Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
35268 views
1
//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the Base ARM implementation of the TargetInstrInfo class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "ARMBaseInstrInfo.h"
14
#include "ARMBaseRegisterInfo.h"
15
#include "ARMConstantPoolValue.h"
16
#include "ARMFeatures.h"
17
#include "ARMHazardRecognizer.h"
18
#include "ARMMachineFunctionInfo.h"
19
#include "ARMSubtarget.h"
20
#include "MCTargetDesc/ARMAddressingModes.h"
21
#include "MCTargetDesc/ARMBaseInfo.h"
22
#include "MVETailPredUtils.h"
23
#include "llvm/ADT/DenseMap.h"
24
#include "llvm/ADT/STLExtras.h"
25
#include "llvm/ADT/SmallSet.h"
26
#include "llvm/ADT/SmallVector.h"
27
#include "llvm/CodeGen/DFAPacketizer.h"
28
#include "llvm/CodeGen/LiveVariables.h"
29
#include "llvm/CodeGen/MachineBasicBlock.h"
30
#include "llvm/CodeGen/MachineConstantPool.h"
31
#include "llvm/CodeGen/MachineFrameInfo.h"
32
#include "llvm/CodeGen/MachineFunction.h"
33
#include "llvm/CodeGen/MachineInstr.h"
34
#include "llvm/CodeGen/MachineInstrBuilder.h"
35
#include "llvm/CodeGen/MachineMemOperand.h"
36
#include "llvm/CodeGen/MachineModuleInfo.h"
37
#include "llvm/CodeGen/MachineOperand.h"
38
#include "llvm/CodeGen/MachinePipeliner.h"
39
#include "llvm/CodeGen/MachineRegisterInfo.h"
40
#include "llvm/CodeGen/MachineScheduler.h"
41
#include "llvm/CodeGen/MultiHazardRecognizer.h"
42
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
43
#include "llvm/CodeGen/SelectionDAGNodes.h"
44
#include "llvm/CodeGen/TargetInstrInfo.h"
45
#include "llvm/CodeGen/TargetRegisterInfo.h"
46
#include "llvm/CodeGen/TargetSchedule.h"
47
#include "llvm/IR/Attributes.h"
48
#include "llvm/IR/Constants.h"
49
#include "llvm/IR/DebugLoc.h"
50
#include "llvm/IR/Function.h"
51
#include "llvm/IR/GlobalValue.h"
52
#include "llvm/IR/Module.h"
53
#include "llvm/MC/MCAsmInfo.h"
54
#include "llvm/MC/MCInstrDesc.h"
55
#include "llvm/MC/MCInstrItineraries.h"
56
#include "llvm/Support/BranchProbability.h"
57
#include "llvm/Support/Casting.h"
58
#include "llvm/Support/CommandLine.h"
59
#include "llvm/Support/Compiler.h"
60
#include "llvm/Support/Debug.h"
61
#include "llvm/Support/ErrorHandling.h"
62
#include "llvm/Support/raw_ostream.h"
63
#include "llvm/Target/TargetMachine.h"
64
#include "llvm/TargetParser/Triple.h"
65
#include <algorithm>
66
#include <cassert>
67
#include <cstdint>
68
#include <iterator>
69
#include <new>
70
#include <utility>
71
#include <vector>
72
73
using namespace llvm;
74
75
#define DEBUG_TYPE "arm-instrinfo"
76
77
#define GET_INSTRINFO_CTOR_DTOR
78
#include "ARMGenInstrInfo.inc"
79
80
static cl::opt<bool>
81
EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
82
cl::desc("Enable ARM 2-addr to 3-addr conv"));
83
84
/// ARM_MLxEntry - Record information about MLA / MLS instructions.
85
struct ARM_MLxEntry {
86
uint16_t MLxOpc; // MLA / MLS opcode
87
uint16_t MulOpc; // Expanded multiplication opcode
88
uint16_t AddSubOpc; // Expanded add / sub opcode
89
bool NegAcc; // True if the acc is negated before the add / sub.
90
bool HasLane; // True if instruction has an extra "lane" operand.
91
};
92
93
static const ARM_MLxEntry ARM_MLxTable[] = {
94
// MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
95
// fp scalar ops
96
{ ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
97
{ ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
98
{ ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
99
{ ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
100
{ ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
101
{ ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
102
{ ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
103
{ ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
104
105
// fp SIMD ops
106
{ ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
107
{ ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
108
{ ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
109
{ ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
110
{ ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
111
{ ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
112
{ ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
113
{ ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
114
};
115
116
ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
117
: ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
118
Subtarget(STI) {
119
for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) {
120
if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
121
llvm_unreachable("Duplicated entries?");
122
MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
123
MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
124
}
125
}
126
127
// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
128
// currently defaults to no prepass hazard recognizer.
129
ScheduleHazardRecognizer *
130
ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
131
const ScheduleDAG *DAG) const {
132
if (usePreRAHazardRecognizer()) {
133
const InstrItineraryData *II =
134
static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
135
return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
136
}
137
return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
138
}
139
140
// Called during:
141
// - pre-RA scheduling
142
// - post-RA scheduling when FeatureUseMISched is set
143
ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
144
const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
145
MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
146
147
// We would like to restrict this hazard recognizer to only
148
// post-RA scheduling; we can tell that we're post-RA because we don't
149
// track VRegLiveness.
150
// Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
151
// banks banked on bit 2. Assume that TCMs are in use.
152
if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
153
MHR->AddHazardRecognizer(
154
std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true));
155
156
// Not inserting ARMHazardRecognizerFPMLx because that would change
157
// legacy behavior
158
159
auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
160
MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
161
return MHR;
162
}
163
164
// Called during post-RA scheduling when FeatureUseMISched is not set
165
ScheduleHazardRecognizer *ARMBaseInstrInfo::
166
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
167
const ScheduleDAG *DAG) const {
168
MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
169
170
if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
171
MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
172
173
auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
174
if (BHR)
175
MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
176
return MHR;
177
}
178
179
MachineInstr *
180
ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
181
LiveIntervals *LIS) const {
182
// FIXME: Thumb2 support.
183
184
if (!EnableARM3Addr)
185
return nullptr;
186
187
MachineFunction &MF = *MI.getParent()->getParent();
188
uint64_t TSFlags = MI.getDesc().TSFlags;
189
bool isPre = false;
190
switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
191
default: return nullptr;
192
case ARMII::IndexModePre:
193
isPre = true;
194
break;
195
case ARMII::IndexModePost:
196
break;
197
}
198
199
// Try splitting an indexed load/store to an un-indexed one plus an add/sub
200
// operation.
201
unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
202
if (MemOpc == 0)
203
return nullptr;
204
205
MachineInstr *UpdateMI = nullptr;
206
MachineInstr *MemMI = nullptr;
207
unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
208
const MCInstrDesc &MCID = MI.getDesc();
209
unsigned NumOps = MCID.getNumOperands();
210
bool isLoad = !MI.mayStore();
211
const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
212
const MachineOperand &Base = MI.getOperand(2);
213
const MachineOperand &Offset = MI.getOperand(NumOps - 3);
214
Register WBReg = WB.getReg();
215
Register BaseReg = Base.getReg();
216
Register OffReg = Offset.getReg();
217
unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
218
ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
219
switch (AddrMode) {
220
default: llvm_unreachable("Unknown indexed op!");
221
case ARMII::AddrMode2: {
222
bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
223
unsigned Amt = ARM_AM::getAM2Offset(OffImm);
224
if (OffReg == 0) {
225
if (ARM_AM::getSOImmVal(Amt) == -1)
226
// Can't encode it in a so_imm operand. This transformation will
227
// add more than 1 instruction. Abandon!
228
return nullptr;
229
UpdateMI = BuildMI(MF, MI.getDebugLoc(),
230
get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
231
.addReg(BaseReg)
232
.addImm(Amt)
233
.add(predOps(Pred))
234
.add(condCodeOp());
235
} else if (Amt != 0) {
236
ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
237
unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
238
UpdateMI = BuildMI(MF, MI.getDebugLoc(),
239
get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
240
.addReg(BaseReg)
241
.addReg(OffReg)
242
.addReg(0)
243
.addImm(SOOpc)
244
.add(predOps(Pred))
245
.add(condCodeOp());
246
} else
247
UpdateMI = BuildMI(MF, MI.getDebugLoc(),
248
get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
249
.addReg(BaseReg)
250
.addReg(OffReg)
251
.add(predOps(Pred))
252
.add(condCodeOp());
253
break;
254
}
255
case ARMII::AddrMode3 : {
256
bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
257
unsigned Amt = ARM_AM::getAM3Offset(OffImm);
258
if (OffReg == 0)
259
// Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
260
UpdateMI = BuildMI(MF, MI.getDebugLoc(),
261
get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
262
.addReg(BaseReg)
263
.addImm(Amt)
264
.add(predOps(Pred))
265
.add(condCodeOp());
266
else
267
UpdateMI = BuildMI(MF, MI.getDebugLoc(),
268
get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
269
.addReg(BaseReg)
270
.addReg(OffReg)
271
.add(predOps(Pred))
272
.add(condCodeOp());
273
break;
274
}
275
}
276
277
std::vector<MachineInstr*> NewMIs;
278
if (isPre) {
279
if (isLoad)
280
MemMI =
281
BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
282
.addReg(WBReg)
283
.addImm(0)
284
.addImm(Pred);
285
else
286
MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
287
.addReg(MI.getOperand(1).getReg())
288
.addReg(WBReg)
289
.addReg(0)
290
.addImm(0)
291
.addImm(Pred);
292
NewMIs.push_back(MemMI);
293
NewMIs.push_back(UpdateMI);
294
} else {
295
if (isLoad)
296
MemMI =
297
BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
298
.addReg(BaseReg)
299
.addImm(0)
300
.addImm(Pred);
301
else
302
MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
303
.addReg(MI.getOperand(1).getReg())
304
.addReg(BaseReg)
305
.addReg(0)
306
.addImm(0)
307
.addImm(Pred);
308
if (WB.isDead())
309
UpdateMI->getOperand(0).setIsDead();
310
NewMIs.push_back(UpdateMI);
311
NewMIs.push_back(MemMI);
312
}
313
314
// Transfer LiveVariables states, kill / dead info.
315
if (LV) {
316
for (const MachineOperand &MO : MI.operands()) {
317
if (MO.isReg() && MO.getReg().isVirtual()) {
318
Register Reg = MO.getReg();
319
320
LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
321
if (MO.isDef()) {
322
MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
323
if (MO.isDead())
324
LV->addVirtualRegisterDead(Reg, *NewMI);
325
}
326
if (MO.isUse() && MO.isKill()) {
327
for (unsigned j = 0; j < 2; ++j) {
328
// Look at the two new MI's in reverse order.
329
MachineInstr *NewMI = NewMIs[j];
330
if (!NewMI->readsRegister(Reg, /*TRI=*/nullptr))
331
continue;
332
LV->addVirtualRegisterKilled(Reg, *NewMI);
333
if (VI.removeKill(MI))
334
VI.Kills.push_back(NewMI);
335
break;
336
}
337
}
338
}
339
}
340
}
341
342
MachineBasicBlock &MBB = *MI.getParent();
343
MBB.insert(MI, NewMIs[1]);
344
MBB.insert(MI, NewMIs[0]);
345
return NewMIs[0];
346
}
347
348
// Branch analysis.
349
// Cond vector output format:
350
// 0 elements indicates an unconditional branch
351
// 2 elements indicates a conditional branch; the elements are
352
// the condition to check and the CPSR.
353
// 3 elements indicates a hardware loop end; the elements
354
// are the opcode, the operand value to test, and a dummy
355
// operand used to pad out to 3 operands.
356
bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
357
MachineBasicBlock *&TBB,
358
MachineBasicBlock *&FBB,
359
SmallVectorImpl<MachineOperand> &Cond,
360
bool AllowModify) const {
361
TBB = nullptr;
362
FBB = nullptr;
363
364
MachineBasicBlock::instr_iterator I = MBB.instr_end();
365
if (I == MBB.instr_begin())
366
return false; // Empty blocks are easy.
367
--I;
368
369
// Walk backwards from the end of the basic block until the branch is
370
// analyzed or we give up.
371
while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
372
// Flag to be raised on unanalyzeable instructions. This is useful in cases
373
// where we want to clean up on the end of the basic block before we bail
374
// out.
375
bool CantAnalyze = false;
376
377
// Skip over DEBUG values, predicated nonterminators and speculation
378
// barrier terminators.
379
while (I->isDebugInstr() || !I->isTerminator() ||
380
isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
381
I->getOpcode() == ARM::t2DoLoopStartTP){
382
if (I == MBB.instr_begin())
383
return false;
384
--I;
385
}
386
387
if (isIndirectBranchOpcode(I->getOpcode()) ||
388
isJumpTableBranchOpcode(I->getOpcode())) {
389
// Indirect branches and jump tables can't be analyzed, but we still want
390
// to clean up any instructions at the tail of the basic block.
391
CantAnalyze = true;
392
} else if (isUncondBranchOpcode(I->getOpcode())) {
393
TBB = I->getOperand(0).getMBB();
394
} else if (isCondBranchOpcode(I->getOpcode())) {
395
// Bail out if we encounter multiple conditional branches.
396
if (!Cond.empty())
397
return true;
398
399
assert(!FBB && "FBB should have been null.");
400
FBB = TBB;
401
TBB = I->getOperand(0).getMBB();
402
Cond.push_back(I->getOperand(1));
403
Cond.push_back(I->getOperand(2));
404
} else if (I->isReturn()) {
405
// Returns can't be analyzed, but we should run cleanup.
406
CantAnalyze = true;
407
} else if (I->getOpcode() == ARM::t2LoopEnd &&
408
MBB.getParent()
409
->getSubtarget<ARMSubtarget>()
410
.enableMachinePipeliner()) {
411
if (!Cond.empty())
412
return true;
413
FBB = TBB;
414
TBB = I->getOperand(1).getMBB();
415
Cond.push_back(MachineOperand::CreateImm(I->getOpcode()));
416
Cond.push_back(I->getOperand(0));
417
Cond.push_back(MachineOperand::CreateImm(0));
418
} else {
419
// We encountered other unrecognized terminator. Bail out immediately.
420
return true;
421
}
422
423
// Cleanup code - to be run for unpredicated unconditional branches and
424
// returns.
425
if (!isPredicated(*I) &&
426
(isUncondBranchOpcode(I->getOpcode()) ||
427
isIndirectBranchOpcode(I->getOpcode()) ||
428
isJumpTableBranchOpcode(I->getOpcode()) ||
429
I->isReturn())) {
430
// Forget any previous condition branch information - it no longer applies.
431
Cond.clear();
432
FBB = nullptr;
433
434
// If we can modify the function, delete everything below this
435
// unconditional branch.
436
if (AllowModify) {
437
MachineBasicBlock::iterator DI = std::next(I);
438
while (DI != MBB.instr_end()) {
439
MachineInstr &InstToDelete = *DI;
440
++DI;
441
// Speculation barriers must not be deleted.
442
if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode()))
443
continue;
444
InstToDelete.eraseFromParent();
445
}
446
}
447
}
448
449
if (CantAnalyze) {
450
// We may not be able to analyze the block, but we could still have
451
// an unconditional branch as the last instruction in the block, which
452
// just branches to layout successor. If this is the case, then just
453
// remove it if we're allowed to make modifications.
454
if (AllowModify && !isPredicated(MBB.back()) &&
455
isUncondBranchOpcode(MBB.back().getOpcode()) &&
456
TBB && MBB.isLayoutSuccessor(TBB))
457
removeBranch(MBB);
458
return true;
459
}
460
461
if (I == MBB.instr_begin())
462
return false;
463
464
--I;
465
}
466
467
// We made it past the terminators without bailing out - we must have
468
// analyzed this branch successfully.
469
return false;
470
}
471
472
unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
473
int *BytesRemoved) const {
474
assert(!BytesRemoved && "code size not handled");
475
476
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
477
if (I == MBB.end())
478
return 0;
479
480
if (!isUncondBranchOpcode(I->getOpcode()) &&
481
!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
482
return 0;
483
484
// Remove the branch.
485
I->eraseFromParent();
486
487
I = MBB.end();
488
489
if (I == MBB.begin()) return 1;
490
--I;
491
if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
492
return 1;
493
494
// Remove the branch.
495
I->eraseFromParent();
496
return 2;
497
}
498
499
unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
500
MachineBasicBlock *TBB,
501
MachineBasicBlock *FBB,
502
ArrayRef<MachineOperand> Cond,
503
const DebugLoc &DL,
504
int *BytesAdded) const {
505
assert(!BytesAdded && "code size not handled");
506
ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
507
int BOpc = !AFI->isThumbFunction()
508
? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
509
int BccOpc = !AFI->isThumbFunction()
510
? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
511
bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
512
513
// Shouldn't be a fall through.
514
assert(TBB && "insertBranch must not be told to insert a fallthrough");
515
assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) &&
516
"ARM branch conditions have two or three components!");
517
518
// For conditional branches, we use addOperand to preserve CPSR flags.
519
520
if (!FBB) {
521
if (Cond.empty()) { // Unconditional branch?
522
if (isThumb)
523
BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
524
else
525
BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
526
} else if (Cond.size() == 2) {
527
BuildMI(&MBB, DL, get(BccOpc))
528
.addMBB(TBB)
529
.addImm(Cond[0].getImm())
530
.add(Cond[1]);
531
} else
532
BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
533
return 1;
534
}
535
536
// Two-way conditional branch.
537
if (Cond.size() == 2)
538
BuildMI(&MBB, DL, get(BccOpc))
539
.addMBB(TBB)
540
.addImm(Cond[0].getImm())
541
.add(Cond[1]);
542
else if (Cond.size() == 3)
543
BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
544
if (isThumb)
545
BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
546
else
547
BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
548
return 2;
549
}
550
551
bool ARMBaseInstrInfo::
552
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
553
if (Cond.size() == 2) {
554
ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
555
Cond[0].setImm(ARMCC::getOppositeCondition(CC));
556
return false;
557
}
558
return true;
559
}
560
561
bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
562
if (MI.isBundle()) {
563
MachineBasicBlock::const_instr_iterator I = MI.getIterator();
564
MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
565
while (++I != E && I->isInsideBundle()) {
566
int PIdx = I->findFirstPredOperandIdx();
567
if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
568
return true;
569
}
570
return false;
571
}
572
573
int PIdx = MI.findFirstPredOperandIdx();
574
return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
575
}
576
577
std::string ARMBaseInstrInfo::createMIROperandComment(
578
const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
579
const TargetRegisterInfo *TRI) const {
580
581
// First, let's see if there is a generic comment for this operand
582
std::string GenericComment =
583
TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
584
if (!GenericComment.empty())
585
return GenericComment;
586
587
// If not, check if we have an immediate operand.
588
if (!Op.isImm())
589
return std::string();
590
591
// And print its corresponding condition code if the immediate is a
592
// predicate.
593
int FirstPredOp = MI.findFirstPredOperandIdx();
594
if (FirstPredOp != (int) OpIdx)
595
return std::string();
596
597
std::string CC = "CC::";
598
CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
599
return CC;
600
}
601
602
bool ARMBaseInstrInfo::PredicateInstruction(
603
MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
604
unsigned Opc = MI.getOpcode();
605
if (isUncondBranchOpcode(Opc)) {
606
MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
607
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
608
.addImm(Pred[0].getImm())
609
.addReg(Pred[1].getReg());
610
return true;
611
}
612
613
int PIdx = MI.findFirstPredOperandIdx();
614
if (PIdx != -1) {
615
MachineOperand &PMO = MI.getOperand(PIdx);
616
PMO.setImm(Pred[0].getImm());
617
MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
618
619
// Thumb 1 arithmetic instructions do not set CPSR when executed inside an
620
// IT block. This affects how they are printed.
621
const MCInstrDesc &MCID = MI.getDesc();
622
if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
623
assert(MCID.operands()[1].isOptionalDef() &&
624
"CPSR def isn't expected operand");
625
assert((MI.getOperand(1).isDead() ||
626
MI.getOperand(1).getReg() != ARM::CPSR) &&
627
"if conversion tried to stop defining used CPSR");
628
MI.getOperand(1).setReg(ARM::NoRegister);
629
}
630
631
return true;
632
}
633
return false;
634
}
635
636
bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
637
ArrayRef<MachineOperand> Pred2) const {
638
if (Pred1.size() > 2 || Pred2.size() > 2)
639
return false;
640
641
ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
642
ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
643
if (CC1 == CC2)
644
return true;
645
646
switch (CC1) {
647
default:
648
return false;
649
case ARMCC::AL:
650
return true;
651
case ARMCC::HS:
652
return CC2 == ARMCC::HI;
653
case ARMCC::LS:
654
return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
655
case ARMCC::GE:
656
return CC2 == ARMCC::GT;
657
case ARMCC::LE:
658
return CC2 == ARMCC::LT;
659
}
660
}
661
662
bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
663
std::vector<MachineOperand> &Pred,
664
bool SkipDead) const {
665
bool Found = false;
666
for (const MachineOperand &MO : MI.operands()) {
667
bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
668
bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
669
if (ClobbersCPSR || IsCPSR) {
670
671
// Filter out T1 instructions that have a dead CPSR,
672
// allowing IT blocks to be generated containing T1 instructions
673
const MCInstrDesc &MCID = MI.getDesc();
674
if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
675
SkipDead)
676
continue;
677
678
Pred.push_back(MO);
679
Found = true;
680
}
681
}
682
683
return Found;
684
}
685
686
bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
687
for (const auto &MO : MI.operands())
688
if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
689
return true;
690
return false;
691
}
692
693
static bool isEligibleForITBlock(const MachineInstr *MI) {
694
switch (MI->getOpcode()) {
695
default: return true;
696
case ARM::tADC: // ADC (register) T1
697
case ARM::tADDi3: // ADD (immediate) T1
698
case ARM::tADDi8: // ADD (immediate) T2
699
case ARM::tADDrr: // ADD (register) T1
700
case ARM::tAND: // AND (register) T1
701
case ARM::tASRri: // ASR (immediate) T1
702
case ARM::tASRrr: // ASR (register) T1
703
case ARM::tBIC: // BIC (register) T1
704
case ARM::tEOR: // EOR (register) T1
705
case ARM::tLSLri: // LSL (immediate) T1
706
case ARM::tLSLrr: // LSL (register) T1
707
case ARM::tLSRri: // LSR (immediate) T1
708
case ARM::tLSRrr: // LSR (register) T1
709
case ARM::tMUL: // MUL T1
710
case ARM::tMVN: // MVN (register) T1
711
case ARM::tORR: // ORR (register) T1
712
case ARM::tROR: // ROR (register) T1
713
case ARM::tRSB: // RSB (immediate) T1
714
case ARM::tSBC: // SBC (register) T1
715
case ARM::tSUBi3: // SUB (immediate) T1
716
case ARM::tSUBi8: // SUB (immediate) T2
717
case ARM::tSUBrr: // SUB (register) T1
718
return !ARMBaseInstrInfo::isCPSRDefined(*MI);
719
}
720
}
721
722
/// isPredicable - Return true if the specified instruction can be predicated.
723
/// By default, this returns true for every instruction with a
724
/// PredicateOperand.
725
bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
726
if (!MI.isPredicable())
727
return false;
728
729
if (MI.isBundle())
730
return false;
731
732
if (!isEligibleForITBlock(&MI))
733
return false;
734
735
const MachineFunction *MF = MI.getParent()->getParent();
736
const ARMFunctionInfo *AFI =
737
MF->getInfo<ARMFunctionInfo>();
738
739
// Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
740
// In their ARM encoding, they can't be encoded in a conditional form.
741
if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
742
return false;
743
744
// Make indirect control flow changes unpredicable when SLS mitigation is
745
// enabled.
746
const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
747
if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
748
return false;
749
if (ST.hardenSlsBlr() && isIndirectCall(MI))
750
return false;
751
752
if (AFI->isThumb2Function()) {
753
if (getSubtarget().restrictIT())
754
return isV8EligibleForIT(&MI);
755
}
756
757
return true;
758
}
759
760
namespace llvm {
761
762
template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
763
for (const MachineOperand &MO : MI->operands()) {
764
if (!MO.isReg() || MO.isUndef() || MO.isUse())
765
continue;
766
if (MO.getReg() != ARM::CPSR)
767
continue;
768
if (!MO.isDead())
769
return false;
770
}
771
// all definitions of CPSR are dead
772
return true;
773
}
774
775
} // end namespace llvm
776
777
/// GetInstSize - Return the size of the specified MachineInstr.
778
///
779
unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
780
const MachineBasicBlock &MBB = *MI.getParent();
781
const MachineFunction *MF = MBB.getParent();
782
const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
783
784
const MCInstrDesc &MCID = MI.getDesc();
785
786
switch (MI.getOpcode()) {
787
default:
788
// Return the size specified in .td file. If there's none, return 0, as we
789
// can't define a default size (Thumb1 instructions are 2 bytes, Thumb2
790
// instructions are 2-4 bytes, and ARM instructions are 4 bytes), in
791
// contrast to AArch64 instructions which have a default size of 4 bytes for
792
// example.
793
return MCID.getSize();
794
case TargetOpcode::BUNDLE:
795
return getInstBundleLength(MI);
796
case ARM::CONSTPOOL_ENTRY:
797
case ARM::JUMPTABLE_INSTS:
798
case ARM::JUMPTABLE_ADDRS:
799
case ARM::JUMPTABLE_TBB:
800
case ARM::JUMPTABLE_TBH:
801
// If this machine instr is a constant pool entry, its size is recorded as
802
// operand #2.
803
return MI.getOperand(2).getImm();
804
case ARM::SPACE:
805
return MI.getOperand(1).getImm();
806
case ARM::INLINEASM:
807
case ARM::INLINEASM_BR: {
808
// If this machine instr is an inline asm, measure it.
809
unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
810
if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
811
Size = alignTo(Size, 4);
812
return Size;
813
}
814
}
815
}
816
817
unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
818
unsigned Size = 0;
819
MachineBasicBlock::const_instr_iterator I = MI.getIterator();
820
MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
821
while (++I != E && I->isInsideBundle()) {
822
assert(!I->isBundle() && "No nested bundle!");
823
Size += getInstSizeInBytes(*I);
824
}
825
return Size;
826
}
827
828
void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
829
MachineBasicBlock::iterator I,
830
unsigned DestReg, bool KillSrc,
831
const ARMSubtarget &Subtarget) const {
832
unsigned Opc = Subtarget.isThumb()
833
? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
834
: ARM::MRS;
835
836
MachineInstrBuilder MIB =
837
BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
838
839
// There is only 1 A/R class MRS instruction, and it always refers to
840
// APSR. However, there are lots of other possibilities on M-class cores.
841
if (Subtarget.isMClass())
842
MIB.addImm(0x800);
843
844
MIB.add(predOps(ARMCC::AL))
845
.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
846
}
847
848
void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
849
MachineBasicBlock::iterator I,
850
unsigned SrcReg, bool KillSrc,
851
const ARMSubtarget &Subtarget) const {
852
unsigned Opc = Subtarget.isThumb()
853
? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
854
: ARM::MSR;
855
856
MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
857
858
if (Subtarget.isMClass())
859
MIB.addImm(0x800);
860
else
861
MIB.addImm(8);
862
863
MIB.addReg(SrcReg, getKillRegState(KillSrc))
864
.add(predOps(ARMCC::AL))
865
.addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
866
}
867
868
void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
869
MIB.addImm(ARMVCC::None);
870
MIB.addReg(0);
871
MIB.addReg(0); // tp_reg
872
}
873
874
void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
875
Register DestReg) {
876
addUnpredicatedMveVpredNOp(MIB);
877
MIB.addReg(DestReg, RegState::Undef);
878
}
879
880
void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
881
MIB.addImm(Cond);
882
MIB.addReg(ARM::VPR, RegState::Implicit);
883
MIB.addReg(0); // tp_reg
884
}
885
886
void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
887
unsigned Cond, unsigned Inactive) {
888
addPredicatedMveVpredNOp(MIB, Cond);
889
MIB.addReg(Inactive);
890
}
891
892
void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
893
MachineBasicBlock::iterator I,
894
const DebugLoc &DL, MCRegister DestReg,
895
MCRegister SrcReg, bool KillSrc) const {
896
bool GPRDest = ARM::GPRRegClass.contains(DestReg);
897
bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
898
899
if (GPRDest && GPRSrc) {
900
BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
901
.addReg(SrcReg, getKillRegState(KillSrc))
902
.add(predOps(ARMCC::AL))
903
.add(condCodeOp());
904
return;
905
}
906
907
bool SPRDest = ARM::SPRRegClass.contains(DestReg);
908
bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
909
910
unsigned Opc = 0;
911
if (SPRDest && SPRSrc)
912
Opc = ARM::VMOVS;
913
else if (GPRDest && SPRSrc)
914
Opc = ARM::VMOVRS;
915
else if (SPRDest && GPRSrc)
916
Opc = ARM::VMOVSR;
917
else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
918
Opc = ARM::VMOVD;
919
else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
920
Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy;
921
922
if (Opc) {
923
MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
924
MIB.addReg(SrcReg, getKillRegState(KillSrc));
925
if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
926
MIB.addReg(SrcReg, getKillRegState(KillSrc));
927
if (Opc == ARM::MVE_VORR)
928
addUnpredicatedMveVpredROp(MIB, DestReg);
929
else if (Opc != ARM::MQPRCopy)
930
MIB.add(predOps(ARMCC::AL));
931
return;
932
}
933
934
// Handle register classes that require multiple instructions.
935
unsigned BeginIdx = 0;
936
unsigned SubRegs = 0;
937
int Spacing = 1;
938
939
// Use VORRq when possible.
940
if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
941
Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
942
BeginIdx = ARM::qsub_0;
943
SubRegs = 2;
944
} else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
945
Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
946
BeginIdx = ARM::qsub_0;
947
SubRegs = 4;
948
// Fall back to VMOVD.
949
} else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
950
Opc = ARM::VMOVD;
951
BeginIdx = ARM::dsub_0;
952
SubRegs = 2;
953
} else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
954
Opc = ARM::VMOVD;
955
BeginIdx = ARM::dsub_0;
956
SubRegs = 3;
957
} else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
958
Opc = ARM::VMOVD;
959
BeginIdx = ARM::dsub_0;
960
SubRegs = 4;
961
} else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
962
Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
963
BeginIdx = ARM::gsub_0;
964
SubRegs = 2;
965
} else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
966
Opc = ARM::VMOVD;
967
BeginIdx = ARM::dsub_0;
968
SubRegs = 2;
969
Spacing = 2;
970
} else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
971
Opc = ARM::VMOVD;
972
BeginIdx = ARM::dsub_0;
973
SubRegs = 3;
974
Spacing = 2;
975
} else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
976
Opc = ARM::VMOVD;
977
BeginIdx = ARM::dsub_0;
978
SubRegs = 4;
979
Spacing = 2;
980
} else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
981
!Subtarget.hasFP64()) {
982
Opc = ARM::VMOVS;
983
BeginIdx = ARM::ssub_0;
984
SubRegs = 2;
985
} else if (SrcReg == ARM::CPSR) {
986
copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
987
return;
988
} else if (DestReg == ARM::CPSR) {
989
copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
990
return;
991
} else if (DestReg == ARM::VPR) {
992
assert(ARM::GPRRegClass.contains(SrcReg));
993
BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
994
.addReg(SrcReg, getKillRegState(KillSrc))
995
.add(predOps(ARMCC::AL));
996
return;
997
} else if (SrcReg == ARM::VPR) {
998
assert(ARM::GPRRegClass.contains(DestReg));
999
BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
1000
.addReg(SrcReg, getKillRegState(KillSrc))
1001
.add(predOps(ARMCC::AL));
1002
return;
1003
} else if (DestReg == ARM::FPSCR_NZCV) {
1004
assert(ARM::GPRRegClass.contains(SrcReg));
1005
BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
1006
.addReg(SrcReg, getKillRegState(KillSrc))
1007
.add(predOps(ARMCC::AL));
1008
return;
1009
} else if (SrcReg == ARM::FPSCR_NZCV) {
1010
assert(ARM::GPRRegClass.contains(DestReg));
1011
BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
1012
.addReg(SrcReg, getKillRegState(KillSrc))
1013
.add(predOps(ARMCC::AL));
1014
return;
1015
}
1016
1017
assert(Opc && "Impossible reg-to-reg copy");
1018
1019
const TargetRegisterInfo *TRI = &getRegisterInfo();
1020
MachineInstrBuilder Mov;
1021
1022
// Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1023
if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
1024
BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1025
Spacing = -Spacing;
1026
}
1027
#ifndef NDEBUG
1028
SmallSet<unsigned, 4> DstRegs;
1029
#endif
1030
for (unsigned i = 0; i != SubRegs; ++i) {
1031
Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
1032
Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
1033
assert(Dst && Src && "Bad sub-register");
1034
#ifndef NDEBUG
1035
assert(!DstRegs.count(Src) && "destructive vector copy");
1036
DstRegs.insert(Dst);
1037
#endif
1038
Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1039
// VORR (NEON or MVE) takes two source operands.
1040
if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1041
Mov.addReg(Src);
1042
}
1043
// MVE VORR takes predicate operands in place of an ordinary condition.
1044
if (Opc == ARM::MVE_VORR)
1045
addUnpredicatedMveVpredROp(Mov, Dst);
1046
else
1047
Mov = Mov.add(predOps(ARMCC::AL));
1048
// MOVr can set CC.
1049
if (Opc == ARM::MOVr)
1050
Mov = Mov.add(condCodeOp());
1051
}
1052
// Add implicit super-register defs and kills to the last instruction.
1053
Mov->addRegisterDefined(DestReg, TRI);
1054
if (KillSrc)
1055
Mov->addRegisterKilled(SrcReg, TRI);
1056
}
1057
1058
std::optional<DestSourcePair>
1059
ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1060
// VMOVRRD is also a copy instruction but it requires
1061
// special way of handling. It is more complex copy version
1062
// and since that we are not considering it. For recognition
1063
// of such instruction isExtractSubregLike MI interface fuction
1064
// could be used.
1065
// VORRq is considered as a move only if two inputs are
1066
// the same register.
1067
if (!MI.isMoveReg() ||
1068
(MI.getOpcode() == ARM::VORRq &&
1069
MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1070
return std::nullopt;
1071
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1072
}
1073
1074
std::optional<ParamLoadedValue>
1075
ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1076
Register Reg) const {
1077
if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1078
Register DstReg = DstSrcPair->Destination->getReg();
1079
1080
// TODO: We don't handle cases where the forwarding reg is narrower/wider
1081
// than the copy registers. Consider for example:
1082
//
1083
// s16 = VMOVS s0
1084
// s17 = VMOVS s1
1085
// call @callee(d0)
1086
//
1087
// We'd like to describe the call site value of d0 as d8, but this requires
1088
// gathering and merging the descriptions for the two VMOVS instructions.
1089
//
1090
// We also don't handle the reverse situation, where the forwarding reg is
1091
// narrower than the copy destination:
1092
//
1093
// d8 = VMOVD d0
1094
// call @callee(s1)
1095
//
1096
// We need to produce a fragment description (the call site value of s1 is
1097
// /not/ just d8).
1098
if (DstReg != Reg)
1099
return std::nullopt;
1100
}
1101
return TargetInstrInfo::describeLoadedValue(MI, Reg);
1102
}
1103
1104
const MachineInstrBuilder &
1105
ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1106
unsigned SubIdx, unsigned State,
1107
const TargetRegisterInfo *TRI) const {
1108
if (!SubIdx)
1109
return MIB.addReg(Reg, State);
1110
1111
if (Register::isPhysicalRegister(Reg))
1112
return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1113
return MIB.addReg(Reg, State, SubIdx);
1114
}
1115
1116
void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1117
MachineBasicBlock::iterator I,
1118
Register SrcReg, bool isKill, int FI,
1119
const TargetRegisterClass *RC,
1120
const TargetRegisterInfo *TRI,
1121
Register VReg) const {
1122
MachineFunction &MF = *MBB.getParent();
1123
MachineFrameInfo &MFI = MF.getFrameInfo();
1124
Align Alignment = MFI.getObjectAlign(FI);
1125
1126
MachineMemOperand *MMO = MF.getMachineMemOperand(
1127
MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1128
MFI.getObjectSize(FI), Alignment);
1129
1130
switch (TRI->getSpillSize(*RC)) {
1131
case 2:
1132
if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1133
BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1134
.addReg(SrcReg, getKillRegState(isKill))
1135
.addFrameIndex(FI)
1136
.addImm(0)
1137
.addMemOperand(MMO)
1138
.add(predOps(ARMCC::AL));
1139
} else
1140
llvm_unreachable("Unknown reg class!");
1141
break;
1142
case 4:
1143
if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1144
BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1145
.addReg(SrcReg, getKillRegState(isKill))
1146
.addFrameIndex(FI)
1147
.addImm(0)
1148
.addMemOperand(MMO)
1149
.add(predOps(ARMCC::AL));
1150
} else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1151
BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1152
.addReg(SrcReg, getKillRegState(isKill))
1153
.addFrameIndex(FI)
1154
.addImm(0)
1155
.addMemOperand(MMO)
1156
.add(predOps(ARMCC::AL));
1157
} else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1158
BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1159
.addReg(SrcReg, getKillRegState(isKill))
1160
.addFrameIndex(FI)
1161
.addImm(0)
1162
.addMemOperand(MMO)
1163
.add(predOps(ARMCC::AL));
1164
} else
1165
llvm_unreachable("Unknown reg class!");
1166
break;
1167
case 8:
1168
if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1169
BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1170
.addReg(SrcReg, getKillRegState(isKill))
1171
.addFrameIndex(FI)
1172
.addImm(0)
1173
.addMemOperand(MMO)
1174
.add(predOps(ARMCC::AL));
1175
} else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1176
if (Subtarget.hasV5TEOps()) {
1177
MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1178
AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1179
AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1180
MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1181
.add(predOps(ARMCC::AL));
1182
} else {
1183
// Fallback to STM instruction, which has existed since the dawn of
1184
// time.
1185
MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1186
.addFrameIndex(FI)
1187
.addMemOperand(MMO)
1188
.add(predOps(ARMCC::AL));
1189
AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1190
AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1191
}
1192
} else
1193
llvm_unreachable("Unknown reg class!");
1194
break;
1195
case 16:
1196
if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1197
// Use aligned spills if the stack can be realigned.
1198
if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1199
BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1200
.addFrameIndex(FI)
1201
.addImm(16)
1202
.addReg(SrcReg, getKillRegState(isKill))
1203
.addMemOperand(MMO)
1204
.add(predOps(ARMCC::AL));
1205
} else {
1206
BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1207
.addReg(SrcReg, getKillRegState(isKill))
1208
.addFrameIndex(FI)
1209
.addMemOperand(MMO)
1210
.add(predOps(ARMCC::AL));
1211
}
1212
} else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1213
Subtarget.hasMVEIntegerOps()) {
1214
auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1215
MIB.addReg(SrcReg, getKillRegState(isKill))
1216
.addFrameIndex(FI)
1217
.addImm(0)
1218
.addMemOperand(MMO);
1219
addUnpredicatedMveVpredNOp(MIB);
1220
} else
1221
llvm_unreachable("Unknown reg class!");
1222
break;
1223
case 24:
1224
if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1225
// Use aligned spills if the stack can be realigned.
1226
if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1227
Subtarget.hasNEON()) {
1228
BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1229
.addFrameIndex(FI)
1230
.addImm(16)
1231
.addReg(SrcReg, getKillRegState(isKill))
1232
.addMemOperand(MMO)
1233
.add(predOps(ARMCC::AL));
1234
} else {
1235
MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1236
get(ARM::VSTMDIA))
1237
.addFrameIndex(FI)
1238
.add(predOps(ARMCC::AL))
1239
.addMemOperand(MMO);
1240
MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1241
MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1242
AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1243
}
1244
} else
1245
llvm_unreachable("Unknown reg class!");
1246
break;
1247
case 32:
1248
if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1249
ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1250
ARM::DQuadRegClass.hasSubClassEq(RC)) {
1251
if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1252
Subtarget.hasNEON()) {
1253
// FIXME: It's possible to only store part of the QQ register if the
1254
// spilled def has a sub-register index.
1255
BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1256
.addFrameIndex(FI)
1257
.addImm(16)
1258
.addReg(SrcReg, getKillRegState(isKill))
1259
.addMemOperand(MMO)
1260
.add(predOps(ARMCC::AL));
1261
} else if (Subtarget.hasMVEIntegerOps()) {
1262
BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
1263
.addReg(SrcReg, getKillRegState(isKill))
1264
.addFrameIndex(FI)
1265
.addMemOperand(MMO);
1266
} else {
1267
MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1268
get(ARM::VSTMDIA))
1269
.addFrameIndex(FI)
1270
.add(predOps(ARMCC::AL))
1271
.addMemOperand(MMO);
1272
MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1273
MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1274
MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1275
AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1276
}
1277
} else
1278
llvm_unreachable("Unknown reg class!");
1279
break;
1280
case 64:
1281
if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1282
Subtarget.hasMVEIntegerOps()) {
1283
BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
1284
.addReg(SrcReg, getKillRegState(isKill))
1285
.addFrameIndex(FI)
1286
.addMemOperand(MMO);
1287
} else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1288
MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1289
.addFrameIndex(FI)
1290
.add(predOps(ARMCC::AL))
1291
.addMemOperand(MMO);
1292
MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1293
MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1294
MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1295
MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1296
MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1297
MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1298
MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1299
AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1300
} else
1301
llvm_unreachable("Unknown reg class!");
1302
break;
1303
default:
1304
llvm_unreachable("Unknown reg class!");
1305
}
1306
}
1307
1308
Register ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1309
int &FrameIndex) const {
1310
switch (MI.getOpcode()) {
1311
default: break;
1312
case ARM::STRrs:
1313
case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1314
if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1315
MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1316
MI.getOperand(3).getImm() == 0) {
1317
FrameIndex = MI.getOperand(1).getIndex();
1318
return MI.getOperand(0).getReg();
1319
}
1320
break;
1321
case ARM::STRi12:
1322
case ARM::t2STRi12:
1323
case ARM::tSTRspi:
1324
case ARM::VSTRD:
1325
case ARM::VSTRS:
1326
case ARM::VSTR_P0_off:
1327
case ARM::MVE_VSTRWU32:
1328
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1329
MI.getOperand(2).getImm() == 0) {
1330
FrameIndex = MI.getOperand(1).getIndex();
1331
return MI.getOperand(0).getReg();
1332
}
1333
break;
1334
case ARM::VST1q64:
1335
case ARM::VST1d64TPseudo:
1336
case ARM::VST1d64QPseudo:
1337
if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1338
FrameIndex = MI.getOperand(0).getIndex();
1339
return MI.getOperand(2).getReg();
1340
}
1341
break;
1342
case ARM::VSTMQIA:
1343
if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1344
FrameIndex = MI.getOperand(1).getIndex();
1345
return MI.getOperand(0).getReg();
1346
}
1347
break;
1348
case ARM::MQQPRStore:
1349
case ARM::MQQQQPRStore:
1350
if (MI.getOperand(1).isFI()) {
1351
FrameIndex = MI.getOperand(1).getIndex();
1352
return MI.getOperand(0).getReg();
1353
}
1354
break;
1355
}
1356
1357
return 0;
1358
}
1359
1360
Register ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1361
int &FrameIndex) const {
1362
SmallVector<const MachineMemOperand *, 1> Accesses;
1363
if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1364
Accesses.size() == 1) {
1365
FrameIndex =
1366
cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1367
->getFrameIndex();
1368
return true;
1369
}
1370
return false;
1371
}
1372
1373
void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1374
MachineBasicBlock::iterator I,
1375
Register DestReg, int FI,
1376
const TargetRegisterClass *RC,
1377
const TargetRegisterInfo *TRI,
1378
Register VReg) const {
1379
DebugLoc DL;
1380
if (I != MBB.end()) DL = I->getDebugLoc();
1381
MachineFunction &MF = *MBB.getParent();
1382
MachineFrameInfo &MFI = MF.getFrameInfo();
1383
const Align Alignment = MFI.getObjectAlign(FI);
1384
MachineMemOperand *MMO = MF.getMachineMemOperand(
1385
MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1386
MFI.getObjectSize(FI), Alignment);
1387
1388
switch (TRI->getSpillSize(*RC)) {
1389
case 2:
1390
if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1391
BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1392
.addFrameIndex(FI)
1393
.addImm(0)
1394
.addMemOperand(MMO)
1395
.add(predOps(ARMCC::AL));
1396
} else
1397
llvm_unreachable("Unknown reg class!");
1398
break;
1399
case 4:
1400
if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1401
BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1402
.addFrameIndex(FI)
1403
.addImm(0)
1404
.addMemOperand(MMO)
1405
.add(predOps(ARMCC::AL));
1406
} else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1407
BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1408
.addFrameIndex(FI)
1409
.addImm(0)
1410
.addMemOperand(MMO)
1411
.add(predOps(ARMCC::AL));
1412
} else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1413
BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1414
.addFrameIndex(FI)
1415
.addImm(0)
1416
.addMemOperand(MMO)
1417
.add(predOps(ARMCC::AL));
1418
} else
1419
llvm_unreachable("Unknown reg class!");
1420
break;
1421
case 8:
1422
if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1423
BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1424
.addFrameIndex(FI)
1425
.addImm(0)
1426
.addMemOperand(MMO)
1427
.add(predOps(ARMCC::AL));
1428
} else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1429
MachineInstrBuilder MIB;
1430
1431
if (Subtarget.hasV5TEOps()) {
1432
MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1433
AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1434
AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1435
MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1436
.add(predOps(ARMCC::AL));
1437
} else {
1438
// Fallback to LDM instruction, which has existed since the dawn of
1439
// time.
1440
MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1441
.addFrameIndex(FI)
1442
.addMemOperand(MMO)
1443
.add(predOps(ARMCC::AL));
1444
MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1445
MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1446
}
1447
1448
if (DestReg.isPhysical())
1449
MIB.addReg(DestReg, RegState::ImplicitDefine);
1450
} else
1451
llvm_unreachable("Unknown reg class!");
1452
break;
1453
case 16:
1454
if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1455
if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1456
BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1457
.addFrameIndex(FI)
1458
.addImm(16)
1459
.addMemOperand(MMO)
1460
.add(predOps(ARMCC::AL));
1461
} else {
1462
BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1463
.addFrameIndex(FI)
1464
.addMemOperand(MMO)
1465
.add(predOps(ARMCC::AL));
1466
}
1467
} else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1468
Subtarget.hasMVEIntegerOps()) {
1469
auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1470
MIB.addFrameIndex(FI)
1471
.addImm(0)
1472
.addMemOperand(MMO);
1473
addUnpredicatedMveVpredNOp(MIB);
1474
} else
1475
llvm_unreachable("Unknown reg class!");
1476
break;
1477
case 24:
1478
if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1479
if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1480
Subtarget.hasNEON()) {
1481
BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1482
.addFrameIndex(FI)
1483
.addImm(16)
1484
.addMemOperand(MMO)
1485
.add(predOps(ARMCC::AL));
1486
} else {
1487
MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1488
.addFrameIndex(FI)
1489
.addMemOperand(MMO)
1490
.add(predOps(ARMCC::AL));
1491
MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1492
MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1493
MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1494
if (DestReg.isPhysical())
1495
MIB.addReg(DestReg, RegState::ImplicitDefine);
1496
}
1497
} else
1498
llvm_unreachable("Unknown reg class!");
1499
break;
1500
case 32:
1501
if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1502
ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1503
ARM::DQuadRegClass.hasSubClassEq(RC)) {
1504
if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1505
Subtarget.hasNEON()) {
1506
BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1507
.addFrameIndex(FI)
1508
.addImm(16)
1509
.addMemOperand(MMO)
1510
.add(predOps(ARMCC::AL));
1511
} else if (Subtarget.hasMVEIntegerOps()) {
1512
BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
1513
.addFrameIndex(FI)
1514
.addMemOperand(MMO);
1515
} else {
1516
MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1517
.addFrameIndex(FI)
1518
.add(predOps(ARMCC::AL))
1519
.addMemOperand(MMO);
1520
MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1521
MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1522
MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1523
MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1524
if (DestReg.isPhysical())
1525
MIB.addReg(DestReg, RegState::ImplicitDefine);
1526
}
1527
} else
1528
llvm_unreachable("Unknown reg class!");
1529
break;
1530
case 64:
1531
if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1532
Subtarget.hasMVEIntegerOps()) {
1533
BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
1534
.addFrameIndex(FI)
1535
.addMemOperand(MMO);
1536
} else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1537
MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1538
.addFrameIndex(FI)
1539
.add(predOps(ARMCC::AL))
1540
.addMemOperand(MMO);
1541
MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1542
MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1543
MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1544
MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1545
MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1546
MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1547
MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1548
MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1549
if (DestReg.isPhysical())
1550
MIB.addReg(DestReg, RegState::ImplicitDefine);
1551
} else
1552
llvm_unreachable("Unknown reg class!");
1553
break;
1554
default:
1555
llvm_unreachable("Unknown regclass!");
1556
}
1557
}
1558
1559
Register ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1560
int &FrameIndex) const {
1561
switch (MI.getOpcode()) {
1562
default: break;
1563
case ARM::LDRrs:
1564
case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
1565
if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1566
MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1567
MI.getOperand(3).getImm() == 0) {
1568
FrameIndex = MI.getOperand(1).getIndex();
1569
return MI.getOperand(0).getReg();
1570
}
1571
break;
1572
case ARM::LDRi12:
1573
case ARM::t2LDRi12:
1574
case ARM::tLDRspi:
1575
case ARM::VLDRD:
1576
case ARM::VLDRS:
1577
case ARM::VLDR_P0_off:
1578
case ARM::MVE_VLDRWU32:
1579
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1580
MI.getOperand(2).getImm() == 0) {
1581
FrameIndex = MI.getOperand(1).getIndex();
1582
return MI.getOperand(0).getReg();
1583
}
1584
break;
1585
case ARM::VLD1q64:
1586
case ARM::VLD1d8TPseudo:
1587
case ARM::VLD1d16TPseudo:
1588
case ARM::VLD1d32TPseudo:
1589
case ARM::VLD1d64TPseudo:
1590
case ARM::VLD1d8QPseudo:
1591
case ARM::VLD1d16QPseudo:
1592
case ARM::VLD1d32QPseudo:
1593
case ARM::VLD1d64QPseudo:
1594
if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1595
FrameIndex = MI.getOperand(1).getIndex();
1596
return MI.getOperand(0).getReg();
1597
}
1598
break;
1599
case ARM::VLDMQIA:
1600
if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1601
FrameIndex = MI.getOperand(1).getIndex();
1602
return MI.getOperand(0).getReg();
1603
}
1604
break;
1605
case ARM::MQQPRLoad:
1606
case ARM::MQQQQPRLoad:
1607
if (MI.getOperand(1).isFI()) {
1608
FrameIndex = MI.getOperand(1).getIndex();
1609
return MI.getOperand(0).getReg();
1610
}
1611
break;
1612
}
1613
1614
return 0;
1615
}
1616
1617
Register ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1618
int &FrameIndex) const {
1619
SmallVector<const MachineMemOperand *, 1> Accesses;
1620
if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1621
Accesses.size() == 1) {
1622
FrameIndex =
1623
cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1624
->getFrameIndex();
1625
return true;
1626
}
1627
return false;
1628
}
1629
1630
/// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1631
/// depending on whether the result is used.
1632
void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1633
bool isThumb1 = Subtarget.isThumb1Only();
1634
bool isThumb2 = Subtarget.isThumb2();
1635
const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1636
1637
DebugLoc dl = MI->getDebugLoc();
1638
MachineBasicBlock *BB = MI->getParent();
1639
1640
MachineInstrBuilder LDM, STM;
1641
if (isThumb1 || !MI->getOperand(1).isDead()) {
1642
MachineOperand LDWb(MI->getOperand(1));
1643
LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1644
: isThumb1 ? ARM::tLDMIA_UPD
1645
: ARM::LDMIA_UPD))
1646
.add(LDWb);
1647
} else {
1648
LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1649
}
1650
1651
if (isThumb1 || !MI->getOperand(0).isDead()) {
1652
MachineOperand STWb(MI->getOperand(0));
1653
STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1654
: isThumb1 ? ARM::tSTMIA_UPD
1655
: ARM::STMIA_UPD))
1656
.add(STWb);
1657
} else {
1658
STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1659
}
1660
1661
MachineOperand LDBase(MI->getOperand(3));
1662
LDM.add(LDBase).add(predOps(ARMCC::AL));
1663
1664
MachineOperand STBase(MI->getOperand(2));
1665
STM.add(STBase).add(predOps(ARMCC::AL));
1666
1667
// Sort the scratch registers into ascending order.
1668
const TargetRegisterInfo &TRI = getRegisterInfo();
1669
SmallVector<unsigned, 6> ScratchRegs;
1670
for (MachineOperand &MO : llvm::drop_begin(MI->operands(), 5))
1671
ScratchRegs.push_back(MO.getReg());
1672
llvm::sort(ScratchRegs,
1673
[&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1674
return TRI.getEncodingValue(Reg1) <
1675
TRI.getEncodingValue(Reg2);
1676
});
1677
1678
for (const auto &Reg : ScratchRegs) {
1679
LDM.addReg(Reg, RegState::Define);
1680
STM.addReg(Reg, RegState::Kill);
1681
}
1682
1683
BB->erase(MI);
1684
}
1685
1686
bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1687
if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1688
expandLoadStackGuard(MI);
1689
MI.getParent()->erase(MI);
1690
return true;
1691
}
1692
1693
if (MI.getOpcode() == ARM::MEMCPY) {
1694
expandMEMCPY(MI);
1695
return true;
1696
}
1697
1698
// This hook gets to expand COPY instructions before they become
1699
// copyPhysReg() calls. Look for VMOVS instructions that can legally be
1700
// widened to VMOVD. We prefer the VMOVD when possible because it may be
1701
// changed into a VORR that can go down the NEON pipeline.
1702
if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1703
return false;
1704
1705
// Look for a copy between even S-registers. That is where we keep floats
1706
// when using NEON v2f32 instructions for f32 arithmetic.
1707
Register DstRegS = MI.getOperand(0).getReg();
1708
Register SrcRegS = MI.getOperand(1).getReg();
1709
if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1710
return false;
1711
1712
const TargetRegisterInfo *TRI = &getRegisterInfo();
1713
unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1714
&ARM::DPRRegClass);
1715
unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1716
&ARM::DPRRegClass);
1717
if (!DstRegD || !SrcRegD)
1718
return false;
1719
1720
// We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1721
// legal if the COPY already defines the full DstRegD, and it isn't a
1722
// sub-register insertion.
1723
if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1724
return false;
1725
1726
// A dead copy shouldn't show up here, but reject it just in case.
1727
if (MI.getOperand(0).isDead())
1728
return false;
1729
1730
// All clear, widen the COPY.
1731
LLVM_DEBUG(dbgs() << "widening: " << MI);
1732
MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1733
1734
// Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg
1735
// or some other super-register.
1736
int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD, /*TRI=*/nullptr);
1737
if (ImpDefIdx != -1)
1738
MI.removeOperand(ImpDefIdx);
1739
1740
// Change the opcode and operands.
1741
MI.setDesc(get(ARM::VMOVD));
1742
MI.getOperand(0).setReg(DstRegD);
1743
MI.getOperand(1).setReg(SrcRegD);
1744
MIB.add(predOps(ARMCC::AL));
1745
1746
// We are now reading SrcRegD instead of SrcRegS. This may upset the
1747
// register scavenger and machine verifier, so we need to indicate that we
1748
// are reading an undefined value from SrcRegD, but a proper value from
1749
// SrcRegS.
1750
MI.getOperand(1).setIsUndef();
1751
MIB.addReg(SrcRegS, RegState::Implicit);
1752
1753
// SrcRegD may actually contain an unrelated value in the ssub_1
1754
// sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1755
if (MI.getOperand(1).isKill()) {
1756
MI.getOperand(1).setIsKill(false);
1757
MI.addRegisterKilled(SrcRegS, TRI, true);
1758
}
1759
1760
LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1761
return true;
1762
}
1763
1764
/// Create a copy of a const pool value. Update CPI to the new index and return
1765
/// the label UID.
1766
static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1767
MachineConstantPool *MCP = MF.getConstantPool();
1768
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1769
1770
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1771
assert(MCPE.isMachineConstantPoolEntry() &&
1772
"Expecting a machine constantpool entry!");
1773
ARMConstantPoolValue *ACPV =
1774
static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1775
1776
unsigned PCLabelId = AFI->createPICLabelUId();
1777
ARMConstantPoolValue *NewCPV = nullptr;
1778
1779
// FIXME: The below assumes PIC relocation model and that the function
1780
// is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1781
// zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1782
// instructions, so that's probably OK, but is PIC always correct when
1783
// we get here?
1784
if (ACPV->isGlobalValue())
1785
NewCPV = ARMConstantPoolConstant::Create(
1786
cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1787
4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1788
else if (ACPV->isExtSymbol())
1789
NewCPV = ARMConstantPoolSymbol::
1790
Create(MF.getFunction().getContext(),
1791
cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1792
else if (ACPV->isBlockAddress())
1793
NewCPV = ARMConstantPoolConstant::
1794
Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1795
ARMCP::CPBlockAddress, 4);
1796
else if (ACPV->isLSDA())
1797
NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1798
ARMCP::CPLSDA, 4);
1799
else if (ACPV->isMachineBasicBlock())
1800
NewCPV = ARMConstantPoolMBB::
1801
Create(MF.getFunction().getContext(),
1802
cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1803
else
1804
llvm_unreachable("Unexpected ARM constantpool value type!!");
1805
CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1806
return PCLabelId;
1807
}
1808
1809
void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1810
MachineBasicBlock::iterator I,
1811
Register DestReg, unsigned SubIdx,
1812
const MachineInstr &Orig,
1813
const TargetRegisterInfo &TRI) const {
1814
unsigned Opcode = Orig.getOpcode();
1815
switch (Opcode) {
1816
default: {
1817
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1818
MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1819
MBB.insert(I, MI);
1820
break;
1821
}
1822
case ARM::tLDRpci_pic:
1823
case ARM::t2LDRpci_pic: {
1824
MachineFunction &MF = *MBB.getParent();
1825
unsigned CPI = Orig.getOperand(1).getIndex();
1826
unsigned PCLabelId = duplicateCPV(MF, CPI);
1827
BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1828
.addConstantPoolIndex(CPI)
1829
.addImm(PCLabelId)
1830
.cloneMemRefs(Orig);
1831
break;
1832
}
1833
}
1834
}
1835
1836
MachineInstr &
1837
ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1838
MachineBasicBlock::iterator InsertBefore,
1839
const MachineInstr &Orig) const {
1840
MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1841
MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1842
for (;;) {
1843
switch (I->getOpcode()) {
1844
case ARM::tLDRpci_pic:
1845
case ARM::t2LDRpci_pic: {
1846
MachineFunction &MF = *MBB.getParent();
1847
unsigned CPI = I->getOperand(1).getIndex();
1848
unsigned PCLabelId = duplicateCPV(MF, CPI);
1849
I->getOperand(1).setIndex(CPI);
1850
I->getOperand(2).setImm(PCLabelId);
1851
break;
1852
}
1853
}
1854
if (!I->isBundledWithSucc())
1855
break;
1856
++I;
1857
}
1858
return Cloned;
1859
}
1860
1861
bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1862
const MachineInstr &MI1,
1863
const MachineRegisterInfo *MRI) const {
1864
unsigned Opcode = MI0.getOpcode();
1865
if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic ||
1866
Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic ||
1867
Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1868
Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1869
Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1870
Opcode == ARM::t2MOV_ga_pcrel) {
1871
if (MI1.getOpcode() != Opcode)
1872
return false;
1873
if (MI0.getNumOperands() != MI1.getNumOperands())
1874
return false;
1875
1876
const MachineOperand &MO0 = MI0.getOperand(1);
1877
const MachineOperand &MO1 = MI1.getOperand(1);
1878
if (MO0.getOffset() != MO1.getOffset())
1879
return false;
1880
1881
if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1882
Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1883
Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1884
Opcode == ARM::t2MOV_ga_pcrel)
1885
// Ignore the PC labels.
1886
return MO0.getGlobal() == MO1.getGlobal();
1887
1888
const MachineFunction *MF = MI0.getParent()->getParent();
1889
const MachineConstantPool *MCP = MF->getConstantPool();
1890
int CPI0 = MO0.getIndex();
1891
int CPI1 = MO1.getIndex();
1892
const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1893
const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1894
bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1895
bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1896
if (isARMCP0 && isARMCP1) {
1897
ARMConstantPoolValue *ACPV0 =
1898
static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1899
ARMConstantPoolValue *ACPV1 =
1900
static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1901
return ACPV0->hasSameValue(ACPV1);
1902
} else if (!isARMCP0 && !isARMCP1) {
1903
return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1904
}
1905
return false;
1906
} else if (Opcode == ARM::PICLDR) {
1907
if (MI1.getOpcode() != Opcode)
1908
return false;
1909
if (MI0.getNumOperands() != MI1.getNumOperands())
1910
return false;
1911
1912
Register Addr0 = MI0.getOperand(1).getReg();
1913
Register Addr1 = MI1.getOperand(1).getReg();
1914
if (Addr0 != Addr1) {
1915
if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual())
1916
return false;
1917
1918
// This assumes SSA form.
1919
MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1920
MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1921
// Check if the loaded value, e.g. a constantpool of a global address, are
1922
// the same.
1923
if (!produceSameValue(*Def0, *Def1, MRI))
1924
return false;
1925
}
1926
1927
for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1928
// %12 = PICLDR %11, 0, 14, %noreg
1929
const MachineOperand &MO0 = MI0.getOperand(i);
1930
const MachineOperand &MO1 = MI1.getOperand(i);
1931
if (!MO0.isIdenticalTo(MO1))
1932
return false;
1933
}
1934
return true;
1935
}
1936
1937
return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1938
}
1939
1940
/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1941
/// determine if two loads are loading from the same base address. It should
1942
/// only return true if the base pointers are the same and the only differences
1943
/// between the two addresses is the offset. It also returns the offsets by
1944
/// reference.
1945
///
1946
/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1947
/// is permanently disabled.
1948
bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1949
int64_t &Offset1,
1950
int64_t &Offset2) const {
1951
// Don't worry about Thumb: just ARM and Thumb2.
1952
if (Subtarget.isThumb1Only()) return false;
1953
1954
if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1955
return false;
1956
1957
auto IsLoadOpcode = [&](unsigned Opcode) {
1958
switch (Opcode) {
1959
default:
1960
return false;
1961
case ARM::LDRi12:
1962
case ARM::LDRBi12:
1963
case ARM::LDRD:
1964
case ARM::LDRH:
1965
case ARM::LDRSB:
1966
case ARM::LDRSH:
1967
case ARM::VLDRD:
1968
case ARM::VLDRS:
1969
case ARM::t2LDRi8:
1970
case ARM::t2LDRBi8:
1971
case ARM::t2LDRDi8:
1972
case ARM::t2LDRSHi8:
1973
case ARM::t2LDRi12:
1974
case ARM::t2LDRBi12:
1975
case ARM::t2LDRSHi12:
1976
return true;
1977
}
1978
};
1979
1980
if (!IsLoadOpcode(Load1->getMachineOpcode()) ||
1981
!IsLoadOpcode(Load2->getMachineOpcode()))
1982
return false;
1983
1984
// Check if base addresses and chain operands match.
1985
if (Load1->getOperand(0) != Load2->getOperand(0) ||
1986
Load1->getOperand(4) != Load2->getOperand(4))
1987
return false;
1988
1989
// Index should be Reg0.
1990
if (Load1->getOperand(3) != Load2->getOperand(3))
1991
return false;
1992
1993
// Determine the offsets.
1994
if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1995
isa<ConstantSDNode>(Load2->getOperand(1))) {
1996
Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1997
Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1998
return true;
1999
}
2000
2001
return false;
2002
}
2003
2004
/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
2005
/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
2006
/// be scheduled togther. On some targets if two loads are loading from
2007
/// addresses in the same cache line, it's better if they are scheduled
2008
/// together. This function takes two integers that represent the load offsets
2009
/// from the common base address. It returns true if it decides it's desirable
2010
/// to schedule the two loads together. "NumLoads" is the number of loads that
2011
/// have already been scheduled after Load1.
2012
///
2013
/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
2014
/// is permanently disabled.
2015
bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2016
int64_t Offset1, int64_t Offset2,
2017
unsigned NumLoads) const {
2018
// Don't worry about Thumb: just ARM and Thumb2.
2019
if (Subtarget.isThumb1Only()) return false;
2020
2021
assert(Offset2 > Offset1);
2022
2023
if ((Offset2 - Offset1) / 8 > 64)
2024
return false;
2025
2026
// Check if the machine opcodes are different. If they are different
2027
// then we consider them to not be of the same base address,
2028
// EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2029
// In this case, they are considered to be the same because they are different
2030
// encoding forms of the same basic instruction.
2031
if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2032
!((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2033
Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2034
(Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2035
Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2036
return false; // FIXME: overly conservative?
2037
2038
// Four loads in a row should be sufficient.
2039
if (NumLoads >= 3)
2040
return false;
2041
2042
return true;
2043
}
2044
2045
bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2046
const MachineBasicBlock *MBB,
2047
const MachineFunction &MF) const {
2048
// Debug info is never a scheduling boundary. It's necessary to be explicit
2049
// due to the special treatment of IT instructions below, otherwise a
2050
// dbg_value followed by an IT will result in the IT instruction being
2051
// considered a scheduling hazard, which is wrong. It should be the actual
2052
// instruction preceding the dbg_value instruction(s), just like it is
2053
// when debug info is not present.
2054
if (MI.isDebugInstr())
2055
return false;
2056
2057
// Terminators and labels can't be scheduled around.
2058
if (MI.isTerminator() || MI.isPosition())
2059
return true;
2060
2061
// INLINEASM_BR can jump to another block
2062
if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2063
return true;
2064
2065
if (isSEHInstruction(MI))
2066
return true;
2067
2068
// Treat the start of the IT block as a scheduling boundary, but schedule
2069
// t2IT along with all instructions following it.
2070
// FIXME: This is a big hammer. But the alternative is to add all potential
2071
// true and anti dependencies to IT block instructions as implicit operands
2072
// to the t2IT instruction. The added compile time and complexity does not
2073
// seem worth it.
2074
MachineBasicBlock::const_iterator I = MI;
2075
// Make sure to skip any debug instructions
2076
while (++I != MBB->end() && I->isDebugInstr())
2077
;
2078
if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2079
return true;
2080
2081
// Don't attempt to schedule around any instruction that defines
2082
// a stack-oriented pointer, as it's unlikely to be profitable. This
2083
// saves compile time, because it doesn't require every single
2084
// stack slot reference to depend on the instruction that does the
2085
// modification.
2086
// Calls don't actually change the stack pointer, even if they have imp-defs.
2087
// No ARM calling conventions change the stack pointer. (X86 calling
2088
// conventions sometimes do).
2089
if (!MI.isCall() && MI.definesRegister(ARM::SP, /*TRI=*/nullptr))
2090
return true;
2091
2092
return false;
2093
}
2094
2095
bool ARMBaseInstrInfo::
2096
isProfitableToIfCvt(MachineBasicBlock &MBB,
2097
unsigned NumCycles, unsigned ExtraPredCycles,
2098
BranchProbability Probability) const {
2099
if (!NumCycles)
2100
return false;
2101
2102
// If we are optimizing for size, see if the branch in the predecessor can be
2103
// lowered to cbn?z by the constant island lowering pass, and return false if
2104
// so. This results in a shorter instruction sequence.
2105
if (MBB.getParent()->getFunction().hasOptSize()) {
2106
MachineBasicBlock *Pred = *MBB.pred_begin();
2107
if (!Pred->empty()) {
2108
MachineInstr *LastMI = &*Pred->rbegin();
2109
if (LastMI->getOpcode() == ARM::t2Bcc) {
2110
const TargetRegisterInfo *TRI = &getRegisterInfo();
2111
MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2112
if (CmpMI)
2113
return false;
2114
}
2115
}
2116
}
2117
return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2118
MBB, 0, 0, Probability);
2119
}
2120
2121
bool ARMBaseInstrInfo::
2122
isProfitableToIfCvt(MachineBasicBlock &TBB,
2123
unsigned TCycles, unsigned TExtra,
2124
MachineBasicBlock &FBB,
2125
unsigned FCycles, unsigned FExtra,
2126
BranchProbability Probability) const {
2127
if (!TCycles)
2128
return false;
2129
2130
// In thumb code we often end up trading one branch for a IT block, and
2131
// if we are cloning the instruction can increase code size. Prevent
2132
// blocks with multiple predecesors from being ifcvted to prevent this
2133
// cloning.
2134
if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2135
if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2136
return false;
2137
}
2138
2139
// Attempt to estimate the relative costs of predication versus branching.
2140
// Here we scale up each component of UnpredCost to avoid precision issue when
2141
// scaling TCycles/FCycles by Probability.
2142
const unsigned ScalingUpFactor = 1024;
2143
2144
unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2145
unsigned UnpredCost;
2146
if (!Subtarget.hasBranchPredictor()) {
2147
// When we don't have a branch predictor it's always cheaper to not take a
2148
// branch than take it, so we have to take that into account.
2149
unsigned NotTakenBranchCost = 1;
2150
unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2151
unsigned TUnpredCycles, FUnpredCycles;
2152
if (!FCycles) {
2153
// Triangle: TBB is the fallthrough
2154
TUnpredCycles = TCycles + NotTakenBranchCost;
2155
FUnpredCycles = TakenBranchCost;
2156
} else {
2157
// Diamond: TBB is the block that is branched to, FBB is the fallthrough
2158
TUnpredCycles = TCycles + TakenBranchCost;
2159
FUnpredCycles = FCycles + NotTakenBranchCost;
2160
// The branch at the end of FBB will disappear when it's predicated, so
2161
// discount it from PredCost.
2162
PredCost -= 1 * ScalingUpFactor;
2163
}
2164
// The total cost is the cost of each path scaled by their probabilites
2165
unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2166
unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2167
UnpredCost = TUnpredCost + FUnpredCost;
2168
// When predicating assume that the first IT can be folded away but later
2169
// ones cost one cycle each
2170
if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2171
PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2172
}
2173
} else {
2174
unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2175
unsigned FUnpredCost =
2176
Probability.getCompl().scale(FCycles * ScalingUpFactor);
2177
UnpredCost = TUnpredCost + FUnpredCost;
2178
UnpredCost += 1 * ScalingUpFactor; // The branch itself
2179
UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2180
}
2181
2182
return PredCost <= UnpredCost;
2183
}
2184
2185
unsigned
2186
ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2187
unsigned NumInsts) const {
2188
// Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2189
// ARM has a condition code field in every predicable instruction, using it
2190
// doesn't change code size.
2191
if (!Subtarget.isThumb2())
2192
return 0;
2193
2194
// It's possible that the size of the IT is restricted to a single block.
2195
unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2196
return divideCeil(NumInsts, MaxInsts) * 2;
2197
}
2198
2199
unsigned
2200
ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2201
// If this branch is likely to be folded into the comparison to form a
2202
// CB(N)Z, then removing it won't reduce code size at all, because that will
2203
// just replace the CB(N)Z with a CMP.
2204
if (MI.getOpcode() == ARM::t2Bcc &&
2205
findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2206
return 0;
2207
2208
unsigned Size = getInstSizeInBytes(MI);
2209
2210
// For Thumb2, all branches are 32-bit instructions during the if conversion
2211
// pass, but may be replaced with 16-bit instructions during size reduction.
2212
// Since the branches considered by if conversion tend to be forward branches
2213
// over small basic blocks, they are very likely to be in range for the
2214
// narrow instructions, so we assume the final code size will be half what it
2215
// currently is.
2216
if (Subtarget.isThumb2())
2217
Size /= 2;
2218
2219
return Size;
2220
}
2221
2222
bool
2223
ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2224
MachineBasicBlock &FMBB) const {
2225
// Reduce false anti-dependencies to let the target's out-of-order execution
2226
// engine do its thing.
2227
return Subtarget.isProfitableToUnpredicate();
2228
}
2229
2230
/// getInstrPredicate - If instruction is predicated, returns its predicate
2231
/// condition, otherwise returns AL. It also returns the condition code
2232
/// register by reference.
2233
ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2234
Register &PredReg) {
2235
int PIdx = MI.findFirstPredOperandIdx();
2236
if (PIdx == -1) {
2237
PredReg = 0;
2238
return ARMCC::AL;
2239
}
2240
2241
PredReg = MI.getOperand(PIdx+1).getReg();
2242
return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2243
}
2244
2245
unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2246
if (Opc == ARM::B)
2247
return ARM::Bcc;
2248
if (Opc == ARM::tB)
2249
return ARM::tBcc;
2250
if (Opc == ARM::t2B)
2251
return ARM::t2Bcc;
2252
2253
llvm_unreachable("Unknown unconditional branch opcode!");
2254
}
2255
2256
MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2257
bool NewMI,
2258
unsigned OpIdx1,
2259
unsigned OpIdx2) const {
2260
switch (MI.getOpcode()) {
2261
case ARM::MOVCCr:
2262
case ARM::t2MOVCCr: {
2263
// MOVCC can be commuted by inverting the condition.
2264
Register PredReg;
2265
ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2266
// MOVCC AL can't be inverted. Shouldn't happen.
2267
if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2268
return nullptr;
2269
MachineInstr *CommutedMI =
2270
TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2271
if (!CommutedMI)
2272
return nullptr;
2273
// After swapping the MOVCC operands, also invert the condition.
2274
CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2275
.setImm(ARMCC::getOppositeCondition(CC));
2276
return CommutedMI;
2277
}
2278
}
2279
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2280
}
2281
2282
/// Identify instructions that can be folded into a MOVCC instruction, and
2283
/// return the defining instruction.
2284
MachineInstr *
2285
ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2286
const TargetInstrInfo *TII) const {
2287
if (!Reg.isVirtual())
2288
return nullptr;
2289
if (!MRI.hasOneNonDBGUse(Reg))
2290
return nullptr;
2291
MachineInstr *MI = MRI.getVRegDef(Reg);
2292
if (!MI)
2293
return nullptr;
2294
// Check if MI can be predicated and folded into the MOVCC.
2295
if (!isPredicable(*MI))
2296
return nullptr;
2297
// Check if MI has any non-dead defs or physreg uses. This also detects
2298
// predicated instructions which will be reading CPSR.
2299
for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) {
2300
// Reject frame index operands, PEI can't handle the predicated pseudos.
2301
if (MO.isFI() || MO.isCPI() || MO.isJTI())
2302
return nullptr;
2303
if (!MO.isReg())
2304
continue;
2305
// MI can't have any tied operands, that would conflict with predication.
2306
if (MO.isTied())
2307
return nullptr;
2308
if (MO.getReg().isPhysical())
2309
return nullptr;
2310
if (MO.isDef() && !MO.isDead())
2311
return nullptr;
2312
}
2313
bool DontMoveAcrossStores = true;
2314
if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2315
return nullptr;
2316
return MI;
2317
}
2318
2319
bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2320
SmallVectorImpl<MachineOperand> &Cond,
2321
unsigned &TrueOp, unsigned &FalseOp,
2322
bool &Optimizable) const {
2323
assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2324
"Unknown select instruction");
2325
// MOVCC operands:
2326
// 0: Def.
2327
// 1: True use.
2328
// 2: False use.
2329
// 3: Condition code.
2330
// 4: CPSR use.
2331
TrueOp = 1;
2332
FalseOp = 2;
2333
Cond.push_back(MI.getOperand(3));
2334
Cond.push_back(MI.getOperand(4));
2335
// We can always fold a def.
2336
Optimizable = true;
2337
return false;
2338
}
2339
2340
MachineInstr *
2341
ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2342
SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2343
bool PreferFalse) const {
2344
assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2345
"Unknown select instruction");
2346
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2347
MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2348
bool Invert = !DefMI;
2349
if (!DefMI)
2350
DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2351
if (!DefMI)
2352
return nullptr;
2353
2354
// Find new register class to use.
2355
MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2356
MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2);
2357
Register DestReg = MI.getOperand(0).getReg();
2358
const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg());
2359
const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg());
2360
if (!MRI.constrainRegClass(DestReg, FalseClass))
2361
return nullptr;
2362
if (!MRI.constrainRegClass(DestReg, TrueClass))
2363
return nullptr;
2364
2365
// Create a new predicated version of DefMI.
2366
// Rfalse is the first use.
2367
MachineInstrBuilder NewMI =
2368
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2369
2370
// Copy all the DefMI operands, excluding its (null) predicate.
2371
const MCInstrDesc &DefDesc = DefMI->getDesc();
2372
for (unsigned i = 1, e = DefDesc.getNumOperands();
2373
i != e && !DefDesc.operands()[i].isPredicate(); ++i)
2374
NewMI.add(DefMI->getOperand(i));
2375
2376
unsigned CondCode = MI.getOperand(3).getImm();
2377
if (Invert)
2378
NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2379
else
2380
NewMI.addImm(CondCode);
2381
NewMI.add(MI.getOperand(4));
2382
2383
// DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2384
if (NewMI->hasOptionalDef())
2385
NewMI.add(condCodeOp());
2386
2387
// The output register value when the predicate is false is an implicit
2388
// register operand tied to the first def.
2389
// The tie makes the register allocator ensure the FalseReg is allocated the
2390
// same register as operand 0.
2391
FalseReg.setImplicit();
2392
NewMI.add(FalseReg);
2393
NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2394
2395
// Update SeenMIs set: register newly created MI and erase removed DefMI.
2396
SeenMIs.insert(NewMI);
2397
SeenMIs.erase(DefMI);
2398
2399
// If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2400
// DefMI would be invalid when tranferred inside the loop. Checking for a
2401
// loop is expensive, but at least remove kill flags if they are in different
2402
// BBs.
2403
if (DefMI->getParent() != MI.getParent())
2404
NewMI->clearKillInfo();
2405
2406
// The caller will erase MI, but not DefMI.
2407
DefMI->eraseFromParent();
2408
return NewMI;
2409
}
2410
2411
/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2412
/// instruction is encoded with an 'S' bit is determined by the optional CPSR
2413
/// def operand.
2414
///
2415
/// This will go away once we can teach tblgen how to set the optional CPSR def
2416
/// operand itself.
2417
struct AddSubFlagsOpcodePair {
2418
uint16_t PseudoOpc;
2419
uint16_t MachineOpc;
2420
};
2421
2422
static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2423
{ARM::ADDSri, ARM::ADDri},
2424
{ARM::ADDSrr, ARM::ADDrr},
2425
{ARM::ADDSrsi, ARM::ADDrsi},
2426
{ARM::ADDSrsr, ARM::ADDrsr},
2427
2428
{ARM::SUBSri, ARM::SUBri},
2429
{ARM::SUBSrr, ARM::SUBrr},
2430
{ARM::SUBSrsi, ARM::SUBrsi},
2431
{ARM::SUBSrsr, ARM::SUBrsr},
2432
2433
{ARM::RSBSri, ARM::RSBri},
2434
{ARM::RSBSrsi, ARM::RSBrsi},
2435
{ARM::RSBSrsr, ARM::RSBrsr},
2436
2437
{ARM::tADDSi3, ARM::tADDi3},
2438
{ARM::tADDSi8, ARM::tADDi8},
2439
{ARM::tADDSrr, ARM::tADDrr},
2440
{ARM::tADCS, ARM::tADC},
2441
2442
{ARM::tSUBSi3, ARM::tSUBi3},
2443
{ARM::tSUBSi8, ARM::tSUBi8},
2444
{ARM::tSUBSrr, ARM::tSUBrr},
2445
{ARM::tSBCS, ARM::tSBC},
2446
{ARM::tRSBS, ARM::tRSB},
2447
{ARM::tLSLSri, ARM::tLSLri},
2448
2449
{ARM::t2ADDSri, ARM::t2ADDri},
2450
{ARM::t2ADDSrr, ARM::t2ADDrr},
2451
{ARM::t2ADDSrs, ARM::t2ADDrs},
2452
2453
{ARM::t2SUBSri, ARM::t2SUBri},
2454
{ARM::t2SUBSrr, ARM::t2SUBrr},
2455
{ARM::t2SUBSrs, ARM::t2SUBrs},
2456
2457
{ARM::t2RSBSri, ARM::t2RSBri},
2458
{ARM::t2RSBSrs, ARM::t2RSBrs},
2459
};
2460
2461
unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2462
for (const auto &Entry : AddSubFlagsOpcodeMap)
2463
if (OldOpc == Entry.PseudoOpc)
2464
return Entry.MachineOpc;
2465
return 0;
2466
}
2467
2468
void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2469
MachineBasicBlock::iterator &MBBI,
2470
const DebugLoc &dl, Register DestReg,
2471
Register BaseReg, int NumBytes,
2472
ARMCC::CondCodes Pred, Register PredReg,
2473
const ARMBaseInstrInfo &TII,
2474
unsigned MIFlags) {
2475
if (NumBytes == 0 && DestReg != BaseReg) {
2476
BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2477
.addReg(BaseReg, RegState::Kill)
2478
.add(predOps(Pred, PredReg))
2479
.add(condCodeOp())
2480
.setMIFlags(MIFlags);
2481
return;
2482
}
2483
2484
bool isSub = NumBytes < 0;
2485
if (isSub) NumBytes = -NumBytes;
2486
2487
while (NumBytes) {
2488
unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2489
unsigned ThisVal = NumBytes & llvm::rotr<uint32_t>(0xFF, RotAmt);
2490
assert(ThisVal && "Didn't extract field correctly");
2491
2492
// We will handle these bits from offset, clear them.
2493
NumBytes &= ~ThisVal;
2494
2495
assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2496
2497
// Build the new ADD / SUB.
2498
unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2499
BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2500
.addReg(BaseReg, RegState::Kill)
2501
.addImm(ThisVal)
2502
.add(predOps(Pred, PredReg))
2503
.add(condCodeOp())
2504
.setMIFlags(MIFlags);
2505
BaseReg = DestReg;
2506
}
2507
}
2508
2509
bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2510
MachineFunction &MF, MachineInstr *MI,
2511
unsigned NumBytes) {
2512
// This optimisation potentially adds lots of load and store
2513
// micro-operations, it's only really a great benefit to code-size.
2514
if (!Subtarget.hasMinSize())
2515
return false;
2516
2517
// If only one register is pushed/popped, LLVM can use an LDR/STR
2518
// instead. We can't modify those so make sure we're dealing with an
2519
// instruction we understand.
2520
bool IsPop = isPopOpcode(MI->getOpcode());
2521
bool IsPush = isPushOpcode(MI->getOpcode());
2522
if (!IsPush && !IsPop)
2523
return false;
2524
2525
bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2526
MI->getOpcode() == ARM::VLDMDIA_UPD;
2527
bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2528
MI->getOpcode() == ARM::tPOP ||
2529
MI->getOpcode() == ARM::tPOP_RET;
2530
2531
assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2532
MI->getOperand(1).getReg() == ARM::SP)) &&
2533
"trying to fold sp update into non-sp-updating push/pop");
2534
2535
// The VFP push & pop act on D-registers, so we can only fold an adjustment
2536
// by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2537
// if this is violated.
2538
if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2539
return false;
2540
2541
// ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2542
// pred) so the list starts at 4. Thumb1 starts after the predicate.
2543
int RegListIdx = IsT1PushPop ? 2 : 4;
2544
2545
// Calculate the space we'll need in terms of registers.
2546
unsigned RegsNeeded;
2547
const TargetRegisterClass *RegClass;
2548
if (IsVFPPushPop) {
2549
RegsNeeded = NumBytes / 8;
2550
RegClass = &ARM::DPRRegClass;
2551
} else {
2552
RegsNeeded = NumBytes / 4;
2553
RegClass = &ARM::GPRRegClass;
2554
}
2555
2556
// We're going to have to strip all list operands off before
2557
// re-adding them since the order matters, so save the existing ones
2558
// for later.
2559
SmallVector<MachineOperand, 4> RegList;
2560
2561
// We're also going to need the first register transferred by this
2562
// instruction, which won't necessarily be the first register in the list.
2563
unsigned FirstRegEnc = -1;
2564
2565
const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2566
for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2567
MachineOperand &MO = MI->getOperand(i);
2568
RegList.push_back(MO);
2569
2570
if (MO.isReg() && !MO.isImplicit() &&
2571
TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2572
FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2573
}
2574
2575
const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2576
2577
// Now try to find enough space in the reglist to allocate NumBytes.
2578
for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2579
--CurRegEnc) {
2580
unsigned CurReg = RegClass->getRegister(CurRegEnc);
2581
if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2582
continue;
2583
if (!IsPop) {
2584
// Pushing any register is completely harmless, mark the register involved
2585
// as undef since we don't care about its value and must not restore it
2586
// during stack unwinding.
2587
RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2588
false, false, true));
2589
--RegsNeeded;
2590
continue;
2591
}
2592
2593
// However, we can only pop an extra register if it's not live. For
2594
// registers live within the function we might clobber a return value
2595
// register; the other way a register can be live here is if it's
2596
// callee-saved.
2597
if (isCalleeSavedRegister(CurReg, CSRegs) ||
2598
MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2599
MachineBasicBlock::LQR_Dead) {
2600
// VFP pops don't allow holes in the register list, so any skip is fatal
2601
// for our transformation. GPR pops do, so we should just keep looking.
2602
if (IsVFPPushPop)
2603
return false;
2604
else
2605
continue;
2606
}
2607
2608
// Mark the unimportant registers as <def,dead> in the POP.
2609
RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2610
true));
2611
--RegsNeeded;
2612
}
2613
2614
if (RegsNeeded > 0)
2615
return false;
2616
2617
// Finally we know we can profitably perform the optimisation so go
2618
// ahead: strip all existing registers off and add them back again
2619
// in the right order.
2620
for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2621
MI->removeOperand(i);
2622
2623
// Add the complete list back in.
2624
MachineInstrBuilder MIB(MF, &*MI);
2625
for (const MachineOperand &MO : llvm::reverse(RegList))
2626
MIB.add(MO);
2627
2628
return true;
2629
}
2630
2631
bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2632
Register FrameReg, int &Offset,
2633
const ARMBaseInstrInfo &TII) {
2634
unsigned Opcode = MI.getOpcode();
2635
const MCInstrDesc &Desc = MI.getDesc();
2636
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2637
bool isSub = false;
2638
2639
// Memory operands in inline assembly always use AddrMode2.
2640
if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2641
AddrMode = ARMII::AddrMode2;
2642
2643
if (Opcode == ARM::ADDri) {
2644
Offset += MI.getOperand(FrameRegIdx+1).getImm();
2645
if (Offset == 0) {
2646
// Turn it into a move.
2647
MI.setDesc(TII.get(ARM::MOVr));
2648
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2649
MI.removeOperand(FrameRegIdx+1);
2650
Offset = 0;
2651
return true;
2652
} else if (Offset < 0) {
2653
Offset = -Offset;
2654
isSub = true;
2655
MI.setDesc(TII.get(ARM::SUBri));
2656
}
2657
2658
// Common case: small offset, fits into instruction.
2659
if (ARM_AM::getSOImmVal(Offset) != -1) {
2660
// Replace the FrameIndex with sp / fp
2661
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2662
MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2663
Offset = 0;
2664
return true;
2665
}
2666
2667
// Otherwise, pull as much of the immedidate into this ADDri/SUBri
2668
// as possible.
2669
unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2670
unsigned ThisImmVal = Offset & llvm::rotr<uint32_t>(0xFF, RotAmt);
2671
2672
// We will handle these bits from offset, clear them.
2673
Offset &= ~ThisImmVal;
2674
2675
// Get the properly encoded SOImmVal field.
2676
assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2677
"Bit extraction didn't work?");
2678
MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2679
} else {
2680
unsigned ImmIdx = 0;
2681
int InstrOffs = 0;
2682
unsigned NumBits = 0;
2683
unsigned Scale = 1;
2684
switch (AddrMode) {
2685
case ARMII::AddrMode_i12:
2686
ImmIdx = FrameRegIdx + 1;
2687
InstrOffs = MI.getOperand(ImmIdx).getImm();
2688
NumBits = 12;
2689
break;
2690
case ARMII::AddrMode2:
2691
ImmIdx = FrameRegIdx+2;
2692
InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2693
if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2694
InstrOffs *= -1;
2695
NumBits = 12;
2696
break;
2697
case ARMII::AddrMode3:
2698
ImmIdx = FrameRegIdx+2;
2699
InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2700
if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2701
InstrOffs *= -1;
2702
NumBits = 8;
2703
break;
2704
case ARMII::AddrMode4:
2705
case ARMII::AddrMode6:
2706
// Can't fold any offset even if it's zero.
2707
return false;
2708
case ARMII::AddrMode5:
2709
ImmIdx = FrameRegIdx+1;
2710
InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2711
if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2712
InstrOffs *= -1;
2713
NumBits = 8;
2714
Scale = 4;
2715
break;
2716
case ARMII::AddrMode5FP16:
2717
ImmIdx = FrameRegIdx+1;
2718
InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2719
if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2720
InstrOffs *= -1;
2721
NumBits = 8;
2722
Scale = 2;
2723
break;
2724
case ARMII::AddrModeT2_i7:
2725
case ARMII::AddrModeT2_i7s2:
2726
case ARMII::AddrModeT2_i7s4:
2727
ImmIdx = FrameRegIdx+1;
2728
InstrOffs = MI.getOperand(ImmIdx).getImm();
2729
NumBits = 7;
2730
Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2731
AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2732
break;
2733
default:
2734
llvm_unreachable("Unsupported addressing mode!");
2735
}
2736
2737
Offset += InstrOffs * Scale;
2738
assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2739
if (Offset < 0) {
2740
Offset = -Offset;
2741
isSub = true;
2742
}
2743
2744
// Attempt to fold address comp. if opcode has offset bits
2745
if (NumBits > 0) {
2746
// Common case: small offset, fits into instruction.
2747
MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2748
int ImmedOffset = Offset / Scale;
2749
unsigned Mask = (1 << NumBits) - 1;
2750
if ((unsigned)Offset <= Mask * Scale) {
2751
// Replace the FrameIndex with sp
2752
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2753
// FIXME: When addrmode2 goes away, this will simplify (like the
2754
// T2 version), as the LDR.i12 versions don't need the encoding
2755
// tricks for the offset value.
2756
if (isSub) {
2757
if (AddrMode == ARMII::AddrMode_i12)
2758
ImmedOffset = -ImmedOffset;
2759
else
2760
ImmedOffset |= 1 << NumBits;
2761
}
2762
ImmOp.ChangeToImmediate(ImmedOffset);
2763
Offset = 0;
2764
return true;
2765
}
2766
2767
// Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2768
ImmedOffset = ImmedOffset & Mask;
2769
if (isSub) {
2770
if (AddrMode == ARMII::AddrMode_i12)
2771
ImmedOffset = -ImmedOffset;
2772
else
2773
ImmedOffset |= 1 << NumBits;
2774
}
2775
ImmOp.ChangeToImmediate(ImmedOffset);
2776
Offset &= ~(Mask*Scale);
2777
}
2778
}
2779
2780
Offset = (isSub) ? -Offset : Offset;
2781
return Offset == 0;
2782
}
2783
2784
/// analyzeCompare - For a comparison instruction, return the source registers
2785
/// in SrcReg and SrcReg2 if having two register operands, and the value it
2786
/// compares against in CmpValue. Return true if the comparison instruction
2787
/// can be analyzed.
2788
bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2789
Register &SrcReg2, int64_t &CmpMask,
2790
int64_t &CmpValue) const {
2791
switch (MI.getOpcode()) {
2792
default: break;
2793
case ARM::CMPri:
2794
case ARM::t2CMPri:
2795
case ARM::tCMPi8:
2796
SrcReg = MI.getOperand(0).getReg();
2797
SrcReg2 = 0;
2798
CmpMask = ~0;
2799
CmpValue = MI.getOperand(1).getImm();
2800
return true;
2801
case ARM::CMPrr:
2802
case ARM::t2CMPrr:
2803
case ARM::tCMPr:
2804
SrcReg = MI.getOperand(0).getReg();
2805
SrcReg2 = MI.getOperand(1).getReg();
2806
CmpMask = ~0;
2807
CmpValue = 0;
2808
return true;
2809
case ARM::TSTri:
2810
case ARM::t2TSTri:
2811
SrcReg = MI.getOperand(0).getReg();
2812
SrcReg2 = 0;
2813
CmpMask = MI.getOperand(1).getImm();
2814
CmpValue = 0;
2815
return true;
2816
}
2817
2818
return false;
2819
}
2820
2821
/// isSuitableForMask - Identify a suitable 'and' instruction that
2822
/// operates on the given source register and applies the same mask
2823
/// as a 'tst' instruction. Provide a limited look-through for copies.
2824
/// When successful, MI will hold the found instruction.
2825
static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2826
int CmpMask, bool CommonUse) {
2827
switch (MI->getOpcode()) {
2828
case ARM::ANDri:
2829
case ARM::t2ANDri:
2830
if (CmpMask != MI->getOperand(2).getImm())
2831
return false;
2832
if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2833
return true;
2834
break;
2835
}
2836
2837
return false;
2838
}
2839
2840
/// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2841
/// the condition code if we modify the instructions such that flags are
2842
/// set by ADD(a,b,X).
2843
inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2844
switch (CC) {
2845
default: return ARMCC::AL;
2846
case ARMCC::HS: return ARMCC::LO;
2847
case ARMCC::LO: return ARMCC::HS;
2848
case ARMCC::VS: return ARMCC::VS;
2849
case ARMCC::VC: return ARMCC::VC;
2850
}
2851
}
2852
2853
/// isRedundantFlagInstr - check whether the first instruction, whose only
2854
/// purpose is to update flags, can be made redundant.
2855
/// CMPrr can be made redundant by SUBrr if the operands are the same.
2856
/// CMPri can be made redundant by SUBri if the operands are the same.
2857
/// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2858
/// This function can be extended later on.
2859
inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2860
Register SrcReg, Register SrcReg2,
2861
int64_t ImmValue,
2862
const MachineInstr *OI,
2863
bool &IsThumb1) {
2864
if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2865
(OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2866
((OI->getOperand(1).getReg() == SrcReg &&
2867
OI->getOperand(2).getReg() == SrcReg2) ||
2868
(OI->getOperand(1).getReg() == SrcReg2 &&
2869
OI->getOperand(2).getReg() == SrcReg))) {
2870
IsThumb1 = false;
2871
return true;
2872
}
2873
2874
if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2875
((OI->getOperand(2).getReg() == SrcReg &&
2876
OI->getOperand(3).getReg() == SrcReg2) ||
2877
(OI->getOperand(2).getReg() == SrcReg2 &&
2878
OI->getOperand(3).getReg() == SrcReg))) {
2879
IsThumb1 = true;
2880
return true;
2881
}
2882
2883
if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2884
(OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2885
OI->getOperand(1).getReg() == SrcReg &&
2886
OI->getOperand(2).getImm() == ImmValue) {
2887
IsThumb1 = false;
2888
return true;
2889
}
2890
2891
if (CmpI->getOpcode() == ARM::tCMPi8 &&
2892
(OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2893
OI->getOperand(2).getReg() == SrcReg &&
2894
OI->getOperand(3).getImm() == ImmValue) {
2895
IsThumb1 = true;
2896
return true;
2897
}
2898
2899
if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2900
(OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2901
OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2902
OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2903
OI->getOperand(0).getReg() == SrcReg &&
2904
OI->getOperand(1).getReg() == SrcReg2) {
2905
IsThumb1 = false;
2906
return true;
2907
}
2908
2909
if (CmpI->getOpcode() == ARM::tCMPr &&
2910
(OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2911
OI->getOpcode() == ARM::tADDrr) &&
2912
OI->getOperand(0).getReg() == SrcReg &&
2913
OI->getOperand(2).getReg() == SrcReg2) {
2914
IsThumb1 = true;
2915
return true;
2916
}
2917
2918
return false;
2919
}
2920
2921
static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2922
switch (MI->getOpcode()) {
2923
default: return false;
2924
case ARM::tLSLri:
2925
case ARM::tLSRri:
2926
case ARM::tLSLrr:
2927
case ARM::tLSRrr:
2928
case ARM::tSUBrr:
2929
case ARM::tADDrr:
2930
case ARM::tADDi3:
2931
case ARM::tADDi8:
2932
case ARM::tSUBi3:
2933
case ARM::tSUBi8:
2934
case ARM::tMUL:
2935
case ARM::tADC:
2936
case ARM::tSBC:
2937
case ARM::tRSB:
2938
case ARM::tAND:
2939
case ARM::tORR:
2940
case ARM::tEOR:
2941
case ARM::tBIC:
2942
case ARM::tMVN:
2943
case ARM::tASRri:
2944
case ARM::tASRrr:
2945
case ARM::tROR:
2946
IsThumb1 = true;
2947
[[fallthrough]];
2948
case ARM::RSBrr:
2949
case ARM::RSBri:
2950
case ARM::RSCrr:
2951
case ARM::RSCri:
2952
case ARM::ADDrr:
2953
case ARM::ADDri:
2954
case ARM::ADCrr:
2955
case ARM::ADCri:
2956
case ARM::SUBrr:
2957
case ARM::SUBri:
2958
case ARM::SBCrr:
2959
case ARM::SBCri:
2960
case ARM::t2RSBri:
2961
case ARM::t2ADDrr:
2962
case ARM::t2ADDri:
2963
case ARM::t2ADCrr:
2964
case ARM::t2ADCri:
2965
case ARM::t2SUBrr:
2966
case ARM::t2SUBri:
2967
case ARM::t2SBCrr:
2968
case ARM::t2SBCri:
2969
case ARM::ANDrr:
2970
case ARM::ANDri:
2971
case ARM::ANDrsr:
2972
case ARM::ANDrsi:
2973
case ARM::t2ANDrr:
2974
case ARM::t2ANDri:
2975
case ARM::t2ANDrs:
2976
case ARM::ORRrr:
2977
case ARM::ORRri:
2978
case ARM::ORRrsr:
2979
case ARM::ORRrsi:
2980
case ARM::t2ORRrr:
2981
case ARM::t2ORRri:
2982
case ARM::t2ORRrs:
2983
case ARM::EORrr:
2984
case ARM::EORri:
2985
case ARM::EORrsr:
2986
case ARM::EORrsi:
2987
case ARM::t2EORrr:
2988
case ARM::t2EORri:
2989
case ARM::t2EORrs:
2990
case ARM::BICri:
2991
case ARM::BICrr:
2992
case ARM::BICrsi:
2993
case ARM::BICrsr:
2994
case ARM::t2BICri:
2995
case ARM::t2BICrr:
2996
case ARM::t2BICrs:
2997
case ARM::t2LSRri:
2998
case ARM::t2LSRrr:
2999
case ARM::t2LSLri:
3000
case ARM::t2LSLrr:
3001
case ARM::MOVsr:
3002
case ARM::MOVsi:
3003
return true;
3004
}
3005
}
3006
3007
/// optimizeCompareInstr - Convert the instruction supplying the argument to the
3008
/// comparison into one that sets the zero bit in the flags register;
3009
/// Remove a redundant Compare instruction if an earlier instruction can set the
3010
/// flags in the same way as Compare.
3011
/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
3012
/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
3013
/// condition code of instructions which use the flags.
3014
bool ARMBaseInstrInfo::optimizeCompareInstr(
3015
MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
3016
int64_t CmpValue, const MachineRegisterInfo *MRI) const {
3017
// Get the unique definition of SrcReg.
3018
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3019
if (!MI) return false;
3020
3021
// Masked compares sometimes use the same register as the corresponding 'and'.
3022
if (CmpMask != ~0) {
3023
if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
3024
MI = nullptr;
3025
for (MachineRegisterInfo::use_instr_iterator
3026
UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
3027
UI != UE; ++UI) {
3028
if (UI->getParent() != CmpInstr.getParent())
3029
continue;
3030
MachineInstr *PotentialAND = &*UI;
3031
if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
3032
isPredicated(*PotentialAND))
3033
continue;
3034
MI = PotentialAND;
3035
break;
3036
}
3037
if (!MI) return false;
3038
}
3039
}
3040
3041
// Get ready to iterate backward from CmpInstr.
3042
MachineBasicBlock::iterator I = CmpInstr, E = MI,
3043
B = CmpInstr.getParent()->begin();
3044
3045
// Early exit if CmpInstr is at the beginning of the BB.
3046
if (I == B) return false;
3047
3048
// There are two possible candidates which can be changed to set CPSR:
3049
// One is MI, the other is a SUB or ADD instruction.
3050
// For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3051
// ADDr[ri](r1, r2, X).
3052
// For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3053
MachineInstr *SubAdd = nullptr;
3054
if (SrcReg2 != 0)
3055
// MI is not a candidate for CMPrr.
3056
MI = nullptr;
3057
else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3058
// Conservatively refuse to convert an instruction which isn't in the same
3059
// BB as the comparison.
3060
// For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3061
// Thus we cannot return here.
3062
if (CmpInstr.getOpcode() == ARM::CMPri ||
3063
CmpInstr.getOpcode() == ARM::t2CMPri ||
3064
CmpInstr.getOpcode() == ARM::tCMPi8)
3065
MI = nullptr;
3066
else
3067
return false;
3068
}
3069
3070
bool IsThumb1 = false;
3071
if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3072
return false;
3073
3074
// We also want to do this peephole for cases like this: if (a*b == 0),
3075
// and optimise away the CMP instruction from the generated code sequence:
3076
// MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3077
// resulting from the select instruction, but these MOVS instructions for
3078
// Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3079
// However, if we only have MOVS instructions in between the CMP and the
3080
// other instruction (the MULS in this example), then the CPSR is dead so we
3081
// can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3082
// reordering and then continue the analysis hoping we can eliminate the
3083
// CMP. This peephole works on the vregs, so is still in SSA form. As a
3084
// consequence, the movs won't redefine/kill the MUL operands which would
3085
// make this reordering illegal.
3086
const TargetRegisterInfo *TRI = &getRegisterInfo();
3087
if (MI && IsThumb1) {
3088
--I;
3089
if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3090
bool CanReorder = true;
3091
for (; I != E; --I) {
3092
if (I->getOpcode() != ARM::tMOVi8) {
3093
CanReorder = false;
3094
break;
3095
}
3096
}
3097
if (CanReorder) {
3098
MI = MI->removeFromParent();
3099
E = CmpInstr;
3100
CmpInstr.getParent()->insert(E, MI);
3101
}
3102
}
3103
I = CmpInstr;
3104
E = MI;
3105
}
3106
3107
// Check that CPSR isn't set between the comparison instruction and the one we
3108
// want to change. At the same time, search for SubAdd.
3109
bool SubAddIsThumb1 = false;
3110
do {
3111
const MachineInstr &Instr = *--I;
3112
3113
// Check whether CmpInstr can be made redundant by the current instruction.
3114
if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3115
SubAddIsThumb1)) {
3116
SubAdd = &*I;
3117
break;
3118
}
3119
3120
// Allow E (which was initially MI) to be SubAdd but do not search before E.
3121
if (I == E)
3122
break;
3123
3124
if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3125
Instr.readsRegister(ARM::CPSR, TRI))
3126
// This instruction modifies or uses CPSR after the one we want to
3127
// change. We can't do this transformation.
3128
return false;
3129
3130
if (I == B) {
3131
// In some cases, we scan the use-list of an instruction for an AND;
3132
// that AND is in the same BB, but may not be scheduled before the
3133
// corresponding TST. In that case, bail out.
3134
//
3135
// FIXME: We could try to reschedule the AND.
3136
return false;
3137
}
3138
} while (true);
3139
3140
// Return false if no candidates exist.
3141
if (!MI && !SubAdd)
3142
return false;
3143
3144
// If we found a SubAdd, use it as it will be closer to the CMP
3145
if (SubAdd) {
3146
MI = SubAdd;
3147
IsThumb1 = SubAddIsThumb1;
3148
}
3149
3150
// We can't use a predicated instruction - it doesn't always write the flags.
3151
if (isPredicated(*MI))
3152
return false;
3153
3154
// Scan forward for the use of CPSR
3155
// When checking against MI: if it's a conditional code that requires
3156
// checking of the V bit or C bit, then this is not safe to do.
3157
// It is safe to remove CmpInstr if CPSR is redefined or killed.
3158
// If we are done with the basic block, we need to check whether CPSR is
3159
// live-out.
3160
SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3161
OperandsToUpdate;
3162
bool isSafe = false;
3163
I = CmpInstr;
3164
E = CmpInstr.getParent()->end();
3165
while (!isSafe && ++I != E) {
3166
const MachineInstr &Instr = *I;
3167
for (unsigned IO = 0, EO = Instr.getNumOperands();
3168
!isSafe && IO != EO; ++IO) {
3169
const MachineOperand &MO = Instr.getOperand(IO);
3170
if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3171
isSafe = true;
3172
break;
3173
}
3174
if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3175
continue;
3176
if (MO.isDef()) {
3177
isSafe = true;
3178
break;
3179
}
3180
// Condition code is after the operand before CPSR except for VSELs.
3181
ARMCC::CondCodes CC;
3182
bool IsInstrVSel = true;
3183
switch (Instr.getOpcode()) {
3184
default:
3185
IsInstrVSel = false;
3186
CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3187
break;
3188
case ARM::VSELEQD:
3189
case ARM::VSELEQS:
3190
case ARM::VSELEQH:
3191
CC = ARMCC::EQ;
3192
break;
3193
case ARM::VSELGTD:
3194
case ARM::VSELGTS:
3195
case ARM::VSELGTH:
3196
CC = ARMCC::GT;
3197
break;
3198
case ARM::VSELGED:
3199
case ARM::VSELGES:
3200
case ARM::VSELGEH:
3201
CC = ARMCC::GE;
3202
break;
3203
case ARM::VSELVSD:
3204
case ARM::VSELVSS:
3205
case ARM::VSELVSH:
3206
CC = ARMCC::VS;
3207
break;
3208
}
3209
3210
if (SubAdd) {
3211
// If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3212
// on CMP needs to be updated to be based on SUB.
3213
// If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3214
// needs to be modified.
3215
// Push the condition code operands to OperandsToUpdate.
3216
// If it is safe to remove CmpInstr, the condition code of these
3217
// operands will be modified.
3218
unsigned Opc = SubAdd->getOpcode();
3219
bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3220
Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3221
Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3222
Opc == ARM::tSUBi8;
3223
unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3224
if (!IsSub ||
3225
(SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3226
SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3227
// VSel doesn't support condition code update.
3228
if (IsInstrVSel)
3229
return false;
3230
// Ensure we can swap the condition.
3231
ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3232
if (NewCC == ARMCC::AL)
3233
return false;
3234
OperandsToUpdate.push_back(
3235
std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3236
}
3237
} else {
3238
// No SubAdd, so this is x = <op> y, z; cmp x, 0.
3239
switch (CC) {
3240
case ARMCC::EQ: // Z
3241
case ARMCC::NE: // Z
3242
case ARMCC::MI: // N
3243
case ARMCC::PL: // N
3244
case ARMCC::AL: // none
3245
// CPSR can be used multiple times, we should continue.
3246
break;
3247
case ARMCC::HS: // C
3248
case ARMCC::LO: // C
3249
case ARMCC::VS: // V
3250
case ARMCC::VC: // V
3251
case ARMCC::HI: // C Z
3252
case ARMCC::LS: // C Z
3253
case ARMCC::GE: // N V
3254
case ARMCC::LT: // N V
3255
case ARMCC::GT: // Z N V
3256
case ARMCC::LE: // Z N V
3257
// The instruction uses the V bit or C bit which is not safe.
3258
return false;
3259
}
3260
}
3261
}
3262
}
3263
3264
// If CPSR is not killed nor re-defined, we should check whether it is
3265
// live-out. If it is live-out, do not optimize.
3266
if (!isSafe) {
3267
MachineBasicBlock *MBB = CmpInstr.getParent();
3268
for (MachineBasicBlock *Succ : MBB->successors())
3269
if (Succ->isLiveIn(ARM::CPSR))
3270
return false;
3271
}
3272
3273
// Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3274
// set CPSR so this is represented as an explicit output)
3275
if (!IsThumb1) {
3276
unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1;
3277
MI->getOperand(CPSRRegNum).setReg(ARM::CPSR);
3278
MI->getOperand(CPSRRegNum).setIsDef(true);
3279
}
3280
assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3281
CmpInstr.eraseFromParent();
3282
3283
// Modify the condition code of operands in OperandsToUpdate.
3284
// Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3285
// be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3286
for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3287
OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3288
3289
MI->clearRegisterDeads(ARM::CPSR);
3290
3291
return true;
3292
}
3293
3294
bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3295
// Do not sink MI if it might be used to optimize a redundant compare.
3296
// We heuristically only look at the instruction immediately following MI to
3297
// avoid potentially searching the entire basic block.
3298
if (isPredicated(MI))
3299
return true;
3300
MachineBasicBlock::const_iterator Next = &MI;
3301
++Next;
3302
Register SrcReg, SrcReg2;
3303
int64_t CmpMask, CmpValue;
3304
bool IsThumb1;
3305
if (Next != MI.getParent()->end() &&
3306
analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3307
isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3308
return false;
3309
return true;
3310
}
3311
3312
bool ARMBaseInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3313
Register Reg,
3314
MachineRegisterInfo *MRI) const {
3315
// Fold large immediates into add, sub, or, xor.
3316
unsigned DefOpc = DefMI.getOpcode();
3317
if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm &&
3318
DefOpc != ARM::tMOVi32imm)
3319
return false;
3320
if (!DefMI.getOperand(1).isImm())
3321
// Could be t2MOVi32imm @xx
3322
return false;
3323
3324
if (!MRI->hasOneNonDBGUse(Reg))
3325
return false;
3326
3327
const MCInstrDesc &DefMCID = DefMI.getDesc();
3328
if (DefMCID.hasOptionalDef()) {
3329
unsigned NumOps = DefMCID.getNumOperands();
3330
const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3331
if (MO.getReg() == ARM::CPSR && !MO.isDead())
3332
// If DefMI defines CPSR and it is not dead, it's obviously not safe
3333
// to delete DefMI.
3334
return false;
3335
}
3336
3337
const MCInstrDesc &UseMCID = UseMI.getDesc();
3338
if (UseMCID.hasOptionalDef()) {
3339
unsigned NumOps = UseMCID.getNumOperands();
3340
if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3341
// If the instruction sets the flag, do not attempt this optimization
3342
// since it may change the semantics of the code.
3343
return false;
3344
}
3345
3346
unsigned UseOpc = UseMI.getOpcode();
3347
unsigned NewUseOpc = 0;
3348
uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3349
uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3350
bool Commute = false;
3351
switch (UseOpc) {
3352
default: return false;
3353
case ARM::SUBrr:
3354
case ARM::ADDrr:
3355
case ARM::ORRrr:
3356
case ARM::EORrr:
3357
case ARM::t2SUBrr:
3358
case ARM::t2ADDrr:
3359
case ARM::t2ORRrr:
3360
case ARM::t2EORrr: {
3361
Commute = UseMI.getOperand(2).getReg() != Reg;
3362
switch (UseOpc) {
3363
default: break;
3364
case ARM::ADDrr:
3365
case ARM::SUBrr:
3366
if (UseOpc == ARM::SUBrr && Commute)
3367
return false;
3368
3369
// ADD/SUB are special because they're essentially the same operation, so
3370
// we can handle a larger range of immediates.
3371
if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3372
NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3373
else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3374
ImmVal = -ImmVal;
3375
NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3376
} else
3377
return false;
3378
SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3379
SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3380
break;
3381
case ARM::ORRrr:
3382
case ARM::EORrr:
3383
if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3384
return false;
3385
SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3386
SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3387
switch (UseOpc) {
3388
default: break;
3389
case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3390
case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3391
}
3392
break;
3393
case ARM::t2ADDrr:
3394
case ARM::t2SUBrr: {
3395
if (UseOpc == ARM::t2SUBrr && Commute)
3396
return false;
3397
3398
// ADD/SUB are special because they're essentially the same operation, so
3399
// we can handle a larger range of immediates.
3400
const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3401
const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3402
const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3403
if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3404
NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3405
else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3406
ImmVal = -ImmVal;
3407
NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3408
} else
3409
return false;
3410
SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3411
SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3412
break;
3413
}
3414
case ARM::t2ORRrr:
3415
case ARM::t2EORrr:
3416
if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3417
return false;
3418
SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3419
SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3420
switch (UseOpc) {
3421
default: break;
3422
case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3423
case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3424
}
3425
break;
3426
}
3427
}
3428
}
3429
3430
unsigned OpIdx = Commute ? 2 : 1;
3431
Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3432
bool isKill = UseMI.getOperand(OpIdx).isKill();
3433
const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3434
Register NewReg = MRI->createVirtualRegister(TRC);
3435
BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3436
NewReg)
3437
.addReg(Reg1, getKillRegState(isKill))
3438
.addImm(SOImmValV1)
3439
.add(predOps(ARMCC::AL))
3440
.add(condCodeOp());
3441
UseMI.setDesc(get(NewUseOpc));
3442
UseMI.getOperand(1).setReg(NewReg);
3443
UseMI.getOperand(1).setIsKill();
3444
UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3445
DefMI.eraseFromParent();
3446
// FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3447
// Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3448
// Then the below code will not be needed, as the input/output register
3449
// classes will be rgpr or gprSP.
3450
// For now, we fix the UseMI operand explicitly here:
3451
switch(NewUseOpc){
3452
case ARM::t2ADDspImm:
3453
case ARM::t2SUBspImm:
3454
case ARM::t2ADDri:
3455
case ARM::t2SUBri:
3456
MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3457
}
3458
return true;
3459
}
3460
3461
static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3462
const MachineInstr &MI) {
3463
switch (MI.getOpcode()) {
3464
default: {
3465
const MCInstrDesc &Desc = MI.getDesc();
3466
int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3467
assert(UOps >= 0 && "bad # UOps");
3468
return UOps;
3469
}
3470
3471
case ARM::LDRrs:
3472
case ARM::LDRBrs:
3473
case ARM::STRrs:
3474
case ARM::STRBrs: {
3475
unsigned ShOpVal = MI.getOperand(3).getImm();
3476
bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3477
unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3478
if (!isSub &&
3479
(ShImm == 0 ||
3480
((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3481
ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3482
return 1;
3483
return 2;
3484
}
3485
3486
case ARM::LDRH:
3487
case ARM::STRH: {
3488
if (!MI.getOperand(2).getReg())
3489
return 1;
3490
3491
unsigned ShOpVal = MI.getOperand(3).getImm();
3492
bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3493
unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3494
if (!isSub &&
3495
(ShImm == 0 ||
3496
((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3497
ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3498
return 1;
3499
return 2;
3500
}
3501
3502
case ARM::LDRSB:
3503
case ARM::LDRSH:
3504
return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3505
3506
case ARM::LDRSB_POST:
3507
case ARM::LDRSH_POST: {
3508
Register Rt = MI.getOperand(0).getReg();
3509
Register Rm = MI.getOperand(3).getReg();
3510
return (Rt == Rm) ? 4 : 3;
3511
}
3512
3513
case ARM::LDR_PRE_REG:
3514
case ARM::LDRB_PRE_REG: {
3515
Register Rt = MI.getOperand(0).getReg();
3516
Register Rm = MI.getOperand(3).getReg();
3517
if (Rt == Rm)
3518
return 3;
3519
unsigned ShOpVal = MI.getOperand(4).getImm();
3520
bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3521
unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3522
if (!isSub &&
3523
(ShImm == 0 ||
3524
((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3525
ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3526
return 2;
3527
return 3;
3528
}
3529
3530
case ARM::STR_PRE_REG:
3531
case ARM::STRB_PRE_REG: {
3532
unsigned ShOpVal = MI.getOperand(4).getImm();
3533
bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3534
unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3535
if (!isSub &&
3536
(ShImm == 0 ||
3537
((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3538
ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3539
return 2;
3540
return 3;
3541
}
3542
3543
case ARM::LDRH_PRE:
3544
case ARM::STRH_PRE: {
3545
Register Rt = MI.getOperand(0).getReg();
3546
Register Rm = MI.getOperand(3).getReg();
3547
if (!Rm)
3548
return 2;
3549
if (Rt == Rm)
3550
return 3;
3551
return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3552
}
3553
3554
case ARM::LDR_POST_REG:
3555
case ARM::LDRB_POST_REG:
3556
case ARM::LDRH_POST: {
3557
Register Rt = MI.getOperand(0).getReg();
3558
Register Rm = MI.getOperand(3).getReg();
3559
return (Rt == Rm) ? 3 : 2;
3560
}
3561
3562
case ARM::LDR_PRE_IMM:
3563
case ARM::LDRB_PRE_IMM:
3564
case ARM::LDR_POST_IMM:
3565
case ARM::LDRB_POST_IMM:
3566
case ARM::STRB_POST_IMM:
3567
case ARM::STRB_POST_REG:
3568
case ARM::STRB_PRE_IMM:
3569
case ARM::STRH_POST:
3570
case ARM::STR_POST_IMM:
3571
case ARM::STR_POST_REG:
3572
case ARM::STR_PRE_IMM:
3573
return 2;
3574
3575
case ARM::LDRSB_PRE:
3576
case ARM::LDRSH_PRE: {
3577
Register Rm = MI.getOperand(3).getReg();
3578
if (Rm == 0)
3579
return 3;
3580
Register Rt = MI.getOperand(0).getReg();
3581
if (Rt == Rm)
3582
return 4;
3583
unsigned ShOpVal = MI.getOperand(4).getImm();
3584
bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3585
unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3586
if (!isSub &&
3587
(ShImm == 0 ||
3588
((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3589
ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3590
return 3;
3591
return 4;
3592
}
3593
3594
case ARM::LDRD: {
3595
Register Rt = MI.getOperand(0).getReg();
3596
Register Rn = MI.getOperand(2).getReg();
3597
Register Rm = MI.getOperand(3).getReg();
3598
if (Rm)
3599
return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3600
: 3;
3601
return (Rt == Rn) ? 3 : 2;
3602
}
3603
3604
case ARM::STRD: {
3605
Register Rm = MI.getOperand(3).getReg();
3606
if (Rm)
3607
return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3608
: 3;
3609
return 2;
3610
}
3611
3612
case ARM::LDRD_POST:
3613
case ARM::t2LDRD_POST:
3614
return 3;
3615
3616
case ARM::STRD_POST:
3617
case ARM::t2STRD_POST:
3618
return 4;
3619
3620
case ARM::LDRD_PRE: {
3621
Register Rt = MI.getOperand(0).getReg();
3622
Register Rn = MI.getOperand(3).getReg();
3623
Register Rm = MI.getOperand(4).getReg();
3624
if (Rm)
3625
return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3626
: 4;
3627
return (Rt == Rn) ? 4 : 3;
3628
}
3629
3630
case ARM::t2LDRD_PRE: {
3631
Register Rt = MI.getOperand(0).getReg();
3632
Register Rn = MI.getOperand(3).getReg();
3633
return (Rt == Rn) ? 4 : 3;
3634
}
3635
3636
case ARM::STRD_PRE: {
3637
Register Rm = MI.getOperand(4).getReg();
3638
if (Rm)
3639
return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3640
: 4;
3641
return 3;
3642
}
3643
3644
case ARM::t2STRD_PRE:
3645
return 3;
3646
3647
case ARM::t2LDR_POST:
3648
case ARM::t2LDRB_POST:
3649
case ARM::t2LDRB_PRE:
3650
case ARM::t2LDRSBi12:
3651
case ARM::t2LDRSBi8:
3652
case ARM::t2LDRSBpci:
3653
case ARM::t2LDRSBs:
3654
case ARM::t2LDRH_POST:
3655
case ARM::t2LDRH_PRE:
3656
case ARM::t2LDRSBT:
3657
case ARM::t2LDRSB_POST:
3658
case ARM::t2LDRSB_PRE:
3659
case ARM::t2LDRSH_POST:
3660
case ARM::t2LDRSH_PRE:
3661
case ARM::t2LDRSHi12:
3662
case ARM::t2LDRSHi8:
3663
case ARM::t2LDRSHpci:
3664
case ARM::t2LDRSHs:
3665
return 2;
3666
3667
case ARM::t2LDRDi8: {
3668
Register Rt = MI.getOperand(0).getReg();
3669
Register Rn = MI.getOperand(2).getReg();
3670
return (Rt == Rn) ? 3 : 2;
3671
}
3672
3673
case ARM::t2STRB_POST:
3674
case ARM::t2STRB_PRE:
3675
case ARM::t2STRBs:
3676
case ARM::t2STRDi8:
3677
case ARM::t2STRH_POST:
3678
case ARM::t2STRH_PRE:
3679
case ARM::t2STRHs:
3680
case ARM::t2STR_POST:
3681
case ARM::t2STR_PRE:
3682
case ARM::t2STRs:
3683
return 2;
3684
}
3685
}
3686
3687
// Return the number of 32-bit words loaded by LDM or stored by STM. If this
3688
// can't be easily determined return 0 (missing MachineMemOperand).
3689
//
3690
// FIXME: The current MachineInstr design does not support relying on machine
3691
// mem operands to determine the width of a memory access. Instead, we expect
3692
// the target to provide this information based on the instruction opcode and
3693
// operands. However, using MachineMemOperand is the best solution now for
3694
// two reasons:
3695
//
3696
// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3697
// operands. This is much more dangerous than using the MachineMemOperand
3698
// sizes because CodeGen passes can insert/remove optional machine operands. In
3699
// fact, it's totally incorrect for preRA passes and appears to be wrong for
3700
// postRA passes as well.
3701
//
3702
// 2) getNumLDMAddresses is only used by the scheduling machine model and any
3703
// machine model that calls this should handle the unknown (zero size) case.
3704
//
3705
// Long term, we should require a target hook that verifies MachineMemOperand
3706
// sizes during MC lowering. That target hook should be local to MC lowering
3707
// because we can't ensure that it is aware of other MI forms. Doing this will
3708
// ensure that MachineMemOperands are correctly propagated through all passes.
3709
unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3710
unsigned Size = 0;
3711
for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3712
E = MI.memoperands_end();
3713
I != E; ++I) {
3714
Size += (*I)->getSize().getValue();
3715
}
3716
// FIXME: The scheduler currently can't handle values larger than 16. But
3717
// the values can actually go up to 32 for floating-point load/store
3718
// multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3719
// operations isn't right; we could end up with "extra" memory operands for
3720
// various reasons, like tail merge merging two memory operations.
3721
return std::min(Size / 4, 16U);
3722
}
3723
3724
static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3725
unsigned NumRegs) {
3726
unsigned UOps = 1 + NumRegs; // 1 for address computation.
3727
switch (Opc) {
3728
default:
3729
break;
3730
case ARM::VLDMDIA_UPD:
3731
case ARM::VLDMDDB_UPD:
3732
case ARM::VLDMSIA_UPD:
3733
case ARM::VLDMSDB_UPD:
3734
case ARM::VSTMDIA_UPD:
3735
case ARM::VSTMDDB_UPD:
3736
case ARM::VSTMSIA_UPD:
3737
case ARM::VSTMSDB_UPD:
3738
case ARM::LDMIA_UPD:
3739
case ARM::LDMDA_UPD:
3740
case ARM::LDMDB_UPD:
3741
case ARM::LDMIB_UPD:
3742
case ARM::STMIA_UPD:
3743
case ARM::STMDA_UPD:
3744
case ARM::STMDB_UPD:
3745
case ARM::STMIB_UPD:
3746
case ARM::tLDMIA_UPD:
3747
case ARM::tSTMIA_UPD:
3748
case ARM::t2LDMIA_UPD:
3749
case ARM::t2LDMDB_UPD:
3750
case ARM::t2STMIA_UPD:
3751
case ARM::t2STMDB_UPD:
3752
++UOps; // One for base register writeback.
3753
break;
3754
case ARM::LDMIA_RET:
3755
case ARM::tPOP_RET:
3756
case ARM::t2LDMIA_RET:
3757
UOps += 2; // One for base reg wb, one for write to pc.
3758
break;
3759
}
3760
return UOps;
3761
}
3762
3763
unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3764
const MachineInstr &MI) const {
3765
if (!ItinData || ItinData->isEmpty())
3766
return 1;
3767
3768
const MCInstrDesc &Desc = MI.getDesc();
3769
unsigned Class = Desc.getSchedClass();
3770
int ItinUOps = ItinData->getNumMicroOps(Class);
3771
if (ItinUOps >= 0) {
3772
if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3773
return getNumMicroOpsSwiftLdSt(ItinData, MI);
3774
3775
return ItinUOps;
3776
}
3777
3778
unsigned Opc = MI.getOpcode();
3779
switch (Opc) {
3780
default:
3781
llvm_unreachable("Unexpected multi-uops instruction!");
3782
case ARM::VLDMQIA:
3783
case ARM::VSTMQIA:
3784
return 2;
3785
3786
// The number of uOps for load / store multiple are determined by the number
3787
// registers.
3788
//
3789
// On Cortex-A8, each pair of register loads / stores can be scheduled on the
3790
// same cycle. The scheduling for the first load / store must be done
3791
// separately by assuming the address is not 64-bit aligned.
3792
//
3793
// On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3794
// is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3795
// load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3796
case ARM::VLDMDIA:
3797
case ARM::VLDMDIA_UPD:
3798
case ARM::VLDMDDB_UPD:
3799
case ARM::VLDMSIA:
3800
case ARM::VLDMSIA_UPD:
3801
case ARM::VLDMSDB_UPD:
3802
case ARM::VSTMDIA:
3803
case ARM::VSTMDIA_UPD:
3804
case ARM::VSTMDDB_UPD:
3805
case ARM::VSTMSIA:
3806
case ARM::VSTMSIA_UPD:
3807
case ARM::VSTMSDB_UPD: {
3808
unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3809
return (NumRegs / 2) + (NumRegs % 2) + 1;
3810
}
3811
3812
case ARM::LDMIA_RET:
3813
case ARM::LDMIA:
3814
case ARM::LDMDA:
3815
case ARM::LDMDB:
3816
case ARM::LDMIB:
3817
case ARM::LDMIA_UPD:
3818
case ARM::LDMDA_UPD:
3819
case ARM::LDMDB_UPD:
3820
case ARM::LDMIB_UPD:
3821
case ARM::STMIA:
3822
case ARM::STMDA:
3823
case ARM::STMDB:
3824
case ARM::STMIB:
3825
case ARM::STMIA_UPD:
3826
case ARM::STMDA_UPD:
3827
case ARM::STMDB_UPD:
3828
case ARM::STMIB_UPD:
3829
case ARM::tLDMIA:
3830
case ARM::tLDMIA_UPD:
3831
case ARM::tSTMIA_UPD:
3832
case ARM::tPOP_RET:
3833
case ARM::tPOP:
3834
case ARM::tPUSH:
3835
case ARM::t2LDMIA_RET:
3836
case ARM::t2LDMIA:
3837
case ARM::t2LDMDB:
3838
case ARM::t2LDMIA_UPD:
3839
case ARM::t2LDMDB_UPD:
3840
case ARM::t2STMIA:
3841
case ARM::t2STMDB:
3842
case ARM::t2STMIA_UPD:
3843
case ARM::t2STMDB_UPD: {
3844
unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3845
switch (Subtarget.getLdStMultipleTiming()) {
3846
case ARMSubtarget::SingleIssuePlusExtras:
3847
return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3848
case ARMSubtarget::SingleIssue:
3849
// Assume the worst.
3850
return NumRegs;
3851
case ARMSubtarget::DoubleIssue: {
3852
if (NumRegs < 4)
3853
return 2;
3854
// 4 registers would be issued: 2, 2.
3855
// 5 registers would be issued: 2, 2, 1.
3856
unsigned UOps = (NumRegs / 2);
3857
if (NumRegs % 2)
3858
++UOps;
3859
return UOps;
3860
}
3861
case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3862
unsigned UOps = (NumRegs / 2);
3863
// If there are odd number of registers or if it's not 64-bit aligned,
3864
// then it takes an extra AGU (Address Generation Unit) cycle.
3865
if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3866
(*MI.memoperands_begin())->getAlign() < Align(8))
3867
++UOps;
3868
return UOps;
3869
}
3870
}
3871
}
3872
}
3873
llvm_unreachable("Didn't find the number of microops");
3874
}
3875
3876
std::optional<unsigned>
3877
ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3878
const MCInstrDesc &DefMCID, unsigned DefClass,
3879
unsigned DefIdx, unsigned DefAlign) const {
3880
int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3881
if (RegNo <= 0)
3882
// Def is the address writeback.
3883
return ItinData->getOperandCycle(DefClass, DefIdx);
3884
3885
unsigned DefCycle;
3886
if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3887
// (regno / 2) + (regno % 2) + 1
3888
DefCycle = RegNo / 2 + 1;
3889
if (RegNo % 2)
3890
++DefCycle;
3891
} else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3892
DefCycle = RegNo;
3893
bool isSLoad = false;
3894
3895
switch (DefMCID.getOpcode()) {
3896
default: break;
3897
case ARM::VLDMSIA:
3898
case ARM::VLDMSIA_UPD:
3899
case ARM::VLDMSDB_UPD:
3900
isSLoad = true;
3901
break;
3902
}
3903
3904
// If there are odd number of 'S' registers or if it's not 64-bit aligned,
3905
// then it takes an extra cycle.
3906
if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3907
++DefCycle;
3908
} else {
3909
// Assume the worst.
3910
DefCycle = RegNo + 2;
3911
}
3912
3913
return DefCycle;
3914
}
3915
3916
std::optional<unsigned>
3917
ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3918
const MCInstrDesc &DefMCID, unsigned DefClass,
3919
unsigned DefIdx, unsigned DefAlign) const {
3920
int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3921
if (RegNo <= 0)
3922
// Def is the address writeback.
3923
return ItinData->getOperandCycle(DefClass, DefIdx);
3924
3925
unsigned DefCycle;
3926
if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3927
// 4 registers would be issued: 1, 2, 1.
3928
// 5 registers would be issued: 1, 2, 2.
3929
DefCycle = RegNo / 2;
3930
if (DefCycle < 1)
3931
DefCycle = 1;
3932
// Result latency is issue cycle + 2: E2.
3933
DefCycle += 2;
3934
} else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3935
DefCycle = (RegNo / 2);
3936
// If there are odd number of registers or if it's not 64-bit aligned,
3937
// then it takes an extra AGU (Address Generation Unit) cycle.
3938
if ((RegNo % 2) || DefAlign < 8)
3939
++DefCycle;
3940
// Result latency is AGU cycles + 2.
3941
DefCycle += 2;
3942
} else {
3943
// Assume the worst.
3944
DefCycle = RegNo + 2;
3945
}
3946
3947
return DefCycle;
3948
}
3949
3950
std::optional<unsigned>
3951
ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3952
const MCInstrDesc &UseMCID, unsigned UseClass,
3953
unsigned UseIdx, unsigned UseAlign) const {
3954
int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3955
if (RegNo <= 0)
3956
return ItinData->getOperandCycle(UseClass, UseIdx);
3957
3958
unsigned UseCycle;
3959
if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3960
// (regno / 2) + (regno % 2) + 1
3961
UseCycle = RegNo / 2 + 1;
3962
if (RegNo % 2)
3963
++UseCycle;
3964
} else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3965
UseCycle = RegNo;
3966
bool isSStore = false;
3967
3968
switch (UseMCID.getOpcode()) {
3969
default: break;
3970
case ARM::VSTMSIA:
3971
case ARM::VSTMSIA_UPD:
3972
case ARM::VSTMSDB_UPD:
3973
isSStore = true;
3974
break;
3975
}
3976
3977
// If there are odd number of 'S' registers or if it's not 64-bit aligned,
3978
// then it takes an extra cycle.
3979
if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3980
++UseCycle;
3981
} else {
3982
// Assume the worst.
3983
UseCycle = RegNo + 2;
3984
}
3985
3986
return UseCycle;
3987
}
3988
3989
std::optional<unsigned>
3990
ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3991
const MCInstrDesc &UseMCID, unsigned UseClass,
3992
unsigned UseIdx, unsigned UseAlign) const {
3993
int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3994
if (RegNo <= 0)
3995
return ItinData->getOperandCycle(UseClass, UseIdx);
3996
3997
unsigned UseCycle;
3998
if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3999
UseCycle = RegNo / 2;
4000
if (UseCycle < 2)
4001
UseCycle = 2;
4002
// Read in E3.
4003
UseCycle += 2;
4004
} else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
4005
UseCycle = (RegNo / 2);
4006
// If there are odd number of registers or if it's not 64-bit aligned,
4007
// then it takes an extra AGU (Address Generation Unit) cycle.
4008
if ((RegNo % 2) || UseAlign < 8)
4009
++UseCycle;
4010
} else {
4011
// Assume the worst.
4012
UseCycle = 1;
4013
}
4014
return UseCycle;
4015
}
4016
4017
std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
4018
const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID,
4019
unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID,
4020
unsigned UseIdx, unsigned UseAlign) const {
4021
unsigned DefClass = DefMCID.getSchedClass();
4022
unsigned UseClass = UseMCID.getSchedClass();
4023
4024
if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4025
return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4026
4027
// This may be a def / use of a variable_ops instruction, the operand
4028
// latency might be determinable dynamically. Let the target try to
4029
// figure it out.
4030
std::optional<unsigned> DefCycle;
4031
bool LdmBypass = false;
4032
switch (DefMCID.getOpcode()) {
4033
default:
4034
DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4035
break;
4036
4037
case ARM::VLDMDIA:
4038
case ARM::VLDMDIA_UPD:
4039
case ARM::VLDMDDB_UPD:
4040
case ARM::VLDMSIA:
4041
case ARM::VLDMSIA_UPD:
4042
case ARM::VLDMSDB_UPD:
4043
DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4044
break;
4045
4046
case ARM::LDMIA_RET:
4047
case ARM::LDMIA:
4048
case ARM::LDMDA:
4049
case ARM::LDMDB:
4050
case ARM::LDMIB:
4051
case ARM::LDMIA_UPD:
4052
case ARM::LDMDA_UPD:
4053
case ARM::LDMDB_UPD:
4054
case ARM::LDMIB_UPD:
4055
case ARM::tLDMIA:
4056
case ARM::tLDMIA_UPD:
4057
case ARM::tPUSH:
4058
case ARM::t2LDMIA_RET:
4059
case ARM::t2LDMIA:
4060
case ARM::t2LDMDB:
4061
case ARM::t2LDMIA_UPD:
4062
case ARM::t2LDMDB_UPD:
4063
LdmBypass = true;
4064
DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4065
break;
4066
}
4067
4068
if (!DefCycle)
4069
// We can't seem to determine the result latency of the def, assume it's 2.
4070
DefCycle = 2;
4071
4072
std::optional<unsigned> UseCycle;
4073
switch (UseMCID.getOpcode()) {
4074
default:
4075
UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4076
break;
4077
4078
case ARM::VSTMDIA:
4079
case ARM::VSTMDIA_UPD:
4080
case ARM::VSTMDDB_UPD:
4081
case ARM::VSTMSIA:
4082
case ARM::VSTMSIA_UPD:
4083
case ARM::VSTMSDB_UPD:
4084
UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4085
break;
4086
4087
case ARM::STMIA:
4088
case ARM::STMDA:
4089
case ARM::STMDB:
4090
case ARM::STMIB:
4091
case ARM::STMIA_UPD:
4092
case ARM::STMDA_UPD:
4093
case ARM::STMDB_UPD:
4094
case ARM::STMIB_UPD:
4095
case ARM::tSTMIA_UPD:
4096
case ARM::tPOP_RET:
4097
case ARM::tPOP:
4098
case ARM::t2STMIA:
4099
case ARM::t2STMDB:
4100
case ARM::t2STMIA_UPD:
4101
case ARM::t2STMDB_UPD:
4102
UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4103
break;
4104
}
4105
4106
if (!UseCycle)
4107
// Assume it's read in the first stage.
4108
UseCycle = 1;
4109
4110
if (UseCycle > *DefCycle + 1)
4111
return std::nullopt;
4112
4113
UseCycle = *DefCycle - *UseCycle + 1;
4114
if (UseCycle > 0u) {
4115
if (LdmBypass) {
4116
// It's a variable_ops instruction so we can't use DefIdx here. Just use
4117
// first def operand.
4118
if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4119
UseClass, UseIdx))
4120
UseCycle = *UseCycle - 1;
4121
} else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4122
UseClass, UseIdx)) {
4123
UseCycle = *UseCycle - 1;
4124
}
4125
}
4126
4127
return UseCycle;
4128
}
4129
4130
static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4131
const MachineInstr *MI, unsigned Reg,
4132
unsigned &DefIdx, unsigned &Dist) {
4133
Dist = 0;
4134
4135
MachineBasicBlock::const_iterator I = MI; ++I;
4136
MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4137
assert(II->isInsideBundle() && "Empty bundle?");
4138
4139
int Idx = -1;
4140
while (II->isInsideBundle()) {
4141
Idx = II->findRegisterDefOperandIdx(Reg, TRI, false, true);
4142
if (Idx != -1)
4143
break;
4144
--II;
4145
++Dist;
4146
}
4147
4148
assert(Idx != -1 && "Cannot find bundled definition!");
4149
DefIdx = Idx;
4150
return &*II;
4151
}
4152
4153
static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4154
const MachineInstr &MI, unsigned Reg,
4155
unsigned &UseIdx, unsigned &Dist) {
4156
Dist = 0;
4157
4158
MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4159
assert(II->isInsideBundle() && "Empty bundle?");
4160
MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4161
4162
// FIXME: This doesn't properly handle multiple uses.
4163
int Idx = -1;
4164
while (II != E && II->isInsideBundle()) {
4165
Idx = II->findRegisterUseOperandIdx(Reg, TRI, false);
4166
if (Idx != -1)
4167
break;
4168
if (II->getOpcode() != ARM::t2IT)
4169
++Dist;
4170
++II;
4171
}
4172
4173
if (Idx == -1) {
4174
Dist = 0;
4175
return nullptr;
4176
}
4177
4178
UseIdx = Idx;
4179
return &*II;
4180
}
4181
4182
/// Return the number of cycles to add to (or subtract from) the static
4183
/// itinerary based on the def opcode and alignment. The caller will ensure that
4184
/// adjusted latency is at least one cycle.
4185
static int adjustDefLatency(const ARMSubtarget &Subtarget,
4186
const MachineInstr &DefMI,
4187
const MCInstrDesc &DefMCID, unsigned DefAlign) {
4188
int Adjust = 0;
4189
if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4190
// FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4191
// variants are one cycle cheaper.
4192
switch (DefMCID.getOpcode()) {
4193
default: break;
4194
case ARM::LDRrs:
4195
case ARM::LDRBrs: {
4196
unsigned ShOpVal = DefMI.getOperand(3).getImm();
4197
unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4198
if (ShImm == 0 ||
4199
(ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4200
--Adjust;
4201
break;
4202
}
4203
case ARM::t2LDRs:
4204
case ARM::t2LDRBs:
4205
case ARM::t2LDRHs:
4206
case ARM::t2LDRSHs: {
4207
// Thumb2 mode: lsl only.
4208
unsigned ShAmt = DefMI.getOperand(3).getImm();
4209
if (ShAmt == 0 || ShAmt == 2)
4210
--Adjust;
4211
break;
4212
}
4213
}
4214
} else if (Subtarget.isSwift()) {
4215
// FIXME: Properly handle all of the latency adjustments for address
4216
// writeback.
4217
switch (DefMCID.getOpcode()) {
4218
default: break;
4219
case ARM::LDRrs:
4220
case ARM::LDRBrs: {
4221
unsigned ShOpVal = DefMI.getOperand(3).getImm();
4222
bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4223
unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4224
if (!isSub &&
4225
(ShImm == 0 ||
4226
((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4227
ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4228
Adjust -= 2;
4229
else if (!isSub &&
4230
ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4231
--Adjust;
4232
break;
4233
}
4234
case ARM::t2LDRs:
4235
case ARM::t2LDRBs:
4236
case ARM::t2LDRHs:
4237
case ARM::t2LDRSHs: {
4238
// Thumb2 mode: lsl only.
4239
unsigned ShAmt = DefMI.getOperand(3).getImm();
4240
if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4241
Adjust -= 2;
4242
break;
4243
}
4244
}
4245
}
4246
4247
if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4248
switch (DefMCID.getOpcode()) {
4249
default: break;
4250
case ARM::VLD1q8:
4251
case ARM::VLD1q16:
4252
case ARM::VLD1q32:
4253
case ARM::VLD1q64:
4254
case ARM::VLD1q8wb_fixed:
4255
case ARM::VLD1q16wb_fixed:
4256
case ARM::VLD1q32wb_fixed:
4257
case ARM::VLD1q64wb_fixed:
4258
case ARM::VLD1q8wb_register:
4259
case ARM::VLD1q16wb_register:
4260
case ARM::VLD1q32wb_register:
4261
case ARM::VLD1q64wb_register:
4262
case ARM::VLD2d8:
4263
case ARM::VLD2d16:
4264
case ARM::VLD2d32:
4265
case ARM::VLD2q8:
4266
case ARM::VLD2q16:
4267
case ARM::VLD2q32:
4268
case ARM::VLD2d8wb_fixed:
4269
case ARM::VLD2d16wb_fixed:
4270
case ARM::VLD2d32wb_fixed:
4271
case ARM::VLD2q8wb_fixed:
4272
case ARM::VLD2q16wb_fixed:
4273
case ARM::VLD2q32wb_fixed:
4274
case ARM::VLD2d8wb_register:
4275
case ARM::VLD2d16wb_register:
4276
case ARM::VLD2d32wb_register:
4277
case ARM::VLD2q8wb_register:
4278
case ARM::VLD2q16wb_register:
4279
case ARM::VLD2q32wb_register:
4280
case ARM::VLD3d8:
4281
case ARM::VLD3d16:
4282
case ARM::VLD3d32:
4283
case ARM::VLD1d64T:
4284
case ARM::VLD3d8_UPD:
4285
case ARM::VLD3d16_UPD:
4286
case ARM::VLD3d32_UPD:
4287
case ARM::VLD1d64Twb_fixed:
4288
case ARM::VLD1d64Twb_register:
4289
case ARM::VLD3q8_UPD:
4290
case ARM::VLD3q16_UPD:
4291
case ARM::VLD3q32_UPD:
4292
case ARM::VLD4d8:
4293
case ARM::VLD4d16:
4294
case ARM::VLD4d32:
4295
case ARM::VLD1d64Q:
4296
case ARM::VLD4d8_UPD:
4297
case ARM::VLD4d16_UPD:
4298
case ARM::VLD4d32_UPD:
4299
case ARM::VLD1d64Qwb_fixed:
4300
case ARM::VLD1d64Qwb_register:
4301
case ARM::VLD4q8_UPD:
4302
case ARM::VLD4q16_UPD:
4303
case ARM::VLD4q32_UPD:
4304
case ARM::VLD1DUPq8:
4305
case ARM::VLD1DUPq16:
4306
case ARM::VLD1DUPq32:
4307
case ARM::VLD1DUPq8wb_fixed:
4308
case ARM::VLD1DUPq16wb_fixed:
4309
case ARM::VLD1DUPq32wb_fixed:
4310
case ARM::VLD1DUPq8wb_register:
4311
case ARM::VLD1DUPq16wb_register:
4312
case ARM::VLD1DUPq32wb_register:
4313
case ARM::VLD2DUPd8:
4314
case ARM::VLD2DUPd16:
4315
case ARM::VLD2DUPd32:
4316
case ARM::VLD2DUPd8wb_fixed:
4317
case ARM::VLD2DUPd16wb_fixed:
4318
case ARM::VLD2DUPd32wb_fixed:
4319
case ARM::VLD2DUPd8wb_register:
4320
case ARM::VLD2DUPd16wb_register:
4321
case ARM::VLD2DUPd32wb_register:
4322
case ARM::VLD4DUPd8:
4323
case ARM::VLD4DUPd16:
4324
case ARM::VLD4DUPd32:
4325
case ARM::VLD4DUPd8_UPD:
4326
case ARM::VLD4DUPd16_UPD:
4327
case ARM::VLD4DUPd32_UPD:
4328
case ARM::VLD1LNd8:
4329
case ARM::VLD1LNd16:
4330
case ARM::VLD1LNd32:
4331
case ARM::VLD1LNd8_UPD:
4332
case ARM::VLD1LNd16_UPD:
4333
case ARM::VLD1LNd32_UPD:
4334
case ARM::VLD2LNd8:
4335
case ARM::VLD2LNd16:
4336
case ARM::VLD2LNd32:
4337
case ARM::VLD2LNq16:
4338
case ARM::VLD2LNq32:
4339
case ARM::VLD2LNd8_UPD:
4340
case ARM::VLD2LNd16_UPD:
4341
case ARM::VLD2LNd32_UPD:
4342
case ARM::VLD2LNq16_UPD:
4343
case ARM::VLD2LNq32_UPD:
4344
case ARM::VLD4LNd8:
4345
case ARM::VLD4LNd16:
4346
case ARM::VLD4LNd32:
4347
case ARM::VLD4LNq16:
4348
case ARM::VLD4LNq32:
4349
case ARM::VLD4LNd8_UPD:
4350
case ARM::VLD4LNd16_UPD:
4351
case ARM::VLD4LNd32_UPD:
4352
case ARM::VLD4LNq16_UPD:
4353
case ARM::VLD4LNq32_UPD:
4354
// If the address is not 64-bit aligned, the latencies of these
4355
// instructions increases by one.
4356
++Adjust;
4357
break;
4358
}
4359
}
4360
return Adjust;
4361
}
4362
4363
std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
4364
const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4365
unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
4366
// No operand latency. The caller may fall back to getInstrLatency.
4367
if (!ItinData || ItinData->isEmpty())
4368
return std::nullopt;
4369
4370
const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4371
Register Reg = DefMO.getReg();
4372
4373
const MachineInstr *ResolvedDefMI = &DefMI;
4374
unsigned DefAdj = 0;
4375
if (DefMI.isBundle())
4376
ResolvedDefMI =
4377
getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4378
if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4379
ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4380
return 1;
4381
}
4382
4383
const MachineInstr *ResolvedUseMI = &UseMI;
4384
unsigned UseAdj = 0;
4385
if (UseMI.isBundle()) {
4386
ResolvedUseMI =
4387
getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4388
if (!ResolvedUseMI)
4389
return std::nullopt;
4390
}
4391
4392
return getOperandLatencyImpl(
4393
ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4394
Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4395
}
4396
4397
std::optional<unsigned> ARMBaseInstrInfo::getOperandLatencyImpl(
4398
const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4399
unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4400
const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4401
unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4402
if (Reg == ARM::CPSR) {
4403
if (DefMI.getOpcode() == ARM::FMSTAT) {
4404
// fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4405
return Subtarget.isLikeA9() ? 1 : 20;
4406
}
4407
4408
// CPSR set and branch can be paired in the same cycle.
4409
if (UseMI.isBranch())
4410
return 0;
4411
4412
// Otherwise it takes the instruction latency (generally one).
4413
unsigned Latency = getInstrLatency(ItinData, DefMI);
4414
4415
// For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4416
// its uses. Instructions which are otherwise scheduled between them may
4417
// incur a code size penalty (not able to use the CPSR setting 16-bit
4418
// instructions).
4419
if (Latency > 0 && Subtarget.isThumb2()) {
4420
const MachineFunction *MF = DefMI.getParent()->getParent();
4421
// FIXME: Use Function::hasOptSize().
4422
if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4423
--Latency;
4424
}
4425
return Latency;
4426
}
4427
4428
if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4429
return std::nullopt;
4430
4431
unsigned DefAlign = DefMI.hasOneMemOperand()
4432
? (*DefMI.memoperands_begin())->getAlign().value()
4433
: 0;
4434
unsigned UseAlign = UseMI.hasOneMemOperand()
4435
? (*UseMI.memoperands_begin())->getAlign().value()
4436
: 0;
4437
4438
// Get the itinerary's latency if possible, and handle variable_ops.
4439
std::optional<unsigned> Latency = getOperandLatency(
4440
ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
4441
// Unable to find operand latency. The caller may resort to getInstrLatency.
4442
if (!Latency)
4443
return std::nullopt;
4444
4445
// Adjust for IT block position.
4446
int Adj = DefAdj + UseAdj;
4447
4448
// Adjust for dynamic def-side opcode variants not captured by the itinerary.
4449
Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4450
if (Adj >= 0 || (int)*Latency > -Adj) {
4451
return *Latency + Adj;
4452
}
4453
// Return the itinerary latency, which may be zero but not less than zero.
4454
return Latency;
4455
}
4456
4457
std::optional<unsigned>
4458
ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4459
SDNode *DefNode, unsigned DefIdx,
4460
SDNode *UseNode, unsigned UseIdx) const {
4461
if (!DefNode->isMachineOpcode())
4462
return 1;
4463
4464
const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4465
4466
if (isZeroCost(DefMCID.Opcode))
4467
return 0;
4468
4469
if (!ItinData || ItinData->isEmpty())
4470
return DefMCID.mayLoad() ? 3 : 1;
4471
4472
if (!UseNode->isMachineOpcode()) {
4473
std::optional<unsigned> Latency =
4474
ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4475
int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4476
int Threshold = 1 + Adj;
4477
return !Latency || Latency <= (unsigned)Threshold ? 1 : *Latency - Adj;
4478
}
4479
4480
const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4481
auto *DefMN = cast<MachineSDNode>(DefNode);
4482
unsigned DefAlign = !DefMN->memoperands_empty()
4483
? (*DefMN->memoperands_begin())->getAlign().value()
4484
: 0;
4485
auto *UseMN = cast<MachineSDNode>(UseNode);
4486
unsigned UseAlign = !UseMN->memoperands_empty()
4487
? (*UseMN->memoperands_begin())->getAlign().value()
4488
: 0;
4489
std::optional<unsigned> Latency = getOperandLatency(
4490
ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
4491
if (!Latency)
4492
return std::nullopt;
4493
4494
if (Latency > 1U &&
4495
(Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4496
Subtarget.isCortexA7())) {
4497
// FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4498
// variants are one cycle cheaper.
4499
switch (DefMCID.getOpcode()) {
4500
default: break;
4501
case ARM::LDRrs:
4502
case ARM::LDRBrs: {
4503
unsigned ShOpVal = DefNode->getConstantOperandVal(2);
4504
unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4505
if (ShImm == 0 ||
4506
(ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4507
Latency = *Latency - 1;
4508
break;
4509
}
4510
case ARM::t2LDRs:
4511
case ARM::t2LDRBs:
4512
case ARM::t2LDRHs:
4513
case ARM::t2LDRSHs: {
4514
// Thumb2 mode: lsl only.
4515
unsigned ShAmt = DefNode->getConstantOperandVal(2);
4516
if (ShAmt == 0 || ShAmt == 2)
4517
Latency = *Latency - 1;
4518
break;
4519
}
4520
}
4521
} else if (DefIdx == 0 && Latency > 2U && Subtarget.isSwift()) {
4522
// FIXME: Properly handle all of the latency adjustments for address
4523
// writeback.
4524
switch (DefMCID.getOpcode()) {
4525
default: break;
4526
case ARM::LDRrs:
4527
case ARM::LDRBrs: {
4528
unsigned ShOpVal = DefNode->getConstantOperandVal(2);
4529
unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4530
if (ShImm == 0 ||
4531
((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4532
ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4533
Latency = *Latency - 2;
4534
else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4535
Latency = *Latency - 1;
4536
break;
4537
}
4538
case ARM::t2LDRs:
4539
case ARM::t2LDRBs:
4540
case ARM::t2LDRHs:
4541
case ARM::t2LDRSHs:
4542
// Thumb2 mode: lsl 0-3 only.
4543
Latency = *Latency - 2;
4544
break;
4545
}
4546
}
4547
4548
if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4549
switch (DefMCID.getOpcode()) {
4550
default: break;
4551
case ARM::VLD1q8:
4552
case ARM::VLD1q16:
4553
case ARM::VLD1q32:
4554
case ARM::VLD1q64:
4555
case ARM::VLD1q8wb_register:
4556
case ARM::VLD1q16wb_register:
4557
case ARM::VLD1q32wb_register:
4558
case ARM::VLD1q64wb_register:
4559
case ARM::VLD1q8wb_fixed:
4560
case ARM::VLD1q16wb_fixed:
4561
case ARM::VLD1q32wb_fixed:
4562
case ARM::VLD1q64wb_fixed:
4563
case ARM::VLD2d8:
4564
case ARM::VLD2d16:
4565
case ARM::VLD2d32:
4566
case ARM::VLD2q8Pseudo:
4567
case ARM::VLD2q16Pseudo:
4568
case ARM::VLD2q32Pseudo:
4569
case ARM::VLD2d8wb_fixed:
4570
case ARM::VLD2d16wb_fixed:
4571
case ARM::VLD2d32wb_fixed:
4572
case ARM::VLD2q8PseudoWB_fixed:
4573
case ARM::VLD2q16PseudoWB_fixed:
4574
case ARM::VLD2q32PseudoWB_fixed:
4575
case ARM::VLD2d8wb_register:
4576
case ARM::VLD2d16wb_register:
4577
case ARM::VLD2d32wb_register:
4578
case ARM::VLD2q8PseudoWB_register:
4579
case ARM::VLD2q16PseudoWB_register:
4580
case ARM::VLD2q32PseudoWB_register:
4581
case ARM::VLD3d8Pseudo:
4582
case ARM::VLD3d16Pseudo:
4583
case ARM::VLD3d32Pseudo:
4584
case ARM::VLD1d8TPseudo:
4585
case ARM::VLD1d16TPseudo:
4586
case ARM::VLD1d32TPseudo:
4587
case ARM::VLD1d64TPseudo:
4588
case ARM::VLD1d64TPseudoWB_fixed:
4589
case ARM::VLD1d64TPseudoWB_register:
4590
case ARM::VLD3d8Pseudo_UPD:
4591
case ARM::VLD3d16Pseudo_UPD:
4592
case ARM::VLD3d32Pseudo_UPD:
4593
case ARM::VLD3q8Pseudo_UPD:
4594
case ARM::VLD3q16Pseudo_UPD:
4595
case ARM::VLD3q32Pseudo_UPD:
4596
case ARM::VLD3q8oddPseudo:
4597
case ARM::VLD3q16oddPseudo:
4598
case ARM::VLD3q32oddPseudo:
4599
case ARM::VLD3q8oddPseudo_UPD:
4600
case ARM::VLD3q16oddPseudo_UPD:
4601
case ARM::VLD3q32oddPseudo_UPD:
4602
case ARM::VLD4d8Pseudo:
4603
case ARM::VLD4d16Pseudo:
4604
case ARM::VLD4d32Pseudo:
4605
case ARM::VLD1d8QPseudo:
4606
case ARM::VLD1d16QPseudo:
4607
case ARM::VLD1d32QPseudo:
4608
case ARM::VLD1d64QPseudo:
4609
case ARM::VLD1d64QPseudoWB_fixed:
4610
case ARM::VLD1d64QPseudoWB_register:
4611
case ARM::VLD1q8HighQPseudo:
4612
case ARM::VLD1q8LowQPseudo_UPD:
4613
case ARM::VLD1q8HighTPseudo:
4614
case ARM::VLD1q8LowTPseudo_UPD:
4615
case ARM::VLD1q16HighQPseudo:
4616
case ARM::VLD1q16LowQPseudo_UPD:
4617
case ARM::VLD1q16HighTPseudo:
4618
case ARM::VLD1q16LowTPseudo_UPD:
4619
case ARM::VLD1q32HighQPseudo:
4620
case ARM::VLD1q32LowQPseudo_UPD:
4621
case ARM::VLD1q32HighTPseudo:
4622
case ARM::VLD1q32LowTPseudo_UPD:
4623
case ARM::VLD1q64HighQPseudo:
4624
case ARM::VLD1q64LowQPseudo_UPD:
4625
case ARM::VLD1q64HighTPseudo:
4626
case ARM::VLD1q64LowTPseudo_UPD:
4627
case ARM::VLD4d8Pseudo_UPD:
4628
case ARM::VLD4d16Pseudo_UPD:
4629
case ARM::VLD4d32Pseudo_UPD:
4630
case ARM::VLD4q8Pseudo_UPD:
4631
case ARM::VLD4q16Pseudo_UPD:
4632
case ARM::VLD4q32Pseudo_UPD:
4633
case ARM::VLD4q8oddPseudo:
4634
case ARM::VLD4q16oddPseudo:
4635
case ARM::VLD4q32oddPseudo:
4636
case ARM::VLD4q8oddPseudo_UPD:
4637
case ARM::VLD4q16oddPseudo_UPD:
4638
case ARM::VLD4q32oddPseudo_UPD:
4639
case ARM::VLD1DUPq8:
4640
case ARM::VLD1DUPq16:
4641
case ARM::VLD1DUPq32:
4642
case ARM::VLD1DUPq8wb_fixed:
4643
case ARM::VLD1DUPq16wb_fixed:
4644
case ARM::VLD1DUPq32wb_fixed:
4645
case ARM::VLD1DUPq8wb_register:
4646
case ARM::VLD1DUPq16wb_register:
4647
case ARM::VLD1DUPq32wb_register:
4648
case ARM::VLD2DUPd8:
4649
case ARM::VLD2DUPd16:
4650
case ARM::VLD2DUPd32:
4651
case ARM::VLD2DUPd8wb_fixed:
4652
case ARM::VLD2DUPd16wb_fixed:
4653
case ARM::VLD2DUPd32wb_fixed:
4654
case ARM::VLD2DUPd8wb_register:
4655
case ARM::VLD2DUPd16wb_register:
4656
case ARM::VLD2DUPd32wb_register:
4657
case ARM::VLD2DUPq8EvenPseudo:
4658
case ARM::VLD2DUPq8OddPseudo:
4659
case ARM::VLD2DUPq16EvenPseudo:
4660
case ARM::VLD2DUPq16OddPseudo:
4661
case ARM::VLD2DUPq32EvenPseudo:
4662
case ARM::VLD2DUPq32OddPseudo:
4663
case ARM::VLD3DUPq8EvenPseudo:
4664
case ARM::VLD3DUPq8OddPseudo:
4665
case ARM::VLD3DUPq16EvenPseudo:
4666
case ARM::VLD3DUPq16OddPseudo:
4667
case ARM::VLD3DUPq32EvenPseudo:
4668
case ARM::VLD3DUPq32OddPseudo:
4669
case ARM::VLD4DUPd8Pseudo:
4670
case ARM::VLD4DUPd16Pseudo:
4671
case ARM::VLD4DUPd32Pseudo:
4672
case ARM::VLD4DUPd8Pseudo_UPD:
4673
case ARM::VLD4DUPd16Pseudo_UPD:
4674
case ARM::VLD4DUPd32Pseudo_UPD:
4675
case ARM::VLD4DUPq8EvenPseudo:
4676
case ARM::VLD4DUPq8OddPseudo:
4677
case ARM::VLD4DUPq16EvenPseudo:
4678
case ARM::VLD4DUPq16OddPseudo:
4679
case ARM::VLD4DUPq32EvenPseudo:
4680
case ARM::VLD4DUPq32OddPseudo:
4681
case ARM::VLD1LNq8Pseudo:
4682
case ARM::VLD1LNq16Pseudo:
4683
case ARM::VLD1LNq32Pseudo:
4684
case ARM::VLD1LNq8Pseudo_UPD:
4685
case ARM::VLD1LNq16Pseudo_UPD:
4686
case ARM::VLD1LNq32Pseudo_UPD:
4687
case ARM::VLD2LNd8Pseudo:
4688
case ARM::VLD2LNd16Pseudo:
4689
case ARM::VLD2LNd32Pseudo:
4690
case ARM::VLD2LNq16Pseudo:
4691
case ARM::VLD2LNq32Pseudo:
4692
case ARM::VLD2LNd8Pseudo_UPD:
4693
case ARM::VLD2LNd16Pseudo_UPD:
4694
case ARM::VLD2LNd32Pseudo_UPD:
4695
case ARM::VLD2LNq16Pseudo_UPD:
4696
case ARM::VLD2LNq32Pseudo_UPD:
4697
case ARM::VLD4LNd8Pseudo:
4698
case ARM::VLD4LNd16Pseudo:
4699
case ARM::VLD4LNd32Pseudo:
4700
case ARM::VLD4LNq16Pseudo:
4701
case ARM::VLD4LNq32Pseudo:
4702
case ARM::VLD4LNd8Pseudo_UPD:
4703
case ARM::VLD4LNd16Pseudo_UPD:
4704
case ARM::VLD4LNd32Pseudo_UPD:
4705
case ARM::VLD4LNq16Pseudo_UPD:
4706
case ARM::VLD4LNq32Pseudo_UPD:
4707
// If the address is not 64-bit aligned, the latencies of these
4708
// instructions increases by one.
4709
Latency = *Latency + 1;
4710
break;
4711
}
4712
4713
return Latency;
4714
}
4715
4716
unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4717
if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4718
MI.isImplicitDef())
4719
return 0;
4720
4721
if (MI.isBundle())
4722
return 0;
4723
4724
const MCInstrDesc &MCID = MI.getDesc();
4725
4726
if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4727
!Subtarget.cheapPredicableCPSRDef())) {
4728
// When predicated, CPSR is an additional source operand for CPSR updating
4729
// instructions, this apparently increases their latencies.
4730
return 1;
4731
}
4732
return 0;
4733
}
4734
4735
unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4736
const MachineInstr &MI,
4737
unsigned *PredCost) const {
4738
if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4739
MI.isImplicitDef())
4740
return 1;
4741
4742
// An instruction scheduler typically runs on unbundled instructions, however
4743
// other passes may query the latency of a bundled instruction.
4744
if (MI.isBundle()) {
4745
unsigned Latency = 0;
4746
MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4747
MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4748
while (++I != E && I->isInsideBundle()) {
4749
if (I->getOpcode() != ARM::t2IT)
4750
Latency += getInstrLatency(ItinData, *I, PredCost);
4751
}
4752
return Latency;
4753
}
4754
4755
const MCInstrDesc &MCID = MI.getDesc();
4756
if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4757
!Subtarget.cheapPredicableCPSRDef()))) {
4758
// When predicated, CPSR is an additional source operand for CPSR updating
4759
// instructions, this apparently increases their latencies.
4760
*PredCost = 1;
4761
}
4762
// Be sure to call getStageLatency for an empty itinerary in case it has a
4763
// valid MinLatency property.
4764
if (!ItinData)
4765
return MI.mayLoad() ? 3 : 1;
4766
4767
unsigned Class = MCID.getSchedClass();
4768
4769
// For instructions with variable uops, use uops as latency.
4770
if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4771
return getNumMicroOps(ItinData, MI);
4772
4773
// For the common case, fall back on the itinerary's latency.
4774
unsigned Latency = ItinData->getStageLatency(Class);
4775
4776
// Adjust for dynamic def-side opcode variants not captured by the itinerary.
4777
unsigned DefAlign =
4778
MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4779
int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4780
if (Adj >= 0 || (int)Latency > -Adj) {
4781
return Latency + Adj;
4782
}
4783
return Latency;
4784
}
4785
4786
unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4787
SDNode *Node) const {
4788
if (!Node->isMachineOpcode())
4789
return 1;
4790
4791
if (!ItinData || ItinData->isEmpty())
4792
return 1;
4793
4794
unsigned Opcode = Node->getMachineOpcode();
4795
switch (Opcode) {
4796
default:
4797
return ItinData->getStageLatency(get(Opcode).getSchedClass());
4798
case ARM::VLDMQIA:
4799
case ARM::VSTMQIA:
4800
return 2;
4801
}
4802
}
4803
4804
bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4805
const MachineRegisterInfo *MRI,
4806
const MachineInstr &DefMI,
4807
unsigned DefIdx,
4808
const MachineInstr &UseMI,
4809
unsigned UseIdx) const {
4810
unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4811
unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4812
if (Subtarget.nonpipelinedVFP() &&
4813
(DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4814
return true;
4815
4816
// Hoist VFP / NEON instructions with 4 or higher latency.
4817
unsigned Latency =
4818
SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4819
if (Latency <= 3)
4820
return false;
4821
return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4822
UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4823
}
4824
4825
bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4826
const MachineInstr &DefMI,
4827
unsigned DefIdx) const {
4828
const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4829
if (!ItinData || ItinData->isEmpty())
4830
return false;
4831
4832
unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4833
if (DDomain == ARMII::DomainGeneral) {
4834
unsigned DefClass = DefMI.getDesc().getSchedClass();
4835
std::optional<unsigned> DefCycle =
4836
ItinData->getOperandCycle(DefClass, DefIdx);
4837
return DefCycle && DefCycle <= 2U;
4838
}
4839
return false;
4840
}
4841
4842
bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4843
StringRef &ErrInfo) const {
4844
if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4845
ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4846
return false;
4847
}
4848
if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4849
// Make sure we don't generate a lo-lo mov that isn't supported.
4850
if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4851
!ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4852
ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4853
return false;
4854
}
4855
}
4856
if (MI.getOpcode() == ARM::tPUSH ||
4857
MI.getOpcode() == ARM::tPOP ||
4858
MI.getOpcode() == ARM::tPOP_RET) {
4859
for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) {
4860
if (MO.isImplicit() || !MO.isReg())
4861
continue;
4862
Register Reg = MO.getReg();
4863
if (Reg < ARM::R0 || Reg > ARM::R7) {
4864
if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4865
!(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4866
ErrInfo = "Unsupported register in Thumb1 push/pop";
4867
return false;
4868
}
4869
}
4870
}
4871
}
4872
if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
4873
assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
4874
if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) ||
4875
MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) {
4876
ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
4877
return false;
4878
}
4879
}
4880
4881
// Check the address model by taking the first Imm operand and checking it is
4882
// legal for that addressing mode.
4883
ARMII::AddrMode AddrMode =
4884
(ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask);
4885
switch (AddrMode) {
4886
default:
4887
break;
4888
case ARMII::AddrModeT2_i7:
4889
case ARMII::AddrModeT2_i7s2:
4890
case ARMII::AddrModeT2_i7s4:
4891
case ARMII::AddrModeT2_i8:
4892
case ARMII::AddrModeT2_i8pos:
4893
case ARMII::AddrModeT2_i8neg:
4894
case ARMII::AddrModeT2_i8s4:
4895
case ARMII::AddrModeT2_i12: {
4896
uint32_t Imm = 0;
4897
for (auto Op : MI.operands()) {
4898
if (Op.isImm()) {
4899
Imm = Op.getImm();
4900
break;
4901
}
4902
}
4903
if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) {
4904
ErrInfo = "Incorrect AddrMode Imm for instruction";
4905
return false;
4906
}
4907
break;
4908
}
4909
}
4910
return true;
4911
}
4912
4913
void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4914
unsigned LoadImmOpc,
4915
unsigned LoadOpc) const {
4916
assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4917
"ROPI/RWPI not currently supported with stack guard");
4918
4919
MachineBasicBlock &MBB = *MI->getParent();
4920
DebugLoc DL = MI->getDebugLoc();
4921
Register Reg = MI->getOperand(0).getReg();
4922
MachineInstrBuilder MIB;
4923
unsigned int Offset = 0;
4924
4925
if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) {
4926
assert(!Subtarget.isReadTPSoft() &&
4927
"TLS stack protector requires hardware TLS register");
4928
4929
BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4930
.addImm(15)
4931
.addImm(0)
4932
.addImm(13)
4933
.addImm(0)
4934
.addImm(3)
4935
.add(predOps(ARMCC::AL));
4936
4937
Module &M = *MBB.getParent()->getFunction().getParent();
4938
Offset = M.getStackProtectorGuardOffset();
4939
if (Offset & ~0xfffU) {
4940
// The offset won't fit in the LDR's 12-bit immediate field, so emit an
4941
// extra ADD to cover the delta. This gives us a guaranteed 8 additional
4942
// bits, resulting in a range of 0 to +1 MiB for the guard offset.
4943
unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri;
4944
BuildMI(MBB, MI, DL, get(AddOpc), Reg)
4945
.addReg(Reg, RegState::Kill)
4946
.addImm(Offset & ~0xfffU)
4947
.add(predOps(ARMCC::AL))
4948
.addReg(0);
4949
Offset &= 0xfffU;
4950
}
4951
} else {
4952
const GlobalValue *GV =
4953
cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4954
bool IsIndirect = Subtarget.isGVIndirectSymbol(GV);
4955
4956
unsigned TargetFlags = ARMII::MO_NO_FLAG;
4957
if (Subtarget.isTargetMachO()) {
4958
TargetFlags |= ARMII::MO_NONLAZY;
4959
} else if (Subtarget.isTargetCOFF()) {
4960
if (GV->hasDLLImportStorageClass())
4961
TargetFlags |= ARMII::MO_DLLIMPORT;
4962
else if (IsIndirect)
4963
TargetFlags |= ARMII::MO_COFFSTUB;
4964
} else if (IsIndirect) {
4965
TargetFlags |= ARMII::MO_GOT;
4966
}
4967
4968
if (LoadImmOpc == ARM::tMOVi32imm) { // Thumb-1 execute-only
4969
Register CPSRSaveReg = ARM::R12; // Use R12 as scratch register
4970
auto APSREncoding =
4971
ARMSysReg::lookupMClassSysRegByName("apsr_nzcvq")->Encoding;
4972
BuildMI(MBB, MI, DL, get(ARM::t2MRS_M), CPSRSaveReg)
4973
.addImm(APSREncoding)
4974
.add(predOps(ARMCC::AL));
4975
BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4976
.addGlobalAddress(GV, 0, TargetFlags);
4977
BuildMI(MBB, MI, DL, get(ARM::t2MSR_M))
4978
.addImm(APSREncoding)
4979
.addReg(CPSRSaveReg, RegState::Kill)
4980
.add(predOps(ARMCC::AL));
4981
} else {
4982
BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4983
.addGlobalAddress(GV, 0, TargetFlags);
4984
}
4985
4986
if (IsIndirect) {
4987
MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4988
MIB.addReg(Reg, RegState::Kill).addImm(0);
4989
auto Flags = MachineMemOperand::MOLoad |
4990
MachineMemOperand::MODereferenceable |
4991
MachineMemOperand::MOInvariant;
4992
MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4993
MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4994
MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4995
}
4996
}
4997
4998
MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4999
MIB.addReg(Reg, RegState::Kill)
5000
.addImm(Offset)
5001
.cloneMemRefs(*MI)
5002
.add(predOps(ARMCC::AL));
5003
}
5004
5005
bool
5006
ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
5007
unsigned &AddSubOpc,
5008
bool &NegAcc, bool &HasLane) const {
5009
DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
5010
if (I == MLxEntryMap.end())
5011
return false;
5012
5013
const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
5014
MulOpc = Entry.MulOpc;
5015
AddSubOpc = Entry.AddSubOpc;
5016
NegAcc = Entry.NegAcc;
5017
HasLane = Entry.HasLane;
5018
return true;
5019
}
5020
5021
//===----------------------------------------------------------------------===//
5022
// Execution domains.
5023
//===----------------------------------------------------------------------===//
5024
//
5025
// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
5026
// and some can go down both. The vmov instructions go down the VFP pipeline,
5027
// but they can be changed to vorr equivalents that are executed by the NEON
5028
// pipeline.
5029
//
5030
// We use the following execution domain numbering:
5031
//
5032
enum ARMExeDomain {
5033
ExeGeneric = 0,
5034
ExeVFP = 1,
5035
ExeNEON = 2
5036
};
5037
5038
//
5039
// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
5040
//
5041
std::pair<uint16_t, uint16_t>
5042
ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
5043
// If we don't have access to NEON instructions then we won't be able
5044
// to swizzle anything to the NEON domain. Check to make sure.
5045
if (Subtarget.hasNEON()) {
5046
// VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
5047
// if they are not predicated.
5048
if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
5049
return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5050
5051
// CortexA9 is particularly picky about mixing the two and wants these
5052
// converted.
5053
if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
5054
(MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
5055
MI.getOpcode() == ARM::VMOVS))
5056
return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5057
}
5058
// No other instructions can be swizzled, so just determine their domain.
5059
unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
5060
5061
if (Domain & ARMII::DomainNEON)
5062
return std::make_pair(ExeNEON, 0);
5063
5064
// Certain instructions can go either way on Cortex-A8.
5065
// Treat them as NEON instructions.
5066
if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
5067
return std::make_pair(ExeNEON, 0);
5068
5069
if (Domain & ARMII::DomainVFP)
5070
return std::make_pair(ExeVFP, 0);
5071
5072
return std::make_pair(ExeGeneric, 0);
5073
}
5074
5075
static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
5076
unsigned SReg, unsigned &Lane) {
5077
unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
5078
Lane = 0;
5079
5080
if (DReg != ARM::NoRegister)
5081
return DReg;
5082
5083
Lane = 1;
5084
DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
5085
5086
assert(DReg && "S-register with no D super-register?");
5087
return DReg;
5088
}
5089
5090
/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
5091
/// set ImplicitSReg to a register number that must be marked as implicit-use or
5092
/// zero if no register needs to be defined as implicit-use.
5093
///
5094
/// If the function cannot determine if an SPR should be marked implicit use or
5095
/// not, it returns false.
5096
///
5097
/// This function handles cases where an instruction is being modified from taking
5098
/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
5099
/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
5100
/// lane of the DPR).
5101
///
5102
/// If the other SPR is defined, an implicit-use of it should be added. Else,
5103
/// (including the case where the DPR itself is defined), it should not.
5104
///
5105
static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
5106
MachineInstr &MI, unsigned DReg,
5107
unsigned Lane, unsigned &ImplicitSReg) {
5108
// If the DPR is defined or used already, the other SPR lane will be chained
5109
// correctly, so there is nothing to be done.
5110
if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
5111
ImplicitSReg = 0;
5112
return true;
5113
}
5114
5115
// Otherwise we need to go searching to see if the SPR is set explicitly.
5116
ImplicitSReg = TRI->getSubReg(DReg,
5117
(Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
5118
MachineBasicBlock::LivenessQueryResult LQR =
5119
MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
5120
5121
if (LQR == MachineBasicBlock::LQR_Live)
5122
return true;
5123
else if (LQR == MachineBasicBlock::LQR_Unknown)
5124
return false;
5125
5126
// If the register is known not to be live, there is no need to add an
5127
// implicit-use.
5128
ImplicitSReg = 0;
5129
return true;
5130
}
5131
5132
void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5133
unsigned Domain) const {
5134
unsigned DstReg, SrcReg, DReg;
5135
unsigned Lane;
5136
MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5137
const TargetRegisterInfo *TRI = &getRegisterInfo();
5138
switch (MI.getOpcode()) {
5139
default:
5140
llvm_unreachable("cannot handle opcode!");
5141
break;
5142
case ARM::VMOVD:
5143
if (Domain != ExeNEON)
5144
break;
5145
5146
// Zap the predicate operands.
5147
assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5148
5149
// Make sure we've got NEON instructions.
5150
assert(Subtarget.hasNEON() && "VORRd requires NEON");
5151
5152
// Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5153
DstReg = MI.getOperand(0).getReg();
5154
SrcReg = MI.getOperand(1).getReg();
5155
5156
for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5157
MI.removeOperand(i - 1);
5158
5159
// Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5160
MI.setDesc(get(ARM::VORRd));
5161
MIB.addReg(DstReg, RegState::Define)
5162
.addReg(SrcReg)
5163
.addReg(SrcReg)
5164
.add(predOps(ARMCC::AL));
5165
break;
5166
case ARM::VMOVRS:
5167
if (Domain != ExeNEON)
5168
break;
5169
assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5170
5171
// Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5172
DstReg = MI.getOperand(0).getReg();
5173
SrcReg = MI.getOperand(1).getReg();
5174
5175
for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5176
MI.removeOperand(i - 1);
5177
5178
DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5179
5180
// Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5181
// Note that DSrc has been widened and the other lane may be undef, which
5182
// contaminates the entire register.
5183
MI.setDesc(get(ARM::VGETLNi32));
5184
MIB.addReg(DstReg, RegState::Define)
5185
.addReg(DReg, RegState::Undef)
5186
.addImm(Lane)
5187
.add(predOps(ARMCC::AL));
5188
5189
// The old source should be an implicit use, otherwise we might think it
5190
// was dead before here.
5191
MIB.addReg(SrcReg, RegState::Implicit);
5192
break;
5193
case ARM::VMOVSR: {
5194
if (Domain != ExeNEON)
5195
break;
5196
assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5197
5198
// Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5199
DstReg = MI.getOperand(0).getReg();
5200
SrcReg = MI.getOperand(1).getReg();
5201
5202
DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5203
5204
unsigned ImplicitSReg;
5205
if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5206
break;
5207
5208
for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5209
MI.removeOperand(i - 1);
5210
5211
// Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5212
// Again DDst may be undefined at the beginning of this instruction.
5213
MI.setDesc(get(ARM::VSETLNi32));
5214
MIB.addReg(DReg, RegState::Define)
5215
.addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5216
.addReg(SrcReg)
5217
.addImm(Lane)
5218
.add(predOps(ARMCC::AL));
5219
5220
// The narrower destination must be marked as set to keep previous chains
5221
// in place.
5222
MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5223
if (ImplicitSReg != 0)
5224
MIB.addReg(ImplicitSReg, RegState::Implicit);
5225
break;
5226
}
5227
case ARM::VMOVS: {
5228
if (Domain != ExeNEON)
5229
break;
5230
5231
// Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5232
DstReg = MI.getOperand(0).getReg();
5233
SrcReg = MI.getOperand(1).getReg();
5234
5235
unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5236
DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5237
DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5238
5239
unsigned ImplicitSReg;
5240
if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5241
break;
5242
5243
for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5244
MI.removeOperand(i - 1);
5245
5246
if (DSrc == DDst) {
5247
// Destination can be:
5248
// %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5249
MI.setDesc(get(ARM::VDUPLN32d));
5250
MIB.addReg(DDst, RegState::Define)
5251
.addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5252
.addImm(SrcLane)
5253
.add(predOps(ARMCC::AL));
5254
5255
// Neither the source or the destination are naturally represented any
5256
// more, so add them in manually.
5257
MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5258
MIB.addReg(SrcReg, RegState::Implicit);
5259
if (ImplicitSReg != 0)
5260
MIB.addReg(ImplicitSReg, RegState::Implicit);
5261
break;
5262
}
5263
5264
// In general there's no single instruction that can perform an S <-> S
5265
// move in NEON space, but a pair of VEXT instructions *can* do the
5266
// job. It turns out that the VEXTs needed will only use DSrc once, with
5267
// the position based purely on the combination of lane-0 and lane-1
5268
// involved. For example
5269
// vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
5270
// vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
5271
// vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
5272
// vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
5273
//
5274
// Pattern of the MachineInstrs is:
5275
// %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5276
MachineInstrBuilder NewMIB;
5277
NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5278
DDst);
5279
5280
// On the first instruction, both DSrc and DDst may be undef if present.
5281
// Specifically when the original instruction didn't have them as an
5282
// <imp-use>.
5283
unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5284
bool CurUndef = !MI.readsRegister(CurReg, TRI);
5285
NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5286
5287
CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5288
CurUndef = !MI.readsRegister(CurReg, TRI);
5289
NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5290
.addImm(1)
5291
.add(predOps(ARMCC::AL));
5292
5293
if (SrcLane == DstLane)
5294
NewMIB.addReg(SrcReg, RegState::Implicit);
5295
5296
MI.setDesc(get(ARM::VEXTd32));
5297
MIB.addReg(DDst, RegState::Define);
5298
5299
// On the second instruction, DDst has definitely been defined above, so
5300
// it is not undef. DSrc, if present, can be undef as above.
5301
CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5302
CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5303
MIB.addReg(CurReg, getUndefRegState(CurUndef));
5304
5305
CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5306
CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5307
MIB.addReg(CurReg, getUndefRegState(CurUndef))
5308
.addImm(1)
5309
.add(predOps(ARMCC::AL));
5310
5311
if (SrcLane != DstLane)
5312
MIB.addReg(SrcReg, RegState::Implicit);
5313
5314
// As before, the original destination is no longer represented, add it
5315
// implicitly.
5316
MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5317
if (ImplicitSReg != 0)
5318
MIB.addReg(ImplicitSReg, RegState::Implicit);
5319
break;
5320
}
5321
}
5322
}
5323
5324
//===----------------------------------------------------------------------===//
5325
// Partial register updates
5326
//===----------------------------------------------------------------------===//
5327
//
5328
// Swift renames NEON registers with 64-bit granularity. That means any
5329
// instruction writing an S-reg implicitly reads the containing D-reg. The
5330
// problem is mostly avoided by translating f32 operations to v2f32 operations
5331
// on D-registers, but f32 loads are still a problem.
5332
//
5333
// These instructions can load an f32 into a NEON register:
5334
//
5335
// VLDRS - Only writes S, partial D update.
5336
// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5337
// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5338
//
5339
// FCONSTD can be used as a dependency-breaking instruction.
5340
unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5341
const MachineInstr &MI, unsigned OpNum,
5342
const TargetRegisterInfo *TRI) const {
5343
auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5344
if (!PartialUpdateClearance)
5345
return 0;
5346
5347
assert(TRI && "Need TRI instance");
5348
5349
const MachineOperand &MO = MI.getOperand(OpNum);
5350
if (MO.readsReg())
5351
return 0;
5352
Register Reg = MO.getReg();
5353
int UseOp = -1;
5354
5355
switch (MI.getOpcode()) {
5356
// Normal instructions writing only an S-register.
5357
case ARM::VLDRS:
5358
case ARM::FCONSTS:
5359
case ARM::VMOVSR:
5360
case ARM::VMOVv8i8:
5361
case ARM::VMOVv4i16:
5362
case ARM::VMOVv2i32:
5363
case ARM::VMOVv2f32:
5364
case ARM::VMOVv1i64:
5365
UseOp = MI.findRegisterUseOperandIdx(Reg, TRI, false);
5366
break;
5367
5368
// Explicitly reads the dependency.
5369
case ARM::VLD1LNd32:
5370
UseOp = 3;
5371
break;
5372
default:
5373
return 0;
5374
}
5375
5376
// If this instruction actually reads a value from Reg, there is no unwanted
5377
// dependency.
5378
if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5379
return 0;
5380
5381
// We must be able to clobber the whole D-reg.
5382
if (Reg.isVirtual()) {
5383
// Virtual register must be a def undef foo:ssub_0 operand.
5384
if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5385
return 0;
5386
} else if (ARM::SPRRegClass.contains(Reg)) {
5387
// Physical register: MI must define the full D-reg.
5388
unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5389
&ARM::DPRRegClass);
5390
if (!DReg || !MI.definesRegister(DReg, TRI))
5391
return 0;
5392
}
5393
5394
// MI has an unwanted D-register dependency.
5395
// Avoid defs in the previous N instructrions.
5396
return PartialUpdateClearance;
5397
}
5398
5399
// Break a partial register dependency after getPartialRegUpdateClearance
5400
// returned non-zero.
5401
void ARMBaseInstrInfo::breakPartialRegDependency(
5402
MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5403
assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5404
assert(TRI && "Need TRI instance");
5405
5406
const MachineOperand &MO = MI.getOperand(OpNum);
5407
Register Reg = MO.getReg();
5408
assert(Reg.isPhysical() && "Can't break virtual register dependencies.");
5409
unsigned DReg = Reg;
5410
5411
// If MI defines an S-reg, find the corresponding D super-register.
5412
if (ARM::SPRRegClass.contains(Reg)) {
5413
DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5414
assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5415
}
5416
5417
assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5418
assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5419
5420
// FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5421
// the full D-register by loading the same value to both lanes. The
5422
// instruction is micro-coded with 2 uops, so don't do this until we can
5423
// properly schedule micro-coded instructions. The dispatcher stalls cause
5424
// too big regressions.
5425
5426
// Insert the dependency-breaking FCONSTD before MI.
5427
// 96 is the encoding of 0.5, but the actual value doesn't matter here.
5428
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5429
.addImm(96)
5430
.add(predOps(ARMCC::AL));
5431
MI.addRegisterKilled(DReg, TRI, true);
5432
}
5433
5434
bool ARMBaseInstrInfo::hasNOP() const {
5435
return Subtarget.hasFeature(ARM::HasV6KOps);
5436
}
5437
5438
bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5439
if (MI->getNumOperands() < 4)
5440
return true;
5441
unsigned ShOpVal = MI->getOperand(3).getImm();
5442
unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5443
// Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5444
if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5445
((ShImm == 1 || ShImm == 2) &&
5446
ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5447
return true;
5448
5449
return false;
5450
}
5451
5452
bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5453
const MachineInstr &MI, unsigned DefIdx,
5454
SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5455
assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5456
assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5457
5458
switch (MI.getOpcode()) {
5459
case ARM::VMOVDRR:
5460
// dX = VMOVDRR rY, rZ
5461
// is the same as:
5462
// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5463
// Populate the InputRegs accordingly.
5464
// rY
5465
const MachineOperand *MOReg = &MI.getOperand(1);
5466
if (!MOReg->isUndef())
5467
InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5468
MOReg->getSubReg(), ARM::ssub_0));
5469
// rZ
5470
MOReg = &MI.getOperand(2);
5471
if (!MOReg->isUndef())
5472
InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5473
MOReg->getSubReg(), ARM::ssub_1));
5474
return true;
5475
}
5476
llvm_unreachable("Target dependent opcode missing");
5477
}
5478
5479
bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5480
const MachineInstr &MI, unsigned DefIdx,
5481
RegSubRegPairAndIdx &InputReg) const {
5482
assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5483
assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5484
5485
switch (MI.getOpcode()) {
5486
case ARM::VMOVRRD:
5487
// rX, rY = VMOVRRD dZ
5488
// is the same as:
5489
// rX = EXTRACT_SUBREG dZ, ssub_0
5490
// rY = EXTRACT_SUBREG dZ, ssub_1
5491
const MachineOperand &MOReg = MI.getOperand(2);
5492
if (MOReg.isUndef())
5493
return false;
5494
InputReg.Reg = MOReg.getReg();
5495
InputReg.SubReg = MOReg.getSubReg();
5496
InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5497
return true;
5498
}
5499
llvm_unreachable("Target dependent opcode missing");
5500
}
5501
5502
bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5503
const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5504
RegSubRegPairAndIdx &InsertedReg) const {
5505
assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5506
assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5507
5508
switch (MI.getOpcode()) {
5509
case ARM::VSETLNi32:
5510
case ARM::MVE_VMOV_to_lane_32:
5511
// dX = VSETLNi32 dY, rZ, imm
5512
// qX = MVE_VMOV_to_lane_32 qY, rZ, imm
5513
const MachineOperand &MOBaseReg = MI.getOperand(1);
5514
const MachineOperand &MOInsertedReg = MI.getOperand(2);
5515
if (MOInsertedReg.isUndef())
5516
return false;
5517
const MachineOperand &MOIndex = MI.getOperand(3);
5518
BaseReg.Reg = MOBaseReg.getReg();
5519
BaseReg.SubReg = MOBaseReg.getSubReg();
5520
5521
InsertedReg.Reg = MOInsertedReg.getReg();
5522
InsertedReg.SubReg = MOInsertedReg.getSubReg();
5523
InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
5524
return true;
5525
}
5526
llvm_unreachable("Target dependent opcode missing");
5527
}
5528
5529
std::pair<unsigned, unsigned>
5530
ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5531
const unsigned Mask = ARMII::MO_OPTION_MASK;
5532
return std::make_pair(TF & Mask, TF & ~Mask);
5533
}
5534
5535
ArrayRef<std::pair<unsigned, const char *>>
5536
ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5537
using namespace ARMII;
5538
5539
static const std::pair<unsigned, const char *> TargetFlags[] = {
5540
{MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"},
5541
{MO_LO_0_7, "arm-lo-0-7"}, {MO_HI_0_7, "arm-hi-0-7"},
5542
{MO_LO_8_15, "arm-lo-8-15"}, {MO_HI_8_15, "arm-hi-8-15"},
5543
};
5544
return ArrayRef(TargetFlags);
5545
}
5546
5547
ArrayRef<std::pair<unsigned, const char *>>
5548
ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5549
using namespace ARMII;
5550
5551
static const std::pair<unsigned, const char *> TargetFlags[] = {
5552
{MO_COFFSTUB, "arm-coffstub"},
5553
{MO_GOT, "arm-got"},
5554
{MO_SBREL, "arm-sbrel"},
5555
{MO_DLLIMPORT, "arm-dllimport"},
5556
{MO_SECREL, "arm-secrel"},
5557
{MO_NONLAZY, "arm-nonlazy"}};
5558
return ArrayRef(TargetFlags);
5559
}
5560
5561
std::optional<RegImmPair>
5562
ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const {
5563
int Sign = 1;
5564
unsigned Opcode = MI.getOpcode();
5565
int64_t Offset = 0;
5566
5567
// TODO: Handle cases where Reg is a super- or sub-register of the
5568
// destination register.
5569
const MachineOperand &Op0 = MI.getOperand(0);
5570
if (!Op0.isReg() || Reg != Op0.getReg())
5571
return std::nullopt;
5572
5573
// We describe SUBri or ADDri instructions.
5574
if (Opcode == ARM::SUBri)
5575
Sign = -1;
5576
else if (Opcode != ARM::ADDri)
5577
return std::nullopt;
5578
5579
// TODO: Third operand can be global address (usually some string). Since
5580
// strings can be relocated we cannot calculate their offsets for
5581
// now.
5582
if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5583
return std::nullopt;
5584
5585
Offset = MI.getOperand(2).getImm() * Sign;
5586
return RegImmPair{MI.getOperand(1).getReg(), Offset};
5587
}
5588
5589
bool llvm::registerDefinedBetween(unsigned Reg,
5590
MachineBasicBlock::iterator From,
5591
MachineBasicBlock::iterator To,
5592
const TargetRegisterInfo *TRI) {
5593
for (auto I = From; I != To; ++I)
5594
if (I->modifiesRegister(Reg, TRI))
5595
return true;
5596
return false;
5597
}
5598
5599
MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5600
const TargetRegisterInfo *TRI) {
5601
// Search backwards to the instruction that defines CSPR. This may or not
5602
// be a CMP, we check that after this loop. If we find another instruction
5603
// that reads cpsr, we return nullptr.
5604
MachineBasicBlock::iterator CmpMI = Br;
5605
while (CmpMI != Br->getParent()->begin()) {
5606
--CmpMI;
5607
if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5608
break;
5609
if (CmpMI->readsRegister(ARM::CPSR, TRI))
5610
break;
5611
}
5612
5613
// Check that this inst is a CMP r[0-7], #0 and that the register
5614
// is not redefined between the cmp and the br.
5615
if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5616
return nullptr;
5617
Register Reg = CmpMI->getOperand(0).getReg();
5618
Register PredReg;
5619
ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5620
if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5621
return nullptr;
5622
if (!isARMLowRegister(Reg))
5623
return nullptr;
5624
if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5625
return nullptr;
5626
5627
return &*CmpMI;
5628
}
5629
5630
unsigned llvm::ConstantMaterializationCost(unsigned Val,
5631
const ARMSubtarget *Subtarget,
5632
bool ForCodesize) {
5633
if (Subtarget->isThumb()) {
5634
if (Val <= 255) // MOV
5635
return ForCodesize ? 2 : 1;
5636
if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV
5637
ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5638
ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5639
return ForCodesize ? 4 : 1;
5640
if (Val <= 510) // MOV + ADDi8
5641
return ForCodesize ? 4 : 2;
5642
if (~Val <= 255) // MOV + MVN
5643
return ForCodesize ? 4 : 2;
5644
if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5645
return ForCodesize ? 4 : 2;
5646
} else {
5647
if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5648
return ForCodesize ? 4 : 1;
5649
if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5650
return ForCodesize ? 4 : 1;
5651
if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5652
return ForCodesize ? 4 : 1;
5653
if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5654
return ForCodesize ? 8 : 2;
5655
if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5656
return ForCodesize ? 8 : 2;
5657
}
5658
if (Subtarget->useMovt()) // MOVW + MOVT
5659
return ForCodesize ? 8 : 2;
5660
return ForCodesize ? 8 : 3; // Literal pool load
5661
}
5662
5663
bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5664
const ARMSubtarget *Subtarget,
5665
bool ForCodesize) {
5666
// Check with ForCodesize
5667
unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5668
unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5669
if (Cost1 < Cost2)
5670
return true;
5671
if (Cost1 > Cost2)
5672
return false;
5673
5674
// If they are equal, try with !ForCodesize
5675
return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5676
ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5677
}
5678
5679
/// Constants defining how certain sequences should be outlined.
5680
/// This encompasses how an outlined function should be called, and what kind of
5681
/// frame should be emitted for that outlined function.
5682
///
5683
/// \p MachineOutlinerTailCall implies that the function is being created from
5684
/// a sequence of instructions ending in a return.
5685
///
5686
/// That is,
5687
///
5688
/// I1 OUTLINED_FUNCTION:
5689
/// I2 --> B OUTLINED_FUNCTION I1
5690
/// BX LR I2
5691
/// BX LR
5692
///
5693
/// +-------------------------+--------+-----+
5694
/// | | Thumb2 | ARM |
5695
/// +-------------------------+--------+-----+
5696
/// | Call overhead in Bytes | 4 | 4 |
5697
/// | Frame overhead in Bytes | 0 | 0 |
5698
/// | Stack fixup required | No | No |
5699
/// +-------------------------+--------+-----+
5700
///
5701
/// \p MachineOutlinerThunk implies that the function is being created from
5702
/// a sequence of instructions ending in a call. The outlined function is
5703
/// called with a BL instruction, and the outlined function tail-calls the
5704
/// original call destination.
5705
///
5706
/// That is,
5707
///
5708
/// I1 OUTLINED_FUNCTION:
5709
/// I2 --> BL OUTLINED_FUNCTION I1
5710
/// BL f I2
5711
/// B f
5712
///
5713
/// +-------------------------+--------+-----+
5714
/// | | Thumb2 | ARM |
5715
/// +-------------------------+--------+-----+
5716
/// | Call overhead in Bytes | 4 | 4 |
5717
/// | Frame overhead in Bytes | 0 | 0 |
5718
/// | Stack fixup required | No | No |
5719
/// +-------------------------+--------+-----+
5720
///
5721
/// \p MachineOutlinerNoLRSave implies that the function should be called using
5722
/// a BL instruction, but doesn't require LR to be saved and restored. This
5723
/// happens when LR is known to be dead.
5724
///
5725
/// That is,
5726
///
5727
/// I1 OUTLINED_FUNCTION:
5728
/// I2 --> BL OUTLINED_FUNCTION I1
5729
/// I3 I2
5730
/// I3
5731
/// BX LR
5732
///
5733
/// +-------------------------+--------+-----+
5734
/// | | Thumb2 | ARM |
5735
/// +-------------------------+--------+-----+
5736
/// | Call overhead in Bytes | 4 | 4 |
5737
/// | Frame overhead in Bytes | 2 | 4 |
5738
/// | Stack fixup required | No | No |
5739
/// +-------------------------+--------+-----+
5740
///
5741
/// \p MachineOutlinerRegSave implies that the function should be called with a
5742
/// save and restore of LR to an available register. This allows us to avoid
5743
/// stack fixups. Note that this outlining variant is compatible with the
5744
/// NoLRSave case.
5745
///
5746
/// That is,
5747
///
5748
/// I1 Save LR OUTLINED_FUNCTION:
5749
/// I2 --> BL OUTLINED_FUNCTION I1
5750
/// I3 Restore LR I2
5751
/// I3
5752
/// BX LR
5753
///
5754
/// +-------------------------+--------+-----+
5755
/// | | Thumb2 | ARM |
5756
/// +-------------------------+--------+-----+
5757
/// | Call overhead in Bytes | 8 | 12 |
5758
/// | Frame overhead in Bytes | 2 | 4 |
5759
/// | Stack fixup required | No | No |
5760
/// +-------------------------+--------+-----+
5761
///
5762
/// \p MachineOutlinerDefault implies that the function should be called with
5763
/// a save and restore of LR to the stack.
5764
///
5765
/// That is,
5766
///
5767
/// I1 Save LR OUTLINED_FUNCTION:
5768
/// I2 --> BL OUTLINED_FUNCTION I1
5769
/// I3 Restore LR I2
5770
/// I3
5771
/// BX LR
5772
///
5773
/// +-------------------------+--------+-----+
5774
/// | | Thumb2 | ARM |
5775
/// +-------------------------+--------+-----+
5776
/// | Call overhead in Bytes | 8 | 12 |
5777
/// | Frame overhead in Bytes | 2 | 4 |
5778
/// | Stack fixup required | Yes | Yes |
5779
/// +-------------------------+--------+-----+
5780
5781
enum MachineOutlinerClass {
5782
MachineOutlinerTailCall,
5783
MachineOutlinerThunk,
5784
MachineOutlinerNoLRSave,
5785
MachineOutlinerRegSave,
5786
MachineOutlinerDefault
5787
};
5788
5789
enum MachineOutlinerMBBFlags {
5790
LRUnavailableSomewhere = 0x2,
5791
HasCalls = 0x4,
5792
UnsafeRegsDead = 0x8
5793
};
5794
5795
struct OutlinerCosts {
5796
int CallTailCall;
5797
int FrameTailCall;
5798
int CallThunk;
5799
int FrameThunk;
5800
int CallNoLRSave;
5801
int FrameNoLRSave;
5802
int CallRegSave;
5803
int FrameRegSave;
5804
int CallDefault;
5805
int FrameDefault;
5806
int SaveRestoreLROnStack;
5807
5808
OutlinerCosts(const ARMSubtarget &target)
5809
: CallTailCall(target.isThumb() ? 4 : 4),
5810
FrameTailCall(target.isThumb() ? 0 : 0),
5811
CallThunk(target.isThumb() ? 4 : 4),
5812
FrameThunk(target.isThumb() ? 0 : 0),
5813
CallNoLRSave(target.isThumb() ? 4 : 4),
5814
FrameNoLRSave(target.isThumb() ? 2 : 4),
5815
CallRegSave(target.isThumb() ? 8 : 12),
5816
FrameRegSave(target.isThumb() ? 2 : 4),
5817
CallDefault(target.isThumb() ? 8 : 12),
5818
FrameDefault(target.isThumb() ? 2 : 4),
5819
SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5820
};
5821
5822
Register
5823
ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const {
5824
MachineFunction *MF = C.getMF();
5825
const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
5826
const ARMBaseRegisterInfo *ARI =
5827
static_cast<const ARMBaseRegisterInfo *>(&TRI);
5828
5829
BitVector regsReserved = ARI->getReservedRegs(*MF);
5830
// Check if there is an available register across the sequence that we can
5831
// use.
5832
for (Register Reg : ARM::rGPRRegClass) {
5833
if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5834
Reg != ARM::LR && // LR is not reserved, but don't use it.
5835
Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5836
C.isAvailableAcrossAndOutOfSeq(Reg, TRI) &&
5837
C.isAvailableInsideSeq(Reg, TRI))
5838
return Reg;
5839
}
5840
return Register();
5841
}
5842
5843
// Compute liveness of LR at the point after the interval [I, E), which
5844
// denotes a *backward* iteration through instructions. Used only for return
5845
// basic blocks, which do not end with a tail call.
5846
static bool isLRAvailable(const TargetRegisterInfo &TRI,
5847
MachineBasicBlock::reverse_iterator I,
5848
MachineBasicBlock::reverse_iterator E) {
5849
// At the end of the function LR dead.
5850
bool Live = false;
5851
for (; I != E; ++I) {
5852
const MachineInstr &MI = *I;
5853
5854
// Check defs of LR.
5855
if (MI.modifiesRegister(ARM::LR, &TRI))
5856
Live = false;
5857
5858
// Check uses of LR.
5859
unsigned Opcode = MI.getOpcode();
5860
if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5861
Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5862
Opcode == ARM::tBXNS_RET) {
5863
// These instructions use LR, but it's not an (explicit or implicit)
5864
// operand.
5865
Live = true;
5866
continue;
5867
}
5868
if (MI.readsRegister(ARM::LR, &TRI))
5869
Live = true;
5870
}
5871
return !Live;
5872
}
5873
5874
std::optional<outliner::OutlinedFunction>
5875
ARMBaseInstrInfo::getOutliningCandidateInfo(
5876
std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5877
unsigned SequenceSize = 0;
5878
for (auto &MI : RepeatedSequenceLocs[0])
5879
SequenceSize += getInstSizeInBytes(MI);
5880
5881
// Properties about candidate MBBs that hold for all of them.
5882
unsigned FlagsSetInAll = 0xF;
5883
5884
// Compute liveness information for each candidate, and set FlagsSetInAll.
5885
const TargetRegisterInfo &TRI = getRegisterInfo();
5886
for (outliner::Candidate &C : RepeatedSequenceLocs)
5887
FlagsSetInAll &= C.Flags;
5888
5889
// According to the ARM Procedure Call Standard, the following are
5890
// undefined on entry/exit from a function call:
5891
//
5892
// * Register R12(IP),
5893
// * Condition codes (and thus the CPSR register)
5894
//
5895
// Since we control the instructions which are part of the outlined regions
5896
// we don't need to be fully compliant with the AAPCS, but we have to
5897
// guarantee that if a veneer is inserted at link time the code is still
5898
// correct. Because of this, we can't outline any sequence of instructions
5899
// where one of these registers is live into/across it. Thus, we need to
5900
// delete those candidates.
5901
auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5902
// If the unsafe registers in this block are all dead, then we don't need
5903
// to compute liveness here.
5904
if (C.Flags & UnsafeRegsDead)
5905
return false;
5906
return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI);
5907
};
5908
5909
// Are there any candidates where those registers are live?
5910
if (!(FlagsSetInAll & UnsafeRegsDead)) {
5911
// Erase every candidate that violates the restrictions above. (It could be
5912
// true that we have viable candidates, so it's not worth bailing out in
5913
// the case that, say, 1 out of 20 candidates violate the restructions.)
5914
llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
5915
5916
// If the sequence doesn't have enough candidates left, then we're done.
5917
if (RepeatedSequenceLocs.size() < 2)
5918
return std::nullopt;
5919
}
5920
5921
// We expect the majority of the outlining candidates to be in consensus with
5922
// regard to return address sign and authentication, and branch target
5923
// enforcement, in other words, partitioning according to all the four
5924
// possible combinations of PAC-RET and BTI is going to yield one big subset
5925
// and three small (likely empty) subsets. That allows us to cull incompatible
5926
// candidates separately for PAC-RET and BTI.
5927
5928
// Partition the candidates in two sets: one with BTI enabled and one with BTI
5929
// disabled. Remove the candidates from the smaller set. If they are the same
5930
// number prefer the non-BTI ones for outlining, since they have less
5931
// overhead.
5932
auto NoBTI =
5933
llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5934
const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5935
return AFI.branchTargetEnforcement();
5936
});
5937
if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) >
5938
std::distance(NoBTI, RepeatedSequenceLocs.end()))
5939
RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end());
5940
else
5941
RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI);
5942
5943
if (RepeatedSequenceLocs.size() < 2)
5944
return std::nullopt;
5945
5946
// Likewise, partition the candidates according to PAC-RET enablement.
5947
auto NoPAC =
5948
llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5949
const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5950
// If the function happens to not spill the LR, do not disqualify it
5951
// from the outlining.
5952
return AFI.shouldSignReturnAddress(true);
5953
});
5954
if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) >
5955
std::distance(NoPAC, RepeatedSequenceLocs.end()))
5956
RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end());
5957
else
5958
RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC);
5959
5960
if (RepeatedSequenceLocs.size() < 2)
5961
return std::nullopt;
5962
5963
// At this point, we have only "safe" candidates to outline. Figure out
5964
// frame + call instruction information.
5965
5966
unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back().getOpcode();
5967
5968
// Helper lambda which sets call information for every candidate.
5969
auto SetCandidateCallInfo =
5970
[&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5971
for (outliner::Candidate &C : RepeatedSequenceLocs)
5972
C.setCallInfo(CallID, NumBytesForCall);
5973
};
5974
5975
OutlinerCosts Costs(Subtarget);
5976
5977
const auto &SomeMFI =
5978
*RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>();
5979
// Adjust costs to account for the BTI instructions.
5980
if (SomeMFI.branchTargetEnforcement()) {
5981
Costs.FrameDefault += 4;
5982
Costs.FrameNoLRSave += 4;
5983
Costs.FrameRegSave += 4;
5984
Costs.FrameTailCall += 4;
5985
Costs.FrameThunk += 4;
5986
}
5987
5988
// Adjust costs to account for sign and authentication instructions.
5989
if (SomeMFI.shouldSignReturnAddress(true)) {
5990
Costs.CallDefault += 8; // +PAC instr, +AUT instr
5991
Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr
5992
}
5993
5994
unsigned FrameID = MachineOutlinerDefault;
5995
unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5996
5997
// If the last instruction in any candidate is a terminator, then we should
5998
// tail call all of the candidates.
5999
if (RepeatedSequenceLocs[0].back().isTerminator()) {
6000
FrameID = MachineOutlinerTailCall;
6001
NumBytesToCreateFrame = Costs.FrameTailCall;
6002
SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
6003
} else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
6004
LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
6005
LastInstrOpcode == ARM::tBLXr ||
6006
LastInstrOpcode == ARM::tBLXr_noip ||
6007
LastInstrOpcode == ARM::tBLXi) {
6008
FrameID = MachineOutlinerThunk;
6009
NumBytesToCreateFrame = Costs.FrameThunk;
6010
SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
6011
} else {
6012
// We need to decide how to emit calls + frames. We can always emit the same
6013
// frame if we don't need to save to the stack. If we have to save to the
6014
// stack, then we need a different frame.
6015
unsigned NumBytesNoStackCalls = 0;
6016
std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
6017
6018
for (outliner::Candidate &C : RepeatedSequenceLocs) {
6019
// LR liveness is overestimated in return blocks, unless they end with a
6020
// tail call.
6021
const auto Last = C.getMBB()->rbegin();
6022
const bool LRIsAvailable =
6023
C.getMBB()->isReturnBlock() && !Last->isCall()
6024
? isLRAvailable(TRI, Last,
6025
(MachineBasicBlock::reverse_iterator)C.begin())
6026
: C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI);
6027
if (LRIsAvailable) {
6028
FrameID = MachineOutlinerNoLRSave;
6029
NumBytesNoStackCalls += Costs.CallNoLRSave;
6030
C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
6031
CandidatesWithoutStackFixups.push_back(C);
6032
}
6033
6034
// Is an unused register available? If so, we won't modify the stack, so
6035
// we can outline with the same frame type as those that don't save LR.
6036
else if (findRegisterToSaveLRTo(C)) {
6037
FrameID = MachineOutlinerRegSave;
6038
NumBytesNoStackCalls += Costs.CallRegSave;
6039
C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
6040
CandidatesWithoutStackFixups.push_back(C);
6041
}
6042
6043
// Is SP used in the sequence at all? If not, we don't have to modify
6044
// the stack, so we are guaranteed to get the same frame.
6045
else if (C.isAvailableInsideSeq(ARM::SP, TRI)) {
6046
NumBytesNoStackCalls += Costs.CallDefault;
6047
C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6048
CandidatesWithoutStackFixups.push_back(C);
6049
}
6050
6051
// If we outline this, we need to modify the stack. Pretend we don't
6052
// outline this by saving all of its bytes.
6053
else
6054
NumBytesNoStackCalls += SequenceSize;
6055
}
6056
6057
// If there are no places where we have to save LR, then note that we don't
6058
// have to update the stack. Otherwise, give every candidate the default
6059
// call type
6060
if (NumBytesNoStackCalls <=
6061
RepeatedSequenceLocs.size() * Costs.CallDefault) {
6062
RepeatedSequenceLocs = CandidatesWithoutStackFixups;
6063
FrameID = MachineOutlinerNoLRSave;
6064
if (RepeatedSequenceLocs.size() < 2)
6065
return std::nullopt;
6066
} else
6067
SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6068
}
6069
6070
// Does every candidate's MBB contain a call? If so, then we might have a
6071
// call in the range.
6072
if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
6073
// check if the range contains a call. These require a save + restore of
6074
// the link register.
6075
outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
6076
if (std::any_of(FirstCand.begin(), std::prev(FirstCand.end()),
6077
[](const MachineInstr &MI) { return MI.isCall(); }))
6078
NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6079
6080
// Handle the last instruction separately. If it is tail call, then the
6081
// last instruction is a call, we don't want to save + restore in this
6082
// case. However, it could be possible that the last instruction is a
6083
// call without it being valid to tail call this sequence. We should
6084
// consider this as well.
6085
else if (FrameID != MachineOutlinerThunk &&
6086
FrameID != MachineOutlinerTailCall && FirstCand.back().isCall())
6087
NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6088
}
6089
6090
return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
6091
NumBytesToCreateFrame, FrameID);
6092
}
6093
6094
bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
6095
int64_t Fixup,
6096
bool Updt) const {
6097
int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP, /*TRI=*/nullptr);
6098
unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
6099
if (SPIdx < 0)
6100
// No SP operand
6101
return true;
6102
else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
6103
// If SP is not the base register we can't do much
6104
return false;
6105
6106
// Stack might be involved but addressing mode doesn't handle any offset.
6107
// Rq: AddrModeT1_[1|2|4] don't operate on SP
6108
if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions
6109
AddrMode == ARMII::AddrMode4 || // Load/Store Multiple
6110
AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple
6111
AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register
6112
AddrMode == ARMII::AddrModeT2_pc || // PCrel access
6113
AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST
6114
AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE
6115
AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE
6116
AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR
6117
AddrMode == ARMII::AddrModeNone ||
6118
AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions
6119
AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm
6120
return false;
6121
6122
unsigned NumOps = MI->getDesc().getNumOperands();
6123
unsigned ImmIdx = NumOps - 3;
6124
6125
const MachineOperand &Offset = MI->getOperand(ImmIdx);
6126
assert(Offset.isImm() && "Is not an immediate");
6127
int64_t OffVal = Offset.getImm();
6128
6129
if (OffVal < 0)
6130
// Don't override data if the are below SP.
6131
return false;
6132
6133
unsigned NumBits = 0;
6134
unsigned Scale = 1;
6135
6136
switch (AddrMode) {
6137
case ARMII::AddrMode3:
6138
if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub)
6139
return false;
6140
OffVal = ARM_AM::getAM3Offset(OffVal);
6141
NumBits = 8;
6142
break;
6143
case ARMII::AddrMode5:
6144
if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub)
6145
return false;
6146
OffVal = ARM_AM::getAM5Offset(OffVal);
6147
NumBits = 8;
6148
Scale = 4;
6149
break;
6150
case ARMII::AddrMode5FP16:
6151
if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub)
6152
return false;
6153
OffVal = ARM_AM::getAM5FP16Offset(OffVal);
6154
NumBits = 8;
6155
Scale = 2;
6156
break;
6157
case ARMII::AddrModeT2_i8pos:
6158
NumBits = 8;
6159
break;
6160
case ARMII::AddrModeT2_i8s4:
6161
// FIXME: Values are already scaled in this addressing mode.
6162
assert((Fixup & 3) == 0 && "Can't encode this offset!");
6163
NumBits = 10;
6164
break;
6165
case ARMII::AddrModeT2_ldrex:
6166
NumBits = 8;
6167
Scale = 4;
6168
break;
6169
case ARMII::AddrModeT2_i12:
6170
case ARMII::AddrMode_i12:
6171
NumBits = 12;
6172
break;
6173
case ARMII::AddrModeT1_s: // SP-relative LD/ST
6174
NumBits = 8;
6175
Scale = 4;
6176
break;
6177
default:
6178
llvm_unreachable("Unsupported addressing mode!");
6179
}
6180
// Make sure the offset is encodable for instructions that scale the
6181
// immediate.
6182
assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
6183
"Can't encode this offset!");
6184
OffVal += Fixup / Scale;
6185
6186
unsigned Mask = (1 << NumBits) - 1;
6187
6188
if (OffVal <= Mask) {
6189
if (Updt)
6190
MI->getOperand(ImmIdx).setImm(OffVal);
6191
return true;
6192
}
6193
6194
return false;
6195
}
6196
6197
void ARMBaseInstrInfo::mergeOutliningCandidateAttributes(
6198
Function &F, std::vector<outliner::Candidate> &Candidates) const {
6199
outliner::Candidate &C = Candidates.front();
6200
// branch-target-enforcement is guaranteed to be consistent between all
6201
// candidates, so we only need to look at one.
6202
const Function &CFn = C.getMF()->getFunction();
6203
if (CFn.hasFnAttribute("branch-target-enforcement"))
6204
F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement"));
6205
6206
ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates);
6207
}
6208
6209
bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
6210
MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
6211
const Function &F = MF.getFunction();
6212
6213
// Can F be deduplicated by the linker? If it can, don't outline from it.
6214
if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
6215
return false;
6216
6217
// Don't outline from functions with section markings; the program could
6218
// expect that all the code is in the named section.
6219
// FIXME: Allow outlining from multiple functions with the same section
6220
// marking.
6221
if (F.hasSection())
6222
return false;
6223
6224
// FIXME: Thumb1 outlining is not handled
6225
if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
6226
return false;
6227
6228
// It's safe to outline from MF.
6229
return true;
6230
}
6231
6232
bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
6233
unsigned &Flags) const {
6234
// Check if LR is available through all of the MBB. If it's not, then set
6235
// a flag.
6236
assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
6237
"Suitable Machine Function for outlining must track liveness");
6238
6239
LiveRegUnits LRU(getRegisterInfo());
6240
6241
for (MachineInstr &MI : llvm::reverse(MBB))
6242
LRU.accumulate(MI);
6243
6244
// Check if each of the unsafe registers are available...
6245
bool R12AvailableInBlock = LRU.available(ARM::R12);
6246
bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
6247
6248
// If all of these are dead (and not live out), we know we don't have to check
6249
// them later.
6250
if (R12AvailableInBlock && CPSRAvailableInBlock)
6251
Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
6252
6253
// Now, add the live outs to the set.
6254
LRU.addLiveOuts(MBB);
6255
6256
// If any of these registers is available in the MBB, but also a live out of
6257
// the block, then we know outlining is unsafe.
6258
if (R12AvailableInBlock && !LRU.available(ARM::R12))
6259
return false;
6260
if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
6261
return false;
6262
6263
// Check if there's a call inside this MachineBasicBlock. If there is, then
6264
// set a flag.
6265
if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
6266
Flags |= MachineOutlinerMBBFlags::HasCalls;
6267
6268
// LR liveness is overestimated in return blocks.
6269
6270
bool LRIsAvailable =
6271
MBB.isReturnBlock() && !MBB.back().isCall()
6272
? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
6273
: LRU.available(ARM::LR);
6274
if (!LRIsAvailable)
6275
Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
6276
6277
return true;
6278
}
6279
6280
outliner::InstrType
6281
ARMBaseInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT,
6282
unsigned Flags) const {
6283
MachineInstr &MI = *MIT;
6284
const TargetRegisterInfo *TRI = &getRegisterInfo();
6285
6286
// PIC instructions contain labels, outlining them would break offset
6287
// computing. unsigned Opc = MI.getOpcode();
6288
unsigned Opc = MI.getOpcode();
6289
if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
6290
Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
6291
Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
6292
Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
6293
Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
6294
Opc == ARM::t2MOV_ga_pcrel)
6295
return outliner::InstrType::Illegal;
6296
6297
// Be conservative with ARMv8.1 MVE instructions.
6298
if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
6299
Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
6300
Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
6301
Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
6302
Opc == ARM::t2LoopEndDec)
6303
return outliner::InstrType::Illegal;
6304
6305
const MCInstrDesc &MCID = MI.getDesc();
6306
uint64_t MIFlags = MCID.TSFlags;
6307
if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
6308
return outliner::InstrType::Illegal;
6309
6310
// Is this a terminator for a basic block?
6311
if (MI.isTerminator())
6312
// TargetInstrInfo::getOutliningType has already filtered out anything
6313
// that would break this, so we can allow it here.
6314
return outliner::InstrType::Legal;
6315
6316
// Don't outline if link register or program counter value are used.
6317
if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
6318
return outliner::InstrType::Illegal;
6319
6320
if (MI.isCall()) {
6321
// Get the function associated with the call. Look at each operand and find
6322
// the one that represents the calle and get its name.
6323
const Function *Callee = nullptr;
6324
for (const MachineOperand &MOP : MI.operands()) {
6325
if (MOP.isGlobal()) {
6326
Callee = dyn_cast<Function>(MOP.getGlobal());
6327
break;
6328
}
6329
}
6330
6331
// Dont't outline calls to "mcount" like functions, in particular Linux
6332
// kernel function tracing relies on it.
6333
if (Callee &&
6334
(Callee->getName() == "\01__gnu_mcount_nc" ||
6335
Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6336
return outliner::InstrType::Illegal;
6337
6338
// If we don't know anything about the callee, assume it depends on the
6339
// stack layout of the caller. In that case, it's only legal to outline
6340
// as a tail-call. Explicitly list the call instructions we know about so
6341
// we don't get unexpected results with call pseudo-instructions.
6342
auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6343
if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6344
Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
6345
Opc == ARM::tBLXi)
6346
UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6347
6348
if (!Callee)
6349
return UnknownCallOutlineType;
6350
6351
// We have a function we have information about. Check if it's something we
6352
// can safely outline.
6353
MachineFunction *MF = MI.getParent()->getParent();
6354
MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6355
6356
// We don't know what's going on with the callee at all. Don't touch it.
6357
if (!CalleeMF)
6358
return UnknownCallOutlineType;
6359
6360
// Check if we know anything about the callee saves on the function. If we
6361
// don't, then don't touch it, since that implies that we haven't computed
6362
// anything about its stack frame yet.
6363
MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6364
if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6365
MFI.getNumObjects() > 0)
6366
return UnknownCallOutlineType;
6367
6368
// At this point, we can say that CalleeMF ought to not pass anything on the
6369
// stack. Therefore, we can outline it.
6370
return outliner::InstrType::Legal;
6371
}
6372
6373
// Since calls are handled, don't touch LR or PC
6374
if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6375
return outliner::InstrType::Illegal;
6376
6377
// Does this use the stack?
6378
if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6379
// True if there is no chance that any outlined candidate from this range
6380
// could require stack fixups. That is, both
6381
// * LR is available in the range (No save/restore around call)
6382
// * The range doesn't include calls (No save/restore in outlined frame)
6383
// are true.
6384
// These conditions also ensure correctness of the return address
6385
// authentication - we insert sign and authentication instructions only if
6386
// we save/restore LR on stack, but then this condition ensures that the
6387
// outlined range does not modify the SP, therefore the SP value used for
6388
// signing is the same as the one used for authentication.
6389
// FIXME: This is very restrictive; the flags check the whole block,
6390
// not just the bit we will try to outline.
6391
bool MightNeedStackFixUp =
6392
(Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6393
MachineOutlinerMBBFlags::HasCalls));
6394
6395
if (!MightNeedStackFixUp)
6396
return outliner::InstrType::Legal;
6397
6398
// Any modification of SP will break our code to save/restore LR.
6399
// FIXME: We could handle some instructions which add a constant offset to
6400
// SP, with a bit more work.
6401
if (MI.modifiesRegister(ARM::SP, TRI))
6402
return outliner::InstrType::Illegal;
6403
6404
// At this point, we have a stack instruction that we might need to fix up.
6405
// up. We'll handle it if it's a load or store.
6406
if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(),
6407
false))
6408
return outliner::InstrType::Legal;
6409
6410
// We can't fix it up, so don't outline it.
6411
return outliner::InstrType::Illegal;
6412
}
6413
6414
// Be conservative with IT blocks.
6415
if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6416
MI.modifiesRegister(ARM::ITSTATE, TRI))
6417
return outliner::InstrType::Illegal;
6418
6419
// Don't outline CFI instructions.
6420
if (MI.isCFIInstruction())
6421
return outliner::InstrType::Illegal;
6422
6423
return outliner::InstrType::Legal;
6424
}
6425
6426
void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
6427
for (MachineInstr &MI : MBB) {
6428
checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true);
6429
}
6430
}
6431
6432
void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6433
MachineBasicBlock::iterator It, bool CFI,
6434
bool Auth) const {
6435
int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8));
6436
unsigned MIFlags = CFI ? MachineInstr::FrameSetup : 0;
6437
assert(Align >= 8 && Align <= 256);
6438
if (Auth) {
6439
assert(Subtarget.isThumb2());
6440
// Compute PAC in R12. Outlining ensures R12 is dead across the outlined
6441
// sequence.
6442
BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)).setMIFlags(MIFlags);
6443
BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP)
6444
.addReg(ARM::R12, RegState::Kill)
6445
.addReg(ARM::LR, RegState::Kill)
6446
.addReg(ARM::SP)
6447
.addImm(-Align)
6448
.add(predOps(ARMCC::AL))
6449
.setMIFlags(MIFlags);
6450
} else {
6451
unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6452
BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6453
.addReg(ARM::LR, RegState::Kill)
6454
.addReg(ARM::SP)
6455
.addImm(-Align)
6456
.add(predOps(ARMCC::AL))
6457
.setMIFlags(MIFlags);
6458
}
6459
6460
if (!CFI)
6461
return;
6462
6463
MachineFunction &MF = *MBB.getParent();
6464
6465
// Add a CFI, saying CFA is offset by Align bytes from SP.
6466
int64_t StackPosEntry =
6467
MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6468
BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6469
.addCFIIndex(StackPosEntry)
6470
.setMIFlags(MachineInstr::FrameSetup);
6471
6472
// Add a CFI saying that the LR that we want to find is now higher than
6473
// before.
6474
int LROffset = Auth ? Align - 4 : Align;
6475
const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6476
unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6477
int64_t LRPosEntry = MF.addFrameInst(
6478
MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset));
6479
BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6480
.addCFIIndex(LRPosEntry)
6481
.setMIFlags(MachineInstr::FrameSetup);
6482
if (Auth) {
6483
// Add a CFI for the location of the return adddress PAC.
6484
unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6485
int64_t RACPosEntry = MF.addFrameInst(
6486
MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align));
6487
BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6488
.addCFIIndex(RACPosEntry)
6489
.setMIFlags(MachineInstr::FrameSetup);
6490
}
6491
}
6492
6493
void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6494
MachineBasicBlock::iterator It,
6495
Register Reg) const {
6496
MachineFunction &MF = *MBB.getParent();
6497
const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6498
unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6499
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6500
6501
int64_t LRPosEntry = MF.addFrameInst(
6502
MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6503
BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6504
.addCFIIndex(LRPosEntry)
6505
.setMIFlags(MachineInstr::FrameSetup);
6506
}
6507
6508
void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB,
6509
MachineBasicBlock::iterator It,
6510
bool CFI, bool Auth) const {
6511
int Align = Subtarget.getStackAlignment().value();
6512
unsigned MIFlags = CFI ? MachineInstr::FrameDestroy : 0;
6513
if (Auth) {
6514
assert(Subtarget.isThumb2());
6515
// Restore return address PAC and LR.
6516
BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST))
6517
.addReg(ARM::R12, RegState::Define)
6518
.addReg(ARM::LR, RegState::Define)
6519
.addReg(ARM::SP, RegState::Define)
6520
.addReg(ARM::SP)
6521
.addImm(Align)
6522
.add(predOps(ARMCC::AL))
6523
.setMIFlags(MIFlags);
6524
// LR authentication is after the CFI instructions, below.
6525
} else {
6526
unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6527
MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6528
.addReg(ARM::SP, RegState::Define)
6529
.addReg(ARM::SP);
6530
if (!Subtarget.isThumb())
6531
MIB.addReg(0);
6532
MIB.addImm(Subtarget.getStackAlignment().value())
6533
.add(predOps(ARMCC::AL))
6534
.setMIFlags(MIFlags);
6535
}
6536
6537
if (CFI) {
6538
// Now stack has moved back up...
6539
MachineFunction &MF = *MBB.getParent();
6540
const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6541
unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6542
int64_t StackPosEntry =
6543
MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6544
BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6545
.addCFIIndex(StackPosEntry)
6546
.setMIFlags(MachineInstr::FrameDestroy);
6547
6548
// ... and we have restored LR.
6549
int64_t LRPosEntry =
6550
MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6551
BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6552
.addCFIIndex(LRPosEntry)
6553
.setMIFlags(MachineInstr::FrameDestroy);
6554
6555
if (Auth) {
6556
unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6557
int64_t Entry =
6558
MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC));
6559
BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6560
.addCFIIndex(Entry)
6561
.setMIFlags(MachineInstr::FrameDestroy);
6562
}
6563
}
6564
6565
if (Auth)
6566
BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT));
6567
}
6568
6569
void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6570
MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6571
MachineFunction &MF = *MBB.getParent();
6572
const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6573
unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6574
6575
int64_t LRPosEntry =
6576
MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6577
BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6578
.addCFIIndex(LRPosEntry)
6579
.setMIFlags(MachineInstr::FrameDestroy);
6580
}
6581
6582
void ARMBaseInstrInfo::buildOutlinedFrame(
6583
MachineBasicBlock &MBB, MachineFunction &MF,
6584
const outliner::OutlinedFunction &OF) const {
6585
// For thunk outlining, rewrite the last instruction from a call to a
6586
// tail-call.
6587
if (OF.FrameConstructionID == MachineOutlinerThunk) {
6588
MachineInstr *Call = &*--MBB.instr_end();
6589
bool isThumb = Subtarget.isThumb();
6590
unsigned FuncOp = isThumb ? 2 : 0;
6591
unsigned Opc = Call->getOperand(FuncOp).isReg()
6592
? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6593
: isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6594
: ARM::tTAILJMPdND
6595
: ARM::TAILJMPd;
6596
MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6597
.add(Call->getOperand(FuncOp));
6598
if (isThumb && !Call->getOperand(FuncOp).isReg())
6599
MIB.add(predOps(ARMCC::AL));
6600
Call->eraseFromParent();
6601
}
6602
6603
// Is there a call in the outlined range?
6604
auto IsNonTailCall = [](MachineInstr &MI) {
6605
return MI.isCall() && !MI.isReturn();
6606
};
6607
if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
6608
MachineBasicBlock::iterator It = MBB.begin();
6609
MachineBasicBlock::iterator Et = MBB.end();
6610
6611
if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6612
OF.FrameConstructionID == MachineOutlinerThunk)
6613
Et = std::prev(MBB.end());
6614
6615
// We have to save and restore LR, we need to add it to the liveins if it
6616
// is not already part of the set. This is suffient since outlined
6617
// functions only have one block.
6618
if (!MBB.isLiveIn(ARM::LR))
6619
MBB.addLiveIn(ARM::LR);
6620
6621
// Insert a save before the outlined region
6622
bool Auth = OF.Candidates.front()
6623
.getMF()
6624
->getInfo<ARMFunctionInfo>()
6625
->shouldSignReturnAddress(true);
6626
saveLROnStack(MBB, It, true, Auth);
6627
6628
// Fix up the instructions in the range, since we're going to modify the
6629
// stack.
6630
assert(OF.FrameConstructionID != MachineOutlinerDefault &&
6631
"Can only fix up stack references once");
6632
fixupPostOutline(MBB);
6633
6634
// Insert a restore before the terminator for the function. Restore LR.
6635
restoreLRFromStack(MBB, Et, true, Auth);
6636
}
6637
6638
// If this is a tail call outlined function, then there's already a return.
6639
if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6640
OF.FrameConstructionID == MachineOutlinerThunk)
6641
return;
6642
6643
// Here we have to insert the return ourselves. Get the correct opcode from
6644
// current feature set.
6645
BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6646
.add(predOps(ARMCC::AL));
6647
6648
// Did we have to modify the stack by saving the link register?
6649
if (OF.FrameConstructionID != MachineOutlinerDefault &&
6650
OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
6651
return;
6652
6653
// We modified the stack.
6654
// Walk over the basic block and fix up all the stack accesses.
6655
fixupPostOutline(MBB);
6656
}
6657
6658
MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6659
Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6660
MachineFunction &MF, outliner::Candidate &C) const {
6661
MachineInstrBuilder MIB;
6662
MachineBasicBlock::iterator CallPt;
6663
unsigned Opc;
6664
bool isThumb = Subtarget.isThumb();
6665
6666
// Are we tail calling?
6667
if (C.CallConstructionID == MachineOutlinerTailCall) {
6668
// If yes, then we can just branch to the label.
6669
Opc = isThumb
6670
? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6671
: ARM::TAILJMPd;
6672
MIB = BuildMI(MF, DebugLoc(), get(Opc))
6673
.addGlobalAddress(M.getNamedValue(MF.getName()));
6674
if (isThumb)
6675
MIB.add(predOps(ARMCC::AL));
6676
It = MBB.insert(It, MIB);
6677
return It;
6678
}
6679
6680
// Create the call instruction.
6681
Opc = isThumb ? ARM::tBL : ARM::BL;
6682
MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6683
if (isThumb)
6684
CallMIB.add(predOps(ARMCC::AL));
6685
CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6686
6687
if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6688
C.CallConstructionID == MachineOutlinerThunk) {
6689
// No, so just insert the call.
6690
It = MBB.insert(It, CallMIB);
6691
return It;
6692
}
6693
6694
const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6695
// Can we save to a register?
6696
if (C.CallConstructionID == MachineOutlinerRegSave) {
6697
Register Reg = findRegisterToSaveLRTo(C);
6698
assert(Reg != 0 && "No callee-saved register available?");
6699
6700
// Save and restore LR from that register.
6701
copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6702
if (!AFI.isLRSpilled())
6703
emitCFIForLRSaveToReg(MBB, It, Reg);
6704
CallPt = MBB.insert(It, CallMIB);
6705
copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6706
if (!AFI.isLRSpilled())
6707
emitCFIForLRRestoreFromReg(MBB, It);
6708
It--;
6709
return CallPt;
6710
}
6711
// We have the default case. Save and restore from SP.
6712
if (!MBB.isLiveIn(ARM::LR))
6713
MBB.addLiveIn(ARM::LR);
6714
bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true);
6715
saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth);
6716
CallPt = MBB.insert(It, CallMIB);
6717
restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth);
6718
It--;
6719
return CallPt;
6720
}
6721
6722
bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6723
MachineFunction &MF) const {
6724
return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6725
}
6726
6727
bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(
6728
const MachineInstr &MI) const {
6729
// Try hard to rematerialize any VCTPs because if we spill P0, it will block
6730
// the tail predication conversion. This means that the element count
6731
// register has to be live for longer, but that has to be better than
6732
// spill/restore and VPT predication.
6733
return (isVCTP(&MI) && !isPredicated(MI)) ||
6734
TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
6735
}
6736
6737
unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
6738
return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
6739
: ARM::BLX;
6740
}
6741
6742
unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
6743
return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
6744
: ARM::tBLXr;
6745
}
6746
6747
unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
6748
return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
6749
: ARM::BLX_pred;
6750
}
6751
6752
namespace {
6753
class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
6754
MachineInstr *EndLoop, *LoopCount;
6755
MachineFunction *MF;
6756
const TargetInstrInfo *TII;
6757
6758
// Bitset[0 .. MAX_STAGES-1] ... iterations needed
6759
// [LAST_IS_USE] : last reference to register in schedule is a use
6760
// [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live
6761
static int constexpr MAX_STAGES = 30;
6762
static int constexpr LAST_IS_USE = MAX_STAGES;
6763
static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1;
6764
typedef std::bitset<MAX_STAGES + 2> IterNeed;
6765
typedef std::map<unsigned, IterNeed> IterNeeds;
6766
6767
void bumpCrossIterationPressure(RegPressureTracker &RPT,
6768
const IterNeeds &CIN);
6769
bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS);
6770
6771
// Meanings of the various stuff with loop types:
6772
// t2Bcc:
6773
// EndLoop = branch at end of original BB that will become a kernel
6774
// LoopCount = CC setter live into branch
6775
// t2LoopEnd:
6776
// EndLoop = branch at end of original BB
6777
// LoopCount = t2LoopDec
6778
public:
6779
ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount)
6780
: EndLoop(EndLoop), LoopCount(LoopCount),
6781
MF(EndLoop->getParent()->getParent()),
6782
TII(MF->getSubtarget().getInstrInfo()) {}
6783
6784
bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
6785
// Only ignore the terminator.
6786
return MI == EndLoop || MI == LoopCount;
6787
}
6788
6789
bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override {
6790
if (tooMuchRegisterPressure(SSD, SMS))
6791
return false;
6792
6793
return true;
6794
}
6795
6796
std::optional<bool> createTripCountGreaterCondition(
6797
int TC, MachineBasicBlock &MBB,
6798
SmallVectorImpl<MachineOperand> &Cond) override {
6799
6800
if (isCondBranchOpcode(EndLoop->getOpcode())) {
6801
Cond.push_back(EndLoop->getOperand(1));
6802
Cond.push_back(EndLoop->getOperand(2));
6803
if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) {
6804
TII->reverseBranchCondition(Cond);
6805
}
6806
return {};
6807
} else if (EndLoop->getOpcode() == ARM::t2LoopEnd) {
6808
// General case just lets the unrolled t2LoopDec do the subtraction and
6809
// therefore just needs to check if zero has been reached.
6810
MachineInstr *LoopDec = nullptr;
6811
for (auto &I : MBB.instrs())
6812
if (I.getOpcode() == ARM::t2LoopDec)
6813
LoopDec = &I;
6814
assert(LoopDec && "Unable to find copied LoopDec");
6815
// Check if we're done with the loop.
6816
BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri))
6817
.addReg(LoopDec->getOperand(0).getReg())
6818
.addImm(0)
6819
.addImm(ARMCC::AL)
6820
.addReg(ARM::NoRegister);
6821
Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ));
6822
Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false));
6823
return {};
6824
} else
6825
llvm_unreachable("Unknown EndLoop");
6826
}
6827
6828
void setPreheader(MachineBasicBlock *NewPreheader) override {}
6829
6830
void adjustTripCount(int TripCountAdjust) override {}
6831
6832
void disposed() override {}
6833
};
6834
6835
void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT,
6836
const IterNeeds &CIN) {
6837
// Increase pressure by the amounts in CrossIterationNeeds
6838
for (const auto &N : CIN) {
6839
int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6840
for (int I = 0; I < Cnt; ++I)
6841
RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(),
6842
LaneBitmask::getAll());
6843
}
6844
// Decrease pressure by the amounts in CrossIterationNeeds
6845
for (const auto &N : CIN) {
6846
int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6847
for (int I = 0; I < Cnt; ++I)
6848
RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(),
6849
LaneBitmask::getNone());
6850
}
6851
}
6852
6853
bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD,
6854
SMSchedule &SMS) {
6855
IterNeeds CrossIterationNeeds;
6856
6857
// Determine which values will be loop-carried after the schedule is
6858
// applied
6859
6860
for (auto &SU : SSD.SUnits) {
6861
const MachineInstr *MI = SU.getInstr();
6862
int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU));
6863
for (auto &S : SU.Succs)
6864
if (MI->isPHI() && S.getKind() == SDep::Anti) {
6865
Register Reg = S.getReg();
6866
if (Reg.isVirtual())
6867
CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed()))
6868
.first->second.set(0);
6869
} else if (S.isAssignedRegDep()) {
6870
int OStg = SMS.stageScheduled(S.getSUnit());
6871
if (OStg >= 0 && OStg != Stg) {
6872
Register Reg = S.getReg();
6873
if (Reg.isVirtual())
6874
CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed()))
6875
.first->second |= ((1 << (OStg - Stg)) - 1);
6876
}
6877
}
6878
}
6879
6880
// Determine more-or-less what the proposed schedule (reversed) is going to
6881
// be; it might not be quite the same because the within-cycle ordering
6882
// created by SMSchedule depends upon changes to help with address offsets and
6883
// the like.
6884
std::vector<SUnit *> ProposedSchedule;
6885
for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle)
6886
for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd;
6887
++Stage) {
6888
std::deque<SUnit *> Instrs =
6889
SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval());
6890
std::sort(Instrs.begin(), Instrs.end(),
6891
[](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; });
6892
for (SUnit *SU : Instrs)
6893
ProposedSchedule.push_back(SU);
6894
}
6895
6896
// Learn whether the last use/def of each cross-iteration register is a use or
6897
// def. If it is a def, RegisterPressure will implicitly increase max pressure
6898
// and we do not have to add the pressure.
6899
for (auto *SU : ProposedSchedule)
6900
for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid();
6901
++OperI) {
6902
auto MO = *OperI;
6903
if (!MO.isReg() || !MO.getReg())
6904
continue;
6905
Register Reg = MO.getReg();
6906
auto CIter = CrossIterationNeeds.find(Reg.id());
6907
if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] ||
6908
CIter->second[SEEN_AS_LIVE])
6909
continue;
6910
if (MO.isDef() && !MO.isDead())
6911
CIter->second.set(SEEN_AS_LIVE);
6912
else if (MO.isUse())
6913
CIter->second.set(LAST_IS_USE);
6914
}
6915
for (auto &CI : CrossIterationNeeds)
6916
CI.second.reset(LAST_IS_USE);
6917
6918
RegionPressure RecRegPressure;
6919
RegPressureTracker RPTracker(RecRegPressure);
6920
RegisterClassInfo RegClassInfo;
6921
RegClassInfo.runOnMachineFunction(*MF);
6922
RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(),
6923
EndLoop->getParent()->end(), false, false);
6924
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
6925
6926
bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
6927
6928
for (auto *SU : ProposedSchedule) {
6929
MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
6930
RPTracker.setPos(std::next(CurInstI));
6931
RPTracker.recede();
6932
6933
// Track what cross-iteration registers would be seen as live
6934
for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) {
6935
auto MO = *OperI;
6936
if (!MO.isReg() || !MO.getReg())
6937
continue;
6938
Register Reg = MO.getReg();
6939
if (MO.isDef() && !MO.isDead()) {
6940
auto CIter = CrossIterationNeeds.find(Reg.id());
6941
if (CIter != CrossIterationNeeds.end()) {
6942
CIter->second.reset(0);
6943
CIter->second.reset(SEEN_AS_LIVE);
6944
}
6945
}
6946
}
6947
for (auto &S : SU->Preds) {
6948
auto Stg = SMS.stageScheduled(SU);
6949
if (S.isAssignedRegDep()) {
6950
Register Reg = S.getReg();
6951
auto CIter = CrossIterationNeeds.find(Reg.id());
6952
if (CIter != CrossIterationNeeds.end()) {
6953
auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit()));
6954
assert(Stg2 <= Stg && "Data dependence upon earlier stage");
6955
if (Stg - Stg2 < MAX_STAGES)
6956
CIter->second.set(Stg - Stg2);
6957
CIter->second.set(SEEN_AS_LIVE);
6958
}
6959
}
6960
}
6961
6962
bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
6963
}
6964
6965
auto &P = RPTracker.getPressure().MaxSetPressure;
6966
for (unsigned I = 0, E = P.size(); I < E; ++I)
6967
if (P[I] > TRI->getRegPressureSetLimit(*MF, I)) {
6968
return true;
6969
}
6970
return false;
6971
}
6972
6973
} // namespace
6974
6975
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
6976
ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
6977
MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
6978
MachineBasicBlock *Preheader = *LoopBB->pred_begin();
6979
if (Preheader == LoopBB)
6980
Preheader = *std::next(LoopBB->pred_begin());
6981
6982
if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) {
6983
// If the branch is a Bcc, then the CPSR should be set somewhere within the
6984
// block. We need to determine the reaching definition of CPSR so that
6985
// it can be marked as non-pipelineable, allowing the pipeliner to force
6986
// it into stage 0 or give up if it cannot or will not do so.
6987
MachineInstr *CCSetter = nullptr;
6988
for (auto &L : LoopBB->instrs()) {
6989
if (L.isCall())
6990
return nullptr;
6991
if (isCPSRDefined(L))
6992
CCSetter = &L;
6993
}
6994
if (CCSetter)
6995
return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter);
6996
else
6997
return nullptr; // Unable to find the CC setter, so unable to guarantee
6998
// that pipeline will work
6999
}
7000
7001
// Recognize:
7002
// preheader:
7003
// %1 = t2DoopLoopStart %0
7004
// loop:
7005
// %2 = phi %1, <not loop>, %..., %loop
7006
// %3 = t2LoopDec %2, <imm>
7007
// t2LoopEnd %3, %loop
7008
7009
if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) {
7010
for (auto &L : LoopBB->instrs())
7011
if (L.isCall())
7012
return nullptr;
7013
else if (isVCTP(&L))
7014
return nullptr;
7015
Register LoopDecResult = I->getOperand(0).getReg();
7016
MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo();
7017
MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult);
7018
if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec)
7019
return nullptr;
7020
MachineInstr *LoopStart = nullptr;
7021
for (auto &J : Preheader->instrs())
7022
if (J.getOpcode() == ARM::t2DoLoopStart)
7023
LoopStart = &J;
7024
if (!LoopStart)
7025
return nullptr;
7026
return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec);
7027
}
7028
return nullptr;
7029
}
7030
7031