Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp
35294 views
1
//===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains a pass that splits the constant pool up into 'islands'
10
// which are scattered through-out the function. This is required due to the
11
// limited pc-relative displacements that ARM has.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "ARM.h"
16
#include "ARMBaseInstrInfo.h"
17
#include "ARMBasicBlockInfo.h"
18
#include "ARMMachineFunctionInfo.h"
19
#include "ARMSubtarget.h"
20
#include "MCTargetDesc/ARMBaseInfo.h"
21
#include "MVETailPredUtils.h"
22
#include "Thumb2InstrInfo.h"
23
#include "Utils/ARMBaseInfo.h"
24
#include "llvm/ADT/DenseMap.h"
25
#include "llvm/ADT/STLExtras.h"
26
#include "llvm/ADT/SmallSet.h"
27
#include "llvm/ADT/SmallVector.h"
28
#include "llvm/ADT/Statistic.h"
29
#include "llvm/ADT/StringRef.h"
30
#include "llvm/CodeGen/LivePhysRegs.h"
31
#include "llvm/CodeGen/MachineBasicBlock.h"
32
#include "llvm/CodeGen/MachineConstantPool.h"
33
#include "llvm/CodeGen/MachineDominators.h"
34
#include "llvm/CodeGen/MachineFunction.h"
35
#include "llvm/CodeGen/MachineFunctionPass.h"
36
#include "llvm/CodeGen/MachineInstr.h"
37
#include "llvm/CodeGen/MachineJumpTableInfo.h"
38
#include "llvm/CodeGen/MachineOperand.h"
39
#include "llvm/CodeGen/MachineRegisterInfo.h"
40
#include "llvm/Config/llvm-config.h"
41
#include "llvm/IR/DataLayout.h"
42
#include "llvm/IR/DebugLoc.h"
43
#include "llvm/MC/MCInstrDesc.h"
44
#include "llvm/Pass.h"
45
#include "llvm/Support/CommandLine.h"
46
#include "llvm/Support/Compiler.h"
47
#include "llvm/Support/Debug.h"
48
#include "llvm/Support/ErrorHandling.h"
49
#include "llvm/Support/Format.h"
50
#include "llvm/Support/MathExtras.h"
51
#include "llvm/Support/raw_ostream.h"
52
#include <algorithm>
53
#include <cassert>
54
#include <cstdint>
55
#include <iterator>
56
#include <utility>
57
#include <vector>
58
59
using namespace llvm;
60
61
#define DEBUG_TYPE "arm-cp-islands"
62
63
#define ARM_CP_ISLANDS_OPT_NAME \
64
"ARM constant island placement and branch shortening pass"
65
STATISTIC(NumCPEs, "Number of constpool entries");
66
STATISTIC(NumSplit, "Number of uncond branches inserted");
67
STATISTIC(NumCBrFixed, "Number of cond branches fixed");
68
STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
69
STATISTIC(NumTBs, "Number of table branches generated");
70
STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
71
STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
72
STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
73
STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
74
STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
75
STATISTIC(NumLEInserted, "Number of LE backwards branches inserted");
76
77
static cl::opt<bool>
78
AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
79
cl::desc("Adjust basic block layout to better use TB[BH]"));
80
81
static cl::opt<unsigned>
82
CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
83
cl::desc("The max number of iteration for converge"));
84
85
static cl::opt<bool> SynthesizeThumb1TBB(
86
"arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
87
cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
88
"equivalent to the TBB/TBH instructions"));
89
90
namespace {
91
92
/// ARMConstantIslands - Due to limited PC-relative displacements, ARM
93
/// requires constant pool entries to be scattered among the instructions
94
/// inside a function. To do this, it completely ignores the normal LLVM
95
/// constant pool; instead, it places constants wherever it feels like with
96
/// special instructions.
97
///
98
/// The terminology used in this pass includes:
99
/// Islands - Clumps of constants placed in the function.
100
/// Water - Potential places where an island could be formed.
101
/// CPE - A constant pool entry that has been placed somewhere, which
102
/// tracks a list of users.
103
class ARMConstantIslands : public MachineFunctionPass {
104
std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
105
106
/// WaterList - A sorted list of basic blocks where islands could be placed
107
/// (i.e. blocks that don't fall through to the following block, due
108
/// to a return, unreachable, or unconditional branch).
109
std::vector<MachineBasicBlock*> WaterList;
110
111
/// NewWaterList - The subset of WaterList that was created since the
112
/// previous iteration by inserting unconditional branches.
113
SmallSet<MachineBasicBlock*, 4> NewWaterList;
114
115
using water_iterator = std::vector<MachineBasicBlock *>::iterator;
116
117
/// CPUser - One user of a constant pool, keeping the machine instruction
118
/// pointer, the constant pool being referenced, and the max displacement
119
/// allowed from the instruction to the CP. The HighWaterMark records the
120
/// highest basic block where a new CPEntry can be placed. To ensure this
121
/// pass terminates, the CP entries are initially placed at the end of the
122
/// function and then move monotonically to lower addresses. The
123
/// exception to this rule is when the current CP entry for a particular
124
/// CPUser is out of range, but there is another CP entry for the same
125
/// constant value in range. We want to use the existing in-range CP
126
/// entry, but if it later moves out of range, the search for new water
127
/// should resume where it left off. The HighWaterMark is used to record
128
/// that point.
129
struct CPUser {
130
MachineInstr *MI;
131
MachineInstr *CPEMI;
132
MachineBasicBlock *HighWaterMark;
133
unsigned MaxDisp;
134
bool NegOk;
135
bool IsSoImm;
136
bool KnownAlignment = false;
137
138
CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
139
bool neg, bool soimm)
140
: MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
141
HighWaterMark = CPEMI->getParent();
142
}
143
144
/// getMaxDisp - Returns the maximum displacement supported by MI.
145
/// Correct for unknown alignment.
146
/// Conservatively subtract 2 bytes to handle weird alignment effects.
147
unsigned getMaxDisp() const {
148
return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
149
}
150
};
151
152
/// CPUsers - Keep track of all of the machine instructions that use various
153
/// constant pools and their max displacement.
154
std::vector<CPUser> CPUsers;
155
156
/// CPEntry - One per constant pool entry, keeping the machine instruction
157
/// pointer, the constpool index, and the number of CPUser's which
158
/// reference this entry.
159
struct CPEntry {
160
MachineInstr *CPEMI;
161
unsigned CPI;
162
unsigned RefCount;
163
164
CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
165
: CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
166
};
167
168
/// CPEntries - Keep track of all of the constant pool entry machine
169
/// instructions. For each original constpool index (i.e. those that existed
170
/// upon entry to this pass), it keeps a vector of entries. Original
171
/// elements are cloned as we go along; the clones are put in the vector of
172
/// the original element, but have distinct CPIs.
173
///
174
/// The first half of CPEntries contains generic constants, the second half
175
/// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
176
/// which vector it will be in here.
177
std::vector<std::vector<CPEntry>> CPEntries;
178
179
/// Maps a JT index to the offset in CPEntries containing copies of that
180
/// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
181
DenseMap<int, int> JumpTableEntryIndices;
182
183
/// Maps a JT index to the LEA that actually uses the index to calculate its
184
/// base address.
185
DenseMap<int, int> JumpTableUserIndices;
186
187
// Maps a MachineBasicBlock to the number of jump tables entries.
188
DenseMap<const MachineBasicBlock *, int> BlockJumpTableRefCount;
189
190
/// ImmBranch - One per immediate branch, keeping the machine instruction
191
/// pointer, conditional or unconditional, the max displacement,
192
/// and (if isCond is true) the corresponding unconditional branch
193
/// opcode.
194
struct ImmBranch {
195
MachineInstr *MI;
196
unsigned MaxDisp : 31;
197
bool isCond : 1;
198
unsigned UncondBr;
199
200
ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
201
: MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
202
};
203
204
/// ImmBranches - Keep track of all the immediate branch instructions.
205
std::vector<ImmBranch> ImmBranches;
206
207
/// PushPopMIs - Keep track of all the Thumb push / pop instructions.
208
SmallVector<MachineInstr*, 4> PushPopMIs;
209
210
/// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
211
SmallVector<MachineInstr*, 4> T2JumpTables;
212
213
MachineFunction *MF;
214
MachineConstantPool *MCP;
215
const ARMBaseInstrInfo *TII;
216
const ARMSubtarget *STI;
217
ARMFunctionInfo *AFI;
218
MachineDominatorTree *DT = nullptr;
219
bool isThumb;
220
bool isThumb1;
221
bool isThumb2;
222
bool isPositionIndependentOrROPI;
223
224
public:
225
static char ID;
226
227
ARMConstantIslands() : MachineFunctionPass(ID) {}
228
229
bool runOnMachineFunction(MachineFunction &MF) override;
230
231
void getAnalysisUsage(AnalysisUsage &AU) const override {
232
AU.addRequired<MachineDominatorTreeWrapperPass>();
233
MachineFunctionPass::getAnalysisUsage(AU);
234
}
235
236
MachineFunctionProperties getRequiredProperties() const override {
237
return MachineFunctionProperties().set(
238
MachineFunctionProperties::Property::NoVRegs);
239
}
240
241
StringRef getPassName() const override {
242
return ARM_CP_ISLANDS_OPT_NAME;
243
}
244
245
private:
246
void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
247
void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
248
bool BBHasFallthrough(MachineBasicBlock *MBB);
249
CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
250
Align getCPEAlign(const MachineInstr *CPEMI);
251
void scanFunctionJumpTables();
252
void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
253
MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
254
void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
255
bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
256
unsigned getCombinedIndex(const MachineInstr *CPEMI);
257
int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
258
bool findAvailableWater(CPUser&U, unsigned UserOffset,
259
water_iterator &WaterIter, bool CloserWater);
260
void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
261
MachineBasicBlock *&NewMBB);
262
bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
263
void removeDeadCPEMI(MachineInstr *CPEMI);
264
bool removeUnusedCPEntries();
265
bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
266
MachineInstr *CPEMI, unsigned Disp, bool NegOk,
267
bool DoDump = false);
268
bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
269
CPUser &U, unsigned &Growth);
270
bool fixupImmediateBr(ImmBranch &Br);
271
bool fixupConditionalBr(ImmBranch &Br);
272
bool fixupUnconditionalBr(ImmBranch &Br);
273
bool optimizeThumb2Instructions();
274
bool optimizeThumb2Branches();
275
bool reorderThumb2JumpTables();
276
bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
277
unsigned &DeadSize, bool &CanDeleteLEA,
278
bool &BaseRegKill);
279
bool optimizeThumb2JumpTables();
280
MachineBasicBlock *adjustJTTargetBlockForward(unsigned JTI,
281
MachineBasicBlock *BB,
282
MachineBasicBlock *JTBB);
283
284
unsigned getUserOffset(CPUser&) const;
285
void dumpBBs();
286
void verify();
287
288
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
289
unsigned Disp, bool NegativeOK, bool IsSoImm = false);
290
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
291
const CPUser &U) {
292
return isOffsetInRange(UserOffset, TrialOffset,
293
U.getMaxDisp(), U.NegOk, U.IsSoImm);
294
}
295
};
296
297
} // end anonymous namespace
298
299
char ARMConstantIslands::ID = 0;
300
301
/// verify - check BBOffsets, BBSizes, alignment of islands
302
void ARMConstantIslands::verify() {
303
#ifndef NDEBUG
304
BBInfoVector &BBInfo = BBUtils->getBBInfo();
305
assert(is_sorted(*MF, [&BBInfo](const MachineBasicBlock &LHS,
306
const MachineBasicBlock &RHS) {
307
return BBInfo[LHS.getNumber()].postOffset() <
308
BBInfo[RHS.getNumber()].postOffset();
309
}));
310
LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
311
for (CPUser &U : CPUsers) {
312
unsigned UserOffset = getUserOffset(U);
313
// Verify offset using the real max displacement without the safety
314
// adjustment.
315
if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
316
/* DoDump = */ true)) {
317
LLVM_DEBUG(dbgs() << "OK\n");
318
continue;
319
}
320
LLVM_DEBUG(dbgs() << "Out of range.\n");
321
dumpBBs();
322
LLVM_DEBUG(MF->dump());
323
llvm_unreachable("Constant pool entry out of range!");
324
}
325
#endif
326
}
327
328
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
329
/// print block size and offset information - debugging
330
LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
331
LLVM_DEBUG({
332
BBInfoVector &BBInfo = BBUtils->getBBInfo();
333
for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
334
const BasicBlockInfo &BBI = BBInfo[J];
335
dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
336
<< " kb=" << unsigned(BBI.KnownBits)
337
<< " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign)
338
<< format(" size=%#x\n", BBInfo[J].Size);
339
}
340
});
341
}
342
#endif
343
344
// Align blocks where the previous block does not fall through. This may add
345
// extra NOP's but they will not be executed. It uses the PrefLoopAlignment as a
346
// measure of how much to align, and only runs at CodeGenOptLevel::Aggressive.
347
static bool AlignBlocks(MachineFunction *MF, const ARMSubtarget *STI) {
348
if (MF->getTarget().getOptLevel() != CodeGenOptLevel::Aggressive ||
349
MF->getFunction().hasOptSize())
350
return false;
351
352
auto *TLI = STI->getTargetLowering();
353
const Align Alignment = TLI->getPrefLoopAlignment();
354
if (Alignment < 4)
355
return false;
356
357
bool Changed = false;
358
bool PrevCanFallthough = true;
359
for (auto &MBB : *MF) {
360
if (!PrevCanFallthough) {
361
Changed = true;
362
MBB.setAlignment(Alignment);
363
}
364
365
PrevCanFallthough = MBB.canFallThrough();
366
367
// For LOB's, the ARMLowOverheadLoops pass may remove the unconditional
368
// branch later in the pipeline.
369
if (STI->hasLOB()) {
370
for (const auto &MI : reverse(MBB.terminators())) {
371
if (MI.getOpcode() == ARM::t2B &&
372
MI.getOperand(0).getMBB() == MBB.getNextNode())
373
continue;
374
if (isLoopStart(MI) || MI.getOpcode() == ARM::t2LoopEnd ||
375
MI.getOpcode() == ARM::t2LoopEndDec) {
376
PrevCanFallthough = true;
377
break;
378
}
379
// Any other terminator - nothing to do
380
break;
381
}
382
}
383
}
384
385
return Changed;
386
}
387
388
bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
389
MF = &mf;
390
MCP = mf.getConstantPool();
391
BBUtils = std::make_unique<ARMBasicBlockUtils>(mf);
392
393
LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
394
<< MCP->getConstants().size() << " CP entries, aligned to "
395
<< MCP->getConstantPoolAlign().value() << " bytes *****\n");
396
397
STI = &MF->getSubtarget<ARMSubtarget>();
398
TII = STI->getInstrInfo();
399
isPositionIndependentOrROPI =
400
STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
401
AFI = MF->getInfo<ARMFunctionInfo>();
402
DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
403
404
isThumb = AFI->isThumbFunction();
405
isThumb1 = AFI->isThumb1OnlyFunction();
406
isThumb2 = AFI->isThumb2Function();
407
408
bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
409
// TBB generation code in this constant island pass has not been adapted to
410
// deal with speculation barriers.
411
if (STI->hardenSlsRetBr())
412
GenerateTBB = false;
413
414
// Renumber all of the machine basic blocks in the function, guaranteeing that
415
// the numbers agree with the position of the block in the function.
416
MF->RenumberBlocks();
417
418
// Try to reorder and otherwise adjust the block layout to make good use
419
// of the TB[BH] instructions.
420
bool MadeChange = false;
421
if (GenerateTBB && AdjustJumpTableBlocks) {
422
scanFunctionJumpTables();
423
MadeChange |= reorderThumb2JumpTables();
424
// Data is out of date, so clear it. It'll be re-computed later.
425
T2JumpTables.clear();
426
// Blocks may have shifted around. Keep the numbering up to date.
427
MF->RenumberBlocks();
428
}
429
430
// Align any non-fallthrough blocks
431
MadeChange |= AlignBlocks(MF, STI);
432
433
// Perform the initial placement of the constant pool entries. To start with,
434
// we put them all at the end of the function.
435
std::vector<MachineInstr*> CPEMIs;
436
if (!MCP->isEmpty())
437
doInitialConstPlacement(CPEMIs);
438
439
if (MF->getJumpTableInfo())
440
doInitialJumpTablePlacement(CPEMIs);
441
442
/// The next UID to take is the first unused one.
443
AFI->initPICLabelUId(CPEMIs.size());
444
445
// Do the initial scan of the function, building up information about the
446
// sizes of each block, the location of all the water, and finding all of the
447
// constant pool users.
448
initializeFunctionInfo(CPEMIs);
449
CPEMIs.clear();
450
LLVM_DEBUG(dumpBBs());
451
452
// Functions with jump tables need an alignment of 4 because they use the ADR
453
// instruction, which aligns the PC to 4 bytes before adding an offset.
454
if (!T2JumpTables.empty())
455
MF->ensureAlignment(Align(4));
456
457
/// Remove dead constant pool entries.
458
MadeChange |= removeUnusedCPEntries();
459
460
// Iteratively place constant pool entries and fix up branches until there
461
// is no change.
462
unsigned NoCPIters = 0, NoBRIters = 0;
463
while (true) {
464
LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
465
bool CPChange = false;
466
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
467
// For most inputs, it converges in no more than 5 iterations.
468
// If it doesn't end in 10, the input may have huge BB or many CPEs.
469
// In this case, we will try different heuristics.
470
CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
471
if (CPChange && ++NoCPIters > CPMaxIteration)
472
report_fatal_error("Constant Island pass failed to converge!");
473
LLVM_DEBUG(dumpBBs());
474
475
// Clear NewWaterList now. If we split a block for branches, it should
476
// appear as "new water" for the next iteration of constant pool placement.
477
NewWaterList.clear();
478
479
LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
480
bool BRChange = false;
481
for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
482
BRChange |= fixupImmediateBr(ImmBranches[i]);
483
if (BRChange && ++NoBRIters > 30)
484
report_fatal_error("Branch Fix Up pass failed to converge!");
485
LLVM_DEBUG(dumpBBs());
486
487
if (!CPChange && !BRChange)
488
break;
489
MadeChange = true;
490
}
491
492
// Shrink 32-bit Thumb2 load and store instructions.
493
if (isThumb2 && !STI->prefers32BitThumb())
494
MadeChange |= optimizeThumb2Instructions();
495
496
// Shrink 32-bit branch instructions.
497
if (isThumb && STI->hasV8MBaselineOps())
498
MadeChange |= optimizeThumb2Branches();
499
500
// Optimize jump tables using TBB / TBH.
501
if (GenerateTBB && !STI->genExecuteOnly())
502
MadeChange |= optimizeThumb2JumpTables();
503
504
// After a while, this might be made debug-only, but it is not expensive.
505
verify();
506
507
// Save the mapping between original and cloned constpool entries.
508
for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
509
for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
510
const CPEntry & CPE = CPEntries[i][j];
511
if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
512
AFI->recordCPEClone(i, CPE.CPI);
513
}
514
}
515
516
LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
517
518
BBUtils->clear();
519
WaterList.clear();
520
CPUsers.clear();
521
CPEntries.clear();
522
JumpTableEntryIndices.clear();
523
JumpTableUserIndices.clear();
524
BlockJumpTableRefCount.clear();
525
ImmBranches.clear();
526
PushPopMIs.clear();
527
T2JumpTables.clear();
528
529
return MadeChange;
530
}
531
532
/// Perform the initial placement of the regular constant pool entries.
533
/// To start with, we put them all at the end of the function.
534
void
535
ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
536
// Create the basic block to hold the CPE's.
537
MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
538
MF->push_back(BB);
539
540
// MachineConstantPool measures alignment in bytes.
541
const Align MaxAlign = MCP->getConstantPoolAlign();
542
const unsigned MaxLogAlign = Log2(MaxAlign);
543
544
// Mark the basic block as required by the const-pool.
545
BB->setAlignment(MaxAlign);
546
547
// The function needs to be as aligned as the basic blocks. The linker may
548
// move functions around based on their alignment.
549
// Special case: halfword literals still need word alignment on the function.
550
Align FuncAlign = MaxAlign;
551
if (MaxAlign == 2)
552
FuncAlign = Align(4);
553
MF->ensureAlignment(FuncAlign);
554
555
// Order the entries in BB by descending alignment. That ensures correct
556
// alignment of all entries as long as BB is sufficiently aligned. Keep
557
// track of the insertion point for each alignment. We are going to bucket
558
// sort the entries as they are created.
559
SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1,
560
BB->end());
561
562
// Add all of the constants from the constant pool to the end block, use an
563
// identity mapping of CPI's to CPE's.
564
const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
565
566
const DataLayout &TD = MF->getDataLayout();
567
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
568
unsigned Size = CPs[i].getSizeInBytes(TD);
569
Align Alignment = CPs[i].getAlign();
570
// Verify that all constant pool entries are a multiple of their alignment.
571
// If not, we would have to pad them out so that instructions stay aligned.
572
assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!");
573
574
// Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
575
unsigned LogAlign = Log2(Alignment);
576
MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
577
MachineInstr *CPEMI =
578
BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
579
.addImm(i).addConstantPoolIndex(i).addImm(Size);
580
CPEMIs.push_back(CPEMI);
581
582
// Ensure that future entries with higher alignment get inserted before
583
// CPEMI. This is bucket sort with iterators.
584
for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a)
585
if (InsPoint[a] == InsAt)
586
InsPoint[a] = CPEMI;
587
588
// Add a new CPEntry, but no corresponding CPUser yet.
589
CPEntries.emplace_back(1, CPEntry(CPEMI, i));
590
++NumCPEs;
591
LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
592
<< Size << ", align = " << Alignment.value() << '\n');
593
}
594
LLVM_DEBUG(BB->dump());
595
}
596
597
/// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
598
/// instructions can be made more efficient if the jump table immediately
599
/// follows the instruction, it's best to place them immediately next to their
600
/// jumps to begin with. In almost all cases they'll never be moved from that
601
/// position.
602
void ARMConstantIslands::doInitialJumpTablePlacement(
603
std::vector<MachineInstr *> &CPEMIs) {
604
unsigned i = CPEntries.size();
605
auto MJTI = MF->getJumpTableInfo();
606
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
607
608
// Only inline jump tables are placed in the function.
609
if (MJTI->getEntryKind() != MachineJumpTableInfo::EK_Inline)
610
return;
611
612
MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
613
for (MachineBasicBlock &MBB : *MF) {
614
auto MI = MBB.getLastNonDebugInstr();
615
// Look past potential SpeculationBarriers at end of BB.
616
while (MI != MBB.end() &&
617
(isSpeculationBarrierEndBBOpcode(MI->getOpcode()) ||
618
MI->isDebugInstr()))
619
--MI;
620
621
if (MI == MBB.end())
622
continue;
623
624
unsigned JTOpcode;
625
switch (MI->getOpcode()) {
626
default:
627
continue;
628
case ARM::BR_JTadd:
629
case ARM::BR_JTr:
630
case ARM::tBR_JTr:
631
case ARM::BR_JTm_i12:
632
case ARM::BR_JTm_rs:
633
// These instructions are emitted only in ARM or Thumb1 modes which do not
634
// support PACBTI. Hence we don't add BTI instructions in the destination
635
// blocks.
636
assert(!MF->getInfo<ARMFunctionInfo>()->branchTargetEnforcement() &&
637
"Branch protection must not be enabled for Arm or Thumb1 modes");
638
JTOpcode = ARM::JUMPTABLE_ADDRS;
639
break;
640
case ARM::t2BR_JT:
641
JTOpcode = ARM::JUMPTABLE_INSTS;
642
break;
643
case ARM::tTBB_JT:
644
case ARM::t2TBB_JT:
645
JTOpcode = ARM::JUMPTABLE_TBB;
646
break;
647
case ARM::tTBH_JT:
648
case ARM::t2TBH_JT:
649
JTOpcode = ARM::JUMPTABLE_TBH;
650
break;
651
}
652
653
unsigned NumOps = MI->getDesc().getNumOperands();
654
MachineOperand JTOp =
655
MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
656
unsigned JTI = JTOp.getIndex();
657
unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
658
MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
659
MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
660
MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
661
DebugLoc(), TII->get(JTOpcode))
662
.addImm(i++)
663
.addJumpTableIndex(JTI)
664
.addImm(Size);
665
CPEMIs.push_back(CPEMI);
666
CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
667
JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
668
if (!LastCorrectlyNumberedBB)
669
LastCorrectlyNumberedBB = &MBB;
670
}
671
672
// If we did anything then we need to renumber the subsequent blocks.
673
if (LastCorrectlyNumberedBB)
674
MF->RenumberBlocks(LastCorrectlyNumberedBB);
675
}
676
677
/// BBHasFallthrough - Return true if the specified basic block can fallthrough
678
/// into the block immediately after it.
679
bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
680
// Get the next machine basic block in the function.
681
MachineFunction::iterator MBBI = MBB->getIterator();
682
// Can't fall off end of function.
683
if (std::next(MBBI) == MBB->getParent()->end())
684
return false;
685
686
MachineBasicBlock *NextBB = &*std::next(MBBI);
687
if (!MBB->isSuccessor(NextBB))
688
return false;
689
690
// Try to analyze the end of the block. A potential fallthrough may already
691
// have an unconditional branch for whatever reason.
692
MachineBasicBlock *TBB, *FBB;
693
SmallVector<MachineOperand, 4> Cond;
694
bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
695
return TooDifficult || FBB == nullptr;
696
}
697
698
/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
699
/// look up the corresponding CPEntry.
700
ARMConstantIslands::CPEntry *
701
ARMConstantIslands::findConstPoolEntry(unsigned CPI,
702
const MachineInstr *CPEMI) {
703
std::vector<CPEntry> &CPEs = CPEntries[CPI];
704
// Number of entries per constpool index should be small, just do a
705
// linear search.
706
for (CPEntry &CPE : CPEs)
707
if (CPE.CPEMI == CPEMI)
708
return &CPE;
709
return nullptr;
710
}
711
712
/// getCPEAlign - Returns the required alignment of the constant pool entry
713
/// represented by CPEMI.
714
Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) {
715
switch (CPEMI->getOpcode()) {
716
case ARM::CONSTPOOL_ENTRY:
717
break;
718
case ARM::JUMPTABLE_TBB:
719
return isThumb1 ? Align(4) : Align(1);
720
case ARM::JUMPTABLE_TBH:
721
return isThumb1 ? Align(4) : Align(2);
722
case ARM::JUMPTABLE_INSTS:
723
return Align(2);
724
case ARM::JUMPTABLE_ADDRS:
725
return Align(4);
726
default:
727
llvm_unreachable("unknown constpool entry kind");
728
}
729
730
unsigned CPI = getCombinedIndex(CPEMI);
731
assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
732
return MCP->getConstants()[CPI].getAlign();
733
}
734
735
// Exception landing pads, blocks that has their adress taken, and function
736
// entry blocks will always be (potential) indirect jump targets, regardless of
737
// whether they are referenced by or not by jump tables.
738
static bool isAlwaysIndirectTarget(const MachineBasicBlock &MBB) {
739
return MBB.isEHPad() || MBB.hasAddressTaken() ||
740
&MBB == &MBB.getParent()->front();
741
}
742
743
/// scanFunctionJumpTables - Do a scan of the function, building up
744
/// information about the sizes of each block and the locations of all
745
/// the jump tables.
746
void ARMConstantIslands::scanFunctionJumpTables() {
747
for (MachineBasicBlock &MBB : *MF) {
748
for (MachineInstr &I : MBB)
749
if (I.isBranch() &&
750
(I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
751
T2JumpTables.push_back(&I);
752
}
753
754
if (!MF->getInfo<ARMFunctionInfo>()->branchTargetEnforcement())
755
return;
756
757
if (const MachineJumpTableInfo *JTI = MF->getJumpTableInfo())
758
for (const MachineJumpTableEntry &JTE : JTI->getJumpTables())
759
for (const MachineBasicBlock *MBB : JTE.MBBs) {
760
if (isAlwaysIndirectTarget(*MBB))
761
// Set the reference count essentially to infinity, it will never
762
// reach zero and the BTI Instruction will never be removed.
763
BlockJumpTableRefCount[MBB] = std::numeric_limits<int>::max();
764
else
765
++BlockJumpTableRefCount[MBB];
766
}
767
}
768
769
/// initializeFunctionInfo - Do the initial scan of the function, building up
770
/// information about the sizes of each block, the location of all the water,
771
/// and finding all of the constant pool users.
772
void ARMConstantIslands::
773
initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
774
775
BBUtils->computeAllBlockSizes();
776
BBInfoVector &BBInfo = BBUtils->getBBInfo();
777
// The known bits of the entry block offset are determined by the function
778
// alignment.
779
BBInfo.front().KnownBits = Log2(MF->getAlignment());
780
781
// Compute block offsets and known bits.
782
BBUtils->adjustBBOffsetsAfter(&MF->front());
783
784
// We only care about jump table instructions when jump tables are inline.
785
MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
786
bool InlineJumpTables =
787
MJTI && MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline;
788
789
// Now go back through the instructions and build up our data structures.
790
for (MachineBasicBlock &MBB : *MF) {
791
// If this block doesn't fall through into the next MBB, then this is
792
// 'water' that a constant pool island could be placed.
793
if (!BBHasFallthrough(&MBB))
794
WaterList.push_back(&MBB);
795
796
for (MachineInstr &I : MBB) {
797
if (I.isDebugInstr())
798
continue;
799
800
unsigned Opc = I.getOpcode();
801
if (I.isBranch()) {
802
bool isCond = false;
803
unsigned Bits = 0;
804
unsigned Scale = 1;
805
int UOpc = Opc;
806
switch (Opc) {
807
default:
808
continue; // Ignore other JT branches
809
case ARM::t2BR_JT:
810
case ARM::tBR_JTr:
811
if (InlineJumpTables)
812
T2JumpTables.push_back(&I);
813
continue; // Does not get an entry in ImmBranches
814
case ARM::Bcc:
815
isCond = true;
816
UOpc = ARM::B;
817
[[fallthrough]];
818
case ARM::B:
819
Bits = 24;
820
Scale = 4;
821
break;
822
case ARM::tBcc:
823
isCond = true;
824
UOpc = ARM::tB;
825
Bits = 8;
826
Scale = 2;
827
break;
828
case ARM::tB:
829
Bits = 11;
830
Scale = 2;
831
break;
832
case ARM::t2Bcc:
833
isCond = true;
834
UOpc = ARM::t2B;
835
Bits = 20;
836
Scale = 2;
837
break;
838
case ARM::t2B:
839
Bits = 24;
840
Scale = 2;
841
break;
842
}
843
844
// Record this immediate branch.
845
unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
846
ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
847
}
848
849
if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
850
PushPopMIs.push_back(&I);
851
852
if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
853
Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
854
Opc == ARM::JUMPTABLE_TBH)
855
continue;
856
857
// Scan the instructions for constant pool operands.
858
for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
859
if (I.getOperand(op).isCPI() ||
860
(I.getOperand(op).isJTI() && InlineJumpTables)) {
861
// We found one. The addressing mode tells us the max displacement
862
// from the PC that this instruction permits.
863
864
// Basic size info comes from the TSFlags field.
865
unsigned Bits = 0;
866
unsigned Scale = 1;
867
bool NegOk = false;
868
bool IsSoImm = false;
869
870
switch (Opc) {
871
default:
872
llvm_unreachable("Unknown addressing mode for CP reference!");
873
874
// Taking the address of a CP entry.
875
case ARM::LEApcrel:
876
case ARM::LEApcrelJT: {
877
// This takes a SoImm, which is 8 bit immediate rotated. We'll
878
// pretend the maximum offset is 255 * 4. Since each instruction
879
// 4 byte wide, this is always correct. We'll check for other
880
// displacements that fits in a SoImm as well.
881
Bits = 8;
882
NegOk = true;
883
IsSoImm = true;
884
unsigned CPI = I.getOperand(op).getIndex();
885
assert(CPI < CPEMIs.size());
886
MachineInstr *CPEMI = CPEMIs[CPI];
887
const Align CPEAlign = getCPEAlign(CPEMI);
888
const unsigned LogCPEAlign = Log2(CPEAlign);
889
if (LogCPEAlign >= 2)
890
Scale = 4;
891
else
892
// For constants with less than 4-byte alignment,
893
// we'll pretend the maximum offset is 255 * 1.
894
Scale = 1;
895
}
896
break;
897
case ARM::t2LEApcrel:
898
case ARM::t2LEApcrelJT:
899
Bits = 12;
900
NegOk = true;
901
break;
902
case ARM::tLEApcrel:
903
case ARM::tLEApcrelJT:
904
Bits = 8;
905
Scale = 4;
906
break;
907
908
case ARM::LDRBi12:
909
case ARM::LDRi12:
910
case ARM::LDRcp:
911
case ARM::t2LDRpci:
912
case ARM::t2LDRHpci:
913
case ARM::t2LDRSHpci:
914
case ARM::t2LDRBpci:
915
case ARM::t2LDRSBpci:
916
Bits = 12; // +-offset_12
917
NegOk = true;
918
break;
919
920
case ARM::tLDRpci:
921
Bits = 8;
922
Scale = 4; // +(offset_8*4)
923
break;
924
925
case ARM::VLDRD:
926
case ARM::VLDRS:
927
Bits = 8;
928
Scale = 4; // +-(offset_8*4)
929
NegOk = true;
930
break;
931
case ARM::VLDRH:
932
Bits = 8;
933
Scale = 2; // +-(offset_8*2)
934
NegOk = true;
935
break;
936
}
937
938
// Remember that this is a user of a CP entry.
939
unsigned CPI = I.getOperand(op).getIndex();
940
if (I.getOperand(op).isJTI()) {
941
JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
942
CPI = JumpTableEntryIndices[CPI];
943
}
944
945
MachineInstr *CPEMI = CPEMIs[CPI];
946
unsigned MaxOffs = ((1 << Bits)-1) * Scale;
947
CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
948
949
// Increment corresponding CPEntry reference count.
950
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
951
assert(CPE && "Cannot find a corresponding CPEntry!");
952
CPE->RefCount++;
953
954
// Instructions can only use one CP entry, don't bother scanning the
955
// rest of the operands.
956
break;
957
}
958
}
959
}
960
}
961
962
/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
963
/// ID.
964
static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
965
const MachineBasicBlock *RHS) {
966
return LHS->getNumber() < RHS->getNumber();
967
}
968
969
/// updateForInsertedWaterBlock - When a block is newly inserted into the
970
/// machine function, it upsets all of the block numbers. Renumber the blocks
971
/// and update the arrays that parallel this numbering.
972
void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
973
// Renumber the MBB's to keep them consecutive.
974
NewBB->getParent()->RenumberBlocks(NewBB);
975
976
// Insert an entry into BBInfo to align it properly with the (newly
977
// renumbered) block numbers.
978
BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
979
980
// Next, update WaterList. Specifically, we need to add NewMBB as having
981
// available water after it.
982
water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
983
WaterList.insert(IP, NewBB);
984
}
985
986
/// Split the basic block containing MI into two blocks, which are joined by
987
/// an unconditional branch. Update data structures and renumber blocks to
988
/// account for this change and returns the newly created block.
989
MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
990
MachineBasicBlock *OrigBB = MI->getParent();
991
992
// Collect liveness information at MI.
993
LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo());
994
LRs.addLiveOuts(*OrigBB);
995
auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse();
996
for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd))
997
LRs.stepBackward(LiveMI);
998
999
// Create a new MBB for the code after the OrigBB.
1000
MachineBasicBlock *NewBB =
1001
MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
1002
MachineFunction::iterator MBBI = ++OrigBB->getIterator();
1003
MF->insert(MBBI, NewBB);
1004
1005
// Splice the instructions starting with MI over to NewBB.
1006
NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
1007
1008
// Add an unconditional branch from OrigBB to NewBB.
1009
// Note the new unconditional branch is not being recorded.
1010
// There doesn't seem to be meaningful DebugInfo available; this doesn't
1011
// correspond to anything in the source.
1012
unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
1013
if (!isThumb)
1014
BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
1015
else
1016
BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
1017
.addMBB(NewBB)
1018
.add(predOps(ARMCC::AL));
1019
++NumSplit;
1020
1021
// Update the CFG. All succs of OrigBB are now succs of NewBB.
1022
NewBB->transferSuccessors(OrigBB);
1023
1024
// OrigBB branches to NewBB.
1025
OrigBB->addSuccessor(NewBB);
1026
1027
// Update live-in information in the new block.
1028
MachineRegisterInfo &MRI = MF->getRegInfo();
1029
for (MCPhysReg L : LRs)
1030
if (!MRI.isReserved(L))
1031
NewBB->addLiveIn(L);
1032
1033
// Update internal data structures to account for the newly inserted MBB.
1034
// This is almost the same as updateForInsertedWaterBlock, except that
1035
// the Water goes after OrigBB, not NewBB.
1036
MF->RenumberBlocks(NewBB);
1037
1038
// Insert an entry into BBInfo to align it properly with the (newly
1039
// renumbered) block numbers.
1040
BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
1041
1042
// Next, update WaterList. Specifically, we need to add OrigMBB as having
1043
// available water after it (but not if it's already there, which happens
1044
// when splitting before a conditional branch that is followed by an
1045
// unconditional branch - in that case we want to insert NewBB).
1046
water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
1047
MachineBasicBlock* WaterBB = *IP;
1048
if (WaterBB == OrigBB)
1049
WaterList.insert(std::next(IP), NewBB);
1050
else
1051
WaterList.insert(IP, OrigBB);
1052
NewWaterList.insert(OrigBB);
1053
1054
// Figure out how large the OrigBB is. As the first half of the original
1055
// block, it cannot contain a tablejump. The size includes
1056
// the new jump we added. (It should be possible to do this without
1057
// recounting everything, but it's very confusing, and this is rarely
1058
// executed.)
1059
BBUtils->computeBlockSize(OrigBB);
1060
1061
// Figure out how large the NewMBB is. As the second half of the original
1062
// block, it may contain a tablejump.
1063
BBUtils->computeBlockSize(NewBB);
1064
1065
// All BBOffsets following these blocks must be modified.
1066
BBUtils->adjustBBOffsetsAfter(OrigBB);
1067
1068
return NewBB;
1069
}
1070
1071
/// getUserOffset - Compute the offset of U.MI as seen by the hardware
1072
/// displacement computation. Update U.KnownAlignment to match its current
1073
/// basic block location.
1074
unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
1075
unsigned UserOffset = BBUtils->getOffsetOf(U.MI);
1076
1077
SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo();
1078
const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
1079
unsigned KnownBits = BBI.internalKnownBits();
1080
1081
// The value read from PC is offset from the actual instruction address.
1082
UserOffset += (isThumb ? 4 : 8);
1083
1084
// Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
1085
// Make sure U.getMaxDisp() returns a constrained range.
1086
U.KnownAlignment = (KnownBits >= 2);
1087
1088
// On Thumb, offsets==2 mod 4 are rounded down by the hardware for
1089
// purposes of the displacement computation; compensate for that here.
1090
// For unknown alignments, getMaxDisp() constrains the range instead.
1091
if (isThumb && U.KnownAlignment)
1092
UserOffset &= ~3u;
1093
1094
return UserOffset;
1095
}
1096
1097
/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
1098
/// reference) is within MaxDisp of TrialOffset (a proposed location of a
1099
/// constant pool entry).
1100
/// UserOffset is computed by getUserOffset above to include PC adjustments. If
1101
/// the mod 4 alignment of UserOffset is not known, the uncertainty must be
1102
/// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
1103
bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1104
unsigned TrialOffset, unsigned MaxDisp,
1105
bool NegativeOK, bool IsSoImm) {
1106
if (UserOffset <= TrialOffset) {
1107
// User before the Trial.
1108
if (TrialOffset - UserOffset <= MaxDisp)
1109
return true;
1110
// FIXME: Make use full range of soimm values.
1111
} else if (NegativeOK) {
1112
if (UserOffset - TrialOffset <= MaxDisp)
1113
return true;
1114
// FIXME: Make use full range of soimm values.
1115
}
1116
return false;
1117
}
1118
1119
/// isWaterInRange - Returns true if a CPE placed after the specified
1120
/// Water (a basic block) will be in range for the specific MI.
1121
///
1122
/// Compute how much the function will grow by inserting a CPE after Water.
1123
bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1124
MachineBasicBlock* Water, CPUser &U,
1125
unsigned &Growth) {
1126
BBInfoVector &BBInfo = BBUtils->getBBInfo();
1127
const Align CPEAlign = getCPEAlign(U.CPEMI);
1128
const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign);
1129
unsigned NextBlockOffset;
1130
Align NextBlockAlignment;
1131
MachineFunction::const_iterator NextBlock = Water->getIterator();
1132
if (++NextBlock == MF->end()) {
1133
NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1134
} else {
1135
NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1136
NextBlockAlignment = NextBlock->getAlignment();
1137
}
1138
unsigned Size = U.CPEMI->getOperand(2).getImm();
1139
unsigned CPEEnd = CPEOffset + Size;
1140
1141
// The CPE may be able to hide in the alignment padding before the next
1142
// block. It may also cause more padding to be required if it is more aligned
1143
// that the next block.
1144
if (CPEEnd > NextBlockOffset) {
1145
Growth = CPEEnd - NextBlockOffset;
1146
// Compute the padding that would go at the end of the CPE to align the next
1147
// block.
1148
Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
1149
1150
// If the CPE is to be inserted before the instruction, that will raise
1151
// the offset of the instruction. Also account for unknown alignment padding
1152
// in blocks between CPE and the user.
1153
if (CPEOffset < UserOffset)
1154
UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign));
1155
} else
1156
// CPE fits in existing padding.
1157
Growth = 0;
1158
1159
return isOffsetInRange(UserOffset, CPEOffset, U);
1160
}
1161
1162
/// isCPEntryInRange - Returns true if the distance between specific MI and
1163
/// specific ConstPool entry instruction can fit in MI's displacement field.
1164
bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1165
MachineInstr *CPEMI, unsigned MaxDisp,
1166
bool NegOk, bool DoDump) {
1167
unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI);
1168
1169
if (DoDump) {
1170
LLVM_DEBUG({
1171
BBInfoVector &BBInfo = BBUtils->getBBInfo();
1172
unsigned Block = MI->getParent()->getNumber();
1173
const BasicBlockInfo &BBI = BBInfo[Block];
1174
dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1175
<< " max delta=" << MaxDisp
1176
<< format(" insn address=%#x", UserOffset) << " in "
1177
<< printMBBReference(*MI->getParent()) << ": "
1178
<< format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1179
<< format("CPE address=%#x offset=%+d: ", CPEOffset,
1180
int(CPEOffset - UserOffset));
1181
});
1182
}
1183
1184
return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1185
}
1186
1187
#ifndef NDEBUG
1188
/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1189
/// unconditionally branches to its only successor.
1190
static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1191
if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1192
return false;
1193
1194
MachineBasicBlock *Succ = *MBB->succ_begin();
1195
MachineBasicBlock *Pred = *MBB->pred_begin();
1196
MachineInstr *PredMI = &Pred->back();
1197
if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1198
|| PredMI->getOpcode() == ARM::t2B)
1199
return PredMI->getOperand(0).getMBB() == Succ;
1200
return false;
1201
}
1202
#endif // NDEBUG
1203
1204
/// decrementCPEReferenceCount - find the constant pool entry with index CPI
1205
/// and instruction CPEMI, and decrement its refcount. If the refcount
1206
/// becomes 0 remove the entry and instruction. Returns true if we removed
1207
/// the entry, false if we didn't.
1208
bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1209
MachineInstr *CPEMI) {
1210
// Find the old entry. Eliminate it if it is no longer used.
1211
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1212
assert(CPE && "Unexpected!");
1213
if (--CPE->RefCount == 0) {
1214
removeDeadCPEMI(CPEMI);
1215
CPE->CPEMI = nullptr;
1216
--NumCPEs;
1217
return true;
1218
}
1219
return false;
1220
}
1221
1222
unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1223
if (CPEMI->getOperand(1).isCPI())
1224
return CPEMI->getOperand(1).getIndex();
1225
1226
return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1227
}
1228
1229
/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1230
/// if not, see if an in-range clone of the CPE is in range, and if so,
1231
/// change the data structures so the user references the clone. Returns:
1232
/// 0 = no existing entry found
1233
/// 1 = entry found, and there were no code insertions or deletions
1234
/// 2 = entry found, and there were code insertions or deletions
1235
int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1236
MachineInstr *UserMI = U.MI;
1237
MachineInstr *CPEMI = U.CPEMI;
1238
1239
// Check to see if the CPE is already in-range.
1240
if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1241
true)) {
1242
LLVM_DEBUG(dbgs() << "In range\n");
1243
return 1;
1244
}
1245
1246
// No. Look for previously created clones of the CPE that are in range.
1247
unsigned CPI = getCombinedIndex(CPEMI);
1248
std::vector<CPEntry> &CPEs = CPEntries[CPI];
1249
for (CPEntry &CPE : CPEs) {
1250
// We already tried this one
1251
if (CPE.CPEMI == CPEMI)
1252
continue;
1253
// Removing CPEs can leave empty entries, skip
1254
if (CPE.CPEMI == nullptr)
1255
continue;
1256
if (isCPEntryInRange(UserMI, UserOffset, CPE.CPEMI, U.getMaxDisp(),
1257
U.NegOk)) {
1258
LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPE.CPI
1259
<< "\n");
1260
// Point the CPUser node to the replacement
1261
U.CPEMI = CPE.CPEMI;
1262
// Change the CPI in the instruction operand to refer to the clone.
1263
for (MachineOperand &MO : UserMI->operands())
1264
if (MO.isCPI()) {
1265
MO.setIndex(CPE.CPI);
1266
break;
1267
}
1268
// Adjust the refcount of the clone...
1269
CPE.RefCount++;
1270
// ...and the original. If we didn't remove the old entry, none of the
1271
// addresses changed, so we don't need another pass.
1272
return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1273
}
1274
}
1275
return 0;
1276
}
1277
1278
/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1279
/// the specific unconditional branch instruction.
1280
static inline unsigned getUnconditionalBrDisp(int Opc) {
1281
switch (Opc) {
1282
case ARM::tB:
1283
return ((1<<10)-1)*2;
1284
case ARM::t2B:
1285
return ((1<<23)-1)*2;
1286
default:
1287
break;
1288
}
1289
1290
return ((1<<23)-1)*4;
1291
}
1292
1293
/// findAvailableWater - Look for an existing entry in the WaterList in which
1294
/// we can place the CPE referenced from U so it's within range of U's MI.
1295
/// Returns true if found, false if not. If it returns true, WaterIter
1296
/// is set to the WaterList entry. For Thumb, prefer water that will not
1297
/// introduce padding to water that will. To ensure that this pass
1298
/// terminates, the CPE location for a particular CPUser is only allowed to
1299
/// move to a lower address, so search backward from the end of the list and
1300
/// prefer the first water that is in range.
1301
bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1302
water_iterator &WaterIter,
1303
bool CloserWater) {
1304
if (WaterList.empty())
1305
return false;
1306
1307
unsigned BestGrowth = ~0u;
1308
// The nearest water without splitting the UserBB is right after it.
1309
// If the distance is still large (we have a big BB), then we need to split it
1310
// if we don't converge after certain iterations. This helps the following
1311
// situation to converge:
1312
// BB0:
1313
// Big BB
1314
// BB1:
1315
// Constant Pool
1316
// When a CP access is out of range, BB0 may be used as water. However,
1317
// inserting islands between BB0 and BB1 makes other accesses out of range.
1318
MachineBasicBlock *UserBB = U.MI->getParent();
1319
BBInfoVector &BBInfo = BBUtils->getBBInfo();
1320
const Align CPEAlign = getCPEAlign(U.CPEMI);
1321
unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign);
1322
if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1323
return false;
1324
for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1325
--IP) {
1326
MachineBasicBlock* WaterBB = *IP;
1327
// Check if water is in range and is either at a lower address than the
1328
// current "high water mark" or a new water block that was created since
1329
// the previous iteration by inserting an unconditional branch. In the
1330
// latter case, we want to allow resetting the high water mark back to
1331
// this new water since we haven't seen it before. Inserting branches
1332
// should be relatively uncommon and when it does happen, we want to be
1333
// sure to take advantage of it for all the CPEs near that block, so that
1334
// we don't insert more branches than necessary.
1335
// When CloserWater is true, we try to find the lowest address after (or
1336
// equal to) user MI's BB no matter of padding growth.
1337
unsigned Growth;
1338
if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1339
(WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1340
NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1341
Growth < BestGrowth) {
1342
// This is the least amount of required padding seen so far.
1343
BestGrowth = Growth;
1344
WaterIter = IP;
1345
LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1346
<< " Growth=" << Growth << '\n');
1347
1348
if (CloserWater && WaterBB == U.MI->getParent())
1349
return true;
1350
// Keep looking unless it is perfect and we're not looking for the lowest
1351
// possible address.
1352
if (!CloserWater && BestGrowth == 0)
1353
return true;
1354
}
1355
if (IP == B)
1356
break;
1357
}
1358
return BestGrowth != ~0u;
1359
}
1360
1361
/// createNewWater - No existing WaterList entry will work for
1362
/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1363
/// block is used if in range, and the conditional branch munged so control
1364
/// flow is correct. Otherwise the block is split to create a hole with an
1365
/// unconditional branch around it. In either case NewMBB is set to a
1366
/// block following which the new island can be inserted (the WaterList
1367
/// is not adjusted).
1368
void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1369
unsigned UserOffset,
1370
MachineBasicBlock *&NewMBB) {
1371
CPUser &U = CPUsers[CPUserIndex];
1372
MachineInstr *UserMI = U.MI;
1373
MachineInstr *CPEMI = U.CPEMI;
1374
const Align CPEAlign = getCPEAlign(CPEMI);
1375
MachineBasicBlock *UserMBB = UserMI->getParent();
1376
BBInfoVector &BBInfo = BBUtils->getBBInfo();
1377
const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1378
1379
// If the block does not end in an unconditional branch already, and if the
1380
// end of the block is within range, make new water there. (The addition
1381
// below is for the unconditional branch we will be adding: 4 bytes on ARM +
1382
// Thumb2, 2 on Thumb1.
1383
if (BBHasFallthrough(UserMBB)) {
1384
// Size of branch to insert.
1385
unsigned Delta = isThumb1 ? 2 : 4;
1386
// Compute the offset where the CPE will begin.
1387
unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta;
1388
1389
if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1390
LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1391
<< format(", expected CPE offset %#x\n", CPEOffset));
1392
NewMBB = &*++UserMBB->getIterator();
1393
// Add an unconditional branch from UserMBB to fallthrough block. Record
1394
// it for branch lengthening; this new branch will not get out of range,
1395
// but if the preceding conditional branch is out of range, the targets
1396
// will be exchanged, and the altered branch may be out of range, so the
1397
// machinery has to know about it.
1398
int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1399
if (!isThumb)
1400
BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1401
else
1402
BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1403
.addMBB(NewMBB)
1404
.add(predOps(ARMCC::AL));
1405
unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1406
ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1407
MaxDisp, false, UncondBr));
1408
BBUtils->computeBlockSize(UserMBB);
1409
BBUtils->adjustBBOffsetsAfter(UserMBB);
1410
return;
1411
}
1412
}
1413
1414
// What a big block. Find a place within the block to split it. This is a
1415
// little tricky on Thumb1 since instructions are 2 bytes and constant pool
1416
// entries are 4 bytes: if instruction I references island CPE, and
1417
// instruction I+1 references CPE', it will not work well to put CPE as far
1418
// forward as possible, since then CPE' cannot immediately follow it (that
1419
// location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1420
// need to create a new island. So, we make a first guess, then walk through
1421
// the instructions between the one currently being looked at and the
1422
// possible insertion point, and make sure any other instructions that
1423
// reference CPEs will be able to use the same island area; if not, we back
1424
// up the insertion point.
1425
1426
// Try to split the block so it's fully aligned. Compute the latest split
1427
// point where we can add a 4-byte branch instruction, and then align to
1428
// Align which is the largest possible alignment in the function.
1429
const Align Align = MF->getAlignment();
1430
assert(Align >= CPEAlign && "Over-aligned constant pool entry");
1431
unsigned KnownBits = UserBBI.internalKnownBits();
1432
unsigned UPad = UnknownPadding(Align, KnownBits);
1433
unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1434
LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1435
BaseInsertOffset));
1436
1437
// The 4 in the following is for the unconditional branch we'll be inserting
1438
// (allows for long branch on Thumb1). Alignment of the island is handled
1439
// inside isOffsetInRange.
1440
BaseInsertOffset -= 4;
1441
1442
LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1443
<< " la=" << Log2(Align) << " kb=" << KnownBits
1444
<< " up=" << UPad << '\n');
1445
1446
// This could point off the end of the block if we've already got constant
1447
// pool entries following this block; only the last one is in the water list.
1448
// Back past any possible branches (allow for a conditional and a maximally
1449
// long unconditional).
1450
if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1451
// Ensure BaseInsertOffset is larger than the offset of the instruction
1452
// following UserMI so that the loop which searches for the split point
1453
// iterates at least once.
1454
BaseInsertOffset =
1455
std::max(UserBBI.postOffset() - UPad - 8,
1456
UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
1457
// If the CP is referenced(ie, UserOffset) is in first four instructions
1458
// after IT, this recalculated BaseInsertOffset could be in the middle of
1459
// an IT block. If it is, change the BaseInsertOffset to just after the
1460
// IT block. This still make the CP Entry is in range becuase of the
1461
// following reasons.
1462
// 1. The initial BaseseInsertOffset calculated is (UserOffset +
1463
// U.getMaxDisp() - UPad).
1464
// 2. An IT block is only at most 4 instructions plus the "it" itself (18
1465
// bytes).
1466
// 3. All the relevant instructions support much larger Maximum
1467
// displacement.
1468
MachineBasicBlock::iterator I = UserMI;
1469
++I;
1470
Register PredReg;
1471
for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1472
I->getOpcode() != ARM::t2IT &&
1473
getITInstrPredicate(*I, PredReg) != ARMCC::AL;
1474
Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) {
1475
BaseInsertOffset =
1476
std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1);
1477
assert(I != UserMBB->end() && "Fell off end of block");
1478
}
1479
LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1480
}
1481
unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1482
CPEMI->getOperand(2).getImm();
1483
MachineBasicBlock::iterator MI = UserMI;
1484
++MI;
1485
unsigned CPUIndex = CPUserIndex+1;
1486
unsigned NumCPUsers = CPUsers.size();
1487
MachineInstr *LastIT = nullptr;
1488
for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1489
Offset < BaseInsertOffset;
1490
Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1491
assert(MI != UserMBB->end() && "Fell off end of block");
1492
if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1493
CPUser &U = CPUsers[CPUIndex];
1494
if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1495
// Shift intertion point by one unit of alignment so it is within reach.
1496
BaseInsertOffset -= Align.value();
1497
EndInsertOffset -= Align.value();
1498
}
1499
// This is overly conservative, as we don't account for CPEMIs being
1500
// reused within the block, but it doesn't matter much. Also assume CPEs
1501
// are added in order with alignment padding. We may eventually be able
1502
// to pack the aligned CPEs better.
1503
EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1504
CPUIndex++;
1505
}
1506
1507
// Remember the last IT instruction.
1508
if (MI->getOpcode() == ARM::t2IT)
1509
LastIT = &*MI;
1510
}
1511
1512
--MI;
1513
1514
// Avoid splitting an IT block.
1515
if (LastIT) {
1516
Register PredReg;
1517
ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1518
if (CC != ARMCC::AL)
1519
MI = LastIT;
1520
}
1521
1522
// Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1523
// On Windows, this instruction pair is covered by one single
1524
// IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1525
// constant island is injected inbetween them, the relocation will clobber
1526
// the instruction and fail to update the MOVT instruction.
1527
// (These instructions are bundled up until right before the ConstantIslands
1528
// pass.)
1529
if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
1530
(MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1531
ARMII::MO_HI16) {
1532
--MI;
1533
assert(MI->getOpcode() == ARM::t2MOVi16 &&
1534
(MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1535
ARMII::MO_LO16);
1536
}
1537
1538
// We really must not split an IT block.
1539
#ifndef NDEBUG
1540
Register PredReg;
1541
assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL);
1542
#endif
1543
NewMBB = splitBlockBeforeInstr(&*MI);
1544
}
1545
1546
/// handleConstantPoolUser - Analyze the specified user, checking to see if it
1547
/// is out-of-range. If so, pick up the constant pool value and move it some
1548
/// place in-range. Return true if we changed any addresses (thus must run
1549
/// another pass of branch lengthening), false otherwise.
1550
bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1551
bool CloserWater) {
1552
CPUser &U = CPUsers[CPUserIndex];
1553
MachineInstr *UserMI = U.MI;
1554
MachineInstr *CPEMI = U.CPEMI;
1555
unsigned CPI = getCombinedIndex(CPEMI);
1556
unsigned Size = CPEMI->getOperand(2).getImm();
1557
// Compute this only once, it's expensive.
1558
unsigned UserOffset = getUserOffset(U);
1559
1560
// See if the current entry is within range, or there is a clone of it
1561
// in range.
1562
int result = findInRangeCPEntry(U, UserOffset);
1563
if (result==1) return false;
1564
else if (result==2) return true;
1565
1566
// No existing clone of this CPE is within range.
1567
// We will be generating a new clone. Get a UID for it.
1568
unsigned ID = AFI->createPICLabelUId();
1569
1570
// Look for water where we can place this CPE.
1571
MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1572
MachineBasicBlock *NewMBB;
1573
water_iterator IP;
1574
if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1575
LLVM_DEBUG(dbgs() << "Found water in range\n");
1576
MachineBasicBlock *WaterBB = *IP;
1577
1578
// If the original WaterList entry was "new water" on this iteration,
1579
// propagate that to the new island. This is just keeping NewWaterList
1580
// updated to match the WaterList, which will be updated below.
1581
if (NewWaterList.erase(WaterBB))
1582
NewWaterList.insert(NewIsland);
1583
1584
// The new CPE goes before the following block (NewMBB).
1585
NewMBB = &*++WaterBB->getIterator();
1586
} else {
1587
// No water found.
1588
LLVM_DEBUG(dbgs() << "No water found\n");
1589
createNewWater(CPUserIndex, UserOffset, NewMBB);
1590
1591
// splitBlockBeforeInstr adds to WaterList, which is important when it is
1592
// called while handling branches so that the water will be seen on the
1593
// next iteration for constant pools, but in this context, we don't want
1594
// it. Check for this so it will be removed from the WaterList.
1595
// Also remove any entry from NewWaterList.
1596
MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1597
IP = find(WaterList, WaterBB);
1598
if (IP != WaterList.end())
1599
NewWaterList.erase(WaterBB);
1600
1601
// We are adding new water. Update NewWaterList.
1602
NewWaterList.insert(NewIsland);
1603
}
1604
// Always align the new block because CP entries can be smaller than 4
1605
// bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1606
// be an already aligned constant pool block.
1607
const Align Alignment = isThumb ? Align(2) : Align(4);
1608
if (NewMBB->getAlignment() < Alignment)
1609
NewMBB->setAlignment(Alignment);
1610
1611
// Remove the original WaterList entry; we want subsequent insertions in
1612
// this vicinity to go after the one we're about to insert. This
1613
// considerably reduces the number of times we have to move the same CPE
1614
// more than once and is also important to ensure the algorithm terminates.
1615
if (IP != WaterList.end())
1616
WaterList.erase(IP);
1617
1618
// Okay, we know we can put an island before NewMBB now, do it!
1619
MF->insert(NewMBB->getIterator(), NewIsland);
1620
1621
// Update internal data structures to account for the newly inserted MBB.
1622
updateForInsertedWaterBlock(NewIsland);
1623
1624
// Now that we have an island to add the CPE to, clone the original CPE and
1625
// add it to the island.
1626
U.HighWaterMark = NewIsland;
1627
U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1628
.addImm(ID)
1629
.add(CPEMI->getOperand(1))
1630
.addImm(Size);
1631
CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1632
++NumCPEs;
1633
1634
// Decrement the old entry, and remove it if refcount becomes 0.
1635
decrementCPEReferenceCount(CPI, CPEMI);
1636
1637
// Mark the basic block as aligned as required by the const-pool entry.
1638
NewIsland->setAlignment(getCPEAlign(U.CPEMI));
1639
1640
// Increase the size of the island block to account for the new entry.
1641
BBUtils->adjustBBSize(NewIsland, Size);
1642
BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1643
1644
// Finally, change the CPI in the instruction operand to be ID.
1645
for (MachineOperand &MO : UserMI->operands())
1646
if (MO.isCPI()) {
1647
MO.setIndex(ID);
1648
break;
1649
}
1650
1651
LLVM_DEBUG(
1652
dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1653
<< format(" offset=%#x\n",
1654
BBUtils->getBBInfo()[NewIsland->getNumber()].Offset));
1655
1656
return true;
1657
}
1658
1659
/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1660
/// sizes and offsets of impacted basic blocks.
1661
void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1662
MachineBasicBlock *CPEBB = CPEMI->getParent();
1663
unsigned Size = CPEMI->getOperand(2).getImm();
1664
CPEMI->eraseFromParent();
1665
BBInfoVector &BBInfo = BBUtils->getBBInfo();
1666
BBUtils->adjustBBSize(CPEBB, -Size);
1667
// All succeeding offsets have the current size value added in, fix this.
1668
if (CPEBB->empty()) {
1669
BBInfo[CPEBB->getNumber()].Size = 0;
1670
1671
// This block no longer needs to be aligned.
1672
CPEBB->setAlignment(Align(1));
1673
} else {
1674
// Entries are sorted by descending alignment, so realign from the front.
1675
CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin()));
1676
}
1677
1678
BBUtils->adjustBBOffsetsAfter(CPEBB);
1679
// An island has only one predecessor BB and one successor BB. Check if
1680
// this BB's predecessor jumps directly to this BB's successor. This
1681
// shouldn't happen currently.
1682
assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1683
// FIXME: remove the empty blocks after all the work is done?
1684
}
1685
1686
/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1687
/// are zero.
1688
bool ARMConstantIslands::removeUnusedCPEntries() {
1689
unsigned MadeChange = false;
1690
for (std::vector<CPEntry> &CPEs : CPEntries) {
1691
for (CPEntry &CPE : CPEs) {
1692
if (CPE.RefCount == 0 && CPE.CPEMI) {
1693
removeDeadCPEMI(CPE.CPEMI);
1694
CPE.CPEMI = nullptr;
1695
MadeChange = true;
1696
}
1697
}
1698
}
1699
return MadeChange;
1700
}
1701
1702
1703
/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1704
/// away to fit in its displacement field.
1705
bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1706
MachineInstr *MI = Br.MI;
1707
MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1708
1709
// Check to see if the DestBB is already in-range.
1710
if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp))
1711
return false;
1712
1713
if (!Br.isCond)
1714
return fixupUnconditionalBr(Br);
1715
return fixupConditionalBr(Br);
1716
}
1717
1718
/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1719
/// too far away to fit in its displacement field. If the LR register has been
1720
/// spilled in the epilogue, then we can use BL to implement a far jump.
1721
/// Otherwise, add an intermediate branch instruction to a branch.
1722
bool
1723
ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1724
MachineInstr *MI = Br.MI;
1725
MachineBasicBlock *MBB = MI->getParent();
1726
if (!isThumb1)
1727
llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1728
1729
if (!AFI->isLRSpilled())
1730
report_fatal_error("underestimated function size");
1731
1732
// Use BL to implement far jump.
1733
Br.MaxDisp = (1 << 21) * 2;
1734
MI->setDesc(TII->get(ARM::tBfar));
1735
BBInfoVector &BBInfo = BBUtils->getBBInfo();
1736
BBInfo[MBB->getNumber()].Size += 2;
1737
BBUtils->adjustBBOffsetsAfter(MBB);
1738
++NumUBrFixed;
1739
1740
LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
1741
1742
return true;
1743
}
1744
1745
/// fixupConditionalBr - Fix up a conditional branch whose destination is too
1746
/// far away to fit in its displacement field. It is converted to an inverse
1747
/// conditional branch + an unconditional branch to the destination.
1748
bool
1749
ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1750
MachineInstr *MI = Br.MI;
1751
MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1752
1753
// Add an unconditional branch to the destination and invert the branch
1754
// condition to jump over it:
1755
// blt L1
1756
// =>
1757
// bge L2
1758
// b L1
1759
// L2:
1760
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1761
CC = ARMCC::getOppositeCondition(CC);
1762
Register CCReg = MI->getOperand(2).getReg();
1763
1764
// If the branch is at the end of its MBB and that has a fall-through block,
1765
// direct the updated conditional branch to the fall-through block. Otherwise,
1766
// split the MBB before the next instruction.
1767
MachineBasicBlock *MBB = MI->getParent();
1768
MachineInstr *BMI = &MBB->back();
1769
bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1770
1771
++NumCBrFixed;
1772
if (BMI != MI) {
1773
if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1774
BMI->getOpcode() == Br.UncondBr) {
1775
// Last MI in the BB is an unconditional branch. Can we simply invert the
1776
// condition and swap destinations:
1777
// beq L1
1778
// b L2
1779
// =>
1780
// bne L2
1781
// b L1
1782
MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1783
if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) {
1784
LLVM_DEBUG(
1785
dbgs() << " Invert Bcc condition and swap its destination with "
1786
<< *BMI);
1787
BMI->getOperand(0).setMBB(DestBB);
1788
MI->getOperand(0).setMBB(NewDest);
1789
MI->getOperand(1).setImm(CC);
1790
return true;
1791
}
1792
}
1793
}
1794
1795
if (NeedSplit) {
1796
splitBlockBeforeInstr(MI);
1797
// No need for the branch to the next block. We're adding an unconditional
1798
// branch to the destination.
1799
int delta = TII->getInstSizeInBytes(MBB->back());
1800
BBUtils->adjustBBSize(MBB, -delta);
1801
MBB->back().eraseFromParent();
1802
1803
// The conditional successor will be swapped between the BBs after this, so
1804
// update CFG.
1805
MBB->addSuccessor(DestBB);
1806
std::next(MBB->getIterator())->removeSuccessor(DestBB);
1807
1808
// BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1809
}
1810
MachineBasicBlock *NextBB = &*++MBB->getIterator();
1811
1812
LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
1813
<< " also invert condition and change dest. to "
1814
<< printMBBReference(*NextBB) << "\n");
1815
1816
// Insert a new conditional branch and a new unconditional branch.
1817
// Also update the ImmBranch as well as adding a new entry for the new branch.
1818
BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1819
.addMBB(NextBB).addImm(CC).addReg(CCReg);
1820
Br.MI = &MBB->back();
1821
BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1822
if (isThumb)
1823
BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1824
.addMBB(DestBB)
1825
.add(predOps(ARMCC::AL));
1826
else
1827
BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1828
BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1829
unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1830
ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1831
1832
// Remove the old conditional branch. It may or may not still be in MBB.
1833
BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI));
1834
MI->eraseFromParent();
1835
BBUtils->adjustBBOffsetsAfter(MBB);
1836
return true;
1837
}
1838
1839
bool ARMConstantIslands::optimizeThumb2Instructions() {
1840
bool MadeChange = false;
1841
1842
// Shrink ADR and LDR from constantpool.
1843
for (CPUser &U : CPUsers) {
1844
unsigned Opcode = U.MI->getOpcode();
1845
unsigned NewOpc = 0;
1846
unsigned Scale = 1;
1847
unsigned Bits = 0;
1848
switch (Opcode) {
1849
default: break;
1850
case ARM::t2LEApcrel:
1851
if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1852
NewOpc = ARM::tLEApcrel;
1853
Bits = 8;
1854
Scale = 4;
1855
}
1856
break;
1857
case ARM::t2LDRpci:
1858
if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1859
NewOpc = ARM::tLDRpci;
1860
Bits = 8;
1861
Scale = 4;
1862
}
1863
break;
1864
}
1865
1866
if (!NewOpc)
1867
continue;
1868
1869
unsigned UserOffset = getUserOffset(U);
1870
unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1871
1872
// Be conservative with inline asm.
1873
if (!U.KnownAlignment)
1874
MaxOffs -= 2;
1875
1876
// FIXME: Check if offset is multiple of scale if scale is not 4.
1877
if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1878
LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1879
U.MI->setDesc(TII->get(NewOpc));
1880
MachineBasicBlock *MBB = U.MI->getParent();
1881
BBUtils->adjustBBSize(MBB, -2);
1882
BBUtils->adjustBBOffsetsAfter(MBB);
1883
++NumT2CPShrunk;
1884
MadeChange = true;
1885
}
1886
}
1887
1888
return MadeChange;
1889
}
1890
1891
1892
bool ARMConstantIslands::optimizeThumb2Branches() {
1893
1894
auto TryShrinkBranch = [this](ImmBranch &Br) {
1895
unsigned Opcode = Br.MI->getOpcode();
1896
unsigned NewOpc = 0;
1897
unsigned Scale = 1;
1898
unsigned Bits = 0;
1899
switch (Opcode) {
1900
default: break;
1901
case ARM::t2B:
1902
NewOpc = ARM::tB;
1903
Bits = 11;
1904
Scale = 2;
1905
break;
1906
case ARM::t2Bcc:
1907
NewOpc = ARM::tBcc;
1908
Bits = 8;
1909
Scale = 2;
1910
break;
1911
}
1912
if (NewOpc) {
1913
unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1914
MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1915
if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) {
1916
LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1917
Br.MI->setDesc(TII->get(NewOpc));
1918
MachineBasicBlock *MBB = Br.MI->getParent();
1919
BBUtils->adjustBBSize(MBB, -2);
1920
BBUtils->adjustBBOffsetsAfter(MBB);
1921
++NumT2BrShrunk;
1922
return true;
1923
}
1924
}
1925
return false;
1926
};
1927
1928
struct ImmCompare {
1929
MachineInstr* MI = nullptr;
1930
unsigned NewOpc = 0;
1931
};
1932
1933
auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp,
1934
MachineBasicBlock *DestBB) {
1935
ImmCmp.MI = nullptr;
1936
ImmCmp.NewOpc = 0;
1937
1938
// If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1939
// so this transformation is not safe.
1940
if (!Br.MI->killsRegister(ARM::CPSR, /*TRI=*/nullptr))
1941
return false;
1942
1943
Register PredReg;
1944
unsigned NewOpc = 0;
1945
ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1946
if (Pred == ARMCC::EQ)
1947
NewOpc = ARM::tCBZ;
1948
else if (Pred == ARMCC::NE)
1949
NewOpc = ARM::tCBNZ;
1950
else
1951
return false;
1952
1953
// Check if the distance is within 126. Subtract starting offset by 2
1954
// because the cmp will be eliminated.
1955
unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2;
1956
BBInfoVector &BBInfo = BBUtils->getBBInfo();
1957
unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1958
if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126)
1959
return false;
1960
1961
// Search backwards to find a tCMPi8
1962
auto *TRI = STI->getRegisterInfo();
1963
MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI);
1964
if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8)
1965
return false;
1966
1967
ImmCmp.MI = CmpMI;
1968
ImmCmp.NewOpc = NewOpc;
1969
return true;
1970
};
1971
1972
auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) {
1973
if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() ||
1974
STI->hasMinSize())
1975
return false;
1976
1977
MachineBasicBlock *MBB = Br.MI->getParent();
1978
MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1979
if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) ||
1980
!BBUtils->isBBInRange(Br.MI, DestBB, 4094))
1981
return false;
1982
1983
if (!DT->dominates(DestBB, MBB))
1984
return false;
1985
1986
// We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite
1987
// target of Br. So now we need to reverse the condition.
1988
Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ;
1989
1990
MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(),
1991
TII->get(ARM::t2LE));
1992
// Swapped a t2Bcc for a t2LE, so no need to update the size of the block.
1993
MIB.add(Br.MI->getOperand(0));
1994
Br.MI->eraseFromParent();
1995
Br.MI = MIB;
1996
++NumLEInserted;
1997
return true;
1998
};
1999
2000
bool MadeChange = false;
2001
2002
// The order in which branches appear in ImmBranches is approximately their
2003
// order within the function body. By visiting later branches first, we reduce
2004
// the distance between earlier forward branches and their targets, making it
2005
// more likely that the cbn?z optimization, which can only apply to forward
2006
// branches, will succeed.
2007
for (ImmBranch &Br : reverse(ImmBranches)) {
2008
MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
2009
MachineBasicBlock *MBB = Br.MI->getParent();
2010
MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ?
2011
MBB->getFallThrough() :
2012
MBB->back().getOperand(0).getMBB();
2013
2014
ImmCompare Cmp;
2015
if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) {
2016
DestBB = ExitBB;
2017
MadeChange = true;
2018
} else {
2019
FindCmpForCBZ(Br, Cmp, DestBB);
2020
MadeChange |= TryShrinkBranch(Br);
2021
}
2022
2023
unsigned Opcode = Br.MI->getOpcode();
2024
if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc)
2025
continue;
2026
2027
Register Reg = Cmp.MI->getOperand(0).getReg();
2028
2029
// Check for Kill flags on Reg. If they are present remove them and set kill
2030
// on the new CBZ.
2031
auto *TRI = STI->getRegisterInfo();
2032
MachineBasicBlock::iterator KillMI = Br.MI;
2033
bool RegKilled = false;
2034
do {
2035
--KillMI;
2036
if (KillMI->killsRegister(Reg, TRI)) {
2037
KillMI->clearRegisterKills(Reg, TRI);
2038
RegKilled = true;
2039
break;
2040
}
2041
} while (KillMI != Cmp.MI);
2042
2043
// Create the new CBZ/CBNZ
2044
LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI);
2045
MachineInstr *NewBR =
2046
BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc))
2047
.addReg(Reg, getKillRegState(RegKilled) |
2048
getRegState(Cmp.MI->getOperand(0)))
2049
.addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
2050
2051
Cmp.MI->eraseFromParent();
2052
2053
if (Br.MI->getOpcode() == ARM::tBcc) {
2054
Br.MI->eraseFromParent();
2055
Br.MI = NewBR;
2056
BBUtils->adjustBBSize(MBB, -2);
2057
} else if (MBB->back().getOpcode() != ARM::t2LE) {
2058
// An LE has been generated, but it's not the terminator - that is an
2059
// unconditional branch. However, the logic has now been reversed with the
2060
// CBN?Z being the conditional branch and the LE being the unconditional
2061
// branch. So this means we can remove the redundant unconditional branch
2062
// at the end of the block.
2063
MachineInstr *LastMI = &MBB->back();
2064
BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize());
2065
LastMI->eraseFromParent();
2066
}
2067
BBUtils->adjustBBOffsetsAfter(MBB);
2068
++NumCBZ;
2069
MadeChange = true;
2070
}
2071
2072
return MadeChange;
2073
}
2074
2075
static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
2076
unsigned BaseReg) {
2077
if (I.getOpcode() != ARM::t2ADDrs)
2078
return false;
2079
2080
if (I.getOperand(0).getReg() != EntryReg)
2081
return false;
2082
2083
if (I.getOperand(1).getReg() != BaseReg)
2084
return false;
2085
2086
// FIXME: what about CC and IdxReg?
2087
return true;
2088
}
2089
2090
/// While trying to form a TBB/TBH instruction, we may (if the table
2091
/// doesn't immediately follow the BR_JT) need access to the start of the
2092
/// jump-table. We know one instruction that produces such a register; this
2093
/// function works out whether that definition can be preserved to the BR_JT,
2094
/// possibly by removing an intervening addition (which is usually needed to
2095
/// calculate the actual entry to jump to).
2096
bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
2097
MachineInstr *LEAMI,
2098
unsigned &DeadSize,
2099
bool &CanDeleteLEA,
2100
bool &BaseRegKill) {
2101
if (JumpMI->getParent() != LEAMI->getParent())
2102
return false;
2103
2104
// Now we hope that we have at least these instructions in the basic block:
2105
// BaseReg = t2LEA ...
2106
// [...]
2107
// EntryReg = t2ADDrs BaseReg, ...
2108
// [...]
2109
// t2BR_JT EntryReg
2110
//
2111
// We have to be very conservative about what we recognise here though. The
2112
// main perturbing factors to watch out for are:
2113
// + Spills at any point in the chain: not direct problems but we would
2114
// expect a blocking Def of the spilled register so in practice what we
2115
// can do is limited.
2116
// + EntryReg == BaseReg: this is the one situation we should allow a Def
2117
// of BaseReg, but only if the t2ADDrs can be removed.
2118
// + Some instruction other than t2ADDrs computing the entry. Not seen in
2119
// the wild, but we should be careful.
2120
Register EntryReg = JumpMI->getOperand(0).getReg();
2121
Register BaseReg = LEAMI->getOperand(0).getReg();
2122
2123
CanDeleteLEA = true;
2124
BaseRegKill = false;
2125
MachineInstr *RemovableAdd = nullptr;
2126
MachineBasicBlock::iterator I(LEAMI);
2127
for (++I; &*I != JumpMI; ++I) {
2128
if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
2129
RemovableAdd = &*I;
2130
break;
2131
}
2132
2133
for (const MachineOperand &MO : I->operands()) {
2134
if (!MO.isReg() || !MO.getReg())
2135
continue;
2136
if (MO.isDef() && MO.getReg() == BaseReg)
2137
return false;
2138
if (MO.isUse() && MO.getReg() == BaseReg) {
2139
BaseRegKill = BaseRegKill || MO.isKill();
2140
CanDeleteLEA = false;
2141
}
2142
}
2143
}
2144
2145
if (!RemovableAdd)
2146
return true;
2147
2148
// Check the add really is removable, and that nothing else in the block
2149
// clobbers BaseReg.
2150
for (++I; &*I != JumpMI; ++I) {
2151
for (const MachineOperand &MO : I->operands()) {
2152
if (!MO.isReg() || !MO.getReg())
2153
continue;
2154
if (MO.isDef() && MO.getReg() == BaseReg)
2155
return false;
2156
if (MO.isUse() && MO.getReg() == EntryReg)
2157
RemovableAdd = nullptr;
2158
}
2159
}
2160
2161
if (RemovableAdd) {
2162
RemovableAdd->eraseFromParent();
2163
DeadSize += isThumb2 ? 4 : 2;
2164
} else if (BaseReg == EntryReg) {
2165
// The add wasn't removable, but clobbered the base for the TBB. So we can't
2166
// preserve it.
2167
return false;
2168
}
2169
2170
// We reached the end of the block without seeing another definition of
2171
// BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2172
// used in the TBB/TBH if necessary.
2173
return true;
2174
}
2175
2176
/// Returns whether CPEMI is the first instruction in the block
2177
/// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2178
/// we can switch the first register to PC and usually remove the address
2179
/// calculation that preceded it.
2180
static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2181
MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2182
MachineFunction *MF = MBB->getParent();
2183
++MBB;
2184
2185
return MBB != MF->end() && !MBB->empty() && &*MBB->begin() == CPEMI;
2186
}
2187
2188
static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2189
MachineInstr *JumpMI,
2190
unsigned &DeadSize) {
2191
// Remove a dead add between the LEA and JT, which used to compute EntryReg,
2192
// but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2193
// and is not clobbered / used.
2194
MachineInstr *RemovableAdd = nullptr;
2195
Register EntryReg = JumpMI->getOperand(0).getReg();
2196
2197
// Find the last ADD to set EntryReg
2198
MachineBasicBlock::iterator I(LEAMI);
2199
for (++I; &*I != JumpMI; ++I) {
2200
if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2201
RemovableAdd = &*I;
2202
}
2203
2204
if (!RemovableAdd)
2205
return;
2206
2207
// Ensure EntryReg is not clobbered or used.
2208
MachineBasicBlock::iterator J(RemovableAdd);
2209
for (++J; &*J != JumpMI; ++J) {
2210
for (const MachineOperand &MO : J->operands()) {
2211
if (!MO.isReg() || !MO.getReg())
2212
continue;
2213
if (MO.isDef() && MO.getReg() == EntryReg)
2214
return;
2215
if (MO.isUse() && MO.getReg() == EntryReg)
2216
return;
2217
}
2218
}
2219
2220
LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2221
RemovableAdd->eraseFromParent();
2222
DeadSize += 4;
2223
}
2224
2225
/// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2226
/// jumptables when it's possible.
2227
bool ARMConstantIslands::optimizeThumb2JumpTables() {
2228
bool MadeChange = false;
2229
2230
// FIXME: After the tables are shrunk, can we get rid some of the
2231
// constantpool tables?
2232
MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2233
if (!MJTI) return false;
2234
2235
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2236
for (MachineInstr *MI : T2JumpTables) {
2237
const MCInstrDesc &MCID = MI->getDesc();
2238
unsigned NumOps = MCID.getNumOperands();
2239
unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2240
MachineOperand JTOP = MI->getOperand(JTOpIdx);
2241
unsigned JTI = JTOP.getIndex();
2242
assert(JTI < JT.size());
2243
2244
bool ByteOk = true;
2245
bool HalfWordOk = true;
2246
unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4;
2247
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2248
BBInfoVector &BBInfo = BBUtils->getBBInfo();
2249
for (MachineBasicBlock *MBB : JTBBs) {
2250
unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2251
// Negative offset is not ok. FIXME: We should change BB layout to make
2252
// sure all the branches are forward.
2253
if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2254
ByteOk = false;
2255
unsigned TBHLimit = ((1<<16)-1)*2;
2256
if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2257
HalfWordOk = false;
2258
if (!ByteOk && !HalfWordOk)
2259
break;
2260
}
2261
2262
if (!ByteOk && !HalfWordOk)
2263
continue;
2264
2265
CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2266
MachineBasicBlock *MBB = MI->getParent();
2267
if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2268
continue;
2269
2270
unsigned DeadSize = 0;
2271
bool CanDeleteLEA = false;
2272
bool BaseRegKill = false;
2273
2274
unsigned IdxReg = ~0U;
2275
bool IdxRegKill = true;
2276
if (isThumb2) {
2277
IdxReg = MI->getOperand(1).getReg();
2278
IdxRegKill = MI->getOperand(1).isKill();
2279
2280
bool PreservedBaseReg =
2281
preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2282
if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2283
continue;
2284
} else {
2285
// We're in thumb-1 mode, so we must have something like:
2286
// %idx = tLSLri %idx, 2
2287
// %base = tLEApcrelJT
2288
// %t = tLDRr %base, %idx
2289
Register BaseReg = User.MI->getOperand(0).getReg();
2290
2291
MachineBasicBlock *UserMBB = User.MI->getParent();
2292
MachineBasicBlock::iterator Shift = User.MI->getIterator();
2293
if (Shift == UserMBB->begin())
2294
continue;
2295
2296
Shift = prev_nodbg(Shift, UserMBB->begin());
2297
if (Shift->getOpcode() != ARM::tLSLri ||
2298
Shift->getOperand(3).getImm() != 2 ||
2299
!Shift->getOperand(2).isKill())
2300
continue;
2301
IdxReg = Shift->getOperand(2).getReg();
2302
Register ShiftedIdxReg = Shift->getOperand(0).getReg();
2303
2304
// It's important that IdxReg is live until the actual TBB/TBH. Most of
2305
// the range is checked later, but the LEA might still clobber it and not
2306
// actually get removed.
2307
if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
2308
continue;
2309
2310
MachineInstr *Load = User.MI->getNextNode();
2311
if (Load->getOpcode() != ARM::tLDRr)
2312
continue;
2313
if (Load->getOperand(1).getReg() != BaseReg ||
2314
Load->getOperand(2).getReg() != ShiftedIdxReg ||
2315
!Load->getOperand(2).isKill())
2316
continue;
2317
2318
// If we're in PIC mode, there should be another ADD following.
2319
auto *TRI = STI->getRegisterInfo();
2320
2321
// %base cannot be redefined after the load as it will appear before
2322
// TBB/TBH like:
2323
// %base =
2324
// %base =
2325
// tBB %base, %idx
2326
if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2327
continue;
2328
2329
if (isPositionIndependentOrROPI) {
2330
MachineInstr *Add = Load->getNextNode();
2331
if (Add->getOpcode() != ARM::tADDrr ||
2332
Add->getOperand(2).getReg() != BaseReg ||
2333
Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2334
!Add->getOperand(3).isKill())
2335
continue;
2336
if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
2337
continue;
2338
if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2339
// IdxReg gets redefined in the middle of the sequence.
2340
continue;
2341
Add->eraseFromParent();
2342
DeadSize += 2;
2343
} else {
2344
if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
2345
continue;
2346
if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2347
// IdxReg gets redefined in the middle of the sequence.
2348
continue;
2349
}
2350
2351
// Now safe to delete the load and lsl. The LEA will be removed later.
2352
CanDeleteLEA = true;
2353
Shift->eraseFromParent();
2354
Load->eraseFromParent();
2355
DeadSize += 4;
2356
}
2357
2358
LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2359
MachineInstr *CPEMI = User.CPEMI;
2360
unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2361
if (!isThumb2)
2362
Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2363
2364
MachineBasicBlock::iterator MI_JT = MI;
2365
MachineInstr *NewJTMI =
2366
BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2367
.addReg(User.MI->getOperand(0).getReg(),
2368
getKillRegState(BaseRegKill))
2369
.addReg(IdxReg, getKillRegState(IdxRegKill))
2370
.addJumpTableIndex(JTI, JTOP.getTargetFlags())
2371
.addImm(CPEMI->getOperand(0).getImm());
2372
LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2373
2374
unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2375
CPEMI->setDesc(TII->get(JTOpc));
2376
2377
if (jumpTableFollowsTB(MI, User.CPEMI)) {
2378
NewJTMI->getOperand(0).setReg(ARM::PC);
2379
NewJTMI->getOperand(0).setIsKill(false);
2380
2381
if (CanDeleteLEA) {
2382
if (isThumb2)
2383
RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
2384
2385
User.MI->eraseFromParent();
2386
DeadSize += isThumb2 ? 4 : 2;
2387
2388
// The LEA was eliminated, the TBB instruction becomes the only new user
2389
// of the jump table.
2390
User.MI = NewJTMI;
2391
User.MaxDisp = 4;
2392
User.NegOk = false;
2393
User.IsSoImm = false;
2394
User.KnownAlignment = false;
2395
} else {
2396
// The LEA couldn't be eliminated, so we must add another CPUser to
2397
// record the TBB or TBH use.
2398
int CPEntryIdx = JumpTableEntryIndices[JTI];
2399
auto &CPEs = CPEntries[CPEntryIdx];
2400
auto Entry =
2401
find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2402
++Entry->RefCount;
2403
CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2404
}
2405
}
2406
2407
unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
2408
unsigned OrigSize = TII->getInstSizeInBytes(*MI);
2409
MI->eraseFromParent();
2410
2411
int Delta = OrigSize - NewSize + DeadSize;
2412
BBInfo[MBB->getNumber()].Size -= Delta;
2413
BBUtils->adjustBBOffsetsAfter(MBB);
2414
2415
++NumTBs;
2416
MadeChange = true;
2417
}
2418
2419
return MadeChange;
2420
}
2421
2422
/// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2423
/// jump tables always branch forwards, since that's what tbb and tbh need.
2424
bool ARMConstantIslands::reorderThumb2JumpTables() {
2425
bool MadeChange = false;
2426
2427
MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2428
if (!MJTI) return false;
2429
2430
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2431
for (MachineInstr *MI : T2JumpTables) {
2432
const MCInstrDesc &MCID = MI->getDesc();
2433
unsigned NumOps = MCID.getNumOperands();
2434
unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2435
MachineOperand JTOP = MI->getOperand(JTOpIdx);
2436
unsigned JTI = JTOP.getIndex();
2437
assert(JTI < JT.size());
2438
2439
// We prefer if target blocks for the jump table come after the jump
2440
// instruction so we can use TB[BH]. Loop through the target blocks
2441
// and try to adjust them such that that's true.
2442
int JTNumber = MI->getParent()->getNumber();
2443
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2444
for (MachineBasicBlock *MBB : JTBBs) {
2445
int DTNumber = MBB->getNumber();
2446
2447
if (DTNumber < JTNumber) {
2448
// The destination precedes the switch. Try to move the block forward
2449
// so we have a positive offset.
2450
MachineBasicBlock *NewBB =
2451
adjustJTTargetBlockForward(JTI, MBB, MI->getParent());
2452
if (NewBB)
2453
MJTI->ReplaceMBBInJumpTable(JTI, MBB, NewBB);
2454
MadeChange = true;
2455
}
2456
}
2457
}
2458
2459
return MadeChange;
2460
}
2461
2462
MachineBasicBlock *ARMConstantIslands::adjustJTTargetBlockForward(
2463
unsigned JTI, MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2464
// If the destination block is terminated by an unconditional branch,
2465
// try to move it; otherwise, create a new block following the jump
2466
// table that branches back to the actual target. This is a very simple
2467
// heuristic. FIXME: We can definitely improve it.
2468
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2469
SmallVector<MachineOperand, 4> Cond;
2470
SmallVector<MachineOperand, 4> CondPrior;
2471
MachineFunction::iterator BBi = BB->getIterator();
2472
MachineFunction::iterator OldPrior = std::prev(BBi);
2473
MachineFunction::iterator OldNext = std::next(BBi);
2474
2475
// If the block terminator isn't analyzable, don't try to move the block
2476
bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2477
2478
// If the block ends in an unconditional branch, move it. The prior block
2479
// has to have an analyzable terminator for us to move this one. Be paranoid
2480
// and make sure we're not trying to move the entry block of the function.
2481
if (!B && Cond.empty() && BB != &MF->front() &&
2482
!TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2483
BB->moveAfter(JTBB);
2484
OldPrior->updateTerminator(BB);
2485
BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr);
2486
// Update numbering to account for the block being moved.
2487
MF->RenumberBlocks();
2488
++NumJTMoved;
2489
return nullptr;
2490
}
2491
2492
// Create a new MBB for the code after the jump BB.
2493
MachineBasicBlock *NewBB =
2494
MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2495
MachineFunction::iterator MBBI = ++JTBB->getIterator();
2496
MF->insert(MBBI, NewBB);
2497
2498
// Copy live-in information to new block.
2499
for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins())
2500
NewBB->addLiveIn(RegMaskPair);
2501
2502
// Add an unconditional branch from NewBB to BB.
2503
// There doesn't seem to be meaningful DebugInfo available; this doesn't
2504
// correspond directly to anything in the source.
2505
if (isThumb2)
2506
BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2507
.addMBB(BB)
2508
.add(predOps(ARMCC::AL));
2509
else
2510
BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2511
.addMBB(BB)
2512
.add(predOps(ARMCC::AL));
2513
2514
// Update internal data structures to account for the newly inserted MBB.
2515
MF->RenumberBlocks(NewBB);
2516
2517
// Update the CFG.
2518
NewBB->addSuccessor(BB);
2519
JTBB->replaceSuccessor(BB, NewBB);
2520
2521
++NumJTInserted;
2522
return NewBB;
2523
}
2524
2525
/// createARMConstantIslandPass - returns an instance of the constpool
2526
/// island pass.
2527
FunctionPass *llvm::createARMConstantIslandPass() {
2528
return new ARMConstantIslands();
2529
}
2530
2531
INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2532
false, false)
2533
2534