
CurVal = VecSrc;
1767
EltsCovered.set(Idx->getZExtValue());
1768
1769
// All elements covered.
1770
if (EltsCovered.all())
1771
return true;
1772
}
1773
1774
// We either didn't find a single insertelement, or the insertelement chain
1775
// ended before all elements were covered. Check for other interesting values.
1776
1777
// Constants are always interesting because we can just constant fold the
1778
// extractelements.
1779
if (isa<Constant>(CurVal))
1780
return true;
1781
1782
// shufflevector is likely to be profitable if either operand is a constant,
1783
// or if either source is in the same block.
1784
// This is because shufflevector is most often lowered as a series of
1785
// insert/extract elements anyway.
1786
if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) {
1787
return isa<Constant>(SV->getOperand(1)) ||
1788
areInSameBB(SV, SV->getOperand(0)) ||
1789
areInSameBB(SV, SV->getOperand(1));
1790
}
1791
1792
return false;
1793
}
1794
1795
static void collectPHINodes(const PHINode &I,
1796
SmallPtrSet<const PHINode *, 8> &SeenPHIs) {
1797
const auto [It, Inserted] = SeenPHIs.insert(&I);
1798
if (!Inserted)
1799
return;
1800
1801
for (const Value *Inc : I.incoming_values()) {
1802
if (const auto *PhiInc = dyn_cast<PHINode>(Inc))
1803
collectPHINodes(*PhiInc, SeenPHIs);
1804
}
1805
1806
for (const User *U : I.users()) {
1807
if (const auto *PhiU = dyn_cast<PHINode>(U))
1808
collectPHINodes(*PhiU, SeenPHIs);
1809
}
1810
}
1811
1812
bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) {
1813
// Check in the cache first.
1814
if (const auto It = BreakPhiNodesCache.find(&I);
1815
It != BreakPhiNodesCache.end())
1816
return It->second;
1817
1818
// We consider PHI nodes as part of "chains", so given a PHI node I, we
1819
// recursively consider all its users and incoming values that are also PHI
1820
// nodes. We then make a decision about all of those PHIs at once. Either they
1821
// all get broken up, or none of them do. That way, we avoid cases where a
1822
// single PHI is/is not broken and we end up reforming/exploding a vector
1823
// multiple times, or even worse, doing it in a loop.
1824
SmallPtrSet<const PHINode *, 8> WorkList;
1825
collectPHINodes(I, WorkList);
1826
1827
#ifndef NDEBUG
1828
// Check that none of the PHI nodes in the worklist are in the map. If some of
1829
// them are, it means we're not good enough at collecting related PHIs.
1830
for (const PHINode *WLP : WorkList) {
1831
assert(BreakPhiNodesCache.count(WLP) == 0);
1832
}
1833
#endif
1834
1835
// To consider a PHI profitable to break, we need to see some interesting
1836
// incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist
1837
// must have one to consider all PHIs breakable.
1838
//
1839
// This threshold has been determined through performance testing.
1840
//
1841
// Note that the computation below is equivalent to
1842
//
1843
// (unsigned)ceil((K / 3.0) * 2)
1844
//
1845
// It's simply written this way to avoid mixing integral/FP arithmetic.
1846
const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3);
1847
unsigned NumBreakablePHIs = 0;
1848
bool CanBreak = false;
1849
for (const PHINode *Cur : WorkList) {
1850
// Don't break PHIs that have no interesting incoming values. That is, where
1851
// there is no clear opportunity to fold the "extractelement" instructions
1852
// we would add.
1853
//
1854
// Note: IC does not run after this pass, so we're only interested in the
1855
// foldings that the DAG combiner can do.
1856
if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) {
1857
if (++NumBreakablePHIs >= Threshold) {
1858
CanBreak = true;
1859
break;
1860
}
1861
}
1862
}
1863
1864
for (const PHINode *Cur : WorkList)
1865
BreakPhiNodesCache[Cur] = CanBreak;
1866
1867
return CanBreak;
1868
}
1869
1870
/// Helper class for "break large PHIs" (visitPHINode).
1871
///
1872
/// This represents a slice of a PHI's incoming value, which is made up of:
1873
/// - The type of the slice (Ty)
1874
/// - The index in the incoming value's vector where the slice starts (Idx)
1875
/// - The number of elements in the slice (NumElts).
1876
/// It also keeps track of the NewPHI node inserted for this particular slice.
1877
///
1878
/// Slice examples:
1879
/// <4 x i64> -> Split into four i64 slices.
1880
/// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1]
1881
/// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail.
1882
/// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1]
1883
class VectorSlice {
1884
public:
1885
VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts)
1886
: Ty(Ty), Idx(Idx), NumElts(NumElts) {}
1887
1888
Type *Ty = nullptr;
1889
unsigned Idx = 0;
1890
unsigned NumElts = 0;
1891
PHINode *NewPHI = nullptr;
1892
1893
/// Slice \p Inc according to the information contained within this slice.
1894
/// This is cached, so if called multiple times for the same \p BB & \p Inc
1895
/// pair, it returns the same Sliced value as well.
1896
///
1897
/// Note this *intentionally* does not return the same value for, say,
1898
/// [%bb.0, %0] & [%bb.1, %0] as:
1899
/// - It could cause issues with dominance (e.g. if bb.1 is seen first, then
1900
/// the value in bb.1 may not be reachable from bb.0 if it's its
1901
/// predecessor.)
1902
/// - We also want to make our extract instructions as local as possible so
1903
/// the DAG has better chances of folding them out. Duplicating them like
1904
/// that is beneficial in that regard.
1905
///
1906
/// This is both a minor optimization to avoid creating duplicate
1907
/// instructions, but also a requirement for correctness. It is not forbidden
1908
/// for a PHI node to have the same [BB, Val] pair multiple times. If we
1909
/// returned a new value each time, those previously identical pairs would all
1910
/// have different incoming values (from the same block) and it'd cause a "PHI
1911
/// node has multiple entries for the same basic block with different incoming
1912
/// values!" verifier error.
1913
Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) {
1914
Value *&Res = SlicedVals[{BB, Inc}];
1915
if (Res)
1916
return Res;
1917
1918
IRBuilder<> B(BB->getTerminator());
1919
if (Instruction *IncInst = dyn_cast<Instruction>(Inc))
1920
B.SetCurrentDebugLocation(IncInst->getDebugLoc());
1921
1922
if (NumElts > 1) {
1923
SmallVector<int, 4> Mask;
1924
for (unsigned K = Idx; K < (Idx + NumElts); ++K)
1925
Mask.push_back(K);
1926
Res = B.CreateShuffleVector(Inc, Mask, NewValName);
1927
} else
1928
Res = B.CreateExtractElement(Inc, Idx, NewValName);
1929
1930
return Res;
1931
}
1932
1933
private:
1934
SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals;
1935
};
1936
1937
bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) {
1938
// Break-up fixed-vector PHIs into smaller pieces.
1939
// Default threshold is 32, so it breaks up any vector that's >32 bits into
1940
// its elements, or into 32-bit pieces (for 8/16 bit elts).
1941
//
1942
// This is only helpful for DAGISel because it doesn't handle large PHIs as
1943
// well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg.
1944
// With large, odd-sized PHIs we may end up needing many `build_vector`
1945
// operations with most elements being "undef". This inhibits a lot of
1946
// optimization opportunities and can result in unreasonably high register
1947
// pressure and the inevitable stack spilling.
1948
if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption)
1949
return false;
1950
1951
FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType());
1952
if (!FVT || FVT->getNumElements() == 1 ||
1953
DL->getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold)
1954
return false;
1955
1956
if (!ForceBreakLargePHIs && !canBreakPHINode(I))
1957
return false;
1958
1959
std::vector<VectorSlice> Slices;
1960
1961
Type *EltTy = FVT->getElementType();
1962
{
1963
unsigned Idx = 0;
1964
// For 8/16 bits type, don't scalarize fully but break it up into as many
1965
// 32-bit slices as we can, and scalarize the tail.
1966
const unsigned EltSize = DL->getTypeSizeInBits(EltTy);
1967
const unsigned NumElts = FVT->getNumElements();
1968
if (EltSize == 8 || EltSize == 16) {
1969
const unsigned SubVecSize = (32 / EltSize);
1970
Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize);
1971
for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End;
1972
Idx += SubVecSize)
1973
Slices.emplace_back(SubVecTy, Idx, SubVecSize);
1974
}
1975
1976
// Scalarize all remaining elements.
1977
for (; Idx < NumElts; ++Idx)
1978
Slices.emplace_back(EltTy, Idx, 1);
1979
}
1980
1981
assert(Slices.size() > 1);
1982
1983
// Create one PHI per vector piece. The "VectorSlice" class takes care of
1984
// creating the necessary instruction to extract the relevant slices of each
1985
// incoming value.
1986
IRBuilder<> B(I.getParent());
1987
B.SetCurrentDebugLocation(I.getDebugLoc());
1988
1989
unsigned IncNameSuffix = 0;
1990
for (VectorSlice &S : Slices) {
1991
// We need to reset the build on each iteration, because getSlicedVal may
1992
// have inserted something into I's BB.
1993
B.SetInsertPoint(I.getParent()->getFirstNonPHIIt());
1994
S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues());
1995
1996
for (const auto &[Idx, BB] : enumerate(I.blocks())) {
1997
S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx),
1998
"largephi.extractslice" +
1999
std::to_string(IncNameSuffix++)),
2000
BB);
2001
}
2002
}
2003
2004
// And replace this PHI with a vector of all the previous PHI values.
2005
Value *Vec = PoisonValue::get(FVT);
2006
unsigned NameSuffix = 0;
2007
for (VectorSlice &S : Slices) {
2008
const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++);
2009
if (S.NumElts > 1)
2010
Vec =
2011
B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName);
2012
else
2013
Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName);
2014
}
2015
2016
I.replaceAllUsesWith(Vec);
2017
I.eraseFromParent();
2018
return true;
2019
}
2020
2021
/// \param V Value to check
2022
/// \param DL DataLayout
2023
/// \param TM TargetMachine (TODO: remove once DL contains nullptr values)
2024
/// \param AS Target Address Space
2025
/// \return true if \p V cannot be the null value of \p AS, false otherwise.
2026
static bool isPtrKnownNeverNull(const Value *V, const DataLayout &DL,
2027
const AMDGPUTargetMachine &TM, unsigned AS) {
2028
// Pointer cannot be null if it's a block address, GV or alloca.
2029
// NOTE: We don't support extern_weak, but if we did, we'd need to check for
2030
// it as the symbol could be null in such cases.
2031
if (isa<BlockAddress>(V) || isa<GlobalValue>(V) || isa<AllocaInst>(V))
2032
return true;
2033
2034
// Check nonnull arguments.
2035
if (const auto *Arg = dyn_cast<Argument>(V); Arg && Arg->hasNonNullAttr())
2036
return true;
2037
2038
// getUnderlyingObject may have looked through another addrspacecast, although
2039
// the optimizable situations most likely folded out by now.
2040
if (AS != cast<PointerType>(V->getType())->getAddressSpace())
2041
return false;
2042
2043
// TODO: Calls that return nonnull?
2044
2045
// For all other things, use KnownBits.
2046
// We either use 0 or all bits set to indicate null, so check whether the
2047
// value can be zero or all ones.
2048
//
2049
// TODO: Use ValueTracking's isKnownNeverNull if it becomes aware that some
2050
// address spaces have non-zero null values.
2051
auto SrcPtrKB = computeKnownBits(V, DL);
2052
const auto NullVal = TM.getNullPointerValue(AS);
2053
2054
assert(SrcPtrKB.getBitWidth() == DL.getPointerSizeInBits(AS));
2055
assert((NullVal == 0 || NullVal == -1) &&
2056
"don't know how to check for this null value!");
2057
return NullVal ? !SrcPtrKB.getMaxValue().isAllOnes() : SrcPtrKB.isNonZero();
2058
}
2059
2060
bool AMDGPUCodeGenPrepareImpl::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2061
// Intrinsic doesn't support vectors, also it seems that it's often difficult
2062
// to prove that a vector cannot have any nulls in it so it's unclear if it's
2063
// worth supporting.
2064
if (I.getType()->isVectorTy())
2065
return false;
2066
2067
// Check if this can be lowered to a amdgcn.addrspacecast.nonnull.
2068
// This is only worthwhile for casts from/to priv/local to flat.
2069
const unsigned SrcAS = I.getSrcAddressSpace();
2070
const unsigned DstAS = I.getDestAddressSpace();
2071
2072
bool CanLower = false;
2073
if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
2074
CanLower = (DstAS == AMDGPUAS::LOCAL_ADDRESS ||
2075
DstAS == AMDGPUAS::PRIVATE_ADDRESS);
2076
else if (DstAS == AMDGPUAS::FLAT_ADDRESS)
2077
CanLower = (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
2078
SrcAS == AMDGPUAS::PRIVATE_ADDRESS);
2079
if (!CanLower)
2080
return false;
2081
2082
SmallVector<const Value *, 4> WorkList;
2083
getUnderlyingObjects(I.getOperand(0), WorkList);
2084
if (!all_of(WorkList, [&](const Value *V) {
2085
return isPtrKnownNeverNull(V, *DL, *TM, SrcAS);
2086
}))
2087
return false;
2088
2089
IRBuilder<> B(&I);
2090
auto *Intrin = B.CreateIntrinsic(
2091
I.getType(), Intrinsic::amdgcn_addrspacecast_nonnull, {I.getOperand(0)});
2092
I.replaceAllUsesWith(Intrin);
2093
I.eraseFromParent();
2094
return true;
2095
}
2096
2097
bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) {
2098
switch (I.getIntrinsicID()) {
2099
case Intrinsic::bitreverse:
2100
return visitBitreverseIntrinsicInst(I);
2101
case Intrinsic::minnum:
2102
return visitMinNum(I);
2103
case Intrinsic::sqrt:
2104
return visitSqrt(I);
2105
default:
2106
return false;
2107
}
2108
}
2109
2110
bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
2111
bool Changed = false;
2112
2113
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
2114
UA->isUniform(&I))
2115
Changed |= promoteUniformBitreverseToI32(I);
2116
2117
return Changed;
2118
}
2119
2120
/// Match non-nan fract pattern.
2121
/// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0)
2122
///
2123
/// If fract is a useful instruction for the subtarget. Does not account for the
2124
/// nan handling; the instruction has a nan check on the input value.
2125
Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) {
2126
if (ST->hasFractBug())
2127
return nullptr;
2128
2129
if (I.getIntrinsicID() != Intrinsic::minnum)
2130
return nullptr;
2131
2132
Type *Ty = I.getType();
2133
if (!isLegalFloatingTy(Ty->getScalarType()))
2134
return nullptr;
2135
2136
Value *Arg0 = I.getArgOperand(0);
2137
Value *Arg1 = I.getArgOperand(1);
2138
2139
const APFloat *C;
2140
if (!match(Arg1, m_APFloat(C)))
2141
return nullptr;
2142
2143
APFloat One(1.0);
2144
bool LosesInfo;
2145
One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo);
2146
2147
// Match nextafter(1.0, -1)
2148
One.next(true);
2149
if (One != *C)
2150
return nullptr;
2151
2152
Value *FloorSrc;
2153
if (match(Arg0, m_FSub(m_Value(FloorSrc),
2154
m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc)))))
2155
return FloorSrc;
2156
return nullptr;
2157
}
2158
2159
Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder,
2160
Value *FractArg) {
2161
SmallVector<Value *, 4> FractVals;
2162
extractValues(Builder, FractVals, FractArg);
2163
2164
SmallVector<Value *, 4> ResultVals(FractVals.size());
2165
2166
Type *Ty = FractArg->getType()->getScalarType();
2167
for (unsigned I = 0, E = FractVals.size(); I != E; ++I) {
2168
ResultVals[I] =
2169
Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]});
2170
}
2171
2172
return insertValues(Builder, FractArg->getType(), ResultVals);
2173
}
2174
2175
bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) {
2176
Value *FractArg = matchFractPat(I);
2177
if (!FractArg)
2178
return false;
2179
2180
// Match pattern for fract intrinsic in contexts where the nan check has been
2181
// optimized out (and hope the knowledge the source can't be nan wasn't lost).
2182
if (!I.hasNoNaNs() &&
2183
!isKnownNeverNaN(FractArg, /*Depth=*/0, SimplifyQuery(*DL, TLInfo)))
2184
return false;
2185
2186
IRBuilder<> Builder(&I);
2187
FastMathFlags FMF = I.getFastMathFlags();
2188
FMF.setNoNaNs();
2189
Builder.setFastMathFlags(FMF);
2190
2191
Value *Fract = applyFractPat(Builder, FractArg);
2192
Fract->takeName(&I);
2193
I.replaceAllUsesWith(Fract);
2194
2195
RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
2196
return true;
2197
}
2198
2199
static bool isOneOrNegOne(const Value *Val) {
2200
const APFloat *C;
2201
return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0;
2202
}
2203
2204
// Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way.
2205
bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) {
2206
Type *Ty = Sqrt.getType()->getScalarType();
2207
if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts()))
2208
return false;
2209
2210
const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt);
2211
FastMathFlags SqrtFMF = FPOp->getFastMathFlags();
2212
2213
// We're trying to handle the fast-but-not-that-fast case only. The lowering
2214
// of fast llvm.sqrt will give the raw instruction anyway.
2215
if (SqrtFMF.approxFunc() || HasUnsafeFPMath)
2216
return false;
2217
2218
const float ReqdAccuracy = FPOp->getFPAccuracy();
2219
2220
// Defer correctly rounded expansion to codegen.
2221
if (ReqdAccuracy < 1.0f)
2222
return false;
2223
2224
// FIXME: This is an ugly hack for this pass using forward iteration instead
2225
// of reverse. If it worked like a normal combiner, the rsq would form before
2226
// we saw a sqrt call.
2227
auto *FDiv =
2228
dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser());
2229
if (FDiv && FDiv->getOpcode() == Instruction::FDiv &&
2230
FDiv->getFPAccuracy() >= 1.0f &&
2231
canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) &&
2232
// TODO: We should also handle the arcp case for the fdiv with non-1 value
2233
isOneOrNegOne(FDiv->getOperand(0)))
2234
return false;
2235
2236
Value *SrcVal = Sqrt.getOperand(0);
2237
bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt);
2238
2239
// The raw instruction is 1 ulp, but the correction for denormal handling
2240
// brings it to 2.
2241
if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f)
2242
return false;
2243
2244
IRBuilder<> Builder(&Sqrt);
2245
SmallVector<Value *, 4> SrcVals;
2246
extractValues(Builder, SrcVals, SrcVal);
2247
2248
SmallVector<Value *, 4> ResultVals(SrcVals.size());
2249
for (int I = 0, E = SrcVals.size(); I != E; ++I) {
2250
if (CanTreatAsDAZ)
2251
ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]);
2252
else
2253
ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF);
2254
}
2255
2256
Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals);
2257
NewSqrt->takeName(&Sqrt);
2258
Sqrt.replaceAllUsesWith(NewSqrt);
2259
Sqrt.eraseFromParent();
2260
return true;
2261
}
2262
2263
bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
2264
Impl.Mod = &M;
2265
Impl.DL = &Impl.Mod->getDataLayout();
2266
Impl.SqrtF32 = nullptr;
2267
Impl.LdexpF32 = nullptr;
2268
return false;
2269
}
2270
2271
bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
2272
if (skipFunction(F))
2273
return false;
2274
2275
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
2276
if (!TPC)
2277
return false;
2278
2279
const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
2280
Impl.TM = &TM;
2281
Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2282
Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
2283
Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2284
Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
2285
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
2286
Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr;
2287
Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
2288
SIModeRegisterDefaults Mode(F, *Impl.ST);
2289
Impl.HasFP32DenormalFlush =
2290
Mode.FP32Denormals == DenormalMode::getPreserveSign();
2291
return Impl.run(F);
2292
}
2293
2294
PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F,
2295
FunctionAnalysisManager &FAM) {
2296
AMDGPUCodeGenPrepareImpl Impl;
2297
Impl.Mod = F.getParent();
2298
Impl.DL = &Impl.Mod->getDataLayout();
2299
Impl.TM = static_cast<const AMDGPUTargetMachine *>(&TM);
2300
Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F);
2301
Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
2302
Impl.AC = &FAM.getResult<AssumptionAnalysis>(F);
2303
Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F);
2304
Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
2305
Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
2306
SIModeRegisterDefaults Mode(F, *Impl.ST);
2307
Impl.HasFP32DenormalFlush =
2308
Mode.FP32Denormals == DenormalMode::getPreserveSign();
2309
PreservedAnalyses PA = PreservedAnalyses::none();
2310
if (!Impl.FlowChanged)
2311
PA.preserveSet<CFGAnalyses>();
2312
return Impl.run(F) ? PA : PreservedAnalyses::all();
2313
}
2314
2315
INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
2316
"AMDGPU IR optimizations", false, false)
2317
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2318
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2319
INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
2320
INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
2321
false, false)
2322
2323
char AMDGPUCodeGenPrepare::ID = 0;
2324
2325
FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
2326
return new AMDGPUCodeGenPrepare();
2327
}
2328
2329