Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp
35266 views
1
//===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the ARM implementation of TargetFrameLowering class.
10
//
11
//===----------------------------------------------------------------------===//
12
//
13
// This file contains the ARM implementation of TargetFrameLowering class.
14
//
15
// On ARM, stack frames are structured as follows:
16
//
17
// The stack grows downward.
18
//
19
// All of the individual frame areas on the frame below are optional, i.e. it's
20
// possible to create a function so that the particular area isn't present
21
// in the frame.
22
//
23
// At function entry, the "frame" looks as follows:
24
//
25
// | | Higher address
26
// |-----------------------------------|
27
// | |
28
// | arguments passed on the stack |
29
// | |
30
// |-----------------------------------| <- sp
31
// | | Lower address
32
//
33
//
34
// After the prologue has run, the frame has the following general structure.
35
// Technically the last frame area (VLAs) doesn't get created until in the
36
// main function body, after the prologue is run. However, it's depicted here
37
// for completeness.
38
//
39
// | | Higher address
40
// |-----------------------------------|
41
// | |
42
// | arguments passed on the stack |
43
// | |
44
// |-----------------------------------| <- (sp at function entry)
45
// | |
46
// | varargs from registers |
47
// | |
48
// |-----------------------------------|
49
// | |
50
// | prev_lr |
51
// | prev_fp |
52
// | (a.k.a. "frame record") |
53
// | |
54
// |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
55
// | |
56
// | callee-saved gpr registers |
57
// | |
58
// |-----------------------------------|
59
// | |
60
// | callee-saved fp/simd regs |
61
// | |
62
// |-----------------------------------|
63
// |.empty.space.to.make.part.below....|
64
// |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65
// |.the.standard.8-byte.alignment.....| compile time; if present)
66
// |-----------------------------------|
67
// | |
68
// | local variables of fixed size |
69
// | including spill slots |
70
// |-----------------------------------| <- base pointer (not defined by ABI,
71
// |.variable-sized.local.variables....| LLVM chooses r6)
72
// |.(VLAs)............................| (size of this area is unknown at
73
// |...................................| compile time)
74
// |-----------------------------------| <- sp
75
// | | Lower address
76
//
77
//
78
// To access the data in a frame, at-compile time, a constant offset must be
79
// computable from one of the pointers (fp, bp, sp) to access it. The size
80
// of the areas with a dotted background cannot be computed at compile-time
81
// if they are present, making it required to have all three of fp, bp and
82
// sp to be set up to be able to access all contents in the frame areas,
83
// assuming all of the frame areas are non-empty.
84
//
85
// For most functions, some of the frame areas are empty. For those functions,
86
// it may not be necessary to set up fp or bp:
87
// * A base pointer is definitely needed when there are both VLAs and local
88
// variables with more-than-default alignment requirements.
89
// * A frame pointer is definitely needed when there are local variables with
90
// more-than-default alignment requirements.
91
//
92
// In some cases when a base pointer is not strictly needed, it is generated
93
// anyway when offsets from the frame pointer to access local variables become
94
// so large that the offset can't be encoded in the immediate fields of loads
95
// or stores.
96
//
97
// The frame pointer might be chosen to be r7 or r11, depending on the target
98
// architecture and operating system. See ARMSubtarget::getFramePointerReg for
99
// details.
100
//
101
// Outgoing function arguments must be at the bottom of the stack frame when
102
// calling another function. If we do not have variable-sized stack objects, we
103
// can allocate a "reserved call frame" area at the bottom of the local
104
// variable area, large enough for all outgoing calls. If we do have VLAs, then
105
// the stack pointer must be decremented and incremented around each call to
106
// make space for the arguments below the VLAs.
107
//
108
//===----------------------------------------------------------------------===//
109
110
#include "ARMFrameLowering.h"
111
#include "ARMBaseInstrInfo.h"
112
#include "ARMBaseRegisterInfo.h"
113
#include "ARMConstantPoolValue.h"
114
#include "ARMMachineFunctionInfo.h"
115
#include "ARMSubtarget.h"
116
#include "MCTargetDesc/ARMAddressingModes.h"
117
#include "MCTargetDesc/ARMBaseInfo.h"
118
#include "Utils/ARMBaseInfo.h"
119
#include "llvm/ADT/BitVector.h"
120
#include "llvm/ADT/STLExtras.h"
121
#include "llvm/ADT/SmallPtrSet.h"
122
#include "llvm/ADT/SmallVector.h"
123
#include "llvm/CodeGen/MachineBasicBlock.h"
124
#include "llvm/CodeGen/MachineConstantPool.h"
125
#include "llvm/CodeGen/MachineFrameInfo.h"
126
#include "llvm/CodeGen/MachineFunction.h"
127
#include "llvm/CodeGen/MachineInstr.h"
128
#include "llvm/CodeGen/MachineInstrBuilder.h"
129
#include "llvm/CodeGen/MachineJumpTableInfo.h"
130
#include "llvm/CodeGen/MachineModuleInfo.h"
131
#include "llvm/CodeGen/MachineOperand.h"
132
#include "llvm/CodeGen/MachineRegisterInfo.h"
133
#include "llvm/CodeGen/RegisterScavenging.h"
134
#include "llvm/CodeGen/TargetInstrInfo.h"
135
#include "llvm/CodeGen/TargetOpcodes.h"
136
#include "llvm/CodeGen/TargetRegisterInfo.h"
137
#include "llvm/CodeGen/TargetSubtargetInfo.h"
138
#include "llvm/IR/Attributes.h"
139
#include "llvm/IR/CallingConv.h"
140
#include "llvm/IR/DebugLoc.h"
141
#include "llvm/IR/Function.h"
142
#include "llvm/MC/MCAsmInfo.h"
143
#include "llvm/MC/MCContext.h"
144
#include "llvm/MC/MCDwarf.h"
145
#include "llvm/MC/MCInstrDesc.h"
146
#include "llvm/MC/MCRegisterInfo.h"
147
#include "llvm/Support/CodeGen.h"
148
#include "llvm/Support/CommandLine.h"
149
#include "llvm/Support/Compiler.h"
150
#include "llvm/Support/Debug.h"
151
#include "llvm/Support/ErrorHandling.h"
152
#include "llvm/Support/MathExtras.h"
153
#include "llvm/Support/raw_ostream.h"
154
#include "llvm/Target/TargetMachine.h"
155
#include "llvm/Target/TargetOptions.h"
156
#include <algorithm>
157
#include <cassert>
158
#include <cstddef>
159
#include <cstdint>
160
#include <iterator>
161
#include <utility>
162
#include <vector>
163
164
#define DEBUG_TYPE "arm-frame-lowering"
165
166
using namespace llvm;
167
168
static cl::opt<bool>
169
SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
170
cl::desc("Align ARM NEON spills in prolog and epilog"));
171
172
static MachineBasicBlock::iterator
173
skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
174
unsigned NumAlignedDPRCS2Regs);
175
176
ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
177
: TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
178
STI(sti) {}
179
180
bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
181
// iOS always has a FP for backtracking, force other targets to keep their FP
182
// when doing FastISel. The emitted code is currently superior, and in cases
183
// like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
184
return MF.getSubtarget<ARMSubtarget>().useFastISel();
185
}
186
187
/// Returns true if the target can safely skip saving callee-saved registers
188
/// for noreturn nounwind functions.
189
bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
190
assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
191
MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
192
!MF.getFunction().hasFnAttribute(Attribute::UWTable));
193
194
// Frame pointer and link register are not treated as normal CSR, thus we
195
// can always skip CSR saves for nonreturning functions.
196
return true;
197
}
198
199
/// hasFP - Return true if the specified function should have a dedicated frame
200
/// pointer register. This is true if the function has variable sized allocas
201
/// or if frame pointer elimination is disabled.
202
bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
203
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
204
const MachineFrameInfo &MFI = MF.getFrameInfo();
205
206
// ABI-required frame pointer.
207
if (MF.getTarget().Options.DisableFramePointerElim(MF))
208
return true;
209
210
// Frame pointer required for use within this function.
211
return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
212
MFI.isFrameAddressTaken());
213
}
214
215
/// isFPReserved - Return true if the frame pointer register should be
216
/// considered a reserved register on the scope of the specified function.
217
bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const {
218
return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF);
219
}
220
221
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
222
/// not required, we reserve argument space for call sites in the function
223
/// immediately on entry to the current function. This eliminates the need for
224
/// add/sub sp brackets around call sites. Returns true if the call frame is
225
/// included as part of the stack frame.
226
bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
227
const MachineFrameInfo &MFI = MF.getFrameInfo();
228
unsigned CFSize = MFI.getMaxCallFrameSize();
229
// It's not always a good idea to include the call frame as part of the
230
// stack frame. ARM (especially Thumb) has small immediate offset to
231
// address the stack frame. So a large call frame can cause poor codegen
232
// and may even makes it impossible to scavenge a register.
233
if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
234
return false;
235
236
return !MFI.hasVarSizedObjects();
237
}
238
239
/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
240
/// call frame pseudos can be simplified. Unlike most targets, having a FP
241
/// is not sufficient here since we still may reference some objects via SP
242
/// even when FP is available in Thumb2 mode.
243
bool
244
ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
245
return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
246
}
247
248
// Returns how much of the incoming argument stack area we should clean up in an
249
// epilogue. For the C calling convention this will be 0, for guaranteed tail
250
// call conventions it can be positive (a normal return or a tail call to a
251
// function that uses less stack space for arguments) or negative (for a tail
252
// call to a function that needs more stack space than us for arguments).
253
static int getArgumentStackToRestore(MachineFunction &MF,
254
MachineBasicBlock &MBB) {
255
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
256
bool IsTailCallReturn = false;
257
if (MBB.end() != MBBI) {
258
unsigned RetOpcode = MBBI->getOpcode();
259
IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
260
RetOpcode == ARM::TCRETURNri ||
261
RetOpcode == ARM::TCRETURNrinotr12;
262
}
263
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
264
265
int ArgumentPopSize = 0;
266
if (IsTailCallReturn) {
267
MachineOperand &StackAdjust = MBBI->getOperand(1);
268
269
// For a tail-call in a callee-pops-arguments environment, some or all of
270
// the stack may actually be in use for the call's arguments, this is
271
// calculated during LowerCall and consumed here...
272
ArgumentPopSize = StackAdjust.getImm();
273
} else {
274
// ... otherwise the amount to pop is *all* of the argument space,
275
// conveniently stored in the MachineFunctionInfo by
276
// LowerFormalArguments. This will, of course, be zero for the C calling
277
// convention.
278
ArgumentPopSize = AFI->getArgumentStackToRestore();
279
}
280
281
return ArgumentPopSize;
282
}
283
284
static bool needsWinCFI(const MachineFunction &MF) {
285
const Function &F = MF.getFunction();
286
return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
287
F.needsUnwindTableEntry();
288
}
289
290
// Given a load or a store instruction, generate an appropriate unwinding SEH
291
// code on Windows.
292
static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
293
const TargetInstrInfo &TII,
294
unsigned Flags) {
295
unsigned Opc = MBBI->getOpcode();
296
MachineBasicBlock *MBB = MBBI->getParent();
297
MachineFunction &MF = *MBB->getParent();
298
DebugLoc DL = MBBI->getDebugLoc();
299
MachineInstrBuilder MIB;
300
const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
301
const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
302
303
Flags |= MachineInstr::NoMerge;
304
305
switch (Opc) {
306
default:
307
report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
308
break;
309
case ARM::t2ADDri: // add.w r11, sp, #xx
310
case ARM::t2ADDri12: // add.w r11, sp, #xx
311
case ARM::t2MOVTi16: // movt r4, #xx
312
case ARM::tBL: // bl __chkstk
313
// These are harmless if used for just setting up a frame pointer,
314
// but that frame pointer can't be relied upon for unwinding, unless
315
// set up with SEH_SaveSP.
316
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
317
.addImm(/*Wide=*/1)
318
.setMIFlags(Flags);
319
break;
320
321
case ARM::t2MOVi16: { // mov(w) r4, #xx
322
bool Wide = MBBI->getOperand(1).getImm() >= 256;
323
if (!Wide) {
324
MachineInstrBuilder NewInstr =
325
BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags());
326
NewInstr.add(MBBI->getOperand(0));
327
NewInstr.add(t1CondCodeOp(/*isDead=*/true));
328
for (MachineOperand &MO : llvm::drop_begin(MBBI->operands()))
329
NewInstr.add(MO);
330
MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
331
MBB->erase(MBBI);
332
MBBI = NewMBBI;
333
}
334
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags);
335
break;
336
}
337
338
case ARM::tBLXr: // blx r12 (__chkstk)
339
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
340
.addImm(/*Wide=*/0)
341
.setMIFlags(Flags);
342
break;
343
344
case ARM::t2MOVi32imm: // movw+movt
345
// This pseudo instruction expands into two mov instructions. If the
346
// second operand is a symbol reference, this will stay as two wide
347
// instructions, movw+movt. If they're immediates, the first one can
348
// end up as a narrow mov though.
349
// As two SEH instructions are appended here, they won't get interleaved
350
// between the two final movw/movt instructions, but it doesn't make any
351
// practical difference.
352
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
353
.addImm(/*Wide=*/1)
354
.setMIFlags(Flags);
355
MBB->insertAfter(MBBI, MIB);
356
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
357
.addImm(/*Wide=*/1)
358
.setMIFlags(Flags);
359
break;
360
361
case ARM::t2STR_PRE:
362
if (MBBI->getOperand(0).getReg() == ARM::SP &&
363
MBBI->getOperand(2).getReg() == ARM::SP &&
364
MBBI->getOperand(3).getImm() == -4) {
365
unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
366
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
367
.addImm(1ULL << Reg)
368
.addImm(/*Wide=*/1)
369
.setMIFlags(Flags);
370
} else {
371
report_fatal_error("No matching SEH Opcode for t2STR_PRE");
372
}
373
break;
374
375
case ARM::t2LDR_POST:
376
if (MBBI->getOperand(1).getReg() == ARM::SP &&
377
MBBI->getOperand(2).getReg() == ARM::SP &&
378
MBBI->getOperand(3).getImm() == 4) {
379
unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
380
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
381
.addImm(1ULL << Reg)
382
.addImm(/*Wide=*/1)
383
.setMIFlags(Flags);
384
} else {
385
report_fatal_error("No matching SEH Opcode for t2LDR_POST");
386
}
387
break;
388
389
case ARM::t2LDMIA_RET:
390
case ARM::t2LDMIA_UPD:
391
case ARM::t2STMDB_UPD: {
392
unsigned Mask = 0;
393
bool Wide = false;
394
for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
395
const MachineOperand &MO = MBBI->getOperand(i);
396
if (!MO.isReg() || MO.isImplicit())
397
continue;
398
unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
399
if (Reg == 15)
400
Reg = 14;
401
if (Reg >= 8 && Reg <= 13)
402
Wide = true;
403
else if (Opc == ARM::t2LDMIA_UPD && Reg == 14)
404
Wide = true;
405
Mask |= 1 << Reg;
406
}
407
if (!Wide) {
408
unsigned NewOpc;
409
switch (Opc) {
410
case ARM::t2LDMIA_RET:
411
NewOpc = ARM::tPOP_RET;
412
break;
413
case ARM::t2LDMIA_UPD:
414
NewOpc = ARM::tPOP;
415
break;
416
case ARM::t2STMDB_UPD:
417
NewOpc = ARM::tPUSH;
418
break;
419
default:
420
llvm_unreachable("");
421
}
422
MachineInstrBuilder NewInstr =
423
BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags());
424
for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
425
NewInstr.add(MBBI->getOperand(i));
426
MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
427
MBB->erase(MBBI);
428
MBBI = NewMBBI;
429
}
430
unsigned SEHOpc =
431
(Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
432
MIB = BuildMI(MF, DL, TII.get(SEHOpc))
433
.addImm(Mask)
434
.addImm(Wide ? 1 : 0)
435
.setMIFlags(Flags);
436
break;
437
}
438
case ARM::VSTMDDB_UPD:
439
case ARM::VLDMDIA_UPD: {
440
int First = -1, Last = 0;
441
for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) {
442
unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
443
if (First == -1)
444
First = Reg;
445
Last = Reg;
446
}
447
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
448
.addImm(First)
449
.addImm(Last)
450
.setMIFlags(Flags);
451
break;
452
}
453
case ARM::tSUBspi:
454
case ARM::tADDspi:
455
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
456
.addImm(MBBI->getOperand(2).getImm() * 4)
457
.addImm(/*Wide=*/0)
458
.setMIFlags(Flags);
459
break;
460
case ARM::t2SUBspImm:
461
case ARM::t2SUBspImm12:
462
case ARM::t2ADDspImm:
463
case ARM::t2ADDspImm12:
464
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
465
.addImm(MBBI->getOperand(2).getImm())
466
.addImm(/*Wide=*/1)
467
.setMIFlags(Flags);
468
break;
469
470
case ARM::tMOVr:
471
if (MBBI->getOperand(1).getReg() == ARM::SP &&
472
(Flags & MachineInstr::FrameSetup)) {
473
unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
474
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
475
.addImm(Reg)
476
.setMIFlags(Flags);
477
} else if (MBBI->getOperand(0).getReg() == ARM::SP &&
478
(Flags & MachineInstr::FrameDestroy)) {
479
unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
480
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
481
.addImm(Reg)
482
.setMIFlags(Flags);
483
} else {
484
report_fatal_error("No SEH Opcode for MOV");
485
}
486
break;
487
488
case ARM::tBX_RET:
489
case ARM::TCRETURNri:
490
case ARM::TCRETURNrinotr12:
491
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
492
.addImm(/*Wide=*/0)
493
.setMIFlags(Flags);
494
break;
495
496
case ARM::TCRETURNdi:
497
MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
498
.addImm(/*Wide=*/1)
499
.setMIFlags(Flags);
500
break;
501
}
502
return MBB->insertAfter(MBBI, MIB);
503
}
504
505
static MachineBasicBlock::iterator
506
initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
507
if (MBBI == MBB.begin())
508
return MachineBasicBlock::iterator();
509
return std::prev(MBBI);
510
}
511
512
static void insertSEHRange(MachineBasicBlock &MBB,
513
MachineBasicBlock::iterator Start,
514
const MachineBasicBlock::iterator &End,
515
const ARMBaseInstrInfo &TII, unsigned MIFlags) {
516
if (Start.isValid())
517
Start = std::next(Start);
518
else
519
Start = MBB.begin();
520
521
for (auto MI = Start; MI != End;) {
522
auto Next = std::next(MI);
523
// Check if this instruction already has got a SEH opcode added. In that
524
// case, don't do this generic mapping.
525
if (Next != End && isSEHInstruction(*Next)) {
526
MI = std::next(Next);
527
while (MI != End && isSEHInstruction(*MI))
528
++MI;
529
continue;
530
}
531
insertSEH(MI, TII, MIFlags);
532
MI = Next;
533
}
534
}
535
536
static void emitRegPlusImmediate(
537
bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
538
const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
539
unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
540
ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
541
if (isARM)
542
emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
543
Pred, PredReg, TII, MIFlags);
544
else
545
emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
546
Pred, PredReg, TII, MIFlags);
547
}
548
549
static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
550
MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
551
const ARMBaseInstrInfo &TII, int NumBytes,
552
unsigned MIFlags = MachineInstr::NoFlags,
553
ARMCC::CondCodes Pred = ARMCC::AL,
554
unsigned PredReg = 0) {
555
emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
556
MIFlags, Pred, PredReg);
557
}
558
559
static int sizeOfSPAdjustment(const MachineInstr &MI) {
560
int RegSize;
561
switch (MI.getOpcode()) {
562
case ARM::VSTMDDB_UPD:
563
RegSize = 8;
564
break;
565
case ARM::STMDB_UPD:
566
case ARM::t2STMDB_UPD:
567
RegSize = 4;
568
break;
569
case ARM::t2STR_PRE:
570
case ARM::STR_PRE_IMM:
571
return 4;
572
default:
573
llvm_unreachable("Unknown push or pop like instruction");
574
}
575
576
int count = 0;
577
// ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
578
// pred) so the list starts at 4.
579
for (int i = MI.getNumOperands() - 1; i >= 4; --i)
580
count += RegSize;
581
return count;
582
}
583
584
static bool WindowsRequiresStackProbe(const MachineFunction &MF,
585
size_t StackSizeInBytes) {
586
const MachineFrameInfo &MFI = MF.getFrameInfo();
587
const Function &F = MF.getFunction();
588
unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
589
590
StackProbeSize =
591
F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize);
592
return (StackSizeInBytes >= StackProbeSize) &&
593
!F.hasFnAttribute("no-stack-arg-probe");
594
}
595
596
namespace {
597
598
struct StackAdjustingInsts {
599
struct InstInfo {
600
MachineBasicBlock::iterator I;
601
unsigned SPAdjust;
602
bool BeforeFPSet;
603
};
604
605
SmallVector<InstInfo, 4> Insts;
606
607
void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
608
bool BeforeFPSet = false) {
609
InstInfo Info = {I, SPAdjust, BeforeFPSet};
610
Insts.push_back(Info);
611
}
612
613
void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
614
auto Info =
615
llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
616
assert(Info != Insts.end() && "invalid sp adjusting instruction");
617
Info->SPAdjust += ExtraBytes;
618
}
619
620
void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
621
const ARMBaseInstrInfo &TII, bool HasFP) {
622
MachineFunction &MF = *MBB.getParent();
623
unsigned CFAOffset = 0;
624
for (auto &Info : Insts) {
625
if (HasFP && !Info.BeforeFPSet)
626
return;
627
628
CFAOffset += Info.SPAdjust;
629
unsigned CFIIndex = MF.addFrameInst(
630
MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
631
BuildMI(MBB, std::next(Info.I), dl,
632
TII.get(TargetOpcode::CFI_INSTRUCTION))
633
.addCFIIndex(CFIIndex)
634
.setMIFlags(MachineInstr::FrameSetup);
635
}
636
}
637
};
638
639
} // end anonymous namespace
640
641
/// Emit an instruction sequence that will align the address in
642
/// register Reg by zero-ing out the lower bits. For versions of the
643
/// architecture that support Neon, this must be done in a single
644
/// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
645
/// single instruction. That function only gets called when optimizing
646
/// spilling of D registers on a core with the Neon instruction set
647
/// present.
648
static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
649
const TargetInstrInfo &TII,
650
MachineBasicBlock &MBB,
651
MachineBasicBlock::iterator MBBI,
652
const DebugLoc &DL, const unsigned Reg,
653
const Align Alignment,
654
const bool MustBeSingleInstruction) {
655
const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
656
const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
657
const unsigned AlignMask = Alignment.value() - 1U;
658
const unsigned NrBitsToZero = Log2(Alignment);
659
assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
660
if (!AFI->isThumbFunction()) {
661
// if the BFC instruction is available, use that to zero the lower
662
// bits:
663
// bfc Reg, #0, log2(Alignment)
664
// otherwise use BIC, if the mask to zero the required number of bits
665
// can be encoded in the bic immediate field
666
// bic Reg, Reg, Alignment-1
667
// otherwise, emit
668
// lsr Reg, Reg, log2(Alignment)
669
// lsl Reg, Reg, log2(Alignment)
670
if (CanUseBFC) {
671
BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
672
.addReg(Reg, RegState::Kill)
673
.addImm(~AlignMask)
674
.add(predOps(ARMCC::AL));
675
} else if (AlignMask <= 255) {
676
BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
677
.addReg(Reg, RegState::Kill)
678
.addImm(AlignMask)
679
.add(predOps(ARMCC::AL))
680
.add(condCodeOp());
681
} else {
682
assert(!MustBeSingleInstruction &&
683
"Shouldn't call emitAligningInstructions demanding a single "
684
"instruction to be emitted for large stack alignment for a target "
685
"without BFC.");
686
BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
687
.addReg(Reg, RegState::Kill)
688
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
689
.add(predOps(ARMCC::AL))
690
.add(condCodeOp());
691
BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
692
.addReg(Reg, RegState::Kill)
693
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
694
.add(predOps(ARMCC::AL))
695
.add(condCodeOp());
696
}
697
} else {
698
// Since this is only reached for Thumb-2 targets, the BFC instruction
699
// should always be available.
700
assert(CanUseBFC);
701
BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
702
.addReg(Reg, RegState::Kill)
703
.addImm(~AlignMask)
704
.add(predOps(ARMCC::AL));
705
}
706
}
707
708
/// We need the offset of the frame pointer relative to other MachineFrameInfo
709
/// offsets which are encoded relative to SP at function begin.
710
/// See also emitPrologue() for how the FP is set up.
711
/// Unfortunately we cannot determine this value in determineCalleeSaves() yet
712
/// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
713
/// this to produce a conservative estimate that we check in an assert() later.
714
static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
715
const MachineFunction &MF) {
716
// For Thumb1, push.w isn't available, so the first push will always push
717
// r7 and lr onto the stack first.
718
if (AFI.isThumb1OnlyFunction())
719
return -AFI.getArgRegsSaveSize() - (2 * 4);
720
// This is a conservative estimation: Assume the frame pointer being r7 and
721
// pc("r15") up to r8 getting spilled before (= 8 registers).
722
int MaxRegBytes = 8 * 4;
723
if (STI.splitFramePointerPush(MF)) {
724
// Here, r11 can be stored below all of r4-r15 (3 registers more than
725
// above), plus d8-d15.
726
MaxRegBytes = 11 * 4 + 8 * 8;
727
}
728
int FPCXTSaveSize =
729
(STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
730
return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
731
}
732
733
void ARMFrameLowering::emitPrologue(MachineFunction &MF,
734
MachineBasicBlock &MBB) const {
735
MachineBasicBlock::iterator MBBI = MBB.begin();
736
MachineFrameInfo &MFI = MF.getFrameInfo();
737
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
738
MCContext &Context = MF.getContext();
739
const TargetMachine &TM = MF.getTarget();
740
const MCRegisterInfo *MRI = Context.getRegisterInfo();
741
const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
742
const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
743
assert(!AFI->isThumb1OnlyFunction() &&
744
"This emitPrologue does not support Thumb1!");
745
bool isARM = !AFI->isThumbFunction();
746
Align Alignment = STI.getFrameLowering()->getStackAlign();
747
unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
748
unsigned NumBytes = MFI.getStackSize();
749
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
750
int FPCXTSaveSize = 0;
751
bool NeedsWinCFI = needsWinCFI(MF);
752
753
// Debug location must be unknown since the first debug location is used
754
// to determine the end of the prologue.
755
DebugLoc dl;
756
757
Register FramePtr = RegInfo->getFrameRegister(MF);
758
759
// Determine the sizes of each callee-save spill areas and record which frame
760
// belongs to which callee-save spill areas.
761
unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
762
int FramePtrSpillFI = 0;
763
int D8SpillFI = 0;
764
765
// All calls are tail calls in GHC calling conv, and functions have no
766
// prologue/epilogue.
767
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
768
return;
769
770
StackAdjustingInsts DefCFAOffsetCandidates;
771
bool HasFP = hasFP(MF);
772
773
if (!AFI->hasStackFrame() &&
774
(!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
775
if (NumBytes != 0) {
776
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
777
MachineInstr::FrameSetup);
778
DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
779
}
780
if (!NeedsWinCFI)
781
DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
782
if (NeedsWinCFI && MBBI != MBB.begin()) {
783
insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
784
BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
785
.setMIFlag(MachineInstr::FrameSetup);
786
MF.setHasWinCFI(true);
787
}
788
return;
789
}
790
791
// Determine spill area sizes.
792
if (STI.splitFramePointerPush(MF)) {
793
for (const CalleeSavedInfo &I : CSI) {
794
Register Reg = I.getReg();
795
int FI = I.getFrameIdx();
796
switch (Reg) {
797
case ARM::R11:
798
case ARM::LR:
799
if (Reg == FramePtr)
800
FramePtrSpillFI = FI;
801
GPRCS2Size += 4;
802
break;
803
case ARM::R0:
804
case ARM::R1:
805
case ARM::R2:
806
case ARM::R3:
807
case ARM::R4:
808
case ARM::R5:
809
case ARM::R6:
810
case ARM::R7:
811
case ARM::R8:
812
case ARM::R9:
813
case ARM::R10:
814
case ARM::R12:
815
GPRCS1Size += 4;
816
break;
817
case ARM::FPCXTNS:
818
FPCXTSaveSize = 4;
819
break;
820
default:
821
// This is a DPR. Exclude the aligned DPRCS2 spills.
822
if (Reg == ARM::D8)
823
D8SpillFI = FI;
824
if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
825
DPRCSSize += 8;
826
}
827
}
828
} else {
829
for (const CalleeSavedInfo &I : CSI) {
830
Register Reg = I.getReg();
831
int FI = I.getFrameIdx();
832
switch (Reg) {
833
case ARM::R8:
834
case ARM::R9:
835
case ARM::R10:
836
case ARM::R11:
837
case ARM::R12:
838
if (STI.splitFramePushPop(MF)) {
839
GPRCS2Size += 4;
840
break;
841
}
842
[[fallthrough]];
843
case ARM::R0:
844
case ARM::R1:
845
case ARM::R2:
846
case ARM::R3:
847
case ARM::R4:
848
case ARM::R5:
849
case ARM::R6:
850
case ARM::R7:
851
case ARM::LR:
852
if (Reg == FramePtr)
853
FramePtrSpillFI = FI;
854
GPRCS1Size += 4;
855
break;
856
case ARM::FPCXTNS:
857
FPCXTSaveSize = 4;
858
break;
859
default:
860
// This is a DPR. Exclude the aligned DPRCS2 spills.
861
if (Reg == ARM::D8)
862
D8SpillFI = FI;
863
if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
864
DPRCSSize += 8;
865
}
866
}
867
}
868
869
MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
870
871
// Move past the PAC computation.
872
if (AFI->shouldSignReturnAddress())
873
LastPush = MBBI++;
874
875
// Move past FPCXT area.
876
if (FPCXTSaveSize > 0) {
877
LastPush = MBBI++;
878
DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
879
}
880
881
// Allocate the vararg register save area.
882
if (ArgRegsSaveSize) {
883
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
884
MachineInstr::FrameSetup);
885
LastPush = std::prev(MBBI);
886
DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true);
887
}
888
889
// Move past area 1.
890
if (GPRCS1Size > 0) {
891
GPRCS1Push = LastPush = MBBI++;
892
DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
893
}
894
895
// Determine starting offsets of spill areas.
896
unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
897
unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
898
unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
899
Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
900
unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize;
901
if (!STI.splitFramePointerPush(MF)) {
902
DPRGapSize += GPRCS2Size;
903
}
904
DPRGapSize %= DPRAlign.value();
905
906
unsigned DPRCSOffset;
907
if (STI.splitFramePointerPush(MF)) {
908
DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize;
909
GPRCS2Offset = DPRCSOffset - GPRCS2Size;
910
} else {
911
DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
912
}
913
int FramePtrOffsetInPush = 0;
914
if (HasFP) {
915
int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
916
assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
917
"Max FP estimation is wrong");
918
FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
919
AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
920
NumBytes);
921
}
922
AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
923
AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
924
AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
925
926
// Move past area 2.
927
if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) {
928
GPRCS2Push = LastPush = MBBI++;
929
DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
930
}
931
932
// Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
933
// .cfi_offset operations will reflect that.
934
if (DPRGapSize) {
935
assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
936
if (LastPush != MBB.end() &&
937
tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
938
DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
939
else {
940
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
941
MachineInstr::FrameSetup);
942
DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
943
}
944
}
945
946
// Move past area 3.
947
if (DPRCSSize > 0) {
948
// Since vpush register list cannot have gaps, there may be multiple vpush
949
// instructions in the prologue.
950
while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
951
DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
952
LastPush = MBBI++;
953
}
954
}
955
956
// Move past the aligned DPRCS2 area.
957
if (AFI->getNumAlignedDPRCS2Regs() > 0) {
958
MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
959
// The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
960
// leaves the stack pointer pointing to the DPRCS2 area.
961
//
962
// Adjust NumBytes to represent the stack slots below the DPRCS2 area.
963
NumBytes += MFI.getObjectOffset(D8SpillFI);
964
} else
965
NumBytes = DPRCSOffset;
966
967
if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) {
968
GPRCS2Push = LastPush = MBBI++;
969
DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
970
}
971
972
bool NeedsWinCFIStackAlloc = NeedsWinCFI;
973
if (STI.splitFramePointerPush(MF) && HasFP)
974
NeedsWinCFIStackAlloc = false;
975
976
if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
977
uint32_t NumWords = NumBytes >> 2;
978
979
if (NumWords < 65536) {
980
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
981
.addImm(NumWords)
982
.setMIFlags(MachineInstr::FrameSetup)
983
.add(predOps(ARMCC::AL));
984
} else {
985
// Split into two instructions here, instead of using t2MOVi32imm,
986
// to allow inserting accurate SEH instructions (including accurate
987
// instruction size for each of them).
988
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
989
.addImm(NumWords & 0xffff)
990
.setMIFlags(MachineInstr::FrameSetup)
991
.add(predOps(ARMCC::AL));
992
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
993
.addReg(ARM::R4)
994
.addImm(NumWords >> 16)
995
.setMIFlags(MachineInstr::FrameSetup)
996
.add(predOps(ARMCC::AL));
997
}
998
999
switch (TM.getCodeModel()) {
1000
case CodeModel::Tiny:
1001
llvm_unreachable("Tiny code model not available on ARM.");
1002
case CodeModel::Small:
1003
case CodeModel::Medium:
1004
case CodeModel::Kernel:
1005
BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
1006
.add(predOps(ARMCC::AL))
1007
.addExternalSymbol("__chkstk")
1008
.addReg(ARM::R4, RegState::Implicit)
1009
.setMIFlags(MachineInstr::FrameSetup);
1010
break;
1011
case CodeModel::Large:
1012
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
1013
.addExternalSymbol("__chkstk")
1014
.setMIFlags(MachineInstr::FrameSetup);
1015
1016
BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
1017
.add(predOps(ARMCC::AL))
1018
.addReg(ARM::R12, RegState::Kill)
1019
.addReg(ARM::R4, RegState::Implicit)
1020
.setMIFlags(MachineInstr::FrameSetup);
1021
break;
1022
}
1023
1024
MachineInstrBuilder Instr, SEH;
1025
Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
1026
.addReg(ARM::SP, RegState::Kill)
1027
.addReg(ARM::R4, RegState::Kill)
1028
.setMIFlags(MachineInstr::FrameSetup)
1029
.add(predOps(ARMCC::AL))
1030
.add(condCodeOp());
1031
if (NeedsWinCFIStackAlloc) {
1032
SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
1033
.addImm(NumBytes)
1034
.addImm(/*Wide=*/1)
1035
.setMIFlags(MachineInstr::FrameSetup);
1036
MBB.insertAfter(Instr, SEH);
1037
}
1038
NumBytes = 0;
1039
}
1040
1041
if (NumBytes) {
1042
// Adjust SP after all the callee-save spills.
1043
if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
1044
tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
1045
DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
1046
else {
1047
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
1048
MachineInstr::FrameSetup);
1049
DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
1050
}
1051
1052
if (HasFP && isARM)
1053
// Restore from fp only in ARM mode: e.g. sub sp, r7, #24
1054
// Note it's not safe to do this in Thumb2 mode because it would have
1055
// taken two instructions:
1056
// mov sp, r7
1057
// sub sp, #24
1058
// If an interrupt is taken between the two instructions, then sp is in
1059
// an inconsistent state (pointing to the middle of callee-saved area).
1060
// The interrupt handler can end up clobbering the registers.
1061
AFI->setShouldRestoreSPFromFP(true);
1062
}
1063
1064
// Set FP to point to the stack slot that contains the previous FP.
1065
// For iOS, FP is R7, which has now been stored in spill area 1.
1066
// Otherwise, if this is not iOS, all the callee-saved registers go
1067
// into spill area 1, including the FP in R11. In either case, it
1068
// is in area one and the adjustment needs to take place just after
1069
// that push.
1070
// FIXME: The above is not necessary true when PACBTI is enabled.
1071
// AAPCS requires use of R11, and PACBTI gets in the way of regular pushes,
1072
// so FP ends up on area two.
1073
MachineBasicBlock::iterator AfterPush;
1074
if (HasFP) {
1075
AfterPush = std::next(GPRCS1Push);
1076
unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
1077
int FPOffset = PushSize + FramePtrOffsetInPush;
1078
if (STI.splitFramePointerPush(MF)) {
1079
AfterPush = std::next(GPRCS2Push);
1080
emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1081
FramePtr, ARM::SP, 0, MachineInstr::FrameSetup);
1082
} else {
1083
emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1084
FramePtr, ARM::SP, FPOffset,
1085
MachineInstr::FrameSetup);
1086
}
1087
if (!NeedsWinCFI) {
1088
if (FramePtrOffsetInPush + PushSize != 0) {
1089
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1090
nullptr, MRI->getDwarfRegNum(FramePtr, true),
1091
FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
1092
BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1093
.addCFIIndex(CFIIndex)
1094
.setMIFlags(MachineInstr::FrameSetup);
1095
} else {
1096
unsigned CFIIndex =
1097
MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
1098
nullptr, MRI->getDwarfRegNum(FramePtr, true)));
1099
BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1100
.addCFIIndex(CFIIndex)
1101
.setMIFlags(MachineInstr::FrameSetup);
1102
}
1103
}
1104
}
1105
1106
// Emit a SEH opcode indicating the prologue end. The rest of the prologue
1107
// instructions below don't need to be replayed to unwind the stack.
1108
if (NeedsWinCFI && MBBI != MBB.begin()) {
1109
MachineBasicBlock::iterator End = MBBI;
1110
if (HasFP && STI.splitFramePointerPush(MF))
1111
End = AfterPush;
1112
insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
1113
BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
1114
.setMIFlag(MachineInstr::FrameSetup);
1115
MF.setHasWinCFI(true);
1116
}
1117
1118
// Now that the prologue's actual instructions are finalised, we can insert
1119
// the necessary DWARF cf instructions to describe the situation. Start by
1120
// recording where each register ended up:
1121
if (GPRCS1Size > 0 && !NeedsWinCFI) {
1122
MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
1123
int CFIIndex;
1124
for (const auto &Entry : CSI) {
1125
Register Reg = Entry.getReg();
1126
int FI = Entry.getFrameIdx();
1127
switch (Reg) {
1128
case ARM::R8:
1129
case ARM::R9:
1130
case ARM::R10:
1131
case ARM::R11:
1132
case ARM::R12:
1133
if (STI.splitFramePushPop(MF))
1134
break;
1135
[[fallthrough]];
1136
case ARM::R0:
1137
case ARM::R1:
1138
case ARM::R2:
1139
case ARM::R3:
1140
case ARM::R4:
1141
case ARM::R5:
1142
case ARM::R6:
1143
case ARM::R7:
1144
case ARM::LR:
1145
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1146
nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
1147
BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1148
.addCFIIndex(CFIIndex)
1149
.setMIFlags(MachineInstr::FrameSetup);
1150
break;
1151
}
1152
}
1153
}
1154
1155
if (GPRCS2Size > 0 && !NeedsWinCFI) {
1156
MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
1157
for (const auto &Entry : CSI) {
1158
Register Reg = Entry.getReg();
1159
int FI = Entry.getFrameIdx();
1160
switch (Reg) {
1161
case ARM::R8:
1162
case ARM::R9:
1163
case ARM::R10:
1164
case ARM::R11:
1165
case ARM::R12:
1166
if (STI.splitFramePushPop(MF)) {
1167
unsigned DwarfReg = MRI->getDwarfRegNum(
1168
Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true);
1169
int64_t Offset = MFI.getObjectOffset(FI);
1170
unsigned CFIIndex = MF.addFrameInst(
1171
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1172
BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1173
.addCFIIndex(CFIIndex)
1174
.setMIFlags(MachineInstr::FrameSetup);
1175
}
1176
break;
1177
}
1178
}
1179
}
1180
1181
if (DPRCSSize > 0 && !NeedsWinCFI) {
1182
// Since vpush register list cannot have gaps, there may be multiple vpush
1183
// instructions in the prologue.
1184
MachineBasicBlock::iterator Pos = std::next(LastPush);
1185
for (const auto &Entry : CSI) {
1186
Register Reg = Entry.getReg();
1187
int FI = Entry.getFrameIdx();
1188
if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
1189
(Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
1190
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
1191
int64_t Offset = MFI.getObjectOffset(FI);
1192
unsigned CFIIndex = MF.addFrameInst(
1193
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1194
BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1195
.addCFIIndex(CFIIndex)
1196
.setMIFlags(MachineInstr::FrameSetup);
1197
}
1198
}
1199
}
1200
1201
// Now we can emit descriptions of where the canonical frame address was
1202
// throughout the process. If we have a frame pointer, it takes over the job
1203
// half-way through, so only the first few .cfi_def_cfa_offset instructions
1204
// actually get emitted.
1205
if (!NeedsWinCFI)
1206
DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
1207
1208
if (STI.isTargetELF() && hasFP(MF))
1209
MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
1210
AFI->getFramePtrSpillOffset());
1211
1212
AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
1213
AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
1214
AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
1215
AFI->setDPRCalleeSavedGapSize(DPRGapSize);
1216
AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
1217
1218
// If we need dynamic stack realignment, do it here. Be paranoid and make
1219
// sure if we also have VLAs, we have a base pointer for frame access.
1220
// If aligned NEON registers were spilled, the stack has already been
1221
// realigned.
1222
if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
1223
Align MaxAlign = MFI.getMaxAlign();
1224
assert(!AFI->isThumb1OnlyFunction());
1225
if (!AFI->isThumbFunction()) {
1226
emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
1227
false);
1228
} else {
1229
// We cannot use sp as source/dest register here, thus we're using r4 to
1230
// perform the calculations. We're emitting the following sequence:
1231
// mov r4, sp
1232
// -- use emitAligningInstructions to produce best sequence to zero
1233
// -- out lower bits in r4
1234
// mov sp, r4
1235
// FIXME: It will be better just to find spare register here.
1236
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
1237
.addReg(ARM::SP, RegState::Kill)
1238
.add(predOps(ARMCC::AL));
1239
emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
1240
false);
1241
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1242
.addReg(ARM::R4, RegState::Kill)
1243
.add(predOps(ARMCC::AL));
1244
}
1245
1246
AFI->setShouldRestoreSPFromFP(true);
1247
}
1248
1249
// If we need a base pointer, set it up here. It's whatever the value
1250
// of the stack pointer is at this point. Any variable size objects
1251
// will be allocated after this, so we can still use the base pointer
1252
// to reference locals.
1253
// FIXME: Clarify FrameSetup flags here.
1254
if (RegInfo->hasBasePointer(MF)) {
1255
if (isARM)
1256
BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
1257
.addReg(ARM::SP)
1258
.add(predOps(ARMCC::AL))
1259
.add(condCodeOp());
1260
else
1261
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
1262
.addReg(ARM::SP)
1263
.add(predOps(ARMCC::AL));
1264
}
1265
1266
// If the frame has variable sized objects then the epilogue must restore
1267
// the sp from fp. We can assume there's an FP here since hasFP already
1268
// checks for hasVarSizedObjects.
1269
if (MFI.hasVarSizedObjects())
1270
AFI->setShouldRestoreSPFromFP(true);
1271
}
1272
1273
void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
1274
MachineBasicBlock &MBB) const {
1275
MachineFrameInfo &MFI = MF.getFrameInfo();
1276
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1277
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1278
const ARMBaseInstrInfo &TII =
1279
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1280
assert(!AFI->isThumb1OnlyFunction() &&
1281
"This emitEpilogue does not support Thumb1!");
1282
bool isARM = !AFI->isThumbFunction();
1283
1284
// Amount of stack space we reserved next to incoming args for either
1285
// varargs registers or stack arguments in tail calls made by this function.
1286
unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
1287
1288
// How much of the stack used by incoming arguments this function is expected
1289
// to restore in this particular epilogue.
1290
int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
1291
int NumBytes = (int)MFI.getStackSize();
1292
Register FramePtr = RegInfo->getFrameRegister(MF);
1293
1294
// All calls are tail calls in GHC calling conv, and functions have no
1295
// prologue/epilogue.
1296
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1297
return;
1298
1299
// First put ourselves on the first (from top) terminator instructions.
1300
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1301
DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1302
1303
MachineBasicBlock::iterator RangeStart;
1304
if (!AFI->hasStackFrame()) {
1305
if (MF.hasWinCFI()) {
1306
BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1307
.setMIFlag(MachineInstr::FrameDestroy);
1308
RangeStart = initMBBRange(MBB, MBBI);
1309
}
1310
1311
if (NumBytes + IncomingArgStackToRestore != 0)
1312
emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1313
NumBytes + IncomingArgStackToRestore,
1314
MachineInstr::FrameDestroy);
1315
} else {
1316
// Unwind MBBI to point to first LDR / VLDRD.
1317
if (MBBI != MBB.begin()) {
1318
do {
1319
--MBBI;
1320
} while (MBBI != MBB.begin() &&
1321
MBBI->getFlag(MachineInstr::FrameDestroy));
1322
if (!MBBI->getFlag(MachineInstr::FrameDestroy))
1323
++MBBI;
1324
}
1325
1326
if (MF.hasWinCFI()) {
1327
BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1328
.setMIFlag(MachineInstr::FrameDestroy);
1329
RangeStart = initMBBRange(MBB, MBBI);
1330
}
1331
1332
// Move SP to start of FP callee save spill area.
1333
NumBytes -= (ReservedArgStack +
1334
AFI->getFPCXTSaveAreaSize() +
1335
AFI->getGPRCalleeSavedArea1Size() +
1336
AFI->getGPRCalleeSavedArea2Size() +
1337
AFI->getDPRCalleeSavedGapSize() +
1338
AFI->getDPRCalleeSavedAreaSize());
1339
1340
// Reset SP based on frame pointer only if the stack frame extends beyond
1341
// frame pointer stack slot or target is ELF and the function has FP.
1342
if (AFI->shouldRestoreSPFromFP()) {
1343
NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
1344
if (NumBytes) {
1345
if (isARM)
1346
emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
1347
ARMCC::AL, 0, TII,
1348
MachineInstr::FrameDestroy);
1349
else {
1350
// It's not possible to restore SP from FP in a single instruction.
1351
// For iOS, this looks like:
1352
// mov sp, r7
1353
// sub sp, #24
1354
// This is bad, if an interrupt is taken after the mov, sp is in an
1355
// inconsistent state.
1356
// Use the first callee-saved register as a scratch register.
1357
assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
1358
"No scratch register to restore SP from FP!");
1359
emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
1360
ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
1361
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1362
.addReg(ARM::R4)
1363
.add(predOps(ARMCC::AL))
1364
.setMIFlag(MachineInstr::FrameDestroy);
1365
}
1366
} else {
1367
// Thumb2 or ARM.
1368
if (isARM)
1369
BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
1370
.addReg(FramePtr)
1371
.add(predOps(ARMCC::AL))
1372
.add(condCodeOp())
1373
.setMIFlag(MachineInstr::FrameDestroy);
1374
else
1375
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1376
.addReg(FramePtr)
1377
.add(predOps(ARMCC::AL))
1378
.setMIFlag(MachineInstr::FrameDestroy);
1379
}
1380
} else if (NumBytes &&
1381
!tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
1382
emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
1383
MachineInstr::FrameDestroy);
1384
1385
// Increment past our save areas.
1386
if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF))
1387
MBBI++;
1388
1389
if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
1390
MBBI++;
1391
// Since vpop register list cannot have gaps, there may be multiple vpop
1392
// instructions in the epilogue.
1393
while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1394
MBBI++;
1395
}
1396
if (AFI->getDPRCalleeSavedGapSize()) {
1397
assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1398
"unexpected DPR alignment gap");
1399
emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1400
MachineInstr::FrameDestroy);
1401
}
1402
1403
if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF))
1404
MBBI++;
1405
if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1406
1407
if (ReservedArgStack || IncomingArgStackToRestore) {
1408
assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1409
"attempting to restore negative stack amount");
1410
emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1411
ReservedArgStack + IncomingArgStackToRestore,
1412
MachineInstr::FrameDestroy);
1413
}
1414
1415
// Validate PAC, It should have been already popped into R12. For CMSE entry
1416
// function, the validation instruction is emitted during expansion of the
1417
// tBXNS_RET, since the validation must use the value of SP at function
1418
// entry, before saving, resp. after restoring, FPCXTNS.
1419
if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1420
BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1421
}
1422
1423
if (MF.hasWinCFI()) {
1424
insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
1425
BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
1426
.setMIFlag(MachineInstr::FrameDestroy);
1427
}
1428
}
1429
1430
/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1431
/// debug info. It's the same as what we use for resolving the code-gen
1432
/// references for now. FIXME: This can go wrong when references are
1433
/// SP-relative and simple call frames aren't used.
1434
StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1435
int FI,
1436
Register &FrameReg) const {
1437
return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1438
}
1439
1440
int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1441
int FI, Register &FrameReg,
1442
int SPAdj) const {
1443
const MachineFrameInfo &MFI = MF.getFrameInfo();
1444
const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1445
MF.getSubtarget().getRegisterInfo());
1446
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1447
int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1448
int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1449
bool isFixed = MFI.isFixedObjectIndex(FI);
1450
1451
FrameReg = ARM::SP;
1452
Offset += SPAdj;
1453
1454
// SP can move around if there are allocas. We may also lose track of SP
1455
// when emergency spilling inside a non-reserved call frame setup.
1456
bool hasMovingSP = !hasReservedCallFrame(MF);
1457
1458
// When dynamically realigning the stack, use the frame pointer for
1459
// parameters, and the stack/base pointer for locals.
1460
if (RegInfo->hasStackRealignment(MF)) {
1461
assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1462
if (isFixed) {
1463
FrameReg = RegInfo->getFrameRegister(MF);
1464
Offset = FPOffset;
1465
} else if (hasMovingSP) {
1466
assert(RegInfo->hasBasePointer(MF) &&
1467
"VLAs and dynamic stack alignment, but missing base pointer!");
1468
FrameReg = RegInfo->getBaseRegister();
1469
Offset -= SPAdj;
1470
}
1471
return Offset;
1472
}
1473
1474
// If there is a frame pointer, use it when we can.
1475
if (hasFP(MF) && AFI->hasStackFrame()) {
1476
// Use frame pointer to reference fixed objects. Use it for locals if
1477
// there are VLAs (and thus the SP isn't reliable as a base).
1478
if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1479
FrameReg = RegInfo->getFrameRegister(MF);
1480
return FPOffset;
1481
} else if (hasMovingSP) {
1482
assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1483
if (AFI->isThumb2Function()) {
1484
// Try to use the frame pointer if we can, else use the base pointer
1485
// since it's available. This is handy for the emergency spill slot, in
1486
// particular.
1487
if (FPOffset >= -255 && FPOffset < 0) {
1488
FrameReg = RegInfo->getFrameRegister(MF);
1489
return FPOffset;
1490
}
1491
}
1492
} else if (AFI->isThumbFunction()) {
1493
// Prefer SP to base pointer, if the offset is suitably aligned and in
1494
// range as the effective range of the immediate offset is bigger when
1495
// basing off SP.
1496
// Use add <rd>, sp, #<imm8>
1497
// ldr <rd>, [sp, #<imm8>]
1498
if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1499
return Offset;
1500
// In Thumb2 mode, the negative offset is very limited. Try to avoid
1501
// out of range references. ldr <rt>,[<rn>, #-<imm8>]
1502
if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1503
FrameReg = RegInfo->getFrameRegister(MF);
1504
return FPOffset;
1505
}
1506
} else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1507
// Otherwise, use SP or FP, whichever is closer to the stack slot.
1508
FrameReg = RegInfo->getFrameRegister(MF);
1509
return FPOffset;
1510
}
1511
}
1512
// Use the base pointer if we have one.
1513
// FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1514
// That can happen if we forced a base pointer for a large call frame.
1515
if (RegInfo->hasBasePointer(MF)) {
1516
FrameReg = RegInfo->getBaseRegister();
1517
Offset -= SPAdj;
1518
}
1519
return Offset;
1520
}
1521
1522
void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1523
MachineBasicBlock::iterator MI,
1524
ArrayRef<CalleeSavedInfo> CSI,
1525
unsigned StmOpc, unsigned StrOpc,
1526
bool NoGap, bool (*Func)(unsigned, bool),
1527
unsigned NumAlignedDPRCS2Regs,
1528
unsigned MIFlags) const {
1529
MachineFunction &MF = *MBB.getParent();
1530
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1531
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1532
1533
DebugLoc DL;
1534
1535
using RegAndKill = std::pair<unsigned, bool>;
1536
1537
SmallVector<RegAndKill, 4> Regs;
1538
unsigned i = CSI.size();
1539
while (i != 0) {
1540
unsigned LastReg = 0;
1541
for (; i != 0; --i) {
1542
Register Reg = CSI[i-1].getReg();
1543
if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1544
1545
// D-registers in the aligned area DPRCS2 are NOT spilled here.
1546
if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1547
continue;
1548
1549
const MachineRegisterInfo &MRI = MF.getRegInfo();
1550
bool isLiveIn = MRI.isLiveIn(Reg);
1551
if (!isLiveIn && !MRI.isReserved(Reg))
1552
MBB.addLiveIn(Reg);
1553
// If NoGap is true, push consecutive registers and then leave the rest
1554
// for other instructions. e.g.
1555
// vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1556
if (NoGap && LastReg && LastReg != Reg-1)
1557
break;
1558
LastReg = Reg;
1559
// Do not set a kill flag on values that are also marked as live-in. This
1560
// happens with the @llvm-returnaddress intrinsic and with arguments
1561
// passed in callee saved registers.
1562
// Omitting the kill flags is conservatively correct even if the live-in
1563
// is not used after all.
1564
Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1565
}
1566
1567
if (Regs.empty())
1568
continue;
1569
1570
llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1571
return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1572
});
1573
1574
if (Regs.size() > 1 || StrOpc== 0) {
1575
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1576
.addReg(ARM::SP)
1577
.setMIFlags(MIFlags)
1578
.add(predOps(ARMCC::AL));
1579
for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1580
MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1581
} else if (Regs.size() == 1) {
1582
BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1583
.addReg(Regs[0].first, getKillRegState(Regs[0].second))
1584
.addReg(ARM::SP)
1585
.setMIFlags(MIFlags)
1586
.addImm(-4)
1587
.add(predOps(ARMCC::AL));
1588
}
1589
Regs.clear();
1590
1591
// Put any subsequent vpush instructions before this one: they will refer to
1592
// higher register numbers so need to be pushed first in order to preserve
1593
// monotonicity.
1594
if (MI != MBB.begin())
1595
--MI;
1596
}
1597
}
1598
1599
void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1600
MachineBasicBlock::iterator MI,
1601
MutableArrayRef<CalleeSavedInfo> CSI,
1602
unsigned LdmOpc, unsigned LdrOpc,
1603
bool isVarArg, bool NoGap,
1604
bool (*Func)(unsigned, bool),
1605
unsigned NumAlignedDPRCS2Regs) const {
1606
MachineFunction &MF = *MBB.getParent();
1607
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1608
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1609
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1610
bool hasPAC = AFI->shouldSignReturnAddress();
1611
DebugLoc DL;
1612
bool isTailCall = false;
1613
bool isInterrupt = false;
1614
bool isTrap = false;
1615
bool isCmseEntry = false;
1616
if (MBB.end() != MI) {
1617
DL = MI->getDebugLoc();
1618
unsigned RetOpcode = MI->getOpcode();
1619
isTailCall =
1620
(RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri ||
1621
RetOpcode == ARM::TCRETURNrinotr12);
1622
isInterrupt =
1623
RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1624
isTrap =
1625
RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1626
RetOpcode == ARM::tTRAP;
1627
isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1628
}
1629
1630
SmallVector<unsigned, 4> Regs;
1631
unsigned i = CSI.size();
1632
while (i != 0) {
1633
unsigned LastReg = 0;
1634
bool DeleteRet = false;
1635
for (; i != 0; --i) {
1636
CalleeSavedInfo &Info = CSI[i-1];
1637
Register Reg = Info.getReg();
1638
if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1639
1640
// The aligned reloads from area DPRCS2 are not inserted here.
1641
if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1642
continue;
1643
if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1644
!isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1645
STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
1646
!STI.splitFramePointerPush(MF)) {
1647
Reg = ARM::PC;
1648
// Fold the return instruction into the LDM.
1649
DeleteRet = true;
1650
LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1651
}
1652
1653
// If NoGap is true, pop consecutive registers and then leave the rest
1654
// for other instructions. e.g.
1655
// vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1656
if (NoGap && LastReg && LastReg != Reg-1)
1657
break;
1658
1659
LastReg = Reg;
1660
Regs.push_back(Reg);
1661
}
1662
1663
if (Regs.empty())
1664
continue;
1665
1666
llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1667
return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1668
});
1669
1670
if (Regs.size() > 1 || LdrOpc == 0) {
1671
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1672
.addReg(ARM::SP)
1673
.add(predOps(ARMCC::AL))
1674
.setMIFlags(MachineInstr::FrameDestroy);
1675
for (unsigned Reg : Regs)
1676
MIB.addReg(Reg, getDefRegState(true));
1677
if (DeleteRet) {
1678
if (MI != MBB.end()) {
1679
MIB.copyImplicitOps(*MI);
1680
MI->eraseFromParent();
1681
}
1682
}
1683
MI = MIB;
1684
} else if (Regs.size() == 1) {
1685
// If we adjusted the reg to PC from LR above, switch it back here. We
1686
// only do that for LDM.
1687
if (Regs[0] == ARM::PC)
1688
Regs[0] = ARM::LR;
1689
MachineInstrBuilder MIB =
1690
BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1691
.addReg(ARM::SP, RegState::Define)
1692
.addReg(ARM::SP)
1693
.setMIFlags(MachineInstr::FrameDestroy);
1694
// ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1695
// that refactoring is complete (eventually).
1696
if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1697
MIB.addReg(0);
1698
MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1699
} else
1700
MIB.addImm(4);
1701
MIB.add(predOps(ARMCC::AL));
1702
}
1703
Regs.clear();
1704
1705
// Put any subsequent vpop instructions after this one: they will refer to
1706
// higher register numbers so need to be popped afterwards.
1707
if (MI != MBB.end())
1708
++MI;
1709
}
1710
}
1711
1712
/// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1713
/// starting from d8. Also insert stack realignment code and leave the stack
1714
/// pointer pointing to the d8 spill slot.
1715
static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1716
MachineBasicBlock::iterator MI,
1717
unsigned NumAlignedDPRCS2Regs,
1718
ArrayRef<CalleeSavedInfo> CSI,
1719
const TargetRegisterInfo *TRI) {
1720
MachineFunction &MF = *MBB.getParent();
1721
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1722
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1723
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1724
MachineFrameInfo &MFI = MF.getFrameInfo();
1725
1726
// Mark the D-register spill slots as properly aligned. Since MFI computes
1727
// stack slot layout backwards, this can actually mean that the d-reg stack
1728
// slot offsets can be wrong. The offset for d8 will always be correct.
1729
for (const CalleeSavedInfo &I : CSI) {
1730
unsigned DNum = I.getReg() - ARM::D8;
1731
if (DNum > NumAlignedDPRCS2Regs - 1)
1732
continue;
1733
int FI = I.getFrameIdx();
1734
// The even-numbered registers will be 16-byte aligned, the odd-numbered
1735
// registers will be 8-byte aligned.
1736
MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1737
1738
// The stack slot for D8 needs to be maximally aligned because this is
1739
// actually the point where we align the stack pointer. MachineFrameInfo
1740
// computes all offsets relative to the incoming stack pointer which is a
1741
// bit weird when realigning the stack. Any extra padding for this
1742
// over-alignment is not realized because the code inserted below adjusts
1743
// the stack pointer by numregs * 8 before aligning the stack pointer.
1744
if (DNum == 0)
1745
MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1746
}
1747
1748
// Move the stack pointer to the d8 spill slot, and align it at the same
1749
// time. Leave the stack slot address in the scratch register r4.
1750
//
1751
// sub r4, sp, #numregs * 8
1752
// bic r4, r4, #align - 1
1753
// mov sp, r4
1754
//
1755
bool isThumb = AFI->isThumbFunction();
1756
assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1757
AFI->setShouldRestoreSPFromFP(true);
1758
1759
// sub r4, sp, #numregs * 8
1760
// The immediate is <= 64, so it doesn't need any special encoding.
1761
unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1762
BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1763
.addReg(ARM::SP)
1764
.addImm(8 * NumAlignedDPRCS2Regs)
1765
.add(predOps(ARMCC::AL))
1766
.add(condCodeOp());
1767
1768
Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1769
// We must set parameter MustBeSingleInstruction to true, since
1770
// skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1771
// stack alignment. Luckily, this can always be done since all ARM
1772
// architecture versions that support Neon also support the BFC
1773
// instruction.
1774
emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1775
1776
// mov sp, r4
1777
// The stack pointer must be adjusted before spilling anything, otherwise
1778
// the stack slots could be clobbered by an interrupt handler.
1779
// Leave r4 live, it is used below.
1780
Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1781
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1782
.addReg(ARM::R4)
1783
.add(predOps(ARMCC::AL));
1784
if (!isThumb)
1785
MIB.add(condCodeOp());
1786
1787
// Now spill NumAlignedDPRCS2Regs registers starting from d8.
1788
// r4 holds the stack slot address.
1789
unsigned NextReg = ARM::D8;
1790
1791
// 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1792
// The writeback is only needed when emitting two vst1.64 instructions.
1793
if (NumAlignedDPRCS2Regs >= 6) {
1794
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1795
&ARM::QQPRRegClass);
1796
MBB.addLiveIn(SupReg);
1797
BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1798
.addReg(ARM::R4, RegState::Kill)
1799
.addImm(16)
1800
.addReg(NextReg)
1801
.addReg(SupReg, RegState::ImplicitKill)
1802
.add(predOps(ARMCC::AL));
1803
NextReg += 4;
1804
NumAlignedDPRCS2Regs -= 4;
1805
}
1806
1807
// We won't modify r4 beyond this point. It currently points to the next
1808
// register to be spilled.
1809
unsigned R4BaseReg = NextReg;
1810
1811
// 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1812
if (NumAlignedDPRCS2Regs >= 4) {
1813
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1814
&ARM::QQPRRegClass);
1815
MBB.addLiveIn(SupReg);
1816
BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1817
.addReg(ARM::R4)
1818
.addImm(16)
1819
.addReg(NextReg)
1820
.addReg(SupReg, RegState::ImplicitKill)
1821
.add(predOps(ARMCC::AL));
1822
NextReg += 4;
1823
NumAlignedDPRCS2Regs -= 4;
1824
}
1825
1826
// 16-byte aligned vst1.64 with 2 d-regs.
1827
if (NumAlignedDPRCS2Regs >= 2) {
1828
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1829
&ARM::QPRRegClass);
1830
MBB.addLiveIn(SupReg);
1831
BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1832
.addReg(ARM::R4)
1833
.addImm(16)
1834
.addReg(SupReg)
1835
.add(predOps(ARMCC::AL));
1836
NextReg += 2;
1837
NumAlignedDPRCS2Regs -= 2;
1838
}
1839
1840
// Finally, use a vanilla vstr.64 for the odd last register.
1841
if (NumAlignedDPRCS2Regs) {
1842
MBB.addLiveIn(NextReg);
1843
// vstr.64 uses addrmode5 which has an offset scale of 4.
1844
BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1845
.addReg(NextReg)
1846
.addReg(ARM::R4)
1847
.addImm((NextReg - R4BaseReg) * 2)
1848
.add(predOps(ARMCC::AL));
1849
}
1850
1851
// The last spill instruction inserted should kill the scratch register r4.
1852
std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1853
}
1854
1855
/// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1856
/// iterator to the following instruction.
1857
static MachineBasicBlock::iterator
1858
skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1859
unsigned NumAlignedDPRCS2Regs) {
1860
// sub r4, sp, #numregs * 8
1861
// bic r4, r4, #align - 1
1862
// mov sp, r4
1863
++MI; ++MI; ++MI;
1864
assert(MI->mayStore() && "Expecting spill instruction");
1865
1866
// These switches all fall through.
1867
switch(NumAlignedDPRCS2Regs) {
1868
case 7:
1869
++MI;
1870
assert(MI->mayStore() && "Expecting spill instruction");
1871
[[fallthrough]];
1872
default:
1873
++MI;
1874
assert(MI->mayStore() && "Expecting spill instruction");
1875
[[fallthrough]];
1876
case 1:
1877
case 2:
1878
case 4:
1879
assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag");
1880
++MI;
1881
}
1882
return MI;
1883
}
1884
1885
/// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1886
/// starting from d8. These instructions are assumed to execute while the
1887
/// stack is still aligned, unlike the code inserted by emitPopInst.
1888
static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1889
MachineBasicBlock::iterator MI,
1890
unsigned NumAlignedDPRCS2Regs,
1891
ArrayRef<CalleeSavedInfo> CSI,
1892
const TargetRegisterInfo *TRI) {
1893
MachineFunction &MF = *MBB.getParent();
1894
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1895
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1896
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1897
1898
// Find the frame index assigned to d8.
1899
int D8SpillFI = 0;
1900
for (const CalleeSavedInfo &I : CSI)
1901
if (I.getReg() == ARM::D8) {
1902
D8SpillFI = I.getFrameIdx();
1903
break;
1904
}
1905
1906
// Materialize the address of the d8 spill slot into the scratch register r4.
1907
// This can be fairly complicated if the stack frame is large, so just use
1908
// the normal frame index elimination mechanism to do it. This code runs as
1909
// the initial part of the epilog where the stack and base pointers haven't
1910
// been changed yet.
1911
bool isThumb = AFI->isThumbFunction();
1912
assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1913
1914
unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1915
BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1916
.addFrameIndex(D8SpillFI)
1917
.addImm(0)
1918
.add(predOps(ARMCC::AL))
1919
.add(condCodeOp());
1920
1921
// Now restore NumAlignedDPRCS2Regs registers starting from d8.
1922
unsigned NextReg = ARM::D8;
1923
1924
// 16-byte aligned vld1.64 with 4 d-regs and writeback.
1925
if (NumAlignedDPRCS2Regs >= 6) {
1926
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1927
&ARM::QQPRRegClass);
1928
BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1929
.addReg(ARM::R4, RegState::Define)
1930
.addReg(ARM::R4, RegState::Kill)
1931
.addImm(16)
1932
.addReg(SupReg, RegState::ImplicitDefine)
1933
.add(predOps(ARMCC::AL));
1934
NextReg += 4;
1935
NumAlignedDPRCS2Regs -= 4;
1936
}
1937
1938
// We won't modify r4 beyond this point. It currently points to the next
1939
// register to be spilled.
1940
unsigned R4BaseReg = NextReg;
1941
1942
// 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1943
if (NumAlignedDPRCS2Regs >= 4) {
1944
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1945
&ARM::QQPRRegClass);
1946
BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1947
.addReg(ARM::R4)
1948
.addImm(16)
1949
.addReg(SupReg, RegState::ImplicitDefine)
1950
.add(predOps(ARMCC::AL));
1951
NextReg += 4;
1952
NumAlignedDPRCS2Regs -= 4;
1953
}
1954
1955
// 16-byte aligned vld1.64 with 2 d-regs.
1956
if (NumAlignedDPRCS2Regs >= 2) {
1957
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1958
&ARM::QPRRegClass);
1959
BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1960
.addReg(ARM::R4)
1961
.addImm(16)
1962
.add(predOps(ARMCC::AL));
1963
NextReg += 2;
1964
NumAlignedDPRCS2Regs -= 2;
1965
}
1966
1967
// Finally, use a vanilla vldr.64 for the remaining odd register.
1968
if (NumAlignedDPRCS2Regs)
1969
BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1970
.addReg(ARM::R4)
1971
.addImm(2 * (NextReg - R4BaseReg))
1972
.add(predOps(ARMCC::AL));
1973
1974
// Last store kills r4.
1975
std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1976
}
1977
1978
bool ARMFrameLowering::spillCalleeSavedRegisters(
1979
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1980
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1981
if (CSI.empty())
1982
return false;
1983
1984
MachineFunction &MF = *MBB.getParent();
1985
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1986
1987
unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1988
unsigned PushOneOpc = AFI->isThumbFunction() ?
1989
ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1990
unsigned FltOpc = ARM::VSTMDDB_UPD;
1991
unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1992
// Compute PAC in R12.
1993
if (AFI->shouldSignReturnAddress()) {
1994
BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
1995
.setMIFlags(MachineInstr::FrameSetup);
1996
}
1997
// Save the non-secure floating point context.
1998
if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1999
return C.getReg() == ARM::FPCXTNS;
2000
})) {
2001
BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
2002
ARM::SP)
2003
.addReg(ARM::SP)
2004
.addImm(-4)
2005
.add(predOps(ARMCC::AL));
2006
}
2007
if (STI.splitFramePointerPush(MF)) {
2008
emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
2009
&isSplitFPArea1Register, 0, MachineInstr::FrameSetup);
2010
emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
2011
NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
2012
emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
2013
&isSplitFPArea2Register, 0, MachineInstr::FrameSetup);
2014
} else {
2015
emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register,
2016
0, MachineInstr::FrameSetup);
2017
emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register,
2018
0, MachineInstr::FrameSetup);
2019
emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
2020
NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
2021
}
2022
2023
// The code above does not insert spill code for the aligned DPRCS2 registers.
2024
// The stack realignment code will be inserted between the push instructions
2025
// and these spills.
2026
if (NumAlignedDPRCS2Regs)
2027
emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2028
2029
return true;
2030
}
2031
2032
bool ARMFrameLowering::restoreCalleeSavedRegisters(
2033
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2034
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2035
if (CSI.empty())
2036
return false;
2037
2038
MachineFunction &MF = *MBB.getParent();
2039
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2040
bool isVarArg = AFI->getArgRegsSaveSize() > 0;
2041
unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
2042
2043
// The emitPopInst calls below do not insert reloads for the aligned DPRCS2
2044
// registers. Do that here instead.
2045
if (NumAlignedDPRCS2Regs)
2046
emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2047
2048
unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
2049
unsigned LdrOpc =
2050
AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
2051
unsigned FltOpc = ARM::VLDMDIA_UPD;
2052
if (STI.splitFramePointerPush(MF)) {
2053
emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2054
&isSplitFPArea2Register, 0);
2055
emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2056
NumAlignedDPRCS2Regs);
2057
emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2058
&isSplitFPArea1Register, 0);
2059
} else {
2060
emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2061
NumAlignedDPRCS2Regs);
2062
emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2063
&isARMArea2Register, 0);
2064
emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2065
&isARMArea1Register, 0);
2066
}
2067
2068
return true;
2069
}
2070
2071
// FIXME: Make generic?
2072
static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
2073
const ARMBaseInstrInfo &TII) {
2074
unsigned FnSize = 0;
2075
for (auto &MBB : MF) {
2076
for (auto &MI : MBB)
2077
FnSize += TII.getInstSizeInBytes(MI);
2078
}
2079
if (MF.getJumpTableInfo())
2080
for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
2081
FnSize += Table.MBBs.size() * 4;
2082
FnSize += MF.getConstantPool()->getConstants().size() * 4;
2083
return FnSize;
2084
}
2085
2086
/// estimateRSStackSizeLimit - Look at each instruction that references stack
2087
/// frames and return the stack size limit beyond which some of these
2088
/// instructions will require a scratch register during their expansion later.
2089
// FIXME: Move to TII?
2090
static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
2091
const TargetFrameLowering *TFI,
2092
bool &HasNonSPFrameIndex) {
2093
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2094
const ARMBaseInstrInfo &TII =
2095
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2096
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2097
unsigned Limit = (1 << 12) - 1;
2098
for (auto &MBB : MF) {
2099
for (auto &MI : MBB) {
2100
if (MI.isDebugInstr())
2101
continue;
2102
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2103
if (!MI.getOperand(i).isFI())
2104
continue;
2105
2106
// When using ADDri to get the address of a stack object, 255 is the
2107
// largest offset guaranteed to fit in the immediate offset.
2108
if (MI.getOpcode() == ARM::ADDri) {
2109
Limit = std::min(Limit, (1U << 8) - 1);
2110
break;
2111
}
2112
// t2ADDri will not require an extra register, it can reuse the
2113
// destination.
2114
if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
2115
break;
2116
2117
const MCInstrDesc &MCID = MI.getDesc();
2118
const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
2119
if (RegClass && !RegClass->contains(ARM::SP))
2120
HasNonSPFrameIndex = true;
2121
2122
// Otherwise check the addressing mode.
2123
switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
2124
case ARMII::AddrMode_i12:
2125
case ARMII::AddrMode2:
2126
// Default 12 bit limit.
2127
break;
2128
case ARMII::AddrMode3:
2129
case ARMII::AddrModeT2_i8neg:
2130
Limit = std::min(Limit, (1U << 8) - 1);
2131
break;
2132
case ARMII::AddrMode5FP16:
2133
Limit = std::min(Limit, ((1U << 8) - 1) * 2);
2134
break;
2135
case ARMII::AddrMode5:
2136
case ARMII::AddrModeT2_i8s4:
2137
case ARMII::AddrModeT2_ldrex:
2138
Limit = std::min(Limit, ((1U << 8) - 1) * 4);
2139
break;
2140
case ARMII::AddrModeT2_i12:
2141
// i12 supports only positive offset so these will be converted to
2142
// i8 opcodes. See llvm::rewriteT2FrameIndex.
2143
if (TFI->hasFP(MF) && AFI->hasStackFrame())
2144
Limit = std::min(Limit, (1U << 8) - 1);
2145
break;
2146
case ARMII::AddrMode4:
2147
case ARMII::AddrMode6:
2148
// Addressing modes 4 & 6 (load/store) instructions can't encode an
2149
// immediate offset for stack references.
2150
return 0;
2151
case ARMII::AddrModeT2_i7:
2152
Limit = std::min(Limit, ((1U << 7) - 1) * 1);
2153
break;
2154
case ARMII::AddrModeT2_i7s2:
2155
Limit = std::min(Limit, ((1U << 7) - 1) * 2);
2156
break;
2157
case ARMII::AddrModeT2_i7s4:
2158
Limit = std::min(Limit, ((1U << 7) - 1) * 4);
2159
break;
2160
default:
2161
llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
2162
}
2163
break; // At most one FI per instruction
2164
}
2165
}
2166
}
2167
2168
return Limit;
2169
}
2170
2171
// In functions that realign the stack, it can be an advantage to spill the
2172
// callee-saved vector registers after realigning the stack. The vst1 and vld1
2173
// instructions take alignment hints that can improve performance.
2174
static void
2175
checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
2176
MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
2177
if (!SpillAlignedNEONRegs)
2178
return;
2179
2180
// Naked functions don't spill callee-saved registers.
2181
if (MF.getFunction().hasFnAttribute(Attribute::Naked))
2182
return;
2183
2184
// We are planning to use NEON instructions vst1 / vld1.
2185
if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
2186
return;
2187
2188
// Don't bother if the default stack alignment is sufficiently high.
2189
if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
2190
return;
2191
2192
// Aligned spills require stack realignment.
2193
if (!static_cast<const ARMBaseRegisterInfo *>(
2194
MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
2195
return;
2196
2197
// We always spill contiguous d-registers starting from d8. Count how many
2198
// needs spilling. The register allocator will almost always use the
2199
// callee-saved registers in order, but it can happen that there are holes in
2200
// the range. Registers above the hole will be spilled to the standard DPRCS
2201
// area.
2202
unsigned NumSpills = 0;
2203
for (; NumSpills < 8; ++NumSpills)
2204
if (!SavedRegs.test(ARM::D8 + NumSpills))
2205
break;
2206
2207
// Don't do this for just one d-register. It's not worth it.
2208
if (NumSpills < 2)
2209
return;
2210
2211
// Spill the first NumSpills D-registers after realigning the stack.
2212
MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
2213
2214
// A scratch register is required for the vst1 / vld1 instructions.
2215
SavedRegs.set(ARM::R4);
2216
}
2217
2218
bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2219
// For CMSE entry functions, we want to save the FPCXT_NS immediately
2220
// upon function entry (resp. restore it immmediately before return)
2221
if (STI.hasV8_1MMainlineOps() &&
2222
MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
2223
return false;
2224
2225
// We are disabling shrinkwrapping for now when PAC is enabled, as
2226
// shrinkwrapping can cause clobbering of r12 when the PAC code is
2227
// generated. A follow-up patch will fix this in a more performant manner.
2228
if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
2229
true /* SpillsLR */))
2230
return false;
2231
2232
return true;
2233
}
2234
2235
bool ARMFrameLowering::requiresAAPCSFrameRecord(
2236
const MachineFunction &MF) const {
2237
const auto &Subtarget = MF.getSubtarget<ARMSubtarget>();
2238
return Subtarget.createAAPCSFrameChain() && hasFP(MF);
2239
}
2240
2241
// Thumb1 may require a spill when storing to a frame index through FP (or any
2242
// access with execute-only), for cases where FP is a high register (R11). This
2243
// scans the function for cases where this may happen.
2244
static bool canSpillOnFrameIndexAccess(const MachineFunction &MF,
2245
const TargetFrameLowering &TFI) {
2246
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2247
if (!AFI->isThumb1OnlyFunction())
2248
return false;
2249
2250
const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
2251
for (const auto &MBB : MF)
2252
for (const auto &MI : MBB)
2253
if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi ||
2254
STI.genExecuteOnly())
2255
for (const auto &Op : MI.operands())
2256
if (Op.isFI()) {
2257
Register Reg;
2258
TFI.getFrameIndexReference(MF, Op.getIndex(), Reg);
2259
if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP)
2260
return true;
2261
}
2262
return false;
2263
}
2264
2265
void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
2266
BitVector &SavedRegs,
2267
RegScavenger *RS) const {
2268
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2269
// This tells PEI to spill the FP as if it is any other callee-save register
2270
// to take advantage the eliminateFrameIndex machinery. This also ensures it
2271
// is spilled in the order specified by getCalleeSavedRegs() to make it easier
2272
// to combine multiple loads / stores.
2273
bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF));
2274
bool CS1Spilled = false;
2275
bool LRSpilled = false;
2276
unsigned NumGPRSpills = 0;
2277
unsigned NumFPRSpills = 0;
2278
SmallVector<unsigned, 4> UnspilledCS1GPRs;
2279
SmallVector<unsigned, 4> UnspilledCS2GPRs;
2280
const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
2281
MF.getSubtarget().getRegisterInfo());
2282
const ARMBaseInstrInfo &TII =
2283
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2284
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2285
MachineFrameInfo &MFI = MF.getFrameInfo();
2286
MachineRegisterInfo &MRI = MF.getRegInfo();
2287
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2288
(void)TRI; // Silence unused warning in non-assert builds.
2289
Register FramePtr = RegInfo->getFrameRegister(MF);
2290
2291
// Spill R4 if Thumb2 function requires stack realignment - it will be used as
2292
// scratch register. Also spill R4 if Thumb2 function has varsized objects,
2293
// since it's not always possible to restore sp from fp in a single
2294
// instruction.
2295
// FIXME: It will be better just to find spare register here.
2296
if (AFI->isThumb2Function() &&
2297
(MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
2298
SavedRegs.set(ARM::R4);
2299
2300
// If a stack probe will be emitted, spill R4 and LR, since they are
2301
// clobbered by the stack probe call.
2302
// This estimate should be a safe, conservative estimate. The actual
2303
// stack probe is enabled based on the size of the local objects;
2304
// this estimate also includes the varargs store size.
2305
if (STI.isTargetWindows() &&
2306
WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
2307
SavedRegs.set(ARM::R4);
2308
SavedRegs.set(ARM::LR);
2309
}
2310
2311
if (AFI->isThumb1OnlyFunction()) {
2312
// Spill LR if Thumb1 function uses variable length argument lists.
2313
if (AFI->getArgRegsSaveSize() > 0)
2314
SavedRegs.set(ARM::LR);
2315
2316
// Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
2317
// requires stack alignment. We don't know for sure what the stack size
2318
// will be, but for this, an estimate is good enough. If there anything
2319
// changes it, it'll be a spill, which implies we've used all the registers
2320
// and so R4 is already used, so not marking it here will be OK.
2321
// FIXME: It will be better just to find spare register here.
2322
if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
2323
MFI.estimateStackSize(MF) > 508)
2324
SavedRegs.set(ARM::R4);
2325
}
2326
2327
// See if we can spill vector registers to aligned stack.
2328
checkNumAlignedDPRCS2Regs(MF, SavedRegs);
2329
2330
// Spill the BasePtr if it's used.
2331
if (RegInfo->hasBasePointer(MF))
2332
SavedRegs.set(RegInfo->getBaseRegister());
2333
2334
// On v8.1-M.Main CMSE entry functions save/restore FPCXT.
2335
if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
2336
CanEliminateFrame = false;
2337
2338
// When return address signing is enabled R12 is treated as callee-saved.
2339
if (AFI->shouldSignReturnAddress())
2340
CanEliminateFrame = false;
2341
2342
// Don't spill FP if the frame can be eliminated. This is determined
2343
// by scanning the callee-save registers to see if any is modified.
2344
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2345
for (unsigned i = 0; CSRegs[i]; ++i) {
2346
unsigned Reg = CSRegs[i];
2347
bool Spilled = false;
2348
if (SavedRegs.test(Reg)) {
2349
Spilled = true;
2350
CanEliminateFrame = false;
2351
}
2352
2353
if (!ARM::GPRRegClass.contains(Reg)) {
2354
if (Spilled) {
2355
if (ARM::SPRRegClass.contains(Reg))
2356
NumFPRSpills++;
2357
else if (ARM::DPRRegClass.contains(Reg))
2358
NumFPRSpills += 2;
2359
else if (ARM::QPRRegClass.contains(Reg))
2360
NumFPRSpills += 4;
2361
}
2362
continue;
2363
}
2364
2365
if (Spilled) {
2366
NumGPRSpills++;
2367
2368
if (!STI.splitFramePushPop(MF)) {
2369
if (Reg == ARM::LR)
2370
LRSpilled = true;
2371
CS1Spilled = true;
2372
continue;
2373
}
2374
2375
// Keep track if LR and any of R4, R5, R6, and R7 is spilled.
2376
switch (Reg) {
2377
case ARM::LR:
2378
LRSpilled = true;
2379
[[fallthrough]];
2380
case ARM::R0: case ARM::R1:
2381
case ARM::R2: case ARM::R3:
2382
case ARM::R4: case ARM::R5:
2383
case ARM::R6: case ARM::R7:
2384
CS1Spilled = true;
2385
break;
2386
default:
2387
break;
2388
}
2389
} else {
2390
if (!STI.splitFramePushPop(MF)) {
2391
UnspilledCS1GPRs.push_back(Reg);
2392
continue;
2393
}
2394
2395
switch (Reg) {
2396
case ARM::R0: case ARM::R1:
2397
case ARM::R2: case ARM::R3:
2398
case ARM::R4: case ARM::R5:
2399
case ARM::R6: case ARM::R7:
2400
case ARM::LR:
2401
UnspilledCS1GPRs.push_back(Reg);
2402
break;
2403
default:
2404
UnspilledCS2GPRs.push_back(Reg);
2405
break;
2406
}
2407
}
2408
}
2409
2410
bool ForceLRSpill = false;
2411
if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
2412
unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
2413
// Force LR to be spilled if the Thumb function size is > 2048. This enables
2414
// use of BL to implement far jump.
2415
if (FnSize >= (1 << 11)) {
2416
CanEliminateFrame = false;
2417
ForceLRSpill = true;
2418
}
2419
}
2420
2421
// If any of the stack slot references may be out of range of an immediate
2422
// offset, make sure a register (or a spill slot) is available for the
2423
// register scavenger. Note that if we're indexing off the frame pointer, the
2424
// effective stack size is 4 bytes larger since the FP points to the stack
2425
// slot of the previous FP. Also, if we have variable sized objects in the
2426
// function, stack slot references will often be negative, and some of
2427
// our instructions are positive-offset only, so conservatively consider
2428
// that case to want a spill slot (or register) as well. Similarly, if
2429
// the function adjusts the stack pointer during execution and the
2430
// adjustments aren't already part of our stack size estimate, our offset
2431
// calculations may be off, so be conservative.
2432
// FIXME: We could add logic to be more precise about negative offsets
2433
// and which instructions will need a scratch register for them. Is it
2434
// worth the effort and added fragility?
2435
unsigned EstimatedStackSize =
2436
MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
2437
2438
// Determine biggest (positive) SP offset in MachineFrameInfo.
2439
int MaxFixedOffset = 0;
2440
for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
2441
int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
2442
MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
2443
}
2444
2445
bool HasFP = hasFP(MF);
2446
if (HasFP) {
2447
if (AFI->hasStackFrame())
2448
EstimatedStackSize += 4;
2449
} else {
2450
// If FP is not used, SP will be used to access arguments, so count the
2451
// size of arguments into the estimation.
2452
EstimatedStackSize += MaxFixedOffset;
2453
}
2454
EstimatedStackSize += 16; // For possible paddings.
2455
2456
unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2457
bool HasNonSPFrameIndex = false;
2458
if (AFI->isThumb1OnlyFunction()) {
2459
// For Thumb1, don't bother to iterate over the function. The only
2460
// instruction that requires an emergency spill slot is a store to a
2461
// frame index.
2462
//
2463
// tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2464
// immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2465
// a 5-bit unsigned immediate.
2466
//
2467
// We could try to check if the function actually contains a tSTRspi
2468
// that might need the spill slot, but it's not really important.
2469
// Functions with VLAs or extremely large call frames are rare, and
2470
// if a function is allocating more than 1KB of stack, an extra 4-byte
2471
// slot probably isn't relevant.
2472
//
2473
// A special case is the scenario where r11 is used as FP, where accesses
2474
// to a frame index will require its value to be moved into a low reg.
2475
// This is handled later on, once we are able to determine if we have any
2476
// fp-relative accesses.
2477
if (RegInfo->hasBasePointer(MF))
2478
EstimatedRSStackSizeLimit = (1U << 5) * 4;
2479
else
2480
EstimatedRSStackSizeLimit = (1U << 8) * 4;
2481
EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2482
} else {
2483
EstimatedRSStackSizeLimit =
2484
estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2485
EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2486
}
2487
// Final estimate of whether sp or bp-relative accesses might require
2488
// scavenging.
2489
bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2490
2491
// If the stack pointer moves and we don't have a base pointer, the
2492
// estimate logic doesn't work. The actual offsets might be larger when
2493
// we're constructing a call frame, or we might need to use negative
2494
// offsets from fp.
2495
bool HasMovingSP = MFI.hasVarSizedObjects() ||
2496
(MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2497
bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2498
2499
// If we have a frame pointer, we assume arguments will be accessed
2500
// relative to the frame pointer. Check whether fp-relative accesses to
2501
// arguments require scavenging.
2502
//
2503
// We could do slightly better on Thumb1; in some cases, an sp-relative
2504
// offset would be legal even though an fp-relative offset is not.
2505
int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
2506
bool HasLargeArgumentList =
2507
HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2508
2509
bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2510
HasLargeArgumentList || HasNonSPFrameIndex;
2511
LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2512
<< "; EstimatedStack: " << EstimatedStackSize
2513
<< "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2514
<< "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2515
if (BigFrameOffsets ||
2516
!CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2517
AFI->setHasStackFrame(true);
2518
2519
if (HasFP) {
2520
SavedRegs.set(FramePtr);
2521
// If the frame pointer is required by the ABI, also spill LR so that we
2522
// emit a complete frame record.
2523
if ((requiresAAPCSFrameRecord(MF) ||
2524
MF.getTarget().Options.DisableFramePointerElim(MF)) &&
2525
!LRSpilled) {
2526
SavedRegs.set(ARM::LR);
2527
LRSpilled = true;
2528
NumGPRSpills++;
2529
auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2530
if (LRPos != UnspilledCS1GPRs.end())
2531
UnspilledCS1GPRs.erase(LRPos);
2532
}
2533
auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2534
if (FPPos != UnspilledCS1GPRs.end())
2535
UnspilledCS1GPRs.erase(FPPos);
2536
NumGPRSpills++;
2537
if (FramePtr == ARM::R7)
2538
CS1Spilled = true;
2539
}
2540
2541
// This is the number of extra spills inserted for callee-save GPRs which
2542
// would not otherwise be used by the function. When greater than zero it
2543
// guaranteees that it is possible to scavenge a register to hold the
2544
// address of a stack slot. On Thumb1, the register must be a valid operand
2545
// to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11
2546
// or lr.
2547
//
2548
// If we don't insert a spill, we instead allocate an emergency spill
2549
// slot, which can be used by scavenging to spill an arbitrary register.
2550
//
2551
// We currently don't try to figure out whether any specific instruction
2552
// requires scavening an additional register.
2553
unsigned NumExtraCSSpill = 0;
2554
2555
if (AFI->isThumb1OnlyFunction()) {
2556
// For Thumb1-only targets, we need some low registers when we save and
2557
// restore the high registers (which aren't allocatable, but could be
2558
// used by inline assembly) because the push/pop instructions can not
2559
// access high registers. If necessary, we might need to push more low
2560
// registers to ensure that there is at least one free that can be used
2561
// for the saving & restoring, and preferably we should ensure that as
2562
// many as are needed are available so that fewer push/pop instructions
2563
// are required.
2564
2565
// Low registers which are not currently pushed, but could be (r4-r7).
2566
SmallVector<unsigned, 4> AvailableRegs;
2567
2568
// Unused argument registers (r0-r3) can be clobbered in the prologue for
2569
// free.
2570
int EntryRegDeficit = 0;
2571
for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2572
if (!MF.getRegInfo().isLiveIn(Reg)) {
2573
--EntryRegDeficit;
2574
LLVM_DEBUG(dbgs()
2575
<< printReg(Reg, TRI)
2576
<< " is unused argument register, EntryRegDeficit = "
2577
<< EntryRegDeficit << "\n");
2578
}
2579
}
2580
2581
// Unused return registers can be clobbered in the epilogue for free.
2582
int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2583
LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2584
<< " return regs used, ExitRegDeficit = "
2585
<< ExitRegDeficit << "\n");
2586
2587
int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2588
LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2589
2590
// r4-r6 can be used in the prologue if they are pushed by the first push
2591
// instruction.
2592
for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2593
if (SavedRegs.test(Reg)) {
2594
--RegDeficit;
2595
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2596
<< " is saved low register, RegDeficit = "
2597
<< RegDeficit << "\n");
2598
} else {
2599
AvailableRegs.push_back(Reg);
2600
LLVM_DEBUG(
2601
dbgs()
2602
<< printReg(Reg, TRI)
2603
<< " is non-saved low register, adding to AvailableRegs\n");
2604
}
2605
}
2606
2607
// r7 can be used if it is not being used as the frame pointer.
2608
if (!HasFP || FramePtr != ARM::R7) {
2609
if (SavedRegs.test(ARM::R7)) {
2610
--RegDeficit;
2611
LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2612
<< RegDeficit << "\n");
2613
} else {
2614
AvailableRegs.push_back(ARM::R7);
2615
LLVM_DEBUG(
2616
dbgs()
2617
<< "%r7 is non-saved low register, adding to AvailableRegs\n");
2618
}
2619
}
2620
2621
// Each of r8-r11 needs to be copied to a low register, then pushed.
2622
for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2623
if (SavedRegs.test(Reg)) {
2624
++RegDeficit;
2625
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2626
<< " is saved high register, RegDeficit = "
2627
<< RegDeficit << "\n");
2628
}
2629
}
2630
2631
// LR can only be used by PUSH, not POP, and can't be used at all if the
2632
// llvm.returnaddress intrinsic is used. This is only worth doing if we
2633
// are more limited at function entry than exit.
2634
if ((EntryRegDeficit > ExitRegDeficit) &&
2635
!(MF.getRegInfo().isLiveIn(ARM::LR) &&
2636
MF.getFrameInfo().isReturnAddressTaken())) {
2637
if (SavedRegs.test(ARM::LR)) {
2638
--RegDeficit;
2639
LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2640
<< RegDeficit << "\n");
2641
} else {
2642
AvailableRegs.push_back(ARM::LR);
2643
LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2644
}
2645
}
2646
2647
// If there are more high registers that need pushing than low registers
2648
// available, push some more low registers so that we can use fewer push
2649
// instructions. This might not reduce RegDeficit all the way to zero,
2650
// because we can only guarantee that r4-r6 are available, but r8-r11 may
2651
// need saving.
2652
LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2653
for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2654
unsigned Reg = AvailableRegs.pop_back_val();
2655
LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2656
<< " to make up reg deficit\n");
2657
SavedRegs.set(Reg);
2658
NumGPRSpills++;
2659
CS1Spilled = true;
2660
assert(!MRI.isReserved(Reg) && "Should not be reserved");
2661
if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2662
NumExtraCSSpill++;
2663
UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2664
if (Reg == ARM::LR)
2665
LRSpilled = true;
2666
}
2667
LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2668
<< "\n");
2669
}
2670
2671
// Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2672
// restore LR in that case.
2673
bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2674
2675
// If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2676
// Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2677
if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2678
SavedRegs.set(ARM::LR);
2679
NumGPRSpills++;
2680
SmallVectorImpl<unsigned>::iterator LRPos;
2681
LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2682
if (LRPos != UnspilledCS1GPRs.end())
2683
UnspilledCS1GPRs.erase(LRPos);
2684
2685
ForceLRSpill = false;
2686
if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2687
!AFI->isThumb1OnlyFunction())
2688
NumExtraCSSpill++;
2689
}
2690
2691
// If stack and double are 8-byte aligned and we are spilling an odd number
2692
// of GPRs, spill one extra callee save GPR so we won't have to pad between
2693
// the integer and double callee save areas.
2694
LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2695
const Align TargetAlign = getStackAlign();
2696
if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2697
if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2698
for (unsigned Reg : UnspilledCS1GPRs) {
2699
// Don't spill high register if the function is thumb. In the case of
2700
// Windows on ARM, accept R11 (frame pointer)
2701
if (!AFI->isThumbFunction() ||
2702
(STI.isTargetWindows() && Reg == ARM::R11) ||
2703
isARMLowRegister(Reg) ||
2704
(Reg == ARM::LR && !ExpensiveLRRestore)) {
2705
SavedRegs.set(Reg);
2706
LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2707
<< " to make up alignment\n");
2708
if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2709
!(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2710
NumExtraCSSpill++;
2711
break;
2712
}
2713
}
2714
} else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2715
unsigned Reg = UnspilledCS2GPRs.front();
2716
SavedRegs.set(Reg);
2717
LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2718
<< " to make up alignment\n");
2719
if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2720
NumExtraCSSpill++;
2721
}
2722
}
2723
2724
// Estimate if we might need to scavenge registers at some point in order
2725
// to materialize a stack offset. If so, either spill one additional
2726
// callee-saved register or reserve a special spill slot to facilitate
2727
// register scavenging. Thumb1 needs a spill slot for stack pointer
2728
// adjustments and for frame index accesses when FP is high register,
2729
// even when the frame itself is small.
2730
unsigned RegsNeeded = 0;
2731
if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) {
2732
RegsNeeded++;
2733
// With thumb1 execute-only we may need an additional register for saving
2734
// and restoring the CPSR.
2735
if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt())
2736
RegsNeeded++;
2737
}
2738
2739
if (RegsNeeded > NumExtraCSSpill) {
2740
// If any non-reserved CS register isn't spilled, just spill one or two
2741
// extra. That should take care of it!
2742
unsigned NumExtras = TargetAlign.value() / 4;
2743
SmallVector<unsigned, 2> Extras;
2744
while (NumExtras && !UnspilledCS1GPRs.empty()) {
2745
unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2746
if (!MRI.isReserved(Reg) &&
2747
(!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2748
Extras.push_back(Reg);
2749
NumExtras--;
2750
}
2751
}
2752
// For non-Thumb1 functions, also check for hi-reg CS registers
2753
if (!AFI->isThumb1OnlyFunction()) {
2754
while (NumExtras && !UnspilledCS2GPRs.empty()) {
2755
unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2756
if (!MRI.isReserved(Reg)) {
2757
Extras.push_back(Reg);
2758
NumExtras--;
2759
}
2760
}
2761
}
2762
if (NumExtras == 0) {
2763
for (unsigned Reg : Extras) {
2764
SavedRegs.set(Reg);
2765
if (!MRI.isPhysRegUsed(Reg))
2766
NumExtraCSSpill++;
2767
}
2768
}
2769
while ((RegsNeeded > NumExtraCSSpill) && RS) {
2770
// Reserve a slot closest to SP or frame pointer.
2771
LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2772
const TargetRegisterClass &RC = ARM::GPRRegClass;
2773
unsigned Size = TRI->getSpillSize(RC);
2774
Align Alignment = TRI->getSpillAlign(RC);
2775
RS->addScavengingFrameIndex(
2776
MFI.CreateStackObject(Size, Alignment, false));
2777
--RegsNeeded;
2778
}
2779
}
2780
}
2781
2782
if (ForceLRSpill)
2783
SavedRegs.set(ARM::LR);
2784
AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2785
}
2786
2787
void ARMFrameLowering::updateLRRestored(MachineFunction &MF) {
2788
MachineFrameInfo &MFI = MF.getFrameInfo();
2789
if (!MFI.isCalleeSavedInfoValid())
2790
return;
2791
2792
// Check if all terminators do not implicitly use LR. Then we can 'restore' LR
2793
// into PC so it is not live out of the return block: Clear the Restored bit
2794
// in that case.
2795
for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) {
2796
if (Info.getReg() != ARM::LR)
2797
continue;
2798
if (all_of(MF, [](const MachineBasicBlock &MBB) {
2799
return all_of(MBB.terminators(), [](const MachineInstr &Term) {
2800
return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET ||
2801
Term.getOpcode() == ARM::t2LDMIA_RET ||
2802
Term.getOpcode() == ARM::tPOP_RET;
2803
});
2804
})) {
2805
Info.setRestored(false);
2806
break;
2807
}
2808
}
2809
}
2810
2811
void ARMFrameLowering::processFunctionBeforeFrameFinalized(
2812
MachineFunction &MF, RegScavenger *RS) const {
2813
TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS);
2814
updateLRRestored(MF);
2815
}
2816
2817
void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2818
BitVector &SavedRegs) const {
2819
TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2820
2821
// If we have the "returned" parameter attribute which guarantees that we
2822
// return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2823
// record that fact for IPRA.
2824
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2825
if (AFI->getPreservesR0())
2826
SavedRegs.set(ARM::R0);
2827
}
2828
2829
bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2830
MachineFunction &MF, const TargetRegisterInfo *TRI,
2831
std::vector<CalleeSavedInfo> &CSI) const {
2832
// For CMSE entry functions, handle floating-point context as if it was a
2833
// callee-saved register.
2834
if (STI.hasV8_1MMainlineOps() &&
2835
MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2836
CSI.emplace_back(ARM::FPCXTNS);
2837
CSI.back().setRestored(false);
2838
}
2839
2840
// For functions, which sign their return address, upon function entry, the
2841
// return address PAC is computed in R12. Treat R12 as a callee-saved register
2842
// in this case.
2843
const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2844
if (AFI.shouldSignReturnAddress()) {
2845
// The order of register must match the order we push them, because the
2846
// PEI assigns frame indices in that order. When compiling for return
2847
// address sign and authenication, we use split push, therefore the orders
2848
// we want are:
2849
// LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8
2850
CSI.insert(find_if(CSI,
2851
[=](const auto &CS) {
2852
Register Reg = CS.getReg();
2853
return Reg == ARM::R10 || Reg == ARM::R11 ||
2854
Reg == ARM::R8 || Reg == ARM::R9 ||
2855
ARM::DPRRegClass.contains(Reg);
2856
}),
2857
CalleeSavedInfo(ARM::R12));
2858
}
2859
2860
return false;
2861
}
2862
2863
const TargetFrameLowering::SpillSlot *
2864
ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2865
static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2866
NumEntries = std::size(FixedSpillOffsets);
2867
return FixedSpillOffsets;
2868
}
2869
2870
MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2871
MachineFunction &MF, MachineBasicBlock &MBB,
2872
MachineBasicBlock::iterator I) const {
2873
const ARMBaseInstrInfo &TII =
2874
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2875
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2876
bool isARM = !AFI->isThumbFunction();
2877
DebugLoc dl = I->getDebugLoc();
2878
unsigned Opc = I->getOpcode();
2879
bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
2880
unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
2881
2882
assert(!AFI->isThumb1OnlyFunction() &&
2883
"This eliminateCallFramePseudoInstr does not support Thumb1!");
2884
2885
int PIdx = I->findFirstPredOperandIdx();
2886
ARMCC::CondCodes Pred = (PIdx == -1)
2887
? ARMCC::AL
2888
: (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
2889
unsigned PredReg = TII.getFramePred(*I);
2890
2891
if (!hasReservedCallFrame(MF)) {
2892
// Bail early if the callee is expected to do the adjustment.
2893
if (IsDestroy && CalleePopAmount != -1U)
2894
return MBB.erase(I);
2895
2896
// If we have alloca, convert as follows:
2897
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
2898
// ADJCALLSTACKUP -> add, sp, sp, amount
2899
unsigned Amount = TII.getFrameSize(*I);
2900
if (Amount != 0) {
2901
// We need to keep the stack aligned properly. To do this, we round the
2902
// amount of space needed for the outgoing arguments up to the next
2903
// alignment boundary.
2904
Amount = alignSPAdjust(Amount);
2905
2906
if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2907
emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2908
Pred, PredReg);
2909
} else {
2910
assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2911
emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2912
Pred, PredReg);
2913
}
2914
}
2915
} else if (CalleePopAmount != -1U) {
2916
// If the calling convention demands that the callee pops arguments from the
2917
// stack, we want to add it back if we have a reserved call frame.
2918
emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
2919
MachineInstr::NoFlags, Pred, PredReg);
2920
}
2921
return MBB.erase(I);
2922
}
2923
2924
/// Get the minimum constant for ARM that is greater than or equal to the
2925
/// argument. In ARM, constants can have any value that can be produced by
2926
/// rotating an 8-bit value to the right by an even number of bits within a
2927
/// 32-bit word.
2928
static uint32_t alignToARMConstant(uint32_t Value) {
2929
unsigned Shifted = 0;
2930
2931
if (Value == 0)
2932
return 0;
2933
2934
while (!(Value & 0xC0000000)) {
2935
Value = Value << 2;
2936
Shifted += 2;
2937
}
2938
2939
bool Carry = (Value & 0x00FFFFFF);
2940
Value = ((Value & 0xFF000000) >> 24) + Carry;
2941
2942
if (Value & 0x0000100)
2943
Value = Value & 0x000001FC;
2944
2945
if (Shifted > 24)
2946
Value = Value >> (Shifted - 24);
2947
else
2948
Value = Value << (24 - Shifted);
2949
2950
return Value;
2951
}
2952
2953
// The stack limit in the TCB is set to this many bytes above the actual
2954
// stack limit.
2955
static const uint64_t kSplitStackAvailable = 256;
2956
2957
// Adjust the function prologue to enable split stacks. This currently only
2958
// supports android and linux.
2959
//
2960
// The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2961
// must be well defined in order to allow for consistent implementations of the
2962
// __morestack helper function. The ABI is also not a normal ABI in that it
2963
// doesn't follow the normal calling conventions because this allows the
2964
// prologue of each function to be optimized further.
2965
//
2966
// Currently, the ABI looks like (when calling __morestack)
2967
//
2968
// * r4 holds the minimum stack size requested for this function call
2969
// * r5 holds the stack size of the arguments to the function
2970
// * the beginning of the function is 3 instructions after the call to
2971
// __morestack
2972
//
2973
// Implementations of __morestack should use r4 to allocate a new stack, r5 to
2974
// place the arguments on to the new stack, and the 3-instruction knowledge to
2975
// jump directly to the body of the function when working on the new stack.
2976
//
2977
// An old (and possibly no longer compatible) implementation of __morestack for
2978
// ARM can be found at [1].
2979
//
2980
// [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2981
void ARMFrameLowering::adjustForSegmentedStacks(
2982
MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2983
unsigned Opcode;
2984
unsigned CFIIndex;
2985
const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2986
bool Thumb = ST->isThumb();
2987
bool Thumb2 = ST->isThumb2();
2988
2989
// Sadly, this currently doesn't support varargs, platforms other than
2990
// android/linux. Note that thumb1/thumb2 are support for android/linux.
2991
if (MF.getFunction().isVarArg())
2992
report_fatal_error("Segmented stacks do not support vararg functions.");
2993
if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2994
report_fatal_error("Segmented stacks not supported on this platform.");
2995
2996
MachineFrameInfo &MFI = MF.getFrameInfo();
2997
MCContext &Context = MF.getContext();
2998
const MCRegisterInfo *MRI = Context.getRegisterInfo();
2999
const ARMBaseInstrInfo &TII =
3000
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
3001
ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
3002
DebugLoc DL;
3003
3004
if (!MFI.needsSplitStackProlog())
3005
return;
3006
3007
uint64_t StackSize = MFI.getStackSize();
3008
3009
// Use R4 and R5 as scratch registers.
3010
// We save R4 and R5 before use and restore them before leaving the function.
3011
unsigned ScratchReg0 = ARM::R4;
3012
unsigned ScratchReg1 = ARM::R5;
3013
unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm;
3014
uint64_t AlignedStackSize;
3015
3016
MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
3017
MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
3018
MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
3019
MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
3020
MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
3021
3022
// Grab everything that reaches PrologueMBB to update there liveness as well.
3023
SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
3024
SmallVector<MachineBasicBlock *, 2> WalkList;
3025
WalkList.push_back(&PrologueMBB);
3026
3027
do {
3028
MachineBasicBlock *CurMBB = WalkList.pop_back_val();
3029
for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
3030
if (BeforePrologueRegion.insert(PredBB).second)
3031
WalkList.push_back(PredBB);
3032
}
3033
} while (!WalkList.empty());
3034
3035
// The order in that list is important.
3036
// The blocks will all be inserted before PrologueMBB using that order.
3037
// Therefore the block that should appear first in the CFG should appear
3038
// first in the list.
3039
MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
3040
PostStackMBB};
3041
3042
for (MachineBasicBlock *B : AddedBlocks)
3043
BeforePrologueRegion.insert(B);
3044
3045
for (const auto &LI : PrologueMBB.liveins()) {
3046
for (MachineBasicBlock *PredBB : BeforePrologueRegion)
3047
PredBB->addLiveIn(LI);
3048
}
3049
3050
// Remove the newly added blocks from the list, since we know
3051
// we do not have to do the following updates for them.
3052
for (MachineBasicBlock *B : AddedBlocks) {
3053
BeforePrologueRegion.erase(B);
3054
MF.insert(PrologueMBB.getIterator(), B);
3055
}
3056
3057
for (MachineBasicBlock *MBB : BeforePrologueRegion) {
3058
// Make sure the LiveIns are still sorted and unique.
3059
MBB->sortUniqueLiveIns();
3060
// Replace the edges to PrologueMBB by edges to the sequences
3061
// we are about to add, but only update for immediate predecessors.
3062
if (MBB->isSuccessor(&PrologueMBB))
3063
MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
3064
}
3065
3066
// The required stack size that is aligned to ARM constant criterion.
3067
AlignedStackSize = alignToARMConstant(StackSize);
3068
3069
// When the frame size is less than 256 we just compare the stack
3070
// boundary directly to the value of the stack pointer, per gcc.
3071
bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
3072
3073
// We will use two of the callee save registers as scratch registers so we
3074
// need to save those registers onto the stack.
3075
// We will use SR0 to hold stack limit and SR1 to hold the stack size
3076
// requested and arguments for __morestack().
3077
// SR0: Scratch Register #0
3078
// SR1: Scratch Register #1
3079
// push {SR0, SR1}
3080
if (Thumb) {
3081
BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
3082
.add(predOps(ARMCC::AL))
3083
.addReg(ScratchReg0)
3084
.addReg(ScratchReg1);
3085
} else {
3086
BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
3087
.addReg(ARM::SP, RegState::Define)
3088
.addReg(ARM::SP)
3089
.add(predOps(ARMCC::AL))
3090
.addReg(ScratchReg0)
3091
.addReg(ScratchReg1);
3092
}
3093
3094
// Emit the relevant DWARF information about the change in stack pointer as
3095
// well as where to find both r4 and r5 (the callee-save registers)
3096
if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3097
CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
3098
BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3099
.addCFIIndex(CFIIndex);
3100
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3101
nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
3102
BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3103
.addCFIIndex(CFIIndex);
3104
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3105
nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
3106
BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3107
.addCFIIndex(CFIIndex);
3108
}
3109
3110
// mov SR1, sp
3111
if (Thumb) {
3112
BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
3113
.addReg(ARM::SP)
3114
.add(predOps(ARMCC::AL));
3115
} else if (CompareStackPointer) {
3116
BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
3117
.addReg(ARM::SP)
3118
.add(predOps(ARMCC::AL))
3119
.add(condCodeOp());
3120
}
3121
3122
// sub SR1, sp, #StackSize
3123
if (!CompareStackPointer && Thumb) {
3124
if (AlignedStackSize < 256) {
3125
BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
3126
.add(condCodeOp())
3127
.addReg(ScratchReg1)
3128
.addImm(AlignedStackSize)
3129
.add(predOps(ARMCC::AL));
3130
} else {
3131
if (Thumb2 || ST->genExecuteOnly()) {
3132
BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0)
3133
.addImm(AlignedStackSize);
3134
} else {
3135
auto MBBI = McrMBB->end();
3136
auto RegInfo = STI.getRegisterInfo();
3137
RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3138
AlignedStackSize);
3139
}
3140
BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
3141
.add(condCodeOp())
3142
.addReg(ScratchReg1)
3143
.addReg(ScratchReg0)
3144
.add(predOps(ARMCC::AL));
3145
}
3146
} else if (!CompareStackPointer) {
3147
if (AlignedStackSize < 256) {
3148
BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
3149
.addReg(ARM::SP)
3150
.addImm(AlignedStackSize)
3151
.add(predOps(ARMCC::AL))
3152
.add(condCodeOp());
3153
} else {
3154
auto MBBI = McrMBB->end();
3155
auto RegInfo = STI.getRegisterInfo();
3156
RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3157
AlignedStackSize);
3158
BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
3159
.addReg(ARM::SP)
3160
.addReg(ScratchReg0)
3161
.add(predOps(ARMCC::AL))
3162
.add(condCodeOp());
3163
}
3164
}
3165
3166
if (Thumb && ST->isThumb1Only()) {
3167
if (ST->genExecuteOnly()) {
3168
BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0)
3169
.addExternalSymbol("__STACK_LIMIT");
3170
} else {
3171
unsigned PCLabelId = ARMFI->createPICLabelUId();
3172
ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
3173
MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
3174
MachineConstantPool *MCP = MF.getConstantPool();
3175
unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
3176
3177
// ldr SR0, [pc, offset(STACK_LIMIT)]
3178
BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
3179
.addConstantPoolIndex(CPI)
3180
.add(predOps(ARMCC::AL));
3181
}
3182
3183
// ldr SR0, [SR0]
3184
BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
3185
.addReg(ScratchReg0)
3186
.addImm(0)
3187
.add(predOps(ARMCC::AL));
3188
} else {
3189
// Get TLS base address from the coprocessor
3190
// mrc p15, #0, SR0, c13, c0, #3
3191
BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
3192
ScratchReg0)
3193
.addImm(15)
3194
.addImm(0)
3195
.addImm(13)
3196
.addImm(0)
3197
.addImm(3)
3198
.add(predOps(ARMCC::AL));
3199
3200
// Use the last tls slot on android and a private field of the TCP on linux.
3201
assert(ST->isTargetAndroid() || ST->isTargetLinux());
3202
unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
3203
3204
// Get the stack limit from the right offset
3205
// ldr SR0, [sr0, #4 * TlsOffset]
3206
BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
3207
ScratchReg0)
3208
.addReg(ScratchReg0)
3209
.addImm(4 * TlsOffset)
3210
.add(predOps(ARMCC::AL));
3211
}
3212
3213
// Compare stack limit with stack size requested.
3214
// cmp SR0, SR1
3215
Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
3216
BuildMI(GetMBB, DL, TII.get(Opcode))
3217
.addReg(ScratchReg0)
3218
.addReg(ScratchReg1)
3219
.add(predOps(ARMCC::AL));
3220
3221
// This jump is taken if StackLimit <= SP - stack required.
3222
Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
3223
BuildMI(GetMBB, DL, TII.get(Opcode))
3224
.addMBB(PostStackMBB)
3225
.addImm(ARMCC::LS)
3226
.addReg(ARM::CPSR);
3227
3228
// Calling __morestack(StackSize, Size of stack arguments).
3229
// __morestack knows that the stack size requested is in SR0(r4)
3230
// and amount size of stack arguments is in SR1(r5).
3231
3232
// Pass first argument for the __morestack by Scratch Register #0.
3233
// The amount size of stack required
3234
if (Thumb) {
3235
if (AlignedStackSize < 256) {
3236
BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
3237
.add(condCodeOp())
3238
.addImm(AlignedStackSize)
3239
.add(predOps(ARMCC::AL));
3240
} else {
3241
if (Thumb2 || ST->genExecuteOnly()) {
3242
BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0)
3243
.addImm(AlignedStackSize);
3244
} else {
3245
auto MBBI = AllocMBB->end();
3246
auto RegInfo = STI.getRegisterInfo();
3247
RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3248
AlignedStackSize);
3249
}
3250
}
3251
} else {
3252
if (AlignedStackSize < 256) {
3253
BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
3254
.addImm(AlignedStackSize)
3255
.add(predOps(ARMCC::AL))
3256
.add(condCodeOp());
3257
} else {
3258
auto MBBI = AllocMBB->end();
3259
auto RegInfo = STI.getRegisterInfo();
3260
RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3261
AlignedStackSize);
3262
}
3263
}
3264
3265
// Pass second argument for the __morestack by Scratch Register #1.
3266
// The amount size of stack consumed to save function arguments.
3267
if (Thumb) {
3268
if (ARMFI->getArgumentStackSize() < 256) {
3269
BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
3270
.add(condCodeOp())
3271
.addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3272
.add(predOps(ARMCC::AL));
3273
} else {
3274
if (Thumb2 || ST->genExecuteOnly()) {
3275
BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1)
3276
.addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
3277
} else {
3278
auto MBBI = AllocMBB->end();
3279
auto RegInfo = STI.getRegisterInfo();
3280
RegInfo->emitLoadConstPool(
3281
*AllocMBB, MBBI, DL, ScratchReg1, 0,
3282
alignToARMConstant(ARMFI->getArgumentStackSize()));
3283
}
3284
}
3285
} else {
3286
if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
3287
BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
3288
.addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3289
.add(predOps(ARMCC::AL))
3290
.add(condCodeOp());
3291
} else {
3292
auto MBBI = AllocMBB->end();
3293
auto RegInfo = STI.getRegisterInfo();
3294
RegInfo->emitLoadConstPool(
3295
*AllocMBB, MBBI, DL, ScratchReg1, 0,
3296
alignToARMConstant(ARMFI->getArgumentStackSize()));
3297
}
3298
}
3299
3300
// push {lr} - Save return address of this function.
3301
if (Thumb) {
3302
BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
3303
.add(predOps(ARMCC::AL))
3304
.addReg(ARM::LR);
3305
} else {
3306
BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
3307
.addReg(ARM::SP, RegState::Define)
3308
.addReg(ARM::SP)
3309
.add(predOps(ARMCC::AL))
3310
.addReg(ARM::LR);
3311
}
3312
3313
// Emit the DWARF info about the change in stack as well as where to find the
3314
// previous link register
3315
if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3316
CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
3317
BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3318
.addCFIIndex(CFIIndex);
3319
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3320
nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
3321
BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3322
.addCFIIndex(CFIIndex);
3323
}
3324
3325
// Call __morestack().
3326
if (Thumb) {
3327
BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
3328
.add(predOps(ARMCC::AL))
3329
.addExternalSymbol("__morestack");
3330
} else {
3331
BuildMI(AllocMBB, DL, TII.get(ARM::BL))
3332
.addExternalSymbol("__morestack");
3333
}
3334
3335
// pop {lr} - Restore return address of this original function.
3336
if (Thumb) {
3337
if (ST->isThumb1Only()) {
3338
BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3339
.add(predOps(ARMCC::AL))
3340
.addReg(ScratchReg0);
3341
BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
3342
.addReg(ScratchReg0)
3343
.add(predOps(ARMCC::AL));
3344
} else {
3345
BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
3346
.addReg(ARM::LR, RegState::Define)
3347
.addReg(ARM::SP, RegState::Define)
3348
.addReg(ARM::SP)
3349
.addImm(4)
3350
.add(predOps(ARMCC::AL));
3351
}
3352
} else {
3353
BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3354
.addReg(ARM::SP, RegState::Define)
3355
.addReg(ARM::SP)
3356
.add(predOps(ARMCC::AL))
3357
.addReg(ARM::LR);
3358
}
3359
3360
// Restore SR0 and SR1 in case of __morestack() was called.
3361
// __morestack() will skip PostStackMBB block so we need to restore
3362
// scratch registers from here.
3363
// pop {SR0, SR1}
3364
if (Thumb) {
3365
BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3366
.add(predOps(ARMCC::AL))
3367
.addReg(ScratchReg0)
3368
.addReg(ScratchReg1);
3369
} else {
3370
BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3371
.addReg(ARM::SP, RegState::Define)
3372
.addReg(ARM::SP)
3373
.add(predOps(ARMCC::AL))
3374
.addReg(ScratchReg0)
3375
.addReg(ScratchReg1);
3376
}
3377
3378
// Update the CFA offset now that we've popped
3379
if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3380
CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3381
BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3382
.addCFIIndex(CFIIndex);
3383
}
3384
3385
// Return from this function.
3386
BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
3387
3388
// Restore SR0 and SR1 in case of __morestack() was not called.
3389
// pop {SR0, SR1}
3390
if (Thumb) {
3391
BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
3392
.add(predOps(ARMCC::AL))
3393
.addReg(ScratchReg0)
3394
.addReg(ScratchReg1);
3395
} else {
3396
BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
3397
.addReg(ARM::SP, RegState::Define)
3398
.addReg(ARM::SP)
3399
.add(predOps(ARMCC::AL))
3400
.addReg(ScratchReg0)
3401
.addReg(ScratchReg1);
3402
}
3403
3404
// Update the CFA offset now that we've popped
3405
if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3406
CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3407
BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3408
.addCFIIndex(CFIIndex);
3409
3410
// Tell debuggers that r4 and r5 are now the same as they were in the
3411
// previous function, that they're the "Same Value".
3412
CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3413
nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
3414
BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3415
.addCFIIndex(CFIIndex);
3416
CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3417
nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
3418
BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3419
.addCFIIndex(CFIIndex);
3420
}
3421
3422
// Organizing MBB lists
3423
PostStackMBB->addSuccessor(&PrologueMBB);
3424
3425
AllocMBB->addSuccessor(PostStackMBB);
3426
3427
GetMBB->addSuccessor(PostStackMBB);
3428
GetMBB->addSuccessor(AllocMBB);
3429
3430
McrMBB->addSuccessor(GetMBB);
3431
3432
PrevStackMBB->addSuccessor(McrMBB);
3433
3434
#ifdef EXPENSIVE_CHECKS
3435
MF.verify();
3436
#endif
3437
}
3438
3439