Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/ARM/ARMISelLowering.cpp
103835 views
1
//===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the interfaces that ARM uses to lower LLVM code into a
10
// selection DAG.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "ARMISelLowering.h"
15
#include "ARMBaseInstrInfo.h"
16
#include "ARMBaseRegisterInfo.h"
17
#include "ARMCallingConv.h"
18
#include "ARMConstantPoolValue.h"
19
#include "ARMMachineFunctionInfo.h"
20
#include "ARMPerfectShuffle.h"
21
#include "ARMRegisterInfo.h"
22
#include "ARMSelectionDAGInfo.h"
23
#include "ARMSubtarget.h"
24
#include "ARMTargetTransformInfo.h"
25
#include "MCTargetDesc/ARMAddressingModes.h"
26
#include "MCTargetDesc/ARMBaseInfo.h"
27
#include "Utils/ARMBaseInfo.h"
28
#include "llvm/ADT/APFloat.h"
29
#include "llvm/ADT/APInt.h"
30
#include "llvm/ADT/ArrayRef.h"
31
#include "llvm/ADT/BitVector.h"
32
#include "llvm/ADT/DenseMap.h"
33
#include "llvm/ADT/STLExtras.h"
34
#include "llvm/ADT/SmallPtrSet.h"
35
#include "llvm/ADT/SmallVector.h"
36
#include "llvm/ADT/Statistic.h"
37
#include "llvm/ADT/StringExtras.h"
38
#include "llvm/ADT/StringRef.h"
39
#include "llvm/ADT/StringSwitch.h"
40
#include "llvm/ADT/Twine.h"
41
#include "llvm/Analysis/VectorUtils.h"
42
#include "llvm/CodeGen/CallingConvLower.h"
43
#include "llvm/CodeGen/ComplexDeinterleavingPass.h"
44
#include "llvm/CodeGen/ISDOpcodes.h"
45
#include "llvm/CodeGen/IntrinsicLowering.h"
46
#include "llvm/CodeGen/MachineBasicBlock.h"
47
#include "llvm/CodeGen/MachineConstantPool.h"
48
#include "llvm/CodeGen/MachineFrameInfo.h"
49
#include "llvm/CodeGen/MachineFunction.h"
50
#include "llvm/CodeGen/MachineInstr.h"
51
#include "llvm/CodeGen/MachineInstrBuilder.h"
52
#include "llvm/CodeGen/MachineJumpTableInfo.h"
53
#include "llvm/CodeGen/MachineMemOperand.h"
54
#include "llvm/CodeGen/MachineOperand.h"
55
#include "llvm/CodeGen/MachineRegisterInfo.h"
56
#include "llvm/CodeGen/RuntimeLibcallUtil.h"
57
#include "llvm/CodeGen/SelectionDAG.h"
58
#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
59
#include "llvm/CodeGen/SelectionDAGNodes.h"
60
#include "llvm/CodeGen/TargetInstrInfo.h"
61
#include "llvm/CodeGen/TargetLowering.h"
62
#include "llvm/CodeGen/TargetOpcodes.h"
63
#include "llvm/CodeGen/TargetRegisterInfo.h"
64
#include "llvm/CodeGen/TargetSubtargetInfo.h"
65
#include "llvm/CodeGen/ValueTypes.h"
66
#include "llvm/CodeGenTypes/MachineValueType.h"
67
#include "llvm/IR/Attributes.h"
68
#include "llvm/IR/CallingConv.h"
69
#include "llvm/IR/Constant.h"
70
#include "llvm/IR/Constants.h"
71
#include "llvm/IR/DataLayout.h"
72
#include "llvm/IR/DebugLoc.h"
73
#include "llvm/IR/DerivedTypes.h"
74
#include "llvm/IR/Function.h"
75
#include "llvm/IR/GlobalAlias.h"
76
#include "llvm/IR/GlobalValue.h"
77
#include "llvm/IR/GlobalVariable.h"
78
#include "llvm/IR/IRBuilder.h"
79
#include "llvm/IR/InlineAsm.h"
80
#include "llvm/IR/Instruction.h"
81
#include "llvm/IR/Instructions.h"
82
#include "llvm/IR/IntrinsicInst.h"
83
#include "llvm/IR/Intrinsics.h"
84
#include "llvm/IR/IntrinsicsARM.h"
85
#include "llvm/IR/Module.h"
86
#include "llvm/IR/PatternMatch.h"
87
#include "llvm/IR/Type.h"
88
#include "llvm/IR/User.h"
89
#include "llvm/IR/Value.h"
90
#include "llvm/MC/MCInstrDesc.h"
91
#include "llvm/MC/MCInstrItineraries.h"
92
#include "llvm/MC/MCRegisterInfo.h"
93
#include "llvm/MC/MCSchedule.h"
94
#include "llvm/Support/AtomicOrdering.h"
95
#include "llvm/Support/BranchProbability.h"
96
#include "llvm/Support/Casting.h"
97
#include "llvm/Support/CodeGen.h"
98
#include "llvm/Support/CommandLine.h"
99
#include "llvm/Support/Compiler.h"
100
#include "llvm/Support/Debug.h"
101
#include "llvm/Support/ErrorHandling.h"
102
#include "llvm/Support/KnownBits.h"
103
#include "llvm/Support/MathExtras.h"
104
#include "llvm/Support/raw_ostream.h"
105
#include "llvm/Target/TargetMachine.h"
106
#include "llvm/Target/TargetOptions.h"
107
#include "llvm/TargetParser/Triple.h"
108
#include <algorithm>
109
#include <cassert>
110
#include <cstdint>
111
#include <cstdlib>
112
#include <iterator>
113
#include <limits>
114
#include <optional>
115
#include <tuple>
116
#include <utility>
117
#include <vector>
118
119
using namespace llvm;
120
using namespace llvm::PatternMatch;
121
122
#define DEBUG_TYPE "arm-isel"
123
124
STATISTIC(NumTailCalls, "Number of tail calls");
125
STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
126
STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
127
STATISTIC(NumConstpoolPromoted,
128
"Number of constants with their storage promoted into constant pools");
129
130
static cl::opt<bool>
131
ARMInterworking("arm-interworking", cl::Hidden,
132
cl::desc("Enable / disable ARM interworking (for debugging only)"),
133
cl::init(true));
134
135
static cl::opt<bool> EnableConstpoolPromotion(
136
"arm-promote-constant", cl::Hidden,
137
cl::desc("Enable / disable promotion of unnamed_addr constants into "
138
"constant pools"),
139
cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
140
static cl::opt<unsigned> ConstpoolPromotionMaxSize(
141
"arm-promote-constant-max-size", cl::Hidden,
142
cl::desc("Maximum size of constant to promote into a constant pool"),
143
cl::init(64));
144
static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
145
"arm-promote-constant-max-total", cl::Hidden,
146
cl::desc("Maximum size of ALL constants to promote into a constant pool"),
147
cl::init(128));
148
149
cl::opt<unsigned>
150
MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
151
cl::desc("Maximum interleave factor for MVE VLDn to generate."),
152
cl::init(2));
153
154
// The APCS parameter registers.
155
static const MCPhysReg GPRArgRegs[] = {
156
ARM::R0, ARM::R1, ARM::R2, ARM::R3
157
};
158
159
static SDValue handleCMSEValue(const SDValue &Value, const ISD::InputArg &Arg,
160
SelectionDAG &DAG, const SDLoc &DL) {
161
assert(Arg.ArgVT.isScalarInteger());
162
assert(Arg.ArgVT.bitsLT(MVT::i32));
163
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, Arg.ArgVT, Value);
164
SDValue Ext =
165
DAG.getNode(Arg.Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
166
MVT::i32, Trunc);
167
return Ext;
168
}
169
170
void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT) {
171
if (VT != PromotedLdStVT) {
172
setOperationAction(ISD::LOAD, VT, Promote);
173
AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
174
175
setOperationAction(ISD::STORE, VT, Promote);
176
AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
177
}
178
179
MVT ElemTy = VT.getVectorElementType();
180
if (ElemTy != MVT::f64)
181
setOperationAction(ISD::SETCC, VT, Custom);
182
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
183
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
184
if (ElemTy == MVT::i32) {
185
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
186
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
187
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
188
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
189
} else {
190
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
191
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
192
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
193
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
194
}
195
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
196
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
197
setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
198
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
199
setOperationAction(ISD::SELECT, VT, Expand);
200
setOperationAction(ISD::SELECT_CC, VT, Expand);
201
setOperationAction(ISD::VSELECT, VT, Expand);
202
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
203
if (VT.isInteger()) {
204
setOperationAction(ISD::SHL, VT, Custom);
205
setOperationAction(ISD::SRA, VT, Custom);
206
setOperationAction(ISD::SRL, VT, Custom);
207
}
208
209
// Neon does not support vector divide/remainder operations.
210
setOperationAction(ISD::SDIV, VT, Expand);
211
setOperationAction(ISD::UDIV, VT, Expand);
212
setOperationAction(ISD::FDIV, VT, Expand);
213
setOperationAction(ISD::SREM, VT, Expand);
214
setOperationAction(ISD::UREM, VT, Expand);
215
setOperationAction(ISD::FREM, VT, Expand);
216
setOperationAction(ISD::SDIVREM, VT, Expand);
217
setOperationAction(ISD::UDIVREM, VT, Expand);
218
219
if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
220
for (auto Opcode : {ISD::ABS, ISD::ABDS, ISD::ABDU, ISD::SMIN, ISD::SMAX,
221
ISD::UMIN, ISD::UMAX})
222
setOperationAction(Opcode, VT, Legal);
223
if (!VT.isFloatingPoint())
224
for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
225
setOperationAction(Opcode, VT, Legal);
226
}
227
228
void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
229
addRegisterClass(VT, &ARM::DPRRegClass);
230
addTypeForNEON(VT, MVT::f64);
231
}
232
233
void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
234
addRegisterClass(VT, &ARM::DPairRegClass);
235
addTypeForNEON(VT, MVT::v2f64);
236
}
237
238
void ARMTargetLowering::setAllExpand(MVT VT) {
239
for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
240
setOperationAction(Opc, VT, Expand);
241
242
// We support these really simple operations even on types where all
243
// the actual arithmetic has to be broken down into simpler
244
// operations or turned into library calls.
245
setOperationAction(ISD::BITCAST, VT, Legal);
246
setOperationAction(ISD::LOAD, VT, Legal);
247
setOperationAction(ISD::STORE, VT, Legal);
248
setOperationAction(ISD::UNDEF, VT, Legal);
249
}
250
251
void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
252
LegalizeAction Action) {
253
setLoadExtAction(ISD::EXTLOAD, From, To, Action);
254
setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
255
setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
256
}
257
258
void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
259
const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
260
261
for (auto VT : IntTypes) {
262
addRegisterClass(VT, &ARM::MQPRRegClass);
263
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
264
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
265
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
266
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
267
setOperationAction(ISD::SHL, VT, Custom);
268
setOperationAction(ISD::SRA, VT, Custom);
269
setOperationAction(ISD::SRL, VT, Custom);
270
setOperationAction(ISD::SMIN, VT, Legal);
271
setOperationAction(ISD::SMAX, VT, Legal);
272
setOperationAction(ISD::UMIN, VT, Legal);
273
setOperationAction(ISD::UMAX, VT, Legal);
274
setOperationAction(ISD::ABS, VT, Legal);
275
setOperationAction(ISD::SETCC, VT, Custom);
276
setOperationAction(ISD::MLOAD, VT, Custom);
277
setOperationAction(ISD::MSTORE, VT, Legal);
278
setOperationAction(ISD::CTLZ, VT, Legal);
279
setOperationAction(ISD::CTTZ, VT, Custom);
280
setOperationAction(ISD::BITREVERSE, VT, Legal);
281
setOperationAction(ISD::BSWAP, VT, Legal);
282
setOperationAction(ISD::SADDSAT, VT, Legal);
283
setOperationAction(ISD::UADDSAT, VT, Legal);
284
setOperationAction(ISD::SSUBSAT, VT, Legal);
285
setOperationAction(ISD::USUBSAT, VT, Legal);
286
setOperationAction(ISD::ABDS, VT, Legal);
287
setOperationAction(ISD::ABDU, VT, Legal);
288
setOperationAction(ISD::AVGFLOORS, VT, Legal);
289
setOperationAction(ISD::AVGFLOORU, VT, Legal);
290
setOperationAction(ISD::AVGCEILS, VT, Legal);
291
setOperationAction(ISD::AVGCEILU, VT, Legal);
292
293
// No native support for these.
294
setOperationAction(ISD::UDIV, VT, Expand);
295
setOperationAction(ISD::SDIV, VT, Expand);
296
setOperationAction(ISD::UREM, VT, Expand);
297
setOperationAction(ISD::SREM, VT, Expand);
298
setOperationAction(ISD::UDIVREM, VT, Expand);
299
setOperationAction(ISD::SDIVREM, VT, Expand);
300
setOperationAction(ISD::CTPOP, VT, Expand);
301
setOperationAction(ISD::SELECT, VT, Expand);
302
setOperationAction(ISD::SELECT_CC, VT, Expand);
303
304
// Vector reductions
305
setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
306
setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
307
setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
308
setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
309
setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
310
setOperationAction(ISD::VECREDUCE_MUL, VT, Custom);
311
setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
312
setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
313
setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
314
315
if (!HasMVEFP) {
316
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
317
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
318
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
319
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
320
} else {
321
setOperationAction(ISD::FP_TO_SINT_SAT, VT, Custom);
322
setOperationAction(ISD::FP_TO_UINT_SAT, VT, Custom);
323
}
324
325
// Pre and Post inc are supported on loads and stores
326
for (unsigned im = (unsigned)ISD::PRE_INC;
327
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
328
setIndexedLoadAction(im, VT, Legal);
329
setIndexedStoreAction(im, VT, Legal);
330
setIndexedMaskedLoadAction(im, VT, Legal);
331
setIndexedMaskedStoreAction(im, VT, Legal);
332
}
333
}
334
335
const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
336
for (auto VT : FloatTypes) {
337
addRegisterClass(VT, &ARM::MQPRRegClass);
338
if (!HasMVEFP)
339
setAllExpand(VT);
340
341
// These are legal or custom whether we have MVE.fp or not
342
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
343
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
344
setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
345
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
346
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
347
setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
348
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
349
setOperationAction(ISD::SETCC, VT, Custom);
350
setOperationAction(ISD::MLOAD, VT, Custom);
351
setOperationAction(ISD::MSTORE, VT, Legal);
352
setOperationAction(ISD::SELECT, VT, Expand);
353
setOperationAction(ISD::SELECT_CC, VT, Expand);
354
355
// Pre and Post inc are supported on loads and stores
356
for (unsigned im = (unsigned)ISD::PRE_INC;
357
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
358
setIndexedLoadAction(im, VT, Legal);
359
setIndexedStoreAction(im, VT, Legal);
360
setIndexedMaskedLoadAction(im, VT, Legal);
361
setIndexedMaskedStoreAction(im, VT, Legal);
362
}
363
364
if (HasMVEFP) {
365
setOperationAction(ISD::FMINNUM, VT, Legal);
366
setOperationAction(ISD::FMAXNUM, VT, Legal);
367
setOperationAction(ISD::FROUND, VT, Legal);
368
setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
369
setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom);
370
setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
371
setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
372
373
// No native support for these.
374
setOperationAction(ISD::FDIV, VT, Expand);
375
setOperationAction(ISD::FREM, VT, Expand);
376
setOperationAction(ISD::FSQRT, VT, Expand);
377
setOperationAction(ISD::FSIN, VT, Expand);
378
setOperationAction(ISD::FCOS, VT, Expand);
379
setOperationAction(ISD::FTAN, VT, Expand);
380
setOperationAction(ISD::FPOW, VT, Expand);
381
setOperationAction(ISD::FLOG, VT, Expand);
382
setOperationAction(ISD::FLOG2, VT, Expand);
383
setOperationAction(ISD::FLOG10, VT, Expand);
384
setOperationAction(ISD::FEXP, VT, Expand);
385
setOperationAction(ISD::FEXP2, VT, Expand);
386
setOperationAction(ISD::FEXP10, VT, Expand);
387
setOperationAction(ISD::FNEARBYINT, VT, Expand);
388
}
389
}
390
391
// Custom Expand smaller than legal vector reductions to prevent false zero
392
// items being added.
393
setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom);
394
setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom);
395
setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom);
396
setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom);
397
setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom);
398
setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom);
399
setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom);
400
setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom);
401
402
// We 'support' these types up to bitcast/load/store level, regardless of
403
// MVE integer-only / float support. Only doing FP data processing on the FP
404
// vector types is inhibited at integer-only level.
405
const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
406
for (auto VT : LongTypes) {
407
addRegisterClass(VT, &ARM::MQPRRegClass);
408
setAllExpand(VT);
409
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
410
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
411
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
412
setOperationAction(ISD::VSELECT, VT, Legal);
413
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
414
}
415
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
416
417
// We can do bitwise operations on v2i64 vectors
418
setOperationAction(ISD::AND, MVT::v2i64, Legal);
419
setOperationAction(ISD::OR, MVT::v2i64, Legal);
420
setOperationAction(ISD::XOR, MVT::v2i64, Legal);
421
422
// It is legal to extload from v4i8 to v4i16 or v4i32.
423
addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
424
addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
425
addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
426
427
// It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
428
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal);
429
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
430
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
431
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Legal);
432
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
433
434
// Some truncating stores are legal too.
435
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
436
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
437
setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
438
439
// Pre and Post inc on these are legal, given the correct extends
440
for (unsigned im = (unsigned)ISD::PRE_INC;
441
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
442
for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
443
setIndexedLoadAction(im, VT, Legal);
444
setIndexedStoreAction(im, VT, Legal);
445
setIndexedMaskedLoadAction(im, VT, Legal);
446
setIndexedMaskedStoreAction(im, VT, Legal);
447
}
448
}
449
450
// Predicate types
451
const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1, MVT::v2i1};
452
for (auto VT : pTypes) {
453
addRegisterClass(VT, &ARM::VCCRRegClass);
454
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
455
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
456
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
457
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
458
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
459
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
460
setOperationAction(ISD::SETCC, VT, Custom);
461
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
462
setOperationAction(ISD::LOAD, VT, Custom);
463
setOperationAction(ISD::STORE, VT, Custom);
464
setOperationAction(ISD::TRUNCATE, VT, Custom);
465
setOperationAction(ISD::VSELECT, VT, Expand);
466
setOperationAction(ISD::SELECT, VT, Expand);
467
setOperationAction(ISD::SELECT_CC, VT, Expand);
468
469
if (!HasMVEFP) {
470
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
471
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
472
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
473
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
474
}
475
}
476
setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
477
setOperationAction(ISD::TRUNCATE, MVT::v2i1, Expand);
478
setOperationAction(ISD::AND, MVT::v2i1, Expand);
479
setOperationAction(ISD::OR, MVT::v2i1, Expand);
480
setOperationAction(ISD::XOR, MVT::v2i1, Expand);
481
setOperationAction(ISD::SINT_TO_FP, MVT::v2i1, Expand);
482
setOperationAction(ISD::UINT_TO_FP, MVT::v2i1, Expand);
483
setOperationAction(ISD::FP_TO_SINT, MVT::v2i1, Expand);
484
setOperationAction(ISD::FP_TO_UINT, MVT::v2i1, Expand);
485
486
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
487
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
488
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
489
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
490
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
491
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
492
setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
493
setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
494
}
495
496
ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
497
const ARMSubtarget &STI)
498
: TargetLowering(TM), Subtarget(&STI) {
499
RegInfo = Subtarget->getRegisterInfo();
500
Itins = Subtarget->getInstrItineraryData();
501
502
setBooleanContents(ZeroOrOneBooleanContent);
503
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
504
505
if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
506
!Subtarget->isTargetWatchOS() && !Subtarget->isTargetDriverKit()) {
507
bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
508
for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
509
setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
510
IsHFTarget ? CallingConv::ARM_AAPCS_VFP
511
: CallingConv::ARM_AAPCS);
512
}
513
514
if (Subtarget->isTargetMachO()) {
515
// Uses VFP for Thumb libfuncs if available.
516
if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
517
Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
518
static const struct {
519
const RTLIB::Libcall Op;
520
const char * const Name;
521
const ISD::CondCode Cond;
522
} LibraryCalls[] = {
523
// Single-precision floating-point arithmetic.
524
{ RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
525
{ RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
526
{ RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
527
{ RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
528
529
// Double-precision floating-point arithmetic.
530
{ RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
531
{ RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
532
{ RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
533
{ RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
534
535
// Single-precision comparisons.
536
{ RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
537
{ RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
538
{ RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
539
{ RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
540
{ RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
541
{ RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
542
{ RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
543
544
// Double-precision comparisons.
545
{ RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
546
{ RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
547
{ RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
548
{ RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
549
{ RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
550
{ RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
551
{ RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
552
553
// Floating-point to integer conversions.
554
// i64 conversions are done via library routines even when generating VFP
555
// instructions, so use the same ones.
556
{ RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
557
{ RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
558
{ RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
559
{ RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
560
561
// Conversions between floating types.
562
{ RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
563
{ RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
564
565
// Integer to floating-point conversions.
566
// i64 conversions are done via library routines even when generating VFP
567
// instructions, so use the same ones.
568
// FIXME: There appears to be some naming inconsistency in ARM libgcc:
569
// e.g., __floatunsidf vs. __floatunssidfvfp.
570
{ RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
571
{ RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
572
{ RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
573
{ RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
574
};
575
576
for (const auto &LC : LibraryCalls) {
577
setLibcallName(LC.Op, LC.Name);
578
if (LC.Cond != ISD::SETCC_INVALID)
579
setCmpLibcallCC(LC.Op, LC.Cond);
580
}
581
}
582
}
583
584
// RTLIB
585
if (Subtarget->isAAPCS_ABI() &&
586
(Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
587
Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
588
static const struct {
589
const RTLIB::Libcall Op;
590
const char * const Name;
591
const CallingConv::ID CC;
592
const ISD::CondCode Cond;
593
} LibraryCalls[] = {
594
// Double-precision floating-point arithmetic helper functions
595
// RTABI chapter 4.1.2, Table 2
596
{ RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
597
{ RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
598
{ RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
599
{ RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
600
601
// Double-precision floating-point comparison helper functions
602
// RTABI chapter 4.1.2, Table 3
603
{ RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
604
{ RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
605
{ RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
606
{ RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
607
{ RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
608
{ RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
609
{ RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
610
611
// Single-precision floating-point arithmetic helper functions
612
// RTABI chapter 4.1.2, Table 4
613
{ RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
614
{ RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
615
{ RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
616
{ RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
617
618
// Single-precision floating-point comparison helper functions
619
// RTABI chapter 4.1.2, Table 5
620
{ RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
621
{ RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
622
{ RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
623
{ RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
624
{ RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
625
{ RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
626
{ RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
627
628
// Floating-point to integer conversions.
629
// RTABI chapter 4.1.2, Table 6
630
{ RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
631
{ RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
632
{ RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
633
{ RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
634
{ RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
635
{ RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
636
{ RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
637
{ RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
638
639
// Conversions between floating types.
640
// RTABI chapter 4.1.2, Table 7
641
{ RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
642
{ RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
643
{ RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
644
645
// Integer to floating-point conversions.
646
// RTABI chapter 4.1.2, Table 8
647
{ RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
648
{ RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
649
{ RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
650
{ RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
651
{ RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
652
{ RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
653
{ RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
654
{ RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
655
656
// Long long helper functions
657
// RTABI chapter 4.2, Table 9
658
{ RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
659
{ RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
660
{ RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
661
{ RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
662
663
// Integer division functions
664
// RTABI chapter 4.3.1
665
{ RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
666
{ RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
667
{ RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
668
{ RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
669
{ RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
670
{ RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
671
{ RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
672
{ RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
673
};
674
675
for (const auto &LC : LibraryCalls) {
676
setLibcallName(LC.Op, LC.Name);
677
setLibcallCallingConv(LC.Op, LC.CC);
678
if (LC.Cond != ISD::SETCC_INVALID)
679
setCmpLibcallCC(LC.Op, LC.Cond);
680
}
681
682
// EABI dependent RTLIB
683
if (TM.Options.EABIVersion == EABI::EABI4 ||
684
TM.Options.EABIVersion == EABI::EABI5) {
685
static const struct {
686
const RTLIB::Libcall Op;
687
const char *const Name;
688
const CallingConv::ID CC;
689
const ISD::CondCode Cond;
690
} MemOpsLibraryCalls[] = {
691
// Memory operations
692
// RTABI chapter 4.3.4
693
{ RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
694
{ RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
695
{ RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
696
};
697
698
for (const auto &LC : MemOpsLibraryCalls) {
699
setLibcallName(LC.Op, LC.Name);
700
setLibcallCallingConv(LC.Op, LC.CC);
701
if (LC.Cond != ISD::SETCC_INVALID)
702
setCmpLibcallCC(LC.Op, LC.Cond);
703
}
704
}
705
}
706
707
if (Subtarget->isTargetWindows()) {
708
static const struct {
709
const RTLIB::Libcall Op;
710
const char * const Name;
711
const CallingConv::ID CC;
712
} LibraryCalls[] = {
713
{ RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
714
{ RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
715
{ RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
716
{ RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
717
{ RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
718
{ RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
719
{ RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
720
{ RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
721
};
722
723
for (const auto &LC : LibraryCalls) {
724
setLibcallName(LC.Op, LC.Name);
725
setLibcallCallingConv(LC.Op, LC.CC);
726
}
727
}
728
729
// Use divmod compiler-rt calls for iOS 5.0 and later.
730
if (Subtarget->isTargetMachO() &&
731
!(Subtarget->isTargetIOS() &&
732
Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
733
setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
734
setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
735
}
736
737
// The half <-> float conversion functions are always soft-float on
738
// non-watchos platforms, but are needed for some targets which use a
739
// hard-float calling convention by default.
740
if (!Subtarget->isTargetWatchABI()) {
741
if (Subtarget->isAAPCS_ABI()) {
742
setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
743
setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
744
setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
745
} else {
746
setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
747
setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
748
setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
749
}
750
}
751
752
// In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
753
// a __gnu_ prefix (which is the default).
754
if (Subtarget->isTargetAEABI()) {
755
static const struct {
756
const RTLIB::Libcall Op;
757
const char * const Name;
758
const CallingConv::ID CC;
759
} LibraryCalls[] = {
760
{ RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
761
{ RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
762
{ RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
763
};
764
765
for (const auto &LC : LibraryCalls) {
766
setLibcallName(LC.Op, LC.Name);
767
setLibcallCallingConv(LC.Op, LC.CC);
768
}
769
}
770
771
if (Subtarget->isThumb1Only())
772
addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
773
else
774
addRegisterClass(MVT::i32, &ARM::GPRRegClass);
775
776
if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
777
Subtarget->hasFPRegs()) {
778
addRegisterClass(MVT::f32, &ARM::SPRRegClass);
779
addRegisterClass(MVT::f64, &ARM::DPRRegClass);
780
781
setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom);
782
setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom);
783
setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom);
784
setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom);
785
786
if (!Subtarget->hasVFP2Base())
787
setAllExpand(MVT::f32);
788
if (!Subtarget->hasFP64())
789
setAllExpand(MVT::f64);
790
}
791
792
if (Subtarget->hasFullFP16()) {
793
addRegisterClass(MVT::f16, &ARM::HPRRegClass);
794
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
795
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
796
797
setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
798
setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
799
}
800
801
if (Subtarget->hasBF16()) {
802
addRegisterClass(MVT::bf16, &ARM::HPRRegClass);
803
setAllExpand(MVT::bf16);
804
if (!Subtarget->hasFullFP16())
805
setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
806
}
807
808
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
809
for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
810
setTruncStoreAction(VT, InnerVT, Expand);
811
addAllExtLoads(VT, InnerVT, Expand);
812
}
813
814
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
815
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
816
817
setOperationAction(ISD::BSWAP, VT, Expand);
818
}
819
820
setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
821
setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
822
823
setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
824
setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
825
826
if (Subtarget->hasMVEIntegerOps())
827
addMVEVectorTypes(Subtarget->hasMVEFloatOps());
828
829
// Combine low-overhead loop intrinsics so that we can lower i1 types.
830
if (Subtarget->hasLOB()) {
831
setTargetDAGCombine({ISD::BRCOND, ISD::BR_CC});
832
}
833
834
if (Subtarget->hasNEON()) {
835
addDRTypeForNEON(MVT::v2f32);
836
addDRTypeForNEON(MVT::v8i8);
837
addDRTypeForNEON(MVT::v4i16);
838
addDRTypeForNEON(MVT::v2i32);
839
addDRTypeForNEON(MVT::v1i64);
840
841
addQRTypeForNEON(MVT::v4f32);
842
addQRTypeForNEON(MVT::v2f64);
843
addQRTypeForNEON(MVT::v16i8);
844
addQRTypeForNEON(MVT::v8i16);
845
addQRTypeForNEON(MVT::v4i32);
846
addQRTypeForNEON(MVT::v2i64);
847
848
if (Subtarget->hasFullFP16()) {
849
addQRTypeForNEON(MVT::v8f16);
850
addDRTypeForNEON(MVT::v4f16);
851
}
852
853
if (Subtarget->hasBF16()) {
854
addQRTypeForNEON(MVT::v8bf16);
855
addDRTypeForNEON(MVT::v4bf16);
856
}
857
}
858
859
if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
860
// v2f64 is legal so that QR subregs can be extracted as f64 elements, but
861
// none of Neon, MVE or VFP supports any arithmetic operations on it.
862
setOperationAction(ISD::FADD, MVT::v2f64, Expand);
863
setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
864
setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
865
// FIXME: Code duplication: FDIV and FREM are expanded always, see
866
// ARMTargetLowering::addTypeForNEON method for details.
867
setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
868
setOperationAction(ISD::FREM, MVT::v2f64, Expand);
869
// FIXME: Create unittest.
870
// In another words, find a way when "copysign" appears in DAG with vector
871
// operands.
872
setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
873
// FIXME: Code duplication: SETCC has custom operation action, see
874
// ARMTargetLowering::addTypeForNEON method for details.
875
setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
876
// FIXME: Create unittest for FNEG and for FABS.
877
setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
878
setOperationAction(ISD::FABS, MVT::v2f64, Expand);
879
setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
880
setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
881
setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
882
setOperationAction(ISD::FTAN, MVT::v2f64, Expand);
883
setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
884
setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
885
setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
886
setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
887
setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
888
setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
889
setOperationAction(ISD::FEXP10, MVT::v2f64, Expand);
890
// FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
891
setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
892
setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
893
setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
894
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
895
setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
896
setOperationAction(ISD::FMA, MVT::v2f64, Expand);
897
}
898
899
if (Subtarget->hasNEON()) {
900
// The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
901
// supported for v4f32.
902
setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
903
setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
904
setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
905
setOperationAction(ISD::FTAN, MVT::v4f32, Expand);
906
setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
907
setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
908
setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
909
setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
910
setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
911
setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
912
setOperationAction(ISD::FEXP10, MVT::v4f32, Expand);
913
setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
914
setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
915
setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
916
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
917
setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
918
919
// Mark v2f32 intrinsics.
920
setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
921
setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
922
setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
923
setOperationAction(ISD::FTAN, MVT::v2f32, Expand);
924
setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
925
setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
926
setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
927
setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
928
setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
929
setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
930
setOperationAction(ISD::FEXP10, MVT::v2f32, Expand);
931
setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
932
setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
933
setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
934
setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
935
setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
936
937
// Neon does not support some operations on v1i64 and v2i64 types.
938
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
939
// Custom handling for some quad-vector types to detect VMULL.
940
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
941
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
942
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
943
// Custom handling for some vector types to avoid expensive expansions
944
setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
945
setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
946
setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
947
setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
948
// Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
949
// a destination type that is wider than the source, and nor does
950
// it have a FP_TO_[SU]INT instruction with a narrower destination than
951
// source.
952
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
953
setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
954
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
955
setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
956
setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
957
setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
958
setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
959
setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
960
961
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
962
setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
963
964
// NEON does not have single instruction CTPOP for vectors with element
965
// types wider than 8-bits. However, custom lowering can leverage the
966
// v8i8/v16i8 vcnt instruction.
967
setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
968
setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
969
setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
970
setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
971
setOperationAction(ISD::CTPOP, MVT::v1i64, Custom);
972
setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
973
974
setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
975
setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
976
977
// NEON does not have single instruction CTTZ for vectors.
978
setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
979
setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
980
setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
981
setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
982
983
setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
984
setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
985
setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
986
setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
987
988
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
989
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
990
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
991
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
992
993
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
994
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
995
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
996
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
997
998
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
999
setOperationAction(ISD::MULHS, VT, Expand);
1000
setOperationAction(ISD::MULHU, VT, Expand);
1001
}
1002
1003
// NEON only has FMA instructions as of VFP4.
1004
if (!Subtarget->hasVFP4Base()) {
1005
setOperationAction(ISD::FMA, MVT::v2f32, Expand);
1006
setOperationAction(ISD::FMA, MVT::v4f32, Expand);
1007
}
1008
1009
setTargetDAGCombine({ISD::SHL, ISD::SRL, ISD::SRA, ISD::FP_TO_SINT,
1010
ISD::FP_TO_UINT, ISD::FMUL, ISD::LOAD});
1011
1012
// It is legal to extload from v4i8 to v4i16 or v4i32.
1013
for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
1014
MVT::v2i32}) {
1015
for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
1016
setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
1017
setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
1018
setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
1019
}
1020
}
1021
1022
for (auto VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16,
1023
MVT::v4i32}) {
1024
setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
1025
setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
1026
setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
1027
setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
1028
}
1029
}
1030
1031
if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1032
setTargetDAGCombine(
1033
{ISD::BUILD_VECTOR, ISD::VECTOR_SHUFFLE, ISD::INSERT_SUBVECTOR,
1034
ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
1035
ISD::SIGN_EXTEND_INREG, ISD::STORE, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND,
1036
ISD::ANY_EXTEND, ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN,
1037
ISD::INTRINSIC_VOID, ISD::VECREDUCE_ADD, ISD::ADD, ISD::BITCAST});
1038
}
1039
if (Subtarget->hasMVEIntegerOps()) {
1040
setTargetDAGCombine({ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
1041
ISD::FP_EXTEND, ISD::SELECT, ISD::SELECT_CC,
1042
ISD::SETCC});
1043
}
1044
if (Subtarget->hasMVEFloatOps()) {
1045
setTargetDAGCombine(ISD::FADD);
1046
}
1047
1048
if (!Subtarget->hasFP64()) {
1049
// When targeting a floating-point unit with only single-precision
1050
// operations, f64 is legal for the few double-precision instructions which
1051
// are present However, no double-precision operations other than moves,
1052
// loads and stores are provided by the hardware.
1053
setOperationAction(ISD::FADD, MVT::f64, Expand);
1054
setOperationAction(ISD::FSUB, MVT::f64, Expand);
1055
setOperationAction(ISD::FMUL, MVT::f64, Expand);
1056
setOperationAction(ISD::FMA, MVT::f64, Expand);
1057
setOperationAction(ISD::FDIV, MVT::f64, Expand);
1058
setOperationAction(ISD::FREM, MVT::f64, Expand);
1059
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1060
setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
1061
setOperationAction(ISD::FNEG, MVT::f64, Expand);
1062
setOperationAction(ISD::FABS, MVT::f64, Expand);
1063
setOperationAction(ISD::FSQRT, MVT::f64, Expand);
1064
setOperationAction(ISD::FSIN, MVT::f64, Expand);
1065
setOperationAction(ISD::FCOS, MVT::f64, Expand);
1066
setOperationAction(ISD::FPOW, MVT::f64, Expand);
1067
setOperationAction(ISD::FLOG, MVT::f64, Expand);
1068
setOperationAction(ISD::FLOG2, MVT::f64, Expand);
1069
setOperationAction(ISD::FLOG10, MVT::f64, Expand);
1070
setOperationAction(ISD::FEXP, MVT::f64, Expand);
1071
setOperationAction(ISD::FEXP2, MVT::f64, Expand);
1072
setOperationAction(ISD::FEXP10, MVT::f64, Expand);
1073
setOperationAction(ISD::FCEIL, MVT::f64, Expand);
1074
setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
1075
setOperationAction(ISD::FRINT, MVT::f64, Expand);
1076
setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
1077
setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
1078
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1079
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1080
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1081
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1082
setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
1083
setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
1084
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
1085
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
1086
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
1087
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
1088
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
1089
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
1090
}
1091
1092
if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
1093
setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
1094
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
1095
if (Subtarget->hasFullFP16()) {
1096
setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
1097
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
1098
}
1099
}
1100
1101
if (!Subtarget->hasFP16()) {
1102
setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom);
1103
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
1104
}
1105
1106
computeRegisterProperties(Subtarget->getRegisterInfo());
1107
1108
// ARM does not have floating-point extending loads.
1109
for (MVT VT : MVT::fp_valuetypes()) {
1110
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1111
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1112
}
1113
1114
// ... or truncating stores
1115
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1116
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1117
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1118
1119
// ARM does not have i1 sign extending load.
1120
for (MVT VT : MVT::integer_valuetypes())
1121
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1122
1123
// ARM supports all 4 flavors of integer indexed load / store.
1124
if (!Subtarget->isThumb1Only()) {
1125
for (unsigned im = (unsigned)ISD::PRE_INC;
1126
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1127
setIndexedLoadAction(im, MVT::i1, Legal);
1128
setIndexedLoadAction(im, MVT::i8, Legal);
1129
setIndexedLoadAction(im, MVT::i16, Legal);
1130
setIndexedLoadAction(im, MVT::i32, Legal);
1131
setIndexedStoreAction(im, MVT::i1, Legal);
1132
setIndexedStoreAction(im, MVT::i8, Legal);
1133
setIndexedStoreAction(im, MVT::i16, Legal);
1134
setIndexedStoreAction(im, MVT::i32, Legal);
1135
}
1136
} else {
1137
// Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1138
setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
1139
setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
1140
}
1141
1142
setOperationAction(ISD::SADDO, MVT::i32, Custom);
1143
setOperationAction(ISD::UADDO, MVT::i32, Custom);
1144
setOperationAction(ISD::SSUBO, MVT::i32, Custom);
1145
setOperationAction(ISD::USUBO, MVT::i32, Custom);
1146
1147
setOperationAction(ISD::UADDO_CARRY, MVT::i32, Custom);
1148
setOperationAction(ISD::USUBO_CARRY, MVT::i32, Custom);
1149
if (Subtarget->hasDSP()) {
1150
setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
1151
setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
1152
setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
1153
setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
1154
setOperationAction(ISD::UADDSAT, MVT::i8, Custom);
1155
setOperationAction(ISD::USUBSAT, MVT::i8, Custom);
1156
setOperationAction(ISD::UADDSAT, MVT::i16, Custom);
1157
setOperationAction(ISD::USUBSAT, MVT::i16, Custom);
1158
}
1159
if (Subtarget->hasBaseDSP()) {
1160
setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
1161
setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
1162
}
1163
1164
// i64 operation support.
1165
setOperationAction(ISD::MUL, MVT::i64, Expand);
1166
setOperationAction(ISD::MULHU, MVT::i32, Expand);
1167
if (Subtarget->isThumb1Only()) {
1168
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1169
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1170
}
1171
if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1172
|| (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1173
setOperationAction(ISD::MULHS, MVT::i32, Expand);
1174
1175
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1176
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1177
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1178
setOperationAction(ISD::SRL, MVT::i64, Custom);
1179
setOperationAction(ISD::SRA, MVT::i64, Custom);
1180
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1181
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1182
setOperationAction(ISD::LOAD, MVT::i64, Custom);
1183
setOperationAction(ISD::STORE, MVT::i64, Custom);
1184
1185
// MVE lowers 64 bit shifts to lsll and lsrl
1186
// assuming that ISD::SRL and SRA of i64 are already marked custom
1187
if (Subtarget->hasMVEIntegerOps())
1188
setOperationAction(ISD::SHL, MVT::i64, Custom);
1189
1190
// Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1191
if (Subtarget->isThumb1Only()) {
1192
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1193
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1194
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1195
}
1196
1197
if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1198
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1199
1200
// ARM does not have ROTL.
1201
setOperationAction(ISD::ROTL, MVT::i32, Expand);
1202
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1203
setOperationAction(ISD::ROTL, VT, Expand);
1204
setOperationAction(ISD::ROTR, VT, Expand);
1205
}
1206
setOperationAction(ISD::CTTZ, MVT::i32, Custom);
1207
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1208
if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1209
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1210
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1211
}
1212
1213
// @llvm.readcyclecounter requires the Performance Monitors extension.
1214
// Default to the 0 expansion on unsupported platforms.
1215
// FIXME: Technically there are older ARM CPUs that have
1216
// implementation-specific ways of obtaining this information.
1217
if (Subtarget->hasPerfMon())
1218
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1219
1220
// Only ARMv6 has BSWAP.
1221
if (!Subtarget->hasV6Ops())
1222
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1223
1224
bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1225
: Subtarget->hasDivideInARMMode();
1226
if (!hasDivide) {
1227
// These are expanded into libcalls if the cpu doesn't have HW divider.
1228
setOperationAction(ISD::SDIV, MVT::i32, LibCall);
1229
setOperationAction(ISD::UDIV, MVT::i32, LibCall);
1230
}
1231
1232
if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1233
setOperationAction(ISD::SDIV, MVT::i32, Custom);
1234
setOperationAction(ISD::UDIV, MVT::i32, Custom);
1235
1236
setOperationAction(ISD::SDIV, MVT::i64, Custom);
1237
setOperationAction(ISD::UDIV, MVT::i64, Custom);
1238
}
1239
1240
setOperationAction(ISD::SREM, MVT::i32, Expand);
1241
setOperationAction(ISD::UREM, MVT::i32, Expand);
1242
1243
// Register based DivRem for AEABI (RTABI 4.2)
1244
if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1245
Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1246
Subtarget->isTargetWindows()) {
1247
setOperationAction(ISD::SREM, MVT::i64, Custom);
1248
setOperationAction(ISD::UREM, MVT::i64, Custom);
1249
HasStandaloneRem = false;
1250
1251
if (Subtarget->isTargetWindows()) {
1252
const struct {
1253
const RTLIB::Libcall Op;
1254
const char * const Name;
1255
const CallingConv::ID CC;
1256
} LibraryCalls[] = {
1257
{ RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1258
{ RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1259
{ RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1260
{ RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1261
1262
{ RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1263
{ RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1264
{ RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1265
{ RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1266
};
1267
1268
for (const auto &LC : LibraryCalls) {
1269
setLibcallName(LC.Op, LC.Name);
1270
setLibcallCallingConv(LC.Op, LC.CC);
1271
}
1272
} else {
1273
const struct {
1274
const RTLIB::Libcall Op;
1275
const char * const Name;
1276
const CallingConv::ID CC;
1277
} LibraryCalls[] = {
1278
{ RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1279
{ RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1280
{ RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1281
{ RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1282
1283
{ RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1284
{ RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1285
{ RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1286
{ RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1287
};
1288
1289
for (const auto &LC : LibraryCalls) {
1290
setLibcallName(LC.Op, LC.Name);
1291
setLibcallCallingConv(LC.Op, LC.CC);
1292
}
1293
}
1294
1295
setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1296
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1297
setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1298
setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1299
} else {
1300
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1301
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1302
}
1303
1304
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1305
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1306
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1307
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1308
1309
setOperationAction(ISD::TRAP, MVT::Other, Legal);
1310
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1311
1312
// Use the default implementation.
1313
setOperationAction(ISD::VASTART, MVT::Other, Custom);
1314
setOperationAction(ISD::VAARG, MVT::Other, Expand);
1315
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1316
setOperationAction(ISD::VAEND, MVT::Other, Expand);
1317
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1318
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1319
1320
if (Subtarget->isTargetWindows())
1321
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1322
else
1323
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1324
1325
// ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1326
// the default expansion.
1327
InsertFencesForAtomic = false;
1328
if (Subtarget->hasAnyDataBarrier() &&
1329
(!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1330
// ATOMIC_FENCE needs custom lowering; the others should have been expanded
1331
// to ldrex/strex loops already.
1332
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1333
if (!Subtarget->isThumb() || !Subtarget->isMClass())
1334
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
1335
1336
// On v8, we have particularly efficient implementations of atomic fences
1337
// if they can be combined with nearby atomic loads and stores.
1338
if (!Subtarget->hasAcquireRelease() ||
1339
getTargetMachine().getOptLevel() == CodeGenOptLevel::None) {
1340
// Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1341
InsertFencesForAtomic = true;
1342
}
1343
} else {
1344
// If there's anything we can use as a barrier, go through custom lowering
1345
// for ATOMIC_FENCE.
1346
// If target has DMB in thumb, Fences can be inserted.
1347
if (Subtarget->hasDataBarrier())
1348
InsertFencesForAtomic = true;
1349
1350
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
1351
Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1352
1353
// Set them all for libcall, which will force libcalls.
1354
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, LibCall);
1355
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, LibCall);
1356
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, LibCall);
1357
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, LibCall);
1358
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, LibCall);
1359
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, LibCall);
1360
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, LibCall);
1361
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, LibCall);
1362
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, LibCall);
1363
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, LibCall);
1364
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, LibCall);
1365
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, LibCall);
1366
// Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1367
// Unordered/Monotonic case.
1368
if (!InsertFencesForAtomic) {
1369
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1370
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1371
}
1372
}
1373
1374
// Compute supported atomic widths.
1375
if (Subtarget->isTargetLinux() ||
1376
(!Subtarget->isMClass() && Subtarget->hasV6Ops())) {
1377
// For targets where __sync_* routines are reliably available, we use them
1378
// if necessary.
1379
//
1380
// ARM Linux always supports 64-bit atomics through kernel-assisted atomic
1381
// routines (kernel 3.1 or later). FIXME: Not with compiler-rt?
1382
//
1383
// ARMv6 targets have native instructions in ARM mode. For Thumb mode,
1384
// such targets should provide __sync_* routines, which use the ARM mode
1385
// instructions. (ARMv6 doesn't have dmb, but it has an equivalent
1386
// encoding; see ARMISD::MEMBARRIER_MCR.)
1387
setMaxAtomicSizeInBitsSupported(64);
1388
} else if ((Subtarget->isMClass() && Subtarget->hasV8MBaselineOps()) ||
1389
Subtarget->hasForced32BitAtomics()) {
1390
// Cortex-M (besides Cortex-M0) have 32-bit atomics.
1391
setMaxAtomicSizeInBitsSupported(32);
1392
} else {
1393
// We can't assume anything about other targets; just use libatomic
1394
// routines.
1395
setMaxAtomicSizeInBitsSupported(0);
1396
}
1397
1398
setMaxDivRemBitWidthSupported(64);
1399
1400
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1401
1402
// Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1403
if (!Subtarget->hasV6Ops()) {
1404
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1405
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
1406
}
1407
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1408
1409
if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1410
!Subtarget->isThumb1Only()) {
1411
// Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1412
// iff target supports vfp2.
1413
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1414
setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
1415
setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
1416
setOperationAction(ISD::GET_FPENV, MVT::i32, Legal);
1417
setOperationAction(ISD::SET_FPENV, MVT::i32, Legal);
1418
setOperationAction(ISD::RESET_FPENV, MVT::Other, Legal);
1419
setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal);
1420
setOperationAction(ISD::SET_FPMODE, MVT::i32, Custom);
1421
setOperationAction(ISD::RESET_FPMODE, MVT::Other, Custom);
1422
}
1423
1424
// We want to custom lower some of our intrinsics.
1425
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1426
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1427
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1428
setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1429
if (Subtarget->useSjLjEH())
1430
setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1431
1432
setOperationAction(ISD::SETCC, MVT::i32, Expand);
1433
setOperationAction(ISD::SETCC, MVT::f32, Expand);
1434
setOperationAction(ISD::SETCC, MVT::f64, Expand);
1435
setOperationAction(ISD::SELECT, MVT::i32, Custom);
1436
setOperationAction(ISD::SELECT, MVT::f32, Custom);
1437
setOperationAction(ISD::SELECT, MVT::f64, Custom);
1438
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1439
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1440
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1441
if (Subtarget->hasFullFP16()) {
1442
setOperationAction(ISD::SETCC, MVT::f16, Expand);
1443
setOperationAction(ISD::SELECT, MVT::f16, Custom);
1444
setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1445
}
1446
1447
setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1448
1449
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
1450
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1451
if (Subtarget->hasFullFP16())
1452
setOperationAction(ISD::BR_CC, MVT::f16, Custom);
1453
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1454
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1455
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1456
1457
// We don't support sin/cos/fmod/copysign/pow
1458
setOperationAction(ISD::FSIN, MVT::f64, Expand);
1459
setOperationAction(ISD::FSIN, MVT::f32, Expand);
1460
setOperationAction(ISD::FCOS, MVT::f32, Expand);
1461
setOperationAction(ISD::FCOS, MVT::f64, Expand);
1462
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1463
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1464
setOperationAction(ISD::FREM, MVT::f64, Expand);
1465
setOperationAction(ISD::FREM, MVT::f32, Expand);
1466
if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1467
!Subtarget->isThumb1Only()) {
1468
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1469
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1470
}
1471
setOperationAction(ISD::FPOW, MVT::f64, Expand);
1472
setOperationAction(ISD::FPOW, MVT::f32, Expand);
1473
1474
if (!Subtarget->hasVFP4Base()) {
1475
setOperationAction(ISD::FMA, MVT::f64, Expand);
1476
setOperationAction(ISD::FMA, MVT::f32, Expand);
1477
}
1478
1479
// Various VFP goodness
1480
if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1481
// FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1482
if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1483
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1484
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1485
}
1486
1487
// fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1488
if (!Subtarget->hasFP16()) {
1489
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1490
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1491
}
1492
1493
// Strict floating-point comparisons need custom lowering.
1494
setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
1495
setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
1496
setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
1497
setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
1498
setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
1499
setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
1500
}
1501
1502
// Use __sincos_stret if available.
1503
if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1504
getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1505
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1506
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1507
}
1508
1509
// FP-ARMv8 implements a lot of rounding-like FP operations.
1510
if (Subtarget->hasFPARMv8Base()) {
1511
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1512
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1513
setOperationAction(ISD::FROUND, MVT::f32, Legal);
1514
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1515
setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1516
setOperationAction(ISD::FRINT, MVT::f32, Legal);
1517
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1518
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1519
if (Subtarget->hasNEON()) {
1520
setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1521
setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1522
setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1523
setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1524
}
1525
1526
if (Subtarget->hasFP64()) {
1527
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1528
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1529
setOperationAction(ISD::FROUND, MVT::f64, Legal);
1530
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1531
setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1532
setOperationAction(ISD::FRINT, MVT::f64, Legal);
1533
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1534
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1535
}
1536
}
1537
1538
// FP16 often need to be promoted to call lib functions
1539
if (Subtarget->hasFullFP16()) {
1540
setOperationAction(ISD::FREM, MVT::f16, Promote);
1541
setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1542
setOperationAction(ISD::FSIN, MVT::f16, Promote);
1543
setOperationAction(ISD::FCOS, MVT::f16, Promote);
1544
setOperationAction(ISD::FTAN, MVT::f16, Promote);
1545
setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1546
setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1547
setOperationAction(ISD::FPOW, MVT::f16, Promote);
1548
setOperationAction(ISD::FEXP, MVT::f16, Promote);
1549
setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1550
setOperationAction(ISD::FEXP10, MVT::f16, Promote);
1551
setOperationAction(ISD::FLOG, MVT::f16, Promote);
1552
setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1553
setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1554
1555
setOperationAction(ISD::FROUND, MVT::f16, Legal);
1556
}
1557
1558
if (Subtarget->hasNEON()) {
1559
// vmin and vmax aren't available in a scalar form, so we can use
1560
// a NEON instruction with an undef lane instead.
1561
setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1562
setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1563
setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1564
setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1565
setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1566
setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1567
setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1568
setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1569
1570
if (Subtarget->hasFullFP16()) {
1571
setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1572
setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1573
setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1574
setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1575
1576
setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1577
setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1578
setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1579
setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1580
}
1581
}
1582
1583
// On MSVC, both 32-bit and 64-bit, ldexpf(f32) is not defined. MinGW has
1584
// it, but it's just a wrapper around ldexp.
1585
if (Subtarget->isTargetWindows()) {
1586
for (ISD::NodeType Op : {ISD::FLDEXP, ISD::STRICT_FLDEXP, ISD::FFREXP})
1587
if (isOperationExpand(Op, MVT::f32))
1588
setOperationAction(Op, MVT::f32, Promote);
1589
}
1590
1591
// LegalizeDAG currently can't expand fp16 LDEXP/FREXP on targets where i16
1592
// isn't legal.
1593
for (ISD::NodeType Op : {ISD::FLDEXP, ISD::STRICT_FLDEXP, ISD::FFREXP})
1594
if (isOperationExpand(Op, MVT::f16))
1595
setOperationAction(Op, MVT::f16, Promote);
1596
1597
// We have target-specific dag combine patterns for the following nodes:
1598
// ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1599
setTargetDAGCombine(
1600
{ISD::ADD, ISD::SUB, ISD::MUL, ISD::AND, ISD::OR, ISD::XOR});
1601
1602
if (Subtarget->hasMVEIntegerOps())
1603
setTargetDAGCombine(ISD::VSELECT);
1604
1605
if (Subtarget->hasV6Ops())
1606
setTargetDAGCombine(ISD::SRL);
1607
if (Subtarget->isThumb1Only())
1608
setTargetDAGCombine(ISD::SHL);
1609
// Attempt to lower smin/smax to ssat/usat
1610
if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) ||
1611
Subtarget->isThumb2()) {
1612
setTargetDAGCombine({ISD::SMIN, ISD::SMAX});
1613
}
1614
1615
setStackPointerRegisterToSaveRestore(ARM::SP);
1616
1617
if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1618
!Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1619
setSchedulingPreference(Sched::RegPressure);
1620
else
1621
setSchedulingPreference(Sched::Hybrid);
1622
1623
//// temporary - rewrite interface to use type
1624
MaxStoresPerMemset = 8;
1625
MaxStoresPerMemsetOptSize = 4;
1626
MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1627
MaxStoresPerMemcpyOptSize = 2;
1628
MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1629
MaxStoresPerMemmoveOptSize = 2;
1630
1631
// On ARM arguments smaller than 4 bytes are extended, so all arguments
1632
// are at least 4 bytes aligned.
1633
setMinStackArgumentAlignment(Align(4));
1634
1635
// Prefer likely predicted branches to selects on out-of-order cores.
1636
PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1637
1638
setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1639
setPrefFunctionAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1640
1641
setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
1642
}
1643
1644
bool ARMTargetLowering::useSoftFloat() const {
1645
return Subtarget->useSoftFloat();
1646
}
1647
1648
// FIXME: It might make sense to define the representative register class as the
1649
// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1650
// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1651
// SPR's representative would be DPR_VFP2. This should work well if register
1652
// pressure tracking were modified such that a register use would increment the
1653
// pressure of the register class's representative and all of it's super
1654
// classes' representatives transitively. We have not implemented this because
1655
// of the difficulty prior to coalescing of modeling operand register classes
1656
// due to the common occurrence of cross class copies and subregister insertions
1657
// and extractions.
1658
std::pair<const TargetRegisterClass *, uint8_t>
1659
ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1660
MVT VT) const {
1661
const TargetRegisterClass *RRC = nullptr;
1662
uint8_t Cost = 1;
1663
switch (VT.SimpleTy) {
1664
default:
1665
return TargetLowering::findRepresentativeClass(TRI, VT);
1666
// Use DPR as representative register class for all floating point
1667
// and vector types. Since there are 32 SPR registers and 32 DPR registers so
1668
// the cost is 1 for both f32 and f64.
1669
case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1670
case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1671
RRC = &ARM::DPRRegClass;
1672
// When NEON is used for SP, only half of the register file is available
1673
// because operations that define both SP and DP results will be constrained
1674
// to the VFP2 class (D0-D15). We currently model this constraint prior to
1675
// coalescing by double-counting the SP regs. See the FIXME above.
1676
if (Subtarget->useNEONForSinglePrecisionFP())
1677
Cost = 2;
1678
break;
1679
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1680
case MVT::v4f32: case MVT::v2f64:
1681
RRC = &ARM::DPRRegClass;
1682
Cost = 2;
1683
break;
1684
case MVT::v4i64:
1685
RRC = &ARM::DPRRegClass;
1686
Cost = 4;
1687
break;
1688
case MVT::v8i64:
1689
RRC = &ARM::DPRRegClass;
1690
Cost = 8;
1691
break;
1692
}
1693
return std::make_pair(RRC, Cost);
1694
}
1695
1696
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1697
#define MAKE_CASE(V) \
1698
case V: \
1699
return #V;
1700
switch ((ARMISD::NodeType)Opcode) {
1701
case ARMISD::FIRST_NUMBER:
1702
break;
1703
MAKE_CASE(ARMISD::Wrapper)
1704
MAKE_CASE(ARMISD::WrapperPIC)
1705
MAKE_CASE(ARMISD::WrapperJT)
1706
MAKE_CASE(ARMISD::COPY_STRUCT_BYVAL)
1707
MAKE_CASE(ARMISD::CALL)
1708
MAKE_CASE(ARMISD::CALL_PRED)
1709
MAKE_CASE(ARMISD::CALL_NOLINK)
1710
MAKE_CASE(ARMISD::tSECALL)
1711
MAKE_CASE(ARMISD::t2CALL_BTI)
1712
MAKE_CASE(ARMISD::BRCOND)
1713
MAKE_CASE(ARMISD::BR_JT)
1714
MAKE_CASE(ARMISD::BR2_JT)
1715
MAKE_CASE(ARMISD::RET_GLUE)
1716
MAKE_CASE(ARMISD::SERET_GLUE)
1717
MAKE_CASE(ARMISD::INTRET_GLUE)
1718
MAKE_CASE(ARMISD::PIC_ADD)
1719
MAKE_CASE(ARMISD::CMP)
1720
MAKE_CASE(ARMISD::CMN)
1721
MAKE_CASE(ARMISD::CMPZ)
1722
MAKE_CASE(ARMISD::CMPFP)
1723
MAKE_CASE(ARMISD::CMPFPE)
1724
MAKE_CASE(ARMISD::CMPFPw0)
1725
MAKE_CASE(ARMISD::CMPFPEw0)
1726
MAKE_CASE(ARMISD::BCC_i64)
1727
MAKE_CASE(ARMISD::FMSTAT)
1728
MAKE_CASE(ARMISD::CMOV)
1729
MAKE_CASE(ARMISD::SSAT)
1730
MAKE_CASE(ARMISD::USAT)
1731
MAKE_CASE(ARMISD::ASRL)
1732
MAKE_CASE(ARMISD::LSRL)
1733
MAKE_CASE(ARMISD::LSLL)
1734
MAKE_CASE(ARMISD::SRL_GLUE)
1735
MAKE_CASE(ARMISD::SRA_GLUE)
1736
MAKE_CASE(ARMISD::RRX)
1737
MAKE_CASE(ARMISD::ADDC)
1738
MAKE_CASE(ARMISD::ADDE)
1739
MAKE_CASE(ARMISD::SUBC)
1740
MAKE_CASE(ARMISD::SUBE)
1741
MAKE_CASE(ARMISD::LSLS)
1742
MAKE_CASE(ARMISD::VMOVRRD)
1743
MAKE_CASE(ARMISD::VMOVDRR)
1744
MAKE_CASE(ARMISD::VMOVhr)
1745
MAKE_CASE(ARMISD::VMOVrh)
1746
MAKE_CASE(ARMISD::VMOVSR)
1747
MAKE_CASE(ARMISD::EH_SJLJ_SETJMP)
1748
MAKE_CASE(ARMISD::EH_SJLJ_LONGJMP)
1749
MAKE_CASE(ARMISD::EH_SJLJ_SETUP_DISPATCH)
1750
MAKE_CASE(ARMISD::TC_RETURN)
1751
MAKE_CASE(ARMISD::THREAD_POINTER)
1752
MAKE_CASE(ARMISD::DYN_ALLOC)
1753
MAKE_CASE(ARMISD::MEMBARRIER_MCR)
1754
MAKE_CASE(ARMISD::PRELOAD)
1755
MAKE_CASE(ARMISD::LDRD)
1756
MAKE_CASE(ARMISD::STRD)
1757
MAKE_CASE(ARMISD::WIN__CHKSTK)
1758
MAKE_CASE(ARMISD::WIN__DBZCHK)
1759
MAKE_CASE(ARMISD::PREDICATE_CAST)
1760
MAKE_CASE(ARMISD::VECTOR_REG_CAST)
1761
MAKE_CASE(ARMISD::MVESEXT)
1762
MAKE_CASE(ARMISD::MVEZEXT)
1763
MAKE_CASE(ARMISD::MVETRUNC)
1764
MAKE_CASE(ARMISD::VCMP)
1765
MAKE_CASE(ARMISD::VCMPZ)
1766
MAKE_CASE(ARMISD::VTST)
1767
MAKE_CASE(ARMISD::VSHLs)
1768
MAKE_CASE(ARMISD::VSHLu)
1769
MAKE_CASE(ARMISD::VSHLIMM)
1770
MAKE_CASE(ARMISD::VSHRsIMM)
1771
MAKE_CASE(ARMISD::VSHRuIMM)
1772
MAKE_CASE(ARMISD::VRSHRsIMM)
1773
MAKE_CASE(ARMISD::VRSHRuIMM)
1774
MAKE_CASE(ARMISD::VRSHRNIMM)
1775
MAKE_CASE(ARMISD::VQSHLsIMM)
1776
MAKE_CASE(ARMISD::VQSHLuIMM)
1777
MAKE_CASE(ARMISD::VQSHLsuIMM)
1778
MAKE_CASE(ARMISD::VQSHRNsIMM)
1779
MAKE_CASE(ARMISD::VQSHRNuIMM)
1780
MAKE_CASE(ARMISD::VQSHRNsuIMM)
1781
MAKE_CASE(ARMISD::VQRSHRNsIMM)
1782
MAKE_CASE(ARMISD::VQRSHRNuIMM)
1783
MAKE_CASE(ARMISD::VQRSHRNsuIMM)
1784
MAKE_CASE(ARMISD::VSLIIMM)
1785
MAKE_CASE(ARMISD::VSRIIMM)
1786
MAKE_CASE(ARMISD::VGETLANEu)
1787
MAKE_CASE(ARMISD::VGETLANEs)
1788
MAKE_CASE(ARMISD::VMOVIMM)
1789
MAKE_CASE(ARMISD::VMVNIMM)
1790
MAKE_CASE(ARMISD::VMOVFPIMM)
1791
MAKE_CASE(ARMISD::VDUP)
1792
MAKE_CASE(ARMISD::VDUPLANE)
1793
MAKE_CASE(ARMISD::VEXT)
1794
MAKE_CASE(ARMISD::VREV64)
1795
MAKE_CASE(ARMISD::VREV32)
1796
MAKE_CASE(ARMISD::VREV16)
1797
MAKE_CASE(ARMISD::VZIP)
1798
MAKE_CASE(ARMISD::VUZP)
1799
MAKE_CASE(ARMISD::VTRN)
1800
MAKE_CASE(ARMISD::VTBL1)
1801
MAKE_CASE(ARMISD::VTBL2)
1802
MAKE_CASE(ARMISD::VMOVN)
1803
MAKE_CASE(ARMISD::VQMOVNs)
1804
MAKE_CASE(ARMISD::VQMOVNu)
1805
MAKE_CASE(ARMISD::VCVTN)
1806
MAKE_CASE(ARMISD::VCVTL)
1807
MAKE_CASE(ARMISD::VIDUP)
1808
MAKE_CASE(ARMISD::VMULLs)
1809
MAKE_CASE(ARMISD::VMULLu)
1810
MAKE_CASE(ARMISD::VQDMULH)
1811
MAKE_CASE(ARMISD::VADDVs)
1812
MAKE_CASE(ARMISD::VADDVu)
1813
MAKE_CASE(ARMISD::VADDVps)
1814
MAKE_CASE(ARMISD::VADDVpu)
1815
MAKE_CASE(ARMISD::VADDLVs)
1816
MAKE_CASE(ARMISD::VADDLVu)
1817
MAKE_CASE(ARMISD::VADDLVAs)
1818
MAKE_CASE(ARMISD::VADDLVAu)
1819
MAKE_CASE(ARMISD::VADDLVps)
1820
MAKE_CASE(ARMISD::VADDLVpu)
1821
MAKE_CASE(ARMISD::VADDLVAps)
1822
MAKE_CASE(ARMISD::VADDLVApu)
1823
MAKE_CASE(ARMISD::VMLAVs)
1824
MAKE_CASE(ARMISD::VMLAVu)
1825
MAKE_CASE(ARMISD::VMLAVps)
1826
MAKE_CASE(ARMISD::VMLAVpu)
1827
MAKE_CASE(ARMISD::VMLALVs)
1828
MAKE_CASE(ARMISD::VMLALVu)
1829
MAKE_CASE(ARMISD::VMLALVps)
1830
MAKE_CASE(ARMISD::VMLALVpu)
1831
MAKE_CASE(ARMISD::VMLALVAs)
1832
MAKE_CASE(ARMISD::VMLALVAu)
1833
MAKE_CASE(ARMISD::VMLALVAps)
1834
MAKE_CASE(ARMISD::VMLALVApu)
1835
MAKE_CASE(ARMISD::VMINVu)
1836
MAKE_CASE(ARMISD::VMINVs)
1837
MAKE_CASE(ARMISD::VMAXVu)
1838
MAKE_CASE(ARMISD::VMAXVs)
1839
MAKE_CASE(ARMISD::UMAAL)
1840
MAKE_CASE(ARMISD::UMLAL)
1841
MAKE_CASE(ARMISD::SMLAL)
1842
MAKE_CASE(ARMISD::SMLALBB)
1843
MAKE_CASE(ARMISD::SMLALBT)
1844
MAKE_CASE(ARMISD::SMLALTB)
1845
MAKE_CASE(ARMISD::SMLALTT)
1846
MAKE_CASE(ARMISD::SMULWB)
1847
MAKE_CASE(ARMISD::SMULWT)
1848
MAKE_CASE(ARMISD::SMLALD)
1849
MAKE_CASE(ARMISD::SMLALDX)
1850
MAKE_CASE(ARMISD::SMLSLD)
1851
MAKE_CASE(ARMISD::SMLSLDX)
1852
MAKE_CASE(ARMISD::SMMLAR)
1853
MAKE_CASE(ARMISD::SMMLSR)
1854
MAKE_CASE(ARMISD::QADD16b)
1855
MAKE_CASE(ARMISD::QSUB16b)
1856
MAKE_CASE(ARMISD::QADD8b)
1857
MAKE_CASE(ARMISD::QSUB8b)
1858
MAKE_CASE(ARMISD::UQADD16b)
1859
MAKE_CASE(ARMISD::UQSUB16b)
1860
MAKE_CASE(ARMISD::UQADD8b)
1861
MAKE_CASE(ARMISD::UQSUB8b)
1862
MAKE_CASE(ARMISD::BUILD_VECTOR)
1863
MAKE_CASE(ARMISD::BFI)
1864
MAKE_CASE(ARMISD::VORRIMM)
1865
MAKE_CASE(ARMISD::VBICIMM)
1866
MAKE_CASE(ARMISD::VBSP)
1867
MAKE_CASE(ARMISD::MEMCPY)
1868
MAKE_CASE(ARMISD::VLD1DUP)
1869
MAKE_CASE(ARMISD::VLD2DUP)
1870
MAKE_CASE(ARMISD::VLD3DUP)
1871
MAKE_CASE(ARMISD::VLD4DUP)
1872
MAKE_CASE(ARMISD::VLD1_UPD)
1873
MAKE_CASE(ARMISD::VLD2_UPD)
1874
MAKE_CASE(ARMISD::VLD3_UPD)
1875
MAKE_CASE(ARMISD::VLD4_UPD)
1876
MAKE_CASE(ARMISD::VLD1x2_UPD)
1877
MAKE_CASE(ARMISD::VLD1x3_UPD)
1878
MAKE_CASE(ARMISD::VLD1x4_UPD)
1879
MAKE_CASE(ARMISD::VLD2LN_UPD)
1880
MAKE_CASE(ARMISD::VLD3LN_UPD)
1881
MAKE_CASE(ARMISD::VLD4LN_UPD)
1882
MAKE_CASE(ARMISD::VLD1DUP_UPD)
1883
MAKE_CASE(ARMISD::VLD2DUP_UPD)
1884
MAKE_CASE(ARMISD::VLD3DUP_UPD)
1885
MAKE_CASE(ARMISD::VLD4DUP_UPD)
1886
MAKE_CASE(ARMISD::VST1_UPD)
1887
MAKE_CASE(ARMISD::VST2_UPD)
1888
MAKE_CASE(ARMISD::VST3_UPD)
1889
MAKE_CASE(ARMISD::VST4_UPD)
1890
MAKE_CASE(ARMISD::VST1x2_UPD)
1891
MAKE_CASE(ARMISD::VST1x3_UPD)
1892
MAKE_CASE(ARMISD::VST1x4_UPD)
1893
MAKE_CASE(ARMISD::VST2LN_UPD)
1894
MAKE_CASE(ARMISD::VST3LN_UPD)
1895
MAKE_CASE(ARMISD::VST4LN_UPD)
1896
MAKE_CASE(ARMISD::WLS)
1897
MAKE_CASE(ARMISD::WLSSETUP)
1898
MAKE_CASE(ARMISD::LE)
1899
MAKE_CASE(ARMISD::LOOP_DEC)
1900
MAKE_CASE(ARMISD::CSINV)
1901
MAKE_CASE(ARMISD::CSNEG)
1902
MAKE_CASE(ARMISD::CSINC)
1903
MAKE_CASE(ARMISD::MEMCPYLOOP)
1904
MAKE_CASE(ARMISD::MEMSETLOOP)
1905
#undef MAKE_CASE
1906
}
1907
return nullptr;
1908
}
1909
1910
EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1911
EVT VT) const {
1912
if (!VT.isVector())
1913
return getPointerTy(DL);
1914
1915
// MVE has a predicate register.
1916
if ((Subtarget->hasMVEIntegerOps() &&
1917
(VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
1918
VT == MVT::v16i8)) ||
1919
(Subtarget->hasMVEFloatOps() &&
1920
(VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16)))
1921
return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1922
return VT.changeVectorElementTypeToInteger();
1923
}
1924
1925
/// getRegClassFor - Return the register class that should be used for the
1926
/// specified value type.
1927
const TargetRegisterClass *
1928
ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1929
(void)isDivergent;
1930
// Map v4i64 to QQ registers but do not make the type legal. Similarly map
1931
// v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1932
// load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1933
// MVE Q registers.
1934
if (Subtarget->hasNEON()) {
1935
if (VT == MVT::v4i64)
1936
return &ARM::QQPRRegClass;
1937
if (VT == MVT::v8i64)
1938
return &ARM::QQQQPRRegClass;
1939
}
1940
if (Subtarget->hasMVEIntegerOps()) {
1941
if (VT == MVT::v4i64)
1942
return &ARM::MQQPRRegClass;
1943
if (VT == MVT::v8i64)
1944
return &ARM::MQQQQPRRegClass;
1945
}
1946
return TargetLowering::getRegClassFor(VT);
1947
}
1948
1949
// memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1950
// source/dest is aligned and the copy size is large enough. We therefore want
1951
// to align such objects passed to memory intrinsics.
1952
bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1953
Align &PrefAlign) const {
1954
if (!isa<MemIntrinsic>(CI))
1955
return false;
1956
MinSize = 8;
1957
// On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1958
// cycle faster than 4-byte aligned LDM.
1959
PrefAlign =
1960
(Subtarget->hasV6Ops() && !Subtarget->isMClass() ? Align(8) : Align(4));
1961
return true;
1962
}
1963
1964
// Create a fast isel object.
1965
FastISel *
1966
ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1967
const TargetLibraryInfo *libInfo) const {
1968
return ARM::createFastISel(funcInfo, libInfo);
1969
}
1970
1971
Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1972
unsigned NumVals = N->getNumValues();
1973
if (!NumVals)
1974
return Sched::RegPressure;
1975
1976
for (unsigned i = 0; i != NumVals; ++i) {
1977
EVT VT = N->getValueType(i);
1978
if (VT == MVT::Glue || VT == MVT::Other)
1979
continue;
1980
if (VT.isFloatingPoint() || VT.isVector())
1981
return Sched::ILP;
1982
}
1983
1984
if (!N->isMachineOpcode())
1985
return Sched::RegPressure;
1986
1987
// Load are scheduled for latency even if there instruction itinerary
1988
// is not available.
1989
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1990
const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1991
1992
if (MCID.getNumDefs() == 0)
1993
return Sched::RegPressure;
1994
if (!Itins->isEmpty() &&
1995
Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2U)
1996
return Sched::ILP;
1997
1998
return Sched::RegPressure;
1999
}
2000
2001
//===----------------------------------------------------------------------===//
2002
// Lowering Code
2003
//===----------------------------------------------------------------------===//
2004
2005
static bool isSRL16(const SDValue &Op) {
2006
if (Op.getOpcode() != ISD::SRL)
2007
return false;
2008
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2009
return Const->getZExtValue() == 16;
2010
return false;
2011
}
2012
2013
static bool isSRA16(const SDValue &Op) {
2014
if (Op.getOpcode() != ISD::SRA)
2015
return false;
2016
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2017
return Const->getZExtValue() == 16;
2018
return false;
2019
}
2020
2021
static bool isSHL16(const SDValue &Op) {
2022
if (Op.getOpcode() != ISD::SHL)
2023
return false;
2024
if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2025
return Const->getZExtValue() == 16;
2026
return false;
2027
}
2028
2029
// Check for a signed 16-bit value. We special case SRA because it makes it
2030
// more simple when also looking for SRAs that aren't sign extending a
2031
// smaller value. Without the check, we'd need to take extra care with
2032
// checking order for some operations.
2033
static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
2034
if (isSRA16(Op))
2035
return isSHL16(Op.getOperand(0));
2036
return DAG.ComputeNumSignBits(Op) == 17;
2037
}
2038
2039
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
2040
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
2041
switch (CC) {
2042
default: llvm_unreachable("Unknown condition code!");
2043
case ISD::SETNE: return ARMCC::NE;
2044
case ISD::SETEQ: return ARMCC::EQ;
2045
case ISD::SETGT: return ARMCC::GT;
2046
case ISD::SETGE: return ARMCC::GE;
2047
case ISD::SETLT: return ARMCC::LT;
2048
case ISD::SETLE: return ARMCC::LE;
2049
case ISD::SETUGT: return ARMCC::HI;
2050
case ISD::SETUGE: return ARMCC::HS;
2051
case ISD::SETULT: return ARMCC::LO;
2052
case ISD::SETULE: return ARMCC::LS;
2053
}
2054
}
2055
2056
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
2057
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
2058
ARMCC::CondCodes &CondCode2) {
2059
CondCode2 = ARMCC::AL;
2060
switch (CC) {
2061
default: llvm_unreachable("Unknown FP condition!");
2062
case ISD::SETEQ:
2063
case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
2064
case ISD::SETGT:
2065
case ISD::SETOGT: CondCode = ARMCC::GT; break;
2066
case ISD::SETGE:
2067
case ISD::SETOGE: CondCode = ARMCC::GE; break;
2068
case ISD::SETOLT: CondCode = ARMCC::MI; break;
2069
case ISD::SETOLE: CondCode = ARMCC::LS; break;
2070
case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
2071
case ISD::SETO: CondCode = ARMCC::VC; break;
2072
case ISD::SETUO: CondCode = ARMCC::VS; break;
2073
case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
2074
case ISD::SETUGT: CondCode = ARMCC::HI; break;
2075
case ISD::SETUGE: CondCode = ARMCC::PL; break;
2076
case ISD::SETLT:
2077
case ISD::SETULT: CondCode = ARMCC::LT; break;
2078
case ISD::SETLE:
2079
case ISD::SETULE: CondCode = ARMCC::LE; break;
2080
case ISD::SETNE:
2081
case ISD::SETUNE: CondCode = ARMCC::NE; break;
2082
}
2083
}
2084
2085
//===----------------------------------------------------------------------===//
2086
// Calling Convention Implementation
2087
//===----------------------------------------------------------------------===//
2088
2089
/// getEffectiveCallingConv - Get the effective calling convention, taking into
2090
/// account presence of floating point hardware and calling convention
2091
/// limitations, such as support for variadic functions.
2092
CallingConv::ID
2093
ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
2094
bool isVarArg) const {
2095
switch (CC) {
2096
default:
2097
report_fatal_error("Unsupported calling convention");
2098
case CallingConv::ARM_AAPCS:
2099
case CallingConv::ARM_APCS:
2100
case CallingConv::GHC:
2101
case CallingConv::CFGuard_Check:
2102
return CC;
2103
case CallingConv::PreserveMost:
2104
return CallingConv::PreserveMost;
2105
case CallingConv::PreserveAll:
2106
return CallingConv::PreserveAll;
2107
case CallingConv::ARM_AAPCS_VFP:
2108
case CallingConv::Swift:
2109
case CallingConv::SwiftTail:
2110
return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
2111
case CallingConv::C:
2112
case CallingConv::Tail:
2113
if (!Subtarget->isAAPCS_ABI())
2114
return CallingConv::ARM_APCS;
2115
else if (Subtarget->hasFPRegs() && !Subtarget->isThumb1Only() &&
2116
getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
2117
!isVarArg)
2118
return CallingConv::ARM_AAPCS_VFP;
2119
else
2120
return CallingConv::ARM_AAPCS;
2121
case CallingConv::Fast:
2122
case CallingConv::CXX_FAST_TLS:
2123
if (!Subtarget->isAAPCS_ABI()) {
2124
if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
2125
return CallingConv::Fast;
2126
return CallingConv::ARM_APCS;
2127
} else if (Subtarget->hasVFP2Base() &&
2128
!Subtarget->isThumb1Only() && !isVarArg)
2129
return CallingConv::ARM_AAPCS_VFP;
2130
else
2131
return CallingConv::ARM_AAPCS;
2132
}
2133
}
2134
2135
CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2136
bool isVarArg) const {
2137
return CCAssignFnForNode(CC, false, isVarArg);
2138
}
2139
2140
CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
2141
bool isVarArg) const {
2142
return CCAssignFnForNode(CC, true, isVarArg);
2143
}
2144
2145
/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
2146
/// CallingConvention.
2147
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
2148
bool Return,
2149
bool isVarArg) const {
2150
switch (getEffectiveCallingConv(CC, isVarArg)) {
2151
default:
2152
report_fatal_error("Unsupported calling convention");
2153
case CallingConv::ARM_APCS:
2154
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
2155
case CallingConv::ARM_AAPCS:
2156
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2157
case CallingConv::ARM_AAPCS_VFP:
2158
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
2159
case CallingConv::Fast:
2160
return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
2161
case CallingConv::GHC:
2162
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
2163
case CallingConv::PreserveMost:
2164
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2165
case CallingConv::PreserveAll:
2166
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2167
case CallingConv::CFGuard_Check:
2168
return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
2169
}
2170
}
2171
2172
SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG,
2173
MVT LocVT, MVT ValVT, SDValue Val) const {
2174
Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()),
2175
Val);
2176
if (Subtarget->hasFullFP16()) {
2177
Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val);
2178
} else {
2179
Val = DAG.getNode(ISD::TRUNCATE, dl,
2180
MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2181
Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val);
2182
}
2183
return Val;
2184
}
2185
2186
SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG,
2187
MVT LocVT, MVT ValVT,
2188
SDValue Val) const {
2189
if (Subtarget->hasFullFP16()) {
2190
Val = DAG.getNode(ARMISD::VMOVrh, dl,
2191
MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2192
} else {
2193
Val = DAG.getNode(ISD::BITCAST, dl,
2194
MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2195
Val = DAG.getNode(ISD::ZERO_EXTEND, dl,
2196
MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2197
}
2198
return DAG.getNode(ISD::BITCAST, dl, LocVT, Val);
2199
}
2200
2201
/// LowerCallResult - Lower the result values of a call into the
2202
/// appropriate copies out of appropriate physical registers.
2203
SDValue ARMTargetLowering::LowerCallResult(
2204
SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
2205
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2206
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2207
SDValue ThisVal, bool isCmseNSCall) const {
2208
// Assign locations to each value returned by this call.
2209
SmallVector<CCValAssign, 16> RVLocs;
2210
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2211
*DAG.getContext());
2212
CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
2213
2214
// Copy all of the result registers out of their specified physreg.
2215
for (unsigned i = 0; i != RVLocs.size(); ++i) {
2216
CCValAssign VA = RVLocs[i];
2217
2218
// Pass 'this' value directly from the argument to return value, to avoid
2219
// reg unit interference
2220
if (i == 0 && isThisReturn) {
2221
assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
2222
"unexpected return calling convention register assignment");
2223
InVals.push_back(ThisVal);
2224
continue;
2225
}
2226
2227
SDValue Val;
2228
if (VA.needsCustom() &&
2229
(VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) {
2230
// Handle f64 or half of a v2f64.
2231
SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2232
InGlue);
2233
Chain = Lo.getValue(1);
2234
InGlue = Lo.getValue(2);
2235
VA = RVLocs[++i]; // skip ahead to next loc
2236
SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2237
InGlue);
2238
Chain = Hi.getValue(1);
2239
InGlue = Hi.getValue(2);
2240
if (!Subtarget->isLittle())
2241
std::swap (Lo, Hi);
2242
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2243
2244
if (VA.getLocVT() == MVT::v2f64) {
2245
SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2246
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2247
DAG.getConstant(0, dl, MVT::i32));
2248
2249
VA = RVLocs[++i]; // skip ahead to next loc
2250
Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InGlue);
2251
Chain = Lo.getValue(1);
2252
InGlue = Lo.getValue(2);
2253
VA = RVLocs[++i]; // skip ahead to next loc
2254
Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InGlue);
2255
Chain = Hi.getValue(1);
2256
InGlue = Hi.getValue(2);
2257
if (!Subtarget->isLittle())
2258
std::swap (Lo, Hi);
2259
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2260
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2261
DAG.getConstant(1, dl, MVT::i32));
2262
}
2263
} else {
2264
Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
2265
InGlue);
2266
Chain = Val.getValue(1);
2267
InGlue = Val.getValue(2);
2268
}
2269
2270
switch (VA.getLocInfo()) {
2271
default: llvm_unreachable("Unknown loc info!");
2272
case CCValAssign::Full: break;
2273
case CCValAssign::BCvt:
2274
Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
2275
break;
2276
}
2277
2278
// f16 arguments have their size extended to 4 bytes and passed as if they
2279
// had been copied to the LSBs of a 32-bit register.
2280
// For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2281
if (VA.needsCustom() &&
2282
(VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
2283
Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val);
2284
2285
// On CMSE Non-secure Calls, call results (returned values) whose bitwidth
2286
// is less than 32 bits must be sign- or zero-extended after the call for
2287
// security reasons. Although the ABI mandates an extension done by the
2288
// callee, the latter cannot be trusted to follow the rules of the ABI.
2289
const ISD::InputArg &Arg = Ins[VA.getValNo()];
2290
if (isCmseNSCall && Arg.ArgVT.isScalarInteger() &&
2291
VA.getLocVT().isScalarInteger() && Arg.ArgVT.bitsLT(MVT::i32))
2292
Val = handleCMSEValue(Val, Arg, DAG, dl);
2293
2294
InVals.push_back(Val);
2295
}
2296
2297
return Chain;
2298
}
2299
2300
std::pair<SDValue, MachinePointerInfo> ARMTargetLowering::computeAddrForCallArg(
2301
const SDLoc &dl, SelectionDAG &DAG, const CCValAssign &VA, SDValue StackPtr,
2302
bool IsTailCall, int SPDiff) const {
2303
SDValue DstAddr;
2304
MachinePointerInfo DstInfo;
2305
int32_t Offset = VA.getLocMemOffset();
2306
MachineFunction &MF = DAG.getMachineFunction();
2307
2308
if (IsTailCall) {
2309
Offset += SPDiff;
2310
auto PtrVT = getPointerTy(DAG.getDataLayout());
2311
int Size = VA.getLocVT().getFixedSizeInBits() / 8;
2312
int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
2313
DstAddr = DAG.getFrameIndex(FI, PtrVT);
2314
DstInfo =
2315
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
2316
} else {
2317
SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
2318
DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2319
StackPtr, PtrOff);
2320
DstInfo =
2321
MachinePointerInfo::getStack(DAG.getMachineFunction(), Offset);
2322
}
2323
2324
return std::make_pair(DstAddr, DstInfo);
2325
}
2326
2327
void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
2328
SDValue Chain, SDValue &Arg,
2329
RegsToPassVector &RegsToPass,
2330
CCValAssign &VA, CCValAssign &NextVA,
2331
SDValue &StackPtr,
2332
SmallVectorImpl<SDValue> &MemOpChains,
2333
bool IsTailCall,
2334
int SPDiff) const {
2335
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2336
DAG.getVTList(MVT::i32, MVT::i32), Arg);
2337
unsigned id = Subtarget->isLittle() ? 0 : 1;
2338
RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2339
2340
if (NextVA.isRegLoc())
2341
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2342
else {
2343
assert(NextVA.isMemLoc());
2344
if (!StackPtr.getNode())
2345
StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2346
getPointerTy(DAG.getDataLayout()));
2347
2348
SDValue DstAddr;
2349
MachinePointerInfo DstInfo;
2350
std::tie(DstAddr, DstInfo) =
2351
computeAddrForCallArg(dl, DAG, NextVA, StackPtr, IsTailCall, SPDiff);
2352
MemOpChains.push_back(
2353
DAG.getStore(Chain, dl, fmrrd.getValue(1 - id), DstAddr, DstInfo));
2354
}
2355
}
2356
2357
static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
2358
return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
2359
CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
2360
}
2361
2362
/// LowerCall - Lowering a call into a callseq_start <-
2363
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2364
/// nodes.
2365
SDValue
2366
ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2367
SmallVectorImpl<SDValue> &InVals) const {
2368
SelectionDAG &DAG = CLI.DAG;
2369
SDLoc &dl = CLI.DL;
2370
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2371
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2372
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2373
SDValue Chain = CLI.Chain;
2374
SDValue Callee = CLI.Callee;
2375
bool &isTailCall = CLI.IsTailCall;
2376
CallingConv::ID CallConv = CLI.CallConv;
2377
bool doesNotRet = CLI.DoesNotReturn;
2378
bool isVarArg = CLI.IsVarArg;
2379
2380
MachineFunction &MF = DAG.getMachineFunction();
2381
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2382
MachineFunction::CallSiteInfo CSInfo;
2383
bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2384
bool isThisReturn = false;
2385
bool isCmseNSCall = false;
2386
bool isSibCall = false;
2387
bool PreferIndirect = false;
2388
bool GuardWithBTI = false;
2389
2390
// Analyze operands of the call, assigning locations to each operand.
2391
SmallVector<CCValAssign, 16> ArgLocs;
2392
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2393
*DAG.getContext());
2394
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2395
2396
// Lower 'returns_twice' calls to a pseudo-instruction.
2397
if (CLI.CB && CLI.CB->getAttributes().hasFnAttr(Attribute::ReturnsTwice) &&
2398
!Subtarget->noBTIAtReturnTwice())
2399
GuardWithBTI = AFI->branchTargetEnforcement();
2400
2401
// Determine whether this is a non-secure function call.
2402
if (CLI.CB && CLI.CB->getAttributes().hasFnAttr("cmse_nonsecure_call"))
2403
isCmseNSCall = true;
2404
2405
// Disable tail calls if they're not supported.
2406
if (!Subtarget->supportsTailCall())
2407
isTailCall = false;
2408
2409
// For both the non-secure calls and the returns from a CMSE entry function,
2410
// the function needs to do some extra work afte r the call, or before the
2411
// return, respectively, thus it cannot end with atail call
2412
if (isCmseNSCall || AFI->isCmseNSEntryFunction())
2413
isTailCall = false;
2414
2415
if (isa<GlobalAddressSDNode>(Callee)) {
2416
// If we're optimizing for minimum size and the function is called three or
2417
// more times in this block, we can improve codesize by calling indirectly
2418
// as BLXr has a 16-bit encoding.
2419
auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2420
if (CLI.CB) {
2421
auto *BB = CLI.CB->getParent();
2422
PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2423
count_if(GV->users(), [&BB](const User *U) {
2424
return isa<Instruction>(U) &&
2425
cast<Instruction>(U)->getParent() == BB;
2426
}) > 2;
2427
}
2428
}
2429
if (isTailCall) {
2430
// Check if it's really possible to do a tail call.
2431
isTailCall =
2432
IsEligibleForTailCallOptimization(CLI, CCInfo, ArgLocs, PreferIndirect);
2433
2434
if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt &&
2435
CallConv != CallingConv::Tail && CallConv != CallingConv::SwiftTail)
2436
isSibCall = true;
2437
2438
// We don't support GuaranteedTailCallOpt for ARM, only automatically
2439
// detected sibcalls.
2440
if (isTailCall)
2441
++NumTailCalls;
2442
}
2443
2444
if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall())
2445
report_fatal_error("failed to perform tail call elimination on a call "
2446
"site marked musttail");
2447
2448
// Get a count of how many bytes are to be pushed on the stack.
2449
unsigned NumBytes = CCInfo.getStackSize();
2450
2451
// SPDiff is the byte offset of the call's argument area from the callee's.
2452
// Stores to callee stack arguments will be placed in FixedStackSlots offset
2453
// by this amount for a tail call. In a sibling call it must be 0 because the
2454
// caller will deallocate the entire stack and the callee still expects its
2455
// arguments to begin at SP+0. Completely unused for non-tail calls.
2456
int SPDiff = 0;
2457
2458
if (isTailCall && !isSibCall) {
2459
auto FuncInfo = MF.getInfo<ARMFunctionInfo>();
2460
unsigned NumReusableBytes = FuncInfo->getArgumentStackSize();
2461
2462
// Since callee will pop argument stack as a tail call, we must keep the
2463
// popped size 16-byte aligned.
2464
Align StackAlign = DAG.getDataLayout().getStackAlignment();
2465
NumBytes = alignTo(NumBytes, StackAlign);
2466
2467
// SPDiff will be negative if this tail call requires more space than we
2468
// would automatically have in our incoming argument space. Positive if we
2469
// can actually shrink the stack.
2470
SPDiff = NumReusableBytes - NumBytes;
2471
2472
// If this call requires more stack than we have available from
2473
// LowerFormalArguments, tell FrameLowering to reserve space for it.
2474
if (SPDiff < 0 && AFI->getArgRegsSaveSize() < (unsigned)-SPDiff)
2475
AFI->setArgRegsSaveSize(-SPDiff);
2476
}
2477
2478
if (isSibCall) {
2479
// For sibling tail calls, memory operands are available in our caller's stack.
2480
NumBytes = 0;
2481
} else {
2482
// Adjust the stack pointer for the new arguments...
2483
// These operations are automatically eliminated by the prolog/epilog pass
2484
Chain = DAG.getCALLSEQ_START(Chain, isTailCall ? 0 : NumBytes, 0, dl);
2485
}
2486
2487
SDValue StackPtr =
2488
DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2489
2490
RegsToPassVector RegsToPass;
2491
SmallVector<SDValue, 8> MemOpChains;
2492
2493
// During a tail call, stores to the argument area must happen after all of
2494
// the function's incoming arguments have been loaded because they may alias.
2495
// This is done by folding in a TokenFactor from LowerFormalArguments, but
2496
// there's no point in doing so repeatedly so this tracks whether that's
2497
// happened yet.
2498
bool AfterFormalArgLoads = false;
2499
2500
// Walk the register/memloc assignments, inserting copies/loads. In the case
2501
// of tail call optimization, arguments are handled later.
2502
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2503
i != e;
2504
++i, ++realArgIdx) {
2505
CCValAssign &VA = ArgLocs[i];
2506
SDValue Arg = OutVals[realArgIdx];
2507
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2508
bool isByVal = Flags.isByVal();
2509
2510
// Promote the value if needed.
2511
switch (VA.getLocInfo()) {
2512
default: llvm_unreachable("Unknown loc info!");
2513
case CCValAssign::Full: break;
2514
case CCValAssign::SExt:
2515
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2516
break;
2517
case CCValAssign::ZExt:
2518
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2519
break;
2520
case CCValAssign::AExt:
2521
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2522
break;
2523
case CCValAssign::BCvt:
2524
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2525
break;
2526
}
2527
2528
if (isTailCall && VA.isMemLoc() && !AfterFormalArgLoads) {
2529
Chain = DAG.getStackArgumentTokenFactor(Chain);
2530
AfterFormalArgLoads = true;
2531
}
2532
2533
// f16 arguments have their size extended to 4 bytes and passed as if they
2534
// had been copied to the LSBs of a 32-bit register.
2535
// For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2536
if (VA.needsCustom() &&
2537
(VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
2538
Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
2539
} else {
2540
// f16 arguments could have been extended prior to argument lowering.
2541
// Mask them arguments if this is a CMSE nonsecure call.
2542
auto ArgVT = Outs[realArgIdx].ArgVT;
2543
if (isCmseNSCall && (ArgVT == MVT::f16)) {
2544
auto LocBits = VA.getLocVT().getSizeInBits();
2545
auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits());
2546
SDValue Mask =
2547
DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
2548
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
2549
Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
2550
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2551
}
2552
}
2553
2554
// f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2555
if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
2556
SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2557
DAG.getConstant(0, dl, MVT::i32));
2558
SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2559
DAG.getConstant(1, dl, MVT::i32));
2560
2561
PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i],
2562
StackPtr, MemOpChains, isTailCall, SPDiff);
2563
2564
VA = ArgLocs[++i]; // skip ahead to next loc
2565
if (VA.isRegLoc()) {
2566
PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i],
2567
StackPtr, MemOpChains, isTailCall, SPDiff);
2568
} else {
2569
assert(VA.isMemLoc());
2570
SDValue DstAddr;
2571
MachinePointerInfo DstInfo;
2572
std::tie(DstAddr, DstInfo) =
2573
computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2574
MemOpChains.push_back(DAG.getStore(Chain, dl, Op1, DstAddr, DstInfo));
2575
}
2576
} else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
2577
PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2578
StackPtr, MemOpChains, isTailCall, SPDiff);
2579
} else if (VA.isRegLoc()) {
2580
if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2581
Outs[0].VT == MVT::i32) {
2582
assert(VA.getLocVT() == MVT::i32 &&
2583
"unexpected calling convention register assignment");
2584
assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2585
"unexpected use of 'returned'");
2586
isThisReturn = true;
2587
}
2588
const TargetOptions &Options = DAG.getTarget().Options;
2589
if (Options.EmitCallSiteInfo)
2590
CSInfo.ArgRegPairs.emplace_back(VA.getLocReg(), i);
2591
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2592
} else if (isByVal) {
2593
assert(VA.isMemLoc());
2594
unsigned offset = 0;
2595
2596
// True if this byval aggregate will be split between registers
2597
// and memory.
2598
unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2599
unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2600
2601
if (CurByValIdx < ByValArgsCount) {
2602
2603
unsigned RegBegin, RegEnd;
2604
CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2605
2606
EVT PtrVT =
2607
DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2608
unsigned int i, j;
2609
for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2610
SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2611
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2612
SDValue Load =
2613
DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(),
2614
DAG.InferPtrAlign(AddArg));
2615
MemOpChains.push_back(Load.getValue(1));
2616
RegsToPass.push_back(std::make_pair(j, Load));
2617
}
2618
2619
// If parameter size outsides register area, "offset" value
2620
// helps us to calculate stack slot for remained part properly.
2621
offset = RegEnd - RegBegin;
2622
2623
CCInfo.nextInRegsParam();
2624
}
2625
2626
if (Flags.getByValSize() > 4*offset) {
2627
auto PtrVT = getPointerTy(DAG.getDataLayout());
2628
SDValue Dst;
2629
MachinePointerInfo DstInfo;
2630
std::tie(Dst, DstInfo) =
2631
computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2632
SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2633
SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2634
SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2635
MVT::i32);
2636
SDValue AlignNode =
2637
DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32);
2638
2639
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2640
SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2641
MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2642
Ops));
2643
}
2644
} else {
2645
assert(VA.isMemLoc());
2646
SDValue DstAddr;
2647
MachinePointerInfo DstInfo;
2648
std::tie(DstAddr, DstInfo) =
2649
computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2650
2651
SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo);
2652
MemOpChains.push_back(Store);
2653
}
2654
}
2655
2656
if (!MemOpChains.empty())
2657
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2658
2659
// Build a sequence of copy-to-reg nodes chained together with token chain
2660
// and flag operands which copy the outgoing args into the appropriate regs.
2661
SDValue InGlue;
2662
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2663
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2664
RegsToPass[i].second, InGlue);
2665
InGlue = Chain.getValue(1);
2666
}
2667
2668
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2669
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2670
// node so that legalize doesn't hack it.
2671
bool isDirect = false;
2672
2673
const TargetMachine &TM = getTargetMachine();
2674
const GlobalValue *GVal = nullptr;
2675
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2676
GVal = G->getGlobal();
2677
bool isStub = !TM.shouldAssumeDSOLocal(GVal) && Subtarget->isTargetMachO();
2678
2679
bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2680
bool isLocalARMFunc = false;
2681
auto PtrVt = getPointerTy(DAG.getDataLayout());
2682
2683
if (Subtarget->genLongCalls()) {
2684
assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2685
"long-calls codegen is not position independent!");
2686
// Handle a global address or an external symbol. If it's not one of
2687
// those, the target's already in a register, so we don't need to do
2688
// anything extra.
2689
if (isa<GlobalAddressSDNode>(Callee)) {
2690
if (Subtarget->genExecuteOnly()) {
2691
if (Subtarget->useMovt())
2692
++NumMovwMovt;
2693
Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt,
2694
DAG.getTargetGlobalAddress(GVal, dl, PtrVt));
2695
} else {
2696
// Create a constant pool entry for the callee address
2697
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2698
ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2699
GVal, ARMPCLabelIndex, ARMCP::CPValue, 0);
2700
2701
// Get the address of the callee into a register
2702
SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2703
Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr);
2704
Callee = DAG.getLoad(
2705
PtrVt, dl, DAG.getEntryNode(), Addr,
2706
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2707
}
2708
} else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2709
const char *Sym = S->getSymbol();
2710
2711
if (Subtarget->genExecuteOnly()) {
2712
if (Subtarget->useMovt())
2713
++NumMovwMovt;
2714
Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt,
2715
DAG.getTargetGlobalAddress(GVal, dl, PtrVt));
2716
} else {
2717
// Create a constant pool entry for the callee address
2718
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2719
ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(
2720
*DAG.getContext(), Sym, ARMPCLabelIndex, 0);
2721
2722
// Get the address of the callee into a register
2723
SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2724
Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr);
2725
Callee = DAG.getLoad(
2726
PtrVt, dl, DAG.getEntryNode(), Addr,
2727
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2728
}
2729
}
2730
} else if (isa<GlobalAddressSDNode>(Callee)) {
2731
if (!PreferIndirect) {
2732
isDirect = true;
2733
bool isDef = GVal->isStrongDefinitionForLinker();
2734
2735
// ARM call to a local ARM function is predicable.
2736
isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2737
// tBX takes a register source operand.
2738
if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2739
assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2740
Callee = DAG.getNode(
2741
ARMISD::WrapperPIC, dl, PtrVt,
2742
DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2743
Callee = DAG.getLoad(
2744
PtrVt, dl, DAG.getEntryNode(), Callee,
2745
MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(),
2746
MachineMemOperand::MODereferenceable |
2747
MachineMemOperand::MOInvariant);
2748
} else if (Subtarget->isTargetCOFF()) {
2749
assert(Subtarget->isTargetWindows() &&
2750
"Windows is the only supported COFF target");
2751
unsigned TargetFlags = ARMII::MO_NO_FLAG;
2752
if (GVal->hasDLLImportStorageClass())
2753
TargetFlags = ARMII::MO_DLLIMPORT;
2754
else if (!TM.shouldAssumeDSOLocal(GVal))
2755
TargetFlags = ARMII::MO_COFFSTUB;
2756
Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, /*offset=*/0,
2757
TargetFlags);
2758
if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
2759
Callee =
2760
DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2761
DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2762
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2763
} else {
2764
Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, 0);
2765
}
2766
}
2767
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2768
isDirect = true;
2769
// tBX takes a register source operand.
2770
const char *Sym = S->getSymbol();
2771
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2772
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2773
ARMConstantPoolValue *CPV =
2774
ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2775
ARMPCLabelIndex, 4);
2776
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2777
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2778
Callee = DAG.getLoad(
2779
PtrVt, dl, DAG.getEntryNode(), CPAddr,
2780
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2781
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2782
Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2783
} else {
2784
Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2785
}
2786
}
2787
2788
if (isCmseNSCall) {
2789
assert(!isARMFunc && !isDirect &&
2790
"Cannot handle call to ARM function or direct call");
2791
if (NumBytes > 0) {
2792
DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(),
2793
"call to non-secure function would "
2794
"require passing arguments on stack",
2795
dl.getDebugLoc());
2796
DAG.getContext()->diagnose(Diag);
2797
}
2798
if (isStructRet) {
2799
DiagnosticInfoUnsupported Diag(
2800
DAG.getMachineFunction().getFunction(),
2801
"call to non-secure function would return value through pointer",
2802
dl.getDebugLoc());
2803
DAG.getContext()->diagnose(Diag);
2804
}
2805
}
2806
2807
// FIXME: handle tail calls differently.
2808
unsigned CallOpc;
2809
if (Subtarget->isThumb()) {
2810
if (GuardWithBTI)
2811
CallOpc = ARMISD::t2CALL_BTI;
2812
else if (isCmseNSCall)
2813
CallOpc = ARMISD::tSECALL;
2814
else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2815
CallOpc = ARMISD::CALL_NOLINK;
2816
else
2817
CallOpc = ARMISD::CALL;
2818
} else {
2819
if (!isDirect && !Subtarget->hasV5TOps())
2820
CallOpc = ARMISD::CALL_NOLINK;
2821
else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2822
// Emit regular call when code size is the priority
2823
!Subtarget->hasMinSize())
2824
// "mov lr, pc; b _foo" to avoid confusing the RSP
2825
CallOpc = ARMISD::CALL_NOLINK;
2826
else
2827
CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2828
}
2829
2830
// We don't usually want to end the call-sequence here because we would tidy
2831
// the frame up *after* the call, however in the ABI-changing tail-call case
2832
// we've carefully laid out the parameters so that when sp is reset they'll be
2833
// in the correct location.
2834
if (isTailCall && !isSibCall) {
2835
Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, dl);
2836
InGlue = Chain.getValue(1);
2837
}
2838
2839
std::vector<SDValue> Ops;
2840
Ops.push_back(Chain);
2841
Ops.push_back(Callee);
2842
2843
if (isTailCall) {
2844
Ops.push_back(DAG.getTargetConstant(SPDiff, dl, MVT::i32));
2845
}
2846
2847
// Add argument registers to the end of the list so that they are known live
2848
// into the call.
2849
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2850
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2851
RegsToPass[i].second.getValueType()));
2852
2853
// Add a register mask operand representing the call-preserved registers.
2854
const uint32_t *Mask;
2855
const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2856
if (isThisReturn) {
2857
// For 'this' returns, use the R0-preserving mask if applicable
2858
Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2859
if (!Mask) {
2860
// Set isThisReturn to false if the calling convention is not one that
2861
// allows 'returned' to be modeled in this way, so LowerCallResult does
2862
// not try to pass 'this' straight through
2863
isThisReturn = false;
2864
Mask = ARI->getCallPreservedMask(MF, CallConv);
2865
}
2866
} else
2867
Mask = ARI->getCallPreservedMask(MF, CallConv);
2868
2869
assert(Mask && "Missing call preserved mask for calling convention");
2870
Ops.push_back(DAG.getRegisterMask(Mask));
2871
2872
if (InGlue.getNode())
2873
Ops.push_back(InGlue);
2874
2875
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2876
if (isTailCall) {
2877
MF.getFrameInfo().setHasTailCall();
2878
SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2879
DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
2880
DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
2881
return Ret;
2882
}
2883
2884
// Returns a chain and a flag for retval copy to use.
2885
Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2886
DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2887
InGlue = Chain.getValue(1);
2888
DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
2889
2890
// If we're guaranteeing tail-calls will be honoured, the callee must
2891
// pop its own argument stack on return. But this call is *not* a tail call so
2892
// we need to undo that after it returns to restore the status-quo.
2893
bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
2894
uint64_t CalleePopBytes =
2895
canGuaranteeTCO(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : -1ULL;
2896
2897
Chain = DAG.getCALLSEQ_END(Chain, NumBytes, CalleePopBytes, InGlue, dl);
2898
if (!Ins.empty())
2899
InGlue = Chain.getValue(1);
2900
2901
// Handle result values, copying them out of physregs into vregs that we
2902
// return.
2903
return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl, DAG,
2904
InVals, isThisReturn,
2905
isThisReturn ? OutVals[0] : SDValue(), isCmseNSCall);
2906
}
2907
2908
/// HandleByVal - Every parameter *after* a byval parameter is passed
2909
/// on the stack. Remember the next parameter register to allocate,
2910
/// and then confiscate the rest of the parameter registers to insure
2911
/// this.
2912
void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2913
Align Alignment) const {
2914
// Byval (as with any stack) slots are always at least 4 byte aligned.
2915
Alignment = std::max(Alignment, Align(4));
2916
2917
unsigned Reg = State->AllocateReg(GPRArgRegs);
2918
if (!Reg)
2919
return;
2920
2921
unsigned AlignInRegs = Alignment.value() / 4;
2922
unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2923
for (unsigned i = 0; i < Waste; ++i)
2924
Reg = State->AllocateReg(GPRArgRegs);
2925
2926
if (!Reg)
2927
return;
2928
2929
unsigned Excess = 4 * (ARM::R4 - Reg);
2930
2931
// Special case when NSAA != SP and parameter size greater than size of
2932
// all remained GPR regs. In that case we can't split parameter, we must
2933
// send it to stack. We also must set NCRN to R4, so waste all
2934
// remained registers.
2935
const unsigned NSAAOffset = State->getStackSize();
2936
if (NSAAOffset != 0 && Size > Excess) {
2937
while (State->AllocateReg(GPRArgRegs))
2938
;
2939
return;
2940
}
2941
2942
// First register for byval parameter is the first register that wasn't
2943
// allocated before this method call, so it would be "reg".
2944
// If parameter is small enough to be saved in range [reg, r4), then
2945
// the end (first after last) register would be reg + param-size-in-regs,
2946
// else parameter would be splitted between registers and stack,
2947
// end register would be r4 in this case.
2948
unsigned ByValRegBegin = Reg;
2949
unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2950
State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2951
// Note, first register is allocated in the beginning of function already,
2952
// allocate remained amount of registers we need.
2953
for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2954
State->AllocateReg(GPRArgRegs);
2955
// A byval parameter that is split between registers and memory needs its
2956
// size truncated here.
2957
// In the case where the entire structure fits in registers, we set the
2958
// size in memory to zero.
2959
Size = std::max<int>(Size - Excess, 0);
2960
}
2961
2962
/// MatchingStackOffset - Return true if the given stack call argument is
2963
/// already available in the same position (relatively) of the caller's
2964
/// incoming argument stack.
2965
static
2966
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2967
MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2968
const TargetInstrInfo *TII) {
2969
unsigned Bytes = Arg.getValueSizeInBits() / 8;
2970
int FI = std::numeric_limits<int>::max();
2971
if (Arg.getOpcode() == ISD::CopyFromReg) {
2972
Register VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2973
if (!VR.isVirtual())
2974
return false;
2975
MachineInstr *Def = MRI->getVRegDef(VR);
2976
if (!Def)
2977
return false;
2978
if (!Flags.isByVal()) {
2979
if (!TII->isLoadFromStackSlot(*Def, FI))
2980
return false;
2981
} else {
2982
return false;
2983
}
2984
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2985
if (Flags.isByVal())
2986
// ByVal argument is passed in as a pointer but it's now being
2987
// dereferenced. e.g.
2988
// define @foo(%struct.X* %A) {
2989
// tail call @bar(%struct.X* byval %A)
2990
// }
2991
return false;
2992
SDValue Ptr = Ld->getBasePtr();
2993
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2994
if (!FINode)
2995
return false;
2996
FI = FINode->getIndex();
2997
} else
2998
return false;
2999
3000
assert(FI != std::numeric_limits<int>::max());
3001
if (!MFI.isFixedObjectIndex(FI))
3002
return false;
3003
return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
3004
}
3005
3006
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3007
/// for tail call optimization. Targets which want to do tail call
3008
/// optimization should implement this function. Note that this function also
3009
/// processes musttail calls, so when this function returns false on a valid
3010
/// musttail call, a fatal backend error occurs.
3011
bool ARMTargetLowering::IsEligibleForTailCallOptimization(
3012
TargetLowering::CallLoweringInfo &CLI, CCState &CCInfo,
3013
SmallVectorImpl<CCValAssign> &ArgLocs, const bool isIndirect) const {
3014
CallingConv::ID CalleeCC = CLI.CallConv;
3015
SDValue Callee = CLI.Callee;
3016
bool isVarArg = CLI.IsVarArg;
3017
const SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3018
const SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
3019
const SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
3020
const SelectionDAG &DAG = CLI.DAG;
3021
MachineFunction &MF = DAG.getMachineFunction();
3022
const Function &CallerF = MF.getFunction();
3023
CallingConv::ID CallerCC = CallerF.getCallingConv();
3024
3025
assert(Subtarget->supportsTailCall());
3026
3027
// Indirect tail calls cannot be optimized for Thumb1 if the args
3028
// to the call take up r0-r3. The reason is that there are no legal registers
3029
// left to hold the pointer to the function to be called.
3030
// Similarly, if the function uses return address sign and authentication,
3031
// r12 is needed to hold the PAC and is not available to hold the callee
3032
// address.
3033
if (Outs.size() >= 4 &&
3034
(!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect)) {
3035
if (Subtarget->isThumb1Only())
3036
return false;
3037
// Conservatively assume the function spills LR.
3038
if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(true))
3039
return false;
3040
}
3041
3042
// Look for obvious safe cases to perform tail call optimization that do not
3043
// require ABI changes. This is what gcc calls sibcall.
3044
3045
// Exception-handling functions need a special set of instructions to indicate
3046
// a return to the hardware. Tail-calling another function would probably
3047
// break this.
3048
if (CallerF.hasFnAttribute("interrupt"))
3049
return false;
3050
3051
if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt))
3052
return CalleeCC == CallerCC;
3053
3054
// Also avoid sibcall optimization if either caller or callee uses struct
3055
// return semantics.
3056
bool isCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
3057
bool isCallerStructRet = MF.getFunction().hasStructRetAttr();
3058
if (isCalleeStructRet || isCallerStructRet)
3059
return false;
3060
3061
// Externally-defined functions with weak linkage should not be
3062
// tail-called on ARM when the OS does not support dynamic
3063
// pre-emption of symbols, as the AAELF spec requires normal calls
3064
// to undefined weak functions to be replaced with a NOP or jump to the
3065
// next instruction. The behaviour of branch instructions in this
3066
// situation (as used for tail calls) is implementation-defined, so we
3067
// cannot rely on the linker replacing the tail call with a return.
3068
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3069
const GlobalValue *GV = G->getGlobal();
3070
const Triple &TT = getTargetMachine().getTargetTriple();
3071
if (GV->hasExternalWeakLinkage() &&
3072
(!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
3073
return false;
3074
}
3075
3076
// Check that the call results are passed in the same way.
3077
LLVMContext &C = *DAG.getContext();
3078
if (!CCState::resultsCompatible(
3079
getEffectiveCallingConv(CalleeCC, isVarArg),
3080
getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins,
3081
CCAssignFnForReturn(CalleeCC, isVarArg),
3082
CCAssignFnForReturn(CallerCC, CallerF.isVarArg())))
3083
return false;
3084
// The callee has to preserve all registers the caller needs to preserve.
3085
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3086
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3087
if (CalleeCC != CallerCC) {
3088
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3089
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3090
return false;
3091
}
3092
3093
// If Caller's vararg or byval argument has been split between registers and
3094
// stack, do not perform tail call, since part of the argument is in caller's
3095
// local frame.
3096
const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
3097
if (AFI_Caller->getArgRegsSaveSize())
3098
return false;
3099
3100
// If the callee takes no arguments then go on to check the results of the
3101
// call.
3102
if (!Outs.empty()) {
3103
if (CCInfo.getStackSize()) {
3104
// Check if the arguments are already laid out in the right way as
3105
// the caller's fixed stack objects.
3106
MachineFrameInfo &MFI = MF.getFrameInfo();
3107
const MachineRegisterInfo *MRI = &MF.getRegInfo();
3108
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
3109
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
3110
i != e;
3111
++i, ++realArgIdx) {
3112
CCValAssign &VA = ArgLocs[i];
3113
EVT RegVT = VA.getLocVT();
3114
SDValue Arg = OutVals[realArgIdx];
3115
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3116
if (VA.getLocInfo() == CCValAssign::Indirect)
3117
return false;
3118
if (VA.needsCustom() && (RegVT == MVT::f64 || RegVT == MVT::v2f64)) {
3119
// f64 and vector types are split into multiple registers or
3120
// register/stack-slot combinations. The types will not match
3121
// the registers; give up on memory f64 refs until we figure
3122
// out what to do about this.
3123
if (!VA.isRegLoc())
3124
return false;
3125
if (!ArgLocs[++i].isRegLoc())
3126
return false;
3127
if (RegVT == MVT::v2f64) {
3128
if (!ArgLocs[++i].isRegLoc())
3129
return false;
3130
if (!ArgLocs[++i].isRegLoc())
3131
return false;
3132
}
3133
} else if (!VA.isRegLoc()) {
3134
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3135
MFI, MRI, TII))
3136
return false;
3137
}
3138
}
3139
}
3140
3141
const MachineRegisterInfo &MRI = MF.getRegInfo();
3142
if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3143
return false;
3144
}
3145
3146
return true;
3147
}
3148
3149
bool
3150
ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3151
MachineFunction &MF, bool isVarArg,
3152
const SmallVectorImpl<ISD::OutputArg> &Outs,
3153
LLVMContext &Context) const {
3154
SmallVector<CCValAssign, 16> RVLocs;
3155
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3156
return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3157
}
3158
3159
static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3160
const SDLoc &DL, SelectionDAG &DAG) {
3161
const MachineFunction &MF = DAG.getMachineFunction();
3162
const Function &F = MF.getFunction();
3163
3164
StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
3165
3166
// See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
3167
// version of the "preferred return address". These offsets affect the return
3168
// instruction if this is a return from PL1 without hypervisor extensions.
3169
// IRQ/FIQ: +4 "subs pc, lr, #4"
3170
// SWI: 0 "subs pc, lr, #0"
3171
// ABORT: +4 "subs pc, lr, #4"
3172
// UNDEF: +4/+2 "subs pc, lr, #0"
3173
// UNDEF varies depending on where the exception came from ARM or Thumb
3174
// mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
3175
3176
int64_t LROffset;
3177
if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
3178
IntKind == "ABORT")
3179
LROffset = 4;
3180
else if (IntKind == "SWI" || IntKind == "UNDEF")
3181
LROffset = 0;
3182
else
3183
report_fatal_error("Unsupported interrupt attribute. If present, value "
3184
"must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
3185
3186
RetOps.insert(RetOps.begin() + 1,
3187
DAG.getConstant(LROffset, DL, MVT::i32, false));
3188
3189
return DAG.getNode(ARMISD::INTRET_GLUE, DL, MVT::Other, RetOps);
3190
}
3191
3192
SDValue
3193
ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3194
bool isVarArg,
3195
const SmallVectorImpl<ISD::OutputArg> &Outs,
3196
const SmallVectorImpl<SDValue> &OutVals,
3197
const SDLoc &dl, SelectionDAG &DAG) const {
3198
// CCValAssign - represent the assignment of the return value to a location.
3199
SmallVector<CCValAssign, 16> RVLocs;
3200
3201
// CCState - Info about the registers and stack slots.
3202
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3203
*DAG.getContext());
3204
3205
// Analyze outgoing return values.
3206
CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3207
3208
SDValue Glue;
3209
SmallVector<SDValue, 4> RetOps;
3210
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
3211
bool isLittleEndian = Subtarget->isLittle();
3212
3213
MachineFunction &MF = DAG.getMachineFunction();
3214
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3215
AFI->setReturnRegsCount(RVLocs.size());
3216
3217
// Report error if cmse entry function returns structure through first ptr arg.
3218
if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) {
3219
// Note: using an empty SDLoc(), as the first line of the function is a
3220
// better place to report than the last line.
3221
DiagnosticInfoUnsupported Diag(
3222
DAG.getMachineFunction().getFunction(),
3223
"secure entry function would return value through pointer",
3224
SDLoc().getDebugLoc());
3225
DAG.getContext()->diagnose(Diag);
3226
}
3227
3228
// Copy the result values into the output registers.
3229
for (unsigned i = 0, realRVLocIdx = 0;
3230
i != RVLocs.size();
3231
++i, ++realRVLocIdx) {
3232
CCValAssign &VA = RVLocs[i];
3233
assert(VA.isRegLoc() && "Can only return in registers!");
3234
3235
SDValue Arg = OutVals[realRVLocIdx];
3236
bool ReturnF16 = false;
3237
3238
if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
3239
// Half-precision return values can be returned like this:
3240
//
3241
// t11 f16 = fadd ...
3242
// t12: i16 = bitcast t11
3243
// t13: i32 = zero_extend t12
3244
// t14: f32 = bitcast t13 <~~~~~~~ Arg
3245
//
3246
// to avoid code generation for bitcasts, we simply set Arg to the node
3247
// that produces the f16 value, t11 in this case.
3248
//
3249
if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
3250
SDValue ZE = Arg.getOperand(0);
3251
if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
3252
SDValue BC = ZE.getOperand(0);
3253
if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
3254
Arg = BC.getOperand(0);
3255
ReturnF16 = true;
3256
}
3257
}
3258
}
3259
}
3260
3261
switch (VA.getLocInfo()) {
3262
default: llvm_unreachable("Unknown loc info!");
3263
case CCValAssign::Full: break;
3264
case CCValAssign::BCvt:
3265
if (!ReturnF16)
3266
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3267
break;
3268
}
3269
3270
// Mask f16 arguments if this is a CMSE nonsecure entry.
3271
auto RetVT = Outs[realRVLocIdx].ArgVT;
3272
if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) {
3273
if (VA.needsCustom() && VA.getValVT() == MVT::f16) {
3274
Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
3275
} else {
3276
auto LocBits = VA.getLocVT().getSizeInBits();
3277
auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits());
3278
SDValue Mask =
3279
DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
3280
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
3281
Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
3282
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3283
}
3284
}
3285
3286
if (VA.needsCustom() &&
3287
(VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) {
3288
if (VA.getLocVT() == MVT::v2f64) {
3289
// Extract the first half and return it in two registers.
3290
SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3291
DAG.getConstant(0, dl, MVT::i32));
3292
SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
3293
DAG.getVTList(MVT::i32, MVT::i32), Half);
3294
3295
Chain =
3296
DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3297
HalfGPRs.getValue(isLittleEndian ? 0 : 1), Glue);
3298
Glue = Chain.getValue(1);
3299
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3300
VA = RVLocs[++i]; // skip ahead to next loc
3301
Chain =
3302
DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3303
HalfGPRs.getValue(isLittleEndian ? 1 : 0), Glue);
3304
Glue = Chain.getValue(1);
3305
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3306
VA = RVLocs[++i]; // skip ahead to next loc
3307
3308
// Extract the 2nd half and fall through to handle it as an f64 value.
3309
Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3310
DAG.getConstant(1, dl, MVT::i32));
3311
}
3312
// Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
3313
// available.
3314
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
3315
DAG.getVTList(MVT::i32, MVT::i32), Arg);
3316
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3317
fmrrd.getValue(isLittleEndian ? 0 : 1), Glue);
3318
Glue = Chain.getValue(1);
3319
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3320
VA = RVLocs[++i]; // skip ahead to next loc
3321
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3322
fmrrd.getValue(isLittleEndian ? 1 : 0), Glue);
3323
} else
3324
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Glue);
3325
3326
// Guarantee that all emitted copies are
3327
// stuck together, avoiding something bad.
3328
Glue = Chain.getValue(1);
3329
RetOps.push_back(DAG.getRegister(
3330
VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT()));
3331
}
3332
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3333
const MCPhysReg *I =
3334
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3335
if (I) {
3336
for (; *I; ++I) {
3337
if (ARM::GPRRegClass.contains(*I))
3338
RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3339
else if (ARM::DPRRegClass.contains(*I))
3340
RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3341
else
3342
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3343
}
3344
}
3345
3346
// Update chain and glue.
3347
RetOps[0] = Chain;
3348
if (Glue.getNode())
3349
RetOps.push_back(Glue);
3350
3351
// CPUs which aren't M-class use a special sequence to return from
3352
// exceptions (roughly, any instruction setting pc and cpsr simultaneously,
3353
// though we use "subs pc, lr, #N").
3354
//
3355
// M-class CPUs actually use a normal return sequence with a special
3356
// (hardware-provided) value in LR, so the normal code path works.
3357
if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
3358
!Subtarget->isMClass()) {
3359
if (Subtarget->isThumb1Only())
3360
report_fatal_error("interrupt attribute is not supported in Thumb1");
3361
return LowerInterruptReturn(RetOps, dl, DAG);
3362
}
3363
3364
ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_GLUE :
3365
ARMISD::RET_GLUE;
3366
return DAG.getNode(RetNode, dl, MVT::Other, RetOps);
3367
}
3368
3369
bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
3370
if (N->getNumValues() != 1)
3371
return false;
3372
if (!N->hasNUsesOfValue(1, 0))
3373
return false;
3374
3375
SDValue TCChain = Chain;
3376
SDNode *Copy = *N->use_begin();
3377
if (Copy->getOpcode() == ISD::CopyToReg) {
3378
// If the copy has a glue operand, we conservatively assume it isn't safe to
3379
// perform a tail call.
3380
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3381
return false;
3382
TCChain = Copy->getOperand(0);
3383
} else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
3384
SDNode *VMov = Copy;
3385
// f64 returned in a pair of GPRs.
3386
SmallPtrSet<SDNode*, 2> Copies;
3387
for (SDNode *U : VMov->uses()) {
3388
if (U->getOpcode() != ISD::CopyToReg)
3389
return false;
3390
Copies.insert(U);
3391
}
3392
if (Copies.size() > 2)
3393
return false;
3394
3395
for (SDNode *U : VMov->uses()) {
3396
SDValue UseChain = U->getOperand(0);
3397
if (Copies.count(UseChain.getNode()))
3398
// Second CopyToReg
3399
Copy = U;
3400
else {
3401
// We are at the top of this chain.
3402
// If the copy has a glue operand, we conservatively assume it
3403
// isn't safe to perform a tail call.
3404
if (U->getOperand(U->getNumOperands() - 1).getValueType() == MVT::Glue)
3405
return false;
3406
// First CopyToReg
3407
TCChain = UseChain;
3408
}
3409
}
3410
} else if (Copy->getOpcode() == ISD::BITCAST) {
3411
// f32 returned in a single GPR.
3412
if (!Copy->hasOneUse())
3413
return false;
3414
Copy = *Copy->use_begin();
3415
if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
3416
return false;
3417
// If the copy has a glue operand, we conservatively assume it isn't safe to
3418
// perform a tail call.
3419
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3420
return false;
3421
TCChain = Copy->getOperand(0);
3422
} else {
3423
return false;
3424
}
3425
3426
bool HasRet = false;
3427
for (const SDNode *U : Copy->uses()) {
3428
if (U->getOpcode() != ARMISD::RET_GLUE &&
3429
U->getOpcode() != ARMISD::INTRET_GLUE)
3430
return false;
3431
HasRet = true;
3432
}
3433
3434
if (!HasRet)
3435
return false;
3436
3437
Chain = TCChain;
3438
return true;
3439
}
3440
3441
bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3442
if (!Subtarget->supportsTailCall())
3443
return false;
3444
3445
if (!CI->isTailCall())
3446
return false;
3447
3448
return true;
3449
}
3450
3451
// Trying to write a 64 bit value so need to split into two 32 bit values first,
3452
// and pass the lower and high parts through.
3453
static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
3454
SDLoc DL(Op);
3455
SDValue WriteValue = Op->getOperand(2);
3456
3457
// This function is only supposed to be called for i64 type argument.
3458
assert(WriteValue.getValueType() == MVT::i64
3459
&& "LowerWRITE_REGISTER called for non-i64 type argument.");
3460
3461
SDValue Lo, Hi;
3462
std::tie(Lo, Hi) = DAG.SplitScalar(WriteValue, DL, MVT::i32, MVT::i32);
3463
SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
3464
return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
3465
}
3466
3467
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3468
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3469
// one of the above mentioned nodes. It has to be wrapped because otherwise
3470
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3471
// be used to form addressing mode. These wrapped nodes will be selected
3472
// into MOVi.
3473
SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
3474
SelectionDAG &DAG) const {
3475
EVT PtrVT = Op.getValueType();
3476
// FIXME there is no actual debug info here
3477
SDLoc dl(Op);
3478
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3479
SDValue Res;
3480
3481
// When generating execute-only code Constant Pools must be promoted to the
3482
// global data section. It's a bit ugly that we can't share them across basic
3483
// blocks, but this way we guarantee that execute-only behaves correct with
3484
// position-independent addressing modes.
3485
if (Subtarget->genExecuteOnly()) {
3486
auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3487
auto T = const_cast<Type*>(CP->getType());
3488
auto C = const_cast<Constant*>(CP->getConstVal());
3489
auto M = const_cast<Module*>(DAG.getMachineFunction().
3490
getFunction().getParent());
3491
auto GV = new GlobalVariable(
3492
*M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
3493
Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3494
Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
3495
Twine(AFI->createPICLabelUId())
3496
);
3497
SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
3498
dl, PtrVT);
3499
return LowerGlobalAddress(GA, DAG);
3500
}
3501
3502
// The 16-bit ADR instruction can only encode offsets that are multiples of 4,
3503
// so we need to align to at least 4 bytes when we don't have 32-bit ADR.
3504
Align CPAlign = CP->getAlign();
3505
if (Subtarget->isThumb1Only())
3506
CPAlign = std::max(CPAlign, Align(4));
3507
if (CP->isMachineConstantPoolEntry())
3508
Res =
3509
DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CPAlign);
3510
else
3511
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CPAlign);
3512
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
3513
}
3514
3515
unsigned ARMTargetLowering::getJumpTableEncoding() const {
3516
// If we don't have a 32-bit pc-relative branch instruction then the jump
3517
// table consists of block addresses. Usually this is inline, but for
3518
// execute-only it must be placed out-of-line.
3519
if (Subtarget->genExecuteOnly() && !Subtarget->hasV8MBaselineOps())
3520
return MachineJumpTableInfo::EK_BlockAddress;
3521
return MachineJumpTableInfo::EK_Inline;
3522
}
3523
3524
SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
3525
SelectionDAG &DAG) const {
3526
MachineFunction &MF = DAG.getMachineFunction();
3527
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3528
unsigned ARMPCLabelIndex = 0;
3529
SDLoc DL(Op);
3530
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3531
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3532
SDValue CPAddr;
3533
bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
3534
if (!IsPositionIndependent) {
3535
CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4));
3536
} else {
3537
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3538
ARMPCLabelIndex = AFI->createPICLabelUId();
3539
ARMConstantPoolValue *CPV =
3540
ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3541
ARMCP::CPBlockAddress, PCAdj);
3542
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3543
}
3544
CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3545
SDValue Result = DAG.getLoad(
3546
PtrVT, DL, DAG.getEntryNode(), CPAddr,
3547
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3548
if (!IsPositionIndependent)
3549
return Result;
3550
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3551
return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3552
}
3553
3554
/// Convert a TLS address reference into the correct sequence of loads
3555
/// and calls to compute the variable's address for Darwin, and return an
3556
/// SDValue containing the final node.
3557
3558
/// Darwin only has one TLS scheme which must be capable of dealing with the
3559
/// fully general situation, in the worst case. This means:
3560
/// + "extern __thread" declaration.
3561
/// + Defined in a possibly unknown dynamic library.
3562
///
3563
/// The general system is that each __thread variable has a [3 x i32] descriptor
3564
/// which contains information used by the runtime to calculate the address. The
3565
/// only part of this the compiler needs to know about is the first word, which
3566
/// contains a function pointer that must be called with the address of the
3567
/// entire descriptor in "r0".
3568
///
3569
/// Since this descriptor may be in a different unit, in general access must
3570
/// proceed along the usual ARM rules. A common sequence to produce is:
3571
///
3572
/// movw rT1, :lower16:_var$non_lazy_ptr
3573
/// movt rT1, :upper16:_var$non_lazy_ptr
3574
/// ldr r0, [rT1]
3575
/// ldr rT2, [r0]
3576
/// blx rT2
3577
/// [...address now in r0...]
3578
SDValue
3579
ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3580
SelectionDAG &DAG) const {
3581
assert(Subtarget->isTargetDarwin() &&
3582
"This function expects a Darwin target");
3583
SDLoc DL(Op);
3584
3585
// First step is to get the address of the actua global symbol. This is where
3586
// the TLS descriptor lives.
3587
SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3588
3589
// The first entry in the descriptor is a function pointer that we must call
3590
// to obtain the address of the variable.
3591
SDValue Chain = DAG.getEntryNode();
3592
SDValue FuncTLVGet = DAG.getLoad(
3593
MVT::i32, DL, Chain, DescAddr,
3594
MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4),
3595
MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3596
MachineMemOperand::MOInvariant);
3597
Chain = FuncTLVGet.getValue(1);
3598
3599
MachineFunction &F = DAG.getMachineFunction();
3600
MachineFrameInfo &MFI = F.getFrameInfo();
3601
MFI.setAdjustsStack(true);
3602
3603
// TLS calls preserve all registers except those that absolutely must be
3604
// trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3605
// silly).
3606
auto TRI =
3607
getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3608
auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3609
const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3610
3611
// Finally, we can make the call. This is just a degenerate version of a
3612
// normal AArch64 call node: r0 takes the address of the descriptor, and
3613
// returns the address of the variable in this thread.
3614
Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3615
Chain =
3616
DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3617
Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3618
DAG.getRegisterMask(Mask), Chain.getValue(1));
3619
return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3620
}
3621
3622
SDValue
3623
ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3624
SelectionDAG &DAG) const {
3625
assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3626
3627
SDValue Chain = DAG.getEntryNode();
3628
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3629
SDLoc DL(Op);
3630
3631
// Load the current TEB (thread environment block)
3632
SDValue Ops[] = {Chain,
3633
DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3634
DAG.getTargetConstant(15, DL, MVT::i32),
3635
DAG.getTargetConstant(0, DL, MVT::i32),
3636
DAG.getTargetConstant(13, DL, MVT::i32),
3637
DAG.getTargetConstant(0, DL, MVT::i32),
3638
DAG.getTargetConstant(2, DL, MVT::i32)};
3639
SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3640
DAG.getVTList(MVT::i32, MVT::Other), Ops);
3641
3642
SDValue TEB = CurrentTEB.getValue(0);
3643
Chain = CurrentTEB.getValue(1);
3644
3645
// Load the ThreadLocalStoragePointer from the TEB
3646
// A pointer to the TLS array is located at offset 0x2c from the TEB.
3647
SDValue TLSArray =
3648
DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3649
TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3650
3651
// The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3652
// offset into the TLSArray.
3653
3654
// Load the TLS index from the C runtime
3655
SDValue TLSIndex =
3656
DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3657
TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3658
TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3659
3660
SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3661
DAG.getConstant(2, DL, MVT::i32));
3662
SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3663
DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3664
MachinePointerInfo());
3665
3666
// Get the offset of the start of the .tls section (section base)
3667
const auto *GA = cast<GlobalAddressSDNode>(Op);
3668
auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3669
SDValue Offset = DAG.getLoad(
3670
PtrVT, DL, Chain,
3671
DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3672
DAG.getTargetConstantPool(CPV, PtrVT, Align(4))),
3673
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3674
3675
return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3676
}
3677
3678
// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3679
SDValue
3680
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3681
SelectionDAG &DAG) const {
3682
SDLoc dl(GA);
3683
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3684
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3685
MachineFunction &MF = DAG.getMachineFunction();
3686
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3687
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3688
ARMConstantPoolValue *CPV =
3689
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3690
ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3691
SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3692
Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3693
Argument = DAG.getLoad(
3694
PtrVT, dl, DAG.getEntryNode(), Argument,
3695
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3696
SDValue Chain = Argument.getValue(1);
3697
3698
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3699
Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3700
3701
// call __tls_get_addr.
3702
ArgListTy Args;
3703
ArgListEntry Entry;
3704
Entry.Node = Argument;
3705
Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3706
Args.push_back(Entry);
3707
3708
// FIXME: is there useful debug info available here?
3709
TargetLowering::CallLoweringInfo CLI(DAG);
3710
CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3711
CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3712
DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3713
3714
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3715
return CallResult.first;
3716
}
3717
3718
// Lower ISD::GlobalTLSAddress using the "initial exec" or
3719
// "local exec" model.
3720
SDValue
3721
ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3722
SelectionDAG &DAG,
3723
TLSModel::Model model) const {
3724
const GlobalValue *GV = GA->getGlobal();
3725
SDLoc dl(GA);
3726
SDValue Offset;
3727
SDValue Chain = DAG.getEntryNode();
3728
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3729
// Get the Thread Pointer
3730
SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3731
3732
if (model == TLSModel::InitialExec) {
3733
MachineFunction &MF = DAG.getMachineFunction();
3734
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3735
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3736
// Initial exec model.
3737
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3738
ARMConstantPoolValue *CPV =
3739
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3740
ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3741
true);
3742
Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3743
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3744
Offset = DAG.getLoad(
3745
PtrVT, dl, Chain, Offset,
3746
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3747
Chain = Offset.getValue(1);
3748
3749
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3750
Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3751
3752
Offset = DAG.getLoad(
3753
PtrVT, dl, Chain, Offset,
3754
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3755
} else {
3756
// local exec model
3757
assert(model == TLSModel::LocalExec);
3758
ARMConstantPoolValue *CPV =
3759
ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3760
Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3761
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3762
Offset = DAG.getLoad(
3763
PtrVT, dl, Chain, Offset,
3764
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3765
}
3766
3767
// The address of the thread local variable is the add of the thread
3768
// pointer with the offset of the variable.
3769
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3770
}
3771
3772
SDValue
3773
ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3774
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3775
if (DAG.getTarget().useEmulatedTLS())
3776
return LowerToTLSEmulatedModel(GA, DAG);
3777
3778
if (Subtarget->isTargetDarwin())
3779
return LowerGlobalTLSAddressDarwin(Op, DAG);
3780
3781
if (Subtarget->isTargetWindows())
3782
return LowerGlobalTLSAddressWindows(Op, DAG);
3783
3784
// TODO: implement the "local dynamic" model
3785
assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3786
TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3787
3788
switch (model) {
3789
case TLSModel::GeneralDynamic:
3790
case TLSModel::LocalDynamic:
3791
return LowerToTLSGeneralDynamicModel(GA, DAG);
3792
case TLSModel::InitialExec:
3793
case TLSModel::LocalExec:
3794
return LowerToTLSExecModels(GA, DAG, model);
3795
}
3796
llvm_unreachable("bogus TLS model");
3797
}
3798
3799
/// Return true if all users of V are within function F, looking through
3800
/// ConstantExprs.
3801
static bool allUsersAreInFunction(const Value *V, const Function *F) {
3802
SmallVector<const User*,4> Worklist(V->users());
3803
while (!Worklist.empty()) {
3804
auto *U = Worklist.pop_back_val();
3805
if (isa<ConstantExpr>(U)) {
3806
append_range(Worklist, U->users());
3807
continue;
3808
}
3809
3810
auto *I = dyn_cast<Instruction>(U);
3811
if (!I || I->getParent()->getParent() != F)
3812
return false;
3813
}
3814
return true;
3815
}
3816
3817
static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3818
const GlobalValue *GV, SelectionDAG &DAG,
3819
EVT PtrVT, const SDLoc &dl) {
3820
// If we're creating a pool entry for a constant global with unnamed address,
3821
// and the global is small enough, we can emit it inline into the constant pool
3822
// to save ourselves an indirection.
3823
//
3824
// This is a win if the constant is only used in one function (so it doesn't
3825
// need to be duplicated) or duplicating the constant wouldn't increase code
3826
// size (implying the constant is no larger than 4 bytes).
3827
const Function &F = DAG.getMachineFunction().getFunction();
3828
3829
// We rely on this decision to inline being idemopotent and unrelated to the
3830
// use-site. We know that if we inline a variable at one use site, we'll
3831
// inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3832
// doesn't know about this optimization, so bail out if it's enabled else
3833
// we could decide to inline here (and thus never emit the GV) but require
3834
// the GV from fast-isel generated code.
3835
if (!EnableConstpoolPromotion ||
3836
DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3837
return SDValue();
3838
3839
auto *GVar = dyn_cast<GlobalVariable>(GV);
3840
if (!GVar || !GVar->hasInitializer() ||
3841
!GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3842
!GVar->hasLocalLinkage())
3843
return SDValue();
3844
3845
// If we inline a value that contains relocations, we move the relocations
3846
// from .data to .text. This is not allowed in position-independent code.
3847
auto *Init = GVar->getInitializer();
3848
if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3849
Init->needsDynamicRelocation())
3850
return SDValue();
3851
3852
// The constant islands pass can only really deal with alignment requests
3853
// <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3854
// any type wanting greater alignment requirements than 4 bytes. We also
3855
// can only promote constants that are multiples of 4 bytes in size or
3856
// are paddable to a multiple of 4. Currently we only try and pad constants
3857
// that are strings for simplicity.
3858
auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3859
unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3860
Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar);
3861
unsigned RequiredPadding = 4 - (Size % 4);
3862
bool PaddingPossible =
3863
RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3864
if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize ||
3865
Size == 0)
3866
return SDValue();
3867
3868
unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3869
MachineFunction &MF = DAG.getMachineFunction();
3870
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3871
3872
// We can't bloat the constant pool too much, else the ConstantIslands pass
3873
// may fail to converge. If we haven't promoted this global yet (it may have
3874
// multiple uses), and promoting it would increase the constant pool size (Sz
3875
// > 4), ensure we have space to do so up to MaxTotal.
3876
if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3877
if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3878
ConstpoolPromotionMaxTotal)
3879
return SDValue();
3880
3881
// This is only valid if all users are in a single function; we can't clone
3882
// the constant in general. The LLVM IR unnamed_addr allows merging
3883
// constants, but not cloning them.
3884
//
3885
// We could potentially allow cloning if we could prove all uses of the
3886
// constant in the current function don't care about the address, like
3887
// printf format strings. But that isn't implemented for now.
3888
if (!allUsersAreInFunction(GVar, &F))
3889
return SDValue();
3890
3891
// We're going to inline this global. Pad it out if needed.
3892
if (RequiredPadding != 4) {
3893
StringRef S = CDAInit->getAsString();
3894
3895
SmallVector<uint8_t,16> V(S.size());
3896
std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3897
while (RequiredPadding--)
3898
V.push_back(0);
3899
Init = ConstantDataArray::get(*DAG.getContext(), V);
3900
}
3901
3902
auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3903
SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4));
3904
if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3905
AFI->markGlobalAsPromotedToConstantPool(GVar);
3906
AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3907
PaddedSize - 4);
3908
}
3909
++NumConstpoolPromoted;
3910
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3911
}
3912
3913
bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3914
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3915
if (!(GV = GA->getAliaseeObject()))
3916
return false;
3917
if (const auto *V = dyn_cast<GlobalVariable>(GV))
3918
return V->isConstant();
3919
return isa<Function>(GV);
3920
}
3921
3922
SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3923
SelectionDAG &DAG) const {
3924
switch (Subtarget->getTargetTriple().getObjectFormat()) {
3925
default: llvm_unreachable("unknown object format");
3926
case Triple::COFF:
3927
return LowerGlobalAddressWindows(Op, DAG);
3928
case Triple::ELF:
3929
return LowerGlobalAddressELF(Op, DAG);
3930
case Triple::MachO:
3931
return LowerGlobalAddressDarwin(Op, DAG);
3932
}
3933
}
3934
3935
SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3936
SelectionDAG &DAG) const {
3937
EVT PtrVT = getPointerTy(DAG.getDataLayout());
3938
SDLoc dl(Op);
3939
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3940
bool IsRO = isReadOnly(GV);
3941
3942
// promoteToConstantPool only if not generating XO text section
3943
if (GV->isDSOLocal() && !Subtarget->genExecuteOnly())
3944
if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3945
return V;
3946
3947
if (isPositionIndependent()) {
3948
SDValue G = DAG.getTargetGlobalAddress(
3949
GV, dl, PtrVT, 0, GV->isDSOLocal() ? 0 : ARMII::MO_GOT);
3950
SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3951
if (!GV->isDSOLocal())
3952
Result =
3953
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3954
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3955
return Result;
3956
} else if (Subtarget->isROPI() && IsRO) {
3957
// PC-relative.
3958
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3959
SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3960
return Result;
3961
} else if (Subtarget->isRWPI() && !IsRO) {
3962
// SB-relative.
3963
SDValue RelAddr;
3964
if (Subtarget->useMovt()) {
3965
++NumMovwMovt;
3966
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3967
RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3968
} else { // use literal pool for address constant
3969
ARMConstantPoolValue *CPV =
3970
ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3971
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3972
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3973
RelAddr = DAG.getLoad(
3974
PtrVT, dl, DAG.getEntryNode(), CPAddr,
3975
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3976
}
3977
SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3978
SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3979
return Result;
3980
}
3981
3982
// If we have T2 ops, we can materialize the address directly via movt/movw
3983
// pair. This is always cheaper. If need to generate Execute Only code, and we
3984
// only have Thumb1 available, we can't use a constant pool and are forced to
3985
// use immediate relocations.
3986
if (Subtarget->useMovt() || Subtarget->genExecuteOnly()) {
3987
if (Subtarget->useMovt())
3988
++NumMovwMovt;
3989
// FIXME: Once remat is capable of dealing with instructions with register
3990
// operands, expand this into two nodes.
3991
return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3992
DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3993
} else {
3994
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
3995
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3996
return DAG.getLoad(
3997
PtrVT, dl, DAG.getEntryNode(), CPAddr,
3998
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3999
}
4000
}
4001
4002
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
4003
SelectionDAG &DAG) const {
4004
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
4005
"ROPI/RWPI not currently supported for Darwin");
4006
EVT PtrVT = getPointerTy(DAG.getDataLayout());
4007
SDLoc dl(Op);
4008
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4009
4010
if (Subtarget->useMovt())
4011
++NumMovwMovt;
4012
4013
// FIXME: Once remat is capable of dealing with instructions with register
4014
// operands, expand this into multiple nodes
4015
unsigned Wrapper =
4016
isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
4017
4018
SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
4019
SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
4020
4021
if (Subtarget->isGVIndirectSymbol(GV))
4022
Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
4023
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4024
return Result;
4025
}
4026
4027
SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
4028
SelectionDAG &DAG) const {
4029
assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
4030
assert(Subtarget->useMovt() &&
4031
"Windows on ARM expects to use movw/movt");
4032
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
4033
"ROPI/RWPI not currently supported for Windows");
4034
4035
const TargetMachine &TM = getTargetMachine();
4036
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4037
ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
4038
if (GV->hasDLLImportStorageClass())
4039
TargetFlags = ARMII::MO_DLLIMPORT;
4040
else if (!TM.shouldAssumeDSOLocal(GV))
4041
TargetFlags = ARMII::MO_COFFSTUB;
4042
EVT PtrVT = getPointerTy(DAG.getDataLayout());
4043
SDValue Result;
4044
SDLoc DL(Op);
4045
4046
++NumMovwMovt;
4047
4048
// FIXME: Once remat is capable of dealing with instructions with register
4049
// operands, expand this into two nodes.
4050
Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
4051
DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
4052
TargetFlags));
4053
if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
4054
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
4055
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4056
return Result;
4057
}
4058
4059
SDValue
4060
ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
4061
SDLoc dl(Op);
4062
SDValue Val = DAG.getConstant(0, dl, MVT::i32);
4063
return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
4064
DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
4065
Op.getOperand(1), Val);
4066
}
4067
4068
SDValue
4069
ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
4070
SDLoc dl(Op);
4071
return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
4072
Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
4073
}
4074
4075
SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
4076
SelectionDAG &DAG) const {
4077
SDLoc dl(Op);
4078
return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
4079
Op.getOperand(0));
4080
}
4081
4082
SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
4083
SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
4084
unsigned IntNo =
4085
Op.getConstantOperandVal(Op.getOperand(0).getValueType() == MVT::Other);
4086
switch (IntNo) {
4087
default:
4088
return SDValue(); // Don't custom lower most intrinsics.
4089
case Intrinsic::arm_gnu_eabi_mcount: {
4090
MachineFunction &MF = DAG.getMachineFunction();
4091
EVT PtrVT = getPointerTy(DAG.getDataLayout());
4092
SDLoc dl(Op);
4093
SDValue Chain = Op.getOperand(0);
4094
// call "\01__gnu_mcount_nc"
4095
const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
4096
const uint32_t *Mask =
4097
ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
4098
assert(Mask && "Missing call preserved mask for calling convention");
4099
// Mark LR an implicit live-in.
4100
Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4101
SDValue ReturnAddress =
4102
DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
4103
constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue};
4104
SDValue Callee =
4105
DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
4106
SDValue RegisterMask = DAG.getRegisterMask(Mask);
4107
if (Subtarget->isThumb())
4108
return SDValue(
4109
DAG.getMachineNode(
4110
ARM::tBL_PUSHLR, dl, ResultTys,
4111
{ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
4112
DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
4113
0);
4114
return SDValue(
4115
DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
4116
{ReturnAddress, Callee, RegisterMask, Chain}),
4117
0);
4118
}
4119
}
4120
}
4121
4122
SDValue
4123
ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
4124
const ARMSubtarget *Subtarget) const {
4125
unsigned IntNo = Op.getConstantOperandVal(0);
4126
SDLoc dl(Op);
4127
switch (IntNo) {
4128
default: return SDValue(); // Don't custom lower most intrinsics.
4129
case Intrinsic::thread_pointer: {
4130
EVT PtrVT = getPointerTy(DAG.getDataLayout());
4131
return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
4132
}
4133
case Intrinsic::arm_cls: {
4134
const SDValue &Operand = Op.getOperand(1);
4135
const EVT VTy = Op.getValueType();
4136
SDValue SRA =
4137
DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
4138
SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
4139
SDValue SHL =
4140
DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
4141
SDValue OR =
4142
DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
4143
SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
4144
return Result;
4145
}
4146
case Intrinsic::arm_cls64: {
4147
// cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
4148
// else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
4149
const SDValue &Operand = Op.getOperand(1);
4150
const EVT VTy = Op.getValueType();
4151
SDValue Lo, Hi;
4152
std::tie(Lo, Hi) = DAG.SplitScalar(Operand, dl, VTy, VTy);
4153
SDValue Constant0 = DAG.getConstant(0, dl, VTy);
4154
SDValue Constant1 = DAG.getConstant(1, dl, VTy);
4155
SDValue Constant31 = DAG.getConstant(31, dl, VTy);
4156
SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
4157
SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
4158
SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
4159
SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
4160
SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
4161
SDValue CheckLo =
4162
DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
4163
SDValue HiIsZero =
4164
DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
4165
SDValue AdjustedLo =
4166
DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
4167
SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
4168
SDValue Result =
4169
DAG.getSelect(dl, VTy, CheckLo,
4170
DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
4171
return Result;
4172
}
4173
case Intrinsic::eh_sjlj_lsda: {
4174
MachineFunction &MF = DAG.getMachineFunction();
4175
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4176
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
4177
EVT PtrVT = getPointerTy(DAG.getDataLayout());
4178
SDValue CPAddr;
4179
bool IsPositionIndependent = isPositionIndependent();
4180
unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
4181
ARMConstantPoolValue *CPV =
4182
ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
4183
ARMCP::CPLSDA, PCAdj);
4184
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
4185
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
4186
SDValue Result = DAG.getLoad(
4187
PtrVT, dl, DAG.getEntryNode(), CPAddr,
4188
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4189
4190
if (IsPositionIndependent) {
4191
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
4192
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
4193
}
4194
return Result;
4195
}
4196
case Intrinsic::arm_neon_vabs:
4197
return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
4198
Op.getOperand(1));
4199
case Intrinsic::arm_neon_vabds:
4200
if (Op.getValueType().isInteger())
4201
return DAG.getNode(ISD::ABDS, SDLoc(Op), Op.getValueType(),
4202
Op.getOperand(1), Op.getOperand(2));
4203
return SDValue();
4204
case Intrinsic::arm_neon_vabdu:
4205
return DAG.getNode(ISD::ABDU, SDLoc(Op), Op.getValueType(),
4206
Op.getOperand(1), Op.getOperand(2));
4207
case Intrinsic::arm_neon_vmulls:
4208
case Intrinsic::arm_neon_vmullu: {
4209
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
4210
? ARMISD::VMULLs : ARMISD::VMULLu;
4211
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4212
Op.getOperand(1), Op.getOperand(2));
4213
}
4214
case Intrinsic::arm_neon_vminnm:
4215
case Intrinsic::arm_neon_vmaxnm: {
4216
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
4217
? ISD::FMINNUM : ISD::FMAXNUM;
4218
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4219
Op.getOperand(1), Op.getOperand(2));
4220
}
4221
case Intrinsic::arm_neon_vminu:
4222
case Intrinsic::arm_neon_vmaxu: {
4223
if (Op.getValueType().isFloatingPoint())
4224
return SDValue();
4225
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
4226
? ISD::UMIN : ISD::UMAX;
4227
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4228
Op.getOperand(1), Op.getOperand(2));
4229
}
4230
case Intrinsic::arm_neon_vmins:
4231
case Intrinsic::arm_neon_vmaxs: {
4232
// v{min,max}s is overloaded between signed integers and floats.
4233
if (!Op.getValueType().isFloatingPoint()) {
4234
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4235
? ISD::SMIN : ISD::SMAX;
4236
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4237
Op.getOperand(1), Op.getOperand(2));
4238
}
4239
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4240
? ISD::FMINIMUM : ISD::FMAXIMUM;
4241
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4242
Op.getOperand(1), Op.getOperand(2));
4243
}
4244
case Intrinsic::arm_neon_vtbl1:
4245
return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
4246
Op.getOperand(1), Op.getOperand(2));
4247
case Intrinsic::arm_neon_vtbl2:
4248
return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
4249
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4250
case Intrinsic::arm_mve_pred_i2v:
4251
case Intrinsic::arm_mve_pred_v2i:
4252
return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
4253
Op.getOperand(1));
4254
case Intrinsic::arm_mve_vreinterpretq:
4255
return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(),
4256
Op.getOperand(1));
4257
case Intrinsic::arm_mve_lsll:
4258
return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(),
4259
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4260
case Intrinsic::arm_mve_asrl:
4261
return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(),
4262
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4263
}
4264
}
4265
4266
static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
4267
const ARMSubtarget *Subtarget) {
4268
SDLoc dl(Op);
4269
auto SSID = static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
4270
if (SSID == SyncScope::SingleThread)
4271
return Op;
4272
4273
if (!Subtarget->hasDataBarrier()) {
4274
// Some ARMv6 cpus can support data barriers with an mcr instruction.
4275
// Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
4276
// here.
4277
assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
4278
"Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
4279
return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
4280
DAG.getConstant(0, dl, MVT::i32));
4281
}
4282
4283
AtomicOrdering Ord =
4284
static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
4285
ARM_MB::MemBOpt Domain = ARM_MB::ISH;
4286
if (Subtarget->isMClass()) {
4287
// Only a full system barrier exists in the M-class architectures.
4288
Domain = ARM_MB::SY;
4289
} else if (Subtarget->preferISHSTBarriers() &&
4290
Ord == AtomicOrdering::Release) {
4291
// Swift happens to implement ISHST barriers in a way that's compatible with
4292
// Release semantics but weaker than ISH so we'd be fools not to use
4293
// it. Beware: other processors probably don't!
4294
Domain = ARM_MB::ISHST;
4295
}
4296
4297
return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
4298
DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
4299
DAG.getConstant(Domain, dl, MVT::i32));
4300
}
4301
4302
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
4303
const ARMSubtarget *Subtarget) {
4304
// ARM pre v5TE and Thumb1 does not have preload instructions.
4305
if (!(Subtarget->isThumb2() ||
4306
(!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
4307
// Just preserve the chain.
4308
return Op.getOperand(0);
4309
4310
SDLoc dl(Op);
4311
unsigned isRead = ~Op.getConstantOperandVal(2) & 1;
4312
if (!isRead &&
4313
(!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
4314
// ARMv7 with MP extension has PLDW.
4315
return Op.getOperand(0);
4316
4317
unsigned isData = Op.getConstantOperandVal(4);
4318
if (Subtarget->isThumb()) {
4319
// Invert the bits.
4320
isRead = ~isRead & 1;
4321
isData = ~isData & 1;
4322
}
4323
4324
return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
4325
Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
4326
DAG.getConstant(isData, dl, MVT::i32));
4327
}
4328
4329
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
4330
MachineFunction &MF = DAG.getMachineFunction();
4331
ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
4332
4333
// vastart just stores the address of the VarArgsFrameIndex slot into the
4334
// memory location argument.
4335
SDLoc dl(Op);
4336
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4337
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4338
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4339
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
4340
MachinePointerInfo(SV));
4341
}
4342
4343
SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
4344
CCValAssign &NextVA,
4345
SDValue &Root,
4346
SelectionDAG &DAG,
4347
const SDLoc &dl) const {
4348
MachineFunction &MF = DAG.getMachineFunction();
4349
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4350
4351
const TargetRegisterClass *RC;
4352
if (AFI->isThumb1OnlyFunction())
4353
RC = &ARM::tGPRRegClass;
4354
else
4355
RC = &ARM::GPRRegClass;
4356
4357
// Transform the arguments stored in physical registers into virtual ones.
4358
Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4359
SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4360
4361
SDValue ArgValue2;
4362
if (NextVA.isMemLoc()) {
4363
MachineFrameInfo &MFI = MF.getFrameInfo();
4364
int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
4365
4366
// Create load node to retrieve arguments from the stack.
4367
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4368
ArgValue2 = DAG.getLoad(
4369
MVT::i32, dl, Root, FIN,
4370
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4371
} else {
4372
Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
4373
ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4374
}
4375
if (!Subtarget->isLittle())
4376
std::swap (ArgValue, ArgValue2);
4377
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
4378
}
4379
4380
// The remaining GPRs hold either the beginning of variable-argument
4381
// data, or the beginning of an aggregate passed by value (usually
4382
// byval). Either way, we allocate stack slots adjacent to the data
4383
// provided by our caller, and store the unallocated registers there.
4384
// If this is a variadic function, the va_list pointer will begin with
4385
// these values; otherwise, this reassembles a (byval) structure that
4386
// was split between registers and memory.
4387
// Return: The frame index registers were stored into.
4388
int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
4389
const SDLoc &dl, SDValue &Chain,
4390
const Value *OrigArg,
4391
unsigned InRegsParamRecordIdx,
4392
int ArgOffset, unsigned ArgSize) const {
4393
// Currently, two use-cases possible:
4394
// Case #1. Non-var-args function, and we meet first byval parameter.
4395
// Setup first unallocated register as first byval register;
4396
// eat all remained registers
4397
// (these two actions are performed by HandleByVal method).
4398
// Then, here, we initialize stack frame with
4399
// "store-reg" instructions.
4400
// Case #2. Var-args function, that doesn't contain byval parameters.
4401
// The same: eat all remained unallocated registers,
4402
// initialize stack frame.
4403
4404
MachineFunction &MF = DAG.getMachineFunction();
4405
MachineFrameInfo &MFI = MF.getFrameInfo();
4406
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4407
unsigned RBegin, REnd;
4408
if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
4409
CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
4410
} else {
4411
unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4412
RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
4413
REnd = ARM::R4;
4414
}
4415
4416
if (REnd != RBegin)
4417
ArgOffset = -4 * (ARM::R4 - RBegin);
4418
4419
auto PtrVT = getPointerTy(DAG.getDataLayout());
4420
int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
4421
SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
4422
4423
SmallVector<SDValue, 4> MemOps;
4424
const TargetRegisterClass *RC =
4425
AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
4426
4427
for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
4428
Register VReg = MF.addLiveIn(Reg, RC);
4429
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4430
SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4431
MachinePointerInfo(OrigArg, 4 * i));
4432
MemOps.push_back(Store);
4433
FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
4434
}
4435
4436
if (!MemOps.empty())
4437
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4438
return FrameIndex;
4439
}
4440
4441
// Setup stack frame, the va_list pointer will start from.
4442
void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
4443
const SDLoc &dl, SDValue &Chain,
4444
unsigned ArgOffset,
4445
unsigned TotalArgRegsSaveSize,
4446
bool ForceMutable) const {
4447
MachineFunction &MF = DAG.getMachineFunction();
4448
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4449
4450
// Try to store any remaining integer argument regs
4451
// to their spots on the stack so that they may be loaded by dereferencing
4452
// the result of va_next.
4453
// If there is no regs to be stored, just point address after last
4454
// argument passed via stack.
4455
int FrameIndex = StoreByValRegs(
4456
CCInfo, DAG, dl, Chain, nullptr, CCInfo.getInRegsParamsCount(),
4457
CCInfo.getStackSize(), std::max(4U, TotalArgRegsSaveSize));
4458
AFI->setVarArgsFrameIndex(FrameIndex);
4459
}
4460
4461
bool ARMTargetLowering::splitValueIntoRegisterParts(
4462
SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4463
unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
4464
EVT ValueVT = Val.getValueType();
4465
if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) {
4466
unsigned ValueBits = ValueVT.getSizeInBits();
4467
unsigned PartBits = PartVT.getSizeInBits();
4468
Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val);
4469
Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val);
4470
Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
4471
Parts[0] = Val;
4472
return true;
4473
}
4474
return false;
4475
}
4476
4477
SDValue ARMTargetLowering::joinRegisterPartsIntoValue(
4478
SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
4479
MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
4480
if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) {
4481
unsigned ValueBits = ValueVT.getSizeInBits();
4482
unsigned PartBits = PartVT.getSizeInBits();
4483
SDValue Val = Parts[0];
4484
4485
Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val);
4486
Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val);
4487
Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
4488
return Val;
4489
}
4490
return SDValue();
4491
}
4492
4493
SDValue ARMTargetLowering::LowerFormalArguments(
4494
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4495
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4496
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4497
MachineFunction &MF = DAG.getMachineFunction();
4498
MachineFrameInfo &MFI = MF.getFrameInfo();
4499
4500
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4501
4502
// Assign locations to all of the incoming arguments.
4503
SmallVector<CCValAssign, 16> ArgLocs;
4504
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4505
*DAG.getContext());
4506
CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
4507
4508
Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
4509
unsigned CurArgIdx = 0;
4510
4511
// Initially ArgRegsSaveSize is zero.
4512
// Then we increase this value each time we meet byval parameter.
4513
// We also increase this value in case of varargs function.
4514
AFI->setArgRegsSaveSize(0);
4515
4516
// Calculate the amount of stack space that we need to allocate to store
4517
// byval and variadic arguments that are passed in registers.
4518
// We need to know this before we allocate the first byval or variadic
4519
// argument, as they will be allocated a stack slot below the CFA (Canonical
4520
// Frame Address, the stack pointer at entry to the function).
4521
unsigned ArgRegBegin = ARM::R4;
4522
for (const CCValAssign &VA : ArgLocs) {
4523
if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
4524
break;
4525
4526
unsigned Index = VA.getValNo();
4527
ISD::ArgFlagsTy Flags = Ins[Index].Flags;
4528
if (!Flags.isByVal())
4529
continue;
4530
4531
assert(VA.isMemLoc() && "unexpected byval pointer in reg");
4532
unsigned RBegin, REnd;
4533
CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
4534
ArgRegBegin = std::min(ArgRegBegin, RBegin);
4535
4536
CCInfo.nextInRegsParam();
4537
}
4538
CCInfo.rewindByValRegsInfo();
4539
4540
int lastInsIndex = -1;
4541
if (isVarArg && MFI.hasVAStart()) {
4542
unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4543
if (RegIdx != std::size(GPRArgRegs))
4544
ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
4545
}
4546
4547
unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4548
AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
4549
auto PtrVT = getPointerTy(DAG.getDataLayout());
4550
4551
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4552
CCValAssign &VA = ArgLocs[i];
4553
if (Ins[VA.getValNo()].isOrigArg()) {
4554
std::advance(CurOrigArg,
4555
Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
4556
CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
4557
}
4558
// Arguments stored in registers.
4559
if (VA.isRegLoc()) {
4560
EVT RegVT = VA.getLocVT();
4561
SDValue ArgValue;
4562
4563
if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
4564
// f64 and vector types are split up into multiple registers or
4565
// combinations of registers and stack slots.
4566
SDValue ArgValue1 =
4567
GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4568
VA = ArgLocs[++i]; // skip ahead to next loc
4569
SDValue ArgValue2;
4570
if (VA.isMemLoc()) {
4571
int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
4572
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4573
ArgValue2 = DAG.getLoad(
4574
MVT::f64, dl, Chain, FIN,
4575
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4576
} else {
4577
ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4578
}
4579
ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
4580
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4581
ArgValue1, DAG.getIntPtrConstant(0, dl));
4582
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4583
ArgValue2, DAG.getIntPtrConstant(1, dl));
4584
} else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
4585
ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4586
} else {
4587
const TargetRegisterClass *RC;
4588
4589
if (RegVT == MVT::f16 || RegVT == MVT::bf16)
4590
RC = &ARM::HPRRegClass;
4591
else if (RegVT == MVT::f32)
4592
RC = &ARM::SPRRegClass;
4593
else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 ||
4594
RegVT == MVT::v4bf16)
4595
RC = &ARM::DPRRegClass;
4596
else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 ||
4597
RegVT == MVT::v8bf16)
4598
RC = &ARM::QPRRegClass;
4599
else if (RegVT == MVT::i32)
4600
RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4601
: &ARM::GPRRegClass;
4602
else
4603
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4604
4605
// Transform the arguments in physical registers into virtual ones.
4606
Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4607
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
4608
4609
// If this value is passed in r0 and has the returned attribute (e.g.
4610
// C++ 'structors), record this fact for later use.
4611
if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
4612
AFI->setPreservesR0();
4613
}
4614
}
4615
4616
// If this is an 8 or 16-bit value, it is really passed promoted
4617
// to 32 bits. Insert an assert[sz]ext to capture this, then
4618
// truncate to the right size.
4619
switch (VA.getLocInfo()) {
4620
default: llvm_unreachable("Unknown loc info!");
4621
case CCValAssign::Full: break;
4622
case CCValAssign::BCvt:
4623
ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
4624
break;
4625
}
4626
4627
// f16 arguments have their size extended to 4 bytes and passed as if they
4628
// had been copied to the LSBs of a 32-bit register.
4629
// For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
4630
if (VA.needsCustom() &&
4631
(VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
4632
ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue);
4633
4634
// On CMSE Entry Functions, formal integer arguments whose bitwidth is
4635
// less than 32 bits must be sign- or zero-extended in the callee for
4636
// security reasons. Although the ABI mandates an extension done by the
4637
// caller, the latter cannot be trusted to follow the rules of the ABI.
4638
const ISD::InputArg &Arg = Ins[VA.getValNo()];
4639
if (AFI->isCmseNSEntryFunction() && Arg.ArgVT.isScalarInteger() &&
4640
RegVT.isScalarInteger() && Arg.ArgVT.bitsLT(MVT::i32))
4641
ArgValue = handleCMSEValue(ArgValue, Arg, DAG, dl);
4642
4643
InVals.push_back(ArgValue);
4644
} else { // VA.isRegLoc()
4645
// Only arguments passed on the stack should make it here.
4646
assert(VA.isMemLoc());
4647
assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
4648
4649
int index = VA.getValNo();
4650
4651
// Some Ins[] entries become multiple ArgLoc[] entries.
4652
// Process them only once.
4653
if (index != lastInsIndex)
4654
{
4655
ISD::ArgFlagsTy Flags = Ins[index].Flags;
4656
// FIXME: For now, all byval parameter objects are marked mutable.
4657
// This can be changed with more analysis.
4658
// In case of tail call optimization mark all arguments mutable.
4659
// Since they could be overwritten by lowering of arguments in case of
4660
// a tail call.
4661
if (Flags.isByVal()) {
4662
assert(Ins[index].isOrigArg() &&
4663
"Byval arguments cannot be implicit");
4664
unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
4665
4666
int FrameIndex = StoreByValRegs(
4667
CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4668
VA.getLocMemOffset(), Flags.getByValSize());
4669
InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4670
CCInfo.nextInRegsParam();
4671
} else {
4672
unsigned FIOffset = VA.getLocMemOffset();
4673
int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4674
FIOffset, true);
4675
4676
// Create load nodes to retrieve arguments from the stack.
4677
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4678
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4679
MachinePointerInfo::getFixedStack(
4680
DAG.getMachineFunction(), FI)));
4681
}
4682
lastInsIndex = index;
4683
}
4684
}
4685
}
4686
4687
// varargs
4688
if (isVarArg && MFI.hasVAStart()) {
4689
VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getStackSize(),
4690
TotalArgRegsSaveSize);
4691
if (AFI->isCmseNSEntryFunction()) {
4692
DiagnosticInfoUnsupported Diag(
4693
DAG.getMachineFunction().getFunction(),
4694
"secure entry function must not be variadic", dl.getDebugLoc());
4695
DAG.getContext()->diagnose(Diag);
4696
}
4697
}
4698
4699
unsigned StackArgSize = CCInfo.getStackSize();
4700
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
4701
if (canGuaranteeTCO(CallConv, TailCallOpt)) {
4702
// The only way to guarantee a tail call is if the callee restores its
4703
// argument area, but it must also keep the stack aligned when doing so.
4704
const DataLayout &DL = DAG.getDataLayout();
4705
StackArgSize = alignTo(StackArgSize, DL.getStackAlignment());
4706
4707
AFI->setArgumentStackToRestore(StackArgSize);
4708
}
4709
AFI->setArgumentStackSize(StackArgSize);
4710
4711
if (CCInfo.getStackSize() > 0 && AFI->isCmseNSEntryFunction()) {
4712
DiagnosticInfoUnsupported Diag(
4713
DAG.getMachineFunction().getFunction(),
4714
"secure entry function requires arguments on stack", dl.getDebugLoc());
4715
DAG.getContext()->diagnose(Diag);
4716
}
4717
4718
return Chain;
4719
}
4720
4721
/// isFloatingPointZero - Return true if this is +0.0.
4722
static bool isFloatingPointZero(SDValue Op) {
4723
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4724
return CFP->getValueAPF().isPosZero();
4725
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4726
// Maybe this has already been legalized into the constant pool?
4727
if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4728
SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4729
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4730
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4731
return CFP->getValueAPF().isPosZero();
4732
}
4733
} else if (Op->getOpcode() == ISD::BITCAST &&
4734
Op->getValueType(0) == MVT::f64) {
4735
// Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4736
// created by LowerConstantFP().
4737
SDValue BitcastOp = Op->getOperand(0);
4738
if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4739
isNullConstant(BitcastOp->getOperand(0)))
4740
return true;
4741
}
4742
return false;
4743
}
4744
4745
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4746
/// the given operands.
4747
SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4748
SDValue &ARMcc, SelectionDAG &DAG,
4749
const SDLoc &dl) const {
4750
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4751
unsigned C = RHSC->getZExtValue();
4752
if (!isLegalICmpImmediate((int32_t)C)) {
4753
// Constant does not fit, try adjusting it by one.
4754
switch (CC) {
4755
default: break;
4756
case ISD::SETLT:
4757
case ISD::SETGE:
4758
if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4759
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4760
RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4761
}
4762
break;
4763
case ISD::SETULT:
4764
case ISD::SETUGE:
4765
if (C != 0 && isLegalICmpImmediate(C-1)) {
4766
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4767
RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4768
}
4769
break;
4770
case ISD::SETLE:
4771
case ISD::SETGT:
4772
if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4773
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4774
RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4775
}
4776
break;
4777
case ISD::SETULE:
4778
case ISD::SETUGT:
4779
if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4780
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4781
RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4782
}
4783
break;
4784
}
4785
}
4786
} else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4787
(ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4788
// In ARM and Thumb-2, the compare instructions can shift their second
4789
// operand.
4790
CC = ISD::getSetCCSwappedOperands(CC);
4791
std::swap(LHS, RHS);
4792
}
4793
4794
// Thumb1 has very limited immediate modes, so turning an "and" into a
4795
// shift can save multiple instructions.
4796
//
4797
// If we have (x & C1), and C1 is an appropriate mask, we can transform it
4798
// into "((x << n) >> n)". But that isn't necessarily profitable on its
4799
// own. If it's the operand to an unsigned comparison with an immediate,
4800
// we can eliminate one of the shifts: we transform
4801
// "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4802
//
4803
// We avoid transforming cases which aren't profitable due to encoding
4804
// details:
4805
//
4806
// 1. C2 fits into the immediate field of a cmp, and the transformed version
4807
// would not; in that case, we're essentially trading one immediate load for
4808
// another.
4809
// 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4810
// 3. C2 is zero; we have other code for this special case.
4811
//
4812
// FIXME: Figure out profitability for Thumb2; we usually can't save an
4813
// instruction, since the AND is always one instruction anyway, but we could
4814
// use narrow instructions in some cases.
4815
if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4816
LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4817
LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4818
!isSignedIntSetCC(CC)) {
4819
unsigned Mask = LHS.getConstantOperandVal(1);
4820
auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4821
uint64_t RHSV = RHSC->getZExtValue();
4822
if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4823
unsigned ShiftBits = llvm::countl_zero(Mask);
4824
if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4825
SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4826
LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4827
RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4828
}
4829
}
4830
}
4831
4832
// The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4833
// single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4834
// way a cmp would.
4835
// FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4836
// some tweaks to the heuristics for the previous and->shift transform.
4837
// FIXME: Optimize cases where the LHS isn't a shift.
4838
if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4839
isa<ConstantSDNode>(RHS) && RHS->getAsZExtVal() == 0x80000000U &&
4840
CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4841
LHS.getConstantOperandVal(1) < 31) {
4842
unsigned ShiftAmt = LHS.getConstantOperandVal(1) + 1;
4843
SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4844
DAG.getVTList(MVT::i32, MVT::i32),
4845
LHS.getOperand(0),
4846
DAG.getConstant(ShiftAmt, dl, MVT::i32));
4847
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4848
Shift.getValue(1), SDValue());
4849
ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4850
return Chain.getValue(1);
4851
}
4852
4853
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4854
4855
// If the RHS is a constant zero then the V (overflow) flag will never be
4856
// set. This can allow us to simplify GE to PL or LT to MI, which can be
4857
// simpler for other passes (like the peephole optimiser) to deal with.
4858
if (isNullConstant(RHS)) {
4859
switch (CondCode) {
4860
default: break;
4861
case ARMCC::GE:
4862
CondCode = ARMCC::PL;
4863
break;
4864
case ARMCC::LT:
4865
CondCode = ARMCC::MI;
4866
break;
4867
}
4868
}
4869
4870
ARMISD::NodeType CompareType;
4871
switch (CondCode) {
4872
default:
4873
CompareType = ARMISD::CMP;
4874
break;
4875
case ARMCC::EQ:
4876
case ARMCC::NE:
4877
// Uses only Z Flag
4878
CompareType = ARMISD::CMPZ;
4879
break;
4880
}
4881
ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4882
return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4883
}
4884
4885
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4886
SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4887
SelectionDAG &DAG, const SDLoc &dl,
4888
bool Signaling) const {
4889
assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4890
SDValue Cmp;
4891
if (!isFloatingPointZero(RHS))
4892
Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP,
4893
dl, MVT::Glue, LHS, RHS);
4894
else
4895
Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0,
4896
dl, MVT::Glue, LHS);
4897
return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4898
}
4899
4900
/// duplicateCmp - Glue values can have only one use, so this function
4901
/// duplicates a comparison node.
4902
SDValue
4903
ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4904
unsigned Opc = Cmp.getOpcode();
4905
SDLoc DL(Cmp);
4906
if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4907
return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4908
4909
assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4910
Cmp = Cmp.getOperand(0);
4911
Opc = Cmp.getOpcode();
4912
if (Opc == ARMISD::CMPFP)
4913
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4914
else {
4915
assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4916
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
4917
}
4918
return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4919
}
4920
4921
// This function returns three things: the arithmetic computation itself
4922
// (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4923
// comparison and the condition code define the case in which the arithmetic
4924
// computation *does not* overflow.
4925
std::pair<SDValue, SDValue>
4926
ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4927
SDValue &ARMcc) const {
4928
assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
4929
4930
SDValue Value, OverflowCmp;
4931
SDValue LHS = Op.getOperand(0);
4932
SDValue RHS = Op.getOperand(1);
4933
SDLoc dl(Op);
4934
4935
// FIXME: We are currently always generating CMPs because we don't support
4936
// generating CMN through the backend. This is not as good as the natural
4937
// CMP case because it causes a register dependency and cannot be folded
4938
// later.
4939
4940
switch (Op.getOpcode()) {
4941
default:
4942
llvm_unreachable("Unknown overflow instruction!");
4943
case ISD::SADDO:
4944
ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4945
Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4946
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4947
break;
4948
case ISD::UADDO:
4949
ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4950
// We use ADDC here to correspond to its use in LowerUnsignedALUO.
4951
// We do not use it in the USUBO case as Value may not be used.
4952
Value = DAG.getNode(ARMISD::ADDC, dl,
4953
DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4954
.getValue(0);
4955
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4956
break;
4957
case ISD::SSUBO:
4958
ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4959
Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4960
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4961
break;
4962
case ISD::USUBO:
4963
ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4964
Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4965
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4966
break;
4967
case ISD::UMULO:
4968
// We generate a UMUL_LOHI and then check if the high word is 0.
4969
ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4970
Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4971
DAG.getVTList(Op.getValueType(), Op.getValueType()),
4972
LHS, RHS);
4973
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4974
DAG.getConstant(0, dl, MVT::i32));
4975
Value = Value.getValue(0); // We only want the low 32 bits for the result.
4976
break;
4977
case ISD::SMULO:
4978
// We generate a SMUL_LOHI and then check if all the bits of the high word
4979
// are the same as the sign bit of the low word.
4980
ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4981
Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4982
DAG.getVTList(Op.getValueType(), Op.getValueType()),
4983
LHS, RHS);
4984
OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4985
DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4986
Value.getValue(0),
4987
DAG.getConstant(31, dl, MVT::i32)));
4988
Value = Value.getValue(0); // We only want the low 32 bits for the result.
4989
break;
4990
} // switch (...)
4991
4992
return std::make_pair(Value, OverflowCmp);
4993
}
4994
4995
SDValue
4996
ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4997
// Let legalize expand this if it isn't a legal type yet.
4998
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4999
return SDValue();
5000
5001
SDValue Value, OverflowCmp;
5002
SDValue ARMcc;
5003
std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
5004
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5005
SDLoc dl(Op);
5006
// We use 0 and 1 as false and true values.
5007
SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
5008
SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
5009
EVT VT = Op.getValueType();
5010
5011
SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
5012
ARMcc, CCR, OverflowCmp);
5013
5014
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5015
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
5016
}
5017
5018
static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
5019
SelectionDAG &DAG) {
5020
SDLoc DL(BoolCarry);
5021
EVT CarryVT = BoolCarry.getValueType();
5022
5023
// This converts the boolean value carry into the carry flag by doing
5024
// ARMISD::SUBC Carry, 1
5025
SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
5026
DAG.getVTList(CarryVT, MVT::i32),
5027
BoolCarry, DAG.getConstant(1, DL, CarryVT));
5028
return Carry.getValue(1);
5029
}
5030
5031
static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
5032
SelectionDAG &DAG) {
5033
SDLoc DL(Flags);
5034
5035
// Now convert the carry flag into a boolean carry. We do this
5036
// using ARMISD:ADDE 0, 0, Carry
5037
return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
5038
DAG.getConstant(0, DL, MVT::i32),
5039
DAG.getConstant(0, DL, MVT::i32), Flags);
5040
}
5041
5042
SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
5043
SelectionDAG &DAG) const {
5044
// Let legalize expand this if it isn't a legal type yet.
5045
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
5046
return SDValue();
5047
5048
SDValue LHS = Op.getOperand(0);
5049
SDValue RHS = Op.getOperand(1);
5050
SDLoc dl(Op);
5051
5052
EVT VT = Op.getValueType();
5053
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5054
SDValue Value;
5055
SDValue Overflow;
5056
switch (Op.getOpcode()) {
5057
default:
5058
llvm_unreachable("Unknown overflow instruction!");
5059
case ISD::UADDO:
5060
Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
5061
// Convert the carry flag into a boolean value.
5062
Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
5063
break;
5064
case ISD::USUBO: {
5065
Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
5066
// Convert the carry flag into a boolean value.
5067
Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
5068
// ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
5069
// value. So compute 1 - C.
5070
Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
5071
DAG.getConstant(1, dl, MVT::i32), Overflow);
5072
break;
5073
}
5074
}
5075
5076
return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
5077
}
5078
5079
static SDValue LowerADDSUBSAT(SDValue Op, SelectionDAG &DAG,
5080
const ARMSubtarget *Subtarget) {
5081
EVT VT = Op.getValueType();
5082
if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP() || Subtarget->isThumb1Only())
5083
return SDValue();
5084
if (!VT.isSimple())
5085
return SDValue();
5086
5087
unsigned NewOpcode;
5088
switch (VT.getSimpleVT().SimpleTy) {
5089
default:
5090
return SDValue();
5091
case MVT::i8:
5092
switch (Op->getOpcode()) {
5093
case ISD::UADDSAT:
5094
NewOpcode = ARMISD::UQADD8b;
5095
break;
5096
case ISD::SADDSAT:
5097
NewOpcode = ARMISD::QADD8b;
5098
break;
5099
case ISD::USUBSAT:
5100
NewOpcode = ARMISD::UQSUB8b;
5101
break;
5102
case ISD::SSUBSAT:
5103
NewOpcode = ARMISD::QSUB8b;
5104
break;
5105
}
5106
break;
5107
case MVT::i16:
5108
switch (Op->getOpcode()) {
5109
case ISD::UADDSAT:
5110
NewOpcode = ARMISD::UQADD16b;
5111
break;
5112
case ISD::SADDSAT:
5113
NewOpcode = ARMISD::QADD16b;
5114
break;
5115
case ISD::USUBSAT:
5116
NewOpcode = ARMISD::UQSUB16b;
5117
break;
5118
case ISD::SSUBSAT:
5119
NewOpcode = ARMISD::QSUB16b;
5120
break;
5121
}
5122
break;
5123
}
5124
5125
SDLoc dl(Op);
5126
SDValue Add =
5127
DAG.getNode(NewOpcode, dl, MVT::i32,
5128
DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
5129
DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
5130
return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
5131
}
5132
5133
SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
5134
SDValue Cond = Op.getOperand(0);
5135
SDValue SelectTrue = Op.getOperand(1);
5136
SDValue SelectFalse = Op.getOperand(2);
5137
SDLoc dl(Op);
5138
unsigned Opc = Cond.getOpcode();
5139
5140
if (Cond.getResNo() == 1 &&
5141
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5142
Opc == ISD::USUBO)) {
5143
if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5144
return SDValue();
5145
5146
SDValue Value, OverflowCmp;
5147
SDValue ARMcc;
5148
std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5149
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5150
EVT VT = Op.getValueType();
5151
5152
return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
5153
OverflowCmp, DAG);
5154
}
5155
5156
// Convert:
5157
//
5158
// (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
5159
// (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
5160
//
5161
if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
5162
const ConstantSDNode *CMOVTrue =
5163
dyn_cast<ConstantSDNode>(Cond.getOperand(0));
5164
const ConstantSDNode *CMOVFalse =
5165
dyn_cast<ConstantSDNode>(Cond.getOperand(1));
5166
5167
if (CMOVTrue && CMOVFalse) {
5168
unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
5169
unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
5170
5171
SDValue True;
5172
SDValue False;
5173
if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
5174
True = SelectTrue;
5175
False = SelectFalse;
5176
} else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
5177
True = SelectFalse;
5178
False = SelectTrue;
5179
}
5180
5181
if (True.getNode() && False.getNode()) {
5182
EVT VT = Op.getValueType();
5183
SDValue ARMcc = Cond.getOperand(2);
5184
SDValue CCR = Cond.getOperand(3);
5185
SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
5186
assert(True.getValueType() == VT);
5187
return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
5188
}
5189
}
5190
}
5191
5192
// ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
5193
// undefined bits before doing a full-word comparison with zero.
5194
Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
5195
DAG.getConstant(1, dl, Cond.getValueType()));
5196
5197
return DAG.getSelectCC(dl, Cond,
5198
DAG.getConstant(0, dl, Cond.getValueType()),
5199
SelectTrue, SelectFalse, ISD::SETNE);
5200
}
5201
5202
static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
5203
bool &swpCmpOps, bool &swpVselOps) {
5204
// Start by selecting the GE condition code for opcodes that return true for
5205
// 'equality'
5206
if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
5207
CC == ISD::SETULE || CC == ISD::SETGE || CC == ISD::SETLE)
5208
CondCode = ARMCC::GE;
5209
5210
// and GT for opcodes that return false for 'equality'.
5211
else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
5212
CC == ISD::SETULT || CC == ISD::SETGT || CC == ISD::SETLT)
5213
CondCode = ARMCC::GT;
5214
5215
// Since we are constrained to GE/GT, if the opcode contains 'less', we need
5216
// to swap the compare operands.
5217
if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
5218
CC == ISD::SETULT || CC == ISD::SETLE || CC == ISD::SETLT)
5219
swpCmpOps = true;
5220
5221
// Both GT and GE are ordered comparisons, and return false for 'unordered'.
5222
// If we have an unordered opcode, we need to swap the operands to the VSEL
5223
// instruction (effectively negating the condition).
5224
//
5225
// This also has the effect of swapping which one of 'less' or 'greater'
5226
// returns true, so we also swap the compare operands. It also switches
5227
// whether we return true for 'equality', so we compensate by picking the
5228
// opposite condition code to our original choice.
5229
if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
5230
CC == ISD::SETUGT) {
5231
swpCmpOps = !swpCmpOps;
5232
swpVselOps = !swpVselOps;
5233
CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
5234
}
5235
5236
// 'ordered' is 'anything but unordered', so use the VS condition code and
5237
// swap the VSEL operands.
5238
if (CC == ISD::SETO) {
5239
CondCode = ARMCC::VS;
5240
swpVselOps = true;
5241
}
5242
5243
// 'unordered or not equal' is 'anything but equal', so use the EQ condition
5244
// code and swap the VSEL operands. Also do this if we don't care about the
5245
// unordered case.
5246
if (CC == ISD::SETUNE || CC == ISD::SETNE) {
5247
CondCode = ARMCC::EQ;
5248
swpVselOps = true;
5249
}
5250
}
5251
5252
SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
5253
SDValue TrueVal, SDValue ARMcc, SDValue CCR,
5254
SDValue Cmp, SelectionDAG &DAG) const {
5255
if (!Subtarget->hasFP64() && VT == MVT::f64) {
5256
FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5257
DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
5258
TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5259
DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
5260
5261
SDValue TrueLow = TrueVal.getValue(0);
5262
SDValue TrueHigh = TrueVal.getValue(1);
5263
SDValue FalseLow = FalseVal.getValue(0);
5264
SDValue FalseHigh = FalseVal.getValue(1);
5265
5266
SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
5267
ARMcc, CCR, Cmp);
5268
SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
5269
ARMcc, CCR, duplicateCmp(Cmp, DAG));
5270
5271
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
5272
} else {
5273
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
5274
Cmp);
5275
}
5276
}
5277
5278
static bool isGTorGE(ISD::CondCode CC) {
5279
return CC == ISD::SETGT || CC == ISD::SETGE;
5280
}
5281
5282
static bool isLTorLE(ISD::CondCode CC) {
5283
return CC == ISD::SETLT || CC == ISD::SETLE;
5284
}
5285
5286
// See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
5287
// All of these conditions (and their <= and >= counterparts) will do:
5288
// x < k ? k : x
5289
// x > k ? x : k
5290
// k < x ? x : k
5291
// k > x ? k : x
5292
static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
5293
const SDValue TrueVal, const SDValue FalseVal,
5294
const ISD::CondCode CC, const SDValue K) {
5295
return (isGTorGE(CC) &&
5296
((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
5297
(isLTorLE(CC) &&
5298
((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
5299
}
5300
5301
// Check if two chained conditionals could be converted into SSAT or USAT.
5302
//
5303
// SSAT can replace a set of two conditional selectors that bound a number to an
5304
// interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
5305
//
5306
// x < -k ? -k : (x > k ? k : x)
5307
// x < -k ? -k : (x < k ? x : k)
5308
// x > -k ? (x > k ? k : x) : -k
5309
// x < k ? (x < -k ? -k : x) : k
5310
// etc.
5311
//
5312
// LLVM canonicalizes these to either a min(max()) or a max(min())
5313
// pattern. This function tries to match one of these and will return a SSAT
5314
// node if successful.
5315
//
5316
// USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1
5317
// is a power of 2.
5318
static SDValue LowerSaturatingConditional(SDValue Op, SelectionDAG &DAG) {
5319
EVT VT = Op.getValueType();
5320
SDValue V1 = Op.getOperand(0);
5321
SDValue K1 = Op.getOperand(1);
5322
SDValue TrueVal1 = Op.getOperand(2);
5323
SDValue FalseVal1 = Op.getOperand(3);
5324
ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5325
5326
const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
5327
if (Op2.getOpcode() != ISD::SELECT_CC)
5328
return SDValue();
5329
5330
SDValue V2 = Op2.getOperand(0);
5331
SDValue K2 = Op2.getOperand(1);
5332
SDValue TrueVal2 = Op2.getOperand(2);
5333
SDValue FalseVal2 = Op2.getOperand(3);
5334
ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
5335
5336
SDValue V1Tmp = V1;
5337
SDValue V2Tmp = V2;
5338
5339
// Check that the registers and the constants match a max(min()) or min(max())
5340
// pattern
5341
if (V1Tmp != TrueVal1 || V2Tmp != TrueVal2 || K1 != FalseVal1 ||
5342
K2 != FalseVal2 ||
5343
!((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2))))
5344
return SDValue();
5345
5346
// Check that the constant in the lower-bound check is
5347
// the opposite of the constant in the upper-bound check
5348
// in 1's complement.
5349
if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2))
5350
return SDValue();
5351
5352
int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue();
5353
int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue();
5354
int64_t PosVal = std::max(Val1, Val2);
5355
int64_t NegVal = std::min(Val1, Val2);
5356
5357
if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) ||
5358
!isPowerOf2_64(PosVal + 1))
5359
return SDValue();
5360
5361
// Handle the difference between USAT (unsigned) and SSAT (signed)
5362
// saturation
5363
// At this point, PosVal is guaranteed to be positive
5364
uint64_t K = PosVal;
5365
SDLoc dl(Op);
5366
if (Val1 == ~Val2)
5367
return DAG.getNode(ARMISD::SSAT, dl, VT, V2Tmp,
5368
DAG.getConstant(llvm::countr_one(K), dl, VT));
5369
if (NegVal == 0)
5370
return DAG.getNode(ARMISD::USAT, dl, VT, V2Tmp,
5371
DAG.getConstant(llvm::countr_one(K), dl, VT));
5372
5373
return SDValue();
5374
}
5375
5376
// Check if a condition of the type x < k ? k : x can be converted into a
5377
// bit operation instead of conditional moves.
5378
// Currently this is allowed given:
5379
// - The conditions and values match up
5380
// - k is 0 or -1 (all ones)
5381
// This function will not check the last condition, thats up to the caller
5382
// It returns true if the transformation can be made, and in such case
5383
// returns x in V, and k in SatK.
5384
static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
5385
SDValue &SatK)
5386
{
5387
SDValue LHS = Op.getOperand(0);
5388
SDValue RHS = Op.getOperand(1);
5389
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5390
SDValue TrueVal = Op.getOperand(2);
5391
SDValue FalseVal = Op.getOperand(3);
5392
5393
SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
5394
? &RHS
5395
: nullptr;
5396
5397
// No constant operation in comparison, early out
5398
if (!K)
5399
return false;
5400
5401
SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
5402
V = (KTmp == TrueVal) ? FalseVal : TrueVal;
5403
SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
5404
5405
// If the constant on left and right side, or variable on left and right,
5406
// does not match, early out
5407
if (*K != KTmp || V != VTmp)
5408
return false;
5409
5410
if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
5411
SatK = *K;
5412
return true;
5413
}
5414
5415
return false;
5416
}
5417
5418
bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
5419
if (VT == MVT::f32)
5420
return !Subtarget->hasVFP2Base();
5421
if (VT == MVT::f64)
5422
return !Subtarget->hasFP64();
5423
if (VT == MVT::f16)
5424
return !Subtarget->hasFullFP16();
5425
return false;
5426
}
5427
5428
SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5429
EVT VT = Op.getValueType();
5430
SDLoc dl(Op);
5431
5432
// Try to convert two saturating conditional selects into a single SSAT
5433
if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2())
5434
if (SDValue SatValue = LowerSaturatingConditional(Op, DAG))
5435
return SatValue;
5436
5437
// Try to convert expressions of the form x < k ? k : x (and similar forms)
5438
// into more efficient bit operations, which is possible when k is 0 or -1
5439
// On ARM and Thumb-2 which have flexible operand 2 this will result in
5440
// single instructions. On Thumb the shift and the bit operation will be two
5441
// instructions.
5442
// Only allow this transformation on full-width (32-bit) operations
5443
SDValue LowerSatConstant;
5444
SDValue SatValue;
5445
if (VT == MVT::i32 &&
5446
isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
5447
SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
5448
DAG.getConstant(31, dl, VT));
5449
if (isNullConstant(LowerSatConstant)) {
5450
SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
5451
DAG.getAllOnesConstant(dl, VT));
5452
return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
5453
} else if (isAllOnesConstant(LowerSatConstant))
5454
return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
5455
}
5456
5457
SDValue LHS = Op.getOperand(0);
5458
SDValue RHS = Op.getOperand(1);
5459
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5460
SDValue TrueVal = Op.getOperand(2);
5461
SDValue FalseVal = Op.getOperand(3);
5462
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
5463
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
5464
5465
if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
5466
LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
5467
unsigned TVal = CTVal->getZExtValue();
5468
unsigned FVal = CFVal->getZExtValue();
5469
unsigned Opcode = 0;
5470
5471
if (TVal == ~FVal) {
5472
Opcode = ARMISD::CSINV;
5473
} else if (TVal == ~FVal + 1) {
5474
Opcode = ARMISD::CSNEG;
5475
} else if (TVal + 1 == FVal) {
5476
Opcode = ARMISD::CSINC;
5477
} else if (TVal == FVal + 1) {
5478
Opcode = ARMISD::CSINC;
5479
std::swap(TrueVal, FalseVal);
5480
std::swap(TVal, FVal);
5481
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5482
}
5483
5484
if (Opcode) {
5485
// If one of the constants is cheaper than another, materialise the
5486
// cheaper one and let the csel generate the other.
5487
if (Opcode != ARMISD::CSINC &&
5488
HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
5489
std::swap(TrueVal, FalseVal);
5490
std::swap(TVal, FVal);
5491
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5492
}
5493
5494
// Attempt to use ZR checking TVal is 0, possibly inverting the condition
5495
// to get there. CSINC not is invertable like the other two (~(~a) == a,
5496
// -(-a) == a, but (a+1)+1 != a).
5497
if (FVal == 0 && Opcode != ARMISD::CSINC) {
5498
std::swap(TrueVal, FalseVal);
5499
std::swap(TVal, FVal);
5500
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5501
}
5502
5503
// Drops F's value because we can get it by inverting/negating TVal.
5504
FalseVal = TrueVal;
5505
5506
SDValue ARMcc;
5507
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5508
EVT VT = TrueVal.getValueType();
5509
return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5510
}
5511
}
5512
5513
if (isUnsupportedFloatingType(LHS.getValueType())) {
5514
DAG.getTargetLoweringInfo().softenSetCCOperands(
5515
DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5516
5517
// If softenSetCCOperands only returned one value, we should compare it to
5518
// zero.
5519
if (!RHS.getNode()) {
5520
RHS = DAG.getConstant(0, dl, LHS.getValueType());
5521
CC = ISD::SETNE;
5522
}
5523
}
5524
5525
if (LHS.getValueType() == MVT::i32) {
5526
// Try to generate VSEL on ARMv8.
5527
// The VSEL instruction can't use all the usual ARM condition
5528
// codes: it only has two bits to select the condition code, so it's
5529
// constrained to use only GE, GT, VS and EQ.
5530
//
5531
// To implement all the various ISD::SETXXX opcodes, we sometimes need to
5532
// swap the operands of the previous compare instruction (effectively
5533
// inverting the compare condition, swapping 'less' and 'greater') and
5534
// sometimes need to swap the operands to the VSEL (which inverts the
5535
// condition in the sense of firing whenever the previous condition didn't)
5536
if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
5537
TrueVal.getValueType() == MVT::f32 ||
5538
TrueVal.getValueType() == MVT::f64)) {
5539
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5540
if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
5541
CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
5542
CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5543
std::swap(TrueVal, FalseVal);
5544
}
5545
}
5546
5547
SDValue ARMcc;
5548
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5549
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5550
// Choose GE over PL, which vsel does now support
5551
if (ARMcc->getAsZExtVal() == ARMCC::PL)
5552
ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
5553
return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5554
}
5555
5556
ARMCC::CondCodes CondCode, CondCode2;
5557
FPCCToARMCC(CC, CondCode, CondCode2);
5558
5559
// Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5560
// match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5561
// must use VSEL (limited condition codes), due to not having conditional f16
5562
// moves.
5563
if (Subtarget->hasFPARMv8Base() &&
5564
!(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
5565
(TrueVal.getValueType() == MVT::f16 ||
5566
TrueVal.getValueType() == MVT::f32 ||
5567
TrueVal.getValueType() == MVT::f64)) {
5568
bool swpCmpOps = false;
5569
bool swpVselOps = false;
5570
checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
5571
5572
if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
5573
CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
5574
if (swpCmpOps)
5575
std::swap(LHS, RHS);
5576
if (swpVselOps)
5577
std::swap(TrueVal, FalseVal);
5578
}
5579
}
5580
5581
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5582
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5583
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5584
SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5585
if (CondCode2 != ARMCC::AL) {
5586
SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
5587
// FIXME: Needs another CMP because flag can have but one use.
5588
SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
5589
Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
5590
}
5591
return Result;
5592
}
5593
5594
/// canChangeToInt - Given the fp compare operand, return true if it is suitable
5595
/// to morph to an integer compare sequence.
5596
static bool canChangeToInt(SDValue Op, bool &SeenZero,
5597
const ARMSubtarget *Subtarget) {
5598
SDNode *N = Op.getNode();
5599
if (!N->hasOneUse())
5600
// Otherwise it requires moving the value from fp to integer registers.
5601
return false;
5602
if (!N->getNumValues())
5603
return false;
5604
EVT VT = Op.getValueType();
5605
if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5606
// f32 case is generally profitable. f64 case only makes sense when vcmpe +
5607
// vmrs are very slow, e.g. cortex-a8.
5608
return false;
5609
5610
if (isFloatingPointZero(Op)) {
5611
SeenZero = true;
5612
return true;
5613
}
5614
return ISD::isNormalLoad(N);
5615
}
5616
5617
static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
5618
if (isFloatingPointZero(Op))
5619
return DAG.getConstant(0, SDLoc(Op), MVT::i32);
5620
5621
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
5622
return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
5623
Ld->getPointerInfo(), Ld->getAlign(),
5624
Ld->getMemOperand()->getFlags());
5625
5626
llvm_unreachable("Unknown VFP cmp argument!");
5627
}
5628
5629
static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
5630
SDValue &RetVal1, SDValue &RetVal2) {
5631
SDLoc dl(Op);
5632
5633
if (isFloatingPointZero(Op)) {
5634
RetVal1 = DAG.getConstant(0, dl, MVT::i32);
5635
RetVal2 = DAG.getConstant(0, dl, MVT::i32);
5636
return;
5637
}
5638
5639
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
5640
SDValue Ptr = Ld->getBasePtr();
5641
RetVal1 =
5642
DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
5643
Ld->getAlign(), Ld->getMemOperand()->getFlags());
5644
5645
EVT PtrType = Ptr.getValueType();
5646
SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
5647
PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
5648
RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5649
Ld->getPointerInfo().getWithOffset(4),
5650
commonAlignment(Ld->getAlign(), 4),
5651
Ld->getMemOperand()->getFlags());
5652
return;
5653
}
5654
5655
llvm_unreachable("Unknown VFP cmp argument!");
5656
}
5657
5658
/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5659
/// f32 and even f64 comparisons to integer ones.
5660
SDValue
5661
ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
5662
SDValue Chain = Op.getOperand(0);
5663
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5664
SDValue LHS = Op.getOperand(2);
5665
SDValue RHS = Op.getOperand(3);
5666
SDValue Dest = Op.getOperand(4);
5667
SDLoc dl(Op);
5668
5669
bool LHSSeenZero = false;
5670
bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
5671
bool RHSSeenZero = false;
5672
bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
5673
if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5674
// If unsafe fp math optimization is enabled and there are no other uses of
5675
// the CMP operands, and the condition code is EQ or NE, we can optimize it
5676
// to an integer comparison.
5677
if (CC == ISD::SETOEQ)
5678
CC = ISD::SETEQ;
5679
else if (CC == ISD::SETUNE)
5680
CC = ISD::SETNE;
5681
5682
SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5683
SDValue ARMcc;
5684
if (LHS.getValueType() == MVT::f32) {
5685
LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5686
bitcastf32Toi32(LHS, DAG), Mask);
5687
RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5688
bitcastf32Toi32(RHS, DAG), Mask);
5689
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5690
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5691
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5692
Chain, Dest, ARMcc, CCR, Cmp);
5693
}
5694
5695
SDValue LHS1, LHS2;
5696
SDValue RHS1, RHS2;
5697
expandf64Toi32(LHS, DAG, LHS1, LHS2);
5698
expandf64Toi32(RHS, DAG, RHS1, RHS2);
5699
LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
5700
RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
5701
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5702
ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5703
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5704
SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5705
return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
5706
}
5707
5708
return SDValue();
5709
}
5710
5711
SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
5712
SDValue Chain = Op.getOperand(0);
5713
SDValue Cond = Op.getOperand(1);
5714
SDValue Dest = Op.getOperand(2);
5715
SDLoc dl(Op);
5716
5717
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5718
// instruction.
5719
unsigned Opc = Cond.getOpcode();
5720
bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5721
!Subtarget->isThumb1Only();
5722
if (Cond.getResNo() == 1 &&
5723
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5724
Opc == ISD::USUBO || OptimizeMul)) {
5725
// Only lower legal XALUO ops.
5726
if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5727
return SDValue();
5728
5729
// The actual operation with overflow check.
5730
SDValue Value, OverflowCmp;
5731
SDValue ARMcc;
5732
std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5733
5734
// Reverse the condition code.
5735
ARMCC::CondCodes CondCode =
5736
(ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5737
CondCode = ARMCC::getOppositeCondition(CondCode);
5738
ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5739
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5740
5741
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5742
OverflowCmp);
5743
}
5744
5745
return SDValue();
5746
}
5747
5748
SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5749
SDValue Chain = Op.getOperand(0);
5750
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5751
SDValue LHS = Op.getOperand(2);
5752
SDValue RHS = Op.getOperand(3);
5753
SDValue Dest = Op.getOperand(4);
5754
SDLoc dl(Op);
5755
5756
if (isUnsupportedFloatingType(LHS.getValueType())) {
5757
DAG.getTargetLoweringInfo().softenSetCCOperands(
5758
DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5759
5760
// If softenSetCCOperands only returned one value, we should compare it to
5761
// zero.
5762
if (!RHS.getNode()) {
5763
RHS = DAG.getConstant(0, dl, LHS.getValueType());
5764
CC = ISD::SETNE;
5765
}
5766
}
5767
5768
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5769
// instruction.
5770
unsigned Opc = LHS.getOpcode();
5771
bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5772
!Subtarget->isThumb1Only();
5773
if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5774
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5775
Opc == ISD::USUBO || OptimizeMul) &&
5776
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
5777
// Only lower legal XALUO ops.
5778
if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5779
return SDValue();
5780
5781
// The actual operation with overflow check.
5782
SDValue Value, OverflowCmp;
5783
SDValue ARMcc;
5784
std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5785
5786
if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5787
// Reverse the condition code.
5788
ARMCC::CondCodes CondCode =
5789
(ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5790
CondCode = ARMCC::getOppositeCondition(CondCode);
5791
ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5792
}
5793
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5794
5795
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5796
OverflowCmp);
5797
}
5798
5799
if (LHS.getValueType() == MVT::i32) {
5800
SDValue ARMcc;
5801
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5802
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5803
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5804
Chain, Dest, ARMcc, CCR, Cmp);
5805
}
5806
5807
if (getTargetMachine().Options.UnsafeFPMath &&
5808
(CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5809
CC == ISD::SETNE || CC == ISD::SETUNE)) {
5810
if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5811
return Result;
5812
}
5813
5814
ARMCC::CondCodes CondCode, CondCode2;
5815
FPCCToARMCC(CC, CondCode, CondCode2);
5816
5817
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5818
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5819
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5820
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5821
SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5822
SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5823
if (CondCode2 != ARMCC::AL) {
5824
ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5825
SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5826
Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5827
}
5828
return Res;
5829
}
5830
5831
SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5832
SDValue Chain = Op.getOperand(0);
5833
SDValue Table = Op.getOperand(1);
5834
SDValue Index = Op.getOperand(2);
5835
SDLoc dl(Op);
5836
5837
EVT PTy = getPointerTy(DAG.getDataLayout());
5838
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5839
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5840
Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5841
Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5842
SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5843
if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5844
// Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5845
// which does another jump to the destination. This also makes it easier
5846
// to translate it to TBB / TBH later (Thumb2 only).
5847
// FIXME: This might not work if the function is extremely large.
5848
return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5849
Addr, Op.getOperand(2), JTI);
5850
}
5851
if (isPositionIndependent() || Subtarget->isROPI()) {
5852
Addr =
5853
DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5854
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5855
Chain = Addr.getValue(1);
5856
Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5857
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5858
} else {
5859
Addr =
5860
DAG.getLoad(PTy, dl, Chain, Addr,
5861
MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5862
Chain = Addr.getValue(1);
5863
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5864
}
5865
}
5866
5867
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5868
EVT VT = Op.getValueType();
5869
SDLoc dl(Op);
5870
5871
if (Op.getValueType().getVectorElementType() == MVT::i32) {
5872
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5873
return Op;
5874
return DAG.UnrollVectorOp(Op.getNode());
5875
}
5876
5877
const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16();
5878
5879
EVT NewTy;
5880
const EVT OpTy = Op.getOperand(0).getValueType();
5881
if (OpTy == MVT::v4f32)
5882
NewTy = MVT::v4i32;
5883
else if (OpTy == MVT::v4f16 && HasFullFP16)
5884
NewTy = MVT::v4i16;
5885
else if (OpTy == MVT::v8f16 && HasFullFP16)
5886
NewTy = MVT::v8i16;
5887
else
5888
llvm_unreachable("Invalid type for custom lowering!");
5889
5890
if (VT != MVT::v4i16 && VT != MVT::v8i16)
5891
return DAG.UnrollVectorOp(Op.getNode());
5892
5893
Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5894
return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5895
}
5896
5897
SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5898
EVT VT = Op.getValueType();
5899
if (VT.isVector())
5900
return LowerVectorFP_TO_INT(Op, DAG);
5901
5902
bool IsStrict = Op->isStrictFPOpcode();
5903
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
5904
5905
if (isUnsupportedFloatingType(SrcVal.getValueType())) {
5906
RTLIB::Libcall LC;
5907
if (Op.getOpcode() == ISD::FP_TO_SINT ||
5908
Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
5909
LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
5910
Op.getValueType());
5911
else
5912
LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
5913
Op.getValueType());
5914
SDLoc Loc(Op);
5915
MakeLibCallOptions CallOptions;
5916
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
5917
SDValue Result;
5918
std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
5919
CallOptions, Loc, Chain);
5920
return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
5921
}
5922
5923
// FIXME: Remove this when we have strict fp instruction selection patterns
5924
if (IsStrict) {
5925
SDLoc Loc(Op);
5926
SDValue Result =
5927
DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
5928
: ISD::FP_TO_UINT,
5929
Loc, Op.getValueType(), SrcVal);
5930
return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
5931
}
5932
5933
return Op;
5934
}
5935
5936
static SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
5937
const ARMSubtarget *Subtarget) {
5938
EVT VT = Op.getValueType();
5939
EVT ToVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
5940
EVT FromVT = Op.getOperand(0).getValueType();
5941
5942
if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f32)
5943
return Op;
5944
if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f64 &&
5945
Subtarget->hasFP64())
5946
return Op;
5947
if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f16 &&
5948
Subtarget->hasFullFP16())
5949
return Op;
5950
if (VT == MVT::v4i32 && ToVT == MVT::i32 && FromVT == MVT::v4f32 &&
5951
Subtarget->hasMVEFloatOps())
5952
return Op;
5953
if (VT == MVT::v8i16 && ToVT == MVT::i16 && FromVT == MVT::v8f16 &&
5954
Subtarget->hasMVEFloatOps())
5955
return Op;
5956
5957
if (FromVT != MVT::v4f32 && FromVT != MVT::v8f16)
5958
return SDValue();
5959
5960
SDLoc DL(Op);
5961
bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
5962
unsigned BW = ToVT.getScalarSizeInBits() - IsSigned;
5963
SDValue CVT = DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
5964
DAG.getValueType(VT.getScalarType()));
5965
SDValue Max = DAG.getNode(IsSigned ? ISD::SMIN : ISD::UMIN, DL, VT, CVT,
5966
DAG.getConstant((1 << BW) - 1, DL, VT));
5967
if (IsSigned)
5968
Max = DAG.getNode(ISD::SMAX, DL, VT, Max,
5969
DAG.getConstant(-(1 << BW), DL, VT));
5970
return Max;
5971
}
5972
5973
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5974
EVT VT = Op.getValueType();
5975
SDLoc dl(Op);
5976
5977
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5978
if (VT.getVectorElementType() == MVT::f32)
5979
return Op;
5980
return DAG.UnrollVectorOp(Op.getNode());
5981
}
5982
5983
assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5984
Op.getOperand(0).getValueType() == MVT::v8i16) &&
5985
"Invalid type for custom lowering!");
5986
5987
const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16();
5988
5989
EVT DestVecType;
5990
if (VT == MVT::v4f32)
5991
DestVecType = MVT::v4i32;
5992
else if (VT == MVT::v4f16 && HasFullFP16)
5993
DestVecType = MVT::v4i16;
5994
else if (VT == MVT::v8f16 && HasFullFP16)
5995
DestVecType = MVT::v8i16;
5996
else
5997
return DAG.UnrollVectorOp(Op.getNode());
5998
5999
unsigned CastOpc;
6000
unsigned Opc;
6001
switch (Op.getOpcode()) {
6002
default: llvm_unreachable("Invalid opcode!");
6003
case ISD::SINT_TO_FP:
6004
CastOpc = ISD::SIGN_EXTEND;
6005
Opc = ISD::SINT_TO_FP;
6006
break;
6007
case ISD::UINT_TO_FP:
6008
CastOpc = ISD::ZERO_EXTEND;
6009
Opc = ISD::UINT_TO_FP;
6010
break;
6011
}
6012
6013
Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
6014
return DAG.getNode(Opc, dl, VT, Op);
6015
}
6016
6017
SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
6018
EVT VT = Op.getValueType();
6019
if (VT.isVector())
6020
return LowerVectorINT_TO_FP(Op, DAG);
6021
if (isUnsupportedFloatingType(VT)) {
6022
RTLIB::Libcall LC;
6023
if (Op.getOpcode() == ISD::SINT_TO_FP)
6024
LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
6025
Op.getValueType());
6026
else
6027
LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
6028
Op.getValueType());
6029
MakeLibCallOptions CallOptions;
6030
return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
6031
CallOptions, SDLoc(Op)).first;
6032
}
6033
6034
return Op;
6035
}
6036
6037
SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6038
// Implement fcopysign with a fabs and a conditional fneg.
6039
SDValue Tmp0 = Op.getOperand(0);
6040
SDValue Tmp1 = Op.getOperand(1);
6041
SDLoc dl(Op);
6042
EVT VT = Op.getValueType();
6043
EVT SrcVT = Tmp1.getValueType();
6044
bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
6045
Tmp0.getOpcode() == ARMISD::VMOVDRR;
6046
bool UseNEON = !InGPR && Subtarget->hasNEON();
6047
6048
if (UseNEON) {
6049
// Use VBSL to copy the sign bit.
6050
unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
6051
SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
6052
DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
6053
EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
6054
if (VT == MVT::f64)
6055
Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
6056
DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
6057
DAG.getConstant(32, dl, MVT::i32));
6058
else /*if (VT == MVT::f32)*/
6059
Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
6060
if (SrcVT == MVT::f32) {
6061
Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
6062
if (VT == MVT::f64)
6063
Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
6064
DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
6065
DAG.getConstant(32, dl, MVT::i32));
6066
} else if (VT == MVT::f32)
6067
Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
6068
DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
6069
DAG.getConstant(32, dl, MVT::i32));
6070
Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
6071
Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
6072
6073
SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
6074
dl, MVT::i32);
6075
AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
6076
SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
6077
DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
6078
6079
SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
6080
DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
6081
DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
6082
if (VT == MVT::f32) {
6083
Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
6084
Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
6085
DAG.getConstant(0, dl, MVT::i32));
6086
} else {
6087
Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
6088
}
6089
6090
return Res;
6091
}
6092
6093
// Bitcast operand 1 to i32.
6094
if (SrcVT == MVT::f64)
6095
Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
6096
Tmp1).getValue(1);
6097
Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
6098
6099
// Or in the signbit with integer operations.
6100
SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
6101
SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
6102
Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
6103
if (VT == MVT::f32) {
6104
Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
6105
DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
6106
return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
6107
DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
6108
}
6109
6110
// f64: Or the high part with signbit and then combine two parts.
6111
Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
6112
Tmp0);
6113
SDValue Lo = Tmp0.getValue(0);
6114
SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
6115
Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
6116
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
6117
}
6118
6119
SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
6120
MachineFunction &MF = DAG.getMachineFunction();
6121
MachineFrameInfo &MFI = MF.getFrameInfo();
6122
MFI.setReturnAddressIsTaken(true);
6123
6124
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
6125
return SDValue();
6126
6127
EVT VT = Op.getValueType();
6128
SDLoc dl(Op);
6129
unsigned Depth = Op.getConstantOperandVal(0);
6130
if (Depth) {
6131
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6132
SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
6133
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
6134
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
6135
MachinePointerInfo());
6136
}
6137
6138
// Return LR, which contains the return address. Mark it an implicit live-in.
6139
Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
6140
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
6141
}
6142
6143
SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
6144
const ARMBaseRegisterInfo &ARI =
6145
*static_cast<const ARMBaseRegisterInfo*>(RegInfo);
6146
MachineFunction &MF = DAG.getMachineFunction();
6147
MachineFrameInfo &MFI = MF.getFrameInfo();
6148
MFI.setFrameAddressIsTaken(true);
6149
6150
EVT VT = Op.getValueType();
6151
SDLoc dl(Op); // FIXME probably not meaningful
6152
unsigned Depth = Op.getConstantOperandVal(0);
6153
Register FrameReg = ARI.getFrameRegister(MF);
6154
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6155
while (Depth--)
6156
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
6157
MachinePointerInfo());
6158
return FrameAddr;
6159
}
6160
6161
// FIXME? Maybe this could be a TableGen attribute on some registers and
6162
// this table could be generated automatically from RegInfo.
6163
Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
6164
const MachineFunction &MF) const {
6165
Register Reg = StringSwitch<unsigned>(RegName)
6166
.Case("sp", ARM::SP)
6167
.Default(0);
6168
if (Reg)
6169
return Reg;
6170
report_fatal_error(Twine("Invalid register name \""
6171
+ StringRef(RegName) + "\"."));
6172
}
6173
6174
// Result is 64 bit value so split into two 32 bit values and return as a
6175
// pair of values.
6176
static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
6177
SelectionDAG &DAG) {
6178
SDLoc DL(N);
6179
6180
// This function is only supposed to be called for i64 type destination.
6181
assert(N->getValueType(0) == MVT::i64
6182
&& "ExpandREAD_REGISTER called for non-i64 type result.");
6183
6184
SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
6185
DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
6186
N->getOperand(0),
6187
N->getOperand(1));
6188
6189
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
6190
Read.getValue(1)));
6191
Results.push_back(Read.getOperand(0));
6192
}
6193
6194
/// \p BC is a bitcast that is about to be turned into a VMOVDRR.
6195
/// When \p DstVT, the destination type of \p BC, is on the vector
6196
/// register bank and the source of bitcast, \p Op, operates on the same bank,
6197
/// it might be possible to combine them, such that everything stays on the
6198
/// vector register bank.
6199
/// \p return The node that would replace \p BT, if the combine
6200
/// is possible.
6201
static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
6202
SelectionDAG &DAG) {
6203
SDValue Op = BC->getOperand(0);
6204
EVT DstVT = BC->getValueType(0);
6205
6206
// The only vector instruction that can produce a scalar (remember,
6207
// since the bitcast was about to be turned into VMOVDRR, the source
6208
// type is i64) from a vector is EXTRACT_VECTOR_ELT.
6209
// Moreover, we can do this combine only if there is one use.
6210
// Finally, if the destination type is not a vector, there is not
6211
// much point on forcing everything on the vector bank.
6212
if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6213
!Op.hasOneUse())
6214
return SDValue();
6215
6216
// If the index is not constant, we will introduce an additional
6217
// multiply that will stick.
6218
// Give up in that case.
6219
ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6220
if (!Index)
6221
return SDValue();
6222
unsigned DstNumElt = DstVT.getVectorNumElements();
6223
6224
// Compute the new index.
6225
const APInt &APIntIndex = Index->getAPIntValue();
6226
APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
6227
NewIndex *= APIntIndex;
6228
// Check if the new constant index fits into i32.
6229
if (NewIndex.getBitWidth() > 32)
6230
return SDValue();
6231
6232
// vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
6233
// vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
6234
SDLoc dl(Op);
6235
SDValue ExtractSrc = Op.getOperand(0);
6236
EVT VecVT = EVT::getVectorVT(
6237
*DAG.getContext(), DstVT.getScalarType(),
6238
ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
6239
SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
6240
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
6241
DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
6242
}
6243
6244
/// ExpandBITCAST - If the target supports VFP, this function is called to
6245
/// expand a bit convert where either the source or destination type is i64 to
6246
/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
6247
/// operand type is illegal (e.g., v2f32 for a target that doesn't support
6248
/// vectors), since the legalizer won't know what to do with that.
6249
SDValue ARMTargetLowering::ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
6250
const ARMSubtarget *Subtarget) const {
6251
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6252
SDLoc dl(N);
6253
SDValue Op = N->getOperand(0);
6254
6255
// This function is only supposed to be called for i16 and i64 types, either
6256
// as the source or destination of the bit convert.
6257
EVT SrcVT = Op.getValueType();
6258
EVT DstVT = N->getValueType(0);
6259
6260
if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) &&
6261
(DstVT == MVT::f16 || DstVT == MVT::bf16))
6262
return MoveToHPR(SDLoc(N), DAG, MVT::i32, DstVT.getSimpleVT(),
6263
DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i32, Op));
6264
6265
if ((DstVT == MVT::i16 || DstVT == MVT::i32) &&
6266
(SrcVT == MVT::f16 || SrcVT == MVT::bf16))
6267
return DAG.getNode(
6268
ISD::TRUNCATE, SDLoc(N), DstVT,
6269
MoveFromHPR(SDLoc(N), DAG, MVT::i32, SrcVT.getSimpleVT(), Op));
6270
6271
if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
6272
return SDValue();
6273
6274
// Turn i64->f64 into VMOVDRR.
6275
if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
6276
// Do not force values to GPRs (this is what VMOVDRR does for the inputs)
6277
// if we can combine the bitcast with its source.
6278
if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
6279
return Val;
6280
SDValue Lo, Hi;
6281
std::tie(Lo, Hi) = DAG.SplitScalar(Op, dl, MVT::i32, MVT::i32);
6282
return DAG.getNode(ISD::BITCAST, dl, DstVT,
6283
DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
6284
}
6285
6286
// Turn f64->i64 into VMOVRRD.
6287
if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
6288
SDValue Cvt;
6289
if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
6290
SrcVT.getVectorNumElements() > 1)
6291
Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6292
DAG.getVTList(MVT::i32, MVT::i32),
6293
DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
6294
else
6295
Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6296
DAG.getVTList(MVT::i32, MVT::i32), Op);
6297
// Merge the pieces into a single i64 value.
6298
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
6299
}
6300
6301
return SDValue();
6302
}
6303
6304
/// getZeroVector - Returns a vector of specified type with all zero elements.
6305
/// Zero vectors are used to represent vector negation and in those cases
6306
/// will be implemented with the NEON VNEG instruction. However, VNEG does
6307
/// not support i64 elements, so sometimes the zero vectors will need to be
6308
/// explicitly constructed. Regardless, use a canonical VMOV to create the
6309
/// zero vector.
6310
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
6311
assert(VT.isVector() && "Expected a vector type");
6312
// The canonical modified immediate encoding of a zero vector is....0!
6313
SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
6314
EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6315
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
6316
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6317
}
6318
6319
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
6320
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
6321
SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
6322
SelectionDAG &DAG) const {
6323
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6324
EVT VT = Op.getValueType();
6325
unsigned VTBits = VT.getSizeInBits();
6326
SDLoc dl(Op);
6327
SDValue ShOpLo = Op.getOperand(0);
6328
SDValue ShOpHi = Op.getOperand(1);
6329
SDValue ShAmt = Op.getOperand(2);
6330
SDValue ARMcc;
6331
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6332
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
6333
6334
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
6335
6336
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6337
DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6338
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
6339
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6340
DAG.getConstant(VTBits, dl, MVT::i32));
6341
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
6342
SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6343
SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
6344
SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6345
ISD::SETGE, ARMcc, DAG, dl);
6346
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
6347
ARMcc, CCR, CmpLo);
6348
6349
SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
6350
SDValue HiBigShift = Opc == ISD::SRA
6351
? DAG.getNode(Opc, dl, VT, ShOpHi,
6352
DAG.getConstant(VTBits - 1, dl, VT))
6353
: DAG.getConstant(0, dl, VT);
6354
SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6355
ISD::SETGE, ARMcc, DAG, dl);
6356
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6357
ARMcc, CCR, CmpHi);
6358
6359
SDValue Ops[2] = { Lo, Hi };
6360
return DAG.getMergeValues(Ops, dl);
6361
}
6362
6363
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
6364
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
6365
SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
6366
SelectionDAG &DAG) const {
6367
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6368
EVT VT = Op.getValueType();
6369
unsigned VTBits = VT.getSizeInBits();
6370
SDLoc dl(Op);
6371
SDValue ShOpLo = Op.getOperand(0);
6372
SDValue ShOpHi = Op.getOperand(1);
6373
SDValue ShAmt = Op.getOperand(2);
6374
SDValue ARMcc;
6375
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6376
6377
assert(Op.getOpcode() == ISD::SHL_PARTS);
6378
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6379
DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6380
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
6381
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
6382
SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6383
6384
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6385
DAG.getConstant(VTBits, dl, MVT::i32));
6386
SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
6387
SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6388
ISD::SETGE, ARMcc, DAG, dl);
6389
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6390
ARMcc, CCR, CmpHi);
6391
6392
SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6393
ISD::SETGE, ARMcc, DAG, dl);
6394
SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6395
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
6396
DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
6397
6398
SDValue Ops[2] = { Lo, Hi };
6399
return DAG.getMergeValues(Ops, dl);
6400
}
6401
6402
SDValue ARMTargetLowering::LowerGET_ROUNDING(SDValue Op,
6403
SelectionDAG &DAG) const {
6404
// The rounding mode is in bits 23:22 of the FPSCR.
6405
// The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
6406
// The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
6407
// so that the shift + and get folded into a bitfield extract.
6408
SDLoc dl(Op);
6409
SDValue Chain = Op.getOperand(0);
6410
SDValue Ops[] = {Chain,
6411
DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)};
6412
6413
SDValue FPSCR =
6414
DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, {MVT::i32, MVT::Other}, Ops);
6415
Chain = FPSCR.getValue(1);
6416
SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
6417
DAG.getConstant(1U << 22, dl, MVT::i32));
6418
SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
6419
DAG.getConstant(22, dl, MVT::i32));
6420
SDValue And = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
6421
DAG.getConstant(3, dl, MVT::i32));
6422
return DAG.getMergeValues({And, Chain}, dl);
6423
}
6424
6425
SDValue ARMTargetLowering::LowerSET_ROUNDING(SDValue Op,
6426
SelectionDAG &DAG) const {
6427
SDLoc DL(Op);
6428
SDValue Chain = Op->getOperand(0);
6429
SDValue RMValue = Op->getOperand(1);
6430
6431
// The rounding mode is in bits 23:22 of the FPSCR.
6432
// The llvm.set.rounding argument value to ARM rounding mode value mapping
6433
// is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is
6434
// ((arg - 1) & 3) << 22).
6435
//
6436
// It is expected that the argument of llvm.set.rounding is within the
6437
// segment [0, 3], so NearestTiesToAway (4) is not handled here. It is
6438
// responsibility of the code generated llvm.set.rounding to ensure this
6439
// condition.
6440
6441
// Calculate new value of FPSCR[23:22].
6442
RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue,
6443
DAG.getConstant(1, DL, MVT::i32));
6444
RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue,
6445
DAG.getConstant(0x3, DL, MVT::i32));
6446
RMValue = DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue,
6447
DAG.getConstant(ARM::RoundingBitsPos, DL, MVT::i32));
6448
6449
// Get current value of FPSCR.
6450
SDValue Ops[] = {Chain,
6451
DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6452
SDValue FPSCR =
6453
DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6454
Chain = FPSCR.getValue(1);
6455
FPSCR = FPSCR.getValue(0);
6456
6457
// Put new rounding mode into FPSCR[23:22].
6458
const unsigned RMMask = ~(ARM::Rounding::rmMask << ARM::RoundingBitsPos);
6459
FPSCR = DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR,
6460
DAG.getConstant(RMMask, DL, MVT::i32));
6461
FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCR, RMValue);
6462
SDValue Ops2[] = {
6463
Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR};
6464
return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6465
}
6466
6467
SDValue ARMTargetLowering::LowerSET_FPMODE(SDValue Op,
6468
SelectionDAG &DAG) const {
6469
SDLoc DL(Op);
6470
SDValue Chain = Op->getOperand(0);
6471
SDValue Mode = Op->getOperand(1);
6472
6473
// Generate nodes to build:
6474
// FPSCR = (FPSCR & FPStatusBits) | (Mode & ~FPStatusBits)
6475
SDValue Ops[] = {Chain,
6476
DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6477
SDValue FPSCR =
6478
DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6479
Chain = FPSCR.getValue(1);
6480
FPSCR = FPSCR.getValue(0);
6481
6482
SDValue FPSCRMasked =
6483
DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR,
6484
DAG.getConstant(ARM::FPStatusBits, DL, MVT::i32));
6485
SDValue InputMasked =
6486
DAG.getNode(ISD::AND, DL, MVT::i32, Mode,
6487
DAG.getConstant(~ARM::FPStatusBits, DL, MVT::i32));
6488
FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCRMasked, InputMasked);
6489
6490
SDValue Ops2[] = {
6491
Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR};
6492
return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6493
}
6494
6495
SDValue ARMTargetLowering::LowerRESET_FPMODE(SDValue Op,
6496
SelectionDAG &DAG) const {
6497
SDLoc DL(Op);
6498
SDValue Chain = Op->getOperand(0);
6499
6500
// To get the default FP mode all control bits are cleared:
6501
// FPSCR = FPSCR & (FPStatusBits | FPReservedBits)
6502
SDValue Ops[] = {Chain,
6503
DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6504
SDValue FPSCR =
6505
DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6506
Chain = FPSCR.getValue(1);
6507
FPSCR = FPSCR.getValue(0);
6508
6509
SDValue FPSCRMasked = DAG.getNode(
6510
ISD::AND, DL, MVT::i32, FPSCR,
6511
DAG.getConstant(ARM::FPStatusBits | ARM::FPReservedBits, DL, MVT::i32));
6512
SDValue Ops2[] = {Chain,
6513
DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32),
6514
FPSCRMasked};
6515
return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6516
}
6517
6518
static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
6519
const ARMSubtarget *ST) {
6520
SDLoc dl(N);
6521
EVT VT = N->getValueType(0);
6522
if (VT.isVector() && ST->hasNEON()) {
6523
6524
// Compute the least significant set bit: LSB = X & -X
6525
SDValue X = N->getOperand(0);
6526
SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
6527
SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
6528
6529
EVT ElemTy = VT.getVectorElementType();
6530
6531
if (ElemTy == MVT::i8) {
6532
// Compute with: cttz(x) = ctpop(lsb - 1)
6533
SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6534
DAG.getTargetConstant(1, dl, ElemTy));
6535
SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6536
return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6537
}
6538
6539
if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
6540
(N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
6541
// Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
6542
unsigned NumBits = ElemTy.getSizeInBits();
6543
SDValue WidthMinus1 =
6544
DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6545
DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
6546
SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
6547
return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
6548
}
6549
6550
// Compute with: cttz(x) = ctpop(lsb - 1)
6551
6552
// Compute LSB - 1.
6553
SDValue Bits;
6554
if (ElemTy == MVT::i64) {
6555
// Load constant 0xffff'ffff'ffff'ffff to register.
6556
SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6557
DAG.getTargetConstant(0x1eff, dl, MVT::i32));
6558
Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
6559
} else {
6560
SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6561
DAG.getTargetConstant(1, dl, ElemTy));
6562
Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6563
}
6564
return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6565
}
6566
6567
if (!ST->hasV6T2Ops())
6568
return SDValue();
6569
6570
SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
6571
return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
6572
}
6573
6574
static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
6575
const ARMSubtarget *ST) {
6576
EVT VT = N->getValueType(0);
6577
SDLoc DL(N);
6578
6579
assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
6580
assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
6581
VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
6582
"Unexpected type for custom ctpop lowering");
6583
6584
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6585
EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
6586
SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
6587
Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
6588
6589
// Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6590
unsigned EltSize = 8;
6591
unsigned NumElts = VT.is64BitVector() ? 8 : 16;
6592
while (EltSize != VT.getScalarSizeInBits()) {
6593
SmallVector<SDValue, 8> Ops;
6594
Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
6595
TLI.getPointerTy(DAG.getDataLayout())));
6596
Ops.push_back(Res);
6597
6598
EltSize *= 2;
6599
NumElts /= 2;
6600
MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
6601
Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
6602
}
6603
6604
return Res;
6605
}
6606
6607
/// Getvshiftimm - Check if this is a valid build_vector for the immediate
6608
/// operand of a vector shift operation, where all the elements of the
6609
/// build_vector must have the same constant integer value.
6610
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6611
// Ignore bit_converts.
6612
while (Op.getOpcode() == ISD::BITCAST)
6613
Op = Op.getOperand(0);
6614
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6615
APInt SplatBits, SplatUndef;
6616
unsigned SplatBitSize;
6617
bool HasAnyUndefs;
6618
if (!BVN ||
6619
!BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6620
ElementBits) ||
6621
SplatBitSize > ElementBits)
6622
return false;
6623
Cnt = SplatBits.getSExtValue();
6624
return true;
6625
}
6626
6627
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6628
/// operand of a vector shift left operation. That value must be in the range:
6629
/// 0 <= Value < ElementBits for a left shift; or
6630
/// 0 <= Value <= ElementBits for a long left shift.
6631
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6632
assert(VT.isVector() && "vector shift count is not a vector type");
6633
int64_t ElementBits = VT.getScalarSizeInBits();
6634
if (!getVShiftImm(Op, ElementBits, Cnt))
6635
return false;
6636
return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6637
}
6638
6639
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6640
/// operand of a vector shift right operation. For a shift opcode, the value
6641
/// is positive, but for an intrinsic the value count must be negative. The
6642
/// absolute value must be in the range:
6643
/// 1 <= |Value| <= ElementBits for a right shift; or
6644
/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6645
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6646
int64_t &Cnt) {
6647
assert(VT.isVector() && "vector shift count is not a vector type");
6648
int64_t ElementBits = VT.getScalarSizeInBits();
6649
if (!getVShiftImm(Op, ElementBits, Cnt))
6650
return false;
6651
if (!isIntrinsic)
6652
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6653
if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
6654
Cnt = -Cnt;
6655
return true;
6656
}
6657
return false;
6658
}
6659
6660
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
6661
const ARMSubtarget *ST) {
6662
EVT VT = N->getValueType(0);
6663
SDLoc dl(N);
6664
int64_t Cnt;
6665
6666
if (!VT.isVector())
6667
return SDValue();
6668
6669
// We essentially have two forms here. Shift by an immediate and shift by a
6670
// vector register (there are also shift by a gpr, but that is just handled
6671
// with a tablegen pattern). We cannot easily match shift by an immediate in
6672
// tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
6673
// For shifting by a vector, we don't have VSHR, only VSHL (which can be
6674
// signed or unsigned, and a negative shift indicates a shift right).
6675
if (N->getOpcode() == ISD::SHL) {
6676
if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6677
return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
6678
DAG.getConstant(Cnt, dl, MVT::i32));
6679
return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
6680
N->getOperand(1));
6681
}
6682
6683
assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
6684
"unexpected vector shift opcode");
6685
6686
if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6687
unsigned VShiftOpc =
6688
(N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
6689
return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
6690
DAG.getConstant(Cnt, dl, MVT::i32));
6691
}
6692
6693
// Other right shifts we don't have operations for (we use a shift left by a
6694
// negative number).
6695
EVT ShiftVT = N->getOperand(1).getValueType();
6696
SDValue NegatedCount = DAG.getNode(
6697
ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
6698
unsigned VShiftOpc =
6699
(N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
6700
return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
6701
}
6702
6703
static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
6704
const ARMSubtarget *ST) {
6705
EVT VT = N->getValueType(0);
6706
SDLoc dl(N);
6707
6708
// We can get here for a node like i32 = ISD::SHL i32, i64
6709
if (VT != MVT::i64)
6710
return SDValue();
6711
6712
assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
6713
N->getOpcode() == ISD::SHL) &&
6714
"Unknown shift to lower!");
6715
6716
unsigned ShOpc = N->getOpcode();
6717
if (ST->hasMVEIntegerOps()) {
6718
SDValue ShAmt = N->getOperand(1);
6719
unsigned ShPartsOpc = ARMISD::LSLL;
6720
ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
6721
6722
// If the shift amount is greater than 32 or has a greater bitwidth than 64
6723
// then do the default optimisation
6724
if ((!Con && ShAmt->getValueType(0).getSizeInBits() > 64) ||
6725
(Con && (Con->getAPIntValue() == 0 || Con->getAPIntValue().uge(32))))
6726
return SDValue();
6727
6728
// Extract the lower 32 bits of the shift amount if it's not an i32
6729
if (ShAmt->getValueType(0) != MVT::i32)
6730
ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
6731
6732
if (ShOpc == ISD::SRL) {
6733
if (!Con)
6734
// There is no t2LSRLr instruction so negate and perform an lsll if the
6735
// shift amount is in a register, emulating a right shift.
6736
ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6737
DAG.getConstant(0, dl, MVT::i32), ShAmt);
6738
else
6739
// Else generate an lsrl on the immediate shift amount
6740
ShPartsOpc = ARMISD::LSRL;
6741
} else if (ShOpc == ISD::SRA)
6742
ShPartsOpc = ARMISD::ASRL;
6743
6744
// Split Lower/Upper 32 bits of the destination/source
6745
SDValue Lo, Hi;
6746
std::tie(Lo, Hi) =
6747
DAG.SplitScalar(N->getOperand(0), dl, MVT::i32, MVT::i32);
6748
// Generate the shift operation as computed above
6749
Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
6750
ShAmt);
6751
// The upper 32 bits come from the second return value of lsll
6752
Hi = SDValue(Lo.getNode(), 1);
6753
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6754
}
6755
6756
// We only lower SRA, SRL of 1 here, all others use generic lowering.
6757
if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
6758
return SDValue();
6759
6760
// If we are in thumb mode, we don't have RRX.
6761
if (ST->isThumb1Only())
6762
return SDValue();
6763
6764
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
6765
SDValue Lo, Hi;
6766
std::tie(Lo, Hi) = DAG.SplitScalar(N->getOperand(0), dl, MVT::i32, MVT::i32);
6767
6768
// First, build a SRA_GLUE/SRL_GLUE op, which shifts the top part by one and
6769
// captures the result into a carry flag.
6770
unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_GLUE:ARMISD::SRA_GLUE;
6771
Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
6772
6773
// The low part is an ARMISD::RRX operand, which shifts the carry in.
6774
Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
6775
6776
// Merge the pieces into a single i64 value.
6777
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6778
}
6779
6780
static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
6781
const ARMSubtarget *ST) {
6782
bool Invert = false;
6783
bool Swap = false;
6784
unsigned Opc = ARMCC::AL;
6785
6786
SDValue Op0 = Op.getOperand(0);
6787
SDValue Op1 = Op.getOperand(1);
6788
SDValue CC = Op.getOperand(2);
6789
EVT VT = Op.getValueType();
6790
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6791
SDLoc dl(Op);
6792
6793
EVT CmpVT;
6794
if (ST->hasNEON())
6795
CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
6796
else {
6797
assert(ST->hasMVEIntegerOps() &&
6798
"No hardware support for integer vector comparison!");
6799
6800
if (Op.getValueType().getVectorElementType() != MVT::i1)
6801
return SDValue();
6802
6803
// Make sure we expand floating point setcc to scalar if we do not have
6804
// mve.fp, so that we can handle them from there.
6805
if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
6806
return SDValue();
6807
6808
CmpVT = VT;
6809
}
6810
6811
if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
6812
(SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
6813
// Special-case integer 64-bit equality comparisons. They aren't legal,
6814
// but they can be lowered with a few vector instructions.
6815
unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
6816
EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
6817
SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
6818
SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
6819
SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
6820
DAG.getCondCode(ISD::SETEQ));
6821
SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
6822
SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
6823
Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
6824
if (SetCCOpcode == ISD::SETNE)
6825
Merged = DAG.getNOT(dl, Merged, CmpVT);
6826
Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
6827
return Merged;
6828
}
6829
6830
if (CmpVT.getVectorElementType() == MVT::i64)
6831
// 64-bit comparisons are not legal in general.
6832
return SDValue();
6833
6834
if (Op1.getValueType().isFloatingPoint()) {
6835
switch (SetCCOpcode) {
6836
default: llvm_unreachable("Illegal FP comparison");
6837
case ISD::SETUNE:
6838
case ISD::SETNE:
6839
if (ST->hasMVEFloatOps()) {
6840
Opc = ARMCC::NE; break;
6841
} else {
6842
Invert = true; [[fallthrough]];
6843
}
6844
case ISD::SETOEQ:
6845
case ISD::SETEQ: Opc = ARMCC::EQ; break;
6846
case ISD::SETOLT:
6847
case ISD::SETLT: Swap = true; [[fallthrough]];
6848
case ISD::SETOGT:
6849
case ISD::SETGT: Opc = ARMCC::GT; break;
6850
case ISD::SETOLE:
6851
case ISD::SETLE: Swap = true; [[fallthrough]];
6852
case ISD::SETOGE:
6853
case ISD::SETGE: Opc = ARMCC::GE; break;
6854
case ISD::SETUGE: Swap = true; [[fallthrough]];
6855
case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6856
case ISD::SETUGT: Swap = true; [[fallthrough]];
6857
case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6858
case ISD::SETUEQ: Invert = true; [[fallthrough]];
6859
case ISD::SETONE: {
6860
// Expand this to (OLT | OGT).
6861
SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6862
DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6863
SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6864
DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6865
SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6866
if (Invert)
6867
Result = DAG.getNOT(dl, Result, VT);
6868
return Result;
6869
}
6870
case ISD::SETUO: Invert = true; [[fallthrough]];
6871
case ISD::SETO: {
6872
// Expand this to (OLT | OGE).
6873
SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6874
DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6875
SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6876
DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6877
SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6878
if (Invert)
6879
Result = DAG.getNOT(dl, Result, VT);
6880
return Result;
6881
}
6882
}
6883
} else {
6884
// Integer comparisons.
6885
switch (SetCCOpcode) {
6886
default: llvm_unreachable("Illegal integer comparison");
6887
case ISD::SETNE:
6888
if (ST->hasMVEIntegerOps()) {
6889
Opc = ARMCC::NE; break;
6890
} else {
6891
Invert = true; [[fallthrough]];
6892
}
6893
case ISD::SETEQ: Opc = ARMCC::EQ; break;
6894
case ISD::SETLT: Swap = true; [[fallthrough]];
6895
case ISD::SETGT: Opc = ARMCC::GT; break;
6896
case ISD::SETLE: Swap = true; [[fallthrough]];
6897
case ISD::SETGE: Opc = ARMCC::GE; break;
6898
case ISD::SETULT: Swap = true; [[fallthrough]];
6899
case ISD::SETUGT: Opc = ARMCC::HI; break;
6900
case ISD::SETULE: Swap = true; [[fallthrough]];
6901
case ISD::SETUGE: Opc = ARMCC::HS; break;
6902
}
6903
6904
// Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6905
if (ST->hasNEON() && Opc == ARMCC::EQ) {
6906
SDValue AndOp;
6907
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6908
AndOp = Op0;
6909
else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6910
AndOp = Op1;
6911
6912
// Ignore bitconvert.
6913
if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6914
AndOp = AndOp.getOperand(0);
6915
6916
if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6917
Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6918
Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6919
SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6920
if (!Invert)
6921
Result = DAG.getNOT(dl, Result, VT);
6922
return Result;
6923
}
6924
}
6925
}
6926
6927
if (Swap)
6928
std::swap(Op0, Op1);
6929
6930
// If one of the operands is a constant vector zero, attempt to fold the
6931
// comparison to a specialized compare-against-zero form.
6932
if (ISD::isBuildVectorAllZeros(Op0.getNode()) &&
6933
(Opc == ARMCC::GE || Opc == ARMCC::GT || Opc == ARMCC::EQ ||
6934
Opc == ARMCC::NE)) {
6935
if (Opc == ARMCC::GE)
6936
Opc = ARMCC::LE;
6937
else if (Opc == ARMCC::GT)
6938
Opc = ARMCC::LT;
6939
std::swap(Op0, Op1);
6940
}
6941
6942
SDValue Result;
6943
if (ISD::isBuildVectorAllZeros(Op1.getNode()) &&
6944
(Opc == ARMCC::GE || Opc == ARMCC::GT || Opc == ARMCC::LE ||
6945
Opc == ARMCC::LT || Opc == ARMCC::NE || Opc == ARMCC::EQ))
6946
Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, Op0,
6947
DAG.getConstant(Opc, dl, MVT::i32));
6948
else
6949
Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6950
DAG.getConstant(Opc, dl, MVT::i32));
6951
6952
Result = DAG.getSExtOrTrunc(Result, dl, VT);
6953
6954
if (Invert)
6955
Result = DAG.getNOT(dl, Result, VT);
6956
6957
return Result;
6958
}
6959
6960
static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
6961
SDValue LHS = Op.getOperand(0);
6962
SDValue RHS = Op.getOperand(1);
6963
SDValue Carry = Op.getOperand(2);
6964
SDValue Cond = Op.getOperand(3);
6965
SDLoc DL(Op);
6966
6967
assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6968
6969
// ARMISD::SUBE expects a carry not a borrow like ISD::USUBO_CARRY so we
6970
// have to invert the carry first.
6971
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
6972
DAG.getConstant(1, DL, MVT::i32), Carry);
6973
// This converts the boolean value carry into the carry flag.
6974
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
6975
6976
SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
6977
SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
6978
6979
SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
6980
SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
6981
SDValue ARMcc = DAG.getConstant(
6982
IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
6983
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6984
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
6985
Cmp.getValue(1), SDValue());
6986
return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
6987
CCR, Chain.getValue(1));
6988
}
6989
6990
/// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6991
/// valid vector constant for a NEON or MVE instruction with a "modified
6992
/// immediate" operand (e.g., VMOV). If so, return the encoded value.
6993
static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
6994
unsigned SplatBitSize, SelectionDAG &DAG,
6995
const SDLoc &dl, EVT &VT, EVT VectorVT,
6996
VMOVModImmType type) {
6997
unsigned OpCmode, Imm;
6998
bool is128Bits = VectorVT.is128BitVector();
6999
7000
// SplatBitSize is set to the smallest size that splats the vector, so a
7001
// zero vector will always have SplatBitSize == 8. However, NEON modified
7002
// immediate instructions others than VMOV do not support the 8-bit encoding
7003
// of a zero vector, and the default encoding of zero is supposed to be the
7004
// 32-bit version.
7005
if (SplatBits == 0)
7006
SplatBitSize = 32;
7007
7008
switch (SplatBitSize) {
7009
case 8:
7010
if (type != VMOVModImm)
7011
return SDValue();
7012
// Any 1-byte value is OK. Op=0, Cmode=1110.
7013
assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
7014
OpCmode = 0xe;
7015
Imm = SplatBits;
7016
VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
7017
break;
7018
7019
case 16:
7020
// NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
7021
VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
7022
if ((SplatBits & ~0xff) == 0) {
7023
// Value = 0x00nn: Op=x, Cmode=100x.
7024
OpCmode = 0x8;
7025
Imm = SplatBits;
7026
break;
7027
}
7028
if ((SplatBits & ~0xff00) == 0) {
7029
// Value = 0xnn00: Op=x, Cmode=101x.
7030
OpCmode = 0xa;
7031
Imm = SplatBits >> 8;
7032
break;
7033
}
7034
return SDValue();
7035
7036
case 32:
7037
// NEON's 32-bit VMOV supports splat values where:
7038
// * only one byte is nonzero, or
7039
// * the least significant byte is 0xff and the second byte is nonzero, or
7040
// * the least significant 2 bytes are 0xff and the third is nonzero.
7041
VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
7042
if ((SplatBits & ~0xff) == 0) {
7043
// Value = 0x000000nn: Op=x, Cmode=000x.
7044
OpCmode = 0;
7045
Imm = SplatBits;
7046
break;
7047
}
7048
if ((SplatBits & ~0xff00) == 0) {
7049
// Value = 0x0000nn00: Op=x, Cmode=001x.
7050
OpCmode = 0x2;
7051
Imm = SplatBits >> 8;
7052
break;
7053
}
7054
if ((SplatBits & ~0xff0000) == 0) {
7055
// Value = 0x00nn0000: Op=x, Cmode=010x.
7056
OpCmode = 0x4;
7057
Imm = SplatBits >> 16;
7058
break;
7059
}
7060
if ((SplatBits & ~0xff000000) == 0) {
7061
// Value = 0xnn000000: Op=x, Cmode=011x.
7062
OpCmode = 0x6;
7063
Imm = SplatBits >> 24;
7064
break;
7065
}
7066
7067
// cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
7068
if (type == OtherModImm) return SDValue();
7069
7070
if ((SplatBits & ~0xffff) == 0 &&
7071
((SplatBits | SplatUndef) & 0xff) == 0xff) {
7072
// Value = 0x0000nnff: Op=x, Cmode=1100.
7073
OpCmode = 0xc;
7074
Imm = SplatBits >> 8;
7075
break;
7076
}
7077
7078
// cmode == 0b1101 is not supported for MVE VMVN
7079
if (type == MVEVMVNModImm)
7080
return SDValue();
7081
7082
if ((SplatBits & ~0xffffff) == 0 &&
7083
((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
7084
// Value = 0x00nnffff: Op=x, Cmode=1101.
7085
OpCmode = 0xd;
7086
Imm = SplatBits >> 16;
7087
break;
7088
}
7089
7090
// Note: there are a few 32-bit splat values (specifically: 00ffff00,
7091
// ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
7092
// VMOV.I32. A (very) minor optimization would be to replicate the value
7093
// and fall through here to test for a valid 64-bit splat. But, then the
7094
// caller would also need to check and handle the change in size.
7095
return SDValue();
7096
7097
case 64: {
7098
if (type != VMOVModImm)
7099
return SDValue();
7100
// NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
7101
uint64_t BitMask = 0xff;
7102
unsigned ImmMask = 1;
7103
Imm = 0;
7104
for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
7105
if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
7106
Imm |= ImmMask;
7107
} else if ((SplatBits & BitMask) != 0) {
7108
return SDValue();
7109
}
7110
BitMask <<= 8;
7111
ImmMask <<= 1;
7112
}
7113
7114
if (DAG.getDataLayout().isBigEndian()) {
7115
// Reverse the order of elements within the vector.
7116
unsigned BytesPerElem = VectorVT.getScalarSizeInBits() / 8;
7117
unsigned Mask = (1 << BytesPerElem) - 1;
7118
unsigned NumElems = 8 / BytesPerElem;
7119
unsigned NewImm = 0;
7120
for (unsigned ElemNum = 0; ElemNum < NumElems; ++ElemNum) {
7121
unsigned Elem = ((Imm >> ElemNum * BytesPerElem) & Mask);
7122
NewImm |= Elem << (NumElems - ElemNum - 1) * BytesPerElem;
7123
}
7124
Imm = NewImm;
7125
}
7126
7127
// Op=1, Cmode=1110.
7128
OpCmode = 0x1e;
7129
VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
7130
break;
7131
}
7132
7133
default:
7134
llvm_unreachable("unexpected size for isVMOVModifiedImm");
7135
}
7136
7137
unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
7138
return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
7139
}
7140
7141
SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
7142
const ARMSubtarget *ST) const {
7143
EVT VT = Op.getValueType();
7144
bool IsDouble = (VT == MVT::f64);
7145
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
7146
const APFloat &FPVal = CFP->getValueAPF();
7147
7148
// Prevent floating-point constants from using literal loads
7149
// when execute-only is enabled.
7150
if (ST->genExecuteOnly()) {
7151
// We shouldn't trigger this for v6m execute-only
7152
assert((!ST->isThumb1Only() || ST->hasV8MBaselineOps()) &&
7153
"Unexpected architecture");
7154
7155
// If we can represent the constant as an immediate, don't lower it
7156
if (isFPImmLegal(FPVal, VT))
7157
return Op;
7158
// Otherwise, construct as integer, and move to float register
7159
APInt INTVal = FPVal.bitcastToAPInt();
7160
SDLoc DL(CFP);
7161
switch (VT.getSimpleVT().SimpleTy) {
7162
default:
7163
llvm_unreachable("Unknown floating point type!");
7164
break;
7165
case MVT::f64: {
7166
SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
7167
SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
7168
return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
7169
}
7170
case MVT::f32:
7171
return DAG.getNode(ARMISD::VMOVSR, DL, VT,
7172
DAG.getConstant(INTVal, DL, MVT::i32));
7173
}
7174
}
7175
7176
if (!ST->hasVFP3Base())
7177
return SDValue();
7178
7179
// Use the default (constant pool) lowering for double constants when we have
7180
// an SP-only FPU
7181
if (IsDouble && !Subtarget->hasFP64())
7182
return SDValue();
7183
7184
// Try splatting with a VMOV.f32...
7185
int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
7186
7187
if (ImmVal != -1) {
7188
if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
7189
// We have code in place to select a valid ConstantFP already, no need to
7190
// do any mangling.
7191
return Op;
7192
}
7193
7194
// It's a float and we are trying to use NEON operations where
7195
// possible. Lower it to a splat followed by an extract.
7196
SDLoc DL(Op);
7197
SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
7198
SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
7199
NewVal);
7200
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
7201
DAG.getConstant(0, DL, MVT::i32));
7202
}
7203
7204
// The rest of our options are NEON only, make sure that's allowed before
7205
// proceeding..
7206
if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
7207
return SDValue();
7208
7209
EVT VMovVT;
7210
uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
7211
7212
// It wouldn't really be worth bothering for doubles except for one very
7213
// important value, which does happen to match: 0.0. So make sure we don't do
7214
// anything stupid.
7215
if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
7216
return SDValue();
7217
7218
// Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
7219
SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
7220
VMovVT, VT, VMOVModImm);
7221
if (NewVal != SDValue()) {
7222
SDLoc DL(Op);
7223
SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
7224
NewVal);
7225
if (IsDouble)
7226
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
7227
7228
// It's a float: cast and extract a vector element.
7229
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
7230
VecConstant);
7231
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
7232
DAG.getConstant(0, DL, MVT::i32));
7233
}
7234
7235
// Finally, try a VMVN.i32
7236
NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
7237
VT, VMVNModImm);
7238
if (NewVal != SDValue()) {
7239
SDLoc DL(Op);
7240
SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
7241
7242
if (IsDouble)
7243
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
7244
7245
// It's a float: cast and extract a vector element.
7246
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
7247
VecConstant);
7248
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
7249
DAG.getConstant(0, DL, MVT::i32));
7250
}
7251
7252
return SDValue();
7253
}
7254
7255
// check if an VEXT instruction can handle the shuffle mask when the
7256
// vector sources of the shuffle are the same.
7257
static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
7258
unsigned NumElts = VT.getVectorNumElements();
7259
7260
// Assume that the first shuffle index is not UNDEF. Fail if it is.
7261
if (M[0] < 0)
7262
return false;
7263
7264
Imm = M[0];
7265
7266
// If this is a VEXT shuffle, the immediate value is the index of the first
7267
// element. The other shuffle indices must be the successive elements after
7268
// the first one.
7269
unsigned ExpectedElt = Imm;
7270
for (unsigned i = 1; i < NumElts; ++i) {
7271
// Increment the expected index. If it wraps around, just follow it
7272
// back to index zero and keep going.
7273
++ExpectedElt;
7274
if (ExpectedElt == NumElts)
7275
ExpectedElt = 0;
7276
7277
if (M[i] < 0) continue; // ignore UNDEF indices
7278
if (ExpectedElt != static_cast<unsigned>(M[i]))
7279
return false;
7280
}
7281
7282
return true;
7283
}
7284
7285
static bool isVEXTMask(ArrayRef<int> M, EVT VT,
7286
bool &ReverseVEXT, unsigned &Imm) {
7287
unsigned NumElts = VT.getVectorNumElements();
7288
ReverseVEXT = false;
7289
7290
// Assume that the first shuffle index is not UNDEF. Fail if it is.
7291
if (M[0] < 0)
7292
return false;
7293
7294
Imm = M[0];
7295
7296
// If this is a VEXT shuffle, the immediate value is the index of the first
7297
// element. The other shuffle indices must be the successive elements after
7298
// the first one.
7299
unsigned ExpectedElt = Imm;
7300
for (unsigned i = 1; i < NumElts; ++i) {
7301
// Increment the expected index. If it wraps around, it may still be
7302
// a VEXT but the source vectors must be swapped.
7303
ExpectedElt += 1;
7304
if (ExpectedElt == NumElts * 2) {
7305
ExpectedElt = 0;
7306
ReverseVEXT = true;
7307
}
7308
7309
if (M[i] < 0) continue; // ignore UNDEF indices
7310
if (ExpectedElt != static_cast<unsigned>(M[i]))
7311
return false;
7312
}
7313
7314
// Adjust the index value if the source operands will be swapped.
7315
if (ReverseVEXT)
7316
Imm -= NumElts;
7317
7318
return true;
7319
}
7320
7321
static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
7322
// We can handle <8 x i8> vector shuffles. If the index in the mask is out of
7323
// range, then 0 is placed into the resulting vector. So pretty much any mask
7324
// of 8 elements can work here.
7325
return VT == MVT::v8i8 && M.size() == 8;
7326
}
7327
7328
static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
7329
unsigned Index) {
7330
if (Mask.size() == Elements * 2)
7331
return Index / Elements;
7332
return Mask[Index] == 0 ? 0 : 1;
7333
}
7334
7335
// Checks whether the shuffle mask represents a vector transpose (VTRN) by
7336
// checking that pairs of elements in the shuffle mask represent the same index
7337
// in each vector, incrementing the expected index by 2 at each step.
7338
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
7339
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
7340
// v2={e,f,g,h}
7341
// WhichResult gives the offset for each element in the mask based on which
7342
// of the two results it belongs to.
7343
//
7344
// The transpose can be represented either as:
7345
// result1 = shufflevector v1, v2, result1_shuffle_mask
7346
// result2 = shufflevector v1, v2, result2_shuffle_mask
7347
// where v1/v2 and the shuffle masks have the same number of elements
7348
// (here WhichResult (see below) indicates which result is being checked)
7349
//
7350
// or as:
7351
// results = shufflevector v1, v2, shuffle_mask
7352
// where both results are returned in one vector and the shuffle mask has twice
7353
// as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
7354
// want to check the low half and high half of the shuffle mask as if it were
7355
// the other case
7356
static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7357
unsigned EltSz = VT.getScalarSizeInBits();
7358
if (EltSz == 64)
7359
return false;
7360
7361
unsigned NumElts = VT.getVectorNumElements();
7362
if (M.size() != NumElts && M.size() != NumElts*2)
7363
return false;
7364
7365
// If the mask is twice as long as the input vector then we need to check the
7366
// upper and lower parts of the mask with a matching value for WhichResult
7367
// FIXME: A mask with only even values will be rejected in case the first
7368
// element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
7369
// M[0] is used to determine WhichResult
7370
for (unsigned i = 0; i < M.size(); i += NumElts) {
7371
WhichResult = SelectPairHalf(NumElts, M, i);
7372
for (unsigned j = 0; j < NumElts; j += 2) {
7373
if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7374
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
7375
return false;
7376
}
7377
}
7378
7379
if (M.size() == NumElts*2)
7380
WhichResult = 0;
7381
7382
return true;
7383
}
7384
7385
/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
7386
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7387
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
7388
static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7389
unsigned EltSz = VT.getScalarSizeInBits();
7390
if (EltSz == 64)
7391
return false;
7392
7393
unsigned NumElts = VT.getVectorNumElements();
7394
if (M.size() != NumElts && M.size() != NumElts*2)
7395
return false;
7396
7397
for (unsigned i = 0; i < M.size(); i += NumElts) {
7398
WhichResult = SelectPairHalf(NumElts, M, i);
7399
for (unsigned j = 0; j < NumElts; j += 2) {
7400
if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7401
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
7402
return false;
7403
}
7404
}
7405
7406
if (M.size() == NumElts*2)
7407
WhichResult = 0;
7408
7409
return true;
7410
}
7411
7412
// Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
7413
// that the mask elements are either all even and in steps of size 2 or all odd
7414
// and in steps of size 2.
7415
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
7416
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
7417
// v2={e,f,g,h}
7418
// Requires similar checks to that of isVTRNMask with
7419
// respect the how results are returned.
7420
static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7421
unsigned EltSz = VT.getScalarSizeInBits();
7422
if (EltSz == 64)
7423
return false;
7424
7425
unsigned NumElts = VT.getVectorNumElements();
7426
if (M.size() != NumElts && M.size() != NumElts*2)
7427
return false;
7428
7429
for (unsigned i = 0; i < M.size(); i += NumElts) {
7430
WhichResult = SelectPairHalf(NumElts, M, i);
7431
for (unsigned j = 0; j < NumElts; ++j) {
7432
if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
7433
return false;
7434
}
7435
}
7436
7437
if (M.size() == NumElts*2)
7438
WhichResult = 0;
7439
7440
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7441
if (VT.is64BitVector() && EltSz == 32)
7442
return false;
7443
7444
return true;
7445
}
7446
7447
/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
7448
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7449
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
7450
static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7451
unsigned EltSz = VT.getScalarSizeInBits();
7452
if (EltSz == 64)
7453
return false;
7454
7455
unsigned NumElts = VT.getVectorNumElements();
7456
if (M.size() != NumElts && M.size() != NumElts*2)
7457
return false;
7458
7459
unsigned Half = NumElts / 2;
7460
for (unsigned i = 0; i < M.size(); i += NumElts) {
7461
WhichResult = SelectPairHalf(NumElts, M, i);
7462
for (unsigned j = 0; j < NumElts; j += Half) {
7463
unsigned Idx = WhichResult;
7464
for (unsigned k = 0; k < Half; ++k) {
7465
int MIdx = M[i + j + k];
7466
if (MIdx >= 0 && (unsigned) MIdx != Idx)
7467
return false;
7468
Idx += 2;
7469
}
7470
}
7471
}
7472
7473
if (M.size() == NumElts*2)
7474
WhichResult = 0;
7475
7476
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7477
if (VT.is64BitVector() && EltSz == 32)
7478
return false;
7479
7480
return true;
7481
}
7482
7483
// Checks whether the shuffle mask represents a vector zip (VZIP) by checking
7484
// that pairs of elements of the shufflemask represent the same index in each
7485
// vector incrementing sequentially through the vectors.
7486
// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
7487
// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
7488
// v2={e,f,g,h}
7489
// Requires similar checks to that of isVTRNMask with respect the how results
7490
// are returned.
7491
static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7492
unsigned EltSz = VT.getScalarSizeInBits();
7493
if (EltSz == 64)
7494
return false;
7495
7496
unsigned NumElts = VT.getVectorNumElements();
7497
if (M.size() != NumElts && M.size() != NumElts*2)
7498
return false;
7499
7500
for (unsigned i = 0; i < M.size(); i += NumElts) {
7501
WhichResult = SelectPairHalf(NumElts, M, i);
7502
unsigned Idx = WhichResult * NumElts / 2;
7503
for (unsigned j = 0; j < NumElts; j += 2) {
7504
if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7505
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
7506
return false;
7507
Idx += 1;
7508
}
7509
}
7510
7511
if (M.size() == NumElts*2)
7512
WhichResult = 0;
7513
7514
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7515
if (VT.is64BitVector() && EltSz == 32)
7516
return false;
7517
7518
return true;
7519
}
7520
7521
/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
7522
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7523
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
7524
static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7525
unsigned EltSz = VT.getScalarSizeInBits();
7526
if (EltSz == 64)
7527
return false;
7528
7529
unsigned NumElts = VT.getVectorNumElements();
7530
if (M.size() != NumElts && M.size() != NumElts*2)
7531
return false;
7532
7533
for (unsigned i = 0; i < M.size(); i += NumElts) {
7534
WhichResult = SelectPairHalf(NumElts, M, i);
7535
unsigned Idx = WhichResult * NumElts / 2;
7536
for (unsigned j = 0; j < NumElts; j += 2) {
7537
if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7538
(M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
7539
return false;
7540
Idx += 1;
7541
}
7542
}
7543
7544
if (M.size() == NumElts*2)
7545
WhichResult = 0;
7546
7547
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7548
if (VT.is64BitVector() && EltSz == 32)
7549
return false;
7550
7551
return true;
7552
}
7553
7554
/// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
7555
/// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
7556
static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
7557
unsigned &WhichResult,
7558
bool &isV_UNDEF) {
7559
isV_UNDEF = false;
7560
if (isVTRNMask(ShuffleMask, VT, WhichResult))
7561
return ARMISD::VTRN;
7562
if (isVUZPMask(ShuffleMask, VT, WhichResult))
7563
return ARMISD::VUZP;
7564
if (isVZIPMask(ShuffleMask, VT, WhichResult))
7565
return ARMISD::VZIP;
7566
7567
isV_UNDEF = true;
7568
if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
7569
return ARMISD::VTRN;
7570
if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7571
return ARMISD::VUZP;
7572
if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7573
return ARMISD::VZIP;
7574
7575
return 0;
7576
}
7577
7578
/// \return true if this is a reverse operation on an vector.
7579
static bool isReverseMask(ArrayRef<int> M, EVT VT) {
7580
unsigned NumElts = VT.getVectorNumElements();
7581
// Make sure the mask has the right size.
7582
if (NumElts != M.size())
7583
return false;
7584
7585
// Look for <15, ..., 3, -1, 1, 0>.
7586
for (unsigned i = 0; i != NumElts; ++i)
7587
if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
7588
return false;
7589
7590
return true;
7591
}
7592
7593
static bool isTruncMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) {
7594
unsigned NumElts = VT.getVectorNumElements();
7595
// Make sure the mask has the right size.
7596
if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7597
return false;
7598
7599
// Half-width truncation patterns (e.g. v4i32 -> v8i16):
7600
// !Top && SingleSource: <0, 2, 4, 6, 0, 2, 4, 6>
7601
// !Top && !SingleSource: <0, 2, 4, 6, 8, 10, 12, 14>
7602
// Top && SingleSource: <1, 3, 5, 7, 1, 3, 5, 7>
7603
// Top && !SingleSource: <1, 3, 5, 7, 9, 11, 13, 15>
7604
int Ofs = Top ? 1 : 0;
7605
int Upper = SingleSource ? 0 : NumElts;
7606
for (int i = 0, e = NumElts / 2; i != e; ++i) {
7607
if (M[i] >= 0 && M[i] != (i * 2) + Ofs)
7608
return false;
7609
if (M[i + e] >= 0 && M[i + e] != (i * 2) + Ofs + Upper)
7610
return false;
7611
}
7612
return true;
7613
}
7614
7615
static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) {
7616
unsigned NumElts = VT.getVectorNumElements();
7617
// Make sure the mask has the right size.
7618
if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7619
return false;
7620
7621
// If Top
7622
// Look for <0, N, 2, N+2, 4, N+4, ..>.
7623
// This inserts Input2 into Input1
7624
// else if not Top
7625
// Look for <0, N+1, 2, N+3, 4, N+5, ..>
7626
// This inserts Input1 into Input2
7627
unsigned Offset = Top ? 0 : 1;
7628
unsigned N = SingleSource ? 0 : NumElts;
7629
for (unsigned i = 0; i < NumElts; i += 2) {
7630
if (M[i] >= 0 && M[i] != (int)i)
7631
return false;
7632
if (M[i + 1] >= 0 && M[i + 1] != (int)(N + i + Offset))
7633
return false;
7634
}
7635
7636
return true;
7637
}
7638
7639
static bool isVMOVNTruncMask(ArrayRef<int> M, EVT ToVT, bool rev) {
7640
unsigned NumElts = ToVT.getVectorNumElements();
7641
if (NumElts != M.size())
7642
return false;
7643
7644
// Test if the Trunc can be convertable to a VMOVN with this shuffle. We are
7645
// looking for patterns of:
7646
// !rev: 0 N/2 1 N/2+1 2 N/2+2 ...
7647
// rev: N/2 0 N/2+1 1 N/2+2 2 ...
7648
7649
unsigned Off0 = rev ? NumElts / 2 : 0;
7650
unsigned Off1 = rev ? 0 : NumElts / 2;
7651
for (unsigned i = 0; i < NumElts; i += 2) {
7652
if (M[i] >= 0 && M[i] != (int)(Off0 + i / 2))
7653
return false;
7654
if (M[i + 1] >= 0 && M[i + 1] != (int)(Off1 + i / 2))
7655
return false;
7656
}
7657
7658
return true;
7659
}
7660
7661
// Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted
7662
// from a pair of inputs. For example:
7663
// BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7664
// FP_ROUND(EXTRACT_ELT(Y, 0),
7665
// FP_ROUND(EXTRACT_ELT(X, 1),
7666
// FP_ROUND(EXTRACT_ELT(Y, 1), ...)
7667
static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG,
7668
const ARMSubtarget *ST) {
7669
assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7670
if (!ST->hasMVEFloatOps())
7671
return SDValue();
7672
7673
SDLoc dl(BV);
7674
EVT VT = BV.getValueType();
7675
if (VT != MVT::v8f16)
7676
return SDValue();
7677
7678
// We are looking for a buildvector of fptrunc elements, where all the
7679
// elements are interleavingly extracted from two sources. Check the first two
7680
// items are valid enough and extract some info from them (they are checked
7681
// properly in the loop below).
7682
if (BV.getOperand(0).getOpcode() != ISD::FP_ROUND ||
7683
BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7684
BV.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0)
7685
return SDValue();
7686
if (BV.getOperand(1).getOpcode() != ISD::FP_ROUND ||
7687
BV.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7688
BV.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0)
7689
return SDValue();
7690
SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7691
SDValue Op1 = BV.getOperand(1).getOperand(0).getOperand(0);
7692
if (Op0.getValueType() != MVT::v4f32 || Op1.getValueType() != MVT::v4f32)
7693
return SDValue();
7694
7695
// Check all the values in the BuildVector line up with our expectations.
7696
for (unsigned i = 1; i < 4; i++) {
7697
auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7698
return Trunc.getOpcode() == ISD::FP_ROUND &&
7699
Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7700
Trunc.getOperand(0).getOperand(0) == Op &&
7701
Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7702
};
7703
if (!Check(BV.getOperand(i * 2 + 0), Op0, i))
7704
return SDValue();
7705
if (!Check(BV.getOperand(i * 2 + 1), Op1, i))
7706
return SDValue();
7707
}
7708
7709
SDValue N1 = DAG.getNode(ARMISD::VCVTN, dl, VT, DAG.getUNDEF(VT), Op0,
7710
DAG.getConstant(0, dl, MVT::i32));
7711
return DAG.getNode(ARMISD::VCVTN, dl, VT, N1, Op1,
7712
DAG.getConstant(1, dl, MVT::i32));
7713
}
7714
7715
// Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted
7716
// from a single input on alternating lanes. For example:
7717
// BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7718
// FP_ROUND(EXTRACT_ELT(X, 2),
7719
// FP_ROUND(EXTRACT_ELT(X, 4), ...)
7720
static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG,
7721
const ARMSubtarget *ST) {
7722
assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7723
if (!ST->hasMVEFloatOps())
7724
return SDValue();
7725
7726
SDLoc dl(BV);
7727
EVT VT = BV.getValueType();
7728
if (VT != MVT::v4f32)
7729
return SDValue();
7730
7731
// We are looking for a buildvector of fptext elements, where all the
7732
// elements are alternating lanes from a single source. For example <0,2,4,6>
7733
// or <1,3,5,7>. Check the first two items are valid enough and extract some
7734
// info from them (they are checked properly in the loop below).
7735
if (BV.getOperand(0).getOpcode() != ISD::FP_EXTEND ||
7736
BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7737
return SDValue();
7738
SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7739
int Offset = BV.getOperand(0).getOperand(0).getConstantOperandVal(1);
7740
if (Op0.getValueType() != MVT::v8f16 || (Offset != 0 && Offset != 1))
7741
return SDValue();
7742
7743
// Check all the values in the BuildVector line up with our expectations.
7744
for (unsigned i = 1; i < 4; i++) {
7745
auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7746
return Trunc.getOpcode() == ISD::FP_EXTEND &&
7747
Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7748
Trunc.getOperand(0).getOperand(0) == Op &&
7749
Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7750
};
7751
if (!Check(BV.getOperand(i), Op0, 2 * i + Offset))
7752
return SDValue();
7753
}
7754
7755
return DAG.getNode(ARMISD::VCVTL, dl, VT, Op0,
7756
DAG.getConstant(Offset, dl, MVT::i32));
7757
}
7758
7759
// If N is an integer constant that can be moved into a register in one
7760
// instruction, return an SDValue of such a constant (will become a MOV
7761
// instruction). Otherwise return null.
7762
static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
7763
const ARMSubtarget *ST, const SDLoc &dl) {
7764
uint64_t Val;
7765
if (!isa<ConstantSDNode>(N))
7766
return SDValue();
7767
Val = N->getAsZExtVal();
7768
7769
if (ST->isThumb1Only()) {
7770
if (Val <= 255 || ~Val <= 255)
7771
return DAG.getConstant(Val, dl, MVT::i32);
7772
} else {
7773
if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
7774
return DAG.getConstant(Val, dl, MVT::i32);
7775
}
7776
return SDValue();
7777
}
7778
7779
static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
7780
const ARMSubtarget *ST) {
7781
SDLoc dl(Op);
7782
EVT VT = Op.getValueType();
7783
7784
assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
7785
7786
unsigned NumElts = VT.getVectorNumElements();
7787
unsigned BoolMask;
7788
unsigned BitsPerBool;
7789
if (NumElts == 2) {
7790
BitsPerBool = 8;
7791
BoolMask = 0xff;
7792
} else if (NumElts == 4) {
7793
BitsPerBool = 4;
7794
BoolMask = 0xf;
7795
} else if (NumElts == 8) {
7796
BitsPerBool = 2;
7797
BoolMask = 0x3;
7798
} else if (NumElts == 16) {
7799
BitsPerBool = 1;
7800
BoolMask = 0x1;
7801
} else
7802
return SDValue();
7803
7804
// If this is a single value copied into all lanes (a splat), we can just sign
7805
// extend that single value
7806
SDValue FirstOp = Op.getOperand(0);
7807
if (!isa<ConstantSDNode>(FirstOp) &&
7808
llvm::all_of(llvm::drop_begin(Op->ops()), [&FirstOp](const SDUse &U) {
7809
return U.get().isUndef() || U.get() == FirstOp;
7810
})) {
7811
SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
7812
DAG.getValueType(MVT::i1));
7813
return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
7814
}
7815
7816
// First create base with bits set where known
7817
unsigned Bits32 = 0;
7818
for (unsigned i = 0; i < NumElts; ++i) {
7819
SDValue V = Op.getOperand(i);
7820
if (!isa<ConstantSDNode>(V) && !V.isUndef())
7821
continue;
7822
bool BitSet = V.isUndef() ? false : V->getAsZExtVal();
7823
if (BitSet)
7824
Bits32 |= BoolMask << (i * BitsPerBool);
7825
}
7826
7827
// Add in unknown nodes
7828
SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
7829
DAG.getConstant(Bits32, dl, MVT::i32));
7830
for (unsigned i = 0; i < NumElts; ++i) {
7831
SDValue V = Op.getOperand(i);
7832
if (isa<ConstantSDNode>(V) || V.isUndef())
7833
continue;
7834
Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
7835
DAG.getConstant(i, dl, MVT::i32));
7836
}
7837
7838
return Base;
7839
}
7840
7841
static SDValue LowerBUILD_VECTORToVIDUP(SDValue Op, SelectionDAG &DAG,
7842
const ARMSubtarget *ST) {
7843
if (!ST->hasMVEIntegerOps())
7844
return SDValue();
7845
7846
// We are looking for a buildvector where each element is Op[0] + i*N
7847
EVT VT = Op.getValueType();
7848
SDValue Op0 = Op.getOperand(0);
7849
unsigned NumElts = VT.getVectorNumElements();
7850
7851
// Get the increment value from operand 1
7852
SDValue Op1 = Op.getOperand(1);
7853
if (Op1.getOpcode() != ISD::ADD || Op1.getOperand(0) != Op0 ||
7854
!isa<ConstantSDNode>(Op1.getOperand(1)))
7855
return SDValue();
7856
unsigned N = Op1.getConstantOperandVal(1);
7857
if (N != 1 && N != 2 && N != 4 && N != 8)
7858
return SDValue();
7859
7860
// Check that each other operand matches
7861
for (unsigned I = 2; I < NumElts; I++) {
7862
SDValue OpI = Op.getOperand(I);
7863
if (OpI.getOpcode() != ISD::ADD || OpI.getOperand(0) != Op0 ||
7864
!isa<ConstantSDNode>(OpI.getOperand(1)) ||
7865
OpI.getConstantOperandVal(1) != I * N)
7866
return SDValue();
7867
}
7868
7869
SDLoc DL(Op);
7870
return DAG.getNode(ARMISD::VIDUP, DL, DAG.getVTList(VT, MVT::i32), Op0,
7871
DAG.getConstant(N, DL, MVT::i32));
7872
}
7873
7874
// Returns true if the operation N can be treated as qr instruction variant at
7875
// operand Op.
7876
static bool IsQRMVEInstruction(const SDNode *N, const SDNode *Op) {
7877
switch (N->getOpcode()) {
7878
case ISD::ADD:
7879
case ISD::MUL:
7880
case ISD::SADDSAT:
7881
case ISD::UADDSAT:
7882
return true;
7883
case ISD::SUB:
7884
case ISD::SSUBSAT:
7885
case ISD::USUBSAT:
7886
return N->getOperand(1).getNode() == Op;
7887
case ISD::INTRINSIC_WO_CHAIN:
7888
switch (N->getConstantOperandVal(0)) {
7889
case Intrinsic::arm_mve_add_predicated:
7890
case Intrinsic::arm_mve_mul_predicated:
7891
case Intrinsic::arm_mve_qadd_predicated:
7892
case Intrinsic::arm_mve_vhadd:
7893
case Intrinsic::arm_mve_hadd_predicated:
7894
case Intrinsic::arm_mve_vqdmulh:
7895
case Intrinsic::arm_mve_qdmulh_predicated:
7896
case Intrinsic::arm_mve_vqrdmulh:
7897
case Intrinsic::arm_mve_qrdmulh_predicated:
7898
case Intrinsic::arm_mve_vqdmull:
7899
case Intrinsic::arm_mve_vqdmull_predicated:
7900
return true;
7901
case Intrinsic::arm_mve_sub_predicated:
7902
case Intrinsic::arm_mve_qsub_predicated:
7903
case Intrinsic::arm_mve_vhsub:
7904
case Intrinsic::arm_mve_hsub_predicated:
7905
return N->getOperand(2).getNode() == Op;
7906
default:
7907
return false;
7908
}
7909
default:
7910
return false;
7911
}
7912
}
7913
7914
// If this is a case we can't handle, return null and let the default
7915
// expansion code take care of it.
7916
SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
7917
const ARMSubtarget *ST) const {
7918
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7919
SDLoc dl(Op);
7920
EVT VT = Op.getValueType();
7921
7922
if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7923
return LowerBUILD_VECTOR_i1(Op, DAG, ST);
7924
7925
if (SDValue R = LowerBUILD_VECTORToVIDUP(Op, DAG, ST))
7926
return R;
7927
7928
APInt SplatBits, SplatUndef;
7929
unsigned SplatBitSize;
7930
bool HasAnyUndefs;
7931
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7932
if (SplatUndef.isAllOnes())
7933
return DAG.getUNDEF(VT);
7934
7935
// If all the users of this constant splat are qr instruction variants,
7936
// generate a vdup of the constant.
7937
if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == SplatBitSize &&
7938
(SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32) &&
7939
all_of(BVN->uses(),
7940
[BVN](const SDNode *U) { return IsQRMVEInstruction(U, BVN); })) {
7941
EVT DupVT = SplatBitSize == 32 ? MVT::v4i32
7942
: SplatBitSize == 16 ? MVT::v8i16
7943
: MVT::v16i8;
7944
SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32);
7945
SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const);
7946
return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup);
7947
}
7948
7949
if ((ST->hasNEON() && SplatBitSize <= 64) ||
7950
(ST->hasMVEIntegerOps() && SplatBitSize <= 64)) {
7951
// Check if an immediate VMOV works.
7952
EVT VmovVT;
7953
SDValue Val =
7954
isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
7955
SplatBitSize, DAG, dl, VmovVT, VT, VMOVModImm);
7956
7957
if (Val.getNode()) {
7958
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
7959
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7960
}
7961
7962
// Try an immediate VMVN.
7963
uint64_t NegatedImm = (~SplatBits).getZExtValue();
7964
Val = isVMOVModifiedImm(
7965
NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT,
7966
VT, ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
7967
if (Val.getNode()) {
7968
SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
7969
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7970
}
7971
7972
// Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7973
if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
7974
int ImmVal = ARM_AM::getFP32Imm(SplatBits);
7975
if (ImmVal != -1) {
7976
SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
7977
return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
7978
}
7979
}
7980
7981
// If we are under MVE, generate a VDUP(constant), bitcast to the original
7982
// type.
7983
if (ST->hasMVEIntegerOps() &&
7984
(SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32)) {
7985
EVT DupVT = SplatBitSize == 32 ? MVT::v4i32
7986
: SplatBitSize == 16 ? MVT::v8i16
7987
: MVT::v16i8;
7988
SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32);
7989
SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const);
7990
return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup);
7991
}
7992
}
7993
}
7994
7995
// Scan through the operands to see if only one value is used.
7996
//
7997
// As an optimisation, even if more than one value is used it may be more
7998
// profitable to splat with one value then change some lanes.
7999
//
8000
// Heuristically we decide to do this if the vector has a "dominant" value,
8001
// defined as splatted to more than half of the lanes.
8002
unsigned NumElts = VT.getVectorNumElements();
8003
bool isOnlyLowElement = true;
8004
bool usesOnlyOneValue = true;
8005
bool hasDominantValue = false;
8006
bool isConstant = true;
8007
8008
// Map of the number of times a particular SDValue appears in the
8009
// element list.
8010
DenseMap<SDValue, unsigned> ValueCounts;
8011
SDValue Value;
8012
for (unsigned i = 0; i < NumElts; ++i) {
8013
SDValue V = Op.getOperand(i);
8014
if (V.isUndef())
8015
continue;
8016
if (i > 0)
8017
isOnlyLowElement = false;
8018
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
8019
isConstant = false;
8020
8021
ValueCounts.insert(std::make_pair(V, 0));
8022
unsigned &Count = ValueCounts[V];
8023
8024
// Is this value dominant? (takes up more than half of the lanes)
8025
if (++Count > (NumElts / 2)) {
8026
hasDominantValue = true;
8027
Value = V;
8028
}
8029
}
8030
if (ValueCounts.size() != 1)
8031
usesOnlyOneValue = false;
8032
if (!Value.getNode() && !ValueCounts.empty())
8033
Value = ValueCounts.begin()->first;
8034
8035
if (ValueCounts.empty())
8036
return DAG.getUNDEF(VT);
8037
8038
// Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
8039
// Keep going if we are hitting this case.
8040
if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
8041
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
8042
8043
unsigned EltSize = VT.getScalarSizeInBits();
8044
8045
// Use VDUP for non-constant splats. For f32 constant splats, reduce to
8046
// i32 and try again.
8047
if (hasDominantValue && EltSize <= 32) {
8048
if (!isConstant) {
8049
SDValue N;
8050
8051
// If we are VDUPing a value that comes directly from a vector, that will
8052
// cause an unnecessary move to and from a GPR, where instead we could
8053
// just use VDUPLANE. We can only do this if the lane being extracted
8054
// is at a constant index, as the VDUP from lane instructions only have
8055
// constant-index forms.
8056
ConstantSDNode *constIndex;
8057
if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
8058
(constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
8059
// We need to create a new undef vector to use for the VDUPLANE if the
8060
// size of the vector from which we get the value is different than the
8061
// size of the vector that we need to create. We will insert the element
8062
// such that the register coalescer will remove unnecessary copies.
8063
if (VT != Value->getOperand(0).getValueType()) {
8064
unsigned index = constIndex->getAPIntValue().getLimitedValue() %
8065
VT.getVectorNumElements();
8066
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8067
DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
8068
Value, DAG.getConstant(index, dl, MVT::i32)),
8069
DAG.getConstant(index, dl, MVT::i32));
8070
} else
8071
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8072
Value->getOperand(0), Value->getOperand(1));
8073
} else
8074
N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
8075
8076
if (!usesOnlyOneValue) {
8077
// The dominant value was splatted as 'N', but we now have to insert
8078
// all differing elements.
8079
for (unsigned I = 0; I < NumElts; ++I) {
8080
if (Op.getOperand(I) == Value)
8081
continue;
8082
SmallVector<SDValue, 3> Ops;
8083
Ops.push_back(N);
8084
Ops.push_back(Op.getOperand(I));
8085
Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
8086
N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
8087
}
8088
}
8089
return N;
8090
}
8091
if (VT.getVectorElementType().isFloatingPoint()) {
8092
SmallVector<SDValue, 8> Ops;
8093
MVT FVT = VT.getVectorElementType().getSimpleVT();
8094
assert(FVT == MVT::f32 || FVT == MVT::f16);
8095
MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
8096
for (unsigned i = 0; i < NumElts; ++i)
8097
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
8098
Op.getOperand(i)));
8099
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
8100
SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
8101
Val = LowerBUILD_VECTOR(Val, DAG, ST);
8102
if (Val.getNode())
8103
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8104
}
8105
if (usesOnlyOneValue) {
8106
SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
8107
if (isConstant && Val.getNode())
8108
return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
8109
}
8110
}
8111
8112
// If all elements are constants and the case above didn't get hit, fall back
8113
// to the default expansion, which will generate a load from the constant
8114
// pool.
8115
if (isConstant)
8116
return SDValue();
8117
8118
// Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and
8119
// vmovn). Empirical tests suggest this is rarely worth it for vectors of
8120
// length <= 2.
8121
if (NumElts >= 4)
8122
if (SDValue shuffle = ReconstructShuffle(Op, DAG))
8123
return shuffle;
8124
8125
// Attempt to turn a buildvector of scalar fptrunc's or fpext's back into
8126
// VCVT's
8127
if (SDValue VCVT = LowerBuildVectorOfFPTrunc(Op, DAG, Subtarget))
8128
return VCVT;
8129
if (SDValue VCVT = LowerBuildVectorOfFPExt(Op, DAG, Subtarget))
8130
return VCVT;
8131
8132
if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
8133
// If we haven't found an efficient lowering, try splitting a 128-bit vector
8134
// into two 64-bit vectors; we might discover a better way to lower it.
8135
SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
8136
EVT ExtVT = VT.getVectorElementType();
8137
EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
8138
SDValue Lower = DAG.getBuildVector(HVT, dl, ArrayRef(&Ops[0], NumElts / 2));
8139
if (Lower.getOpcode() == ISD::BUILD_VECTOR)
8140
Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
8141
SDValue Upper =
8142
DAG.getBuildVector(HVT, dl, ArrayRef(&Ops[NumElts / 2], NumElts / 2));
8143
if (Upper.getOpcode() == ISD::BUILD_VECTOR)
8144
Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
8145
if (Lower && Upper)
8146
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
8147
}
8148
8149
// Vectors with 32- or 64-bit elements can be built by directly assigning
8150
// the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
8151
// will be legalized.
8152
if (EltSize >= 32) {
8153
// Do the expansion with floating-point types, since that is what the VFP
8154
// registers are defined to use, and since i64 is not legal.
8155
EVT EltVT = EVT::getFloatingPointVT(EltSize);
8156
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8157
SmallVector<SDValue, 8> Ops;
8158
for (unsigned i = 0; i < NumElts; ++i)
8159
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
8160
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8161
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8162
}
8163
8164
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
8165
// know the default expansion would otherwise fall back on something even
8166
// worse. For a vector with one or two non-undef values, that's
8167
// scalar_to_vector for the elements followed by a shuffle (provided the
8168
// shuffle is valid for the target) and materialization element by element
8169
// on the stack followed by a load for everything else.
8170
if (!isConstant && !usesOnlyOneValue) {
8171
SDValue Vec = DAG.getUNDEF(VT);
8172
for (unsigned i = 0 ; i < NumElts; ++i) {
8173
SDValue V = Op.getOperand(i);
8174
if (V.isUndef())
8175
continue;
8176
SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
8177
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
8178
}
8179
return Vec;
8180
}
8181
8182
return SDValue();
8183
}
8184
8185
// Gather data to see if the operation can be modelled as a
8186
// shuffle in combination with VEXTs.
8187
SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
8188
SelectionDAG &DAG) const {
8189
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
8190
SDLoc dl(Op);
8191
EVT VT = Op.getValueType();
8192
unsigned NumElts = VT.getVectorNumElements();
8193
8194
struct ShuffleSourceInfo {
8195
SDValue Vec;
8196
unsigned MinElt = std::numeric_limits<unsigned>::max();
8197
unsigned MaxElt = 0;
8198
8199
// We may insert some combination of BITCASTs and VEXT nodes to force Vec to
8200
// be compatible with the shuffle we intend to construct. As a result
8201
// ShuffleVec will be some sliding window into the original Vec.
8202
SDValue ShuffleVec;
8203
8204
// Code should guarantee that element i in Vec starts at element "WindowBase
8205
// + i * WindowScale in ShuffleVec".
8206
int WindowBase = 0;
8207
int WindowScale = 1;
8208
8209
ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
8210
8211
bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
8212
};
8213
8214
// First gather all vectors used as an immediate source for this BUILD_VECTOR
8215
// node.
8216
SmallVector<ShuffleSourceInfo, 2> Sources;
8217
for (unsigned i = 0; i < NumElts; ++i) {
8218
SDValue V = Op.getOperand(i);
8219
if (V.isUndef())
8220
continue;
8221
else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
8222
// A shuffle can only come from building a vector from various
8223
// elements of other vectors.
8224
return SDValue();
8225
} else if (!isa<ConstantSDNode>(V.getOperand(1))) {
8226
// Furthermore, shuffles require a constant mask, whereas extractelts
8227
// accept variable indices.
8228
return SDValue();
8229
}
8230
8231
// Add this element source to the list if it's not already there.
8232
SDValue SourceVec = V.getOperand(0);
8233
auto Source = llvm::find(Sources, SourceVec);
8234
if (Source == Sources.end())
8235
Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
8236
8237
// Update the minimum and maximum lane number seen.
8238
unsigned EltNo = V.getConstantOperandVal(1);
8239
Source->MinElt = std::min(Source->MinElt, EltNo);
8240
Source->MaxElt = std::max(Source->MaxElt, EltNo);
8241
}
8242
8243
// Currently only do something sane when at most two source vectors
8244
// are involved.
8245
if (Sources.size() > 2)
8246
return SDValue();
8247
8248
// Find out the smallest element size among result and two sources, and use
8249
// it as element size to build the shuffle_vector.
8250
EVT SmallestEltTy = VT.getVectorElementType();
8251
for (auto &Source : Sources) {
8252
EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
8253
if (SrcEltTy.bitsLT(SmallestEltTy))
8254
SmallestEltTy = SrcEltTy;
8255
}
8256
unsigned ResMultiplier =
8257
VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
8258
NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
8259
EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
8260
8261
// If the source vector is too wide or too narrow, we may nevertheless be able
8262
// to construct a compatible shuffle either by concatenating it with UNDEF or
8263
// extracting a suitable range of elements.
8264
for (auto &Src : Sources) {
8265
EVT SrcVT = Src.ShuffleVec.getValueType();
8266
8267
uint64_t SrcVTSize = SrcVT.getFixedSizeInBits();
8268
uint64_t VTSize = VT.getFixedSizeInBits();
8269
if (SrcVTSize == VTSize)
8270
continue;
8271
8272
// This stage of the search produces a source with the same element type as
8273
// the original, but with a total width matching the BUILD_VECTOR output.
8274
EVT EltVT = SrcVT.getVectorElementType();
8275
unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
8276
EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
8277
8278
if (SrcVTSize < VTSize) {
8279
if (2 * SrcVTSize != VTSize)
8280
return SDValue();
8281
// We can pad out the smaller vector for free, so if it's part of a
8282
// shuffle...
8283
Src.ShuffleVec =
8284
DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
8285
DAG.getUNDEF(Src.ShuffleVec.getValueType()));
8286
continue;
8287
}
8288
8289
if (SrcVTSize != 2 * VTSize)
8290
return SDValue();
8291
8292
if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
8293
// Span too large for a VEXT to cope
8294
return SDValue();
8295
}
8296
8297
if (Src.MinElt >= NumSrcElts) {
8298
// The extraction can just take the second half
8299
Src.ShuffleVec =
8300
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8301
DAG.getConstant(NumSrcElts, dl, MVT::i32));
8302
Src.WindowBase = -NumSrcElts;
8303
} else if (Src.MaxElt < NumSrcElts) {
8304
// The extraction can just take the first half
8305
Src.ShuffleVec =
8306
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8307
DAG.getConstant(0, dl, MVT::i32));
8308
} else {
8309
// An actual VEXT is needed
8310
SDValue VEXTSrc1 =
8311
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8312
DAG.getConstant(0, dl, MVT::i32));
8313
SDValue VEXTSrc2 =
8314
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8315
DAG.getConstant(NumSrcElts, dl, MVT::i32));
8316
8317
Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
8318
VEXTSrc2,
8319
DAG.getConstant(Src.MinElt, dl, MVT::i32));
8320
Src.WindowBase = -Src.MinElt;
8321
}
8322
}
8323
8324
// Another possible incompatibility occurs from the vector element types. We
8325
// can fix this by bitcasting the source vectors to the same type we intend
8326
// for the shuffle.
8327
for (auto &Src : Sources) {
8328
EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
8329
if (SrcEltTy == SmallestEltTy)
8330
continue;
8331
assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
8332
Src.ShuffleVec = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, ShuffleVT, Src.ShuffleVec);
8333
Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
8334
Src.WindowBase *= Src.WindowScale;
8335
}
8336
8337
// Final check before we try to actually produce a shuffle.
8338
LLVM_DEBUG(for (auto Src
8339
: Sources)
8340
assert(Src.ShuffleVec.getValueType() == ShuffleVT););
8341
8342
// The stars all align, our next step is to produce the mask for the shuffle.
8343
SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
8344
int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
8345
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
8346
SDValue Entry = Op.getOperand(i);
8347
if (Entry.isUndef())
8348
continue;
8349
8350
auto Src = llvm::find(Sources, Entry.getOperand(0));
8351
int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
8352
8353
// EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
8354
// trunc. So only std::min(SrcBits, DestBits) actually get defined in this
8355
// segment.
8356
EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
8357
int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
8358
VT.getScalarSizeInBits());
8359
int LanesDefined = BitsDefined / BitsPerShuffleLane;
8360
8361
// This source is expected to fill ResMultiplier lanes of the final shuffle,
8362
// starting at the appropriate offset.
8363
int *LaneMask = &Mask[i * ResMultiplier];
8364
8365
int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
8366
ExtractBase += NumElts * (Src - Sources.begin());
8367
for (int j = 0; j < LanesDefined; ++j)
8368
LaneMask[j] = ExtractBase + j;
8369
}
8370
8371
8372
// We can't handle more than two sources. This should have already
8373
// been checked before this point.
8374
assert(Sources.size() <= 2 && "Too many sources!");
8375
8376
SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
8377
for (unsigned i = 0; i < Sources.size(); ++i)
8378
ShuffleOps[i] = Sources[i].ShuffleVec;
8379
8380
SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
8381
ShuffleOps[1], Mask, DAG);
8382
if (!Shuffle)
8383
return SDValue();
8384
return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Shuffle);
8385
}
8386
8387
enum ShuffleOpCodes {
8388
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8389
OP_VREV,
8390
OP_VDUP0,
8391
OP_VDUP1,
8392
OP_VDUP2,
8393
OP_VDUP3,
8394
OP_VEXT1,
8395
OP_VEXT2,
8396
OP_VEXT3,
8397
OP_VUZPL, // VUZP, left result
8398
OP_VUZPR, // VUZP, right result
8399
OP_VZIPL, // VZIP, left result
8400
OP_VZIPR, // VZIP, right result
8401
OP_VTRNL, // VTRN, left result
8402
OP_VTRNR // VTRN, right result
8403
};
8404
8405
static bool isLegalMVEShuffleOp(unsigned PFEntry) {
8406
unsigned OpNum = (PFEntry >> 26) & 0x0F;
8407
switch (OpNum) {
8408
case OP_COPY:
8409
case OP_VREV:
8410
case OP_VDUP0:
8411
case OP_VDUP1:
8412
case OP_VDUP2:
8413
case OP_VDUP3:
8414
return true;
8415
}
8416
return false;
8417
}
8418
8419
/// isShuffleMaskLegal - Targets can use this to indicate that they only
8420
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8421
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8422
/// are assumed to be legal.
8423
bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
8424
if (VT.getVectorNumElements() == 4 &&
8425
(VT.is128BitVector() || VT.is64BitVector())) {
8426
unsigned PFIndexes[4];
8427
for (unsigned i = 0; i != 4; ++i) {
8428
if (M[i] < 0)
8429
PFIndexes[i] = 8;
8430
else
8431
PFIndexes[i] = M[i];
8432
}
8433
8434
// Compute the index in the perfect shuffle table.
8435
unsigned PFTableIndex =
8436
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8437
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8438
unsigned Cost = (PFEntry >> 30);
8439
8440
if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
8441
return true;
8442
}
8443
8444
bool ReverseVEXT, isV_UNDEF;
8445
unsigned Imm, WhichResult;
8446
8447
unsigned EltSize = VT.getScalarSizeInBits();
8448
if (EltSize >= 32 ||
8449
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8450
ShuffleVectorInst::isIdentityMask(M, M.size()) ||
8451
isVREVMask(M, VT, 64) ||
8452
isVREVMask(M, VT, 32) ||
8453
isVREVMask(M, VT, 16))
8454
return true;
8455
else if (Subtarget->hasNEON() &&
8456
(isVEXTMask(M, VT, ReverseVEXT, Imm) ||
8457
isVTBLMask(M, VT) ||
8458
isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
8459
return true;
8460
else if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8461
isReverseMask(M, VT))
8462
return true;
8463
else if (Subtarget->hasMVEIntegerOps() &&
8464
(isVMOVNMask(M, VT, true, false) ||
8465
isVMOVNMask(M, VT, false, false) || isVMOVNMask(M, VT, true, true)))
8466
return true;
8467
else if (Subtarget->hasMVEIntegerOps() &&
8468
(isTruncMask(M, VT, false, false) ||
8469
isTruncMask(M, VT, false, true) ||
8470
isTruncMask(M, VT, true, false) || isTruncMask(M, VT, true, true)))
8471
return true;
8472
else
8473
return false;
8474
}
8475
8476
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8477
/// the specified operations to build the shuffle.
8478
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8479
SDValue RHS, SelectionDAG &DAG,
8480
const SDLoc &dl) {
8481
unsigned OpNum = (PFEntry >> 26) & 0x0F;
8482
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8483
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
8484
8485
if (OpNum == OP_COPY) {
8486
if (LHSID == (1*9+2)*9+3) return LHS;
8487
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8488
return RHS;
8489
}
8490
8491
SDValue OpLHS, OpRHS;
8492
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8493
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8494
EVT VT = OpLHS.getValueType();
8495
8496
switch (OpNum) {
8497
default: llvm_unreachable("Unknown shuffle opcode!");
8498
case OP_VREV:
8499
// VREV divides the vector in half and swaps within the half.
8500
if (VT.getScalarSizeInBits() == 32)
8501
return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
8502
// vrev <4 x i16> -> VREV32
8503
if (VT.getScalarSizeInBits() == 16)
8504
return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
8505
// vrev <4 x i8> -> VREV16
8506
assert(VT.getScalarSizeInBits() == 8);
8507
return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
8508
case OP_VDUP0:
8509
case OP_VDUP1:
8510
case OP_VDUP2:
8511
case OP_VDUP3:
8512
return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8513
OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
8514
case OP_VEXT1:
8515
case OP_VEXT2:
8516
case OP_VEXT3:
8517
return DAG.getNode(ARMISD::VEXT, dl, VT,
8518
OpLHS, OpRHS,
8519
DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
8520
case OP_VUZPL:
8521
case OP_VUZPR:
8522
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
8523
OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
8524
case OP_VZIPL:
8525
case OP_VZIPR:
8526
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
8527
OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
8528
case OP_VTRNL:
8529
case OP_VTRNR:
8530
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
8531
OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
8532
}
8533
}
8534
8535
static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
8536
ArrayRef<int> ShuffleMask,
8537
SelectionDAG &DAG) {
8538
// Check to see if we can use the VTBL instruction.
8539
SDValue V1 = Op.getOperand(0);
8540
SDValue V2 = Op.getOperand(1);
8541
SDLoc DL(Op);
8542
8543
SmallVector<SDValue, 8> VTBLMask;
8544
for (int I : ShuffleMask)
8545
VTBLMask.push_back(DAG.getConstant(I, DL, MVT::i32));
8546
8547
if (V2.getNode()->isUndef())
8548
return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
8549
DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8550
8551
return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
8552
DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8553
}
8554
8555
static SDValue LowerReverse_VECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
8556
SDLoc DL(Op);
8557
EVT VT = Op.getValueType();
8558
8559
assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8560
"Expect an v8i16/v16i8 type");
8561
SDValue OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, Op.getOperand(0));
8562
// For a v16i8 type: After the VREV, we have got <7, ..., 0, 15, ..., 8>. Now,
8563
// extract the first 8 bytes into the top double word and the last 8 bytes
8564
// into the bottom double word, through a new vector shuffle that will be
8565
// turned into a VEXT on Neon, or a couple of VMOVDs on MVE.
8566
std::vector<int> NewMask;
8567
for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
8568
NewMask.push_back(VT.getVectorNumElements() / 2 + i);
8569
for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
8570
NewMask.push_back(i);
8571
return DAG.getVectorShuffle(VT, DL, OpLHS, OpLHS, NewMask);
8572
}
8573
8574
static EVT getVectorTyFromPredicateVector(EVT VT) {
8575
switch (VT.getSimpleVT().SimpleTy) {
8576
case MVT::v2i1:
8577
return MVT::v2f64;
8578
case MVT::v4i1:
8579
return MVT::v4i32;
8580
case MVT::v8i1:
8581
return MVT::v8i16;
8582
case MVT::v16i1:
8583
return MVT::v16i8;
8584
default:
8585
llvm_unreachable("Unexpected vector predicate type");
8586
}
8587
}
8588
8589
static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
8590
SelectionDAG &DAG) {
8591
// Converting from boolean predicates to integers involves creating a vector
8592
// of all ones or all zeroes and selecting the lanes based upon the real
8593
// predicate.
8594
SDValue AllOnes =
8595
DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
8596
AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
8597
8598
SDValue AllZeroes =
8599
DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
8600
AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
8601
8602
// Get full vector type from predicate type
8603
EVT NewVT = getVectorTyFromPredicateVector(VT);
8604
8605
SDValue RecastV1;
8606
// If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
8607
// this to a v16i1. This cannot be done with an ordinary bitcast because the
8608
// sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
8609
// since we know in hardware the sizes are really the same.
8610
if (VT != MVT::v16i1)
8611
RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
8612
else
8613
RecastV1 = Pred;
8614
8615
// Select either all ones or zeroes depending upon the real predicate bits.
8616
SDValue PredAsVector =
8617
DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
8618
8619
// Recast our new predicate-as-integer v16i8 vector into something
8620
// appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
8621
return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
8622
}
8623
8624
static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
8625
const ARMSubtarget *ST) {
8626
EVT VT = Op.getValueType();
8627
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8628
ArrayRef<int> ShuffleMask = SVN->getMask();
8629
8630
assert(ST->hasMVEIntegerOps() &&
8631
"No support for vector shuffle of boolean predicates");
8632
8633
SDValue V1 = Op.getOperand(0);
8634
SDValue V2 = Op.getOperand(1);
8635
SDLoc dl(Op);
8636
if (isReverseMask(ShuffleMask, VT)) {
8637
SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
8638
SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
8639
SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
8640
DAG.getConstant(16, dl, MVT::i32));
8641
return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
8642
}
8643
8644
// Until we can come up with optimised cases for every single vector
8645
// shuffle in existence we have chosen the least painful strategy. This is
8646
// to essentially promote the boolean predicate to a 8-bit integer, where
8647
// each predicate represents a byte. Then we fall back on a normal integer
8648
// vector shuffle and convert the result back into a predicate vector. In
8649
// many cases the generated code might be even better than scalar code
8650
// operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
8651
// fields in a register into 8 other arbitrary 2-bit fields!
8652
SDValue PredAsVector1 = PromoteMVEPredVector(dl, V1, VT, DAG);
8653
EVT NewVT = PredAsVector1.getValueType();
8654
SDValue PredAsVector2 = V2.isUndef() ? DAG.getUNDEF(NewVT)
8655
: PromoteMVEPredVector(dl, V2, VT, DAG);
8656
assert(PredAsVector2.getValueType() == NewVT &&
8657
"Expected identical vector type in expanded i1 shuffle!");
8658
8659
// Do the shuffle!
8660
SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector1,
8661
PredAsVector2, ShuffleMask);
8662
8663
// Now return the result of comparing the shuffled vector with zero,
8664
// which will generate a real predicate, i.e. v4i1, v8i1 or v16i1. For a v2i1
8665
// we convert to a v4i1 compare to fill in the two halves of the i64 as i32s.
8666
if (VT == MVT::v2i1) {
8667
SDValue BC = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Shuffled);
8668
SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, BC,
8669
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8670
return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
8671
}
8672
return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
8673
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8674
}
8675
8676
static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
8677
ArrayRef<int> ShuffleMask,
8678
SelectionDAG &DAG) {
8679
// Attempt to lower the vector shuffle using as many whole register movs as
8680
// possible. This is useful for types smaller than 32bits, which would
8681
// often otherwise become a series for grp movs.
8682
SDLoc dl(Op);
8683
EVT VT = Op.getValueType();
8684
if (VT.getScalarSizeInBits() >= 32)
8685
return SDValue();
8686
8687
assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8688
"Unexpected vector type");
8689
int NumElts = VT.getVectorNumElements();
8690
int QuarterSize = NumElts / 4;
8691
// The four final parts of the vector, as i32's
8692
SDValue Parts[4];
8693
8694
// Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
8695
// <u,u,u,u>), returning the vmov lane index
8696
auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
8697
// Detect which mov lane this would be from the first non-undef element.
8698
int MovIdx = -1;
8699
for (int i = 0; i < Length; i++) {
8700
if (ShuffleMask[Start + i] >= 0) {
8701
if (ShuffleMask[Start + i] % Length != i)
8702
return -1;
8703
MovIdx = ShuffleMask[Start + i] / Length;
8704
break;
8705
}
8706
}
8707
// If all items are undef, leave this for other combines
8708
if (MovIdx == -1)
8709
return -1;
8710
// Check the remaining values are the correct part of the same mov
8711
for (int i = 1; i < Length; i++) {
8712
if (ShuffleMask[Start + i] >= 0 &&
8713
(ShuffleMask[Start + i] / Length != MovIdx ||
8714
ShuffleMask[Start + i] % Length != i))
8715
return -1;
8716
}
8717
return MovIdx;
8718
};
8719
8720
for (int Part = 0; Part < 4; ++Part) {
8721
// Does this part look like a mov
8722
int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
8723
if (Elt != -1) {
8724
SDValue Input = Op->getOperand(0);
8725
if (Elt >= 4) {
8726
Input = Op->getOperand(1);
8727
Elt -= 4;
8728
}
8729
SDValue BitCast = DAG.getBitcast(MVT::v4f32, Input);
8730
Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, BitCast,
8731
DAG.getConstant(Elt, dl, MVT::i32));
8732
}
8733
}
8734
8735
// Nothing interesting found, just return
8736
if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
8737
return SDValue();
8738
8739
// The other parts need to be built with the old shuffle vector, cast to a
8740
// v4i32 and extract_vector_elts
8741
if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
8742
SmallVector<int, 16> NewShuffleMask;
8743
for (int Part = 0; Part < 4; ++Part)
8744
for (int i = 0; i < QuarterSize; i++)
8745
NewShuffleMask.push_back(
8746
Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
8747
SDValue NewShuffle = DAG.getVectorShuffle(
8748
VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
8749
SDValue BitCast = DAG.getBitcast(MVT::v4f32, NewShuffle);
8750
8751
for (int Part = 0; Part < 4; ++Part)
8752
if (!Parts[Part])
8753
Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32,
8754
BitCast, DAG.getConstant(Part, dl, MVT::i32));
8755
}
8756
// Build a vector out of the various parts and bitcast it back to the original
8757
// type.
8758
SDValue NewVec = DAG.getNode(ARMISD::BUILD_VECTOR, dl, MVT::v4f32, Parts);
8759
return DAG.getBitcast(VT, NewVec);
8760
}
8761
8762
static SDValue LowerVECTOR_SHUFFLEUsingOneOff(SDValue Op,
8763
ArrayRef<int> ShuffleMask,
8764
SelectionDAG &DAG) {
8765
SDValue V1 = Op.getOperand(0);
8766
SDValue V2 = Op.getOperand(1);
8767
EVT VT = Op.getValueType();
8768
unsigned NumElts = VT.getVectorNumElements();
8769
8770
// An One-Off Identity mask is one that is mostly an identity mask from as
8771
// single source but contains a single element out-of-place, either from a
8772
// different vector or from another position in the same vector. As opposed to
8773
// lowering this via a ARMISD::BUILD_VECTOR we can generate an extract/insert
8774
// pair directly.
8775
auto isOneOffIdentityMask = [](ArrayRef<int> Mask, EVT VT, int BaseOffset,
8776
int &OffElement) {
8777
OffElement = -1;
8778
int NonUndef = 0;
8779
for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
8780
if (Mask[i] == -1)
8781
continue;
8782
NonUndef++;
8783
if (Mask[i] != i + BaseOffset) {
8784
if (OffElement == -1)
8785
OffElement = i;
8786
else
8787
return false;
8788
}
8789
}
8790
return NonUndef > 2 && OffElement != -1;
8791
};
8792
int OffElement;
8793
SDValue VInput;
8794
if (isOneOffIdentityMask(ShuffleMask, VT, 0, OffElement))
8795
VInput = V1;
8796
else if (isOneOffIdentityMask(ShuffleMask, VT, NumElts, OffElement))
8797
VInput = V2;
8798
else
8799
return SDValue();
8800
8801
SDLoc dl(Op);
8802
EVT SVT = VT.getScalarType() == MVT::i8 || VT.getScalarType() == MVT::i16
8803
? MVT::i32
8804
: VT.getScalarType();
8805
SDValue Elt = DAG.getNode(
8806
ISD::EXTRACT_VECTOR_ELT, dl, SVT,
8807
ShuffleMask[OffElement] < (int)NumElts ? V1 : V2,
8808
DAG.getVectorIdxConstant(ShuffleMask[OffElement] % NumElts, dl));
8809
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, VInput, Elt,
8810
DAG.getVectorIdxConstant(OffElement % NumElts, dl));
8811
}
8812
8813
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
8814
const ARMSubtarget *ST) {
8815
SDValue V1 = Op.getOperand(0);
8816
SDValue V2 = Op.getOperand(1);
8817
SDLoc dl(Op);
8818
EVT VT = Op.getValueType();
8819
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8820
unsigned EltSize = VT.getScalarSizeInBits();
8821
8822
if (ST->hasMVEIntegerOps() && EltSize == 1)
8823
return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
8824
8825
// Convert shuffles that are directly supported on NEON to target-specific
8826
// DAG nodes, instead of keeping them as shuffles and matching them again
8827
// during code selection. This is more efficient and avoids the possibility
8828
// of inconsistencies between legalization and selection.
8829
// FIXME: floating-point vectors should be canonicalized to integer vectors
8830
// of the same time so that they get CSEd properly.
8831
ArrayRef<int> ShuffleMask = SVN->getMask();
8832
8833
if (EltSize <= 32) {
8834
if (SVN->isSplat()) {
8835
int Lane = SVN->getSplatIndex();
8836
// If this is undef splat, generate it via "just" vdup, if possible.
8837
if (Lane == -1) Lane = 0;
8838
8839
// Test if V1 is a SCALAR_TO_VECTOR.
8840
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8841
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8842
}
8843
// Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
8844
// (and probably will turn into a SCALAR_TO_VECTOR once legalization
8845
// reaches it).
8846
if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
8847
!isa<ConstantSDNode>(V1.getOperand(0))) {
8848
bool IsScalarToVector = true;
8849
for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
8850
if (!V1.getOperand(i).isUndef()) {
8851
IsScalarToVector = false;
8852
break;
8853
}
8854
if (IsScalarToVector)
8855
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8856
}
8857
return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
8858
DAG.getConstant(Lane, dl, MVT::i32));
8859
}
8860
8861
bool ReverseVEXT = false;
8862
unsigned Imm = 0;
8863
if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
8864
if (ReverseVEXT)
8865
std::swap(V1, V2);
8866
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
8867
DAG.getConstant(Imm, dl, MVT::i32));
8868
}
8869
8870
if (isVREVMask(ShuffleMask, VT, 64))
8871
return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
8872
if (isVREVMask(ShuffleMask, VT, 32))
8873
return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
8874
if (isVREVMask(ShuffleMask, VT, 16))
8875
return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
8876
8877
if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
8878
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
8879
DAG.getConstant(Imm, dl, MVT::i32));
8880
}
8881
8882
// Check for Neon shuffles that modify both input vectors in place.
8883
// If both results are used, i.e., if there are two shuffles with the same
8884
// source operands and with masks corresponding to both results of one of
8885
// these operations, DAG memoization will ensure that a single node is
8886
// used for both shuffles.
8887
unsigned WhichResult = 0;
8888
bool isV_UNDEF = false;
8889
if (ST->hasNEON()) {
8890
if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8891
ShuffleMask, VT, WhichResult, isV_UNDEF)) {
8892
if (isV_UNDEF)
8893
V2 = V1;
8894
return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
8895
.getValue(WhichResult);
8896
}
8897
}
8898
if (ST->hasMVEIntegerOps()) {
8899
if (isVMOVNMask(ShuffleMask, VT, false, false))
8900
return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
8901
DAG.getConstant(0, dl, MVT::i32));
8902
if (isVMOVNMask(ShuffleMask, VT, true, false))
8903
return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
8904
DAG.getConstant(1, dl, MVT::i32));
8905
if (isVMOVNMask(ShuffleMask, VT, true, true))
8906
return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V1,
8907
DAG.getConstant(1, dl, MVT::i32));
8908
}
8909
8910
// Also check for these shuffles through CONCAT_VECTORS: we canonicalize
8911
// shuffles that produce a result larger than their operands with:
8912
// shuffle(concat(v1, undef), concat(v2, undef))
8913
// ->
8914
// shuffle(concat(v1, v2), undef)
8915
// because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
8916
//
8917
// This is useful in the general case, but there are special cases where
8918
// native shuffles produce larger results: the two-result ops.
8919
//
8920
// Look through the concat when lowering them:
8921
// shuffle(concat(v1, v2), undef)
8922
// ->
8923
// concat(VZIP(v1, v2):0, :1)
8924
//
8925
if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
8926
SDValue SubV1 = V1->getOperand(0);
8927
SDValue SubV2 = V1->getOperand(1);
8928
EVT SubVT = SubV1.getValueType();
8929
8930
// We expect these to have been canonicalized to -1.
8931
assert(llvm::all_of(ShuffleMask, [&](int i) {
8932
return i < (int)VT.getVectorNumElements();
8933
}) && "Unexpected shuffle index into UNDEF operand!");
8934
8935
if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8936
ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
8937
if (isV_UNDEF)
8938
SubV2 = SubV1;
8939
assert((WhichResult == 0) &&
8940
"In-place shuffle of concat can only have one result!");
8941
SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
8942
SubV1, SubV2);
8943
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
8944
Res.getValue(1));
8945
}
8946
}
8947
}
8948
8949
if (ST->hasMVEIntegerOps() && EltSize <= 32) {
8950
if (SDValue V = LowerVECTOR_SHUFFLEUsingOneOff(Op, ShuffleMask, DAG))
8951
return V;
8952
8953
for (bool Top : {false, true}) {
8954
for (bool SingleSource : {false, true}) {
8955
if (isTruncMask(ShuffleMask, VT, Top, SingleSource)) {
8956
MVT FromSVT = MVT::getIntegerVT(EltSize * 2);
8957
MVT FromVT = MVT::getVectorVT(FromSVT, ShuffleMask.size() / 2);
8958
SDValue Lo = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, FromVT, V1);
8959
SDValue Hi = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, FromVT,
8960
SingleSource ? V1 : V2);
8961
if (Top) {
8962
SDValue Amt = DAG.getConstant(EltSize, dl, FromVT);
8963
Lo = DAG.getNode(ISD::SRL, dl, FromVT, Lo, Amt);
8964
Hi = DAG.getNode(ISD::SRL, dl, FromVT, Hi, Amt);
8965
}
8966
return DAG.getNode(ARMISD::MVETRUNC, dl, VT, Lo, Hi);
8967
}
8968
}
8969
}
8970
}
8971
8972
// If the shuffle is not directly supported and it has 4 elements, use
8973
// the PerfectShuffle-generated table to synthesize it from other shuffles.
8974
unsigned NumElts = VT.getVectorNumElements();
8975
if (NumElts == 4) {
8976
unsigned PFIndexes[4];
8977
for (unsigned i = 0; i != 4; ++i) {
8978
if (ShuffleMask[i] < 0)
8979
PFIndexes[i] = 8;
8980
else
8981
PFIndexes[i] = ShuffleMask[i];
8982
}
8983
8984
// Compute the index in the perfect shuffle table.
8985
unsigned PFTableIndex =
8986
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8987
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8988
unsigned Cost = (PFEntry >> 30);
8989
8990
if (Cost <= 4) {
8991
if (ST->hasNEON())
8992
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8993
else if (isLegalMVEShuffleOp(PFEntry)) {
8994
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8995
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
8996
unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
8997
unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
8998
if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
8999
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9000
}
9001
}
9002
}
9003
9004
// Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
9005
if (EltSize >= 32) {
9006
// Do the expansion with floating-point types, since that is what the VFP
9007
// registers are defined to use, and since i64 is not legal.
9008
EVT EltVT = EVT::getFloatingPointVT(EltSize);
9009
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
9010
V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
9011
V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
9012
SmallVector<SDValue, 8> Ops;
9013
for (unsigned i = 0; i < NumElts; ++i) {
9014
if (ShuffleMask[i] < 0)
9015
Ops.push_back(DAG.getUNDEF(EltVT));
9016
else
9017
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
9018
ShuffleMask[i] < (int)NumElts ? V1 : V2,
9019
DAG.getConstant(ShuffleMask[i] & (NumElts-1),
9020
dl, MVT::i32)));
9021
}
9022
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
9023
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
9024
}
9025
9026
if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
9027
isReverseMask(ShuffleMask, VT))
9028
return LowerReverse_VECTOR_SHUFFLE(Op, DAG);
9029
9030
if (ST->hasNEON() && VT == MVT::v8i8)
9031
if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
9032
return NewOp;
9033
9034
if (ST->hasMVEIntegerOps())
9035
if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
9036
return NewOp;
9037
9038
return SDValue();
9039
}
9040
9041
static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
9042
const ARMSubtarget *ST) {
9043
EVT VecVT = Op.getOperand(0).getValueType();
9044
SDLoc dl(Op);
9045
9046
assert(ST->hasMVEIntegerOps() &&
9047
"LowerINSERT_VECTOR_ELT_i1 called without MVE!");
9048
9049
SDValue Conv =
9050
DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
9051
unsigned Lane = Op.getConstantOperandVal(2);
9052
unsigned LaneWidth =
9053
getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
9054
unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
9055
SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
9056
Op.getOperand(1), DAG.getValueType(MVT::i1));
9057
SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
9058
DAG.getConstant(~Mask, dl, MVT::i32));
9059
return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
9060
}
9061
9062
SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9063
SelectionDAG &DAG) const {
9064
// INSERT_VECTOR_ELT is legal only for immediate indexes.
9065
SDValue Lane = Op.getOperand(2);
9066
if (!isa<ConstantSDNode>(Lane))
9067
return SDValue();
9068
9069
SDValue Elt = Op.getOperand(1);
9070
EVT EltVT = Elt.getValueType();
9071
9072
if (Subtarget->hasMVEIntegerOps() &&
9073
Op.getValueType().getScalarSizeInBits() == 1)
9074
return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
9075
9076
if (getTypeAction(*DAG.getContext(), EltVT) ==
9077
TargetLowering::TypeSoftPromoteHalf) {
9078
// INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
9079
// but the type system will try to do that if we don't intervene.
9080
// Reinterpret any such vector-element insertion as one with the
9081
// corresponding integer types.
9082
9083
SDLoc dl(Op);
9084
9085
EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
9086
assert(getTypeAction(*DAG.getContext(), IEltVT) !=
9087
TargetLowering::TypeSoftPromoteHalf);
9088
9089
SDValue VecIn = Op.getOperand(0);
9090
EVT VecVT = VecIn.getValueType();
9091
EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
9092
VecVT.getVectorNumElements());
9093
9094
SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
9095
SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
9096
SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
9097
IVecIn, IElt, Lane);
9098
return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
9099
}
9100
9101
return Op;
9102
}
9103
9104
static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
9105
const ARMSubtarget *ST) {
9106
EVT VecVT = Op.getOperand(0).getValueType();
9107
SDLoc dl(Op);
9108
9109
assert(ST->hasMVEIntegerOps() &&
9110
"LowerINSERT_VECTOR_ELT_i1 called without MVE!");
9111
9112
SDValue Conv =
9113
DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
9114
unsigned Lane = Op.getConstantOperandVal(1);
9115
unsigned LaneWidth =
9116
getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
9117
SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
9118
DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
9119
return Shift;
9120
}
9121
9122
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
9123
const ARMSubtarget *ST) {
9124
// EXTRACT_VECTOR_ELT is legal only for immediate indexes.
9125
SDValue Lane = Op.getOperand(1);
9126
if (!isa<ConstantSDNode>(Lane))
9127
return SDValue();
9128
9129
SDValue Vec = Op.getOperand(0);
9130
EVT VT = Vec.getValueType();
9131
9132
if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
9133
return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
9134
9135
if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
9136
SDLoc dl(Op);
9137
return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
9138
}
9139
9140
return Op;
9141
}
9142
9143
static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
9144
const ARMSubtarget *ST) {
9145
SDLoc dl(Op);
9146
assert(Op.getValueType().getScalarSizeInBits() == 1 &&
9147
"Unexpected custom CONCAT_VECTORS lowering");
9148
assert(isPowerOf2_32(Op.getNumOperands()) &&
9149
"Unexpected custom CONCAT_VECTORS lowering");
9150
assert(ST->hasMVEIntegerOps() &&
9151
"CONCAT_VECTORS lowering only supported for MVE");
9152
9153
auto ConcatPair = [&](SDValue V1, SDValue V2) {
9154
EVT Op1VT = V1.getValueType();
9155
EVT Op2VT = V2.getValueType();
9156
assert(Op1VT == Op2VT && "Operand types don't match!");
9157
assert((Op1VT == MVT::v2i1 || Op1VT == MVT::v4i1 || Op1VT == MVT::v8i1) &&
9158
"Unexpected i1 concat operations!");
9159
EVT VT = Op1VT.getDoubleNumVectorElementsVT(*DAG.getContext());
9160
9161
SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
9162
SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
9163
9164
// We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
9165
// promoted to v8i16, etc.
9166
MVT ElType =
9167
getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
9168
unsigned NumElts = 2 * Op1VT.getVectorNumElements();
9169
9170
EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
9171
if (Op1VT == MVT::v4i1 || Op1VT == MVT::v8i1) {
9172
// Use MVETRUNC to truncate the combined NewV1::NewV2 into the smaller
9173
// ConcatVT.
9174
SDValue ConVec =
9175
DAG.getNode(ARMISD::MVETRUNC, dl, ConcatVT, NewV1, NewV2);
9176
return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
9177
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9178
}
9179
9180
// Extract the vector elements from Op1 and Op2 one by one and truncate them
9181
// to be the right size for the destination. For example, if Op1 is v4i1
9182
// then the promoted vector is v4i32. The result of concatenation gives a
9183
// v8i1, which when promoted is v8i16. That means each i32 element from Op1
9184
// needs truncating to i16 and inserting in the result.
9185
auto ExtractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
9186
EVT NewVT = NewV.getValueType();
9187
EVT ConcatVT = ConVec.getValueType();
9188
unsigned ExtScale = 1;
9189
if (NewVT == MVT::v2f64) {
9190
NewV = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, NewV);
9191
ExtScale = 2;
9192
}
9193
for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
9194
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
9195
DAG.getIntPtrConstant(i * ExtScale, dl));
9196
ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
9197
DAG.getConstant(j, dl, MVT::i32));
9198
}
9199
return ConVec;
9200
};
9201
unsigned j = 0;
9202
SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
9203
ConVec = ExtractInto(NewV1, ConVec, j);
9204
ConVec = ExtractInto(NewV2, ConVec, j);
9205
9206
// Now return the result of comparing the subvector with zero, which will
9207
// generate a real predicate, i.e. v4i1, v8i1 or v16i1.
9208
return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
9209
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9210
};
9211
9212
// Concat each pair of subvectors and pack into the lower half of the array.
9213
SmallVector<SDValue> ConcatOps(Op->op_begin(), Op->op_end());
9214
while (ConcatOps.size() > 1) {
9215
for (unsigned I = 0, E = ConcatOps.size(); I != E; I += 2) {
9216
SDValue V1 = ConcatOps[I];
9217
SDValue V2 = ConcatOps[I + 1];
9218
ConcatOps[I / 2] = ConcatPair(V1, V2);
9219
}
9220
ConcatOps.resize(ConcatOps.size() / 2);
9221
}
9222
return ConcatOps[0];
9223
}
9224
9225
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
9226
const ARMSubtarget *ST) {
9227
EVT VT = Op->getValueType(0);
9228
if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
9229
return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
9230
9231
// The only time a CONCAT_VECTORS operation can have legal types is when
9232
// two 64-bit vectors are concatenated to a 128-bit vector.
9233
assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
9234
"unexpected CONCAT_VECTORS");
9235
SDLoc dl(Op);
9236
SDValue Val = DAG.getUNDEF(MVT::v2f64);
9237
SDValue Op0 = Op.getOperand(0);
9238
SDValue Op1 = Op.getOperand(1);
9239
if (!Op0.isUndef())
9240
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
9241
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
9242
DAG.getIntPtrConstant(0, dl));
9243
if (!Op1.isUndef())
9244
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
9245
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
9246
DAG.getIntPtrConstant(1, dl));
9247
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
9248
}
9249
9250
static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
9251
const ARMSubtarget *ST) {
9252
SDValue V1 = Op.getOperand(0);
9253
SDValue V2 = Op.getOperand(1);
9254
SDLoc dl(Op);
9255
EVT VT = Op.getValueType();
9256
EVT Op1VT = V1.getValueType();
9257
unsigned NumElts = VT.getVectorNumElements();
9258
unsigned Index = V2->getAsZExtVal();
9259
9260
assert(VT.getScalarSizeInBits() == 1 &&
9261
"Unexpected custom EXTRACT_SUBVECTOR lowering");
9262
assert(ST->hasMVEIntegerOps() &&
9263
"EXTRACT_SUBVECTOR lowering only supported for MVE");
9264
9265
SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
9266
9267
// We now have Op1 promoted to a vector of integers, where v8i1 gets
9268
// promoted to v8i16, etc.
9269
9270
MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
9271
9272
if (NumElts == 2) {
9273
EVT SubVT = MVT::v4i32;
9274
SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
9275
for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j += 2) {
9276
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
9277
DAG.getIntPtrConstant(i, dl));
9278
SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9279
DAG.getConstant(j, dl, MVT::i32));
9280
SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9281
DAG.getConstant(j + 1, dl, MVT::i32));
9282
}
9283
SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, SubVec,
9284
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9285
return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
9286
}
9287
9288
EVT SubVT = MVT::getVectorVT(ElType, NumElts);
9289
SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
9290
for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
9291
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
9292
DAG.getIntPtrConstant(i, dl));
9293
SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9294
DAG.getConstant(j, dl, MVT::i32));
9295
}
9296
9297
// Now return the result of comparing the subvector with zero,
9298
// which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
9299
return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
9300
DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9301
}
9302
9303
// Turn a truncate into a predicate (an i1 vector) into icmp(and(x, 1), 0).
9304
static SDValue LowerTruncatei1(SDNode *N, SelectionDAG &DAG,
9305
const ARMSubtarget *ST) {
9306
assert(ST->hasMVEIntegerOps() && "Expected MVE!");
9307
EVT VT = N->getValueType(0);
9308
assert((VT == MVT::v16i1 || VT == MVT::v8i1 || VT == MVT::v4i1) &&
9309
"Expected a vector i1 type!");
9310
SDValue Op = N->getOperand(0);
9311
EVT FromVT = Op.getValueType();
9312
SDLoc DL(N);
9313
9314
SDValue And =
9315
DAG.getNode(ISD::AND, DL, FromVT, Op, DAG.getConstant(1, DL, FromVT));
9316
return DAG.getNode(ISD::SETCC, DL, VT, And, DAG.getConstant(0, DL, FromVT),
9317
DAG.getCondCode(ISD::SETNE));
9318
}
9319
9320
static SDValue LowerTruncate(SDNode *N, SelectionDAG &DAG,
9321
const ARMSubtarget *Subtarget) {
9322
if (!Subtarget->hasMVEIntegerOps())
9323
return SDValue();
9324
9325
EVT ToVT = N->getValueType(0);
9326
if (ToVT.getScalarType() == MVT::i1)
9327
return LowerTruncatei1(N, DAG, Subtarget);
9328
9329
// MVE does not have a single instruction to perform the truncation of a v4i32
9330
// into the lower half of a v8i16, in the same way that a NEON vmovn would.
9331
// Most of the instructions in MVE follow the 'Beats' system, where moving
9332
// values from different lanes is usually something that the instructions
9333
// avoid.
9334
//
9335
// Instead it has top/bottom instructions such as VMOVLT/B and VMOVNT/B,
9336
// which take a the top/bottom half of a larger lane and extend it (or do the
9337
// opposite, truncating into the top/bottom lane from a larger lane). Note
9338
// that because of the way we widen lanes, a v4i16 is really a v4i32 using the
9339
// bottom 16bits from each vector lane. This works really well with T/B
9340
// instructions, but that doesn't extend to v8i32->v8i16 where the lanes need
9341
// to move order.
9342
//
9343
// But truncates and sext/zext are always going to be fairly common from llvm.
9344
// We have several options for how to deal with them:
9345
// - Wherever possible combine them into an instruction that makes them
9346
// "free". This includes loads/stores, which can perform the trunc as part
9347
// of the memory operation. Or certain shuffles that can be turned into
9348
// VMOVN/VMOVL.
9349
// - Lane Interleaving to transform blocks surrounded by ext/trunc. So
9350
// trunc(mul(sext(a), sext(b))) may become
9351
// VMOVNT(VMUL(VMOVLB(a), VMOVLB(b)), VMUL(VMOVLT(a), VMOVLT(b))). (Which in
9352
// this case can use VMULL). This is performed in the
9353
// MVELaneInterleavingPass.
9354
// - Otherwise we have an option. By default we would expand the
9355
// zext/sext/trunc into a series of lane extract/inserts going via GPR
9356
// registers. One for each vector lane in the vector. This can obviously be
9357
// very expensive.
9358
// - The other option is to use the fact that loads/store can extend/truncate
9359
// to turn a trunc into two truncating stack stores and a stack reload. This
9360
// becomes 3 back-to-back memory operations, but at least that is less than
9361
// all the insert/extracts.
9362
//
9363
// In order to do the last, we convert certain trunc's into MVETRUNC, which
9364
// are either optimized where they can be, or eventually lowered into stack
9365
// stores/loads. This prevents us from splitting a v8i16 trunc into two stores
9366
// two early, where other instructions would be better, and stops us from
9367
// having to reconstruct multiple buildvector shuffles into loads/stores.
9368
if (ToVT != MVT::v8i16 && ToVT != MVT::v16i8)
9369
return SDValue();
9370
EVT FromVT = N->getOperand(0).getValueType();
9371
if (FromVT != MVT::v8i32 && FromVT != MVT::v16i16)
9372
return SDValue();
9373
9374
SDValue Lo, Hi;
9375
std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
9376
SDLoc DL(N);
9377
return DAG.getNode(ARMISD::MVETRUNC, DL, ToVT, Lo, Hi);
9378
}
9379
9380
static SDValue LowerVectorExtend(SDNode *N, SelectionDAG &DAG,
9381
const ARMSubtarget *Subtarget) {
9382
if (!Subtarget->hasMVEIntegerOps())
9383
return SDValue();
9384
9385
// See LowerTruncate above for an explanation of MVEEXT/MVETRUNC.
9386
9387
EVT ToVT = N->getValueType(0);
9388
if (ToVT != MVT::v16i32 && ToVT != MVT::v8i32 && ToVT != MVT::v16i16)
9389
return SDValue();
9390
SDValue Op = N->getOperand(0);
9391
EVT FromVT = Op.getValueType();
9392
if (FromVT != MVT::v8i16 && FromVT != MVT::v16i8)
9393
return SDValue();
9394
9395
SDLoc DL(N);
9396
EVT ExtVT = ToVT.getHalfNumVectorElementsVT(*DAG.getContext());
9397
if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8)
9398
ExtVT = MVT::v8i16;
9399
9400
unsigned Opcode =
9401
N->getOpcode() == ISD::SIGN_EXTEND ? ARMISD::MVESEXT : ARMISD::MVEZEXT;
9402
SDValue Ext = DAG.getNode(Opcode, DL, DAG.getVTList(ExtVT, ExtVT), Op);
9403
SDValue Ext1 = Ext.getValue(1);
9404
9405
if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8) {
9406
Ext = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext);
9407
Ext1 = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext1);
9408
}
9409
9410
return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Ext, Ext1);
9411
}
9412
9413
/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
9414
/// element has been zero/sign-extended, depending on the isSigned parameter,
9415
/// from an integer type half its size.
9416
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
9417
bool isSigned) {
9418
// A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
9419
EVT VT = N->getValueType(0);
9420
if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
9421
SDNode *BVN = N->getOperand(0).getNode();
9422
if (BVN->getValueType(0) != MVT::v4i32 ||
9423
BVN->getOpcode() != ISD::BUILD_VECTOR)
9424
return false;
9425
unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9426
unsigned HiElt = 1 - LoElt;
9427
ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
9428
ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
9429
ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
9430
ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
9431
if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
9432
return false;
9433
if (isSigned) {
9434
if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
9435
Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
9436
return true;
9437
} else {
9438
if (Hi0->isZero() && Hi1->isZero())
9439
return true;
9440
}
9441
return false;
9442
}
9443
9444
if (N->getOpcode() != ISD::BUILD_VECTOR)
9445
return false;
9446
9447
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9448
SDNode *Elt = N->getOperand(i).getNode();
9449
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
9450
unsigned EltSize = VT.getScalarSizeInBits();
9451
unsigned HalfSize = EltSize / 2;
9452
if (isSigned) {
9453
if (!isIntN(HalfSize, C->getSExtValue()))
9454
return false;
9455
} else {
9456
if (!isUIntN(HalfSize, C->getZExtValue()))
9457
return false;
9458
}
9459
continue;
9460
}
9461
return false;
9462
}
9463
9464
return true;
9465
}
9466
9467
/// isSignExtended - Check if a node is a vector value that is sign-extended
9468
/// or a constant BUILD_VECTOR with sign-extended elements.
9469
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
9470
if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
9471
return true;
9472
if (isExtendedBUILD_VECTOR(N, DAG, true))
9473
return true;
9474
return false;
9475
}
9476
9477
/// isZeroExtended - Check if a node is a vector value that is zero-extended (or
9478
/// any-extended) or a constant BUILD_VECTOR with zero-extended elements.
9479
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
9480
if (N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND ||
9481
ISD::isZEXTLoad(N))
9482
return true;
9483
if (isExtendedBUILD_VECTOR(N, DAG, false))
9484
return true;
9485
return false;
9486
}
9487
9488
static EVT getExtensionTo64Bits(const EVT &OrigVT) {
9489
if (OrigVT.getSizeInBits() >= 64)
9490
return OrigVT;
9491
9492
assert(OrigVT.isSimple() && "Expecting a simple value type");
9493
9494
MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
9495
switch (OrigSimpleTy) {
9496
default: llvm_unreachable("Unexpected Vector Type");
9497
case MVT::v2i8:
9498
case MVT::v2i16:
9499
return MVT::v2i32;
9500
case MVT::v4i8:
9501
return MVT::v4i16;
9502
}
9503
}
9504
9505
/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
9506
/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
9507
/// We insert the required extension here to get the vector to fill a D register.
9508
static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
9509
const EVT &OrigTy,
9510
const EVT &ExtTy,
9511
unsigned ExtOpcode) {
9512
// The vector originally had a size of OrigTy. It was then extended to ExtTy.
9513
// We expect the ExtTy to be 128-bits total. If the OrigTy is less than
9514
// 64-bits we need to insert a new extension so that it will be 64-bits.
9515
assert(ExtTy.is128BitVector() && "Unexpected extension size");
9516
if (OrigTy.getSizeInBits() >= 64)
9517
return N;
9518
9519
// Must extend size to at least 64 bits to be used as an operand for VMULL.
9520
EVT NewVT = getExtensionTo64Bits(OrigTy);
9521
9522
return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
9523
}
9524
9525
/// SkipLoadExtensionForVMULL - return a load of the original vector size that
9526
/// does not do any sign/zero extension. If the original vector is less
9527
/// than 64 bits, an appropriate extension will be added after the load to
9528
/// reach a total size of 64 bits. We have to add the extension separately
9529
/// because ARM does not have a sign/zero extending load for vectors.
9530
static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
9531
EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
9532
9533
// The load already has the right type.
9534
if (ExtendedTy == LD->getMemoryVT())
9535
return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
9536
LD->getBasePtr(), LD->getPointerInfo(), LD->getAlign(),
9537
LD->getMemOperand()->getFlags());
9538
9539
// We need to create a zextload/sextload. We cannot just create a load
9540
// followed by a zext/zext node because LowerMUL is also run during normal
9541
// operation legalization where we can't create illegal types.
9542
return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
9543
LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
9544
LD->getMemoryVT(), LD->getAlign(),
9545
LD->getMemOperand()->getFlags());
9546
}
9547
9548
/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
9549
/// ANY_EXTEND, extending load, or BUILD_VECTOR with extended elements, return
9550
/// the unextended value. The unextended vector should be 64 bits so that it can
9551
/// be used as an operand to a VMULL instruction. If the original vector size
9552
/// before extension is less than 64 bits we add a an extension to resize
9553
/// the vector to 64 bits.
9554
static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
9555
if (N->getOpcode() == ISD::SIGN_EXTEND ||
9556
N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND)
9557
return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
9558
N->getOperand(0)->getValueType(0),
9559
N->getValueType(0),
9560
N->getOpcode());
9561
9562
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9563
assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
9564
"Expected extending load");
9565
9566
SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
9567
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
9568
unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9569
SDValue extLoad =
9570
DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
9571
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
9572
9573
return newLoad;
9574
}
9575
9576
// Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
9577
// have been legalized as a BITCAST from v4i32.
9578
if (N->getOpcode() == ISD::BITCAST) {
9579
SDNode *BVN = N->getOperand(0).getNode();
9580
assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
9581
BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
9582
unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9583
return DAG.getBuildVector(
9584
MVT::v2i32, SDLoc(N),
9585
{BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
9586
}
9587
// Construct a new BUILD_VECTOR with elements truncated to half the size.
9588
assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
9589
EVT VT = N->getValueType(0);
9590
unsigned EltSize = VT.getScalarSizeInBits() / 2;
9591
unsigned NumElts = VT.getVectorNumElements();
9592
MVT TruncVT = MVT::getIntegerVT(EltSize);
9593
SmallVector<SDValue, 8> Ops;
9594
SDLoc dl(N);
9595
for (unsigned i = 0; i != NumElts; ++i) {
9596
const APInt &CInt = N->getConstantOperandAPInt(i);
9597
// Element types smaller than 32 bits are not legal, so use i32 elements.
9598
// The values are implicitly truncated so sext vs. zext doesn't matter.
9599
Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
9600
}
9601
return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
9602
}
9603
9604
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
9605
unsigned Opcode = N->getOpcode();
9606
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
9607
SDNode *N0 = N->getOperand(0).getNode();
9608
SDNode *N1 = N->getOperand(1).getNode();
9609
return N0->hasOneUse() && N1->hasOneUse() &&
9610
isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
9611
}
9612
return false;
9613
}
9614
9615
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
9616
unsigned Opcode = N->getOpcode();
9617
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
9618
SDNode *N0 = N->getOperand(0).getNode();
9619
SDNode *N1 = N->getOperand(1).getNode();
9620
return N0->hasOneUse() && N1->hasOneUse() &&
9621
isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
9622
}
9623
return false;
9624
}
9625
9626
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
9627
// Multiplications are only custom-lowered for 128-bit vectors so that
9628
// VMULL can be detected. Otherwise v2i64 multiplications are not legal.
9629
EVT VT = Op.getValueType();
9630
assert(VT.is128BitVector() && VT.isInteger() &&
9631
"unexpected type for custom-lowering ISD::MUL");
9632
SDNode *N0 = Op.getOperand(0).getNode();
9633
SDNode *N1 = Op.getOperand(1).getNode();
9634
unsigned NewOpc = 0;
9635
bool isMLA = false;
9636
bool isN0SExt = isSignExtended(N0, DAG);
9637
bool isN1SExt = isSignExtended(N1, DAG);
9638
if (isN0SExt && isN1SExt)
9639
NewOpc = ARMISD::VMULLs;
9640
else {
9641
bool isN0ZExt = isZeroExtended(N0, DAG);
9642
bool isN1ZExt = isZeroExtended(N1, DAG);
9643
if (isN0ZExt && isN1ZExt)
9644
NewOpc = ARMISD::VMULLu;
9645
else if (isN1SExt || isN1ZExt) {
9646
// Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
9647
// into (s/zext A * s/zext C) + (s/zext B * s/zext C)
9648
if (isN1SExt && isAddSubSExt(N0, DAG)) {
9649
NewOpc = ARMISD::VMULLs;
9650
isMLA = true;
9651
} else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
9652
NewOpc = ARMISD::VMULLu;
9653
isMLA = true;
9654
} else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
9655
std::swap(N0, N1);
9656
NewOpc = ARMISD::VMULLu;
9657
isMLA = true;
9658
}
9659
}
9660
9661
if (!NewOpc) {
9662
if (VT == MVT::v2i64)
9663
// Fall through to expand this. It is not legal.
9664
return SDValue();
9665
else
9666
// Other vector multiplications are legal.
9667
return Op;
9668
}
9669
}
9670
9671
// Legalize to a VMULL instruction.
9672
SDLoc DL(Op);
9673
SDValue Op0;
9674
SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
9675
if (!isMLA) {
9676
Op0 = SkipExtensionForVMULL(N0, DAG);
9677
assert(Op0.getValueType().is64BitVector() &&
9678
Op1.getValueType().is64BitVector() &&
9679
"unexpected types for extended operands to VMULL");
9680
return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
9681
}
9682
9683
// Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
9684
// isel lowering to take advantage of no-stall back to back vmul + vmla.
9685
// vmull q0, d4, d6
9686
// vmlal q0, d5, d6
9687
// is faster than
9688
// vaddl q0, d4, d5
9689
// vmovl q1, d6
9690
// vmul q0, q0, q1
9691
SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
9692
SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
9693
EVT Op1VT = Op1.getValueType();
9694
return DAG.getNode(N0->getOpcode(), DL, VT,
9695
DAG.getNode(NewOpc, DL, VT,
9696
DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
9697
DAG.getNode(NewOpc, DL, VT,
9698
DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
9699
}
9700
9701
static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
9702
SelectionDAG &DAG) {
9703
// TODO: Should this propagate fast-math-flags?
9704
9705
// Convert to float
9706
// float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
9707
// float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
9708
X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
9709
Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
9710
X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
9711
Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
9712
// Get reciprocal estimate.
9713
// float4 recip = vrecpeq_f32(yf);
9714
Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9715
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9716
Y);
9717
// Because char has a smaller range than uchar, we can actually get away
9718
// without any newton steps. This requires that we use a weird bias
9719
// of 0xb000, however (again, this has been exhaustively tested).
9720
// float4 result = as_float4(as_int4(xf*recip) + 0xb000);
9721
X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
9722
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
9723
Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
9724
X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
9725
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
9726
// Convert back to short.
9727
X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
9728
X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
9729
return X;
9730
}
9731
9732
static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
9733
SelectionDAG &DAG) {
9734
// TODO: Should this propagate fast-math-flags?
9735
9736
SDValue N2;
9737
// Convert to float.
9738
// float4 yf = vcvt_f32_s32(vmovl_s16(y));
9739
// float4 xf = vcvt_f32_s32(vmovl_s16(x));
9740
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
9741
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
9742
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9743
N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9744
9745
// Use reciprocal estimate and one refinement step.
9746
// float4 recip = vrecpeq_f32(yf);
9747
// recip *= vrecpsq_f32(yf, recip);
9748
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9749
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9750
N1);
9751
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9752
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9753
N1, N2);
9754
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9755
// Because short has a smaller range than ushort, we can actually get away
9756
// with only a single newton step. This requires that we use a weird bias
9757
// of 89, however (again, this has been exhaustively tested).
9758
// float4 result = as_float4(as_int4(xf*recip) + 0x89);
9759
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9760
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9761
N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
9762
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9763
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9764
// Convert back to integer and return.
9765
// return vmovn_s32(vcvt_s32_f32(result));
9766
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9767
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9768
return N0;
9769
}
9770
9771
static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
9772
const ARMSubtarget *ST) {
9773
EVT VT = Op.getValueType();
9774
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9775
"unexpected type for custom-lowering ISD::SDIV");
9776
9777
SDLoc dl(Op);
9778
SDValue N0 = Op.getOperand(0);
9779
SDValue N1 = Op.getOperand(1);
9780
SDValue N2, N3;
9781
9782
if (VT == MVT::v8i8) {
9783
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
9784
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
9785
9786
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9787
DAG.getIntPtrConstant(4, dl));
9788
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9789
DAG.getIntPtrConstant(4, dl));
9790
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9791
DAG.getIntPtrConstant(0, dl));
9792
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9793
DAG.getIntPtrConstant(0, dl));
9794
9795
N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
9796
N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
9797
9798
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9799
N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9800
9801
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
9802
return N0;
9803
}
9804
return LowerSDIV_v4i16(N0, N1, dl, DAG);
9805
}
9806
9807
static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
9808
const ARMSubtarget *ST) {
9809
// TODO: Should this propagate fast-math-flags?
9810
EVT VT = Op.getValueType();
9811
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9812
"unexpected type for custom-lowering ISD::UDIV");
9813
9814
SDLoc dl(Op);
9815
SDValue N0 = Op.getOperand(0);
9816
SDValue N1 = Op.getOperand(1);
9817
SDValue N2, N3;
9818
9819
if (VT == MVT::v8i8) {
9820
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
9821
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
9822
9823
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9824
DAG.getIntPtrConstant(4, dl));
9825
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9826
DAG.getIntPtrConstant(4, dl));
9827
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9828
DAG.getIntPtrConstant(0, dl));
9829
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9830
DAG.getIntPtrConstant(0, dl));
9831
9832
N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
9833
N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
9834
9835
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9836
N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9837
9838
N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
9839
DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
9840
MVT::i32),
9841
N0);
9842
return N0;
9843
}
9844
9845
// v4i16 sdiv ... Convert to float.
9846
// float4 yf = vcvt_f32_s32(vmovl_u16(y));
9847
// float4 xf = vcvt_f32_s32(vmovl_u16(x));
9848
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
9849
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
9850
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9851
SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9852
9853
// Use reciprocal estimate and two refinement steps.
9854
// float4 recip = vrecpeq_f32(yf);
9855
// recip *= vrecpsq_f32(yf, recip);
9856
// recip *= vrecpsq_f32(yf, recip);
9857
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9858
DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9859
BN1);
9860
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9861
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9862
BN1, N2);
9863
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9864
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9865
DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9866
BN1, N2);
9867
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9868
// Simply multiplying by the reciprocal estimate can leave us a few ulps
9869
// too low, so we add 2 ulps (exhaustive testing shows that this is enough,
9870
// and that it will never cause us to return an answer too large).
9871
// float4 result = as_float4(as_int4(xf*recip) + 2);
9872
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9873
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9874
N1 = DAG.getConstant(2, dl, MVT::v4i32);
9875
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9876
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9877
// Convert back to integer and return.
9878
// return vmovn_u32(vcvt_s32_f32(result));
9879
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9880
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9881
return N0;
9882
}
9883
9884
static SDValue LowerUADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG) {
9885
SDNode *N = Op.getNode();
9886
EVT VT = N->getValueType(0);
9887
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9888
9889
SDValue Carry = Op.getOperand(2);
9890
9891
SDLoc DL(Op);
9892
9893
SDValue Result;
9894
if (Op.getOpcode() == ISD::UADDO_CARRY) {
9895
// This converts the boolean value carry into the carry flag.
9896
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9897
9898
// Do the addition proper using the carry flag we wanted.
9899
Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
9900
Op.getOperand(1), Carry);
9901
9902
// Now convert the carry flag into a boolean value.
9903
Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9904
} else {
9905
// ARMISD::SUBE expects a carry not a borrow like ISD::USUBO_CARRY so we
9906
// have to invert the carry first.
9907
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9908
DAG.getConstant(1, DL, MVT::i32), Carry);
9909
// This converts the boolean value carry into the carry flag.
9910
Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9911
9912
// Do the subtraction proper using the carry flag we wanted.
9913
Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
9914
Op.getOperand(1), Carry);
9915
9916
// Now convert the carry flag into a boolean value.
9917
Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9918
// But the carry returned by ARMISD::SUBE is not a borrow as expected
9919
// by ISD::USUBO_CARRY, so compute 1 - C.
9920
Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9921
DAG.getConstant(1, DL, MVT::i32), Carry);
9922
}
9923
9924
// Return both values.
9925
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
9926
}
9927
9928
SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
9929
assert(Subtarget->isTargetDarwin());
9930
9931
// For iOS, we want to call an alternative entry point: __sincos_stret,
9932
// return values are passed via sret.
9933
SDLoc dl(Op);
9934
SDValue Arg = Op.getOperand(0);
9935
EVT ArgVT = Arg.getValueType();
9936
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9937
auto PtrVT = getPointerTy(DAG.getDataLayout());
9938
9939
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9940
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9941
9942
// Pair of floats / doubles used to pass the result.
9943
Type *RetTy = StructType::get(ArgTy, ArgTy);
9944
auto &DL = DAG.getDataLayout();
9945
9946
ArgListTy Args;
9947
bool ShouldUseSRet = Subtarget->isAPCS_ABI();
9948
SDValue SRet;
9949
if (ShouldUseSRet) {
9950
// Create stack object for sret.
9951
const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
9952
const Align StackAlign = DL.getPrefTypeAlign(RetTy);
9953
int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
9954
SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
9955
9956
ArgListEntry Entry;
9957
Entry.Node = SRet;
9958
Entry.Ty = PointerType::getUnqual(RetTy->getContext());
9959
Entry.IsSExt = false;
9960
Entry.IsZExt = false;
9961
Entry.IsSRet = true;
9962
Args.push_back(Entry);
9963
RetTy = Type::getVoidTy(*DAG.getContext());
9964
}
9965
9966
ArgListEntry Entry;
9967
Entry.Node = Arg;
9968
Entry.Ty = ArgTy;
9969
Entry.IsSExt = false;
9970
Entry.IsZExt = false;
9971
Args.push_back(Entry);
9972
9973
RTLIB::Libcall LC =
9974
(ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
9975
const char *LibcallName = getLibcallName(LC);
9976
CallingConv::ID CC = getLibcallCallingConv(LC);
9977
SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
9978
9979
TargetLowering::CallLoweringInfo CLI(DAG);
9980
CLI.setDebugLoc(dl)
9981
.setChain(DAG.getEntryNode())
9982
.setCallee(CC, RetTy, Callee, std::move(Args))
9983
.setDiscardResult(ShouldUseSRet);
9984
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
9985
9986
if (!ShouldUseSRet)
9987
return CallResult.first;
9988
9989
SDValue LoadSin =
9990
DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
9991
9992
// Address of cos field.
9993
SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
9994
DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
9995
SDValue LoadCos =
9996
DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
9997
9998
SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
9999
return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
10000
LoadSin.getValue(0), LoadCos.getValue(0));
10001
}
10002
10003
SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
10004
bool Signed,
10005
SDValue &Chain) const {
10006
EVT VT = Op.getValueType();
10007
assert((VT == MVT::i32 || VT == MVT::i64) &&
10008
"unexpected type for custom lowering DIV");
10009
SDLoc dl(Op);
10010
10011
const auto &DL = DAG.getDataLayout();
10012
const auto &TLI = DAG.getTargetLoweringInfo();
10013
10014
const char *Name = nullptr;
10015
if (Signed)
10016
Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
10017
else
10018
Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
10019
10020
SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
10021
10022
ARMTargetLowering::ArgListTy Args;
10023
10024
for (auto AI : {1, 0}) {
10025
ArgListEntry Arg;
10026
Arg.Node = Op.getOperand(AI);
10027
Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
10028
Args.push_back(Arg);
10029
}
10030
10031
CallLoweringInfo CLI(DAG);
10032
CLI.setDebugLoc(dl)
10033
.setChain(Chain)
10034
.setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
10035
ES, std::move(Args));
10036
10037
return LowerCallTo(CLI).first;
10038
}
10039
10040
// This is a code size optimisation: return the original SDIV node to
10041
// DAGCombiner when we don't want to expand SDIV into a sequence of
10042
// instructions, and an empty node otherwise which will cause the
10043
// SDIV to be expanded in DAGCombine.
10044
SDValue
10045
ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10046
SelectionDAG &DAG,
10047
SmallVectorImpl<SDNode *> &Created) const {
10048
// TODO: Support SREM
10049
if (N->getOpcode() != ISD::SDIV)
10050
return SDValue();
10051
10052
const auto &ST = DAG.getSubtarget<ARMSubtarget>();
10053
const bool MinSize = ST.hasMinSize();
10054
const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
10055
: ST.hasDivideInARMMode();
10056
10057
// Don't touch vector types; rewriting this may lead to scalarizing
10058
// the int divs.
10059
if (N->getOperand(0).getValueType().isVector())
10060
return SDValue();
10061
10062
// Bail if MinSize is not set, and also for both ARM and Thumb mode we need
10063
// hwdiv support for this to be really profitable.
10064
if (!(MinSize && HasDivide))
10065
return SDValue();
10066
10067
// ARM mode is a bit simpler than Thumb: we can handle large power
10068
// of 2 immediates with 1 mov instruction; no further checks required,
10069
// just return the sdiv node.
10070
if (!ST.isThumb())
10071
return SDValue(N, 0);
10072
10073
// In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
10074
// and thus lose the code size benefits of a MOVS that requires only 2.
10075
// TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
10076
// but as it's doing exactly this, it's not worth the trouble to get TTI.
10077
if (Divisor.sgt(128))
10078
return SDValue();
10079
10080
return SDValue(N, 0);
10081
}
10082
10083
SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
10084
bool Signed) const {
10085
assert(Op.getValueType() == MVT::i32 &&
10086
"unexpected type for custom lowering DIV");
10087
SDLoc dl(Op);
10088
10089
SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
10090
DAG.getEntryNode(), Op.getOperand(1));
10091
10092
return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
10093
}
10094
10095
static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
10096
SDLoc DL(N);
10097
SDValue Op = N->getOperand(1);
10098
if (N->getValueType(0) == MVT::i32)
10099
return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
10100
SDValue Lo, Hi;
10101
std::tie(Lo, Hi) = DAG.SplitScalar(Op, DL, MVT::i32, MVT::i32);
10102
return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
10103
DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
10104
}
10105
10106
void ARMTargetLowering::ExpandDIV_Windows(
10107
SDValue Op, SelectionDAG &DAG, bool Signed,
10108
SmallVectorImpl<SDValue> &Results) const {
10109
const auto &DL = DAG.getDataLayout();
10110
const auto &TLI = DAG.getTargetLoweringInfo();
10111
10112
assert(Op.getValueType() == MVT::i64 &&
10113
"unexpected type for custom lowering DIV");
10114
SDLoc dl(Op);
10115
10116
SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
10117
10118
SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
10119
10120
SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
10121
SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
10122
DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
10123
Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
10124
10125
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lower, Upper));
10126
}
10127
10128
static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
10129
LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
10130
EVT MemVT = LD->getMemoryVT();
10131
assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10132
MemVT == MVT::v16i1) &&
10133
"Expected a predicate type!");
10134
assert(MemVT == Op.getValueType());
10135
assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
10136
"Expected a non-extending load");
10137
assert(LD->isUnindexed() && "Expected a unindexed load");
10138
10139
// The basic MVE VLDR on a v2i1/v4i1/v8i1 actually loads the entire 16bit
10140
// predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
10141
// need to make sure that 8/4/2 bits are actually loaded into the correct
10142
// place, which means loading the value and then shuffling the values into
10143
// the bottom bits of the predicate.
10144
// Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
10145
// for BE).
10146
// Speaking of BE, apparently the rest of llvm will assume a reverse order to
10147
// a natural VMSR(load), so needs to be reversed.
10148
10149
SDLoc dl(Op);
10150
SDValue Load = DAG.getExtLoad(
10151
ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
10152
EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
10153
LD->getMemOperand());
10154
SDValue Val = Load;
10155
if (DAG.getDataLayout().isBigEndian())
10156
Val = DAG.getNode(ISD::SRL, dl, MVT::i32,
10157
DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Load),
10158
DAG.getConstant(32 - MemVT.getSizeInBits(), dl, MVT::i32));
10159
SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Val);
10160
if (MemVT != MVT::v16i1)
10161
Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
10162
DAG.getConstant(0, dl, MVT::i32));
10163
return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
10164
}
10165
10166
void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results,
10167
SelectionDAG &DAG) const {
10168
LoadSDNode *LD = cast<LoadSDNode>(N);
10169
EVT MemVT = LD->getMemoryVT();
10170
assert(LD->isUnindexed() && "Loads should be unindexed at this point.");
10171
10172
if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10173
!Subtarget->isThumb1Only() && LD->isVolatile() &&
10174
LD->getAlign() >= Subtarget->getDualLoadStoreAlignment()) {
10175
SDLoc dl(N);
10176
SDValue Result = DAG.getMemIntrinsicNode(
10177
ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}),
10178
{LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand());
10179
SDValue Lo = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 0 : 1);
10180
SDValue Hi = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 1 : 0);
10181
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
10182
Results.append({Pair, Result.getValue(2)});
10183
}
10184
}
10185
10186
static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
10187
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
10188
EVT MemVT = ST->getMemoryVT();
10189
assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10190
MemVT == MVT::v16i1) &&
10191
"Expected a predicate type!");
10192
assert(MemVT == ST->getValue().getValueType());
10193
assert(!ST->isTruncatingStore() && "Expected a non-extending store");
10194
assert(ST->isUnindexed() && "Expected a unindexed store");
10195
10196
// Only store the v2i1 or v4i1 or v8i1 worth of bits, via a buildvector with
10197
// top bits unset and a scalar store.
10198
SDLoc dl(Op);
10199
SDValue Build = ST->getValue();
10200
if (MemVT != MVT::v16i1) {
10201
SmallVector<SDValue, 16> Ops;
10202
for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++) {
10203
unsigned Elt = DAG.getDataLayout().isBigEndian()
10204
? MemVT.getVectorNumElements() - I - 1
10205
: I;
10206
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
10207
DAG.getConstant(Elt, dl, MVT::i32)));
10208
}
10209
for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
10210
Ops.push_back(DAG.getUNDEF(MVT::i32));
10211
Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
10212
}
10213
SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
10214
if (MemVT == MVT::v16i1 && DAG.getDataLayout().isBigEndian())
10215
GRP = DAG.getNode(ISD::SRL, dl, MVT::i32,
10216
DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, GRP),
10217
DAG.getConstant(16, dl, MVT::i32));
10218
return DAG.getTruncStore(
10219
ST->getChain(), dl, GRP, ST->getBasePtr(),
10220
EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
10221
ST->getMemOperand());
10222
}
10223
10224
static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG,
10225
const ARMSubtarget *Subtarget) {
10226
StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
10227
EVT MemVT = ST->getMemoryVT();
10228
assert(ST->isUnindexed() && "Stores should be unindexed at this point.");
10229
10230
if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10231
!Subtarget->isThumb1Only() && ST->isVolatile() &&
10232
ST->getAlign() >= Subtarget->getDualLoadStoreAlignment()) {
10233
SDNode *N = Op.getNode();
10234
SDLoc dl(N);
10235
10236
SDValue Lo = DAG.getNode(
10237
ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
10238
DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 0 : 1, dl,
10239
MVT::i32));
10240
SDValue Hi = DAG.getNode(
10241
ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
10242
DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 1 : 0, dl,
10243
MVT::i32));
10244
10245
return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other),
10246
{ST->getChain(), Lo, Hi, ST->getBasePtr()},
10247
MemVT, ST->getMemOperand());
10248
} else if (Subtarget->hasMVEIntegerOps() &&
10249
((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10250
MemVT == MVT::v16i1))) {
10251
return LowerPredicateStore(Op, DAG);
10252
}
10253
10254
return SDValue();
10255
}
10256
10257
static bool isZeroVector(SDValue N) {
10258
return (ISD::isBuildVectorAllZeros(N.getNode()) ||
10259
(N->getOpcode() == ARMISD::VMOVIMM &&
10260
isNullConstant(N->getOperand(0))));
10261
}
10262
10263
static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
10264
MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
10265
MVT VT = Op.getSimpleValueType();
10266
SDValue Mask = N->getMask();
10267
SDValue PassThru = N->getPassThru();
10268
SDLoc dl(Op);
10269
10270
if (isZeroVector(PassThru))
10271
return Op;
10272
10273
// MVE Masked loads use zero as the passthru value. Here we convert undef to
10274
// zero too, and other values are lowered to a select.
10275
SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
10276
DAG.getTargetConstant(0, dl, MVT::i32));
10277
SDValue NewLoad = DAG.getMaskedLoad(
10278
VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
10279
N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
10280
N->getExtensionType(), N->isExpandingLoad());
10281
SDValue Combo = NewLoad;
10282
bool PassThruIsCastZero = (PassThru.getOpcode() == ISD::BITCAST ||
10283
PassThru.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
10284
isZeroVector(PassThru->getOperand(0));
10285
if (!PassThru.isUndef() && !PassThruIsCastZero)
10286
Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
10287
return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
10288
}
10289
10290
static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG,
10291
const ARMSubtarget *ST) {
10292
if (!ST->hasMVEIntegerOps())
10293
return SDValue();
10294
10295
SDLoc dl(Op);
10296
unsigned BaseOpcode = 0;
10297
switch (Op->getOpcode()) {
10298
default: llvm_unreachable("Expected VECREDUCE opcode");
10299
case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
10300
case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
10301
case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break;
10302
case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break;
10303
case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break;
10304
case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break;
10305
case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break;
10306
case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break;
10307
}
10308
10309
SDValue Op0 = Op->getOperand(0);
10310
EVT VT = Op0.getValueType();
10311
EVT EltVT = VT.getVectorElementType();
10312
unsigned NumElts = VT.getVectorNumElements();
10313
unsigned NumActiveLanes = NumElts;
10314
10315
assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
10316
NumActiveLanes == 2) &&
10317
"Only expected a power 2 vector size");
10318
10319
// Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements
10320
// allows us to easily extract vector elements from the lanes.
10321
while (NumActiveLanes > 4) {
10322
unsigned RevOpcode = NumActiveLanes == 16 ? ARMISD::VREV16 : ARMISD::VREV32;
10323
SDValue Rev = DAG.getNode(RevOpcode, dl, VT, Op0);
10324
Op0 = DAG.getNode(BaseOpcode, dl, VT, Op0, Rev);
10325
NumActiveLanes /= 2;
10326
}
10327
10328
SDValue Res;
10329
if (NumActiveLanes == 4) {
10330
// The remaining 4 elements are summed sequentially
10331
SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10332
DAG.getConstant(0 * NumElts / 4, dl, MVT::i32));
10333
SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10334
DAG.getConstant(1 * NumElts / 4, dl, MVT::i32));
10335
SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10336
DAG.getConstant(2 * NumElts / 4, dl, MVT::i32));
10337
SDValue Ext3 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10338
DAG.getConstant(3 * NumElts / 4, dl, MVT::i32));
10339
SDValue Res0 = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
10340
SDValue Res1 = DAG.getNode(BaseOpcode, dl, EltVT, Ext2, Ext3, Op->getFlags());
10341
Res = DAG.getNode(BaseOpcode, dl, EltVT, Res0, Res1, Op->getFlags());
10342
} else {
10343
SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10344
DAG.getConstant(0, dl, MVT::i32));
10345
SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10346
DAG.getConstant(1, dl, MVT::i32));
10347
Res = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
10348
}
10349
10350
// Result type may be wider than element type.
10351
if (EltVT != Op->getValueType(0))
10352
Res = DAG.getNode(ISD::ANY_EXTEND, dl, Op->getValueType(0), Res);
10353
return Res;
10354
}
10355
10356
static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG,
10357
const ARMSubtarget *ST) {
10358
if (!ST->hasMVEFloatOps())
10359
return SDValue();
10360
return LowerVecReduce(Op, DAG, ST);
10361
}
10362
10363
static SDValue LowerVecReduceMinMax(SDValue Op, SelectionDAG &DAG,
10364
const ARMSubtarget *ST) {
10365
if (!ST->hasNEON())
10366
return SDValue();
10367
10368
SDLoc dl(Op);
10369
SDValue Op0 = Op->getOperand(0);
10370
EVT VT = Op0.getValueType();
10371
EVT EltVT = VT.getVectorElementType();
10372
10373
unsigned PairwiseIntrinsic = 0;
10374
switch (Op->getOpcode()) {
10375
default:
10376
llvm_unreachable("Expected VECREDUCE opcode");
10377
case ISD::VECREDUCE_UMIN:
10378
PairwiseIntrinsic = Intrinsic::arm_neon_vpminu;
10379
break;
10380
case ISD::VECREDUCE_UMAX:
10381
PairwiseIntrinsic = Intrinsic::arm_neon_vpmaxu;
10382
break;
10383
case ISD::VECREDUCE_SMIN:
10384
PairwiseIntrinsic = Intrinsic::arm_neon_vpmins;
10385
break;
10386
case ISD::VECREDUCE_SMAX:
10387
PairwiseIntrinsic = Intrinsic::arm_neon_vpmaxs;
10388
break;
10389
}
10390
SDValue PairwiseOp = DAG.getConstant(PairwiseIntrinsic, dl, MVT::i32);
10391
10392
unsigned NumElts = VT.getVectorNumElements();
10393
unsigned NumActiveLanes = NumElts;
10394
10395
assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
10396
NumActiveLanes == 2) &&
10397
"Only expected a power 2 vector size");
10398
10399
// Split 128-bit vectors, since vpmin/max takes 2 64-bit vectors.
10400
if (VT.is128BitVector()) {
10401
SDValue Lo, Hi;
10402
std::tie(Lo, Hi) = DAG.SplitVector(Op0, dl);
10403
VT = Lo.getValueType();
10404
Op0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, {PairwiseOp, Lo, Hi});
10405
NumActiveLanes /= 2;
10406
}
10407
10408
// Use pairwise reductions until one lane remains
10409
while (NumActiveLanes > 1) {
10410
Op0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, {PairwiseOp, Op0, Op0});
10411
NumActiveLanes /= 2;
10412
}
10413
10414
SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10415
DAG.getConstant(0, dl, MVT::i32));
10416
10417
// Result type may be wider than element type.
10418
if (EltVT != Op.getValueType()) {
10419
unsigned Extend = 0;
10420
switch (Op->getOpcode()) {
10421
default:
10422
llvm_unreachable("Expected VECREDUCE opcode");
10423
case ISD::VECREDUCE_UMIN:
10424
case ISD::VECREDUCE_UMAX:
10425
Extend = ISD::ZERO_EXTEND;
10426
break;
10427
case ISD::VECREDUCE_SMIN:
10428
case ISD::VECREDUCE_SMAX:
10429
Extend = ISD::SIGN_EXTEND;
10430
break;
10431
}
10432
Res = DAG.getNode(Extend, dl, Op.getValueType(), Res);
10433
}
10434
return Res;
10435
}
10436
10437
static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
10438
if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering()))
10439
// Acquire/Release load/store is not legal for targets without a dmb or
10440
// equivalent available.
10441
return SDValue();
10442
10443
// Monotonic load/store is legal for all targets.
10444
return Op;
10445
}
10446
10447
static void ReplaceREADCYCLECOUNTER(SDNode *N,
10448
SmallVectorImpl<SDValue> &Results,
10449
SelectionDAG &DAG,
10450
const ARMSubtarget *Subtarget) {
10451
SDLoc DL(N);
10452
// Under Power Management extensions, the cycle-count is:
10453
// mrc p15, #0, <Rt>, c9, c13, #0
10454
SDValue Ops[] = { N->getOperand(0), // Chain
10455
DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
10456
DAG.getTargetConstant(15, DL, MVT::i32),
10457
DAG.getTargetConstant(0, DL, MVT::i32),
10458
DAG.getTargetConstant(9, DL, MVT::i32),
10459
DAG.getTargetConstant(13, DL, MVT::i32),
10460
DAG.getTargetConstant(0, DL, MVT::i32)
10461
};
10462
10463
SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
10464
DAG.getVTList(MVT::i32, MVT::Other), Ops);
10465
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
10466
DAG.getConstant(0, DL, MVT::i32)));
10467
Results.push_back(Cycles32.getValue(1));
10468
}
10469
10470
static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
10471
SDLoc dl(V.getNode());
10472
auto [VLo, VHi] = DAG.SplitScalar(V, dl, MVT::i32, MVT::i32);
10473
bool isBigEndian = DAG.getDataLayout().isBigEndian();
10474
if (isBigEndian)
10475
std::swap (VLo, VHi);
10476
SDValue RegClass =
10477
DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
10478
SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
10479
SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
10480
const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
10481
return SDValue(
10482
DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
10483
}
10484
10485
static void ReplaceCMP_SWAP_64Results(SDNode *N,
10486
SmallVectorImpl<SDValue> & Results,
10487
SelectionDAG &DAG) {
10488
assert(N->getValueType(0) == MVT::i64 &&
10489
"AtomicCmpSwap on types less than 64 should be legal");
10490
SDValue Ops[] = {N->getOperand(1),
10491
createGPRPairNode(DAG, N->getOperand(2)),
10492
createGPRPairNode(DAG, N->getOperand(3)),
10493
N->getOperand(0)};
10494
SDNode *CmpSwap = DAG.getMachineNode(
10495
ARM::CMP_SWAP_64, SDLoc(N),
10496
DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
10497
10498
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
10499
DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
10500
10501
bool isBigEndian = DAG.getDataLayout().isBigEndian();
10502
10503
SDValue Lo =
10504
DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
10505
SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
10506
SDValue Hi =
10507
DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
10508
SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
10509
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i64, Lo, Hi));
10510
Results.push_back(SDValue(CmpSwap, 2));
10511
}
10512
10513
SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const {
10514
SDLoc dl(Op);
10515
EVT VT = Op.getValueType();
10516
SDValue Chain = Op.getOperand(0);
10517
SDValue LHS = Op.getOperand(1);
10518
SDValue RHS = Op.getOperand(2);
10519
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
10520
bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
10521
10522
// If we don't have instructions of this float type then soften to a libcall
10523
// and use SETCC instead.
10524
if (isUnsupportedFloatingType(LHS.getValueType())) {
10525
DAG.getTargetLoweringInfo().softenSetCCOperands(
10526
DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling);
10527
if (!RHS.getNode()) {
10528
RHS = DAG.getConstant(0, dl, LHS.getValueType());
10529
CC = ISD::SETNE;
10530
}
10531
SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS,
10532
DAG.getCondCode(CC));
10533
return DAG.getMergeValues({Result, Chain}, dl);
10534
}
10535
10536
ARMCC::CondCodes CondCode, CondCode2;
10537
FPCCToARMCC(CC, CondCode, CondCode2);
10538
10539
// FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit
10540
// in CMPFP and CMPFPE, but instead it should be made explicit by these
10541
// instructions using a chain instead of glue. This would also fix the problem
10542
// here (and also in LowerSELECT_CC) where we generate two comparisons when
10543
// CondCode2 != AL.
10544
SDValue True = DAG.getConstant(1, dl, VT);
10545
SDValue False = DAG.getConstant(0, dl, VT);
10546
SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
10547
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
10548
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
10549
SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG);
10550
if (CondCode2 != ARMCC::AL) {
10551
ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
10552
Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
10553
Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG);
10554
}
10555
return DAG.getMergeValues({Result, Chain}, dl);
10556
}
10557
10558
SDValue ARMTargetLowering::LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const {
10559
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10560
10561
EVT VT = getPointerTy(DAG.getDataLayout());
10562
SDLoc DL(Op);
10563
int FI = MFI.CreateFixedObject(4, 0, false);
10564
return DAG.getFrameIndex(FI, VT);
10565
}
10566
10567
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10568
LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
10569
switch (Op.getOpcode()) {
10570
default: llvm_unreachable("Don't know how to custom lower this!");
10571
case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
10572
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
10573
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
10574
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
10575
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
10576
case ISD::SELECT: return LowerSELECT(Op, DAG);
10577
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
10578
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
10579
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
10580
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
10581
case ISD::VASTART: return LowerVASTART(Op, DAG);
10582
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
10583
case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
10584
case ISD::SINT_TO_FP:
10585
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
10586
case ISD::STRICT_FP_TO_SINT:
10587
case ISD::STRICT_FP_TO_UINT:
10588
case ISD::FP_TO_SINT:
10589
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
10590
case ISD::FP_TO_SINT_SAT:
10591
case ISD::FP_TO_UINT_SAT: return LowerFP_TO_INT_SAT(Op, DAG, Subtarget);
10592
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
10593
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
10594
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
10595
case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
10596
case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
10597
case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
10598
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
10599
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
10600
Subtarget);
10601
case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
10602
case ISD::SHL:
10603
case ISD::SRL:
10604
case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
10605
case ISD::SREM: return LowerREM(Op.getNode(), DAG);
10606
case ISD::UREM: return LowerREM(Op.getNode(), DAG);
10607
case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
10608
case ISD::SRL_PARTS:
10609
case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
10610
case ISD::CTTZ:
10611
case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
10612
case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
10613
case ISD::SETCC: return LowerVSETCC(Op, DAG, Subtarget);
10614
case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
10615
case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
10616
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
10617
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
10618
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
10619
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
10620
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
10621
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
10622
case ISD::TRUNCATE: return LowerTruncate(Op.getNode(), DAG, Subtarget);
10623
case ISD::SIGN_EXTEND:
10624
case ISD::ZERO_EXTEND: return LowerVectorExtend(Op.getNode(), DAG, Subtarget);
10625
case ISD::GET_ROUNDING: return LowerGET_ROUNDING(Op, DAG);
10626
case ISD::SET_ROUNDING: return LowerSET_ROUNDING(Op, DAG);
10627
case ISD::SET_FPMODE:
10628
return LowerSET_FPMODE(Op, DAG);
10629
case ISD::RESET_FPMODE:
10630
return LowerRESET_FPMODE(Op, DAG);
10631
case ISD::MUL: return LowerMUL(Op, DAG);
10632
case ISD::SDIV:
10633
if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
10634
return LowerDIV_Windows(Op, DAG, /* Signed */ true);
10635
return LowerSDIV(Op, DAG, Subtarget);
10636
case ISD::UDIV:
10637
if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
10638
return LowerDIV_Windows(Op, DAG, /* Signed */ false);
10639
return LowerUDIV(Op, DAG, Subtarget);
10640
case ISD::UADDO_CARRY:
10641
case ISD::USUBO_CARRY:
10642
return LowerUADDSUBO_CARRY(Op, DAG);
10643
case ISD::SADDO:
10644
case ISD::SSUBO:
10645
return LowerSignedALUO(Op, DAG);
10646
case ISD::UADDO:
10647
case ISD::USUBO:
10648
return LowerUnsignedALUO(Op, DAG);
10649
case ISD::SADDSAT:
10650
case ISD::SSUBSAT:
10651
case ISD::UADDSAT:
10652
case ISD::USUBSAT:
10653
return LowerADDSUBSAT(Op, DAG, Subtarget);
10654
case ISD::LOAD:
10655
return LowerPredicateLoad(Op, DAG);
10656
case ISD::STORE:
10657
return LowerSTORE(Op, DAG, Subtarget);
10658
case ISD::MLOAD:
10659
return LowerMLOAD(Op, DAG);
10660
case ISD::VECREDUCE_MUL:
10661
case ISD::VECREDUCE_AND:
10662
case ISD::VECREDUCE_OR:
10663
case ISD::VECREDUCE_XOR:
10664
return LowerVecReduce(Op, DAG, Subtarget);
10665
case ISD::VECREDUCE_FADD:
10666
case ISD::VECREDUCE_FMUL:
10667
case ISD::VECREDUCE_FMIN:
10668
case ISD::VECREDUCE_FMAX:
10669
return LowerVecReduceF(Op, DAG, Subtarget);
10670
case ISD::VECREDUCE_UMIN:
10671
case ISD::VECREDUCE_UMAX:
10672
case ISD::VECREDUCE_SMIN:
10673
case ISD::VECREDUCE_SMAX:
10674
return LowerVecReduceMinMax(Op, DAG, Subtarget);
10675
case ISD::ATOMIC_LOAD:
10676
case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
10677
case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
10678
case ISD::SDIVREM:
10679
case ISD::UDIVREM: return LowerDivRem(Op, DAG);
10680
case ISD::DYNAMIC_STACKALLOC:
10681
if (Subtarget->isTargetWindows())
10682
return LowerDYNAMIC_STACKALLOC(Op, DAG);
10683
llvm_unreachable("Don't know how to custom lower this!");
10684
case ISD::STRICT_FP_ROUND:
10685
case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
10686
case ISD::STRICT_FP_EXTEND:
10687
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
10688
case ISD::STRICT_FSETCC:
10689
case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG);
10690
case ISD::SPONENTRY:
10691
return LowerSPONENTRY(Op, DAG);
10692
case ARMISD::WIN__DBZCHK: return SDValue();
10693
}
10694
}
10695
10696
static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
10697
SelectionDAG &DAG) {
10698
unsigned IntNo = N->getConstantOperandVal(0);
10699
unsigned Opc = 0;
10700
if (IntNo == Intrinsic::arm_smlald)
10701
Opc = ARMISD::SMLALD;
10702
else if (IntNo == Intrinsic::arm_smlaldx)
10703
Opc = ARMISD::SMLALDX;
10704
else if (IntNo == Intrinsic::arm_smlsld)
10705
Opc = ARMISD::SMLSLD;
10706
else if (IntNo == Intrinsic::arm_smlsldx)
10707
Opc = ARMISD::SMLSLDX;
10708
else
10709
return;
10710
10711
SDLoc dl(N);
10712
SDValue Lo, Hi;
10713
std::tie(Lo, Hi) = DAG.SplitScalar(N->getOperand(3), dl, MVT::i32, MVT::i32);
10714
10715
SDValue LongMul = DAG.getNode(Opc, dl,
10716
DAG.getVTList(MVT::i32, MVT::i32),
10717
N->getOperand(1), N->getOperand(2),
10718
Lo, Hi);
10719
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
10720
LongMul.getValue(0), LongMul.getValue(1)));
10721
}
10722
10723
/// ReplaceNodeResults - Replace the results of node with an illegal result
10724
/// type with new values built out of custom code.
10725
void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
10726
SmallVectorImpl<SDValue> &Results,
10727
SelectionDAG &DAG) const {
10728
SDValue Res;
10729
switch (N->getOpcode()) {
10730
default:
10731
llvm_unreachable("Don't know how to custom expand this!");
10732
case ISD::READ_REGISTER:
10733
ExpandREAD_REGISTER(N, Results, DAG);
10734
break;
10735
case ISD::BITCAST:
10736
Res = ExpandBITCAST(N, DAG, Subtarget);
10737
break;
10738
case ISD::SRL:
10739
case ISD::SRA:
10740
case ISD::SHL:
10741
Res = Expand64BitShift(N, DAG, Subtarget);
10742
break;
10743
case ISD::SREM:
10744
case ISD::UREM:
10745
Res = LowerREM(N, DAG);
10746
break;
10747
case ISD::SDIVREM:
10748
case ISD::UDIVREM:
10749
Res = LowerDivRem(SDValue(N, 0), DAG);
10750
assert(Res.getNumOperands() == 2 && "DivRem needs two values");
10751
Results.push_back(Res.getValue(0));
10752
Results.push_back(Res.getValue(1));
10753
return;
10754
case ISD::SADDSAT:
10755
case ISD::SSUBSAT:
10756
case ISD::UADDSAT:
10757
case ISD::USUBSAT:
10758
Res = LowerADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
10759
break;
10760
case ISD::READCYCLECOUNTER:
10761
ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
10762
return;
10763
case ISD::UDIV:
10764
case ISD::SDIV:
10765
assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
10766
return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
10767
Results);
10768
case ISD::ATOMIC_CMP_SWAP:
10769
ReplaceCMP_SWAP_64Results(N, Results, DAG);
10770
return;
10771
case ISD::INTRINSIC_WO_CHAIN:
10772
return ReplaceLongIntrinsic(N, Results, DAG);
10773
case ISD::LOAD:
10774
LowerLOAD(N, Results, DAG);
10775
break;
10776
case ISD::TRUNCATE:
10777
Res = LowerTruncate(N, DAG, Subtarget);
10778
break;
10779
case ISD::SIGN_EXTEND:
10780
case ISD::ZERO_EXTEND:
10781
Res = LowerVectorExtend(N, DAG, Subtarget);
10782
break;
10783
case ISD::FP_TO_SINT_SAT:
10784
case ISD::FP_TO_UINT_SAT:
10785
Res = LowerFP_TO_INT_SAT(SDValue(N, 0), DAG, Subtarget);
10786
break;
10787
}
10788
if (Res.getNode())
10789
Results.push_back(Res);
10790
}
10791
10792
//===----------------------------------------------------------------------===//
10793
// ARM Scheduler Hooks
10794
//===----------------------------------------------------------------------===//
10795
10796
/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
10797
/// registers the function context.
10798
void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
10799
MachineBasicBlock *MBB,
10800
MachineBasicBlock *DispatchBB,
10801
int FI) const {
10802
assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
10803
"ROPI/RWPI not currently supported with SjLj");
10804
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10805
DebugLoc dl = MI.getDebugLoc();
10806
MachineFunction *MF = MBB->getParent();
10807
MachineRegisterInfo *MRI = &MF->getRegInfo();
10808
MachineConstantPool *MCP = MF->getConstantPool();
10809
ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
10810
const Function &F = MF->getFunction();
10811
10812
bool isThumb = Subtarget->isThumb();
10813
bool isThumb2 = Subtarget->isThumb2();
10814
10815
unsigned PCLabelId = AFI->createPICLabelUId();
10816
unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
10817
ARMConstantPoolValue *CPV =
10818
ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
10819
unsigned CPI = MCP->getConstantPoolIndex(CPV, Align(4));
10820
10821
const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
10822
: &ARM::GPRRegClass;
10823
10824
// Grab constant pool and fixed stack memory operands.
10825
MachineMemOperand *CPMMO =
10826
MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
10827
MachineMemOperand::MOLoad, 4, Align(4));
10828
10829
MachineMemOperand *FIMMOSt =
10830
MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
10831
MachineMemOperand::MOStore, 4, Align(4));
10832
10833
// Load the address of the dispatch MBB into the jump buffer.
10834
if (isThumb2) {
10835
// Incoming value: jbuf
10836
// ldr.n r5, LCPI1_1
10837
// orr r5, r5, #1
10838
// add r5, pc
10839
// str r5, [$jbuf, #+4] ; &jbuf[1]
10840
Register NewVReg1 = MRI->createVirtualRegister(TRC);
10841
BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
10842
.addConstantPoolIndex(CPI)
10843
.addMemOperand(CPMMO)
10844
.add(predOps(ARMCC::AL));
10845
// Set the low bit because of thumb mode.
10846
Register NewVReg2 = MRI->createVirtualRegister(TRC);
10847
BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
10848
.addReg(NewVReg1, RegState::Kill)
10849
.addImm(0x01)
10850
.add(predOps(ARMCC::AL))
10851
.add(condCodeOp());
10852
Register NewVReg3 = MRI->createVirtualRegister(TRC);
10853
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
10854
.addReg(NewVReg2, RegState::Kill)
10855
.addImm(PCLabelId);
10856
BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
10857
.addReg(NewVReg3, RegState::Kill)
10858
.addFrameIndex(FI)
10859
.addImm(36) // &jbuf[1] :: pc
10860
.addMemOperand(FIMMOSt)
10861
.add(predOps(ARMCC::AL));
10862
} else if (isThumb) {
10863
// Incoming value: jbuf
10864
// ldr.n r1, LCPI1_4
10865
// add r1, pc
10866
// mov r2, #1
10867
// orrs r1, r2
10868
// add r2, $jbuf, #+4 ; &jbuf[1]
10869
// str r1, [r2]
10870
Register NewVReg1 = MRI->createVirtualRegister(TRC);
10871
BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
10872
.addConstantPoolIndex(CPI)
10873
.addMemOperand(CPMMO)
10874
.add(predOps(ARMCC::AL));
10875
Register NewVReg2 = MRI->createVirtualRegister(TRC);
10876
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
10877
.addReg(NewVReg1, RegState::Kill)
10878
.addImm(PCLabelId);
10879
// Set the low bit because of thumb mode.
10880
Register NewVReg3 = MRI->createVirtualRegister(TRC);
10881
BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
10882
.addReg(ARM::CPSR, RegState::Define)
10883
.addImm(1)
10884
.add(predOps(ARMCC::AL));
10885
Register NewVReg4 = MRI->createVirtualRegister(TRC);
10886
BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
10887
.addReg(ARM::CPSR, RegState::Define)
10888
.addReg(NewVReg2, RegState::Kill)
10889
.addReg(NewVReg3, RegState::Kill)
10890
.add(predOps(ARMCC::AL));
10891
Register NewVReg5 = MRI->createVirtualRegister(TRC);
10892
BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
10893
.addFrameIndex(FI)
10894
.addImm(36); // &jbuf[1] :: pc
10895
BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
10896
.addReg(NewVReg4, RegState::Kill)
10897
.addReg(NewVReg5, RegState::Kill)
10898
.addImm(0)
10899
.addMemOperand(FIMMOSt)
10900
.add(predOps(ARMCC::AL));
10901
} else {
10902
// Incoming value: jbuf
10903
// ldr r1, LCPI1_1
10904
// add r1, pc, r1
10905
// str r1, [$jbuf, #+4] ; &jbuf[1]
10906
Register NewVReg1 = MRI->createVirtualRegister(TRC);
10907
BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
10908
.addConstantPoolIndex(CPI)
10909
.addImm(0)
10910
.addMemOperand(CPMMO)
10911
.add(predOps(ARMCC::AL));
10912
Register NewVReg2 = MRI->createVirtualRegister(TRC);
10913
BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
10914
.addReg(NewVReg1, RegState::Kill)
10915
.addImm(PCLabelId)
10916
.add(predOps(ARMCC::AL));
10917
BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
10918
.addReg(NewVReg2, RegState::Kill)
10919
.addFrameIndex(FI)
10920
.addImm(36) // &jbuf[1] :: pc
10921
.addMemOperand(FIMMOSt)
10922
.add(predOps(ARMCC::AL));
10923
}
10924
}
10925
10926
void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
10927
MachineBasicBlock *MBB) const {
10928
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10929
DebugLoc dl = MI.getDebugLoc();
10930
MachineFunction *MF = MBB->getParent();
10931
MachineRegisterInfo *MRI = &MF->getRegInfo();
10932
MachineFrameInfo &MFI = MF->getFrameInfo();
10933
int FI = MFI.getFunctionContextIndex();
10934
10935
const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
10936
: &ARM::GPRnopcRegClass;
10937
10938
// Get a mapping of the call site numbers to all of the landing pads they're
10939
// associated with.
10940
DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
10941
unsigned MaxCSNum = 0;
10942
for (MachineBasicBlock &BB : *MF) {
10943
if (!BB.isEHPad())
10944
continue;
10945
10946
// FIXME: We should assert that the EH_LABEL is the first MI in the landing
10947
// pad.
10948
for (MachineInstr &II : BB) {
10949
if (!II.isEHLabel())
10950
continue;
10951
10952
MCSymbol *Sym = II.getOperand(0).getMCSymbol();
10953
if (!MF->hasCallSiteLandingPad(Sym)) continue;
10954
10955
SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
10956
for (unsigned Idx : CallSiteIdxs) {
10957
CallSiteNumToLPad[Idx].push_back(&BB);
10958
MaxCSNum = std::max(MaxCSNum, Idx);
10959
}
10960
break;
10961
}
10962
}
10963
10964
// Get an ordered list of the machine basic blocks for the jump table.
10965
std::vector<MachineBasicBlock*> LPadList;
10966
SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
10967
LPadList.reserve(CallSiteNumToLPad.size());
10968
for (unsigned I = 1; I <= MaxCSNum; ++I) {
10969
SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
10970
for (MachineBasicBlock *MBB : MBBList) {
10971
LPadList.push_back(MBB);
10972
InvokeBBs.insert(MBB->pred_begin(), MBB->pred_end());
10973
}
10974
}
10975
10976
assert(!LPadList.empty() &&
10977
"No landing pad destinations for the dispatch jump table!");
10978
10979
// Create the jump table and associated information.
10980
MachineJumpTableInfo *JTI =
10981
MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
10982
unsigned MJTI = JTI->createJumpTableIndex(LPadList);
10983
10984
// Create the MBBs for the dispatch code.
10985
10986
// Shove the dispatch's address into the return slot in the function context.
10987
MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
10988
DispatchBB->setIsEHPad();
10989
10990
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
10991
unsigned trap_opcode;
10992
if (Subtarget->isThumb())
10993
trap_opcode = ARM::tTRAP;
10994
else
10995
trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
10996
10997
BuildMI(TrapBB, dl, TII->get(trap_opcode));
10998
DispatchBB->addSuccessor(TrapBB);
10999
11000
MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
11001
DispatchBB->addSuccessor(DispContBB);
11002
11003
// Insert and MBBs.
11004
MF->insert(MF->end(), DispatchBB);
11005
MF->insert(MF->end(), DispContBB);
11006
MF->insert(MF->end(), TrapBB);
11007
11008
// Insert code into the entry block that creates and registers the function
11009
// context.
11010
SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
11011
11012
MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
11013
MachinePointerInfo::getFixedStack(*MF, FI),
11014
MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, Align(4));
11015
11016
MachineInstrBuilder MIB;
11017
MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
11018
11019
const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
11020
const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
11021
11022
// Add a register mask with no preserved registers. This results in all
11023
// registers being marked as clobbered. This can't work if the dispatch block
11024
// is in a Thumb1 function and is linked with ARM code which uses the FP
11025
// registers, as there is no way to preserve the FP registers in Thumb1 mode.
11026
MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
11027
11028
bool IsPositionIndependent = isPositionIndependent();
11029
unsigned NumLPads = LPadList.size();
11030
if (Subtarget->isThumb2()) {
11031
Register NewVReg1 = MRI->createVirtualRegister(TRC);
11032
BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
11033
.addFrameIndex(FI)
11034
.addImm(4)
11035
.addMemOperand(FIMMOLd)
11036
.add(predOps(ARMCC::AL));
11037
11038
if (NumLPads < 256) {
11039
BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
11040
.addReg(NewVReg1)
11041
.addImm(LPadList.size())
11042
.add(predOps(ARMCC::AL));
11043
} else {
11044
Register VReg1 = MRI->createVirtualRegister(TRC);
11045
BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
11046
.addImm(NumLPads & 0xFFFF)
11047
.add(predOps(ARMCC::AL));
11048
11049
unsigned VReg2 = VReg1;
11050
if ((NumLPads & 0xFFFF0000) != 0) {
11051
VReg2 = MRI->createVirtualRegister(TRC);
11052
BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
11053
.addReg(VReg1)
11054
.addImm(NumLPads >> 16)
11055
.add(predOps(ARMCC::AL));
11056
}
11057
11058
BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
11059
.addReg(NewVReg1)
11060
.addReg(VReg2)
11061
.add(predOps(ARMCC::AL));
11062
}
11063
11064
BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
11065
.addMBB(TrapBB)
11066
.addImm(ARMCC::HI)
11067
.addReg(ARM::CPSR);
11068
11069
Register NewVReg3 = MRI->createVirtualRegister(TRC);
11070
BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
11071
.addJumpTableIndex(MJTI)
11072
.add(predOps(ARMCC::AL));
11073
11074
Register NewVReg4 = MRI->createVirtualRegister(TRC);
11075
BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
11076
.addReg(NewVReg3, RegState::Kill)
11077
.addReg(NewVReg1)
11078
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
11079
.add(predOps(ARMCC::AL))
11080
.add(condCodeOp());
11081
11082
BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
11083
.addReg(NewVReg4, RegState::Kill)
11084
.addReg(NewVReg1)
11085
.addJumpTableIndex(MJTI);
11086
} else if (Subtarget->isThumb()) {
11087
Register NewVReg1 = MRI->createVirtualRegister(TRC);
11088
BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
11089
.addFrameIndex(FI)
11090
.addImm(1)
11091
.addMemOperand(FIMMOLd)
11092
.add(predOps(ARMCC::AL));
11093
11094
if (NumLPads < 256) {
11095
BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
11096
.addReg(NewVReg1)
11097
.addImm(NumLPads)
11098
.add(predOps(ARMCC::AL));
11099
} else {
11100
MachineConstantPool *ConstantPool = MF->getConstantPool();
11101
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11102
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
11103
11104
// MachineConstantPool wants an explicit alignment.
11105
Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11106
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11107
11108
Register VReg1 = MRI->createVirtualRegister(TRC);
11109
BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
11110
.addReg(VReg1, RegState::Define)
11111
.addConstantPoolIndex(Idx)
11112
.add(predOps(ARMCC::AL));
11113
BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
11114
.addReg(NewVReg1)
11115
.addReg(VReg1)
11116
.add(predOps(ARMCC::AL));
11117
}
11118
11119
BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
11120
.addMBB(TrapBB)
11121
.addImm(ARMCC::HI)
11122
.addReg(ARM::CPSR);
11123
11124
Register NewVReg2 = MRI->createVirtualRegister(TRC);
11125
BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
11126
.addReg(ARM::CPSR, RegState::Define)
11127
.addReg(NewVReg1)
11128
.addImm(2)
11129
.add(predOps(ARMCC::AL));
11130
11131
Register NewVReg3 = MRI->createVirtualRegister(TRC);
11132
BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
11133
.addJumpTableIndex(MJTI)
11134
.add(predOps(ARMCC::AL));
11135
11136
Register NewVReg4 = MRI->createVirtualRegister(TRC);
11137
BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
11138
.addReg(ARM::CPSR, RegState::Define)
11139
.addReg(NewVReg2, RegState::Kill)
11140
.addReg(NewVReg3)
11141
.add(predOps(ARMCC::AL));
11142
11143
MachineMemOperand *JTMMOLd =
11144
MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
11145
MachineMemOperand::MOLoad, 4, Align(4));
11146
11147
Register NewVReg5 = MRI->createVirtualRegister(TRC);
11148
BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
11149
.addReg(NewVReg4, RegState::Kill)
11150
.addImm(0)
11151
.addMemOperand(JTMMOLd)
11152
.add(predOps(ARMCC::AL));
11153
11154
unsigned NewVReg6 = NewVReg5;
11155
if (IsPositionIndependent) {
11156
NewVReg6 = MRI->createVirtualRegister(TRC);
11157
BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
11158
.addReg(ARM::CPSR, RegState::Define)
11159
.addReg(NewVReg5, RegState::Kill)
11160
.addReg(NewVReg3)
11161
.add(predOps(ARMCC::AL));
11162
}
11163
11164
BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
11165
.addReg(NewVReg6, RegState::Kill)
11166
.addJumpTableIndex(MJTI);
11167
} else {
11168
Register NewVReg1 = MRI->createVirtualRegister(TRC);
11169
BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
11170
.addFrameIndex(FI)
11171
.addImm(4)
11172
.addMemOperand(FIMMOLd)
11173
.add(predOps(ARMCC::AL));
11174
11175
if (NumLPads < 256) {
11176
BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
11177
.addReg(NewVReg1)
11178
.addImm(NumLPads)
11179
.add(predOps(ARMCC::AL));
11180
} else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
11181
Register VReg1 = MRI->createVirtualRegister(TRC);
11182
BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
11183
.addImm(NumLPads & 0xFFFF)
11184
.add(predOps(ARMCC::AL));
11185
11186
unsigned VReg2 = VReg1;
11187
if ((NumLPads & 0xFFFF0000) != 0) {
11188
VReg2 = MRI->createVirtualRegister(TRC);
11189
BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
11190
.addReg(VReg1)
11191
.addImm(NumLPads >> 16)
11192
.add(predOps(ARMCC::AL));
11193
}
11194
11195
BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
11196
.addReg(NewVReg1)
11197
.addReg(VReg2)
11198
.add(predOps(ARMCC::AL));
11199
} else {
11200
MachineConstantPool *ConstantPool = MF->getConstantPool();
11201
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11202
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
11203
11204
// MachineConstantPool wants an explicit alignment.
11205
Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11206
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11207
11208
Register VReg1 = MRI->createVirtualRegister(TRC);
11209
BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
11210
.addReg(VReg1, RegState::Define)
11211
.addConstantPoolIndex(Idx)
11212
.addImm(0)
11213
.add(predOps(ARMCC::AL));
11214
BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
11215
.addReg(NewVReg1)
11216
.addReg(VReg1, RegState::Kill)
11217
.add(predOps(ARMCC::AL));
11218
}
11219
11220
BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
11221
.addMBB(TrapBB)
11222
.addImm(ARMCC::HI)
11223
.addReg(ARM::CPSR);
11224
11225
Register NewVReg3 = MRI->createVirtualRegister(TRC);
11226
BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
11227
.addReg(NewVReg1)
11228
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
11229
.add(predOps(ARMCC::AL))
11230
.add(condCodeOp());
11231
Register NewVReg4 = MRI->createVirtualRegister(TRC);
11232
BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
11233
.addJumpTableIndex(MJTI)
11234
.add(predOps(ARMCC::AL));
11235
11236
MachineMemOperand *JTMMOLd =
11237
MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
11238
MachineMemOperand::MOLoad, 4, Align(4));
11239
Register NewVReg5 = MRI->createVirtualRegister(TRC);
11240
BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
11241
.addReg(NewVReg3, RegState::Kill)
11242
.addReg(NewVReg4)
11243
.addImm(0)
11244
.addMemOperand(JTMMOLd)
11245
.add(predOps(ARMCC::AL));
11246
11247
if (IsPositionIndependent) {
11248
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
11249
.addReg(NewVReg5, RegState::Kill)
11250
.addReg(NewVReg4)
11251
.addJumpTableIndex(MJTI);
11252
} else {
11253
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
11254
.addReg(NewVReg5, RegState::Kill)
11255
.addJumpTableIndex(MJTI);
11256
}
11257
}
11258
11259
// Add the jump table entries as successors to the MBB.
11260
SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
11261
for (MachineBasicBlock *CurMBB : LPadList) {
11262
if (SeenMBBs.insert(CurMBB).second)
11263
DispContBB->addSuccessor(CurMBB);
11264
}
11265
11266
// N.B. the order the invoke BBs are processed in doesn't matter here.
11267
const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
11268
SmallVector<MachineBasicBlock*, 64> MBBLPads;
11269
for (MachineBasicBlock *BB : InvokeBBs) {
11270
11271
// Remove the landing pad successor from the invoke block and replace it
11272
// with the new dispatch block.
11273
SmallVector<MachineBasicBlock*, 4> Successors(BB->successors());
11274
while (!Successors.empty()) {
11275
MachineBasicBlock *SMBB = Successors.pop_back_val();
11276
if (SMBB->isEHPad()) {
11277
BB->removeSuccessor(SMBB);
11278
MBBLPads.push_back(SMBB);
11279
}
11280
}
11281
11282
BB->addSuccessor(DispatchBB, BranchProbability::getZero());
11283
BB->normalizeSuccProbs();
11284
11285
// Find the invoke call and mark all of the callee-saved registers as
11286
// 'implicit defined' so that they're spilled. This prevents code from
11287
// moving instructions to before the EH block, where they will never be
11288
// executed.
11289
for (MachineBasicBlock::reverse_iterator
11290
II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
11291
if (!II->isCall()) continue;
11292
11293
DenseMap<unsigned, bool> DefRegs;
11294
for (MachineInstr::mop_iterator
11295
OI = II->operands_begin(), OE = II->operands_end();
11296
OI != OE; ++OI) {
11297
if (!OI->isReg()) continue;
11298
DefRegs[OI->getReg()] = true;
11299
}
11300
11301
MachineInstrBuilder MIB(*MF, &*II);
11302
11303
for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
11304
unsigned Reg = SavedRegs[i];
11305
if (Subtarget->isThumb2() &&
11306
!ARM::tGPRRegClass.contains(Reg) &&
11307
!ARM::hGPRRegClass.contains(Reg))
11308
continue;
11309
if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
11310
continue;
11311
if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
11312
continue;
11313
if (!DefRegs[Reg])
11314
MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
11315
}
11316
11317
break;
11318
}
11319
}
11320
11321
// Mark all former landing pads as non-landing pads. The dispatch is the only
11322
// landing pad now.
11323
for (MachineBasicBlock *MBBLPad : MBBLPads)
11324
MBBLPad->setIsEHPad(false);
11325
11326
// The instruction is gone now.
11327
MI.eraseFromParent();
11328
}
11329
11330
static
11331
MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
11332
for (MachineBasicBlock *S : MBB->successors())
11333
if (S != Succ)
11334
return S;
11335
llvm_unreachable("Expecting a BB with two successors!");
11336
}
11337
11338
/// Return the load opcode for a given load size. If load size >= 8,
11339
/// neon opcode will be returned.
11340
static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
11341
if (LdSize >= 8)
11342
return LdSize == 16 ? ARM::VLD1q32wb_fixed
11343
: LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
11344
if (IsThumb1)
11345
return LdSize == 4 ? ARM::tLDRi
11346
: LdSize == 2 ? ARM::tLDRHi
11347
: LdSize == 1 ? ARM::tLDRBi : 0;
11348
if (IsThumb2)
11349
return LdSize == 4 ? ARM::t2LDR_POST
11350
: LdSize == 2 ? ARM::t2LDRH_POST
11351
: LdSize == 1 ? ARM::t2LDRB_POST : 0;
11352
return LdSize == 4 ? ARM::LDR_POST_IMM
11353
: LdSize == 2 ? ARM::LDRH_POST
11354
: LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
11355
}
11356
11357
/// Return the store opcode for a given store size. If store size >= 8,
11358
/// neon opcode will be returned.
11359
static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
11360
if (StSize >= 8)
11361
return StSize == 16 ? ARM::VST1q32wb_fixed
11362
: StSize == 8 ? ARM::VST1d32wb_fixed : 0;
11363
if (IsThumb1)
11364
return StSize == 4 ? ARM::tSTRi
11365
: StSize == 2 ? ARM::tSTRHi
11366
: StSize == 1 ? ARM::tSTRBi : 0;
11367
if (IsThumb2)
11368
return StSize == 4 ? ARM::t2STR_POST
11369
: StSize == 2 ? ARM::t2STRH_POST
11370
: StSize == 1 ? ARM::t2STRB_POST : 0;
11371
return StSize == 4 ? ARM::STR_POST_IMM
11372
: StSize == 2 ? ARM::STRH_POST
11373
: StSize == 1 ? ARM::STRB_POST_IMM : 0;
11374
}
11375
11376
/// Emit a post-increment load operation with given size. The instructions
11377
/// will be added to BB at Pos.
11378
static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
11379
const TargetInstrInfo *TII, const DebugLoc &dl,
11380
unsigned LdSize, unsigned Data, unsigned AddrIn,
11381
unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
11382
unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
11383
assert(LdOpc != 0 && "Should have a load opcode");
11384
if (LdSize >= 8) {
11385
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11386
.addReg(AddrOut, RegState::Define)
11387
.addReg(AddrIn)
11388
.addImm(0)
11389
.add(predOps(ARMCC::AL));
11390
} else if (IsThumb1) {
11391
// load + update AddrIn
11392
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11393
.addReg(AddrIn)
11394
.addImm(0)
11395
.add(predOps(ARMCC::AL));
11396
BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
11397
.add(t1CondCodeOp())
11398
.addReg(AddrIn)
11399
.addImm(LdSize)
11400
.add(predOps(ARMCC::AL));
11401
} else if (IsThumb2) {
11402
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11403
.addReg(AddrOut, RegState::Define)
11404
.addReg(AddrIn)
11405
.addImm(LdSize)
11406
.add(predOps(ARMCC::AL));
11407
} else { // arm
11408
BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11409
.addReg(AddrOut, RegState::Define)
11410
.addReg(AddrIn)
11411
.addReg(0)
11412
.addImm(LdSize)
11413
.add(predOps(ARMCC::AL));
11414
}
11415
}
11416
11417
/// Emit a post-increment store operation with given size. The instructions
11418
/// will be added to BB at Pos.
11419
static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
11420
const TargetInstrInfo *TII, const DebugLoc &dl,
11421
unsigned StSize, unsigned Data, unsigned AddrIn,
11422
unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
11423
unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
11424
assert(StOpc != 0 && "Should have a store opcode");
11425
if (StSize >= 8) {
11426
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11427
.addReg(AddrIn)
11428
.addImm(0)
11429
.addReg(Data)
11430
.add(predOps(ARMCC::AL));
11431
} else if (IsThumb1) {
11432
// store + update AddrIn
11433
BuildMI(*BB, Pos, dl, TII->get(StOpc))
11434
.addReg(Data)
11435
.addReg(AddrIn)
11436
.addImm(0)
11437
.add(predOps(ARMCC::AL));
11438
BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
11439
.add(t1CondCodeOp())
11440
.addReg(AddrIn)
11441
.addImm(StSize)
11442
.add(predOps(ARMCC::AL));
11443
} else if (IsThumb2) {
11444
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11445
.addReg(Data)
11446
.addReg(AddrIn)
11447
.addImm(StSize)
11448
.add(predOps(ARMCC::AL));
11449
} else { // arm
11450
BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11451
.addReg(Data)
11452
.addReg(AddrIn)
11453
.addReg(0)
11454
.addImm(StSize)
11455
.add(predOps(ARMCC::AL));
11456
}
11457
}
11458
11459
MachineBasicBlock *
11460
ARMTargetLowering::EmitStructByval(MachineInstr &MI,
11461
MachineBasicBlock *BB) const {
11462
// This pseudo instruction has 3 operands: dst, src, size
11463
// We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
11464
// Otherwise, we will generate unrolled scalar copies.
11465
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11466
const BasicBlock *LLVM_BB = BB->getBasicBlock();
11467
MachineFunction::iterator It = ++BB->getIterator();
11468
11469
Register dest = MI.getOperand(0).getReg();
11470
Register src = MI.getOperand(1).getReg();
11471
unsigned SizeVal = MI.getOperand(2).getImm();
11472
unsigned Alignment = MI.getOperand(3).getImm();
11473
DebugLoc dl = MI.getDebugLoc();
11474
11475
MachineFunction *MF = BB->getParent();
11476
MachineRegisterInfo &MRI = MF->getRegInfo();
11477
unsigned UnitSize = 0;
11478
const TargetRegisterClass *TRC = nullptr;
11479
const TargetRegisterClass *VecTRC = nullptr;
11480
11481
bool IsThumb1 = Subtarget->isThumb1Only();
11482
bool IsThumb2 = Subtarget->isThumb2();
11483
bool IsThumb = Subtarget->isThumb();
11484
11485
if (Alignment & 1) {
11486
UnitSize = 1;
11487
} else if (Alignment & 2) {
11488
UnitSize = 2;
11489
} else {
11490
// Check whether we can use NEON instructions.
11491
if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
11492
Subtarget->hasNEON()) {
11493
if ((Alignment % 16 == 0) && SizeVal >= 16)
11494
UnitSize = 16;
11495
else if ((Alignment % 8 == 0) && SizeVal >= 8)
11496
UnitSize = 8;
11497
}
11498
// Can't use NEON instructions.
11499
if (UnitSize == 0)
11500
UnitSize = 4;
11501
}
11502
11503
// Select the correct opcode and register class for unit size load/store
11504
bool IsNeon = UnitSize >= 8;
11505
TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
11506
if (IsNeon)
11507
VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
11508
: UnitSize == 8 ? &ARM::DPRRegClass
11509
: nullptr;
11510
11511
unsigned BytesLeft = SizeVal % UnitSize;
11512
unsigned LoopSize = SizeVal - BytesLeft;
11513
11514
if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
11515
// Use LDR and STR to copy.
11516
// [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
11517
// [destOut] = STR_POST(scratch, destIn, UnitSize)
11518
unsigned srcIn = src;
11519
unsigned destIn = dest;
11520
for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
11521
Register srcOut = MRI.createVirtualRegister(TRC);
11522
Register destOut = MRI.createVirtualRegister(TRC);
11523
Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11524
emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
11525
IsThumb1, IsThumb2);
11526
emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
11527
IsThumb1, IsThumb2);
11528
srcIn = srcOut;
11529
destIn = destOut;
11530
}
11531
11532
// Handle the leftover bytes with LDRB and STRB.
11533
// [scratch, srcOut] = LDRB_POST(srcIn, 1)
11534
// [destOut] = STRB_POST(scratch, destIn, 1)
11535
for (unsigned i = 0; i < BytesLeft; i++) {
11536
Register srcOut = MRI.createVirtualRegister(TRC);
11537
Register destOut = MRI.createVirtualRegister(TRC);
11538
Register scratch = MRI.createVirtualRegister(TRC);
11539
emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
11540
IsThumb1, IsThumb2);
11541
emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
11542
IsThumb1, IsThumb2);
11543
srcIn = srcOut;
11544
destIn = destOut;
11545
}
11546
MI.eraseFromParent(); // The instruction is gone now.
11547
return BB;
11548
}
11549
11550
// Expand the pseudo op to a loop.
11551
// thisMBB:
11552
// ...
11553
// movw varEnd, # --> with thumb2
11554
// movt varEnd, #
11555
// ldrcp varEnd, idx --> without thumb2
11556
// fallthrough --> loopMBB
11557
// loopMBB:
11558
// PHI varPhi, varEnd, varLoop
11559
// PHI srcPhi, src, srcLoop
11560
// PHI destPhi, dst, destLoop
11561
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11562
// [destLoop] = STR_POST(scratch, destPhi, UnitSize)
11563
// subs varLoop, varPhi, #UnitSize
11564
// bne loopMBB
11565
// fallthrough --> exitMBB
11566
// exitMBB:
11567
// epilogue to handle left-over bytes
11568
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11569
// [destOut] = STRB_POST(scratch, destLoop, 1)
11570
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11571
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11572
MF->insert(It, loopMBB);
11573
MF->insert(It, exitMBB);
11574
11575
// Set the call frame size on entry to the new basic blocks.
11576
unsigned CallFrameSize = TII->getCallFrameSizeAt(MI);
11577
loopMBB->setCallFrameSize(CallFrameSize);
11578
exitMBB->setCallFrameSize(CallFrameSize);
11579
11580
// Transfer the remainder of BB and its successor edges to exitMBB.
11581
exitMBB->splice(exitMBB->begin(), BB,
11582
std::next(MachineBasicBlock::iterator(MI)), BB->end());
11583
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11584
11585
// Load an immediate to varEnd.
11586
Register varEnd = MRI.createVirtualRegister(TRC);
11587
if (Subtarget->useMovt()) {
11588
BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi32imm : ARM::MOVi32imm),
11589
varEnd)
11590
.addImm(LoopSize);
11591
} else if (Subtarget->genExecuteOnly()) {
11592
assert(IsThumb && "Non-thumb expected to have used movt");
11593
BuildMI(BB, dl, TII->get(ARM::tMOVi32imm), varEnd).addImm(LoopSize);
11594
} else {
11595
MachineConstantPool *ConstantPool = MF->getConstantPool();
11596
Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11597
const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
11598
11599
// MachineConstantPool wants an explicit alignment.
11600
Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11601
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11602
MachineMemOperand *CPMMO =
11603
MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
11604
MachineMemOperand::MOLoad, 4, Align(4));
11605
11606
if (IsThumb)
11607
BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
11608
.addReg(varEnd, RegState::Define)
11609
.addConstantPoolIndex(Idx)
11610
.add(predOps(ARMCC::AL))
11611
.addMemOperand(CPMMO);
11612
else
11613
BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
11614
.addReg(varEnd, RegState::Define)
11615
.addConstantPoolIndex(Idx)
11616
.addImm(0)
11617
.add(predOps(ARMCC::AL))
11618
.addMemOperand(CPMMO);
11619
}
11620
BB->addSuccessor(loopMBB);
11621
11622
// Generate the loop body:
11623
// varPhi = PHI(varLoop, varEnd)
11624
// srcPhi = PHI(srcLoop, src)
11625
// destPhi = PHI(destLoop, dst)
11626
MachineBasicBlock *entryBB = BB;
11627
BB = loopMBB;
11628
Register varLoop = MRI.createVirtualRegister(TRC);
11629
Register varPhi = MRI.createVirtualRegister(TRC);
11630
Register srcLoop = MRI.createVirtualRegister(TRC);
11631
Register srcPhi = MRI.createVirtualRegister(TRC);
11632
Register destLoop = MRI.createVirtualRegister(TRC);
11633
Register destPhi = MRI.createVirtualRegister(TRC);
11634
11635
BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
11636
.addReg(varLoop).addMBB(loopMBB)
11637
.addReg(varEnd).addMBB(entryBB);
11638
BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
11639
.addReg(srcLoop).addMBB(loopMBB)
11640
.addReg(src).addMBB(entryBB);
11641
BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
11642
.addReg(destLoop).addMBB(loopMBB)
11643
.addReg(dest).addMBB(entryBB);
11644
11645
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11646
// [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
11647
Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11648
emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
11649
IsThumb1, IsThumb2);
11650
emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
11651
IsThumb1, IsThumb2);
11652
11653
// Decrement loop variable by UnitSize.
11654
if (IsThumb1) {
11655
BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
11656
.add(t1CondCodeOp())
11657
.addReg(varPhi)
11658
.addImm(UnitSize)
11659
.add(predOps(ARMCC::AL));
11660
} else {
11661
MachineInstrBuilder MIB =
11662
BuildMI(*BB, BB->end(), dl,
11663
TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
11664
MIB.addReg(varPhi)
11665
.addImm(UnitSize)
11666
.add(predOps(ARMCC::AL))
11667
.add(condCodeOp());
11668
MIB->getOperand(5).setReg(ARM::CPSR);
11669
MIB->getOperand(5).setIsDef(true);
11670
}
11671
BuildMI(*BB, BB->end(), dl,
11672
TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
11673
.addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
11674
11675
// loopMBB can loop back to loopMBB or fall through to exitMBB.
11676
BB->addSuccessor(loopMBB);
11677
BB->addSuccessor(exitMBB);
11678
11679
// Add epilogue to handle BytesLeft.
11680
BB = exitMBB;
11681
auto StartOfExit = exitMBB->begin();
11682
11683
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11684
// [destOut] = STRB_POST(scratch, destLoop, 1)
11685
unsigned srcIn = srcLoop;
11686
unsigned destIn = destLoop;
11687
for (unsigned i = 0; i < BytesLeft; i++) {
11688
Register srcOut = MRI.createVirtualRegister(TRC);
11689
Register destOut = MRI.createVirtualRegister(TRC);
11690
Register scratch = MRI.createVirtualRegister(TRC);
11691
emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
11692
IsThumb1, IsThumb2);
11693
emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
11694
IsThumb1, IsThumb2);
11695
srcIn = srcOut;
11696
destIn = destOut;
11697
}
11698
11699
MI.eraseFromParent(); // The instruction is gone now.
11700
return BB;
11701
}
11702
11703
MachineBasicBlock *
11704
ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
11705
MachineBasicBlock *MBB) const {
11706
const TargetMachine &TM = getTargetMachine();
11707
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
11708
DebugLoc DL = MI.getDebugLoc();
11709
11710
assert(Subtarget->isTargetWindows() &&
11711
"__chkstk is only supported on Windows");
11712
assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
11713
11714
// __chkstk takes the number of words to allocate on the stack in R4, and
11715
// returns the stack adjustment in number of bytes in R4. This will not
11716
// clober any other registers (other than the obvious lr).
11717
//
11718
// Although, technically, IP should be considered a register which may be
11719
// clobbered, the call itself will not touch it. Windows on ARM is a pure
11720
// thumb-2 environment, so there is no interworking required. As a result, we
11721
// do not expect a veneer to be emitted by the linker, clobbering IP.
11722
//
11723
// Each module receives its own copy of __chkstk, so no import thunk is
11724
// required, again, ensuring that IP is not clobbered.
11725
//
11726
// Finally, although some linkers may theoretically provide a trampoline for
11727
// out of range calls (which is quite common due to a 32M range limitation of
11728
// branches for Thumb), we can generate the long-call version via
11729
// -mcmodel=large, alleviating the need for the trampoline which may clobber
11730
// IP.
11731
11732
switch (TM.getCodeModel()) {
11733
case CodeModel::Tiny:
11734
llvm_unreachable("Tiny code model not available on ARM.");
11735
case CodeModel::Small:
11736
case CodeModel::Medium:
11737
case CodeModel::Kernel:
11738
BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
11739
.add(predOps(ARMCC::AL))
11740
.addExternalSymbol("__chkstk")
11741
.addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11742
.addReg(ARM::R4, RegState::Implicit | RegState::Define)
11743
.addReg(ARM::R12,
11744
RegState::Implicit | RegState::Define | RegState::Dead)
11745
.addReg(ARM::CPSR,
11746
RegState::Implicit | RegState::Define | RegState::Dead);
11747
break;
11748
case CodeModel::Large: {
11749
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11750
Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11751
11752
BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
11753
.addExternalSymbol("__chkstk");
11754
BuildMI(*MBB, MI, DL, TII.get(gettBLXrOpcode(*MBB->getParent())))
11755
.add(predOps(ARMCC::AL))
11756
.addReg(Reg, RegState::Kill)
11757
.addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11758
.addReg(ARM::R4, RegState::Implicit | RegState::Define)
11759
.addReg(ARM::R12,
11760
RegState::Implicit | RegState::Define | RegState::Dead)
11761
.addReg(ARM::CPSR,
11762
RegState::Implicit | RegState::Define | RegState::Dead);
11763
break;
11764
}
11765
}
11766
11767
BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
11768
.addReg(ARM::SP, RegState::Kill)
11769
.addReg(ARM::R4, RegState::Kill)
11770
.setMIFlags(MachineInstr::FrameSetup)
11771
.add(predOps(ARMCC::AL))
11772
.add(condCodeOp());
11773
11774
MI.eraseFromParent();
11775
return MBB;
11776
}
11777
11778
MachineBasicBlock *
11779
ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
11780
MachineBasicBlock *MBB) const {
11781
DebugLoc DL = MI.getDebugLoc();
11782
MachineFunction *MF = MBB->getParent();
11783
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11784
11785
MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
11786
MF->insert(++MBB->getIterator(), ContBB);
11787
ContBB->splice(ContBB->begin(), MBB,
11788
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11789
ContBB->transferSuccessorsAndUpdatePHIs(MBB);
11790
MBB->addSuccessor(ContBB);
11791
11792
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
11793
BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
11794
MF->push_back(TrapBB);
11795
MBB->addSuccessor(TrapBB);
11796
11797
BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
11798
.addReg(MI.getOperand(0).getReg())
11799
.addImm(0)
11800
.add(predOps(ARMCC::AL));
11801
BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
11802
.addMBB(TrapBB)
11803
.addImm(ARMCC::EQ)
11804
.addReg(ARM::CPSR);
11805
11806
MI.eraseFromParent();
11807
return ContBB;
11808
}
11809
11810
// The CPSR operand of SelectItr might be missing a kill marker
11811
// because there were multiple uses of CPSR, and ISel didn't know
11812
// which to mark. Figure out whether SelectItr should have had a
11813
// kill marker, and set it if it should. Returns the correct kill
11814
// marker value.
11815
static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
11816
MachineBasicBlock* BB,
11817
const TargetRegisterInfo* TRI) {
11818
// Scan forward through BB for a use/def of CPSR.
11819
MachineBasicBlock::iterator miI(std::next(SelectItr));
11820
for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
11821
const MachineInstr& mi = *miI;
11822
if (mi.readsRegister(ARM::CPSR, /*TRI=*/nullptr))
11823
return false;
11824
if (mi.definesRegister(ARM::CPSR, /*TRI=*/nullptr))
11825
break; // Should have kill-flag - update below.
11826
}
11827
11828
// If we hit the end of the block, check whether CPSR is live into a
11829
// successor.
11830
if (miI == BB->end()) {
11831
for (MachineBasicBlock *Succ : BB->successors())
11832
if (Succ->isLiveIn(ARM::CPSR))
11833
return false;
11834
}
11835
11836
// We found a def, or hit the end of the basic block and CPSR wasn't live
11837
// out. SelectMI should have a kill flag on CPSR.
11838
SelectItr->addRegisterKilled(ARM::CPSR, TRI);
11839
return true;
11840
}
11841
11842
/// Adds logic in loop entry MBB to calculate loop iteration count and adds
11843
/// t2WhileLoopSetup and t2WhileLoopStart to generate WLS loop
11844
static Register genTPEntry(MachineBasicBlock *TpEntry,
11845
MachineBasicBlock *TpLoopBody,
11846
MachineBasicBlock *TpExit, Register OpSizeReg,
11847
const TargetInstrInfo *TII, DebugLoc Dl,
11848
MachineRegisterInfo &MRI) {
11849
// Calculates loop iteration count = ceil(n/16) = (n + 15) >> 4.
11850
Register AddDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11851
BuildMI(TpEntry, Dl, TII->get(ARM::t2ADDri), AddDestReg)
11852
.addUse(OpSizeReg)
11853
.addImm(15)
11854
.add(predOps(ARMCC::AL))
11855
.addReg(0);
11856
11857
Register LsrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11858
BuildMI(TpEntry, Dl, TII->get(ARM::t2LSRri), LsrDestReg)
11859
.addUse(AddDestReg, RegState::Kill)
11860
.addImm(4)
11861
.add(predOps(ARMCC::AL))
11862
.addReg(0);
11863
11864
Register TotalIterationsReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11865
BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopSetup), TotalIterationsReg)
11866
.addUse(LsrDestReg, RegState::Kill);
11867
11868
BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopStart))
11869
.addUse(TotalIterationsReg)
11870
.addMBB(TpExit);
11871
11872
BuildMI(TpEntry, Dl, TII->get(ARM::t2B))
11873
.addMBB(TpLoopBody)
11874
.add(predOps(ARMCC::AL));
11875
11876
return TotalIterationsReg;
11877
}
11878
11879
/// Adds logic in the loopBody MBB to generate MVE_VCTP, t2DoLoopDec and
11880
/// t2DoLoopEnd. These are used by later passes to generate tail predicated
11881
/// loops.
11882
static void genTPLoopBody(MachineBasicBlock *TpLoopBody,
11883
MachineBasicBlock *TpEntry, MachineBasicBlock *TpExit,
11884
const TargetInstrInfo *TII, DebugLoc Dl,
11885
MachineRegisterInfo &MRI, Register OpSrcReg,
11886
Register OpDestReg, Register ElementCountReg,
11887
Register TotalIterationsReg, bool IsMemcpy) {
11888
// First insert 4 PHI nodes for: Current pointer to Src (if memcpy), Dest
11889
// array, loop iteration counter, predication counter.
11890
11891
Register SrcPhiReg, CurrSrcReg;
11892
if (IsMemcpy) {
11893
// Current position in the src array
11894
SrcPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11895
CurrSrcReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11896
BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), SrcPhiReg)
11897
.addUse(OpSrcReg)
11898
.addMBB(TpEntry)
11899
.addUse(CurrSrcReg)
11900
.addMBB(TpLoopBody);
11901
}
11902
11903
// Current position in the dest array
11904
Register DestPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11905
Register CurrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11906
BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), DestPhiReg)
11907
.addUse(OpDestReg)
11908
.addMBB(TpEntry)
11909
.addUse(CurrDestReg)
11910
.addMBB(TpLoopBody);
11911
11912
// Current loop counter
11913
Register LoopCounterPhiReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11914
Register RemainingLoopIterationsReg =
11915
MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11916
BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), LoopCounterPhiReg)
11917
.addUse(TotalIterationsReg)
11918
.addMBB(TpEntry)
11919
.addUse(RemainingLoopIterationsReg)
11920
.addMBB(TpLoopBody);
11921
11922
// Predication counter
11923
Register PredCounterPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11924
Register RemainingElementsReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11925
BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), PredCounterPhiReg)
11926
.addUse(ElementCountReg)
11927
.addMBB(TpEntry)
11928
.addUse(RemainingElementsReg)
11929
.addMBB(TpLoopBody);
11930
11931
// Pass predication counter to VCTP
11932
Register VccrReg = MRI.createVirtualRegister(&ARM::VCCRRegClass);
11933
BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VCTP8), VccrReg)
11934
.addUse(PredCounterPhiReg)
11935
.addImm(ARMVCC::None)
11936
.addReg(0)
11937
.addReg(0);
11938
11939
BuildMI(TpLoopBody, Dl, TII->get(ARM::t2SUBri), RemainingElementsReg)
11940
.addUse(PredCounterPhiReg)
11941
.addImm(16)
11942
.add(predOps(ARMCC::AL))
11943
.addReg(0);
11944
11945
// VLDRB (only if memcpy) and VSTRB instructions, predicated using VPR
11946
Register SrcValueReg;
11947
if (IsMemcpy) {
11948
SrcValueReg = MRI.createVirtualRegister(&ARM::MQPRRegClass);
11949
BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VLDRBU8_post))
11950
.addDef(CurrSrcReg)
11951
.addDef(SrcValueReg)
11952
.addReg(SrcPhiReg)
11953
.addImm(16)
11954
.addImm(ARMVCC::Then)
11955
.addUse(VccrReg)
11956
.addReg(0);
11957
} else
11958
SrcValueReg = OpSrcReg;
11959
11960
BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VSTRBU8_post))
11961
.addDef(CurrDestReg)
11962
.addUse(SrcValueReg)
11963
.addReg(DestPhiReg)
11964
.addImm(16)
11965
.addImm(ARMVCC::Then)
11966
.addUse(VccrReg)
11967
.addReg(0);
11968
11969
// Add the pseudoInstrs for decrementing the loop counter and marking the
11970
// end:t2DoLoopDec and t2DoLoopEnd
11971
BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopDec), RemainingLoopIterationsReg)
11972
.addUse(LoopCounterPhiReg)
11973
.addImm(1);
11974
11975
BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopEnd))
11976
.addUse(RemainingLoopIterationsReg)
11977
.addMBB(TpLoopBody);
11978
11979
BuildMI(TpLoopBody, Dl, TII->get(ARM::t2B))
11980
.addMBB(TpExit)
11981
.add(predOps(ARMCC::AL));
11982
}
11983
11984
MachineBasicBlock *
11985
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11986
MachineBasicBlock *BB) const {
11987
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11988
DebugLoc dl = MI.getDebugLoc();
11989
bool isThumb2 = Subtarget->isThumb2();
11990
switch (MI.getOpcode()) {
11991
default: {
11992
MI.print(errs());
11993
llvm_unreachable("Unexpected instr type to insert");
11994
}
11995
11996
// Thumb1 post-indexed loads are really just single-register LDMs.
11997
case ARM::tLDR_postidx: {
11998
MachineOperand Def(MI.getOperand(1));
11999
BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
12000
.add(Def) // Rn_wb
12001
.add(MI.getOperand(2)) // Rn
12002
.add(MI.getOperand(3)) // PredImm
12003
.add(MI.getOperand(4)) // PredReg
12004
.add(MI.getOperand(0)) // Rt
12005
.cloneMemRefs(MI);
12006
MI.eraseFromParent();
12007
return BB;
12008
}
12009
12010
case ARM::MVE_MEMCPYLOOPINST:
12011
case ARM::MVE_MEMSETLOOPINST: {
12012
12013
// Transformation below expands MVE_MEMCPYLOOPINST/MVE_MEMSETLOOPINST Pseudo
12014
// into a Tail Predicated (TP) Loop. It adds the instructions to calculate
12015
// the iteration count =ceil(size_in_bytes/16)) in the TP entry block and
12016
// adds the relevant instructions in the TP loop Body for generation of a
12017
// WLSTP loop.
12018
12019
// Below is relevant portion of the CFG after the transformation.
12020
// The Machine Basic Blocks are shown along with branch conditions (in
12021
// brackets). Note that TP entry/exit MBBs depict the entry/exit of this
12022
// portion of the CFG and may not necessarily be the entry/exit of the
12023
// function.
12024
12025
// (Relevant) CFG after transformation:
12026
// TP entry MBB
12027
// |
12028
// |-----------------|
12029
// (n <= 0) (n > 0)
12030
// | |
12031
// | TP loop Body MBB<--|
12032
// | | |
12033
// \ |___________|
12034
// \ /
12035
// TP exit MBB
12036
12037
MachineFunction *MF = BB->getParent();
12038
MachineFunctionProperties &Properties = MF->getProperties();
12039
MachineRegisterInfo &MRI = MF->getRegInfo();
12040
12041
Register OpDestReg = MI.getOperand(0).getReg();
12042
Register OpSrcReg = MI.getOperand(1).getReg();
12043
Register OpSizeReg = MI.getOperand(2).getReg();
12044
12045
// Allocate the required MBBs and add to parent function.
12046
MachineBasicBlock *TpEntry = BB;
12047
MachineBasicBlock *TpLoopBody = MF->CreateMachineBasicBlock();
12048
MachineBasicBlock *TpExit;
12049
12050
MF->push_back(TpLoopBody);
12051
12052
// If any instructions are present in the current block after
12053
// MVE_MEMCPYLOOPINST or MVE_MEMSETLOOPINST, split the current block and
12054
// move the instructions into the newly created exit block. If there are no
12055
// instructions add an explicit branch to the FallThrough block and then
12056
// split.
12057
//
12058
// The split is required for two reasons:
12059
// 1) A terminator(t2WhileLoopStart) will be placed at that site.
12060
// 2) Since a TPLoopBody will be added later, any phis in successive blocks
12061
// need to be updated. splitAt() already handles this.
12062
TpExit = BB->splitAt(MI, false);
12063
if (TpExit == BB) {
12064
assert(BB->canFallThrough() && "Exit Block must be Fallthrough of the "
12065
"block containing memcpy/memset Pseudo");
12066
TpExit = BB->getFallThrough();
12067
BuildMI(BB, dl, TII->get(ARM::t2B))
12068
.addMBB(TpExit)
12069
.add(predOps(ARMCC::AL));
12070
TpExit = BB->splitAt(MI, false);
12071
}
12072
12073
// Add logic for iteration count
12074
Register TotalIterationsReg =
12075
genTPEntry(TpEntry, TpLoopBody, TpExit, OpSizeReg, TII, dl, MRI);
12076
12077
// Add the vectorized (and predicated) loads/store instructions
12078
bool IsMemcpy = MI.getOpcode() == ARM::MVE_MEMCPYLOOPINST;
12079
genTPLoopBody(TpLoopBody, TpEntry, TpExit, TII, dl, MRI, OpSrcReg,
12080
OpDestReg, OpSizeReg, TotalIterationsReg, IsMemcpy);
12081
12082
// Required to avoid conflict with the MachineVerifier during testing.
12083
Properties.reset(MachineFunctionProperties::Property::NoPHIs);
12084
12085
// Connect the blocks
12086
TpEntry->addSuccessor(TpLoopBody);
12087
TpLoopBody->addSuccessor(TpLoopBody);
12088
TpLoopBody->addSuccessor(TpExit);
12089
12090
// Reorder for a more natural layout
12091
TpLoopBody->moveAfter(TpEntry);
12092
TpExit->moveAfter(TpLoopBody);
12093
12094
// Finally, remove the memcpy Pseudo Instruction
12095
MI.eraseFromParent();
12096
12097
// Return the exit block as it may contain other instructions requiring a
12098
// custom inserter
12099
return TpExit;
12100
}
12101
12102
// The Thumb2 pre-indexed stores have the same MI operands, they just
12103
// define them differently in the .td files from the isel patterns, so
12104
// they need pseudos.
12105
case ARM::t2STR_preidx:
12106
MI.setDesc(TII->get(ARM::t2STR_PRE));
12107
return BB;
12108
case ARM::t2STRB_preidx:
12109
MI.setDesc(TII->get(ARM::t2STRB_PRE));
12110
return BB;
12111
case ARM::t2STRH_preidx:
12112
MI.setDesc(TII->get(ARM::t2STRH_PRE));
12113
return BB;
12114
12115
case ARM::STRi_preidx:
12116
case ARM::STRBi_preidx: {
12117
unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
12118
: ARM::STRB_PRE_IMM;
12119
// Decode the offset.
12120
unsigned Offset = MI.getOperand(4).getImm();
12121
bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
12122
Offset = ARM_AM::getAM2Offset(Offset);
12123
if (isSub)
12124
Offset = -Offset;
12125
12126
MachineMemOperand *MMO = *MI.memoperands_begin();
12127
BuildMI(*BB, MI, dl, TII->get(NewOpc))
12128
.add(MI.getOperand(0)) // Rn_wb
12129
.add(MI.getOperand(1)) // Rt
12130
.add(MI.getOperand(2)) // Rn
12131
.addImm(Offset) // offset (skip GPR==zero_reg)
12132
.add(MI.getOperand(5)) // pred
12133
.add(MI.getOperand(6))
12134
.addMemOperand(MMO);
12135
MI.eraseFromParent();
12136
return BB;
12137
}
12138
case ARM::STRr_preidx:
12139
case ARM::STRBr_preidx:
12140
case ARM::STRH_preidx: {
12141
unsigned NewOpc;
12142
switch (MI.getOpcode()) {
12143
default: llvm_unreachable("unexpected opcode!");
12144
case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
12145
case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
12146
case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
12147
}
12148
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
12149
for (const MachineOperand &MO : MI.operands())
12150
MIB.add(MO);
12151
MI.eraseFromParent();
12152
return BB;
12153
}
12154
12155
case ARM::tMOVCCr_pseudo: {
12156
// To "insert" a SELECT_CC instruction, we actually have to insert the
12157
// diamond control-flow pattern. The incoming instruction knows the
12158
// destination vreg to set, the condition code register to branch on, the
12159
// true/false values to select between, and a branch opcode to use.
12160
const BasicBlock *LLVM_BB = BB->getBasicBlock();
12161
MachineFunction::iterator It = ++BB->getIterator();
12162
12163
// thisMBB:
12164
// ...
12165
// TrueVal = ...
12166
// cmpTY ccX, r1, r2
12167
// bCC copy1MBB
12168
// fallthrough --> copy0MBB
12169
MachineBasicBlock *thisMBB = BB;
12170
MachineFunction *F = BB->getParent();
12171
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12172
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12173
F->insert(It, copy0MBB);
12174
F->insert(It, sinkMBB);
12175
12176
// Set the call frame size on entry to the new basic blocks.
12177
unsigned CallFrameSize = TII->getCallFrameSizeAt(MI);
12178
copy0MBB->setCallFrameSize(CallFrameSize);
12179
sinkMBB->setCallFrameSize(CallFrameSize);
12180
12181
// Check whether CPSR is live past the tMOVCCr_pseudo.
12182
const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
12183
if (!MI.killsRegister(ARM::CPSR, /*TRI=*/nullptr) &&
12184
!checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
12185
copy0MBB->addLiveIn(ARM::CPSR);
12186
sinkMBB->addLiveIn(ARM::CPSR);
12187
}
12188
12189
// Transfer the remainder of BB and its successor edges to sinkMBB.
12190
sinkMBB->splice(sinkMBB->begin(), BB,
12191
std::next(MachineBasicBlock::iterator(MI)), BB->end());
12192
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12193
12194
BB->addSuccessor(copy0MBB);
12195
BB->addSuccessor(sinkMBB);
12196
12197
BuildMI(BB, dl, TII->get(ARM::tBcc))
12198
.addMBB(sinkMBB)
12199
.addImm(MI.getOperand(3).getImm())
12200
.addReg(MI.getOperand(4).getReg());
12201
12202
// copy0MBB:
12203
// %FalseValue = ...
12204
// # fallthrough to sinkMBB
12205
BB = copy0MBB;
12206
12207
// Update machine-CFG edges
12208
BB->addSuccessor(sinkMBB);
12209
12210
// sinkMBB:
12211
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12212
// ...
12213
BB = sinkMBB;
12214
BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
12215
.addReg(MI.getOperand(1).getReg())
12216
.addMBB(copy0MBB)
12217
.addReg(MI.getOperand(2).getReg())
12218
.addMBB(thisMBB);
12219
12220
MI.eraseFromParent(); // The pseudo instruction is gone now.
12221
return BB;
12222
}
12223
12224
case ARM::BCCi64:
12225
case ARM::BCCZi64: {
12226
// If there is an unconditional branch to the other successor, remove it.
12227
BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
12228
12229
// Compare both parts that make up the double comparison separately for
12230
// equality.
12231
bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
12232
12233
Register LHS1 = MI.getOperand(1).getReg();
12234
Register LHS2 = MI.getOperand(2).getReg();
12235
if (RHSisZero) {
12236
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12237
.addReg(LHS1)
12238
.addImm(0)
12239
.add(predOps(ARMCC::AL));
12240
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12241
.addReg(LHS2).addImm(0)
12242
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
12243
} else {
12244
Register RHS1 = MI.getOperand(3).getReg();
12245
Register RHS2 = MI.getOperand(4).getReg();
12246
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
12247
.addReg(LHS1)
12248
.addReg(RHS1)
12249
.add(predOps(ARMCC::AL));
12250
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
12251
.addReg(LHS2).addReg(RHS2)
12252
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
12253
}
12254
12255
MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
12256
MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
12257
if (MI.getOperand(0).getImm() == ARMCC::NE)
12258
std::swap(destMBB, exitMBB);
12259
12260
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
12261
.addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
12262
if (isThumb2)
12263
BuildMI(BB, dl, TII->get(ARM::t2B))
12264
.addMBB(exitMBB)
12265
.add(predOps(ARMCC::AL));
12266
else
12267
BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
12268
12269
MI.eraseFromParent(); // The pseudo instruction is gone now.
12270
return BB;
12271
}
12272
12273
case ARM::Int_eh_sjlj_setjmp:
12274
case ARM::Int_eh_sjlj_setjmp_nofp:
12275
case ARM::tInt_eh_sjlj_setjmp:
12276
case ARM::t2Int_eh_sjlj_setjmp:
12277
case ARM::t2Int_eh_sjlj_setjmp_nofp:
12278
return BB;
12279
12280
case ARM::Int_eh_sjlj_setup_dispatch:
12281
EmitSjLjDispatchBlock(MI, BB);
12282
return BB;
12283
12284
case ARM::ABS:
12285
case ARM::t2ABS: {
12286
// To insert an ABS instruction, we have to insert the
12287
// diamond control-flow pattern. The incoming instruction knows the
12288
// source vreg to test against 0, the destination vreg to set,
12289
// the condition code register to branch on, the
12290
// true/false values to select between, and a branch opcode to use.
12291
// It transforms
12292
// V1 = ABS V0
12293
// into
12294
// V2 = MOVS V0
12295
// BCC (branch to SinkBB if V0 >= 0)
12296
// RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
12297
// SinkBB: V1 = PHI(V2, V3)
12298
const BasicBlock *LLVM_BB = BB->getBasicBlock();
12299
MachineFunction::iterator BBI = ++BB->getIterator();
12300
MachineFunction *Fn = BB->getParent();
12301
MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
12302
MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
12303
Fn->insert(BBI, RSBBB);
12304
Fn->insert(BBI, SinkBB);
12305
12306
Register ABSSrcReg = MI.getOperand(1).getReg();
12307
Register ABSDstReg = MI.getOperand(0).getReg();
12308
bool ABSSrcKIll = MI.getOperand(1).isKill();
12309
bool isThumb2 = Subtarget->isThumb2();
12310
MachineRegisterInfo &MRI = Fn->getRegInfo();
12311
// In Thumb mode S must not be specified if source register is the SP or
12312
// PC and if destination register is the SP, so restrict register class
12313
Register NewRsbDstReg = MRI.createVirtualRegister(
12314
isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
12315
12316
// Transfer the remainder of BB and its successor edges to sinkMBB.
12317
SinkBB->splice(SinkBB->begin(), BB,
12318
std::next(MachineBasicBlock::iterator(MI)), BB->end());
12319
SinkBB->transferSuccessorsAndUpdatePHIs(BB);
12320
12321
BB->addSuccessor(RSBBB);
12322
BB->addSuccessor(SinkBB);
12323
12324
// fall through to SinkMBB
12325
RSBBB->addSuccessor(SinkBB);
12326
12327
// insert a cmp at the end of BB
12328
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12329
.addReg(ABSSrcReg)
12330
.addImm(0)
12331
.add(predOps(ARMCC::AL));
12332
12333
// insert a bcc with opposite CC to ARMCC::MI at the end of BB
12334
BuildMI(BB, dl,
12335
TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
12336
.addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
12337
12338
// insert rsbri in RSBBB
12339
// Note: BCC and rsbri will be converted into predicated rsbmi
12340
// by if-conversion pass
12341
BuildMI(*RSBBB, RSBBB->begin(), dl,
12342
TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
12343
.addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
12344
.addImm(0)
12345
.add(predOps(ARMCC::AL))
12346
.add(condCodeOp());
12347
12348
// insert PHI in SinkBB,
12349
// reuse ABSDstReg to not change uses of ABS instruction
12350
BuildMI(*SinkBB, SinkBB->begin(), dl,
12351
TII->get(ARM::PHI), ABSDstReg)
12352
.addReg(NewRsbDstReg).addMBB(RSBBB)
12353
.addReg(ABSSrcReg).addMBB(BB);
12354
12355
// remove ABS instruction
12356
MI.eraseFromParent();
12357
12358
// return last added BB
12359
return SinkBB;
12360
}
12361
case ARM::COPY_STRUCT_BYVAL_I32:
12362
++NumLoopByVals;
12363
return EmitStructByval(MI, BB);
12364
case ARM::WIN__CHKSTK:
12365
return EmitLowered__chkstk(MI, BB);
12366
case ARM::WIN__DBZCHK:
12367
return EmitLowered__dbzchk(MI, BB);
12368
}
12369
}
12370
12371
/// Attaches vregs to MEMCPY that it will use as scratch registers
12372
/// when it is expanded into LDM/STM. This is done as a post-isel lowering
12373
/// instead of as a custom inserter because we need the use list from the SDNode.
12374
static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
12375
MachineInstr &MI, const SDNode *Node) {
12376
bool isThumb1 = Subtarget->isThumb1Only();
12377
12378
DebugLoc DL = MI.getDebugLoc();
12379
MachineFunction *MF = MI.getParent()->getParent();
12380
MachineRegisterInfo &MRI = MF->getRegInfo();
12381
MachineInstrBuilder MIB(*MF, MI);
12382
12383
// If the new dst/src is unused mark it as dead.
12384
if (!Node->hasAnyUseOfValue(0)) {
12385
MI.getOperand(0).setIsDead(true);
12386
}
12387
if (!Node->hasAnyUseOfValue(1)) {
12388
MI.getOperand(1).setIsDead(true);
12389
}
12390
12391
// The MEMCPY both defines and kills the scratch registers.
12392
for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
12393
Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
12394
: &ARM::GPRRegClass);
12395
MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
12396
}
12397
}
12398
12399
void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
12400
SDNode *Node) const {
12401
if (MI.getOpcode() == ARM::MEMCPY) {
12402
attachMEMCPYScratchRegs(Subtarget, MI, Node);
12403
return;
12404
}
12405
12406
const MCInstrDesc *MCID = &MI.getDesc();
12407
// Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
12408
// RSC. Coming out of isel, they have an implicit CPSR def, but the optional
12409
// operand is still set to noreg. If needed, set the optional operand's
12410
// register to CPSR, and remove the redundant implicit def.
12411
//
12412
// e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
12413
12414
// Rename pseudo opcodes.
12415
unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
12416
unsigned ccOutIdx;
12417
if (NewOpc) {
12418
const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
12419
MCID = &TII->get(NewOpc);
12420
12421
assert(MCID->getNumOperands() ==
12422
MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
12423
&& "converted opcode should be the same except for cc_out"
12424
" (and, on Thumb1, pred)");
12425
12426
MI.setDesc(*MCID);
12427
12428
// Add the optional cc_out operand
12429
MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
12430
12431
// On Thumb1, move all input operands to the end, then add the predicate
12432
if (Subtarget->isThumb1Only()) {
12433
for (unsigned c = MCID->getNumOperands() - 4; c--;) {
12434
MI.addOperand(MI.getOperand(1));
12435
MI.removeOperand(1);
12436
}
12437
12438
// Restore the ties
12439
for (unsigned i = MI.getNumOperands(); i--;) {
12440
const MachineOperand& op = MI.getOperand(i);
12441
if (op.isReg() && op.isUse()) {
12442
int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
12443
if (DefIdx != -1)
12444
MI.tieOperands(DefIdx, i);
12445
}
12446
}
12447
12448
MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
12449
MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
12450
ccOutIdx = 1;
12451
} else
12452
ccOutIdx = MCID->getNumOperands() - 1;
12453
} else
12454
ccOutIdx = MCID->getNumOperands() - 1;
12455
12456
// Any ARM instruction that sets the 's' bit should specify an optional
12457
// "cc_out" operand in the last operand position.
12458
if (!MI.hasOptionalDef() || !MCID->operands()[ccOutIdx].isOptionalDef()) {
12459
assert(!NewOpc && "Optional cc_out operand required");
12460
return;
12461
}
12462
// Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
12463
// since we already have an optional CPSR def.
12464
bool definesCPSR = false;
12465
bool deadCPSR = false;
12466
for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
12467
++i) {
12468
const MachineOperand &MO = MI.getOperand(i);
12469
if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
12470
definesCPSR = true;
12471
if (MO.isDead())
12472
deadCPSR = true;
12473
MI.removeOperand(i);
12474
break;
12475
}
12476
}
12477
if (!definesCPSR) {
12478
assert(!NewOpc && "Optional cc_out operand required");
12479
return;
12480
}
12481
assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
12482
if (deadCPSR) {
12483
assert(!MI.getOperand(ccOutIdx).getReg() &&
12484
"expect uninitialized optional cc_out operand");
12485
// Thumb1 instructions must have the S bit even if the CPSR is dead.
12486
if (!Subtarget->isThumb1Only())
12487
return;
12488
}
12489
12490
// If this instruction was defined with an optional CPSR def and its dag node
12491
// had a live implicit CPSR def, then activate the optional CPSR def.
12492
MachineOperand &MO = MI.getOperand(ccOutIdx);
12493
MO.setReg(ARM::CPSR);
12494
MO.setIsDef(true);
12495
}
12496
12497
//===----------------------------------------------------------------------===//
12498
// ARM Optimization Hooks
12499
//===----------------------------------------------------------------------===//
12500
12501
// Helper function that checks if N is a null or all ones constant.
12502
static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
12503
return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
12504
}
12505
12506
// Return true if N is conditionally 0 or all ones.
12507
// Detects these expressions where cc is an i1 value:
12508
//
12509
// (select cc 0, y) [AllOnes=0]
12510
// (select cc y, 0) [AllOnes=0]
12511
// (zext cc) [AllOnes=0]
12512
// (sext cc) [AllOnes=0/1]
12513
// (select cc -1, y) [AllOnes=1]
12514
// (select cc y, -1) [AllOnes=1]
12515
//
12516
// Invert is set when N is the null/all ones constant when CC is false.
12517
// OtherOp is set to the alternative value of N.
12518
static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
12519
SDValue &CC, bool &Invert,
12520
SDValue &OtherOp,
12521
SelectionDAG &DAG) {
12522
switch (N->getOpcode()) {
12523
default: return false;
12524
case ISD::SELECT: {
12525
CC = N->getOperand(0);
12526
SDValue N1 = N->getOperand(1);
12527
SDValue N2 = N->getOperand(2);
12528
if (isZeroOrAllOnes(N1, AllOnes)) {
12529
Invert = false;
12530
OtherOp = N2;
12531
return true;
12532
}
12533
if (isZeroOrAllOnes(N2, AllOnes)) {
12534
Invert = true;
12535
OtherOp = N1;
12536
return true;
12537
}
12538
return false;
12539
}
12540
case ISD::ZERO_EXTEND:
12541
// (zext cc) can never be the all ones value.
12542
if (AllOnes)
12543
return false;
12544
[[fallthrough]];
12545
case ISD::SIGN_EXTEND: {
12546
SDLoc dl(N);
12547
EVT VT = N->getValueType(0);
12548
CC = N->getOperand(0);
12549
if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
12550
return false;
12551
Invert = !AllOnes;
12552
if (AllOnes)
12553
// When looking for an AllOnes constant, N is an sext, and the 'other'
12554
// value is 0.
12555
OtherOp = DAG.getConstant(0, dl, VT);
12556
else if (N->getOpcode() == ISD::ZERO_EXTEND)
12557
// When looking for a 0 constant, N can be zext or sext.
12558
OtherOp = DAG.getConstant(1, dl, VT);
12559
else
12560
OtherOp = DAG.getAllOnesConstant(dl, VT);
12561
return true;
12562
}
12563
}
12564
}
12565
12566
// Combine a constant select operand into its use:
12567
//
12568
// (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
12569
// (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
12570
// (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
12571
// (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12572
// (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12573
//
12574
// The transform is rejected if the select doesn't have a constant operand that
12575
// is null, or all ones when AllOnes is set.
12576
//
12577
// Also recognize sext/zext from i1:
12578
//
12579
// (add (zext cc), x) -> (select cc (add x, 1), x)
12580
// (add (sext cc), x) -> (select cc (add x, -1), x)
12581
//
12582
// These transformations eventually create predicated instructions.
12583
//
12584
// @param N The node to transform.
12585
// @param Slct The N operand that is a select.
12586
// @param OtherOp The other N operand (x above).
12587
// @param DCI Context.
12588
// @param AllOnes Require the select constant to be all ones instead of null.
12589
// @returns The new node, or SDValue() on failure.
12590
static
12591
SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
12592
TargetLowering::DAGCombinerInfo &DCI,
12593
bool AllOnes = false) {
12594
SelectionDAG &DAG = DCI.DAG;
12595
EVT VT = N->getValueType(0);
12596
SDValue NonConstantVal;
12597
SDValue CCOp;
12598
bool SwapSelectOps;
12599
if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
12600
NonConstantVal, DAG))
12601
return SDValue();
12602
12603
// Slct is now know to be the desired identity constant when CC is true.
12604
SDValue TrueVal = OtherOp;
12605
SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
12606
OtherOp, NonConstantVal);
12607
// Unless SwapSelectOps says CC should be false.
12608
if (SwapSelectOps)
12609
std::swap(TrueVal, FalseVal);
12610
12611
return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
12612
CCOp, TrueVal, FalseVal);
12613
}
12614
12615
// Attempt combineSelectAndUse on each operand of a commutative operator N.
12616
static
12617
SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
12618
TargetLowering::DAGCombinerInfo &DCI) {
12619
SDValue N0 = N->getOperand(0);
12620
SDValue N1 = N->getOperand(1);
12621
if (N0.getNode()->hasOneUse())
12622
if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
12623
return Result;
12624
if (N1.getNode()->hasOneUse())
12625
if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
12626
return Result;
12627
return SDValue();
12628
}
12629
12630
static bool IsVUZPShuffleNode(SDNode *N) {
12631
// VUZP shuffle node.
12632
if (N->getOpcode() == ARMISD::VUZP)
12633
return true;
12634
12635
// "VUZP" on i32 is an alias for VTRN.
12636
if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
12637
return true;
12638
12639
return false;
12640
}
12641
12642
static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
12643
TargetLowering::DAGCombinerInfo &DCI,
12644
const ARMSubtarget *Subtarget) {
12645
// Look for ADD(VUZP.0, VUZP.1).
12646
if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
12647
N0 == N1)
12648
return SDValue();
12649
12650
// Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
12651
if (!N->getValueType(0).is64BitVector())
12652
return SDValue();
12653
12654
// Generate vpadd.
12655
SelectionDAG &DAG = DCI.DAG;
12656
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12657
SDLoc dl(N);
12658
SDNode *Unzip = N0.getNode();
12659
EVT VT = N->getValueType(0);
12660
12661
SmallVector<SDValue, 8> Ops;
12662
Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
12663
TLI.getPointerTy(DAG.getDataLayout())));
12664
Ops.push_back(Unzip->getOperand(0));
12665
Ops.push_back(Unzip->getOperand(1));
12666
12667
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
12668
}
12669
12670
static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
12671
TargetLowering::DAGCombinerInfo &DCI,
12672
const ARMSubtarget *Subtarget) {
12673
// Check for two extended operands.
12674
if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
12675
N1.getOpcode() == ISD::SIGN_EXTEND) &&
12676
!(N0.getOpcode() == ISD::ZERO_EXTEND &&
12677
N1.getOpcode() == ISD::ZERO_EXTEND))
12678
return SDValue();
12679
12680
SDValue N00 = N0.getOperand(0);
12681
SDValue N10 = N1.getOperand(0);
12682
12683
// Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
12684
if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
12685
N00 == N10)
12686
return SDValue();
12687
12688
// We only recognize Q register paddl here; this can't be reached until
12689
// after type legalization.
12690
if (!N00.getValueType().is64BitVector() ||
12691
!N0.getValueType().is128BitVector())
12692
return SDValue();
12693
12694
// Generate vpaddl.
12695
SelectionDAG &DAG = DCI.DAG;
12696
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12697
SDLoc dl(N);
12698
EVT VT = N->getValueType(0);
12699
12700
SmallVector<SDValue, 8> Ops;
12701
// Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
12702
unsigned Opcode;
12703
if (N0.getOpcode() == ISD::SIGN_EXTEND)
12704
Opcode = Intrinsic::arm_neon_vpaddls;
12705
else
12706
Opcode = Intrinsic::arm_neon_vpaddlu;
12707
Ops.push_back(DAG.getConstant(Opcode, dl,
12708
TLI.getPointerTy(DAG.getDataLayout())));
12709
EVT ElemTy = N00.getValueType().getVectorElementType();
12710
unsigned NumElts = VT.getVectorNumElements();
12711
EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
12712
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
12713
N00.getOperand(0), N00.getOperand(1));
12714
Ops.push_back(Concat);
12715
12716
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
12717
}
12718
12719
// FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
12720
// an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
12721
// much easier to match.
12722
static SDValue
12723
AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
12724
TargetLowering::DAGCombinerInfo &DCI,
12725
const ARMSubtarget *Subtarget) {
12726
// Only perform optimization if after legalize, and if NEON is available. We
12727
// also expected both operands to be BUILD_VECTORs.
12728
if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
12729
|| N0.getOpcode() != ISD::BUILD_VECTOR
12730
|| N1.getOpcode() != ISD::BUILD_VECTOR)
12731
return SDValue();
12732
12733
// Check output type since VPADDL operand elements can only be 8, 16, or 32.
12734
EVT VT = N->getValueType(0);
12735
if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
12736
return SDValue();
12737
12738
// Check that the vector operands are of the right form.
12739
// N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
12740
// operands, where N is the size of the formed vector.
12741
// Each EXTRACT_VECTOR should have the same input vector and odd or even
12742
// index such that we have a pair wise add pattern.
12743
12744
// Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
12745
if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12746
return SDValue();
12747
SDValue Vec = N0->getOperand(0)->getOperand(0);
12748
SDNode *V = Vec.getNode();
12749
unsigned nextIndex = 0;
12750
12751
// For each operands to the ADD which are BUILD_VECTORs,
12752
// check to see if each of their operands are an EXTRACT_VECTOR with
12753
// the same vector and appropriate index.
12754
for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
12755
if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
12756
&& N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12757
12758
SDValue ExtVec0 = N0->getOperand(i);
12759
SDValue ExtVec1 = N1->getOperand(i);
12760
12761
// First operand is the vector, verify its the same.
12762
if (V != ExtVec0->getOperand(0).getNode() ||
12763
V != ExtVec1->getOperand(0).getNode())
12764
return SDValue();
12765
12766
// Second is the constant, verify its correct.
12767
ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
12768
ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
12769
12770
// For the constant, we want to see all the even or all the odd.
12771
if (!C0 || !C1 || C0->getZExtValue() != nextIndex
12772
|| C1->getZExtValue() != nextIndex+1)
12773
return SDValue();
12774
12775
// Increment index.
12776
nextIndex+=2;
12777
} else
12778
return SDValue();
12779
}
12780
12781
// Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
12782
// we're using the entire input vector, otherwise there's a size/legality
12783
// mismatch somewhere.
12784
if (nextIndex != Vec.getValueType().getVectorNumElements() ||
12785
Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
12786
return SDValue();
12787
12788
// Create VPADDL node.
12789
SelectionDAG &DAG = DCI.DAG;
12790
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12791
12792
SDLoc dl(N);
12793
12794
// Build operand list.
12795
SmallVector<SDValue, 8> Ops;
12796
Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
12797
TLI.getPointerTy(DAG.getDataLayout())));
12798
12799
// Input is the vector.
12800
Ops.push_back(Vec);
12801
12802
// Get widened type and narrowed type.
12803
MVT widenType;
12804
unsigned numElem = VT.getVectorNumElements();
12805
12806
EVT inputLaneType = Vec.getValueType().getVectorElementType();
12807
switch (inputLaneType.getSimpleVT().SimpleTy) {
12808
case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
12809
case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
12810
case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
12811
default:
12812
llvm_unreachable("Invalid vector element type for padd optimization.");
12813
}
12814
12815
SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
12816
unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
12817
return DAG.getNode(ExtOp, dl, VT, tmp);
12818
}
12819
12820
static SDValue findMUL_LOHI(SDValue V) {
12821
if (V->getOpcode() == ISD::UMUL_LOHI ||
12822
V->getOpcode() == ISD::SMUL_LOHI)
12823
return V;
12824
return SDValue();
12825
}
12826
12827
static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
12828
TargetLowering::DAGCombinerInfo &DCI,
12829
const ARMSubtarget *Subtarget) {
12830
if (!Subtarget->hasBaseDSP())
12831
return SDValue();
12832
12833
// SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
12834
// accumulates the product into a 64-bit value. The 16-bit values will
12835
// be sign extended somehow or SRA'd into 32-bit values
12836
// (addc (adde (mul 16bit, 16bit), lo), hi)
12837
SDValue Mul = AddcNode->getOperand(0);
12838
SDValue Lo = AddcNode->getOperand(1);
12839
if (Mul.getOpcode() != ISD::MUL) {
12840
Lo = AddcNode->getOperand(0);
12841
Mul = AddcNode->getOperand(1);
12842
if (Mul.getOpcode() != ISD::MUL)
12843
return SDValue();
12844
}
12845
12846
SDValue SRA = AddeNode->getOperand(0);
12847
SDValue Hi = AddeNode->getOperand(1);
12848
if (SRA.getOpcode() != ISD::SRA) {
12849
SRA = AddeNode->getOperand(1);
12850
Hi = AddeNode->getOperand(0);
12851
if (SRA.getOpcode() != ISD::SRA)
12852
return SDValue();
12853
}
12854
if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
12855
if (Const->getZExtValue() != 31)
12856
return SDValue();
12857
} else
12858
return SDValue();
12859
12860
if (SRA.getOperand(0) != Mul)
12861
return SDValue();
12862
12863
SelectionDAG &DAG = DCI.DAG;
12864
SDLoc dl(AddcNode);
12865
unsigned Opcode = 0;
12866
SDValue Op0;
12867
SDValue Op1;
12868
12869
if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
12870
Opcode = ARMISD::SMLALBB;
12871
Op0 = Mul.getOperand(0);
12872
Op1 = Mul.getOperand(1);
12873
} else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
12874
Opcode = ARMISD::SMLALBT;
12875
Op0 = Mul.getOperand(0);
12876
Op1 = Mul.getOperand(1).getOperand(0);
12877
} else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
12878
Opcode = ARMISD::SMLALTB;
12879
Op0 = Mul.getOperand(0).getOperand(0);
12880
Op1 = Mul.getOperand(1);
12881
} else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
12882
Opcode = ARMISD::SMLALTT;
12883
Op0 = Mul->getOperand(0).getOperand(0);
12884
Op1 = Mul->getOperand(1).getOperand(0);
12885
}
12886
12887
if (!Op0 || !Op1)
12888
return SDValue();
12889
12890
SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
12891
Op0, Op1, Lo, Hi);
12892
// Replace the ADDs' nodes uses by the MLA node's values.
12893
SDValue HiMLALResult(SMLAL.getNode(), 1);
12894
SDValue LoMLALResult(SMLAL.getNode(), 0);
12895
12896
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
12897
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
12898
12899
// Return original node to notify the driver to stop replacing.
12900
SDValue resNode(AddcNode, 0);
12901
return resNode;
12902
}
12903
12904
static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
12905
TargetLowering::DAGCombinerInfo &DCI,
12906
const ARMSubtarget *Subtarget) {
12907
// Look for multiply add opportunities.
12908
// The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
12909
// each add nodes consumes a value from ISD::UMUL_LOHI and there is
12910
// a glue link from the first add to the second add.
12911
// If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
12912
// a S/UMLAL instruction.
12913
// UMUL_LOHI
12914
// / :lo \ :hi
12915
// V \ [no multiline comment]
12916
// loAdd -> ADDC |
12917
// \ :carry /
12918
// V V
12919
// ADDE <- hiAdd
12920
//
12921
// In the special case where only the higher part of a signed result is used
12922
// and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
12923
// a constant with the exact value of 0x80000000, we recognize we are dealing
12924
// with a "rounded multiply and add" (or subtract) and transform it into
12925
// either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
12926
12927
assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
12928
AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
12929
"Expect an ADDE or SUBE");
12930
12931
assert(AddeSubeNode->getNumOperands() == 3 &&
12932
AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
12933
"ADDE node has the wrong inputs");
12934
12935
// Check that we are chained to the right ADDC or SUBC node.
12936
SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
12937
if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
12938
AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
12939
(AddeSubeNode->getOpcode() == ARMISD::SUBE &&
12940
AddcSubcNode->getOpcode() != ARMISD::SUBC))
12941
return SDValue();
12942
12943
SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
12944
SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
12945
12946
// Check if the two operands are from the same mul_lohi node.
12947
if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
12948
return SDValue();
12949
12950
assert(AddcSubcNode->getNumValues() == 2 &&
12951
AddcSubcNode->getValueType(0) == MVT::i32 &&
12952
"Expect ADDC with two result values. First: i32");
12953
12954
// Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
12955
// maybe a SMLAL which multiplies two 16-bit values.
12956
if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
12957
AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
12958
AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
12959
AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
12960
AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
12961
return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
12962
12963
// Check for the triangle shape.
12964
SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
12965
SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
12966
12967
// Make sure that the ADDE/SUBE operands are not coming from the same node.
12968
if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
12969
return SDValue();
12970
12971
// Find the MUL_LOHI node walking up ADDE/SUBE's operands.
12972
bool IsLeftOperandMUL = false;
12973
SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
12974
if (MULOp == SDValue())
12975
MULOp = findMUL_LOHI(AddeSubeOp1);
12976
else
12977
IsLeftOperandMUL = true;
12978
if (MULOp == SDValue())
12979
return SDValue();
12980
12981
// Figure out the right opcode.
12982
unsigned Opc = MULOp->getOpcode();
12983
unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
12984
12985
// Figure out the high and low input values to the MLAL node.
12986
SDValue *HiAddSub = nullptr;
12987
SDValue *LoMul = nullptr;
12988
SDValue *LowAddSub = nullptr;
12989
12990
// Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
12991
if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
12992
return SDValue();
12993
12994
if (IsLeftOperandMUL)
12995
HiAddSub = &AddeSubeOp1;
12996
else
12997
HiAddSub = &AddeSubeOp0;
12998
12999
// Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
13000
// whose low result is fed to the ADDC/SUBC we are checking.
13001
13002
if (AddcSubcOp0 == MULOp.getValue(0)) {
13003
LoMul = &AddcSubcOp0;
13004
LowAddSub = &AddcSubcOp1;
13005
}
13006
if (AddcSubcOp1 == MULOp.getValue(0)) {
13007
LoMul = &AddcSubcOp1;
13008
LowAddSub = &AddcSubcOp0;
13009
}
13010
13011
if (!LoMul)
13012
return SDValue();
13013
13014
// If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
13015
// the replacement below will create a cycle.
13016
if (AddcSubcNode == HiAddSub->getNode() ||
13017
AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
13018
return SDValue();
13019
13020
// Create the merged node.
13021
SelectionDAG &DAG = DCI.DAG;
13022
13023
// Start building operand list.
13024
SmallVector<SDValue, 8> Ops;
13025
Ops.push_back(LoMul->getOperand(0));
13026
Ops.push_back(LoMul->getOperand(1));
13027
13028
// Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
13029
// the case, we must be doing signed multiplication and only use the higher
13030
// part of the result of the MLAL, furthermore the LowAddSub must be a constant
13031
// addition or subtraction with the value of 0x800000.
13032
if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
13033
FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
13034
LowAddSub->getNode()->getOpcode() == ISD::Constant &&
13035
static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
13036
0x80000000) {
13037
Ops.push_back(*HiAddSub);
13038
if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
13039
FinalOpc = ARMISD::SMMLSR;
13040
} else {
13041
FinalOpc = ARMISD::SMMLAR;
13042
}
13043
SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
13044
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
13045
13046
return SDValue(AddeSubeNode, 0);
13047
} else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
13048
// SMMLS is generated during instruction selection and the rest of this
13049
// function can not handle the case where AddcSubcNode is a SUBC.
13050
return SDValue();
13051
13052
// Finish building the operand list for {U/S}MLAL
13053
Ops.push_back(*LowAddSub);
13054
Ops.push_back(*HiAddSub);
13055
13056
SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
13057
DAG.getVTList(MVT::i32, MVT::i32), Ops);
13058
13059
// Replace the ADDs' nodes uses by the MLA node's values.
13060
SDValue HiMLALResult(MLALNode.getNode(), 1);
13061
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
13062
13063
SDValue LoMLALResult(MLALNode.getNode(), 0);
13064
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
13065
13066
// Return original node to notify the driver to stop replacing.
13067
return SDValue(AddeSubeNode, 0);
13068
}
13069
13070
static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
13071
TargetLowering::DAGCombinerInfo &DCI,
13072
const ARMSubtarget *Subtarget) {
13073
// UMAAL is similar to UMLAL except that it adds two unsigned values.
13074
// While trying to combine for the other MLAL nodes, first search for the
13075
// chance to use UMAAL. Check if Addc uses a node which has already
13076
// been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
13077
// as the addend, and it's handled in PerformUMLALCombine.
13078
13079
if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
13080
return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
13081
13082
// Check that we have a glued ADDC node.
13083
SDNode* AddcNode = AddeNode->getOperand(2).getNode();
13084
if (AddcNode->getOpcode() != ARMISD::ADDC)
13085
return SDValue();
13086
13087
// Find the converted UMAAL or quit if it doesn't exist.
13088
SDNode *UmlalNode = nullptr;
13089
SDValue AddHi;
13090
if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
13091
UmlalNode = AddcNode->getOperand(0).getNode();
13092
AddHi = AddcNode->getOperand(1);
13093
} else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
13094
UmlalNode = AddcNode->getOperand(1).getNode();
13095
AddHi = AddcNode->getOperand(0);
13096
} else {
13097
return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
13098
}
13099
13100
// The ADDC should be glued to an ADDE node, which uses the same UMLAL as
13101
// the ADDC as well as Zero.
13102
if (!isNullConstant(UmlalNode->getOperand(3)))
13103
return SDValue();
13104
13105
if ((isNullConstant(AddeNode->getOperand(0)) &&
13106
AddeNode->getOperand(1).getNode() == UmlalNode) ||
13107
(AddeNode->getOperand(0).getNode() == UmlalNode &&
13108
isNullConstant(AddeNode->getOperand(1)))) {
13109
SelectionDAG &DAG = DCI.DAG;
13110
SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
13111
UmlalNode->getOperand(2), AddHi };
13112
SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
13113
DAG.getVTList(MVT::i32, MVT::i32), Ops);
13114
13115
// Replace the ADDs' nodes uses by the UMAAL node's values.
13116
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
13117
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
13118
13119
// Return original node to notify the driver to stop replacing.
13120
return SDValue(AddeNode, 0);
13121
}
13122
return SDValue();
13123
}
13124
13125
static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
13126
const ARMSubtarget *Subtarget) {
13127
if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
13128
return SDValue();
13129
13130
// Check that we have a pair of ADDC and ADDE as operands.
13131
// Both addends of the ADDE must be zero.
13132
SDNode* AddcNode = N->getOperand(2).getNode();
13133
SDNode* AddeNode = N->getOperand(3).getNode();
13134
if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
13135
(AddeNode->getOpcode() == ARMISD::ADDE) &&
13136
isNullConstant(AddeNode->getOperand(0)) &&
13137
isNullConstant(AddeNode->getOperand(1)) &&
13138
(AddeNode->getOperand(2).getNode() == AddcNode))
13139
return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
13140
DAG.getVTList(MVT::i32, MVT::i32),
13141
{N->getOperand(0), N->getOperand(1),
13142
AddcNode->getOperand(0), AddcNode->getOperand(1)});
13143
else
13144
return SDValue();
13145
}
13146
13147
static SDValue PerformAddcSubcCombine(SDNode *N,
13148
TargetLowering::DAGCombinerInfo &DCI,
13149
const ARMSubtarget *Subtarget) {
13150
SelectionDAG &DAG(DCI.DAG);
13151
13152
if (N->getOpcode() == ARMISD::SUBC && N->hasAnyUseOfValue(1)) {
13153
// (SUBC (ADDE 0, 0, C), 1) -> C
13154
SDValue LHS = N->getOperand(0);
13155
SDValue RHS = N->getOperand(1);
13156
if (LHS->getOpcode() == ARMISD::ADDE &&
13157
isNullConstant(LHS->getOperand(0)) &&
13158
isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
13159
return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
13160
}
13161
}
13162
13163
if (Subtarget->isThumb1Only()) {
13164
SDValue RHS = N->getOperand(1);
13165
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
13166
int32_t imm = C->getSExtValue();
13167
if (imm < 0 && imm > std::numeric_limits<int>::min()) {
13168
SDLoc DL(N);
13169
RHS = DAG.getConstant(-imm, DL, MVT::i32);
13170
unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
13171
: ARMISD::ADDC;
13172
return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
13173
}
13174
}
13175
}
13176
13177
return SDValue();
13178
}
13179
13180
static SDValue PerformAddeSubeCombine(SDNode *N,
13181
TargetLowering::DAGCombinerInfo &DCI,
13182
const ARMSubtarget *Subtarget) {
13183
if (Subtarget->isThumb1Only()) {
13184
SelectionDAG &DAG = DCI.DAG;
13185
SDValue RHS = N->getOperand(1);
13186
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
13187
int64_t imm = C->getSExtValue();
13188
if (imm < 0) {
13189
SDLoc DL(N);
13190
13191
// The with-carry-in form matches bitwise not instead of the negation.
13192
// Effectively, the inverse interpretation of the carry flag already
13193
// accounts for part of the negation.
13194
RHS = DAG.getConstant(~imm, DL, MVT::i32);
13195
13196
unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
13197
: ARMISD::ADDE;
13198
return DAG.getNode(Opcode, DL, N->getVTList(),
13199
N->getOperand(0), RHS, N->getOperand(2));
13200
}
13201
}
13202
} else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
13203
return AddCombineTo64bitMLAL(N, DCI, Subtarget);
13204
}
13205
return SDValue();
13206
}
13207
13208
static SDValue PerformSELECTCombine(SDNode *N,
13209
TargetLowering::DAGCombinerInfo &DCI,
13210
const ARMSubtarget *Subtarget) {
13211
if (!Subtarget->hasMVEIntegerOps())
13212
return SDValue();
13213
13214
SDLoc dl(N);
13215
SDValue SetCC;
13216
SDValue LHS;
13217
SDValue RHS;
13218
ISD::CondCode CC;
13219
SDValue TrueVal;
13220
SDValue FalseVal;
13221
13222
if (N->getOpcode() == ISD::SELECT &&
13223
N->getOperand(0)->getOpcode() == ISD::SETCC) {
13224
SetCC = N->getOperand(0);
13225
LHS = SetCC->getOperand(0);
13226
RHS = SetCC->getOperand(1);
13227
CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
13228
TrueVal = N->getOperand(1);
13229
FalseVal = N->getOperand(2);
13230
} else if (N->getOpcode() == ISD::SELECT_CC) {
13231
LHS = N->getOperand(0);
13232
RHS = N->getOperand(1);
13233
CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
13234
TrueVal = N->getOperand(2);
13235
FalseVal = N->getOperand(3);
13236
} else {
13237
return SDValue();
13238
}
13239
13240
unsigned int Opcode = 0;
13241
if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMIN ||
13242
FalseVal->getOpcode() == ISD::VECREDUCE_UMIN) &&
13243
(CC == ISD::SETULT || CC == ISD::SETUGT)) {
13244
Opcode = ARMISD::VMINVu;
13245
if (CC == ISD::SETUGT)
13246
std::swap(TrueVal, FalseVal);
13247
} else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMIN ||
13248
FalseVal->getOpcode() == ISD::VECREDUCE_SMIN) &&
13249
(CC == ISD::SETLT || CC == ISD::SETGT)) {
13250
Opcode = ARMISD::VMINVs;
13251
if (CC == ISD::SETGT)
13252
std::swap(TrueVal, FalseVal);
13253
} else if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMAX ||
13254
FalseVal->getOpcode() == ISD::VECREDUCE_UMAX) &&
13255
(CC == ISD::SETUGT || CC == ISD::SETULT)) {
13256
Opcode = ARMISD::VMAXVu;
13257
if (CC == ISD::SETULT)
13258
std::swap(TrueVal, FalseVal);
13259
} else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMAX ||
13260
FalseVal->getOpcode() == ISD::VECREDUCE_SMAX) &&
13261
(CC == ISD::SETGT || CC == ISD::SETLT)) {
13262
Opcode = ARMISD::VMAXVs;
13263
if (CC == ISD::SETLT)
13264
std::swap(TrueVal, FalseVal);
13265
} else
13266
return SDValue();
13267
13268
// Normalise to the right hand side being the vector reduction
13269
switch (TrueVal->getOpcode()) {
13270
case ISD::VECREDUCE_UMIN:
13271
case ISD::VECREDUCE_SMIN:
13272
case ISD::VECREDUCE_UMAX:
13273
case ISD::VECREDUCE_SMAX:
13274
std::swap(LHS, RHS);
13275
std::swap(TrueVal, FalseVal);
13276
break;
13277
}
13278
13279
EVT VectorType = FalseVal->getOperand(0).getValueType();
13280
13281
if (VectorType != MVT::v16i8 && VectorType != MVT::v8i16 &&
13282
VectorType != MVT::v4i32)
13283
return SDValue();
13284
13285
EVT VectorScalarType = VectorType.getVectorElementType();
13286
13287
// The values being selected must also be the ones being compared
13288
if (TrueVal != LHS || FalseVal != RHS)
13289
return SDValue();
13290
13291
EVT LeftType = LHS->getValueType(0);
13292
EVT RightType = RHS->getValueType(0);
13293
13294
// The types must match the reduced type too
13295
if (LeftType != VectorScalarType || RightType != VectorScalarType)
13296
return SDValue();
13297
13298
// Legalise the scalar to an i32
13299
if (VectorScalarType != MVT::i32)
13300
LHS = DCI.DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
13301
13302
// Generate the reduction as an i32 for legalisation purposes
13303
auto Reduction =
13304
DCI.DAG.getNode(Opcode, dl, MVT::i32, LHS, RHS->getOperand(0));
13305
13306
// The result isn't actually an i32 so truncate it back to its original type
13307
if (VectorScalarType != MVT::i32)
13308
Reduction = DCI.DAG.getNode(ISD::TRUNCATE, dl, VectorScalarType, Reduction);
13309
13310
return Reduction;
13311
}
13312
13313
// A special combine for the vqdmulh family of instructions. This is one of the
13314
// potential set of patterns that could patch this instruction. The base pattern
13315
// you would expect to be min(max(ashr(mul(mul(sext(x), 2), sext(y)), 16))).
13316
// This matches the different min(max(ashr(mul(mul(sext(x), sext(y)), 2), 16))),
13317
// which llvm will have optimized to min(ashr(mul(sext(x), sext(y)), 15))) as
13318
// the max is unnecessary.
13319
static SDValue PerformVQDMULHCombine(SDNode *N, SelectionDAG &DAG) {
13320
EVT VT = N->getValueType(0);
13321
SDValue Shft;
13322
ConstantSDNode *Clamp;
13323
13324
if (!VT.isVector() || VT.getScalarSizeInBits() > 64)
13325
return SDValue();
13326
13327
if (N->getOpcode() == ISD::SMIN) {
13328
Shft = N->getOperand(0);
13329
Clamp = isConstOrConstSplat(N->getOperand(1));
13330
} else if (N->getOpcode() == ISD::VSELECT) {
13331
// Detect a SMIN, which for an i64 node will be a vselect/setcc, not a smin.
13332
SDValue Cmp = N->getOperand(0);
13333
if (Cmp.getOpcode() != ISD::SETCC ||
13334
cast<CondCodeSDNode>(Cmp.getOperand(2))->get() != ISD::SETLT ||
13335
Cmp.getOperand(0) != N->getOperand(1) ||
13336
Cmp.getOperand(1) != N->getOperand(2))
13337
return SDValue();
13338
Shft = N->getOperand(1);
13339
Clamp = isConstOrConstSplat(N->getOperand(2));
13340
} else
13341
return SDValue();
13342
13343
if (!Clamp)
13344
return SDValue();
13345
13346
MVT ScalarType;
13347
int ShftAmt = 0;
13348
switch (Clamp->getSExtValue()) {
13349
case (1 << 7) - 1:
13350
ScalarType = MVT::i8;
13351
ShftAmt = 7;
13352
break;
13353
case (1 << 15) - 1:
13354
ScalarType = MVT::i16;
13355
ShftAmt = 15;
13356
break;
13357
case (1ULL << 31) - 1:
13358
ScalarType = MVT::i32;
13359
ShftAmt = 31;
13360
break;
13361
default:
13362
return SDValue();
13363
}
13364
13365
if (Shft.getOpcode() != ISD::SRA)
13366
return SDValue();
13367
ConstantSDNode *N1 = isConstOrConstSplat(Shft.getOperand(1));
13368
if (!N1 || N1->getSExtValue() != ShftAmt)
13369
return SDValue();
13370
13371
SDValue Mul = Shft.getOperand(0);
13372
if (Mul.getOpcode() != ISD::MUL)
13373
return SDValue();
13374
13375
SDValue Ext0 = Mul.getOperand(0);
13376
SDValue Ext1 = Mul.getOperand(1);
13377
if (Ext0.getOpcode() != ISD::SIGN_EXTEND ||
13378
Ext1.getOpcode() != ISD::SIGN_EXTEND)
13379
return SDValue();
13380
EVT VecVT = Ext0.getOperand(0).getValueType();
13381
if (!VecVT.isPow2VectorType() || VecVT.getVectorNumElements() == 1)
13382
return SDValue();
13383
if (Ext1.getOperand(0).getValueType() != VecVT ||
13384
VecVT.getScalarType() != ScalarType ||
13385
VT.getScalarSizeInBits() < ScalarType.getScalarSizeInBits() * 2)
13386
return SDValue();
13387
13388
SDLoc DL(Mul);
13389
unsigned LegalLanes = 128 / (ShftAmt + 1);
13390
EVT LegalVecVT = MVT::getVectorVT(ScalarType, LegalLanes);
13391
// For types smaller than legal vectors extend to be legal and only use needed
13392
// lanes.
13393
if (VecVT.getSizeInBits() < 128) {
13394
EVT ExtVecVT =
13395
MVT::getVectorVT(MVT::getIntegerVT(128 / VecVT.getVectorNumElements()),
13396
VecVT.getVectorNumElements());
13397
SDValue Inp0 =
13398
DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext0.getOperand(0));
13399
SDValue Inp1 =
13400
DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext1.getOperand(0));
13401
Inp0 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp0);
13402
Inp1 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp1);
13403
SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1);
13404
SDValue Trunc = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, ExtVecVT, VQDMULH);
13405
Trunc = DAG.getNode(ISD::TRUNCATE, DL, VecVT, Trunc);
13406
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Trunc);
13407
}
13408
13409
// For larger types, split into legal sized chunks.
13410
assert(VecVT.getSizeInBits() % 128 == 0 && "Expected a power2 type");
13411
unsigned NumParts = VecVT.getSizeInBits() / 128;
13412
SmallVector<SDValue> Parts;
13413
for (unsigned I = 0; I < NumParts; ++I) {
13414
SDValue Inp0 =
13415
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext0.getOperand(0),
13416
DAG.getVectorIdxConstant(I * LegalLanes, DL));
13417
SDValue Inp1 =
13418
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext1.getOperand(0),
13419
DAG.getVectorIdxConstant(I * LegalLanes, DL));
13420
SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1);
13421
Parts.push_back(VQDMULH);
13422
}
13423
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT,
13424
DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Parts));
13425
}
13426
13427
static SDValue PerformVSELECTCombine(SDNode *N,
13428
TargetLowering::DAGCombinerInfo &DCI,
13429
const ARMSubtarget *Subtarget) {
13430
if (!Subtarget->hasMVEIntegerOps())
13431
return SDValue();
13432
13433
if (SDValue V = PerformVQDMULHCombine(N, DCI.DAG))
13434
return V;
13435
13436
// Transforms vselect(not(cond), lhs, rhs) into vselect(cond, rhs, lhs).
13437
//
13438
// We need to re-implement this optimization here as the implementation in the
13439
// Target-Independent DAGCombiner does not handle the kind of constant we make
13440
// (it calls isConstOrConstSplat with AllowTruncation set to false - and for
13441
// good reason, allowing truncation there would break other targets).
13442
//
13443
// Currently, this is only done for MVE, as it's the only target that benefits
13444
// from this transformation (e.g. VPNOT+VPSEL becomes a single VPSEL).
13445
if (N->getOperand(0).getOpcode() != ISD::XOR)
13446
return SDValue();
13447
SDValue XOR = N->getOperand(0);
13448
13449
// Check if the XOR's RHS is either a 1, or a BUILD_VECTOR of 1s.
13450
// It is important to check with truncation allowed as the BUILD_VECTORs we
13451
// generate in those situations will truncate their operands.
13452
ConstantSDNode *Const =
13453
isConstOrConstSplat(XOR->getOperand(1), /*AllowUndefs*/ false,
13454
/*AllowTruncation*/ true);
13455
if (!Const || !Const->isOne())
13456
return SDValue();
13457
13458
// Rewrite into vselect(cond, rhs, lhs).
13459
SDValue Cond = XOR->getOperand(0);
13460
SDValue LHS = N->getOperand(1);
13461
SDValue RHS = N->getOperand(2);
13462
EVT Type = N->getValueType(0);
13463
return DCI.DAG.getNode(ISD::VSELECT, SDLoc(N), Type, Cond, RHS, LHS);
13464
}
13465
13466
// Convert vsetcc([0,1,2,..], splat(n), ult) -> vctp n
13467
static SDValue PerformVSetCCToVCTPCombine(SDNode *N,
13468
TargetLowering::DAGCombinerInfo &DCI,
13469
const ARMSubtarget *Subtarget) {
13470
SDValue Op0 = N->getOperand(0);
13471
SDValue Op1 = N->getOperand(1);
13472
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13473
EVT VT = N->getValueType(0);
13474
13475
if (!Subtarget->hasMVEIntegerOps() ||
13476
!DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
13477
return SDValue();
13478
13479
if (CC == ISD::SETUGE) {
13480
std::swap(Op0, Op1);
13481
CC = ISD::SETULT;
13482
}
13483
13484
if (CC != ISD::SETULT || VT.getScalarSizeInBits() != 1 ||
13485
Op0.getOpcode() != ISD::BUILD_VECTOR)
13486
return SDValue();
13487
13488
// Check first operand is BuildVector of 0,1,2,...
13489
for (unsigned I = 0; I < VT.getVectorNumElements(); I++) {
13490
if (!Op0.getOperand(I).isUndef() &&
13491
!(isa<ConstantSDNode>(Op0.getOperand(I)) &&
13492
Op0.getConstantOperandVal(I) == I))
13493
return SDValue();
13494
}
13495
13496
// The second is a Splat of Op1S
13497
SDValue Op1S = DCI.DAG.getSplatValue(Op1);
13498
if (!Op1S)
13499
return SDValue();
13500
13501
unsigned Opc;
13502
switch (VT.getVectorNumElements()) {
13503
case 2:
13504
Opc = Intrinsic::arm_mve_vctp64;
13505
break;
13506
case 4:
13507
Opc = Intrinsic::arm_mve_vctp32;
13508
break;
13509
case 8:
13510
Opc = Intrinsic::arm_mve_vctp16;
13511
break;
13512
case 16:
13513
Opc = Intrinsic::arm_mve_vctp8;
13514
break;
13515
default:
13516
return SDValue();
13517
}
13518
13519
SDLoc DL(N);
13520
return DCI.DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13521
DCI.DAG.getConstant(Opc, DL, MVT::i32),
13522
DCI.DAG.getZExtOrTrunc(Op1S, DL, MVT::i32));
13523
}
13524
13525
/// PerformADDECombine - Target-specific dag combine transform from
13526
/// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
13527
/// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
13528
static SDValue PerformADDECombine(SDNode *N,
13529
TargetLowering::DAGCombinerInfo &DCI,
13530
const ARMSubtarget *Subtarget) {
13531
// Only ARM and Thumb2 support UMLAL/SMLAL.
13532
if (Subtarget->isThumb1Only())
13533
return PerformAddeSubeCombine(N, DCI, Subtarget);
13534
13535
// Only perform the checks after legalize when the pattern is available.
13536
if (DCI.isBeforeLegalize()) return SDValue();
13537
13538
return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
13539
}
13540
13541
/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
13542
/// operands N0 and N1. This is a helper for PerformADDCombine that is
13543
/// called with the default operands, and if that fails, with commuted
13544
/// operands.
13545
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
13546
TargetLowering::DAGCombinerInfo &DCI,
13547
const ARMSubtarget *Subtarget){
13548
// Attempt to create vpadd for this add.
13549
if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
13550
return Result;
13551
13552
// Attempt to create vpaddl for this add.
13553
if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
13554
return Result;
13555
if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
13556
Subtarget))
13557
return Result;
13558
13559
// fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
13560
if (N0.getNode()->hasOneUse())
13561
if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
13562
return Result;
13563
return SDValue();
13564
}
13565
13566
static SDValue TryDistrubutionADDVecReduce(SDNode *N, SelectionDAG &DAG) {
13567
EVT VT = N->getValueType(0);
13568
SDValue N0 = N->getOperand(0);
13569
SDValue N1 = N->getOperand(1);
13570
SDLoc dl(N);
13571
13572
auto IsVecReduce = [](SDValue Op) {
13573
switch (Op.getOpcode()) {
13574
case ISD::VECREDUCE_ADD:
13575
case ARMISD::VADDVs:
13576
case ARMISD::VADDVu:
13577
case ARMISD::VMLAVs:
13578
case ARMISD::VMLAVu:
13579
return true;
13580
}
13581
return false;
13582
};
13583
13584
auto DistrubuteAddAddVecReduce = [&](SDValue N0, SDValue N1) {
13585
// Distribute add(X, add(vecreduce(Y), vecreduce(Z))) ->
13586
// add(add(X, vecreduce(Y)), vecreduce(Z))
13587
// to make better use of vaddva style instructions.
13588
if (VT == MVT::i32 && N1.getOpcode() == ISD::ADD && !IsVecReduce(N0) &&
13589
IsVecReduce(N1.getOperand(0)) && IsVecReduce(N1.getOperand(1)) &&
13590
!isa<ConstantSDNode>(N0) && N1->hasOneUse()) {
13591
SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0, N1.getOperand(0));
13592
return DAG.getNode(ISD::ADD, dl, VT, Add0, N1.getOperand(1));
13593
}
13594
// And turn add(add(A, reduce(B)), add(C, reduce(D))) ->
13595
// add(add(add(A, C), reduce(B)), reduce(D))
13596
if (VT == MVT::i32 && N0.getOpcode() == ISD::ADD &&
13597
N1.getOpcode() == ISD::ADD && N0->hasOneUse() && N1->hasOneUse()) {
13598
unsigned N0RedOp = 0;
13599
if (!IsVecReduce(N0.getOperand(N0RedOp))) {
13600
N0RedOp = 1;
13601
if (!IsVecReduce(N0.getOperand(N0RedOp)))
13602
return SDValue();
13603
}
13604
13605
unsigned N1RedOp = 0;
13606
if (!IsVecReduce(N1.getOperand(N1RedOp)))
13607
N1RedOp = 1;
13608
if (!IsVecReduce(N1.getOperand(N1RedOp)))
13609
return SDValue();
13610
13611
SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0.getOperand(1 - N0RedOp),
13612
N1.getOperand(1 - N1RedOp));
13613
SDValue Add1 =
13614
DAG.getNode(ISD::ADD, dl, VT, Add0, N0.getOperand(N0RedOp));
13615
return DAG.getNode(ISD::ADD, dl, VT, Add1, N1.getOperand(N1RedOp));
13616
}
13617
return SDValue();
13618
};
13619
if (SDValue R = DistrubuteAddAddVecReduce(N0, N1))
13620
return R;
13621
if (SDValue R = DistrubuteAddAddVecReduce(N1, N0))
13622
return R;
13623
13624
// Distribute add(vecreduce(load(Y)), vecreduce(load(Z)))
13625
// Or add(add(X, vecreduce(load(Y))), vecreduce(load(Z)))
13626
// by ascending load offsets. This can help cores prefetch if the order of
13627
// loads is more predictable.
13628
auto DistrubuteVecReduceLoad = [&](SDValue N0, SDValue N1, bool IsForward) {
13629
// Check if two reductions are known to load data where one is before/after
13630
// another. Return negative if N0 loads data before N1, positive if N1 is
13631
// before N0 and 0 otherwise if nothing is known.
13632
auto IsKnownOrderedLoad = [&](SDValue N0, SDValue N1) {
13633
// Look through to the first operand of a MUL, for the VMLA case.
13634
// Currently only looks at the first operand, in the hope they are equal.
13635
if (N0.getOpcode() == ISD::MUL)
13636
N0 = N0.getOperand(0);
13637
if (N1.getOpcode() == ISD::MUL)
13638
N1 = N1.getOperand(0);
13639
13640
// Return true if the two operands are loads to the same object and the
13641
// offset of the first is known to be less than the offset of the second.
13642
LoadSDNode *Load0 = dyn_cast<LoadSDNode>(N0);
13643
LoadSDNode *Load1 = dyn_cast<LoadSDNode>(N1);
13644
if (!Load0 || !Load1 || Load0->getChain() != Load1->getChain() ||
13645
!Load0->isSimple() || !Load1->isSimple() || Load0->isIndexed() ||
13646
Load1->isIndexed())
13647
return 0;
13648
13649
auto BaseLocDecomp0 = BaseIndexOffset::match(Load0, DAG);
13650
auto BaseLocDecomp1 = BaseIndexOffset::match(Load1, DAG);
13651
13652
if (!BaseLocDecomp0.getBase() ||
13653
BaseLocDecomp0.getBase() != BaseLocDecomp1.getBase() ||
13654
!BaseLocDecomp0.hasValidOffset() || !BaseLocDecomp1.hasValidOffset())
13655
return 0;
13656
if (BaseLocDecomp0.getOffset() < BaseLocDecomp1.getOffset())
13657
return -1;
13658
if (BaseLocDecomp0.getOffset() > BaseLocDecomp1.getOffset())
13659
return 1;
13660
return 0;
13661
};
13662
13663
SDValue X;
13664
if (N0.getOpcode() == ISD::ADD && N0->hasOneUse()) {
13665
if (IsVecReduce(N0.getOperand(0)) && IsVecReduce(N0.getOperand(1))) {
13666
int IsBefore = IsKnownOrderedLoad(N0.getOperand(0).getOperand(0),
13667
N0.getOperand(1).getOperand(0));
13668
if (IsBefore < 0) {
13669
X = N0.getOperand(0);
13670
N0 = N0.getOperand(1);
13671
} else if (IsBefore > 0) {
13672
X = N0.getOperand(1);
13673
N0 = N0.getOperand(0);
13674
} else
13675
return SDValue();
13676
} else if (IsVecReduce(N0.getOperand(0))) {
13677
X = N0.getOperand(1);
13678
N0 = N0.getOperand(0);
13679
} else if (IsVecReduce(N0.getOperand(1))) {
13680
X = N0.getOperand(0);
13681
N0 = N0.getOperand(1);
13682
} else
13683
return SDValue();
13684
} else if (IsForward && IsVecReduce(N0) && IsVecReduce(N1) &&
13685
IsKnownOrderedLoad(N0.getOperand(0), N1.getOperand(0)) < 0) {
13686
// Note this is backward to how you would expect. We create
13687
// add(reduce(load + 16), reduce(load + 0)) so that the
13688
// add(reduce(load+16), X) is combined into VADDVA(X, load+16)), leaving
13689
// the X as VADDV(load + 0)
13690
return DAG.getNode(ISD::ADD, dl, VT, N1, N0);
13691
} else
13692
return SDValue();
13693
13694
if (!IsVecReduce(N0) || !IsVecReduce(N1))
13695
return SDValue();
13696
13697
if (IsKnownOrderedLoad(N1.getOperand(0), N0.getOperand(0)) >= 0)
13698
return SDValue();
13699
13700
// Switch from add(add(X, N0), N1) to add(add(X, N1), N0)
13701
SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, X, N1);
13702
return DAG.getNode(ISD::ADD, dl, VT, Add0, N0);
13703
};
13704
if (SDValue R = DistrubuteVecReduceLoad(N0, N1, true))
13705
return R;
13706
if (SDValue R = DistrubuteVecReduceLoad(N1, N0, false))
13707
return R;
13708
return SDValue();
13709
}
13710
13711
static SDValue PerformADDVecReduce(SDNode *N, SelectionDAG &DAG,
13712
const ARMSubtarget *Subtarget) {
13713
if (!Subtarget->hasMVEIntegerOps())
13714
return SDValue();
13715
13716
if (SDValue R = TryDistrubutionADDVecReduce(N, DAG))
13717
return R;
13718
13719
EVT VT = N->getValueType(0);
13720
SDValue N0 = N->getOperand(0);
13721
SDValue N1 = N->getOperand(1);
13722
SDLoc dl(N);
13723
13724
if (VT != MVT::i64)
13725
return SDValue();
13726
13727
// We are looking for a i64 add of a VADDLVx. Due to these being i64's, this
13728
// will look like:
13729
// t1: i32,i32 = ARMISD::VADDLVs x
13730
// t2: i64 = build_pair t1, t1:1
13731
// t3: i64 = add t2, y
13732
// Otherwise we try to push the add up above VADDLVAx, to potentially allow
13733
// the add to be simplified separately.
13734
// We also need to check for sext / zext and commutitive adds.
13735
auto MakeVecReduce = [&](unsigned Opcode, unsigned OpcodeA, SDValue NA,
13736
SDValue NB) {
13737
if (NB->getOpcode() != ISD::BUILD_PAIR)
13738
return SDValue();
13739
SDValue VecRed = NB->getOperand(0);
13740
if ((VecRed->getOpcode() != Opcode && VecRed->getOpcode() != OpcodeA) ||
13741
VecRed.getResNo() != 0 ||
13742
NB->getOperand(1) != SDValue(VecRed.getNode(), 1))
13743
return SDValue();
13744
13745
if (VecRed->getOpcode() == OpcodeA) {
13746
// add(NA, VADDLVA(Inp), Y) -> VADDLVA(add(NA, Inp), Y)
13747
SDValue Inp = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
13748
VecRed.getOperand(0), VecRed.getOperand(1));
13749
NA = DAG.getNode(ISD::ADD, dl, MVT::i64, Inp, NA);
13750
}
13751
13752
SmallVector<SDValue, 4> Ops(2);
13753
std::tie(Ops[0], Ops[1]) = DAG.SplitScalar(NA, dl, MVT::i32, MVT::i32);
13754
13755
unsigned S = VecRed->getOpcode() == OpcodeA ? 2 : 0;
13756
for (unsigned I = S, E = VecRed.getNumOperands(); I < E; I++)
13757
Ops.push_back(VecRed->getOperand(I));
13758
SDValue Red =
13759
DAG.getNode(OpcodeA, dl, DAG.getVTList({MVT::i32, MVT::i32}), Ops);
13760
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Red,
13761
SDValue(Red.getNode(), 1));
13762
};
13763
13764
if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N0, N1))
13765
return M;
13766
if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N0, N1))
13767
return M;
13768
if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N1, N0))
13769
return M;
13770
if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N1, N0))
13771
return M;
13772
if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N0, N1))
13773
return M;
13774
if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N0, N1))
13775
return M;
13776
if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N1, N0))
13777
return M;
13778
if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N1, N0))
13779
return M;
13780
if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N0, N1))
13781
return M;
13782
if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N0, N1))
13783
return M;
13784
if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N1, N0))
13785
return M;
13786
if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N1, N0))
13787
return M;
13788
if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N0, N1))
13789
return M;
13790
if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N0, N1))
13791
return M;
13792
if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N1, N0))
13793
return M;
13794
if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N1, N0))
13795
return M;
13796
return SDValue();
13797
}
13798
13799
bool
13800
ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
13801
CombineLevel Level) const {
13802
assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
13803
N->getOpcode() == ISD::SRL) &&
13804
"Expected shift op");
13805
13806
if (Level == BeforeLegalizeTypes)
13807
return true;
13808
13809
if (N->getOpcode() != ISD::SHL)
13810
return true;
13811
13812
if (Subtarget->isThumb1Only()) {
13813
// Avoid making expensive immediates by commuting shifts. (This logic
13814
// only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
13815
// for free.)
13816
if (N->getOpcode() != ISD::SHL)
13817
return true;
13818
SDValue N1 = N->getOperand(0);
13819
if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
13820
N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
13821
return true;
13822
if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
13823
if (Const->getAPIntValue().ult(256))
13824
return false;
13825
if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
13826
Const->getAPIntValue().sgt(-256))
13827
return false;
13828
}
13829
return true;
13830
}
13831
13832
// Turn off commute-with-shift transform after legalization, so it doesn't
13833
// conflict with PerformSHLSimplify. (We could try to detect when
13834
// PerformSHLSimplify would trigger more precisely, but it isn't
13835
// really necessary.)
13836
return false;
13837
}
13838
13839
bool ARMTargetLowering::isDesirableToCommuteXorWithShift(
13840
const SDNode *N) const {
13841
assert(N->getOpcode() == ISD::XOR &&
13842
(N->getOperand(0).getOpcode() == ISD::SHL ||
13843
N->getOperand(0).getOpcode() == ISD::SRL) &&
13844
"Expected XOR(SHIFT) pattern");
13845
13846
// Only commute if the entire NOT mask is a hidden shifted mask.
13847
auto *XorC = dyn_cast<ConstantSDNode>(N->getOperand(1));
13848
auto *ShiftC = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1));
13849
if (XorC && ShiftC) {
13850
unsigned MaskIdx, MaskLen;
13851
if (XorC->getAPIntValue().isShiftedMask(MaskIdx, MaskLen)) {
13852
unsigned ShiftAmt = ShiftC->getZExtValue();
13853
unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
13854
if (N->getOperand(0).getOpcode() == ISD::SHL)
13855
return MaskIdx == ShiftAmt && MaskLen == (BitWidth - ShiftAmt);
13856
return MaskIdx == 0 && MaskLen == (BitWidth - ShiftAmt);
13857
}
13858
}
13859
13860
return false;
13861
}
13862
13863
bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
13864
const SDNode *N, CombineLevel Level) const {
13865
assert(((N->getOpcode() == ISD::SHL &&
13866
N->getOperand(0).getOpcode() == ISD::SRL) ||
13867
(N->getOpcode() == ISD::SRL &&
13868
N->getOperand(0).getOpcode() == ISD::SHL)) &&
13869
"Expected shift-shift mask");
13870
13871
if (!Subtarget->isThumb1Only())
13872
return true;
13873
13874
if (Level == BeforeLegalizeTypes)
13875
return true;
13876
13877
return false;
13878
}
13879
13880
bool ARMTargetLowering::shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
13881
EVT VT) const {
13882
return Subtarget->hasMVEIntegerOps() && isTypeLegal(VT);
13883
}
13884
13885
bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
13886
if (!Subtarget->hasNEON()) {
13887
if (Subtarget->isThumb1Only())
13888
return VT.getScalarSizeInBits() <= 32;
13889
return true;
13890
}
13891
return VT.isScalarInteger();
13892
}
13893
13894
bool ARMTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
13895
EVT VT) const {
13896
if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
13897
return false;
13898
13899
switch (FPVT.getSimpleVT().SimpleTy) {
13900
case MVT::f16:
13901
return Subtarget->hasVFP2Base();
13902
case MVT::f32:
13903
return Subtarget->hasVFP2Base();
13904
case MVT::f64:
13905
return Subtarget->hasFP64();
13906
case MVT::v4f32:
13907
case MVT::v8f16:
13908
return Subtarget->hasMVEFloatOps();
13909
default:
13910
return false;
13911
}
13912
}
13913
13914
static SDValue PerformSHLSimplify(SDNode *N,
13915
TargetLowering::DAGCombinerInfo &DCI,
13916
const ARMSubtarget *ST) {
13917
// Allow the generic combiner to identify potential bswaps.
13918
if (DCI.isBeforeLegalize())
13919
return SDValue();
13920
13921
// DAG combiner will fold:
13922
// (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
13923
// (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
13924
// Other code patterns that can be also be modified have the following form:
13925
// b + ((a << 1) | 510)
13926
// b + ((a << 1) & 510)
13927
// b + ((a << 1) ^ 510)
13928
// b + ((a << 1) + 510)
13929
13930
// Many instructions can perform the shift for free, but it requires both
13931
// the operands to be registers. If c1 << c2 is too large, a mov immediate
13932
// instruction will needed. So, unfold back to the original pattern if:
13933
// - if c1 and c2 are small enough that they don't require mov imms.
13934
// - the user(s) of the node can perform an shl
13935
13936
// No shifted operands for 16-bit instructions.
13937
if (ST->isThumb() && ST->isThumb1Only())
13938
return SDValue();
13939
13940
// Check that all the users could perform the shl themselves.
13941
for (auto *U : N->uses()) {
13942
switch(U->getOpcode()) {
13943
default:
13944
return SDValue();
13945
case ISD::SUB:
13946
case ISD::ADD:
13947
case ISD::AND:
13948
case ISD::OR:
13949
case ISD::XOR:
13950
case ISD::SETCC:
13951
case ARMISD::CMP:
13952
// Check that the user isn't already using a constant because there
13953
// aren't any instructions that support an immediate operand and a
13954
// shifted operand.
13955
if (isa<ConstantSDNode>(U->getOperand(0)) ||
13956
isa<ConstantSDNode>(U->getOperand(1)))
13957
return SDValue();
13958
13959
// Check that it's not already using a shift.
13960
if (U->getOperand(0).getOpcode() == ISD::SHL ||
13961
U->getOperand(1).getOpcode() == ISD::SHL)
13962
return SDValue();
13963
break;
13964
}
13965
}
13966
13967
if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
13968
N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
13969
return SDValue();
13970
13971
if (N->getOperand(0).getOpcode() != ISD::SHL)
13972
return SDValue();
13973
13974
SDValue SHL = N->getOperand(0);
13975
13976
auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
13977
auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
13978
if (!C1ShlC2 || !C2)
13979
return SDValue();
13980
13981
APInt C2Int = C2->getAPIntValue();
13982
APInt C1Int = C1ShlC2->getAPIntValue();
13983
unsigned C2Width = C2Int.getBitWidth();
13984
if (C2Int.uge(C2Width))
13985
return SDValue();
13986
uint64_t C2Value = C2Int.getZExtValue();
13987
13988
// Check that performing a lshr will not lose any information.
13989
APInt Mask = APInt::getHighBitsSet(C2Width, C2Width - C2Value);
13990
if ((C1Int & Mask) != C1Int)
13991
return SDValue();
13992
13993
// Shift the first constant.
13994
C1Int.lshrInPlace(C2Int);
13995
13996
// The immediates are encoded as an 8-bit value that can be rotated.
13997
auto LargeImm = [](const APInt &Imm) {
13998
unsigned Zeros = Imm.countl_zero() + Imm.countr_zero();
13999
return Imm.getBitWidth() - Zeros > 8;
14000
};
14001
14002
if (LargeImm(C1Int) || LargeImm(C2Int))
14003
return SDValue();
14004
14005
SelectionDAG &DAG = DCI.DAG;
14006
SDLoc dl(N);
14007
SDValue X = SHL.getOperand(0);
14008
SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
14009
DAG.getConstant(C1Int, dl, MVT::i32));
14010
// Shift left to compensate for the lshr of C1Int.
14011
SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
14012
14013
LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
14014
SHL.dump(); N->dump());
14015
LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
14016
return Res;
14017
}
14018
14019
14020
/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
14021
///
14022
static SDValue PerformADDCombine(SDNode *N,
14023
TargetLowering::DAGCombinerInfo &DCI,
14024
const ARMSubtarget *Subtarget) {
14025
SDValue N0 = N->getOperand(0);
14026
SDValue N1 = N->getOperand(1);
14027
14028
// Only works one way, because it needs an immediate operand.
14029
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14030
return Result;
14031
14032
if (SDValue Result = PerformADDVecReduce(N, DCI.DAG, Subtarget))
14033
return Result;
14034
14035
// First try with the default operand order.
14036
if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
14037
return Result;
14038
14039
// If that didn't work, try again with the operands commuted.
14040
return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
14041
}
14042
14043
// Combine (sub 0, (csinc X, Y, CC)) -> (csinv -X, Y, CC)
14044
// providing -X is as cheap as X (currently, just a constant).
14045
static SDValue PerformSubCSINCCombine(SDNode *N, SelectionDAG &DAG) {
14046
if (N->getValueType(0) != MVT::i32 || !isNullConstant(N->getOperand(0)))
14047
return SDValue();
14048
SDValue CSINC = N->getOperand(1);
14049
if (CSINC.getOpcode() != ARMISD::CSINC || !CSINC.hasOneUse())
14050
return SDValue();
14051
14052
ConstantSDNode *X = dyn_cast<ConstantSDNode>(CSINC.getOperand(0));
14053
if (!X)
14054
return SDValue();
14055
14056
return DAG.getNode(ARMISD::CSINV, SDLoc(N), MVT::i32,
14057
DAG.getNode(ISD::SUB, SDLoc(N), MVT::i32, N->getOperand(0),
14058
CSINC.getOperand(0)),
14059
CSINC.getOperand(1), CSINC.getOperand(2),
14060
CSINC.getOperand(3));
14061
}
14062
14063
/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
14064
///
14065
static SDValue PerformSUBCombine(SDNode *N,
14066
TargetLowering::DAGCombinerInfo &DCI,
14067
const ARMSubtarget *Subtarget) {
14068
SDValue N0 = N->getOperand(0);
14069
SDValue N1 = N->getOperand(1);
14070
14071
// fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
14072
if (N1.getNode()->hasOneUse())
14073
if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
14074
return Result;
14075
14076
if (SDValue R = PerformSubCSINCCombine(N, DCI.DAG))
14077
return R;
14078
14079
if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector())
14080
return SDValue();
14081
14082
// Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
14083
// so that we can readily pattern match more mve instructions which can use
14084
// a scalar operand.
14085
SDValue VDup = N->getOperand(1);
14086
if (VDup->getOpcode() != ARMISD::VDUP)
14087
return SDValue();
14088
14089
SDValue VMov = N->getOperand(0);
14090
if (VMov->getOpcode() == ISD::BITCAST)
14091
VMov = VMov->getOperand(0);
14092
14093
if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov))
14094
return SDValue();
14095
14096
SDLoc dl(N);
14097
SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32,
14098
DCI.DAG.getConstant(0, dl, MVT::i32),
14099
VDup->getOperand(0));
14100
return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate);
14101
}
14102
14103
/// PerformVMULCombine
14104
/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
14105
/// special multiplier accumulator forwarding.
14106
/// vmul d3, d0, d2
14107
/// vmla d3, d1, d2
14108
/// is faster than
14109
/// vadd d3, d0, d1
14110
/// vmul d3, d3, d2
14111
// However, for (A + B) * (A + B),
14112
// vadd d2, d0, d1
14113
// vmul d3, d0, d2
14114
// vmla d3, d1, d2
14115
// is slower than
14116
// vadd d2, d0, d1
14117
// vmul d3, d2, d2
14118
static SDValue PerformVMULCombine(SDNode *N,
14119
TargetLowering::DAGCombinerInfo &DCI,
14120
const ARMSubtarget *Subtarget) {
14121
if (!Subtarget->hasVMLxForwarding())
14122
return SDValue();
14123
14124
SelectionDAG &DAG = DCI.DAG;
14125
SDValue N0 = N->getOperand(0);
14126
SDValue N1 = N->getOperand(1);
14127
unsigned Opcode = N0.getOpcode();
14128
if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
14129
Opcode != ISD::FADD && Opcode != ISD::FSUB) {
14130
Opcode = N1.getOpcode();
14131
if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
14132
Opcode != ISD::FADD && Opcode != ISD::FSUB)
14133
return SDValue();
14134
std::swap(N0, N1);
14135
}
14136
14137
if (N0 == N1)
14138
return SDValue();
14139
14140
EVT VT = N->getValueType(0);
14141
SDLoc DL(N);
14142
SDValue N00 = N0->getOperand(0);
14143
SDValue N01 = N0->getOperand(1);
14144
return DAG.getNode(Opcode, DL, VT,
14145
DAG.getNode(ISD::MUL, DL, VT, N00, N1),
14146
DAG.getNode(ISD::MUL, DL, VT, N01, N1));
14147
}
14148
14149
static SDValue PerformMVEVMULLCombine(SDNode *N, SelectionDAG &DAG,
14150
const ARMSubtarget *Subtarget) {
14151
EVT VT = N->getValueType(0);
14152
if (VT != MVT::v2i64)
14153
return SDValue();
14154
14155
SDValue N0 = N->getOperand(0);
14156
SDValue N1 = N->getOperand(1);
14157
14158
auto IsSignExt = [&](SDValue Op) {
14159
if (Op->getOpcode() != ISD::SIGN_EXTEND_INREG)
14160
return SDValue();
14161
EVT VT = cast<VTSDNode>(Op->getOperand(1))->getVT();
14162
if (VT.getScalarSizeInBits() == 32)
14163
return Op->getOperand(0);
14164
return SDValue();
14165
};
14166
auto IsZeroExt = [&](SDValue Op) {
14167
// Zero extends are a little more awkward. At the point we are matching
14168
// this, we are looking for an AND with a (-1, 0, -1, 0) buildvector mask.
14169
// That might be before of after a bitcast depending on how the and is
14170
// placed. Because this has to look through bitcasts, it is currently only
14171
// supported on LE.
14172
if (!Subtarget->isLittle())
14173
return SDValue();
14174
14175
SDValue And = Op;
14176
if (And->getOpcode() == ISD::BITCAST)
14177
And = And->getOperand(0);
14178
if (And->getOpcode() != ISD::AND)
14179
return SDValue();
14180
SDValue Mask = And->getOperand(1);
14181
if (Mask->getOpcode() == ISD::BITCAST)
14182
Mask = Mask->getOperand(0);
14183
14184
if (Mask->getOpcode() != ISD::BUILD_VECTOR ||
14185
Mask.getValueType() != MVT::v4i32)
14186
return SDValue();
14187
if (isAllOnesConstant(Mask->getOperand(0)) &&
14188
isNullConstant(Mask->getOperand(1)) &&
14189
isAllOnesConstant(Mask->getOperand(2)) &&
14190
isNullConstant(Mask->getOperand(3)))
14191
return And->getOperand(0);
14192
return SDValue();
14193
};
14194
14195
SDLoc dl(N);
14196
if (SDValue Op0 = IsSignExt(N0)) {
14197
if (SDValue Op1 = IsSignExt(N1)) {
14198
SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
14199
SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
14200
return DAG.getNode(ARMISD::VMULLs, dl, VT, New0a, New1a);
14201
}
14202
}
14203
if (SDValue Op0 = IsZeroExt(N0)) {
14204
if (SDValue Op1 = IsZeroExt(N1)) {
14205
SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
14206
SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
14207
return DAG.getNode(ARMISD::VMULLu, dl, VT, New0a, New1a);
14208
}
14209
}
14210
14211
return SDValue();
14212
}
14213
14214
static SDValue PerformMULCombine(SDNode *N,
14215
TargetLowering::DAGCombinerInfo &DCI,
14216
const ARMSubtarget *Subtarget) {
14217
SelectionDAG &DAG = DCI.DAG;
14218
14219
EVT VT = N->getValueType(0);
14220
if (Subtarget->hasMVEIntegerOps() && VT == MVT::v2i64)
14221
return PerformMVEVMULLCombine(N, DAG, Subtarget);
14222
14223
if (Subtarget->isThumb1Only())
14224
return SDValue();
14225
14226
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14227
return SDValue();
14228
14229
if (VT.is64BitVector() || VT.is128BitVector())
14230
return PerformVMULCombine(N, DCI, Subtarget);
14231
if (VT != MVT::i32)
14232
return SDValue();
14233
14234
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14235
if (!C)
14236
return SDValue();
14237
14238
int64_t MulAmt = C->getSExtValue();
14239
unsigned ShiftAmt = llvm::countr_zero<uint64_t>(MulAmt);
14240
14241
ShiftAmt = ShiftAmt & (32 - 1);
14242
SDValue V = N->getOperand(0);
14243
SDLoc DL(N);
14244
14245
SDValue Res;
14246
MulAmt >>= ShiftAmt;
14247
14248
if (MulAmt >= 0) {
14249
if (llvm::has_single_bit<uint32_t>(MulAmt - 1)) {
14250
// (mul x, 2^N + 1) => (add (shl x, N), x)
14251
Res = DAG.getNode(ISD::ADD, DL, VT,
14252
V,
14253
DAG.getNode(ISD::SHL, DL, VT,
14254
V,
14255
DAG.getConstant(Log2_32(MulAmt - 1), DL,
14256
MVT::i32)));
14257
} else if (llvm::has_single_bit<uint32_t>(MulAmt + 1)) {
14258
// (mul x, 2^N - 1) => (sub (shl x, N), x)
14259
Res = DAG.getNode(ISD::SUB, DL, VT,
14260
DAG.getNode(ISD::SHL, DL, VT,
14261
V,
14262
DAG.getConstant(Log2_32(MulAmt + 1), DL,
14263
MVT::i32)),
14264
V);
14265
} else
14266
return SDValue();
14267
} else {
14268
uint64_t MulAmtAbs = -MulAmt;
14269
if (llvm::has_single_bit<uint32_t>(MulAmtAbs + 1)) {
14270
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
14271
Res = DAG.getNode(ISD::SUB, DL, VT,
14272
V,
14273
DAG.getNode(ISD::SHL, DL, VT,
14274
V,
14275
DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
14276
MVT::i32)));
14277
} else if (llvm::has_single_bit<uint32_t>(MulAmtAbs - 1)) {
14278
// (mul x, -(2^N + 1)) => - (add (shl x, N), x)
14279
Res = DAG.getNode(ISD::ADD, DL, VT,
14280
V,
14281
DAG.getNode(ISD::SHL, DL, VT,
14282
V,
14283
DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
14284
MVT::i32)));
14285
Res = DAG.getNode(ISD::SUB, DL, VT,
14286
DAG.getConstant(0, DL, MVT::i32), Res);
14287
} else
14288
return SDValue();
14289
}
14290
14291
if (ShiftAmt != 0)
14292
Res = DAG.getNode(ISD::SHL, DL, VT,
14293
Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
14294
14295
// Do not add new nodes to DAG combiner worklist.
14296
DCI.CombineTo(N, Res, false);
14297
return SDValue();
14298
}
14299
14300
static SDValue CombineANDShift(SDNode *N,
14301
TargetLowering::DAGCombinerInfo &DCI,
14302
const ARMSubtarget *Subtarget) {
14303
// Allow DAGCombine to pattern-match before we touch the canonical form.
14304
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14305
return SDValue();
14306
14307
if (N->getValueType(0) != MVT::i32)
14308
return SDValue();
14309
14310
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14311
if (!N1C)
14312
return SDValue();
14313
14314
uint32_t C1 = (uint32_t)N1C->getZExtValue();
14315
// Don't transform uxtb/uxth.
14316
if (C1 == 255 || C1 == 65535)
14317
return SDValue();
14318
14319
SDNode *N0 = N->getOperand(0).getNode();
14320
if (!N0->hasOneUse())
14321
return SDValue();
14322
14323
if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
14324
return SDValue();
14325
14326
bool LeftShift = N0->getOpcode() == ISD::SHL;
14327
14328
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
14329
if (!N01C)
14330
return SDValue();
14331
14332
uint32_t C2 = (uint32_t)N01C->getZExtValue();
14333
if (!C2 || C2 >= 32)
14334
return SDValue();
14335
14336
// Clear irrelevant bits in the mask.
14337
if (LeftShift)
14338
C1 &= (-1U << C2);
14339
else
14340
C1 &= (-1U >> C2);
14341
14342
SelectionDAG &DAG = DCI.DAG;
14343
SDLoc DL(N);
14344
14345
// We have a pattern of the form "(and (shl x, c2) c1)" or
14346
// "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
14347
// transform to a pair of shifts, to save materializing c1.
14348
14349
// First pattern: right shift, then mask off leading bits.
14350
// FIXME: Use demanded bits?
14351
if (!LeftShift && isMask_32(C1)) {
14352
uint32_t C3 = llvm::countl_zero(C1);
14353
if (C2 < C3) {
14354
SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
14355
DAG.getConstant(C3 - C2, DL, MVT::i32));
14356
return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
14357
DAG.getConstant(C3, DL, MVT::i32));
14358
}
14359
}
14360
14361
// First pattern, reversed: left shift, then mask off trailing bits.
14362
if (LeftShift && isMask_32(~C1)) {
14363
uint32_t C3 = llvm::countr_zero(C1);
14364
if (C2 < C3) {
14365
SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
14366
DAG.getConstant(C3 - C2, DL, MVT::i32));
14367
return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
14368
DAG.getConstant(C3, DL, MVT::i32));
14369
}
14370
}
14371
14372
// Second pattern: left shift, then mask off leading bits.
14373
// FIXME: Use demanded bits?
14374
if (LeftShift && isShiftedMask_32(C1)) {
14375
uint32_t Trailing = llvm::countr_zero(C1);
14376
uint32_t C3 = llvm::countl_zero(C1);
14377
if (Trailing == C2 && C2 + C3 < 32) {
14378
SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
14379
DAG.getConstant(C2 + C3, DL, MVT::i32));
14380
return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
14381
DAG.getConstant(C3, DL, MVT::i32));
14382
}
14383
}
14384
14385
// Second pattern, reversed: right shift, then mask off trailing bits.
14386
// FIXME: Handle other patterns of known/demanded bits.
14387
if (!LeftShift && isShiftedMask_32(C1)) {
14388
uint32_t Leading = llvm::countl_zero(C1);
14389
uint32_t C3 = llvm::countr_zero(C1);
14390
if (Leading == C2 && C2 + C3 < 32) {
14391
SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
14392
DAG.getConstant(C2 + C3, DL, MVT::i32));
14393
return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
14394
DAG.getConstant(C3, DL, MVT::i32));
14395
}
14396
}
14397
14398
// Transform "(and (shl x, c2) c1)" into "(shl (and x, c1>>c2), c2)"
14399
// if "c1 >> c2" is a cheaper immediate than "c1"
14400
if (LeftShift &&
14401
HasLowerConstantMaterializationCost(C1 >> C2, C1, Subtarget)) {
14402
14403
SDValue And = DAG.getNode(ISD::AND, DL, MVT::i32, N0->getOperand(0),
14404
DAG.getConstant(C1 >> C2, DL, MVT::i32));
14405
return DAG.getNode(ISD::SHL, DL, MVT::i32, And,
14406
DAG.getConstant(C2, DL, MVT::i32));
14407
}
14408
14409
return SDValue();
14410
}
14411
14412
static SDValue PerformANDCombine(SDNode *N,
14413
TargetLowering::DAGCombinerInfo &DCI,
14414
const ARMSubtarget *Subtarget) {
14415
// Attempt to use immediate-form VBIC
14416
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
14417
SDLoc dl(N);
14418
EVT VT = N->getValueType(0);
14419
SelectionDAG &DAG = DCI.DAG;
14420
14421
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT) || VT == MVT::v2i1 ||
14422
VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1)
14423
return SDValue();
14424
14425
APInt SplatBits, SplatUndef;
14426
unsigned SplatBitSize;
14427
bool HasAnyUndefs;
14428
if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14429
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14430
if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14431
SplatBitSize == 64) {
14432
EVT VbicVT;
14433
SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
14434
SplatUndef.getZExtValue(), SplatBitSize,
14435
DAG, dl, VbicVT, VT, OtherModImm);
14436
if (Val.getNode()) {
14437
SDValue Input =
14438
DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
14439
SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
14440
return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
14441
}
14442
}
14443
}
14444
14445
if (!Subtarget->isThumb1Only()) {
14446
// fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
14447
if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
14448
return Result;
14449
14450
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14451
return Result;
14452
}
14453
14454
if (Subtarget->isThumb1Only())
14455
if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
14456
return Result;
14457
14458
return SDValue();
14459
}
14460
14461
// Try combining OR nodes to SMULWB, SMULWT.
14462
static SDValue PerformORCombineToSMULWBT(SDNode *OR,
14463
TargetLowering::DAGCombinerInfo &DCI,
14464
const ARMSubtarget *Subtarget) {
14465
if (!Subtarget->hasV6Ops() ||
14466
(Subtarget->isThumb() &&
14467
(!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
14468
return SDValue();
14469
14470
SDValue SRL = OR->getOperand(0);
14471
SDValue SHL = OR->getOperand(1);
14472
14473
if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
14474
SRL = OR->getOperand(1);
14475
SHL = OR->getOperand(0);
14476
}
14477
if (!isSRL16(SRL) || !isSHL16(SHL))
14478
return SDValue();
14479
14480
// The first operands to the shifts need to be the two results from the
14481
// same smul_lohi node.
14482
if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
14483
SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
14484
return SDValue();
14485
14486
SDNode *SMULLOHI = SRL.getOperand(0).getNode();
14487
if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
14488
SHL.getOperand(0) != SDValue(SMULLOHI, 1))
14489
return SDValue();
14490
14491
// Now we have:
14492
// (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
14493
// For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
14494
// For SMUWB the 16-bit value will signed extended somehow.
14495
// For SMULWT only the SRA is required.
14496
// Check both sides of SMUL_LOHI
14497
SDValue OpS16 = SMULLOHI->getOperand(0);
14498
SDValue OpS32 = SMULLOHI->getOperand(1);
14499
14500
SelectionDAG &DAG = DCI.DAG;
14501
if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
14502
OpS16 = OpS32;
14503
OpS32 = SMULLOHI->getOperand(0);
14504
}
14505
14506
SDLoc dl(OR);
14507
unsigned Opcode = 0;
14508
if (isS16(OpS16, DAG))
14509
Opcode = ARMISD::SMULWB;
14510
else if (isSRA16(OpS16)) {
14511
Opcode = ARMISD::SMULWT;
14512
OpS16 = OpS16->getOperand(0);
14513
}
14514
else
14515
return SDValue();
14516
14517
SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
14518
DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
14519
return SDValue(OR, 0);
14520
}
14521
14522
static SDValue PerformORCombineToBFI(SDNode *N,
14523
TargetLowering::DAGCombinerInfo &DCI,
14524
const ARMSubtarget *Subtarget) {
14525
// BFI is only available on V6T2+
14526
if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
14527
return SDValue();
14528
14529
EVT VT = N->getValueType(0);
14530
SDValue N0 = N->getOperand(0);
14531
SDValue N1 = N->getOperand(1);
14532
SelectionDAG &DAG = DCI.DAG;
14533
SDLoc DL(N);
14534
// 1) or (and A, mask), val => ARMbfi A, val, mask
14535
// iff (val & mask) == val
14536
//
14537
// 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14538
// 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
14539
// && mask == ~mask2
14540
// 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
14541
// && ~mask == mask2
14542
// (i.e., copy a bitfield value into another bitfield of the same width)
14543
14544
if (VT != MVT::i32)
14545
return SDValue();
14546
14547
SDValue N00 = N0.getOperand(0);
14548
14549
// The value and the mask need to be constants so we can verify this is
14550
// actually a bitfield set. If the mask is 0xffff, we can do better
14551
// via a movt instruction, so don't use BFI in that case.
14552
SDValue MaskOp = N0.getOperand(1);
14553
ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
14554
if (!MaskC)
14555
return SDValue();
14556
unsigned Mask = MaskC->getZExtValue();
14557
if (Mask == 0xffff)
14558
return SDValue();
14559
SDValue Res;
14560
// Case (1): or (and A, mask), val => ARMbfi A, val, mask
14561
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14562
if (N1C) {
14563
unsigned Val = N1C->getZExtValue();
14564
if ((Val & ~Mask) != Val)
14565
return SDValue();
14566
14567
if (ARM::isBitFieldInvertedMask(Mask)) {
14568
Val >>= llvm::countr_zero(~Mask);
14569
14570
Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
14571
DAG.getConstant(Val, DL, MVT::i32),
14572
DAG.getConstant(Mask, DL, MVT::i32));
14573
14574
DCI.CombineTo(N, Res, false);
14575
// Return value from the original node to inform the combiner than N is
14576
// now dead.
14577
return SDValue(N, 0);
14578
}
14579
} else if (N1.getOpcode() == ISD::AND) {
14580
// case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14581
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
14582
if (!N11C)
14583
return SDValue();
14584
unsigned Mask2 = N11C->getZExtValue();
14585
14586
// Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
14587
// as is to match.
14588
if (ARM::isBitFieldInvertedMask(Mask) &&
14589
(Mask == ~Mask2)) {
14590
// The pack halfword instruction works better for masks that fit it,
14591
// so use that when it's available.
14592
if (Subtarget->hasDSP() &&
14593
(Mask == 0xffff || Mask == 0xffff0000))
14594
return SDValue();
14595
// 2a
14596
unsigned amt = llvm::countr_zero(Mask2);
14597
Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
14598
DAG.getConstant(amt, DL, MVT::i32));
14599
Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
14600
DAG.getConstant(Mask, DL, MVT::i32));
14601
DCI.CombineTo(N, Res, false);
14602
// Return value from the original node to inform the combiner than N is
14603
// now dead.
14604
return SDValue(N, 0);
14605
} else if (ARM::isBitFieldInvertedMask(~Mask) &&
14606
(~Mask == Mask2)) {
14607
// The pack halfword instruction works better for masks that fit it,
14608
// so use that when it's available.
14609
if (Subtarget->hasDSP() &&
14610
(Mask2 == 0xffff || Mask2 == 0xffff0000))
14611
return SDValue();
14612
// 2b
14613
unsigned lsb = llvm::countr_zero(Mask);
14614
Res = DAG.getNode(ISD::SRL, DL, VT, N00,
14615
DAG.getConstant(lsb, DL, MVT::i32));
14616
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
14617
DAG.getConstant(Mask2, DL, MVT::i32));
14618
DCI.CombineTo(N, Res, false);
14619
// Return value from the original node to inform the combiner than N is
14620
// now dead.
14621
return SDValue(N, 0);
14622
}
14623
}
14624
14625
if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
14626
N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
14627
ARM::isBitFieldInvertedMask(~Mask)) {
14628
// Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
14629
// where lsb(mask) == #shamt and masked bits of B are known zero.
14630
SDValue ShAmt = N00.getOperand(1);
14631
unsigned ShAmtC = ShAmt->getAsZExtVal();
14632
unsigned LSB = llvm::countr_zero(Mask);
14633
if (ShAmtC != LSB)
14634
return SDValue();
14635
14636
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
14637
DAG.getConstant(~Mask, DL, MVT::i32));
14638
14639
DCI.CombineTo(N, Res, false);
14640
// Return value from the original node to inform the combiner than N is
14641
// now dead.
14642
return SDValue(N, 0);
14643
}
14644
14645
return SDValue();
14646
}
14647
14648
static bool isValidMVECond(unsigned CC, bool IsFloat) {
14649
switch (CC) {
14650
case ARMCC::EQ:
14651
case ARMCC::NE:
14652
case ARMCC::LE:
14653
case ARMCC::GT:
14654
case ARMCC::GE:
14655
case ARMCC::LT:
14656
return true;
14657
case ARMCC::HS:
14658
case ARMCC::HI:
14659
return !IsFloat;
14660
default:
14661
return false;
14662
};
14663
}
14664
14665
static ARMCC::CondCodes getVCMPCondCode(SDValue N) {
14666
if (N->getOpcode() == ARMISD::VCMP)
14667
return (ARMCC::CondCodes)N->getConstantOperandVal(2);
14668
else if (N->getOpcode() == ARMISD::VCMPZ)
14669
return (ARMCC::CondCodes)N->getConstantOperandVal(1);
14670
else
14671
llvm_unreachable("Not a VCMP/VCMPZ!");
14672
}
14673
14674
static bool CanInvertMVEVCMP(SDValue N) {
14675
ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N));
14676
return isValidMVECond(CC, N->getOperand(0).getValueType().isFloatingPoint());
14677
}
14678
14679
static SDValue PerformORCombine_i1(SDNode *N, SelectionDAG &DAG,
14680
const ARMSubtarget *Subtarget) {
14681
// Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
14682
// together with predicates
14683
EVT VT = N->getValueType(0);
14684
SDLoc DL(N);
14685
SDValue N0 = N->getOperand(0);
14686
SDValue N1 = N->getOperand(1);
14687
14688
auto IsFreelyInvertable = [&](SDValue V) {
14689
if (V->getOpcode() == ARMISD::VCMP || V->getOpcode() == ARMISD::VCMPZ)
14690
return CanInvertMVEVCMP(V);
14691
return false;
14692
};
14693
14694
// At least one operand must be freely invertable.
14695
if (!(IsFreelyInvertable(N0) || IsFreelyInvertable(N1)))
14696
return SDValue();
14697
14698
SDValue NewN0 = DAG.getLogicalNOT(DL, N0, VT);
14699
SDValue NewN1 = DAG.getLogicalNOT(DL, N1, VT);
14700
SDValue And = DAG.getNode(ISD::AND, DL, VT, NewN0, NewN1);
14701
return DAG.getLogicalNOT(DL, And, VT);
14702
}
14703
14704
/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
14705
static SDValue PerformORCombine(SDNode *N,
14706
TargetLowering::DAGCombinerInfo &DCI,
14707
const ARMSubtarget *Subtarget) {
14708
// Attempt to use immediate-form VORR
14709
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
14710
SDLoc dl(N);
14711
EVT VT = N->getValueType(0);
14712
SelectionDAG &DAG = DCI.DAG;
14713
14714
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
14715
return SDValue();
14716
14717
if (Subtarget->hasMVEIntegerOps() && (VT == MVT::v2i1 || VT == MVT::v4i1 ||
14718
VT == MVT::v8i1 || VT == MVT::v16i1))
14719
return PerformORCombine_i1(N, DAG, Subtarget);
14720
14721
APInt SplatBits, SplatUndef;
14722
unsigned SplatBitSize;
14723
bool HasAnyUndefs;
14724
if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14725
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14726
if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14727
SplatBitSize == 64) {
14728
EVT VorrVT;
14729
SDValue Val =
14730
isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
14731
SplatBitSize, DAG, dl, VorrVT, VT, OtherModImm);
14732
if (Val.getNode()) {
14733
SDValue Input =
14734
DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
14735
SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
14736
return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
14737
}
14738
}
14739
}
14740
14741
if (!Subtarget->isThumb1Only()) {
14742
// fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
14743
if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
14744
return Result;
14745
if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
14746
return Result;
14747
}
14748
14749
SDValue N0 = N->getOperand(0);
14750
SDValue N1 = N->getOperand(1);
14751
14752
// (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
14753
if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
14754
DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14755
14756
// The code below optimizes (or (and X, Y), Z).
14757
// The AND operand needs to have a single user to make these optimizations
14758
// profitable.
14759
if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
14760
return SDValue();
14761
14762
APInt SplatUndef;
14763
unsigned SplatBitSize;
14764
bool HasAnyUndefs;
14765
14766
APInt SplatBits0, SplatBits1;
14767
BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
14768
BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
14769
// Ensure that the second operand of both ands are constants
14770
if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
14771
HasAnyUndefs) && !HasAnyUndefs) {
14772
if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
14773
HasAnyUndefs) && !HasAnyUndefs) {
14774
// Ensure that the bit width of the constants are the same and that
14775
// the splat arguments are logical inverses as per the pattern we
14776
// are trying to simplify.
14777
if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
14778
SplatBits0 == ~SplatBits1) {
14779
// Canonicalize the vector type to make instruction selection
14780
// simpler.
14781
EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
14782
SDValue Result = DAG.getNode(ARMISD::VBSP, dl, CanonicalVT,
14783
N0->getOperand(1),
14784
N0->getOperand(0),
14785
N1->getOperand(0));
14786
return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Result);
14787
}
14788
}
14789
}
14790
}
14791
14792
// Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
14793
// reasonable.
14794
if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
14795
if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
14796
return Res;
14797
}
14798
14799
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14800
return Result;
14801
14802
return SDValue();
14803
}
14804
14805
static SDValue PerformXORCombine(SDNode *N,
14806
TargetLowering::DAGCombinerInfo &DCI,
14807
const ARMSubtarget *Subtarget) {
14808
EVT VT = N->getValueType(0);
14809
SelectionDAG &DAG = DCI.DAG;
14810
14811
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
14812
return SDValue();
14813
14814
if (!Subtarget->isThumb1Only()) {
14815
// fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
14816
if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
14817
return Result;
14818
14819
if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14820
return Result;
14821
}
14822
14823
if (Subtarget->hasMVEIntegerOps()) {
14824
// fold (xor(vcmp/z, 1)) into a vcmp with the opposite condition.
14825
SDValue N0 = N->getOperand(0);
14826
SDValue N1 = N->getOperand(1);
14827
const TargetLowering *TLI = Subtarget->getTargetLowering();
14828
if (TLI->isConstTrueVal(N1) &&
14829
(N0->getOpcode() == ARMISD::VCMP || N0->getOpcode() == ARMISD::VCMPZ)) {
14830
if (CanInvertMVEVCMP(N0)) {
14831
SDLoc DL(N0);
14832
ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N0));
14833
14834
SmallVector<SDValue, 4> Ops;
14835
Ops.push_back(N0->getOperand(0));
14836
if (N0->getOpcode() == ARMISD::VCMP)
14837
Ops.push_back(N0->getOperand(1));
14838
Ops.push_back(DAG.getConstant(CC, DL, MVT::i32));
14839
return DAG.getNode(N0->getOpcode(), DL, N0->getValueType(0), Ops);
14840
}
14841
}
14842
}
14843
14844
return SDValue();
14845
}
14846
14847
// ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
14848
// and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
14849
// their position in "to" (Rd).
14850
static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
14851
assert(N->getOpcode() == ARMISD::BFI);
14852
14853
SDValue From = N->getOperand(1);
14854
ToMask = ~N->getConstantOperandAPInt(2);
14855
FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.popcount());
14856
14857
// If the Base came from a SHR #C, we can deduce that it is really testing bit
14858
// #C in the base of the SHR.
14859
if (From->getOpcode() == ISD::SRL &&
14860
isa<ConstantSDNode>(From->getOperand(1))) {
14861
APInt Shift = From->getConstantOperandAPInt(1);
14862
assert(Shift.getLimitedValue() < 32 && "Shift too large!");
14863
FromMask <<= Shift.getLimitedValue(31);
14864
From = From->getOperand(0);
14865
}
14866
14867
return From;
14868
}
14869
14870
// If A and B contain one contiguous set of bits, does A | B == A . B?
14871
//
14872
// Neither A nor B must be zero.
14873
static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
14874
unsigned LastActiveBitInA = A.countr_zero();
14875
unsigned FirstActiveBitInB = B.getBitWidth() - B.countl_zero() - 1;
14876
return LastActiveBitInA - 1 == FirstActiveBitInB;
14877
}
14878
14879
static SDValue FindBFIToCombineWith(SDNode *N) {
14880
// We have a BFI in N. Find a BFI it can combine with, if one exists.
14881
APInt ToMask, FromMask;
14882
SDValue From = ParseBFI(N, ToMask, FromMask);
14883
SDValue To = N->getOperand(0);
14884
14885
SDValue V = To;
14886
if (V.getOpcode() != ARMISD::BFI)
14887
return SDValue();
14888
14889
APInt NewToMask, NewFromMask;
14890
SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
14891
if (NewFrom != From)
14892
return SDValue();
14893
14894
// Do the written bits conflict with any we've seen so far?
14895
if ((NewToMask & ToMask).getBoolValue())
14896
// Conflicting bits.
14897
return SDValue();
14898
14899
// Are the new bits contiguous when combined with the old bits?
14900
if (BitsProperlyConcatenate(ToMask, NewToMask) &&
14901
BitsProperlyConcatenate(FromMask, NewFromMask))
14902
return V;
14903
if (BitsProperlyConcatenate(NewToMask, ToMask) &&
14904
BitsProperlyConcatenate(NewFromMask, FromMask))
14905
return V;
14906
14907
return SDValue();
14908
}
14909
14910
static SDValue PerformBFICombine(SDNode *N, SelectionDAG &DAG) {
14911
SDValue N0 = N->getOperand(0);
14912
SDValue N1 = N->getOperand(1);
14913
14914
if (N1.getOpcode() == ISD::AND) {
14915
// (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
14916
// the bits being cleared by the AND are not demanded by the BFI.
14917
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
14918
if (!N11C)
14919
return SDValue();
14920
unsigned InvMask = N->getConstantOperandVal(2);
14921
unsigned LSB = llvm::countr_zero(~InvMask);
14922
unsigned Width = llvm::bit_width<unsigned>(~InvMask) - LSB;
14923
assert(Width <
14924
static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
14925
"undefined behavior");
14926
unsigned Mask = (1u << Width) - 1;
14927
unsigned Mask2 = N11C->getZExtValue();
14928
if ((Mask & (~Mask2)) == 0)
14929
return DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
14930
N->getOperand(0), N1.getOperand(0), N->getOperand(2));
14931
return SDValue();
14932
}
14933
14934
// Look for another BFI to combine with.
14935
if (SDValue CombineBFI = FindBFIToCombineWith(N)) {
14936
// We've found a BFI.
14937
APInt ToMask1, FromMask1;
14938
SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
14939
14940
APInt ToMask2, FromMask2;
14941
SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
14942
assert(From1 == From2);
14943
(void)From2;
14944
14945
// Create a new BFI, combining the two together.
14946
APInt NewFromMask = FromMask1 | FromMask2;
14947
APInt NewToMask = ToMask1 | ToMask2;
14948
14949
EVT VT = N->getValueType(0);
14950
SDLoc dl(N);
14951
14952
if (NewFromMask[0] == 0)
14953
From1 = DAG.getNode(ISD::SRL, dl, VT, From1,
14954
DAG.getConstant(NewFromMask.countr_zero(), dl, VT));
14955
return DAG.getNode(ARMISD::BFI, dl, VT, CombineBFI.getOperand(0), From1,
14956
DAG.getConstant(~NewToMask, dl, VT));
14957
}
14958
14959
// Reassociate BFI(BFI (A, B, M1), C, M2) to BFI(BFI (A, C, M2), B, M1) so
14960
// that lower bit insertions are performed first, providing that M1 and M2
14961
// do no overlap. This can allow multiple BFI instructions to be combined
14962
// together by the other folds above.
14963
if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
14964
APInt ToMask1 = ~N->getConstantOperandAPInt(2);
14965
APInt ToMask2 = ~N0.getConstantOperandAPInt(2);
14966
14967
if (!N0.hasOneUse() || (ToMask1 & ToMask2) != 0 ||
14968
ToMask1.countl_zero() < ToMask2.countl_zero())
14969
return SDValue();
14970
14971
EVT VT = N->getValueType(0);
14972
SDLoc dl(N);
14973
SDValue BFI1 = DAG.getNode(ARMISD::BFI, dl, VT, N0.getOperand(0),
14974
N->getOperand(1), N->getOperand(2));
14975
return DAG.getNode(ARMISD::BFI, dl, VT, BFI1, N0.getOperand(1),
14976
N0.getOperand(2));
14977
}
14978
14979
return SDValue();
14980
}
14981
14982
// Check that N is CMPZ(CSINC(0, 0, CC, X)),
14983
// or CMPZ(CMOV(1, 0, CC, $cpsr, X))
14984
// return X if valid.
14985
static SDValue IsCMPZCSINC(SDNode *Cmp, ARMCC::CondCodes &CC) {
14986
if (Cmp->getOpcode() != ARMISD::CMPZ || !isNullConstant(Cmp->getOperand(1)))
14987
return SDValue();
14988
SDValue CSInc = Cmp->getOperand(0);
14989
14990
// Ignore any `And 1` nodes that may not yet have been removed. We are
14991
// looking for a value that produces 1/0, so these have no effect on the
14992
// code.
14993
while (CSInc.getOpcode() == ISD::AND &&
14994
isa<ConstantSDNode>(CSInc.getOperand(1)) &&
14995
CSInc.getConstantOperandVal(1) == 1 && CSInc->hasOneUse())
14996
CSInc = CSInc.getOperand(0);
14997
14998
if (CSInc.getOpcode() == ARMISD::CSINC &&
14999
isNullConstant(CSInc.getOperand(0)) &&
15000
isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) {
15001
CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2);
15002
return CSInc.getOperand(3);
15003
}
15004
if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(0)) &&
15005
isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) {
15006
CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2);
15007
return CSInc.getOperand(4);
15008
}
15009
if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(1)) &&
15010
isNullConstant(CSInc.getOperand(0)) && CSInc->hasOneUse()) {
15011
CC = ARMCC::getOppositeCondition(
15012
(ARMCC::CondCodes)CSInc.getConstantOperandVal(2));
15013
return CSInc.getOperand(4);
15014
}
15015
return SDValue();
15016
}
15017
15018
static SDValue PerformCMPZCombine(SDNode *N, SelectionDAG &DAG) {
15019
// Given CMPZ(CSINC(C, 0, 0, EQ), 0), we can just use C directly. As in
15020
// t92: glue = ARMISD::CMPZ t74, 0
15021
// t93: i32 = ARMISD::CSINC 0, 0, 1, t92
15022
// t96: glue = ARMISD::CMPZ t93, 0
15023
// t114: i32 = ARMISD::CSINV 0, 0, 0, t96
15024
ARMCC::CondCodes Cond;
15025
if (SDValue C = IsCMPZCSINC(N, Cond))
15026
if (Cond == ARMCC::EQ)
15027
return C;
15028
return SDValue();
15029
}
15030
15031
static SDValue PerformCSETCombine(SDNode *N, SelectionDAG &DAG) {
15032
// Fold away an unneccessary CMPZ/CSINC
15033
// CSXYZ A, B, C1 (CMPZ (CSINC 0, 0, C2, D), 0) ->
15034
// if C1==EQ -> CSXYZ A, B, C2, D
15035
// if C1==NE -> CSXYZ A, B, NOT(C2), D
15036
ARMCC::CondCodes Cond;
15037
if (SDValue C = IsCMPZCSINC(N->getOperand(3).getNode(), Cond)) {
15038
if (N->getConstantOperandVal(2) == ARMCC::EQ)
15039
return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
15040
N->getOperand(1),
15041
DAG.getConstant(Cond, SDLoc(N), MVT::i32), C);
15042
if (N->getConstantOperandVal(2) == ARMCC::NE)
15043
return DAG.getNode(
15044
N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
15045
N->getOperand(1),
15046
DAG.getConstant(ARMCC::getOppositeCondition(Cond), SDLoc(N), MVT::i32), C);
15047
}
15048
return SDValue();
15049
}
15050
15051
/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
15052
/// ARMISD::VMOVRRD.
15053
static SDValue PerformVMOVRRDCombine(SDNode *N,
15054
TargetLowering::DAGCombinerInfo &DCI,
15055
const ARMSubtarget *Subtarget) {
15056
// vmovrrd(vmovdrr x, y) -> x,y
15057
SDValue InDouble = N->getOperand(0);
15058
if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
15059
return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
15060
15061
// vmovrrd(load f64) -> (load i32), (load i32)
15062
SDNode *InNode = InDouble.getNode();
15063
if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
15064
InNode->getValueType(0) == MVT::f64 &&
15065
InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
15066
!cast<LoadSDNode>(InNode)->isVolatile()) {
15067
// TODO: Should this be done for non-FrameIndex operands?
15068
LoadSDNode *LD = cast<LoadSDNode>(InNode);
15069
15070
SelectionDAG &DAG = DCI.DAG;
15071
SDLoc DL(LD);
15072
SDValue BasePtr = LD->getBasePtr();
15073
SDValue NewLD1 =
15074
DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
15075
LD->getAlign(), LD->getMemOperand()->getFlags());
15076
15077
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
15078
DAG.getConstant(4, DL, MVT::i32));
15079
15080
SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
15081
LD->getPointerInfo().getWithOffset(4),
15082
commonAlignment(LD->getAlign(), 4),
15083
LD->getMemOperand()->getFlags());
15084
15085
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
15086
if (DCI.DAG.getDataLayout().isBigEndian())
15087
std::swap (NewLD1, NewLD2);
15088
SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
15089
return Result;
15090
}
15091
15092
// VMOVRRD(extract(..(build_vector(a, b, c, d)))) -> a,b or c,d
15093
// VMOVRRD(extract(insert_vector(insert_vector(.., a, l1), b, l2))) -> a,b
15094
if (InDouble.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15095
isa<ConstantSDNode>(InDouble.getOperand(1))) {
15096
SDValue BV = InDouble.getOperand(0);
15097
// Look up through any nop bitcasts and vector_reg_casts. bitcasts may
15098
// change lane order under big endian.
15099
bool BVSwap = BV.getOpcode() == ISD::BITCAST;
15100
while (
15101
(BV.getOpcode() == ISD::BITCAST ||
15102
BV.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
15103
(BV.getValueType() == MVT::v2f64 || BV.getValueType() == MVT::v2i64)) {
15104
BVSwap = BV.getOpcode() == ISD::BITCAST;
15105
BV = BV.getOperand(0);
15106
}
15107
if (BV.getValueType() != MVT::v4i32)
15108
return SDValue();
15109
15110
// Handle buildvectors, pulling out the correct lane depending on
15111
// endianness.
15112
unsigned Offset = InDouble.getConstantOperandVal(1) == 1 ? 2 : 0;
15113
if (BV.getOpcode() == ISD::BUILD_VECTOR) {
15114
SDValue Op0 = BV.getOperand(Offset);
15115
SDValue Op1 = BV.getOperand(Offset + 1);
15116
if (!Subtarget->isLittle() && BVSwap)
15117
std::swap(Op0, Op1);
15118
15119
return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
15120
}
15121
15122
// A chain of insert_vectors, grabbing the correct value of the chain of
15123
// inserts.
15124
SDValue Op0, Op1;
15125
while (BV.getOpcode() == ISD::INSERT_VECTOR_ELT) {
15126
if (isa<ConstantSDNode>(BV.getOperand(2))) {
15127
if (BV.getConstantOperandVal(2) == Offset)
15128
Op0 = BV.getOperand(1);
15129
if (BV.getConstantOperandVal(2) == Offset + 1)
15130
Op1 = BV.getOperand(1);
15131
}
15132
BV = BV.getOperand(0);
15133
}
15134
if (!Subtarget->isLittle() && BVSwap)
15135
std::swap(Op0, Op1);
15136
if (Op0 && Op1)
15137
return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
15138
}
15139
15140
return SDValue();
15141
}
15142
15143
/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
15144
/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
15145
static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
15146
// N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
15147
SDValue Op0 = N->getOperand(0);
15148
SDValue Op1 = N->getOperand(1);
15149
if (Op0.getOpcode() == ISD::BITCAST)
15150
Op0 = Op0.getOperand(0);
15151
if (Op1.getOpcode() == ISD::BITCAST)
15152
Op1 = Op1.getOperand(0);
15153
if (Op0.getOpcode() == ARMISD::VMOVRRD &&
15154
Op0.getNode() == Op1.getNode() &&
15155
Op0.getResNo() == 0 && Op1.getResNo() == 1)
15156
return DAG.getNode(ISD::BITCAST, SDLoc(N),
15157
N->getValueType(0), Op0.getOperand(0));
15158
return SDValue();
15159
}
15160
15161
static SDValue PerformVMOVhrCombine(SDNode *N,
15162
TargetLowering::DAGCombinerInfo &DCI) {
15163
SDValue Op0 = N->getOperand(0);
15164
15165
// VMOVhr (VMOVrh (X)) -> X
15166
if (Op0->getOpcode() == ARMISD::VMOVrh)
15167
return Op0->getOperand(0);
15168
15169
// FullFP16: half values are passed in S-registers, and we don't
15170
// need any of the bitcast and moves:
15171
//
15172
// t2: f32,ch1,gl1? = CopyFromReg ch, Register:f32 %0, gl?
15173
// t5: i32 = bitcast t2
15174
// t18: f16 = ARMISD::VMOVhr t5
15175
// =>
15176
// tN: f16,ch2,gl2? = CopyFromReg ch, Register::f32 %0, gl?
15177
if (Op0->getOpcode() == ISD::BITCAST) {
15178
SDValue Copy = Op0->getOperand(0);
15179
if (Copy.getValueType() == MVT::f32 &&
15180
Copy->getOpcode() == ISD::CopyFromReg) {
15181
bool HasGlue = Copy->getNumOperands() == 3;
15182
SDValue Ops[] = {Copy->getOperand(0), Copy->getOperand(1),
15183
HasGlue ? Copy->getOperand(2) : SDValue()};
15184
EVT OutTys[] = {N->getValueType(0), MVT::Other, MVT::Glue};
15185
SDValue NewCopy =
15186
DCI.DAG.getNode(ISD::CopyFromReg, SDLoc(N),
15187
DCI.DAG.getVTList(ArrayRef(OutTys, HasGlue ? 3 : 2)),
15188
ArrayRef(Ops, HasGlue ? 3 : 2));
15189
15190
// Update Users, Chains, and Potential Glue.
15191
DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), NewCopy.getValue(0));
15192
DCI.DAG.ReplaceAllUsesOfValueWith(Copy.getValue(1), NewCopy.getValue(1));
15193
if (HasGlue)
15194
DCI.DAG.ReplaceAllUsesOfValueWith(Copy.getValue(2),
15195
NewCopy.getValue(2));
15196
15197
return NewCopy;
15198
}
15199
}
15200
15201
// fold (VMOVhr (load x)) -> (load (f16*)x)
15202
if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(Op0)) {
15203
if (LN0->hasOneUse() && LN0->isUnindexed() &&
15204
LN0->getMemoryVT() == MVT::i16) {
15205
SDValue Load =
15206
DCI.DAG.getLoad(N->getValueType(0), SDLoc(N), LN0->getChain(),
15207
LN0->getBasePtr(), LN0->getMemOperand());
15208
DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
15209
DCI.DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Load.getValue(1));
15210
return Load;
15211
}
15212
}
15213
15214
// Only the bottom 16 bits of the source register are used.
15215
APInt DemandedMask = APInt::getLowBitsSet(32, 16);
15216
const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15217
if (TLI.SimplifyDemandedBits(Op0, DemandedMask, DCI))
15218
return SDValue(N, 0);
15219
15220
return SDValue();
15221
}
15222
15223
static SDValue PerformVMOVrhCombine(SDNode *N, SelectionDAG &DAG) {
15224
SDValue N0 = N->getOperand(0);
15225
EVT VT = N->getValueType(0);
15226
15227
// fold (VMOVrh (fpconst x)) -> const x
15228
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N0)) {
15229
APFloat V = C->getValueAPF();
15230
return DAG.getConstant(V.bitcastToAPInt().getZExtValue(), SDLoc(N), VT);
15231
}
15232
15233
// fold (VMOVrh (load x)) -> (zextload (i16*)x)
15234
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) {
15235
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
15236
15237
SDValue Load =
15238
DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(),
15239
LN0->getBasePtr(), MVT::i16, LN0->getMemOperand());
15240
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
15241
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
15242
return Load;
15243
}
15244
15245
// Fold VMOVrh(extract(x, n)) -> vgetlaneu(x, n)
15246
if (N0->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15247
isa<ConstantSDNode>(N0->getOperand(1)))
15248
return DAG.getNode(ARMISD::VGETLANEu, SDLoc(N), VT, N0->getOperand(0),
15249
N0->getOperand(1));
15250
15251
return SDValue();
15252
}
15253
15254
/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
15255
/// are normal, non-volatile loads. If so, it is profitable to bitcast an
15256
/// i64 vector to have f64 elements, since the value can then be loaded
15257
/// directly into a VFP register.
15258
static bool hasNormalLoadOperand(SDNode *N) {
15259
unsigned NumElts = N->getValueType(0).getVectorNumElements();
15260
for (unsigned i = 0; i < NumElts; ++i) {
15261
SDNode *Elt = N->getOperand(i).getNode();
15262
if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
15263
return true;
15264
}
15265
return false;
15266
}
15267
15268
/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
15269
/// ISD::BUILD_VECTOR.
15270
static SDValue PerformBUILD_VECTORCombine(SDNode *N,
15271
TargetLowering::DAGCombinerInfo &DCI,
15272
const ARMSubtarget *Subtarget) {
15273
// build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
15274
// VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
15275
// into a pair of GPRs, which is fine when the value is used as a scalar,
15276
// but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
15277
SelectionDAG &DAG = DCI.DAG;
15278
if (N->getNumOperands() == 2)
15279
if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
15280
return RV;
15281
15282
// Load i64 elements as f64 values so that type legalization does not split
15283
// them up into i32 values.
15284
EVT VT = N->getValueType(0);
15285
if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
15286
return SDValue();
15287
SDLoc dl(N);
15288
SmallVector<SDValue, 8> Ops;
15289
unsigned NumElts = VT.getVectorNumElements();
15290
for (unsigned i = 0; i < NumElts; ++i) {
15291
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
15292
Ops.push_back(V);
15293
// Make the DAGCombiner fold the bitcast.
15294
DCI.AddToWorklist(V.getNode());
15295
}
15296
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
15297
SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
15298
return DAG.getNode(ISD::BITCAST, dl, VT, BV);
15299
}
15300
15301
/// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
15302
static SDValue
15303
PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15304
// ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
15305
// At that time, we may have inserted bitcasts from integer to float.
15306
// If these bitcasts have survived DAGCombine, change the lowering of this
15307
// BUILD_VECTOR in something more vector friendly, i.e., that does not
15308
// force to use floating point types.
15309
15310
// Make sure we can change the type of the vector.
15311
// This is possible iff:
15312
// 1. The vector is only used in a bitcast to a integer type. I.e.,
15313
// 1.1. Vector is used only once.
15314
// 1.2. Use is a bit convert to an integer type.
15315
// 2. The size of its operands are 32-bits (64-bits are not legal).
15316
EVT VT = N->getValueType(0);
15317
EVT EltVT = VT.getVectorElementType();
15318
15319
// Check 1.1. and 2.
15320
if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
15321
return SDValue();
15322
15323
// By construction, the input type must be float.
15324
assert(EltVT == MVT::f32 && "Unexpected type!");
15325
15326
// Check 1.2.
15327
SDNode *Use = *N->use_begin();
15328
if (Use->getOpcode() != ISD::BITCAST ||
15329
Use->getValueType(0).isFloatingPoint())
15330
return SDValue();
15331
15332
// Check profitability.
15333
// Model is, if more than half of the relevant operands are bitcast from
15334
// i32, turn the build_vector into a sequence of insert_vector_elt.
15335
// Relevant operands are everything that is not statically
15336
// (i.e., at compile time) bitcasted.
15337
unsigned NumOfBitCastedElts = 0;
15338
unsigned NumElts = VT.getVectorNumElements();
15339
unsigned NumOfRelevantElts = NumElts;
15340
for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
15341
SDValue Elt = N->getOperand(Idx);
15342
if (Elt->getOpcode() == ISD::BITCAST) {
15343
// Assume only bit cast to i32 will go away.
15344
if (Elt->getOperand(0).getValueType() == MVT::i32)
15345
++NumOfBitCastedElts;
15346
} else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
15347
// Constants are statically casted, thus do not count them as
15348
// relevant operands.
15349
--NumOfRelevantElts;
15350
}
15351
15352
// Check if more than half of the elements require a non-free bitcast.
15353
if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
15354
return SDValue();
15355
15356
SelectionDAG &DAG = DCI.DAG;
15357
// Create the new vector type.
15358
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
15359
// Check if the type is legal.
15360
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15361
if (!TLI.isTypeLegal(VecVT))
15362
return SDValue();
15363
15364
// Combine:
15365
// ARMISD::BUILD_VECTOR E1, E2, ..., EN.
15366
// => BITCAST INSERT_VECTOR_ELT
15367
// (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
15368
// (BITCAST EN), N.
15369
SDValue Vec = DAG.getUNDEF(VecVT);
15370
SDLoc dl(N);
15371
for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
15372
SDValue V = N->getOperand(Idx);
15373
if (V.isUndef())
15374
continue;
15375
if (V.getOpcode() == ISD::BITCAST &&
15376
V->getOperand(0).getValueType() == MVT::i32)
15377
// Fold obvious case.
15378
V = V.getOperand(0);
15379
else {
15380
V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
15381
// Make the DAGCombiner fold the bitcasts.
15382
DCI.AddToWorklist(V.getNode());
15383
}
15384
SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
15385
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
15386
}
15387
Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
15388
// Make the DAGCombiner fold the bitcasts.
15389
DCI.AddToWorklist(Vec.getNode());
15390
return Vec;
15391
}
15392
15393
static SDValue
15394
PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15395
EVT VT = N->getValueType(0);
15396
SDValue Op = N->getOperand(0);
15397
SDLoc dl(N);
15398
15399
// PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
15400
if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
15401
// If the valuetypes are the same, we can remove the cast entirely.
15402
if (Op->getOperand(0).getValueType() == VT)
15403
return Op->getOperand(0);
15404
return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
15405
}
15406
15407
// Turn pred_cast(xor x, -1) into xor(pred_cast x, -1), in order to produce
15408
// more VPNOT which might get folded as else predicates.
15409
if (Op.getValueType() == MVT::i32 && isBitwiseNot(Op)) {
15410
SDValue X =
15411
DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
15412
SDValue C = DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
15413
DCI.DAG.getConstant(65535, dl, MVT::i32));
15414
return DCI.DAG.getNode(ISD::XOR, dl, VT, X, C);
15415
}
15416
15417
// Only the bottom 16 bits of the source register are used.
15418
if (Op.getValueType() == MVT::i32) {
15419
APInt DemandedMask = APInt::getLowBitsSet(32, 16);
15420
const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15421
if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI))
15422
return SDValue(N, 0);
15423
}
15424
return SDValue();
15425
}
15426
15427
static SDValue PerformVECTOR_REG_CASTCombine(SDNode *N, SelectionDAG &DAG,
15428
const ARMSubtarget *ST) {
15429
EVT VT = N->getValueType(0);
15430
SDValue Op = N->getOperand(0);
15431
SDLoc dl(N);
15432
15433
// Under Little endian, a VECTOR_REG_CAST is equivalent to a BITCAST
15434
if (ST->isLittle())
15435
return DAG.getNode(ISD::BITCAST, dl, VT, Op);
15436
15437
// VECTOR_REG_CAST undef -> undef
15438
if (Op.isUndef())
15439
return DAG.getUNDEF(VT);
15440
15441
// VECTOR_REG_CAST(VECTOR_REG_CAST(x)) == VECTOR_REG_CAST(x)
15442
if (Op->getOpcode() == ARMISD::VECTOR_REG_CAST) {
15443
// If the valuetypes are the same, we can remove the cast entirely.
15444
if (Op->getOperand(0).getValueType() == VT)
15445
return Op->getOperand(0);
15446
return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Op->getOperand(0));
15447
}
15448
15449
return SDValue();
15450
}
15451
15452
static SDValue PerformVCMPCombine(SDNode *N, SelectionDAG &DAG,
15453
const ARMSubtarget *Subtarget) {
15454
if (!Subtarget->hasMVEIntegerOps())
15455
return SDValue();
15456
15457
EVT VT = N->getValueType(0);
15458
SDValue Op0 = N->getOperand(0);
15459
SDValue Op1 = N->getOperand(1);
15460
ARMCC::CondCodes Cond = (ARMCC::CondCodes)N->getConstantOperandVal(2);
15461
SDLoc dl(N);
15462
15463
// vcmp X, 0, cc -> vcmpz X, cc
15464
if (isZeroVector(Op1))
15465
return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0, N->getOperand(2));
15466
15467
unsigned SwappedCond = getSwappedCondition(Cond);
15468
if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) {
15469
// vcmp 0, X, cc -> vcmpz X, reversed(cc)
15470
if (isZeroVector(Op0))
15471
return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1,
15472
DAG.getConstant(SwappedCond, dl, MVT::i32));
15473
// vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
15474
if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP)
15475
return DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0,
15476
DAG.getConstant(SwappedCond, dl, MVT::i32));
15477
}
15478
15479
return SDValue();
15480
}
15481
15482
/// PerformInsertEltCombine - Target-specific dag combine xforms for
15483
/// ISD::INSERT_VECTOR_ELT.
15484
static SDValue PerformInsertEltCombine(SDNode *N,
15485
TargetLowering::DAGCombinerInfo &DCI) {
15486
// Bitcast an i64 load inserted into a vector to f64.
15487
// Otherwise, the i64 value will be legalized to a pair of i32 values.
15488
EVT VT = N->getValueType(0);
15489
SDNode *Elt = N->getOperand(1).getNode();
15490
if (VT.getVectorElementType() != MVT::i64 ||
15491
!ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
15492
return SDValue();
15493
15494
SelectionDAG &DAG = DCI.DAG;
15495
SDLoc dl(N);
15496
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
15497
VT.getVectorNumElements());
15498
SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
15499
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
15500
// Make the DAGCombiner fold the bitcasts.
15501
DCI.AddToWorklist(Vec.getNode());
15502
DCI.AddToWorklist(V.getNode());
15503
SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
15504
Vec, V, N->getOperand(2));
15505
return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
15506
}
15507
15508
// Convert a pair of extracts from the same base vector to a VMOVRRD. Either
15509
// directly or bitcast to an integer if the original is a float vector.
15510
// extract(x, n); extract(x, n+1) -> VMOVRRD(extract v2f64 x, n/2)
15511
// bitcast(extract(x, n)); bitcast(extract(x, n+1)) -> VMOVRRD(extract x, n/2)
15512
static SDValue
15513
PerformExtractEltToVMOVRRD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15514
EVT VT = N->getValueType(0);
15515
SDLoc dl(N);
15516
15517
if (!DCI.isAfterLegalizeDAG() || VT != MVT::i32 ||
15518
!DCI.DAG.getTargetLoweringInfo().isTypeLegal(MVT::f64))
15519
return SDValue();
15520
15521
SDValue Ext = SDValue(N, 0);
15522
if (Ext.getOpcode() == ISD::BITCAST &&
15523
Ext.getOperand(0).getValueType() == MVT::f32)
15524
Ext = Ext.getOperand(0);
15525
if (Ext.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
15526
!isa<ConstantSDNode>(Ext.getOperand(1)) ||
15527
Ext.getConstantOperandVal(1) % 2 != 0)
15528
return SDValue();
15529
if (Ext->use_size() == 1 &&
15530
(Ext->use_begin()->getOpcode() == ISD::SINT_TO_FP ||
15531
Ext->use_begin()->getOpcode() == ISD::UINT_TO_FP))
15532
return SDValue();
15533
15534
SDValue Op0 = Ext.getOperand(0);
15535
EVT VecVT = Op0.getValueType();
15536
unsigned ResNo = Op0.getResNo();
15537
unsigned Lane = Ext.getConstantOperandVal(1);
15538
if (VecVT.getVectorNumElements() != 4)
15539
return SDValue();
15540
15541
// Find another extract, of Lane + 1
15542
auto OtherIt = find_if(Op0->uses(), [&](SDNode *V) {
15543
return V->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15544
isa<ConstantSDNode>(V->getOperand(1)) &&
15545
V->getConstantOperandVal(1) == Lane + 1 &&
15546
V->getOperand(0).getResNo() == ResNo;
15547
});
15548
if (OtherIt == Op0->uses().end())
15549
return SDValue();
15550
15551
// For float extracts, we need to be converting to a i32 for both vector
15552
// lanes.
15553
SDValue OtherExt(*OtherIt, 0);
15554
if (OtherExt.getValueType() != MVT::i32) {
15555
if (OtherExt->use_size() != 1 ||
15556
OtherExt->use_begin()->getOpcode() != ISD::BITCAST ||
15557
OtherExt->use_begin()->getValueType(0) != MVT::i32)
15558
return SDValue();
15559
OtherExt = SDValue(*OtherExt->use_begin(), 0);
15560
}
15561
15562
// Convert the type to a f64 and extract with a VMOVRRD.
15563
SDValue F64 = DCI.DAG.getNode(
15564
ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
15565
DCI.DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v2f64, Op0),
15566
DCI.DAG.getConstant(Ext.getConstantOperandVal(1) / 2, dl, MVT::i32));
15567
SDValue VMOVRRD =
15568
DCI.DAG.getNode(ARMISD::VMOVRRD, dl, {MVT::i32, MVT::i32}, F64);
15569
15570
DCI.CombineTo(OtherExt.getNode(), SDValue(VMOVRRD.getNode(), 1));
15571
return VMOVRRD;
15572
}
15573
15574
static SDValue PerformExtractEltCombine(SDNode *N,
15575
TargetLowering::DAGCombinerInfo &DCI,
15576
const ARMSubtarget *ST) {
15577
SDValue Op0 = N->getOperand(0);
15578
EVT VT = N->getValueType(0);
15579
SDLoc dl(N);
15580
15581
// extract (vdup x) -> x
15582
if (Op0->getOpcode() == ARMISD::VDUP) {
15583
SDValue X = Op0->getOperand(0);
15584
if (VT == MVT::f16 && X.getValueType() == MVT::i32)
15585
return DCI.DAG.getNode(ARMISD::VMOVhr, dl, VT, X);
15586
if (VT == MVT::i32 && X.getValueType() == MVT::f16)
15587
return DCI.DAG.getNode(ARMISD::VMOVrh, dl, VT, X);
15588
if (VT == MVT::f32 && X.getValueType() == MVT::i32)
15589
return DCI.DAG.getNode(ISD::BITCAST, dl, VT, X);
15590
15591
while (X.getValueType() != VT && X->getOpcode() == ISD::BITCAST)
15592
X = X->getOperand(0);
15593
if (X.getValueType() == VT)
15594
return X;
15595
}
15596
15597
// extract ARM_BUILD_VECTOR -> x
15598
if (Op0->getOpcode() == ARMISD::BUILD_VECTOR &&
15599
isa<ConstantSDNode>(N->getOperand(1)) &&
15600
N->getConstantOperandVal(1) < Op0.getNumOperands()) {
15601
return Op0.getOperand(N->getConstantOperandVal(1));
15602
}
15603
15604
// extract(bitcast(BUILD_VECTOR(VMOVDRR(a, b), ..))) -> a or b
15605
if (Op0.getValueType() == MVT::v4i32 &&
15606
isa<ConstantSDNode>(N->getOperand(1)) &&
15607
Op0.getOpcode() == ISD::BITCAST &&
15608
Op0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
15609
Op0.getOperand(0).getValueType() == MVT::v2f64) {
15610
SDValue BV = Op0.getOperand(0);
15611
unsigned Offset = N->getConstantOperandVal(1);
15612
SDValue MOV = BV.getOperand(Offset < 2 ? 0 : 1);
15613
if (MOV.getOpcode() == ARMISD::VMOVDRR)
15614
return MOV.getOperand(ST->isLittle() ? Offset % 2 : 1 - Offset % 2);
15615
}
15616
15617
// extract x, n; extract x, n+1 -> VMOVRRD x
15618
if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
15619
return R;
15620
15621
// extract (MVETrunc(x)) -> extract x
15622
if (Op0->getOpcode() == ARMISD::MVETRUNC) {
15623
unsigned Idx = N->getConstantOperandVal(1);
15624
unsigned Vec =
15625
Idx / Op0->getOperand(0).getValueType().getVectorNumElements();
15626
unsigned SubIdx =
15627
Idx % Op0->getOperand(0).getValueType().getVectorNumElements();
15628
return DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Op0.getOperand(Vec),
15629
DCI.DAG.getConstant(SubIdx, dl, MVT::i32));
15630
}
15631
15632
return SDValue();
15633
}
15634
15635
static SDValue PerformSignExtendInregCombine(SDNode *N, SelectionDAG &DAG) {
15636
SDValue Op = N->getOperand(0);
15637
EVT VT = N->getValueType(0);
15638
15639
// sext_inreg(VGETLANEu) -> VGETLANEs
15640
if (Op.getOpcode() == ARMISD::VGETLANEu &&
15641
cast<VTSDNode>(N->getOperand(1))->getVT() ==
15642
Op.getOperand(0).getValueType().getScalarType())
15643
return DAG.getNode(ARMISD::VGETLANEs, SDLoc(N), VT, Op.getOperand(0),
15644
Op.getOperand(1));
15645
15646
return SDValue();
15647
}
15648
15649
static SDValue
15650
PerformInsertSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15651
SDValue Vec = N->getOperand(0);
15652
SDValue SubVec = N->getOperand(1);
15653
uint64_t IdxVal = N->getConstantOperandVal(2);
15654
EVT VecVT = Vec.getValueType();
15655
EVT SubVT = SubVec.getValueType();
15656
15657
// Only do this for legal fixed vector types.
15658
if (!VecVT.isFixedLengthVector() ||
15659
!DCI.DAG.getTargetLoweringInfo().isTypeLegal(VecVT) ||
15660
!DCI.DAG.getTargetLoweringInfo().isTypeLegal(SubVT))
15661
return SDValue();
15662
15663
// Ignore widening patterns.
15664
if (IdxVal == 0 && Vec.isUndef())
15665
return SDValue();
15666
15667
// Subvector must be half the width and an "aligned" insertion.
15668
unsigned NumSubElts = SubVT.getVectorNumElements();
15669
if ((SubVT.getSizeInBits() * 2) != VecVT.getSizeInBits() ||
15670
(IdxVal != 0 && IdxVal != NumSubElts))
15671
return SDValue();
15672
15673
// Fold insert_subvector -> concat_vectors
15674
// insert_subvector(Vec,Sub,lo) -> concat_vectors(Sub,extract(Vec,hi))
15675
// insert_subvector(Vec,Sub,hi) -> concat_vectors(extract(Vec,lo),Sub)
15676
SDLoc DL(N);
15677
SDValue Lo, Hi;
15678
if (IdxVal == 0) {
15679
Lo = SubVec;
15680
Hi = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
15681
DCI.DAG.getVectorIdxConstant(NumSubElts, DL));
15682
} else {
15683
Lo = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
15684
DCI.DAG.getVectorIdxConstant(0, DL));
15685
Hi = SubVec;
15686
}
15687
return DCI.DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Lo, Hi);
15688
}
15689
15690
// shuffle(MVETrunc(x, y)) -> VMOVN(x, y)
15691
static SDValue PerformShuffleVMOVNCombine(ShuffleVectorSDNode *N,
15692
SelectionDAG &DAG) {
15693
SDValue Trunc = N->getOperand(0);
15694
EVT VT = Trunc.getValueType();
15695
if (Trunc.getOpcode() != ARMISD::MVETRUNC || !N->getOperand(1).isUndef())
15696
return SDValue();
15697
15698
SDLoc DL(Trunc);
15699
if (isVMOVNTruncMask(N->getMask(), VT, false))
15700
return DAG.getNode(
15701
ARMISD::VMOVN, DL, VT,
15702
DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)),
15703
DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)),
15704
DAG.getConstant(1, DL, MVT::i32));
15705
else if (isVMOVNTruncMask(N->getMask(), VT, true))
15706
return DAG.getNode(
15707
ARMISD::VMOVN, DL, VT,
15708
DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)),
15709
DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)),
15710
DAG.getConstant(1, DL, MVT::i32));
15711
return SDValue();
15712
}
15713
15714
/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
15715
/// ISD::VECTOR_SHUFFLE.
15716
static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
15717
if (SDValue R = PerformShuffleVMOVNCombine(cast<ShuffleVectorSDNode>(N), DAG))
15718
return R;
15719
15720
// The LLVM shufflevector instruction does not require the shuffle mask
15721
// length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
15722
// have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
15723
// operands do not match the mask length, they are extended by concatenating
15724
// them with undef vectors. That is probably the right thing for other
15725
// targets, but for NEON it is better to concatenate two double-register
15726
// size vector operands into a single quad-register size vector. Do that
15727
// transformation here:
15728
// shuffle(concat(v1, undef), concat(v2, undef)) ->
15729
// shuffle(concat(v1, v2), undef)
15730
SDValue Op0 = N->getOperand(0);
15731
SDValue Op1 = N->getOperand(1);
15732
if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
15733
Op1.getOpcode() != ISD::CONCAT_VECTORS ||
15734
Op0.getNumOperands() != 2 ||
15735
Op1.getNumOperands() != 2)
15736
return SDValue();
15737
SDValue Concat0Op1 = Op0.getOperand(1);
15738
SDValue Concat1Op1 = Op1.getOperand(1);
15739
if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
15740
return SDValue();
15741
// Skip the transformation if any of the types are illegal.
15742
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15743
EVT VT = N->getValueType(0);
15744
if (!TLI.isTypeLegal(VT) ||
15745
!TLI.isTypeLegal(Concat0Op1.getValueType()) ||
15746
!TLI.isTypeLegal(Concat1Op1.getValueType()))
15747
return SDValue();
15748
15749
SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
15750
Op0.getOperand(0), Op1.getOperand(0));
15751
// Translate the shuffle mask.
15752
SmallVector<int, 16> NewMask;
15753
unsigned NumElts = VT.getVectorNumElements();
15754
unsigned HalfElts = NumElts/2;
15755
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
15756
for (unsigned n = 0; n < NumElts; ++n) {
15757
int MaskElt = SVN->getMaskElt(n);
15758
int NewElt = -1;
15759
if (MaskElt < (int)HalfElts)
15760
NewElt = MaskElt;
15761
else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
15762
NewElt = HalfElts + MaskElt - NumElts;
15763
NewMask.push_back(NewElt);
15764
}
15765
return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
15766
DAG.getUNDEF(VT), NewMask);
15767
}
15768
15769
/// Load/store instruction that can be merged with a base address
15770
/// update
15771
struct BaseUpdateTarget {
15772
SDNode *N;
15773
bool isIntrinsic;
15774
bool isStore;
15775
unsigned AddrOpIdx;
15776
};
15777
15778
struct BaseUpdateUser {
15779
/// Instruction that updates a pointer
15780
SDNode *N;
15781
/// Pointer increment operand
15782
SDValue Inc;
15783
/// Pointer increment value if it is a constant, or 0 otherwise
15784
unsigned ConstInc;
15785
};
15786
15787
static bool TryCombineBaseUpdate(struct BaseUpdateTarget &Target,
15788
struct BaseUpdateUser &User,
15789
bool SimpleConstIncOnly,
15790
TargetLowering::DAGCombinerInfo &DCI) {
15791
SelectionDAG &DAG = DCI.DAG;
15792
SDNode *N = Target.N;
15793
MemSDNode *MemN = cast<MemSDNode>(N);
15794
SDLoc dl(N);
15795
15796
// Find the new opcode for the updating load/store.
15797
bool isLoadOp = true;
15798
bool isLaneOp = false;
15799
// Workaround for vst1x and vld1x intrinsics which do not have alignment
15800
// as an operand.
15801
bool hasAlignment = true;
15802
unsigned NewOpc = 0;
15803
unsigned NumVecs = 0;
15804
if (Target.isIntrinsic) {
15805
unsigned IntNo = N->getConstantOperandVal(1);
15806
switch (IntNo) {
15807
default:
15808
llvm_unreachable("unexpected intrinsic for Neon base update");
15809
case Intrinsic::arm_neon_vld1:
15810
NewOpc = ARMISD::VLD1_UPD;
15811
NumVecs = 1;
15812
break;
15813
case Intrinsic::arm_neon_vld2:
15814
NewOpc = ARMISD::VLD2_UPD;
15815
NumVecs = 2;
15816
break;
15817
case Intrinsic::arm_neon_vld3:
15818
NewOpc = ARMISD::VLD3_UPD;
15819
NumVecs = 3;
15820
break;
15821
case Intrinsic::arm_neon_vld4:
15822
NewOpc = ARMISD::VLD4_UPD;
15823
NumVecs = 4;
15824
break;
15825
case Intrinsic::arm_neon_vld1x2:
15826
NewOpc = ARMISD::VLD1x2_UPD;
15827
NumVecs = 2;
15828
hasAlignment = false;
15829
break;
15830
case Intrinsic::arm_neon_vld1x3:
15831
NewOpc = ARMISD::VLD1x3_UPD;
15832
NumVecs = 3;
15833
hasAlignment = false;
15834
break;
15835
case Intrinsic::arm_neon_vld1x4:
15836
NewOpc = ARMISD::VLD1x4_UPD;
15837
NumVecs = 4;
15838
hasAlignment = false;
15839
break;
15840
case Intrinsic::arm_neon_vld2dup:
15841
NewOpc = ARMISD::VLD2DUP_UPD;
15842
NumVecs = 2;
15843
break;
15844
case Intrinsic::arm_neon_vld3dup:
15845
NewOpc = ARMISD::VLD3DUP_UPD;
15846
NumVecs = 3;
15847
break;
15848
case Intrinsic::arm_neon_vld4dup:
15849
NewOpc = ARMISD::VLD4DUP_UPD;
15850
NumVecs = 4;
15851
break;
15852
case Intrinsic::arm_neon_vld2lane:
15853
NewOpc = ARMISD::VLD2LN_UPD;
15854
NumVecs = 2;
15855
isLaneOp = true;
15856
break;
15857
case Intrinsic::arm_neon_vld3lane:
15858
NewOpc = ARMISD::VLD3LN_UPD;
15859
NumVecs = 3;
15860
isLaneOp = true;
15861
break;
15862
case Intrinsic::arm_neon_vld4lane:
15863
NewOpc = ARMISD::VLD4LN_UPD;
15864
NumVecs = 4;
15865
isLaneOp = true;
15866
break;
15867
case Intrinsic::arm_neon_vst1:
15868
NewOpc = ARMISD::VST1_UPD;
15869
NumVecs = 1;
15870
isLoadOp = false;
15871
break;
15872
case Intrinsic::arm_neon_vst2:
15873
NewOpc = ARMISD::VST2_UPD;
15874
NumVecs = 2;
15875
isLoadOp = false;
15876
break;
15877
case Intrinsic::arm_neon_vst3:
15878
NewOpc = ARMISD::VST3_UPD;
15879
NumVecs = 3;
15880
isLoadOp = false;
15881
break;
15882
case Intrinsic::arm_neon_vst4:
15883
NewOpc = ARMISD::VST4_UPD;
15884
NumVecs = 4;
15885
isLoadOp = false;
15886
break;
15887
case Intrinsic::arm_neon_vst2lane:
15888
NewOpc = ARMISD::VST2LN_UPD;
15889
NumVecs = 2;
15890
isLoadOp = false;
15891
isLaneOp = true;
15892
break;
15893
case Intrinsic::arm_neon_vst3lane:
15894
NewOpc = ARMISD::VST3LN_UPD;
15895
NumVecs = 3;
15896
isLoadOp = false;
15897
isLaneOp = true;
15898
break;
15899
case Intrinsic::arm_neon_vst4lane:
15900
NewOpc = ARMISD::VST4LN_UPD;
15901
NumVecs = 4;
15902
isLoadOp = false;
15903
isLaneOp = true;
15904
break;
15905
case Intrinsic::arm_neon_vst1x2:
15906
NewOpc = ARMISD::VST1x2_UPD;
15907
NumVecs = 2;
15908
isLoadOp = false;
15909
hasAlignment = false;
15910
break;
15911
case Intrinsic::arm_neon_vst1x3:
15912
NewOpc = ARMISD::VST1x3_UPD;
15913
NumVecs = 3;
15914
isLoadOp = false;
15915
hasAlignment = false;
15916
break;
15917
case Intrinsic::arm_neon_vst1x4:
15918
NewOpc = ARMISD::VST1x4_UPD;
15919
NumVecs = 4;
15920
isLoadOp = false;
15921
hasAlignment = false;
15922
break;
15923
}
15924
} else {
15925
isLaneOp = true;
15926
switch (N->getOpcode()) {
15927
default:
15928
llvm_unreachable("unexpected opcode for Neon base update");
15929
case ARMISD::VLD1DUP:
15930
NewOpc = ARMISD::VLD1DUP_UPD;
15931
NumVecs = 1;
15932
break;
15933
case ARMISD::VLD2DUP:
15934
NewOpc = ARMISD::VLD2DUP_UPD;
15935
NumVecs = 2;
15936
break;
15937
case ARMISD::VLD3DUP:
15938
NewOpc = ARMISD::VLD3DUP_UPD;
15939
NumVecs = 3;
15940
break;
15941
case ARMISD::VLD4DUP:
15942
NewOpc = ARMISD::VLD4DUP_UPD;
15943
NumVecs = 4;
15944
break;
15945
case ISD::LOAD:
15946
NewOpc = ARMISD::VLD1_UPD;
15947
NumVecs = 1;
15948
isLaneOp = false;
15949
break;
15950
case ISD::STORE:
15951
NewOpc = ARMISD::VST1_UPD;
15952
NumVecs = 1;
15953
isLaneOp = false;
15954
isLoadOp = false;
15955
break;
15956
}
15957
}
15958
15959
// Find the size of memory referenced by the load/store.
15960
EVT VecTy;
15961
if (isLoadOp) {
15962
VecTy = N->getValueType(0);
15963
} else if (Target.isIntrinsic) {
15964
VecTy = N->getOperand(Target.AddrOpIdx + 1).getValueType();
15965
} else {
15966
assert(Target.isStore &&
15967
"Node has to be a load, a store, or an intrinsic!");
15968
VecTy = N->getOperand(1).getValueType();
15969
}
15970
15971
bool isVLDDUPOp =
15972
NewOpc == ARMISD::VLD1DUP_UPD || NewOpc == ARMISD::VLD2DUP_UPD ||
15973
NewOpc == ARMISD::VLD3DUP_UPD || NewOpc == ARMISD::VLD4DUP_UPD;
15974
15975
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
15976
if (isLaneOp || isVLDDUPOp)
15977
NumBytes /= VecTy.getVectorNumElements();
15978
15979
if (NumBytes >= 3 * 16 && User.ConstInc != NumBytes) {
15980
// VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
15981
// separate instructions that make it harder to use a non-constant update.
15982
return false;
15983
}
15984
15985
if (SimpleConstIncOnly && User.ConstInc != NumBytes)
15986
return false;
15987
15988
// OK, we found an ADD we can fold into the base update.
15989
// Now, create a _UPD node, taking care of not breaking alignment.
15990
15991
EVT AlignedVecTy = VecTy;
15992
Align Alignment = MemN->getAlign();
15993
15994
// If this is a less-than-standard-aligned load/store, change the type to
15995
// match the standard alignment.
15996
// The alignment is overlooked when selecting _UPD variants; and it's
15997
// easier to introduce bitcasts here than fix that.
15998
// There are 3 ways to get to this base-update combine:
15999
// - intrinsics: they are assumed to be properly aligned (to the standard
16000
// alignment of the memory type), so we don't need to do anything.
16001
// - ARMISD::VLDx nodes: they are only generated from the aforementioned
16002
// intrinsics, so, likewise, there's nothing to do.
16003
// - generic load/store instructions: the alignment is specified as an
16004
// explicit operand, rather than implicitly as the standard alignment
16005
// of the memory type (like the intrisics). We need to change the
16006
// memory type to match the explicit alignment. That way, we don't
16007
// generate non-standard-aligned ARMISD::VLDx nodes.
16008
if (isa<LSBaseSDNode>(N)) {
16009
if (Alignment.value() < VecTy.getScalarSizeInBits() / 8) {
16010
MVT EltTy = MVT::getIntegerVT(Alignment.value() * 8);
16011
assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
16012
assert(!isLaneOp && "Unexpected generic load/store lane.");
16013
unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
16014
AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
16015
}
16016
// Don't set an explicit alignment on regular load/stores that we want
16017
// to transform to VLD/VST 1_UPD nodes.
16018
// This matches the behavior of regular load/stores, which only get an
16019
// explicit alignment if the MMO alignment is larger than the standard
16020
// alignment of the memory type.
16021
// Intrinsics, however, always get an explicit alignment, set to the
16022
// alignment of the MMO.
16023
Alignment = Align(1);
16024
}
16025
16026
// Create the new updating load/store node.
16027
// First, create an SDVTList for the new updating node's results.
16028
EVT Tys[6];
16029
unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
16030
unsigned n;
16031
for (n = 0; n < NumResultVecs; ++n)
16032
Tys[n] = AlignedVecTy;
16033
Tys[n++] = MVT::i32;
16034
Tys[n] = MVT::Other;
16035
SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2));
16036
16037
// Then, gather the new node's operands.
16038
SmallVector<SDValue, 8> Ops;
16039
Ops.push_back(N->getOperand(0)); // incoming chain
16040
Ops.push_back(N->getOperand(Target.AddrOpIdx));
16041
Ops.push_back(User.Inc);
16042
16043
if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
16044
// Try to match the intrinsic's signature
16045
Ops.push_back(StN->getValue());
16046
} else {
16047
// Loads (and of course intrinsics) match the intrinsics' signature,
16048
// so just add all but the alignment operand.
16049
unsigned LastOperand =
16050
hasAlignment ? N->getNumOperands() - 1 : N->getNumOperands();
16051
for (unsigned i = Target.AddrOpIdx + 1; i < LastOperand; ++i)
16052
Ops.push_back(N->getOperand(i));
16053
}
16054
16055
// For all node types, the alignment operand is always the last one.
16056
Ops.push_back(DAG.getConstant(Alignment.value(), dl, MVT::i32));
16057
16058
// If this is a non-standard-aligned STORE, the penultimate operand is the
16059
// stored value. Bitcast it to the aligned type.
16060
if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
16061
SDValue &StVal = Ops[Ops.size() - 2];
16062
StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
16063
}
16064
16065
EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
16066
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
16067
MemN->getMemOperand());
16068
16069
// Update the uses.
16070
SmallVector<SDValue, 5> NewResults;
16071
for (unsigned i = 0; i < NumResultVecs; ++i)
16072
NewResults.push_back(SDValue(UpdN.getNode(), i));
16073
16074
// If this is an non-standard-aligned LOAD, the first result is the loaded
16075
// value. Bitcast it to the expected result type.
16076
if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
16077
SDValue &LdVal = NewResults[0];
16078
LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
16079
}
16080
16081
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
16082
DCI.CombineTo(N, NewResults);
16083
DCI.CombineTo(User.N, SDValue(UpdN.getNode(), NumResultVecs));
16084
16085
return true;
16086
}
16087
16088
// If (opcode ptr inc) is and ADD-like instruction, return the
16089
// increment value. Otherwise return 0.
16090
static unsigned getPointerConstIncrement(unsigned Opcode, SDValue Ptr,
16091
SDValue Inc, const SelectionDAG &DAG) {
16092
ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
16093
if (!CInc)
16094
return 0;
16095
16096
switch (Opcode) {
16097
case ARMISD::VLD1_UPD:
16098
case ISD::ADD:
16099
return CInc->getZExtValue();
16100
case ISD::OR: {
16101
if (DAG.haveNoCommonBitsSet(Ptr, Inc)) {
16102
// (OR ptr inc) is the same as (ADD ptr inc)
16103
return CInc->getZExtValue();
16104
}
16105
return 0;
16106
}
16107
default:
16108
return 0;
16109
}
16110
}
16111
16112
static bool findPointerConstIncrement(SDNode *N, SDValue *Ptr, SDValue *CInc) {
16113
switch (N->getOpcode()) {
16114
case ISD::ADD:
16115
case ISD::OR: {
16116
if (isa<ConstantSDNode>(N->getOperand(1))) {
16117
*Ptr = N->getOperand(0);
16118
*CInc = N->getOperand(1);
16119
return true;
16120
}
16121
return false;
16122
}
16123
case ARMISD::VLD1_UPD: {
16124
if (isa<ConstantSDNode>(N->getOperand(2))) {
16125
*Ptr = N->getOperand(1);
16126
*CInc = N->getOperand(2);
16127
return true;
16128
}
16129
return false;
16130
}
16131
default:
16132
return false;
16133
}
16134
}
16135
16136
static bool isValidBaseUpdate(SDNode *N, SDNode *User) {
16137
// Check that the add is independent of the load/store.
16138
// Otherwise, folding it would create a cycle. Search through Addr
16139
// as well, since the User may not be a direct user of Addr and
16140
// only share a base pointer.
16141
SmallPtrSet<const SDNode *, 32> Visited;
16142
SmallVector<const SDNode *, 16> Worklist;
16143
Worklist.push_back(N);
16144
Worklist.push_back(User);
16145
if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
16146
SDNode::hasPredecessorHelper(User, Visited, Worklist))
16147
return false;
16148
return true;
16149
}
16150
16151
/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
16152
/// NEON load/store intrinsics, and generic vector load/stores, to merge
16153
/// base address updates.
16154
/// For generic load/stores, the memory type is assumed to be a vector.
16155
/// The caller is assumed to have checked legality.
16156
static SDValue CombineBaseUpdate(SDNode *N,
16157
TargetLowering::DAGCombinerInfo &DCI) {
16158
const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
16159
N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
16160
const bool isStore = N->getOpcode() == ISD::STORE;
16161
const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
16162
BaseUpdateTarget Target = {N, isIntrinsic, isStore, AddrOpIdx};
16163
16164
SDValue Addr = N->getOperand(AddrOpIdx);
16165
16166
SmallVector<BaseUpdateUser, 8> BaseUpdates;
16167
16168
// Search for a use of the address operand that is an increment.
16169
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
16170
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
16171
SDNode *User = *UI;
16172
if (UI.getUse().getResNo() != Addr.getResNo() ||
16173
User->getNumOperands() != 2)
16174
continue;
16175
16176
SDValue Inc = User->getOperand(UI.getOperandNo() == 1 ? 0 : 1);
16177
unsigned ConstInc =
16178
getPointerConstIncrement(User->getOpcode(), Addr, Inc, DCI.DAG);
16179
16180
if (ConstInc || User->getOpcode() == ISD::ADD)
16181
BaseUpdates.push_back({User, Inc, ConstInc});
16182
}
16183
16184
// If the address is a constant pointer increment itself, find
16185
// another constant increment that has the same base operand
16186
SDValue Base;
16187
SDValue CInc;
16188
if (findPointerConstIncrement(Addr.getNode(), &Base, &CInc)) {
16189
unsigned Offset =
16190
getPointerConstIncrement(Addr->getOpcode(), Base, CInc, DCI.DAG);
16191
for (SDNode::use_iterator UI = Base->use_begin(), UE = Base->use_end();
16192
UI != UE; ++UI) {
16193
16194
SDNode *User = *UI;
16195
if (UI.getUse().getResNo() != Base.getResNo() || User == Addr.getNode() ||
16196
User->getNumOperands() != 2)
16197
continue;
16198
16199
SDValue UserInc = User->getOperand(UI.getOperandNo() == 0 ? 1 : 0);
16200
unsigned UserOffset =
16201
getPointerConstIncrement(User->getOpcode(), Base, UserInc, DCI.DAG);
16202
16203
if (!UserOffset || UserOffset <= Offset)
16204
continue;
16205
16206
unsigned NewConstInc = UserOffset - Offset;
16207
SDValue NewInc = DCI.DAG.getConstant(NewConstInc, SDLoc(N), MVT::i32);
16208
BaseUpdates.push_back({User, NewInc, NewConstInc});
16209
}
16210
}
16211
16212
// Try to fold the load/store with an update that matches memory
16213
// access size. This should work well for sequential loads.
16214
//
16215
// Filter out invalid updates as well.
16216
unsigned NumValidUpd = BaseUpdates.size();
16217
for (unsigned I = 0; I < NumValidUpd;) {
16218
BaseUpdateUser &User = BaseUpdates[I];
16219
if (!isValidBaseUpdate(N, User.N)) {
16220
--NumValidUpd;
16221
std::swap(BaseUpdates[I], BaseUpdates[NumValidUpd]);
16222
continue;
16223
}
16224
16225
if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/true, DCI))
16226
return SDValue();
16227
++I;
16228
}
16229
BaseUpdates.resize(NumValidUpd);
16230
16231
// Try to fold with other users. Non-constant updates are considered
16232
// first, and constant updates are sorted to not break a sequence of
16233
// strided accesses (if there is any).
16234
std::stable_sort(BaseUpdates.begin(), BaseUpdates.end(),
16235
[](const BaseUpdateUser &LHS, const BaseUpdateUser &RHS) {
16236
return LHS.ConstInc < RHS.ConstInc;
16237
});
16238
for (BaseUpdateUser &User : BaseUpdates) {
16239
if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/false, DCI))
16240
return SDValue();
16241
}
16242
return SDValue();
16243
}
16244
16245
static SDValue PerformVLDCombine(SDNode *N,
16246
TargetLowering::DAGCombinerInfo &DCI) {
16247
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16248
return SDValue();
16249
16250
return CombineBaseUpdate(N, DCI);
16251
}
16252
16253
static SDValue PerformMVEVLDCombine(SDNode *N,
16254
TargetLowering::DAGCombinerInfo &DCI) {
16255
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16256
return SDValue();
16257
16258
SelectionDAG &DAG = DCI.DAG;
16259
SDValue Addr = N->getOperand(2);
16260
MemSDNode *MemN = cast<MemSDNode>(N);
16261
SDLoc dl(N);
16262
16263
// For the stores, where there are multiple intrinsics we only actually want
16264
// to post-inc the last of the them.
16265
unsigned IntNo = N->getConstantOperandVal(1);
16266
if (IntNo == Intrinsic::arm_mve_vst2q && N->getConstantOperandVal(5) != 1)
16267
return SDValue();
16268
if (IntNo == Intrinsic::arm_mve_vst4q && N->getConstantOperandVal(7) != 3)
16269
return SDValue();
16270
16271
// Search for a use of the address operand that is an increment.
16272
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
16273
UE = Addr.getNode()->use_end();
16274
UI != UE; ++UI) {
16275
SDNode *User = *UI;
16276
if (User->getOpcode() != ISD::ADD ||
16277
UI.getUse().getResNo() != Addr.getResNo())
16278
continue;
16279
16280
// Check that the add is independent of the load/store. Otherwise, folding
16281
// it would create a cycle. We can avoid searching through Addr as it's a
16282
// predecessor to both.
16283
SmallPtrSet<const SDNode *, 32> Visited;
16284
SmallVector<const SDNode *, 16> Worklist;
16285
Visited.insert(Addr.getNode());
16286
Worklist.push_back(N);
16287
Worklist.push_back(User);
16288
if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
16289
SDNode::hasPredecessorHelper(User, Visited, Worklist))
16290
continue;
16291
16292
// Find the new opcode for the updating load/store.
16293
bool isLoadOp = true;
16294
unsigned NewOpc = 0;
16295
unsigned NumVecs = 0;
16296
switch (IntNo) {
16297
default:
16298
llvm_unreachable("unexpected intrinsic for MVE VLDn combine");
16299
case Intrinsic::arm_mve_vld2q:
16300
NewOpc = ARMISD::VLD2_UPD;
16301
NumVecs = 2;
16302
break;
16303
case Intrinsic::arm_mve_vld4q:
16304
NewOpc = ARMISD::VLD4_UPD;
16305
NumVecs = 4;
16306
break;
16307
case Intrinsic::arm_mve_vst2q:
16308
NewOpc = ARMISD::VST2_UPD;
16309
NumVecs = 2;
16310
isLoadOp = false;
16311
break;
16312
case Intrinsic::arm_mve_vst4q:
16313
NewOpc = ARMISD::VST4_UPD;
16314
NumVecs = 4;
16315
isLoadOp = false;
16316
break;
16317
}
16318
16319
// Find the size of memory referenced by the load/store.
16320
EVT VecTy;
16321
if (isLoadOp) {
16322
VecTy = N->getValueType(0);
16323
} else {
16324
VecTy = N->getOperand(3).getValueType();
16325
}
16326
16327
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
16328
16329
// If the increment is a constant, it must match the memory ref size.
16330
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
16331
ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
16332
if (!CInc || CInc->getZExtValue() != NumBytes)
16333
continue;
16334
16335
// Create the new updating load/store node.
16336
// First, create an SDVTList for the new updating node's results.
16337
EVT Tys[6];
16338
unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
16339
unsigned n;
16340
for (n = 0; n < NumResultVecs; ++n)
16341
Tys[n] = VecTy;
16342
Tys[n++] = MVT::i32;
16343
Tys[n] = MVT::Other;
16344
SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2));
16345
16346
// Then, gather the new node's operands.
16347
SmallVector<SDValue, 8> Ops;
16348
Ops.push_back(N->getOperand(0)); // incoming chain
16349
Ops.push_back(N->getOperand(2)); // ptr
16350
Ops.push_back(Inc);
16351
16352
for (unsigned i = 3; i < N->getNumOperands(); ++i)
16353
Ops.push_back(N->getOperand(i));
16354
16355
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, VecTy,
16356
MemN->getMemOperand());
16357
16358
// Update the uses.
16359
SmallVector<SDValue, 5> NewResults;
16360
for (unsigned i = 0; i < NumResultVecs; ++i)
16361
NewResults.push_back(SDValue(UpdN.getNode(), i));
16362
16363
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
16364
DCI.CombineTo(N, NewResults);
16365
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
16366
16367
break;
16368
}
16369
16370
return SDValue();
16371
}
16372
16373
/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
16374
/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
16375
/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
16376
/// return true.
16377
static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
16378
SelectionDAG &DAG = DCI.DAG;
16379
EVT VT = N->getValueType(0);
16380
// vldN-dup instructions only support 64-bit vectors for N > 1.
16381
if (!VT.is64BitVector())
16382
return false;
16383
16384
// Check if the VDUPLANE operand is a vldN-dup intrinsic.
16385
SDNode *VLD = N->getOperand(0).getNode();
16386
if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
16387
return false;
16388
unsigned NumVecs = 0;
16389
unsigned NewOpc = 0;
16390
unsigned IntNo = VLD->getConstantOperandVal(1);
16391
if (IntNo == Intrinsic::arm_neon_vld2lane) {
16392
NumVecs = 2;
16393
NewOpc = ARMISD::VLD2DUP;
16394
} else if (IntNo == Intrinsic::arm_neon_vld3lane) {
16395
NumVecs = 3;
16396
NewOpc = ARMISD::VLD3DUP;
16397
} else if (IntNo == Intrinsic::arm_neon_vld4lane) {
16398
NumVecs = 4;
16399
NewOpc = ARMISD::VLD4DUP;
16400
} else {
16401
return false;
16402
}
16403
16404
// First check that all the vldN-lane uses are VDUPLANEs and that the lane
16405
// numbers match the load.
16406
unsigned VLDLaneNo = VLD->getConstantOperandVal(NumVecs + 3);
16407
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
16408
UI != UE; ++UI) {
16409
// Ignore uses of the chain result.
16410
if (UI.getUse().getResNo() == NumVecs)
16411
continue;
16412
SDNode *User = *UI;
16413
if (User->getOpcode() != ARMISD::VDUPLANE ||
16414
VLDLaneNo != User->getConstantOperandVal(1))
16415
return false;
16416
}
16417
16418
// Create the vldN-dup node.
16419
EVT Tys[5];
16420
unsigned n;
16421
for (n = 0; n < NumVecs; ++n)
16422
Tys[n] = VT;
16423
Tys[n] = MVT::Other;
16424
SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumVecs + 1));
16425
SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
16426
MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
16427
SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
16428
Ops, VLDMemInt->getMemoryVT(),
16429
VLDMemInt->getMemOperand());
16430
16431
// Update the uses.
16432
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
16433
UI != UE; ++UI) {
16434
unsigned ResNo = UI.getUse().getResNo();
16435
// Ignore uses of the chain result.
16436
if (ResNo == NumVecs)
16437
continue;
16438
SDNode *User = *UI;
16439
DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
16440
}
16441
16442
// Now the vldN-lane intrinsic is dead except for its chain result.
16443
// Update uses of the chain.
16444
std::vector<SDValue> VLDDupResults;
16445
for (unsigned n = 0; n < NumVecs; ++n)
16446
VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
16447
VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
16448
DCI.CombineTo(VLD, VLDDupResults);
16449
16450
return true;
16451
}
16452
16453
/// PerformVDUPLANECombine - Target-specific dag combine xforms for
16454
/// ARMISD::VDUPLANE.
16455
static SDValue PerformVDUPLANECombine(SDNode *N,
16456
TargetLowering::DAGCombinerInfo &DCI,
16457
const ARMSubtarget *Subtarget) {
16458
SDValue Op = N->getOperand(0);
16459
EVT VT = N->getValueType(0);
16460
16461
// On MVE, we just convert the VDUPLANE to a VDUP with an extract.
16462
if (Subtarget->hasMVEIntegerOps()) {
16463
EVT ExtractVT = VT.getVectorElementType();
16464
// We need to ensure we are creating a legal type.
16465
if (!DCI.DAG.getTargetLoweringInfo().isTypeLegal(ExtractVT))
16466
ExtractVT = MVT::i32;
16467
SDValue Extract = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ExtractVT,
16468
N->getOperand(0), N->getOperand(1));
16469
return DCI.DAG.getNode(ARMISD::VDUP, SDLoc(N), VT, Extract);
16470
}
16471
16472
// If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
16473
// of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
16474
if (CombineVLDDUP(N, DCI))
16475
return SDValue(N, 0);
16476
16477
// If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
16478
// redundant. Ignore bit_converts for now; element sizes are checked below.
16479
while (Op.getOpcode() == ISD::BITCAST)
16480
Op = Op.getOperand(0);
16481
if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
16482
return SDValue();
16483
16484
// Make sure the VMOV element size is not bigger than the VDUPLANE elements.
16485
unsigned EltSize = Op.getScalarValueSizeInBits();
16486
// The canonical VMOV for a zero vector uses a 32-bit element size.
16487
unsigned Imm = Op.getConstantOperandVal(0);
16488
unsigned EltBits;
16489
if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
16490
EltSize = 8;
16491
if (EltSize > VT.getScalarSizeInBits())
16492
return SDValue();
16493
16494
return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
16495
}
16496
16497
/// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
16498
static SDValue PerformVDUPCombine(SDNode *N, SelectionDAG &DAG,
16499
const ARMSubtarget *Subtarget) {
16500
SDValue Op = N->getOperand(0);
16501
SDLoc dl(N);
16502
16503
if (Subtarget->hasMVEIntegerOps()) {
16504
// Convert VDUP f32 -> VDUP BITCAST i32 under MVE, as we know the value will
16505
// need to come from a GPR.
16506
if (Op.getValueType() == MVT::f32)
16507
return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
16508
DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op));
16509
else if (Op.getValueType() == MVT::f16)
16510
return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
16511
DAG.getNode(ARMISD::VMOVrh, dl, MVT::i32, Op));
16512
}
16513
16514
if (!Subtarget->hasNEON())
16515
return SDValue();
16516
16517
// Match VDUP(LOAD) -> VLD1DUP.
16518
// We match this pattern here rather than waiting for isel because the
16519
// transform is only legal for unindexed loads.
16520
LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
16521
if (LD && Op.hasOneUse() && LD->isUnindexed() &&
16522
LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
16523
SDValue Ops[] = {LD->getOperand(0), LD->getOperand(1),
16524
DAG.getConstant(LD->getAlign().value(), SDLoc(N), MVT::i32)};
16525
SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
16526
SDValue VLDDup =
16527
DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys, Ops,
16528
LD->getMemoryVT(), LD->getMemOperand());
16529
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
16530
return VLDDup;
16531
}
16532
16533
return SDValue();
16534
}
16535
16536
static SDValue PerformLOADCombine(SDNode *N,
16537
TargetLowering::DAGCombinerInfo &DCI,
16538
const ARMSubtarget *Subtarget) {
16539
EVT VT = N->getValueType(0);
16540
16541
// If this is a legal vector load, try to combine it into a VLD1_UPD.
16542
if (Subtarget->hasNEON() && ISD::isNormalLoad(N) && VT.isVector() &&
16543
DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
16544
return CombineBaseUpdate(N, DCI);
16545
16546
return SDValue();
16547
}
16548
16549
// Optimize trunc store (of multiple scalars) to shuffle and store. First,
16550
// pack all of the elements in one place. Next, store to memory in fewer
16551
// chunks.
16552
static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
16553
SelectionDAG &DAG) {
16554
SDValue StVal = St->getValue();
16555
EVT VT = StVal.getValueType();
16556
if (!St->isTruncatingStore() || !VT.isVector())
16557
return SDValue();
16558
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16559
EVT StVT = St->getMemoryVT();
16560
unsigned NumElems = VT.getVectorNumElements();
16561
assert(StVT != VT && "Cannot truncate to the same type");
16562
unsigned FromEltSz = VT.getScalarSizeInBits();
16563
unsigned ToEltSz = StVT.getScalarSizeInBits();
16564
16565
// From, To sizes and ElemCount must be pow of two
16566
if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
16567
return SDValue();
16568
16569
// We are going to use the original vector elt for storing.
16570
// Accumulated smaller vector elements must be a multiple of the store size.
16571
if (0 != (NumElems * FromEltSz) % ToEltSz)
16572
return SDValue();
16573
16574
unsigned SizeRatio = FromEltSz / ToEltSz;
16575
assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
16576
16577
// Create a type on which we perform the shuffle.
16578
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
16579
NumElems * SizeRatio);
16580
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16581
16582
SDLoc DL(St);
16583
SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
16584
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16585
for (unsigned i = 0; i < NumElems; ++i)
16586
ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
16587
: i * SizeRatio;
16588
16589
// Can't shuffle using an illegal type.
16590
if (!TLI.isTypeLegal(WideVecVT))
16591
return SDValue();
16592
16593
SDValue Shuff = DAG.getVectorShuffle(
16594
WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
16595
// At this point all of the data is stored at the bottom of the
16596
// register. We now need to save it to mem.
16597
16598
// Find the largest store unit
16599
MVT StoreType = MVT::i8;
16600
for (MVT Tp : MVT::integer_valuetypes()) {
16601
if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
16602
StoreType = Tp;
16603
}
16604
// Didn't find a legal store type.
16605
if (!TLI.isTypeLegal(StoreType))
16606
return SDValue();
16607
16608
// Bitcast the original vector into a vector of store-size units
16609
EVT StoreVecVT =
16610
EVT::getVectorVT(*DAG.getContext(), StoreType,
16611
VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
16612
assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16613
SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
16614
SmallVector<SDValue, 8> Chains;
16615
SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
16616
TLI.getPointerTy(DAG.getDataLayout()));
16617
SDValue BasePtr = St->getBasePtr();
16618
16619
// Perform one or more big stores into memory.
16620
unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
16621
for (unsigned I = 0; I < E; I++) {
16622
SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
16623
ShuffWide, DAG.getIntPtrConstant(I, DL));
16624
SDValue Ch =
16625
DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
16626
St->getAlign(), St->getMemOperand()->getFlags());
16627
BasePtr =
16628
DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
16629
Chains.push_back(Ch);
16630
}
16631
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
16632
}
16633
16634
// Try taking a single vector store from an fpround (which would otherwise turn
16635
// into an expensive buildvector) and splitting it into a series of narrowing
16636
// stores.
16637
static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
16638
SelectionDAG &DAG) {
16639
if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16640
return SDValue();
16641
SDValue Trunc = St->getValue();
16642
if (Trunc->getOpcode() != ISD::FP_ROUND)
16643
return SDValue();
16644
EVT FromVT = Trunc->getOperand(0).getValueType();
16645
EVT ToVT = Trunc.getValueType();
16646
if (!ToVT.isVector())
16647
return SDValue();
16648
assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
16649
EVT ToEltVT = ToVT.getVectorElementType();
16650
EVT FromEltVT = FromVT.getVectorElementType();
16651
16652
if (FromEltVT != MVT::f32 || ToEltVT != MVT::f16)
16653
return SDValue();
16654
16655
unsigned NumElements = 4;
16656
if (FromVT.getVectorNumElements() % NumElements != 0)
16657
return SDValue();
16658
16659
// Test if the Trunc will be convertable to a VMOVN with a shuffle, and if so
16660
// use the VMOVN over splitting the store. We are looking for patterns of:
16661
// !rev: 0 N 1 N+1 2 N+2 ...
16662
// rev: N 0 N+1 1 N+2 2 ...
16663
// The shuffle may either be a single source (in which case N = NumElts/2) or
16664
// two inputs extended with concat to the same size (in which case N =
16665
// NumElts).
16666
auto isVMOVNShuffle = [&](ShuffleVectorSDNode *SVN, bool Rev) {
16667
ArrayRef<int> M = SVN->getMask();
16668
unsigned NumElts = ToVT.getVectorNumElements();
16669
if (SVN->getOperand(1).isUndef())
16670
NumElts /= 2;
16671
16672
unsigned Off0 = Rev ? NumElts : 0;
16673
unsigned Off1 = Rev ? 0 : NumElts;
16674
16675
for (unsigned I = 0; I < NumElts; I += 2) {
16676
if (M[I] >= 0 && M[I] != (int)(Off0 + I / 2))
16677
return false;
16678
if (M[I + 1] >= 0 && M[I + 1] != (int)(Off1 + I / 2))
16679
return false;
16680
}
16681
16682
return true;
16683
};
16684
16685
if (auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Trunc.getOperand(0)))
16686
if (isVMOVNShuffle(Shuffle, false) || isVMOVNShuffle(Shuffle, true))
16687
return SDValue();
16688
16689
LLVMContext &C = *DAG.getContext();
16690
SDLoc DL(St);
16691
// Details about the old store
16692
SDValue Ch = St->getChain();
16693
SDValue BasePtr = St->getBasePtr();
16694
Align Alignment = St->getOriginalAlign();
16695
MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16696
AAMDNodes AAInfo = St->getAAInfo();
16697
16698
// We split the store into slices of NumElements. fp16 trunc stores are vcvt
16699
// and then stored as truncating integer stores.
16700
EVT NewFromVT = EVT::getVectorVT(C, FromEltVT, NumElements);
16701
EVT NewToVT = EVT::getVectorVT(
16702
C, EVT::getIntegerVT(C, ToEltVT.getSizeInBits()), NumElements);
16703
16704
SmallVector<SDValue, 4> Stores;
16705
for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
16706
unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
16707
SDValue NewPtr =
16708
DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
16709
16710
SDValue Extract =
16711
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
16712
DAG.getConstant(i * NumElements, DL, MVT::i32));
16713
16714
SDValue FPTrunc =
16715
DAG.getNode(ARMISD::VCVTN, DL, MVT::v8f16, DAG.getUNDEF(MVT::v8f16),
16716
Extract, DAG.getConstant(0, DL, MVT::i32));
16717
Extract = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v4i32, FPTrunc);
16718
16719
SDValue Store = DAG.getTruncStore(
16720
Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
16721
NewToVT, Alignment, MMOFlags, AAInfo);
16722
Stores.push_back(Store);
16723
}
16724
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
16725
}
16726
16727
// Try taking a single vector store from an MVETRUNC (which would otherwise turn
16728
// into an expensive buildvector) and splitting it into a series of narrowing
16729
// stores.
16730
static SDValue PerformSplittingMVETruncToNarrowingStores(StoreSDNode *St,
16731
SelectionDAG &DAG) {
16732
if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16733
return SDValue();
16734
SDValue Trunc = St->getValue();
16735
if (Trunc->getOpcode() != ARMISD::MVETRUNC)
16736
return SDValue();
16737
EVT FromVT = Trunc->getOperand(0).getValueType();
16738
EVT ToVT = Trunc.getValueType();
16739
16740
LLVMContext &C = *DAG.getContext();
16741
SDLoc DL(St);
16742
// Details about the old store
16743
SDValue Ch = St->getChain();
16744
SDValue BasePtr = St->getBasePtr();
16745
Align Alignment = St->getOriginalAlign();
16746
MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16747
AAMDNodes AAInfo = St->getAAInfo();
16748
16749
EVT NewToVT = EVT::getVectorVT(C, ToVT.getVectorElementType(),
16750
FromVT.getVectorNumElements());
16751
16752
SmallVector<SDValue, 4> Stores;
16753
for (unsigned i = 0; i < Trunc.getNumOperands(); i++) {
16754
unsigned NewOffset =
16755
i * FromVT.getVectorNumElements() * ToVT.getScalarSizeInBits() / 8;
16756
SDValue NewPtr =
16757
DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
16758
16759
SDValue Extract = Trunc.getOperand(i);
16760
SDValue Store = DAG.getTruncStore(
16761
Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
16762
NewToVT, Alignment, MMOFlags, AAInfo);
16763
Stores.push_back(Store);
16764
}
16765
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
16766
}
16767
16768
// Given a floating point store from an extracted vector, with an integer
16769
// VGETLANE that already exists, store the existing VGETLANEu directly. This can
16770
// help reduce fp register pressure, doesn't require the fp extract and allows
16771
// use of more integer post-inc stores not available with vstr.
16772
static SDValue PerformExtractFpToIntStores(StoreSDNode *St, SelectionDAG &DAG) {
16773
if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16774
return SDValue();
16775
SDValue Extract = St->getValue();
16776
EVT VT = Extract.getValueType();
16777
// For now only uses f16. This may be useful for f32 too, but that will
16778
// be bitcast(extract), not the VGETLANEu we currently check here.
16779
if (VT != MVT::f16 || Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
16780
return SDValue();
16781
16782
SDNode *GetLane =
16783
DAG.getNodeIfExists(ARMISD::VGETLANEu, DAG.getVTList(MVT::i32),
16784
{Extract.getOperand(0), Extract.getOperand(1)});
16785
if (!GetLane)
16786
return SDValue();
16787
16788
LLVMContext &C = *DAG.getContext();
16789
SDLoc DL(St);
16790
// Create a new integer store to replace the existing floating point version.
16791
SDValue Ch = St->getChain();
16792
SDValue BasePtr = St->getBasePtr();
16793
Align Alignment = St->getOriginalAlign();
16794
MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16795
AAMDNodes AAInfo = St->getAAInfo();
16796
EVT NewToVT = EVT::getIntegerVT(C, VT.getSizeInBits());
16797
SDValue Store = DAG.getTruncStore(Ch, DL, SDValue(GetLane, 0), BasePtr,
16798
St->getPointerInfo(), NewToVT, Alignment,
16799
MMOFlags, AAInfo);
16800
16801
return Store;
16802
}
16803
16804
/// PerformSTORECombine - Target-specific dag combine xforms for
16805
/// ISD::STORE.
16806
static SDValue PerformSTORECombine(SDNode *N,
16807
TargetLowering::DAGCombinerInfo &DCI,
16808
const ARMSubtarget *Subtarget) {
16809
StoreSDNode *St = cast<StoreSDNode>(N);
16810
if (St->isVolatile())
16811
return SDValue();
16812
SDValue StVal = St->getValue();
16813
EVT VT = StVal.getValueType();
16814
16815
if (Subtarget->hasNEON())
16816
if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
16817
return Store;
16818
16819
if (Subtarget->hasMVEFloatOps())
16820
if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
16821
return NewToken;
16822
16823
if (Subtarget->hasMVEIntegerOps()) {
16824
if (SDValue NewChain = PerformExtractFpToIntStores(St, DCI.DAG))
16825
return NewChain;
16826
if (SDValue NewToken =
16827
PerformSplittingMVETruncToNarrowingStores(St, DCI.DAG))
16828
return NewToken;
16829
}
16830
16831
if (!ISD::isNormalStore(St))
16832
return SDValue();
16833
16834
// Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
16835
// ARM stores of arguments in the same cache line.
16836
if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
16837
StVal.getNode()->hasOneUse()) {
16838
SelectionDAG &DAG = DCI.DAG;
16839
bool isBigEndian = DAG.getDataLayout().isBigEndian();
16840
SDLoc DL(St);
16841
SDValue BasePtr = St->getBasePtr();
16842
SDValue NewST1 = DAG.getStore(
16843
St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
16844
BasePtr, St->getPointerInfo(), St->getOriginalAlign(),
16845
St->getMemOperand()->getFlags());
16846
16847
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
16848
DAG.getConstant(4, DL, MVT::i32));
16849
return DAG.getStore(NewST1.getValue(0), DL,
16850
StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
16851
OffsetPtr, St->getPointerInfo().getWithOffset(4),
16852
St->getOriginalAlign(),
16853
St->getMemOperand()->getFlags());
16854
}
16855
16856
if (StVal.getValueType() == MVT::i64 &&
16857
StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
16858
16859
// Bitcast an i64 store extracted from a vector to f64.
16860
// Otherwise, the i64 value will be legalized to a pair of i32 values.
16861
SelectionDAG &DAG = DCI.DAG;
16862
SDLoc dl(StVal);
16863
SDValue IntVec = StVal.getOperand(0);
16864
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
16865
IntVec.getValueType().getVectorNumElements());
16866
SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
16867
SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
16868
Vec, StVal.getOperand(1));
16869
dl = SDLoc(N);
16870
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
16871
// Make the DAGCombiner fold the bitcasts.
16872
DCI.AddToWorklist(Vec.getNode());
16873
DCI.AddToWorklist(ExtElt.getNode());
16874
DCI.AddToWorklist(V.getNode());
16875
return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
16876
St->getPointerInfo(), St->getAlign(),
16877
St->getMemOperand()->getFlags(), St->getAAInfo());
16878
}
16879
16880
// If this is a legal vector store, try to combine it into a VST1_UPD.
16881
if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
16882
DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
16883
return CombineBaseUpdate(N, DCI);
16884
16885
return SDValue();
16886
}
16887
16888
/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
16889
/// can replace combinations of VMUL and VCVT (floating-point to integer)
16890
/// when the VMUL has a constant operand that is a power of 2.
16891
///
16892
/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
16893
/// vmul.f32 d16, d17, d16
16894
/// vcvt.s32.f32 d16, d16
16895
/// becomes:
16896
/// vcvt.s32.f32 d16, d16, #3
16897
static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
16898
const ARMSubtarget *Subtarget) {
16899
if (!Subtarget->hasNEON())
16900
return SDValue();
16901
16902
SDValue Op = N->getOperand(0);
16903
if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
16904
Op.getOpcode() != ISD::FMUL)
16905
return SDValue();
16906
16907
SDValue ConstVec = Op->getOperand(1);
16908
if (!isa<BuildVectorSDNode>(ConstVec))
16909
return SDValue();
16910
16911
MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
16912
uint32_t FloatBits = FloatTy.getSizeInBits();
16913
MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
16914
uint32_t IntBits = IntTy.getSizeInBits();
16915
unsigned NumLanes = Op.getValueType().getVectorNumElements();
16916
if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
16917
// These instructions only exist converting from f32 to i32. We can handle
16918
// smaller integers by generating an extra truncate, but larger ones would
16919
// be lossy. We also can't handle anything other than 2 or 4 lanes, since
16920
// these intructions only support v2i32/v4i32 types.
16921
return SDValue();
16922
}
16923
16924
BitVector UndefElements;
16925
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
16926
int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
16927
if (C == -1 || C == 0 || C > 32)
16928
return SDValue();
16929
16930
SDLoc dl(N);
16931
bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
16932
unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
16933
Intrinsic::arm_neon_vcvtfp2fxu;
16934
SDValue FixConv = DAG.getNode(
16935
ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
16936
DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
16937
DAG.getConstant(C, dl, MVT::i32));
16938
16939
if (IntBits < FloatBits)
16940
FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
16941
16942
return FixConv;
16943
}
16944
16945
static SDValue PerformFAddVSelectCombine(SDNode *N, SelectionDAG &DAG,
16946
const ARMSubtarget *Subtarget) {
16947
if (!Subtarget->hasMVEFloatOps())
16948
return SDValue();
16949
16950
// Turn (fadd x, (vselect c, y, -0.0)) into (vselect c, (fadd x, y), x)
16951
// The second form can be more easily turned into a predicated vadd, and
16952
// possibly combined into a fma to become a predicated vfma.
16953
SDValue Op0 = N->getOperand(0);
16954
SDValue Op1 = N->getOperand(1);
16955
EVT VT = N->getValueType(0);
16956
SDLoc DL(N);
16957
16958
// The identity element for a fadd is -0.0 or +0.0 when the nsz flag is set,
16959
// which these VMOV's represent.
16960
auto isIdentitySplat = [&](SDValue Op, bool NSZ) {
16961
if (Op.getOpcode() != ISD::BITCAST ||
16962
Op.getOperand(0).getOpcode() != ARMISD::VMOVIMM)
16963
return false;
16964
uint64_t ImmVal = Op.getOperand(0).getConstantOperandVal(0);
16965
if (VT == MVT::v4f32 && (ImmVal == 1664 || (ImmVal == 0 && NSZ)))
16966
return true;
16967
if (VT == MVT::v8f16 && (ImmVal == 2688 || (ImmVal == 0 && NSZ)))
16968
return true;
16969
return false;
16970
};
16971
16972
if (Op0.getOpcode() == ISD::VSELECT && Op1.getOpcode() != ISD::VSELECT)
16973
std::swap(Op0, Op1);
16974
16975
if (Op1.getOpcode() != ISD::VSELECT)
16976
return SDValue();
16977
16978
SDNodeFlags FaddFlags = N->getFlags();
16979
bool NSZ = FaddFlags.hasNoSignedZeros();
16980
if (!isIdentitySplat(Op1.getOperand(2), NSZ))
16981
return SDValue();
16982
16983
SDValue FAdd =
16984
DAG.getNode(ISD::FADD, DL, VT, Op0, Op1.getOperand(1), FaddFlags);
16985
return DAG.getNode(ISD::VSELECT, DL, VT, Op1.getOperand(0), FAdd, Op0, FaddFlags);
16986
}
16987
16988
static SDValue PerformFADDVCMLACombine(SDNode *N, SelectionDAG &DAG) {
16989
SDValue LHS = N->getOperand(0);
16990
SDValue RHS = N->getOperand(1);
16991
EVT VT = N->getValueType(0);
16992
SDLoc DL(N);
16993
16994
if (!N->getFlags().hasAllowReassociation())
16995
return SDValue();
16996
16997
// Combine fadd(a, vcmla(b, c, d)) -> vcmla(fadd(a, b), b, c)
16998
auto ReassocComplex = [&](SDValue A, SDValue B) {
16999
if (A.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
17000
return SDValue();
17001
unsigned Opc = A.getConstantOperandVal(0);
17002
if (Opc != Intrinsic::arm_mve_vcmlaq)
17003
return SDValue();
17004
SDValue VCMLA = DAG.getNode(
17005
ISD::INTRINSIC_WO_CHAIN, DL, VT, A.getOperand(0), A.getOperand(1),
17006
DAG.getNode(ISD::FADD, DL, VT, A.getOperand(2), B, N->getFlags()),
17007
A.getOperand(3), A.getOperand(4));
17008
VCMLA->setFlags(A->getFlags());
17009
return VCMLA;
17010
};
17011
if (SDValue R = ReassocComplex(LHS, RHS))
17012
return R;
17013
if (SDValue R = ReassocComplex(RHS, LHS))
17014
return R;
17015
17016
return SDValue();
17017
}
17018
17019
static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
17020
const ARMSubtarget *Subtarget) {
17021
if (SDValue S = PerformFAddVSelectCombine(N, DAG, Subtarget))
17022
return S;
17023
if (SDValue S = PerformFADDVCMLACombine(N, DAG))
17024
return S;
17025
return SDValue();
17026
}
17027
17028
/// PerformVMulVCTPCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
17029
/// can replace combinations of VCVT (integer to floating-point) and VMUL
17030
/// when the VMUL has a constant operand that is a power of 2.
17031
///
17032
/// Example (assume d17 = <float 0.125, float 0.125>):
17033
/// vcvt.f32.s32 d16, d16
17034
/// vmul.f32 d16, d16, d17
17035
/// becomes:
17036
/// vcvt.f32.s32 d16, d16, #3
17037
static SDValue PerformVMulVCTPCombine(SDNode *N, SelectionDAG &DAG,
17038
const ARMSubtarget *Subtarget) {
17039
if (!Subtarget->hasNEON())
17040
return SDValue();
17041
17042
SDValue Op = N->getOperand(0);
17043
unsigned OpOpcode = Op.getNode()->getOpcode();
17044
if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
17045
(OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
17046
return SDValue();
17047
17048
SDValue ConstVec = N->getOperand(1);
17049
if (!isa<BuildVectorSDNode>(ConstVec))
17050
return SDValue();
17051
17052
MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
17053
uint32_t FloatBits = FloatTy.getSizeInBits();
17054
MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
17055
uint32_t IntBits = IntTy.getSizeInBits();
17056
unsigned NumLanes = Op.getValueType().getVectorNumElements();
17057
if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
17058
// These instructions only exist converting from i32 to f32. We can handle
17059
// smaller integers by generating an extra extend, but larger ones would
17060
// be lossy. We also can't handle anything other than 2 or 4 lanes, since
17061
// these intructions only support v2i32/v4i32 types.
17062
return SDValue();
17063
}
17064
17065
ConstantFPSDNode *CN = isConstOrConstSplatFP(ConstVec, true);
17066
APFloat Recip(0.0f);
17067
if (!CN || !CN->getValueAPF().getExactInverse(&Recip))
17068
return SDValue();
17069
17070
bool IsExact;
17071
APSInt IntVal(33);
17072
if (Recip.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
17073
APFloat::opOK ||
17074
!IsExact)
17075
return SDValue();
17076
17077
int32_t C = IntVal.exactLogBase2();
17078
if (C == -1 || C == 0 || C > 32)
17079
return SDValue();
17080
17081
SDLoc DL(N);
17082
bool isSigned = OpOpcode == ISD::SINT_TO_FP;
17083
SDValue ConvInput = Op.getOperand(0);
17084
if (IntBits < FloatBits)
17085
ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
17086
NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, ConvInput);
17087
17088
unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp
17089
: Intrinsic::arm_neon_vcvtfxu2fp;
17090
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
17091
DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
17092
DAG.getConstant(C, DL, MVT::i32));
17093
}
17094
17095
static SDValue PerformVECREDUCE_ADDCombine(SDNode *N, SelectionDAG &DAG,
17096
const ARMSubtarget *ST) {
17097
if (!ST->hasMVEIntegerOps())
17098
return SDValue();
17099
17100
assert(N->getOpcode() == ISD::VECREDUCE_ADD);
17101
EVT ResVT = N->getValueType(0);
17102
SDValue N0 = N->getOperand(0);
17103
SDLoc dl(N);
17104
17105
// Try to turn vecreduce_add(add(x, y)) into vecreduce(x) + vecreduce(y)
17106
if (ResVT == MVT::i32 && N0.getOpcode() == ISD::ADD &&
17107
(N0.getValueType() == MVT::v4i32 || N0.getValueType() == MVT::v8i16 ||
17108
N0.getValueType() == MVT::v16i8)) {
17109
SDValue Red0 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(0));
17110
SDValue Red1 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(1));
17111
return DAG.getNode(ISD::ADD, dl, ResVT, Red0, Red1);
17112
}
17113
17114
// We are looking for something that will have illegal types if left alone,
17115
// but that we can convert to a single instruction under MVE. For example
17116
// vecreduce_add(sext(A, v8i32)) => VADDV.s16 A
17117
// or
17118
// vecreduce_add(mul(zext(A, v16i32), zext(B, v16i32))) => VMLADAV.u8 A, B
17119
17120
// The legal cases are:
17121
// VADDV u/s 8/16/32
17122
// VMLAV u/s 8/16/32
17123
// VADDLV u/s 32
17124
// VMLALV u/s 16/32
17125
17126
// If the input vector is smaller than legal (v4i8/v4i16 for example) we can
17127
// extend it and use v4i32 instead.
17128
auto ExtTypeMatches = [](SDValue A, ArrayRef<MVT> ExtTypes) {
17129
EVT AVT = A.getValueType();
17130
return any_of(ExtTypes, [&](MVT Ty) {
17131
return AVT.getVectorNumElements() == Ty.getVectorNumElements() &&
17132
AVT.bitsLE(Ty);
17133
});
17134
};
17135
auto ExtendIfNeeded = [&](SDValue A, unsigned ExtendCode) {
17136
EVT AVT = A.getValueType();
17137
if (!AVT.is128BitVector())
17138
A = DAG.getNode(ExtendCode, dl,
17139
AVT.changeVectorElementType(MVT::getIntegerVT(
17140
128 / AVT.getVectorMinNumElements())),
17141
A);
17142
return A;
17143
};
17144
auto IsVADDV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes) {
17145
if (ResVT != RetTy || N0->getOpcode() != ExtendCode)
17146
return SDValue();
17147
SDValue A = N0->getOperand(0);
17148
if (ExtTypeMatches(A, ExtTypes))
17149
return ExtendIfNeeded(A, ExtendCode);
17150
return SDValue();
17151
};
17152
auto IsPredVADDV = [&](MVT RetTy, unsigned ExtendCode,
17153
ArrayRef<MVT> ExtTypes, SDValue &Mask) {
17154
if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
17155
!ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
17156
return SDValue();
17157
Mask = N0->getOperand(0);
17158
SDValue Ext = N0->getOperand(1);
17159
if (Ext->getOpcode() != ExtendCode)
17160
return SDValue();
17161
SDValue A = Ext->getOperand(0);
17162
if (ExtTypeMatches(A, ExtTypes))
17163
return ExtendIfNeeded(A, ExtendCode);
17164
return SDValue();
17165
};
17166
auto IsVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
17167
SDValue &A, SDValue &B) {
17168
// For a vmla we are trying to match a larger pattern:
17169
// ExtA = sext/zext A
17170
// ExtB = sext/zext B
17171
// Mul = mul ExtA, ExtB
17172
// vecreduce.add Mul
17173
// There might also be en extra extend between the mul and the addreduce, so
17174
// long as the bitwidth is high enough to make them equivalent (for example
17175
// original v8i16 might be mul at v8i32 and the reduce happens at v8i64).
17176
if (ResVT != RetTy)
17177
return false;
17178
SDValue Mul = N0;
17179
if (Mul->getOpcode() == ExtendCode &&
17180
Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
17181
ResVT.getScalarSizeInBits())
17182
Mul = Mul->getOperand(0);
17183
if (Mul->getOpcode() != ISD::MUL)
17184
return false;
17185
SDValue ExtA = Mul->getOperand(0);
17186
SDValue ExtB = Mul->getOperand(1);
17187
if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode)
17188
return false;
17189
A = ExtA->getOperand(0);
17190
B = ExtB->getOperand(0);
17191
if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) {
17192
A = ExtendIfNeeded(A, ExtendCode);
17193
B = ExtendIfNeeded(B, ExtendCode);
17194
return true;
17195
}
17196
return false;
17197
};
17198
auto IsPredVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
17199
SDValue &A, SDValue &B, SDValue &Mask) {
17200
// Same as the pattern above with a select for the zero predicated lanes
17201
// ExtA = sext/zext A
17202
// ExtB = sext/zext B
17203
// Mul = mul ExtA, ExtB
17204
// N0 = select Mask, Mul, 0
17205
// vecreduce.add N0
17206
if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
17207
!ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
17208
return false;
17209
Mask = N0->getOperand(0);
17210
SDValue Mul = N0->getOperand(1);
17211
if (Mul->getOpcode() == ExtendCode &&
17212
Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
17213
ResVT.getScalarSizeInBits())
17214
Mul = Mul->getOperand(0);
17215
if (Mul->getOpcode() != ISD::MUL)
17216
return false;
17217
SDValue ExtA = Mul->getOperand(0);
17218
SDValue ExtB = Mul->getOperand(1);
17219
if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode)
17220
return false;
17221
A = ExtA->getOperand(0);
17222
B = ExtB->getOperand(0);
17223
if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) {
17224
A = ExtendIfNeeded(A, ExtendCode);
17225
B = ExtendIfNeeded(B, ExtendCode);
17226
return true;
17227
}
17228
return false;
17229
};
17230
auto Create64bitNode = [&](unsigned Opcode, ArrayRef<SDValue> Ops) {
17231
// Split illegal MVT::v16i8->i64 vector reductions into two legal v8i16->i64
17232
// reductions. The operands are extended with MVEEXT, but as they are
17233
// reductions the lane orders do not matter. MVEEXT may be combined with
17234
// loads to produce two extending loads, or else they will be expanded to
17235
// VREV/VMOVL.
17236
EVT VT = Ops[0].getValueType();
17237
if (VT == MVT::v16i8) {
17238
assert((Opcode == ARMISD::VMLALVs || Opcode == ARMISD::VMLALVu) &&
17239
"Unexpected illegal long reduction opcode");
17240
bool IsUnsigned = Opcode == ARMISD::VMLALVu;
17241
17242
SDValue Ext0 =
17243
DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl,
17244
DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[0]);
17245
SDValue Ext1 =
17246
DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl,
17247
DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[1]);
17248
17249
SDValue MLA0 = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
17250
Ext0, Ext1);
17251
SDValue MLA1 =
17252
DAG.getNode(IsUnsigned ? ARMISD::VMLALVAu : ARMISD::VMLALVAs, dl,
17253
DAG.getVTList(MVT::i32, MVT::i32), MLA0, MLA0.getValue(1),
17254
Ext0.getValue(1), Ext1.getValue(1));
17255
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, MLA1, MLA1.getValue(1));
17256
}
17257
SDValue Node = DAG.getNode(Opcode, dl, {MVT::i32, MVT::i32}, Ops);
17258
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Node,
17259
SDValue(Node.getNode(), 1));
17260
};
17261
17262
SDValue A, B;
17263
SDValue Mask;
17264
if (IsVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
17265
return DAG.getNode(ARMISD::VMLAVs, dl, ResVT, A, B);
17266
if (IsVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
17267
return DAG.getNode(ARMISD::VMLAVu, dl, ResVT, A, B);
17268
if (IsVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
17269
A, B))
17270
return Create64bitNode(ARMISD::VMLALVs, {A, B});
17271
if (IsVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
17272
A, B))
17273
return Create64bitNode(ARMISD::VMLALVu, {A, B});
17274
if (IsVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B))
17275
return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17276
DAG.getNode(ARMISD::VMLAVs, dl, MVT::i32, A, B));
17277
if (IsVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B))
17278
return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17279
DAG.getNode(ARMISD::VMLAVu, dl, MVT::i32, A, B));
17280
17281
if (IsPredVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B,
17282
Mask))
17283
return DAG.getNode(ARMISD::VMLAVps, dl, ResVT, A, B, Mask);
17284
if (IsPredVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B,
17285
Mask))
17286
return DAG.getNode(ARMISD::VMLAVpu, dl, ResVT, A, B, Mask);
17287
if (IsPredVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B,
17288
Mask))
17289
return Create64bitNode(ARMISD::VMLALVps, {A, B, Mask});
17290
if (IsPredVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B,
17291
Mask))
17292
return Create64bitNode(ARMISD::VMLALVpu, {A, B, Mask});
17293
if (IsPredVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B, Mask))
17294
return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17295
DAG.getNode(ARMISD::VMLAVps, dl, MVT::i32, A, B, Mask));
17296
if (IsPredVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B, Mask))
17297
return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17298
DAG.getNode(ARMISD::VMLAVpu, dl, MVT::i32, A, B, Mask));
17299
17300
if (SDValue A = IsVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}))
17301
return DAG.getNode(ARMISD::VADDVs, dl, ResVT, A);
17302
if (SDValue A = IsVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}))
17303
return DAG.getNode(ARMISD::VADDVu, dl, ResVT, A);
17304
if (SDValue A = IsVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}))
17305
return Create64bitNode(ARMISD::VADDLVs, {A});
17306
if (SDValue A = IsVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}))
17307
return Create64bitNode(ARMISD::VADDLVu, {A});
17308
if (SDValue A = IsVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}))
17309
return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17310
DAG.getNode(ARMISD::VADDVs, dl, MVT::i32, A));
17311
if (SDValue A = IsVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}))
17312
return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17313
DAG.getNode(ARMISD::VADDVu, dl, MVT::i32, A));
17314
17315
if (SDValue A = IsPredVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
17316
return DAG.getNode(ARMISD::VADDVps, dl, ResVT, A, Mask);
17317
if (SDValue A = IsPredVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
17318
return DAG.getNode(ARMISD::VADDVpu, dl, ResVT, A, Mask);
17319
if (SDValue A = IsPredVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}, Mask))
17320
return Create64bitNode(ARMISD::VADDLVps, {A, Mask});
17321
if (SDValue A = IsPredVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}, Mask))
17322
return Create64bitNode(ARMISD::VADDLVpu, {A, Mask});
17323
if (SDValue A = IsPredVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, Mask))
17324
return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17325
DAG.getNode(ARMISD::VADDVps, dl, MVT::i32, A, Mask));
17326
if (SDValue A = IsPredVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, Mask))
17327
return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17328
DAG.getNode(ARMISD::VADDVpu, dl, MVT::i32, A, Mask));
17329
17330
// Some complications. We can get a case where the two inputs of the mul are
17331
// the same, then the output sext will have been helpfully converted to a
17332
// zext. Turn it back.
17333
SDValue Op = N0;
17334
if (Op->getOpcode() == ISD::VSELECT)
17335
Op = Op->getOperand(1);
17336
if (Op->getOpcode() == ISD::ZERO_EXTEND &&
17337
Op->getOperand(0)->getOpcode() == ISD::MUL) {
17338
SDValue Mul = Op->getOperand(0);
17339
if (Mul->getOperand(0) == Mul->getOperand(1) &&
17340
Mul->getOperand(0)->getOpcode() == ISD::SIGN_EXTEND) {
17341
SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, N0->getValueType(0), Mul);
17342
if (Op != N0)
17343
Ext = DAG.getNode(ISD::VSELECT, dl, N0->getValueType(0),
17344
N0->getOperand(0), Ext, N0->getOperand(2));
17345
return DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, Ext);
17346
}
17347
}
17348
17349
return SDValue();
17350
}
17351
17352
// Looks for vaddv(shuffle) or vmlav(shuffle, shuffle), with a shuffle where all
17353
// the lanes are used. Due to the reduction being commutative the shuffle can be
17354
// removed.
17355
static SDValue PerformReduceShuffleCombine(SDNode *N, SelectionDAG &DAG) {
17356
unsigned VecOp = N->getOperand(0).getValueType().isVector() ? 0 : 2;
17357
auto *Shuf = dyn_cast<ShuffleVectorSDNode>(N->getOperand(VecOp));
17358
if (!Shuf || !Shuf->getOperand(1).isUndef())
17359
return SDValue();
17360
17361
// Check all elements are used once in the mask.
17362
ArrayRef<int> Mask = Shuf->getMask();
17363
APInt SetElts(Mask.size(), 0);
17364
for (int E : Mask) {
17365
if (E < 0 || E >= (int)Mask.size())
17366
return SDValue();
17367
SetElts.setBit(E);
17368
}
17369
if (!SetElts.isAllOnes())
17370
return SDValue();
17371
17372
if (N->getNumOperands() != VecOp + 1) {
17373
auto *Shuf2 = dyn_cast<ShuffleVectorSDNode>(N->getOperand(VecOp + 1));
17374
if (!Shuf2 || !Shuf2->getOperand(1).isUndef() || Shuf2->getMask() != Mask)
17375
return SDValue();
17376
}
17377
17378
SmallVector<SDValue> Ops;
17379
for (SDValue Op : N->ops()) {
17380
if (Op.getValueType().isVector())
17381
Ops.push_back(Op.getOperand(0));
17382
else
17383
Ops.push_back(Op);
17384
}
17385
return DAG.getNode(N->getOpcode(), SDLoc(N), N->getVTList(), Ops);
17386
}
17387
17388
static SDValue PerformVMOVNCombine(SDNode *N,
17389
TargetLowering::DAGCombinerInfo &DCI) {
17390
SDValue Op0 = N->getOperand(0);
17391
SDValue Op1 = N->getOperand(1);
17392
unsigned IsTop = N->getConstantOperandVal(2);
17393
17394
// VMOVNT a undef -> a
17395
// VMOVNB a undef -> a
17396
// VMOVNB undef a -> a
17397
if (Op1->isUndef())
17398
return Op0;
17399
if (Op0->isUndef() && !IsTop)
17400
return Op1;
17401
17402
// VMOVNt(c, VQMOVNb(a, b)) => VQMOVNt(c, b)
17403
// VMOVNb(c, VQMOVNb(a, b)) => VQMOVNb(c, b)
17404
if ((Op1->getOpcode() == ARMISD::VQMOVNs ||
17405
Op1->getOpcode() == ARMISD::VQMOVNu) &&
17406
Op1->getConstantOperandVal(2) == 0)
17407
return DCI.DAG.getNode(Op1->getOpcode(), SDLoc(Op1), N->getValueType(0),
17408
Op0, Op1->getOperand(1), N->getOperand(2));
17409
17410
// Only the bottom lanes from Qm (Op1) and either the top or bottom lanes from
17411
// Qd (Op0) are demanded from a VMOVN, depending on whether we are inserting
17412
// into the top or bottom lanes.
17413
unsigned NumElts = N->getValueType(0).getVectorNumElements();
17414
APInt Op1DemandedElts = APInt::getSplat(NumElts, APInt::getLowBitsSet(2, 1));
17415
APInt Op0DemandedElts =
17416
IsTop ? Op1DemandedElts
17417
: APInt::getSplat(NumElts, APInt::getHighBitsSet(2, 1));
17418
17419
const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
17420
if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, DCI))
17421
return SDValue(N, 0);
17422
if (TLI.SimplifyDemandedVectorElts(Op1, Op1DemandedElts, DCI))
17423
return SDValue(N, 0);
17424
17425
return SDValue();
17426
}
17427
17428
static SDValue PerformVQMOVNCombine(SDNode *N,
17429
TargetLowering::DAGCombinerInfo &DCI) {
17430
SDValue Op0 = N->getOperand(0);
17431
unsigned IsTop = N->getConstantOperandVal(2);
17432
17433
unsigned NumElts = N->getValueType(0).getVectorNumElements();
17434
APInt Op0DemandedElts =
17435
APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
17436
: APInt::getHighBitsSet(2, 1));
17437
17438
const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
17439
if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, DCI))
17440
return SDValue(N, 0);
17441
return SDValue();
17442
}
17443
17444
static SDValue PerformVQDMULHCombine(SDNode *N,
17445
TargetLowering::DAGCombinerInfo &DCI) {
17446
EVT VT = N->getValueType(0);
17447
SDValue LHS = N->getOperand(0);
17448
SDValue RHS = N->getOperand(1);
17449
17450
auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
17451
auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
17452
// Turn VQDMULH(shuffle, shuffle) -> shuffle(VQDMULH)
17453
if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
17454
LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
17455
(LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
17456
SDLoc DL(N);
17457
SDValue NewBinOp = DCI.DAG.getNode(N->getOpcode(), DL, VT,
17458
LHS.getOperand(0), RHS.getOperand(0));
17459
SDValue UndefV = LHS.getOperand(1);
17460
return DCI.DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
17461
}
17462
return SDValue();
17463
}
17464
17465
static SDValue PerformLongShiftCombine(SDNode *N, SelectionDAG &DAG) {
17466
SDLoc DL(N);
17467
SDValue Op0 = N->getOperand(0);
17468
SDValue Op1 = N->getOperand(1);
17469
17470
// Turn X << -C -> X >> C and viceversa. The negative shifts can come up from
17471
// uses of the intrinsics.
17472
if (auto C = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
17473
int ShiftAmt = C->getSExtValue();
17474
if (ShiftAmt == 0) {
17475
SDValue Merge = DAG.getMergeValues({Op0, Op1}, DL);
17476
DAG.ReplaceAllUsesWith(N, Merge.getNode());
17477
return SDValue();
17478
}
17479
17480
if (ShiftAmt >= -32 && ShiftAmt < 0) {
17481
unsigned NewOpcode =
17482
N->getOpcode() == ARMISD::LSLL ? ARMISD::LSRL : ARMISD::LSLL;
17483
SDValue NewShift = DAG.getNode(NewOpcode, DL, N->getVTList(), Op0, Op1,
17484
DAG.getConstant(-ShiftAmt, DL, MVT::i32));
17485
DAG.ReplaceAllUsesWith(N, NewShift.getNode());
17486
return NewShift;
17487
}
17488
}
17489
17490
return SDValue();
17491
}
17492
17493
/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
17494
SDValue ARMTargetLowering::PerformIntrinsicCombine(SDNode *N,
17495
DAGCombinerInfo &DCI) const {
17496
SelectionDAG &DAG = DCI.DAG;
17497
unsigned IntNo = N->getConstantOperandVal(0);
17498
switch (IntNo) {
17499
default:
17500
// Don't do anything for most intrinsics.
17501
break;
17502
17503
// Vector shifts: check for immediate versions and lower them.
17504
// Note: This is done during DAG combining instead of DAG legalizing because
17505
// the build_vectors for 64-bit vector element shift counts are generally
17506
// not legal, and it is hard to see their values after they get legalized to
17507
// loads from a constant pool.
17508
case Intrinsic::arm_neon_vshifts:
17509
case Intrinsic::arm_neon_vshiftu:
17510
case Intrinsic::arm_neon_vrshifts:
17511
case Intrinsic::arm_neon_vrshiftu:
17512
case Intrinsic::arm_neon_vrshiftn:
17513
case Intrinsic::arm_neon_vqshifts:
17514
case Intrinsic::arm_neon_vqshiftu:
17515
case Intrinsic::arm_neon_vqshiftsu:
17516
case Intrinsic::arm_neon_vqshiftns:
17517
case Intrinsic::arm_neon_vqshiftnu:
17518
case Intrinsic::arm_neon_vqshiftnsu:
17519
case Intrinsic::arm_neon_vqrshiftns:
17520
case Intrinsic::arm_neon_vqrshiftnu:
17521
case Intrinsic::arm_neon_vqrshiftnsu: {
17522
EVT VT = N->getOperand(1).getValueType();
17523
int64_t Cnt;
17524
unsigned VShiftOpc = 0;
17525
17526
switch (IntNo) {
17527
case Intrinsic::arm_neon_vshifts:
17528
case Intrinsic::arm_neon_vshiftu:
17529
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
17530
VShiftOpc = ARMISD::VSHLIMM;
17531
break;
17532
}
17533
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
17534
VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
17535
: ARMISD::VSHRuIMM);
17536
break;
17537
}
17538
return SDValue();
17539
17540
case Intrinsic::arm_neon_vrshifts:
17541
case Intrinsic::arm_neon_vrshiftu:
17542
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
17543
break;
17544
return SDValue();
17545
17546
case Intrinsic::arm_neon_vqshifts:
17547
case Intrinsic::arm_neon_vqshiftu:
17548
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
17549
break;
17550
return SDValue();
17551
17552
case Intrinsic::arm_neon_vqshiftsu:
17553
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
17554
break;
17555
llvm_unreachable("invalid shift count for vqshlu intrinsic");
17556
17557
case Intrinsic::arm_neon_vrshiftn:
17558
case Intrinsic::arm_neon_vqshiftns:
17559
case Intrinsic::arm_neon_vqshiftnu:
17560
case Intrinsic::arm_neon_vqshiftnsu:
17561
case Intrinsic::arm_neon_vqrshiftns:
17562
case Intrinsic::arm_neon_vqrshiftnu:
17563
case Intrinsic::arm_neon_vqrshiftnsu:
17564
// Narrowing shifts require an immediate right shift.
17565
if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
17566
break;
17567
llvm_unreachable("invalid shift count for narrowing vector shift "
17568
"intrinsic");
17569
17570
default:
17571
llvm_unreachable("unhandled vector shift");
17572
}
17573
17574
switch (IntNo) {
17575
case Intrinsic::arm_neon_vshifts:
17576
case Intrinsic::arm_neon_vshiftu:
17577
// Opcode already set above.
17578
break;
17579
case Intrinsic::arm_neon_vrshifts:
17580
VShiftOpc = ARMISD::VRSHRsIMM;
17581
break;
17582
case Intrinsic::arm_neon_vrshiftu:
17583
VShiftOpc = ARMISD::VRSHRuIMM;
17584
break;
17585
case Intrinsic::arm_neon_vrshiftn:
17586
VShiftOpc = ARMISD::VRSHRNIMM;
17587
break;
17588
case Intrinsic::arm_neon_vqshifts:
17589
VShiftOpc = ARMISD::VQSHLsIMM;
17590
break;
17591
case Intrinsic::arm_neon_vqshiftu:
17592
VShiftOpc = ARMISD::VQSHLuIMM;
17593
break;
17594
case Intrinsic::arm_neon_vqshiftsu:
17595
VShiftOpc = ARMISD::VQSHLsuIMM;
17596
break;
17597
case Intrinsic::arm_neon_vqshiftns:
17598
VShiftOpc = ARMISD::VQSHRNsIMM;
17599
break;
17600
case Intrinsic::arm_neon_vqshiftnu:
17601
VShiftOpc = ARMISD::VQSHRNuIMM;
17602
break;
17603
case Intrinsic::arm_neon_vqshiftnsu:
17604
VShiftOpc = ARMISD::VQSHRNsuIMM;
17605
break;
17606
case Intrinsic::arm_neon_vqrshiftns:
17607
VShiftOpc = ARMISD::VQRSHRNsIMM;
17608
break;
17609
case Intrinsic::arm_neon_vqrshiftnu:
17610
VShiftOpc = ARMISD::VQRSHRNuIMM;
17611
break;
17612
case Intrinsic::arm_neon_vqrshiftnsu:
17613
VShiftOpc = ARMISD::VQRSHRNsuIMM;
17614
break;
17615
}
17616
17617
SDLoc dl(N);
17618
return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
17619
N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
17620
}
17621
17622
case Intrinsic::arm_neon_vshiftins: {
17623
EVT VT = N->getOperand(1).getValueType();
17624
int64_t Cnt;
17625
unsigned VShiftOpc = 0;
17626
17627
if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
17628
VShiftOpc = ARMISD::VSLIIMM;
17629
else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
17630
VShiftOpc = ARMISD::VSRIIMM;
17631
else {
17632
llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
17633
}
17634
17635
SDLoc dl(N);
17636
return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
17637
N->getOperand(1), N->getOperand(2),
17638
DAG.getConstant(Cnt, dl, MVT::i32));
17639
}
17640
17641
case Intrinsic::arm_neon_vqrshifts:
17642
case Intrinsic::arm_neon_vqrshiftu:
17643
// No immediate versions of these to check for.
17644
break;
17645
17646
case Intrinsic::arm_mve_vqdmlah:
17647
case Intrinsic::arm_mve_vqdmlash:
17648
case Intrinsic::arm_mve_vqrdmlah:
17649
case Intrinsic::arm_mve_vqrdmlash:
17650
case Intrinsic::arm_mve_vmla_n_predicated:
17651
case Intrinsic::arm_mve_vmlas_n_predicated:
17652
case Intrinsic::arm_mve_vqdmlah_predicated:
17653
case Intrinsic::arm_mve_vqdmlash_predicated:
17654
case Intrinsic::arm_mve_vqrdmlah_predicated:
17655
case Intrinsic::arm_mve_vqrdmlash_predicated: {
17656
// These intrinsics all take an i32 scalar operand which is narrowed to the
17657
// size of a single lane of the vector type they return. So we don't need
17658
// any bits of that operand above that point, which allows us to eliminate
17659
// uxth/sxth.
17660
unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
17661
APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
17662
if (SimplifyDemandedBits(N->getOperand(3), DemandedMask, DCI))
17663
return SDValue();
17664
break;
17665
}
17666
17667
case Intrinsic::arm_mve_minv:
17668
case Intrinsic::arm_mve_maxv:
17669
case Intrinsic::arm_mve_minav:
17670
case Intrinsic::arm_mve_maxav:
17671
case Intrinsic::arm_mve_minv_predicated:
17672
case Intrinsic::arm_mve_maxv_predicated:
17673
case Intrinsic::arm_mve_minav_predicated:
17674
case Intrinsic::arm_mve_maxav_predicated: {
17675
// These intrinsics all take an i32 scalar operand which is narrowed to the
17676
// size of a single lane of the vector type they take as the other input.
17677
unsigned BitWidth = N->getOperand(2)->getValueType(0).getScalarSizeInBits();
17678
APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
17679
if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
17680
return SDValue();
17681
break;
17682
}
17683
17684
case Intrinsic::arm_mve_addv: {
17685
// Turn this intrinsic straight into the appropriate ARMISD::VADDV node,
17686
// which allow PerformADDVecReduce to turn it into VADDLV when possible.
17687
bool Unsigned = N->getConstantOperandVal(2);
17688
unsigned Opc = Unsigned ? ARMISD::VADDVu : ARMISD::VADDVs;
17689
return DAG.getNode(Opc, SDLoc(N), N->getVTList(), N->getOperand(1));
17690
}
17691
17692
case Intrinsic::arm_mve_addlv:
17693
case Intrinsic::arm_mve_addlv_predicated: {
17694
// Same for these, but ARMISD::VADDLV has to be followed by a BUILD_PAIR
17695
// which recombines the two outputs into an i64
17696
bool Unsigned = N->getConstantOperandVal(2);
17697
unsigned Opc = IntNo == Intrinsic::arm_mve_addlv ?
17698
(Unsigned ? ARMISD::VADDLVu : ARMISD::VADDLVs) :
17699
(Unsigned ? ARMISD::VADDLVpu : ARMISD::VADDLVps);
17700
17701
SmallVector<SDValue, 4> Ops;
17702
for (unsigned i = 1, e = N->getNumOperands(); i < e; i++)
17703
if (i != 2) // skip the unsigned flag
17704
Ops.push_back(N->getOperand(i));
17705
17706
SDLoc dl(N);
17707
SDValue val = DAG.getNode(Opc, dl, {MVT::i32, MVT::i32}, Ops);
17708
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, val.getValue(0),
17709
val.getValue(1));
17710
}
17711
}
17712
17713
return SDValue();
17714
}
17715
17716
/// PerformShiftCombine - Checks for immediate versions of vector shifts and
17717
/// lowers them. As with the vector shift intrinsics, this is done during DAG
17718
/// combining instead of DAG legalizing because the build_vectors for 64-bit
17719
/// vector element shift counts are generally not legal, and it is hard to see
17720
/// their values after they get legalized to loads from a constant pool.
17721
static SDValue PerformShiftCombine(SDNode *N,
17722
TargetLowering::DAGCombinerInfo &DCI,
17723
const ARMSubtarget *ST) {
17724
SelectionDAG &DAG = DCI.DAG;
17725
EVT VT = N->getValueType(0);
17726
17727
if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
17728
N->getOperand(0)->getOpcode() == ISD::AND &&
17729
N->getOperand(0)->hasOneUse()) {
17730
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
17731
return SDValue();
17732
// Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
17733
// usually show up because instcombine prefers to canonicalize it to
17734
// (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
17735
// out of GEP lowering in some cases.
17736
SDValue N0 = N->getOperand(0);
17737
ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
17738
if (!ShiftAmtNode)
17739
return SDValue();
17740
uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
17741
ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
17742
if (!AndMaskNode)
17743
return SDValue();
17744
uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
17745
// Don't transform uxtb/uxth.
17746
if (AndMask == 255 || AndMask == 65535)
17747
return SDValue();
17748
if (isMask_32(AndMask)) {
17749
uint32_t MaskedBits = llvm::countl_zero(AndMask);
17750
if (MaskedBits > ShiftAmt) {
17751
SDLoc DL(N);
17752
SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
17753
DAG.getConstant(MaskedBits, DL, MVT::i32));
17754
return DAG.getNode(
17755
ISD::SRL, DL, MVT::i32, SHL,
17756
DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
17757
}
17758
}
17759
}
17760
17761
// Nothing to be done for scalar shifts.
17762
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17763
if (!VT.isVector() || !TLI.isTypeLegal(VT))
17764
return SDValue();
17765
if (ST->hasMVEIntegerOps())
17766
return SDValue();
17767
17768
int64_t Cnt;
17769
17770
switch (N->getOpcode()) {
17771
default: llvm_unreachable("unexpected shift opcode");
17772
17773
case ISD::SHL:
17774
if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
17775
SDLoc dl(N);
17776
return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
17777
DAG.getConstant(Cnt, dl, MVT::i32));
17778
}
17779
break;
17780
17781
case ISD::SRA:
17782
case ISD::SRL:
17783
if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
17784
unsigned VShiftOpc =
17785
(N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
17786
SDLoc dl(N);
17787
return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
17788
DAG.getConstant(Cnt, dl, MVT::i32));
17789
}
17790
}
17791
return SDValue();
17792
}
17793
17794
// Look for a sign/zero/fpextend extend of a larger than legal load. This can be
17795
// split into multiple extending loads, which are simpler to deal with than an
17796
// arbitrary extend. For fp extends we use an integer extending load and a VCVTL
17797
// to convert the type to an f32.
17798
static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
17799
SDValue N0 = N->getOperand(0);
17800
if (N0.getOpcode() != ISD::LOAD)
17801
return SDValue();
17802
LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
17803
if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
17804
LD->getExtensionType() != ISD::NON_EXTLOAD)
17805
return SDValue();
17806
EVT FromVT = LD->getValueType(0);
17807
EVT ToVT = N->getValueType(0);
17808
if (!ToVT.isVector())
17809
return SDValue();
17810
assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
17811
EVT ToEltVT = ToVT.getVectorElementType();
17812
EVT FromEltVT = FromVT.getVectorElementType();
17813
17814
unsigned NumElements = 0;
17815
if (ToEltVT == MVT::i32 && FromEltVT == MVT::i8)
17816
NumElements = 4;
17817
if (ToEltVT == MVT::f32 && FromEltVT == MVT::f16)
17818
NumElements = 4;
17819
if (NumElements == 0 ||
17820
(FromEltVT != MVT::f16 && FromVT.getVectorNumElements() == NumElements) ||
17821
FromVT.getVectorNumElements() % NumElements != 0 ||
17822
!isPowerOf2_32(NumElements))
17823
return SDValue();
17824
17825
LLVMContext &C = *DAG.getContext();
17826
SDLoc DL(LD);
17827
// Details about the old load
17828
SDValue Ch = LD->getChain();
17829
SDValue BasePtr = LD->getBasePtr();
17830
Align Alignment = LD->getOriginalAlign();
17831
MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
17832
AAMDNodes AAInfo = LD->getAAInfo();
17833
17834
ISD::LoadExtType NewExtType =
17835
N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
17836
SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
17837
EVT NewFromVT = EVT::getVectorVT(
17838
C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
17839
EVT NewToVT = EVT::getVectorVT(
17840
C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
17841
17842
SmallVector<SDValue, 4> Loads;
17843
SmallVector<SDValue, 4> Chains;
17844
for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
17845
unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
17846
SDValue NewPtr =
17847
DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
17848
17849
SDValue NewLoad =
17850
DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
17851
LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
17852
Alignment, MMOFlags, AAInfo);
17853
Loads.push_back(NewLoad);
17854
Chains.push_back(SDValue(NewLoad.getNode(), 1));
17855
}
17856
17857
// Float truncs need to extended with VCVTB's into their floating point types.
17858
if (FromEltVT == MVT::f16) {
17859
SmallVector<SDValue, 4> Extends;
17860
17861
for (unsigned i = 0; i < Loads.size(); i++) {
17862
SDValue LoadBC =
17863
DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v8f16, Loads[i]);
17864
SDValue FPExt = DAG.getNode(ARMISD::VCVTL, DL, MVT::v4f32, LoadBC,
17865
DAG.getConstant(0, DL, MVT::i32));
17866
Extends.push_back(FPExt);
17867
}
17868
17869
Loads = Extends;
17870
}
17871
17872
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
17873
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
17874
return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Loads);
17875
}
17876
17877
/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
17878
/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
17879
static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
17880
const ARMSubtarget *ST) {
17881
SDValue N0 = N->getOperand(0);
17882
17883
// Check for sign- and zero-extensions of vector extract operations of 8- and
17884
// 16-bit vector elements. NEON and MVE support these directly. They are
17885
// handled during DAG combining because type legalization will promote them
17886
// to 32-bit types and it is messy to recognize the operations after that.
17887
if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
17888
N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
17889
SDValue Vec = N0.getOperand(0);
17890
SDValue Lane = N0.getOperand(1);
17891
EVT VT = N->getValueType(0);
17892
EVT EltVT = N0.getValueType();
17893
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17894
17895
if (VT == MVT::i32 &&
17896
(EltVT == MVT::i8 || EltVT == MVT::i16) &&
17897
TLI.isTypeLegal(Vec.getValueType()) &&
17898
isa<ConstantSDNode>(Lane)) {
17899
17900
unsigned Opc = 0;
17901
switch (N->getOpcode()) {
17902
default: llvm_unreachable("unexpected opcode");
17903
case ISD::SIGN_EXTEND:
17904
Opc = ARMISD::VGETLANEs;
17905
break;
17906
case ISD::ZERO_EXTEND:
17907
case ISD::ANY_EXTEND:
17908
Opc = ARMISD::VGETLANEu;
17909
break;
17910
}
17911
return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
17912
}
17913
}
17914
17915
if (ST->hasMVEIntegerOps())
17916
if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
17917
return NewLoad;
17918
17919
return SDValue();
17920
}
17921
17922
static SDValue PerformFPExtendCombine(SDNode *N, SelectionDAG &DAG,
17923
const ARMSubtarget *ST) {
17924
if (ST->hasMVEFloatOps())
17925
if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
17926
return NewLoad;
17927
17928
return SDValue();
17929
}
17930
17931
// Lower smin(smax(x, C1), C2) to ssat or usat, if they have saturating
17932
// constant bounds.
17933
static SDValue PerformMinMaxToSatCombine(SDValue Op, SelectionDAG &DAG,
17934
const ARMSubtarget *Subtarget) {
17935
if ((Subtarget->isThumb() || !Subtarget->hasV6Ops()) &&
17936
!Subtarget->isThumb2())
17937
return SDValue();
17938
17939
EVT VT = Op.getValueType();
17940
SDValue Op0 = Op.getOperand(0);
17941
17942
if (VT != MVT::i32 ||
17943
(Op0.getOpcode() != ISD::SMIN && Op0.getOpcode() != ISD::SMAX) ||
17944
!isa<ConstantSDNode>(Op.getOperand(1)) ||
17945
!isa<ConstantSDNode>(Op0.getOperand(1)))
17946
return SDValue();
17947
17948
SDValue Min = Op;
17949
SDValue Max = Op0;
17950
SDValue Input = Op0.getOperand(0);
17951
if (Min.getOpcode() == ISD::SMAX)
17952
std::swap(Min, Max);
17953
17954
APInt MinC = Min.getConstantOperandAPInt(1);
17955
APInt MaxC = Max.getConstantOperandAPInt(1);
17956
17957
if (Min.getOpcode() != ISD::SMIN || Max.getOpcode() != ISD::SMAX ||
17958
!(MinC + 1).isPowerOf2())
17959
return SDValue();
17960
17961
SDLoc DL(Op);
17962
if (MinC == ~MaxC)
17963
return DAG.getNode(ARMISD::SSAT, DL, VT, Input,
17964
DAG.getConstant(MinC.countr_one(), DL, VT));
17965
if (MaxC == 0)
17966
return DAG.getNode(ARMISD::USAT, DL, VT, Input,
17967
DAG.getConstant(MinC.countr_one(), DL, VT));
17968
17969
return SDValue();
17970
}
17971
17972
/// PerformMinMaxCombine - Target-specific DAG combining for creating truncating
17973
/// saturates.
17974
static SDValue PerformMinMaxCombine(SDNode *N, SelectionDAG &DAG,
17975
const ARMSubtarget *ST) {
17976
EVT VT = N->getValueType(0);
17977
SDValue N0 = N->getOperand(0);
17978
17979
if (VT == MVT::i32)
17980
return PerformMinMaxToSatCombine(SDValue(N, 0), DAG, ST);
17981
17982
if (!ST->hasMVEIntegerOps())
17983
return SDValue();
17984
17985
if (SDValue V = PerformVQDMULHCombine(N, DAG))
17986
return V;
17987
17988
if (VT != MVT::v4i32 && VT != MVT::v8i16)
17989
return SDValue();
17990
17991
auto IsSignedSaturate = [&](SDNode *Min, SDNode *Max) {
17992
// Check one is a smin and the other is a smax
17993
if (Min->getOpcode() != ISD::SMIN)
17994
std::swap(Min, Max);
17995
if (Min->getOpcode() != ISD::SMIN || Max->getOpcode() != ISD::SMAX)
17996
return false;
17997
17998
APInt SaturateC;
17999
if (VT == MVT::v4i32)
18000
SaturateC = APInt(32, (1 << 15) - 1, true);
18001
else //if (VT == MVT::v8i16)
18002
SaturateC = APInt(16, (1 << 7) - 1, true);
18003
18004
APInt MinC, MaxC;
18005
if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
18006
MinC != SaturateC)
18007
return false;
18008
if (!ISD::isConstantSplatVector(Max->getOperand(1).getNode(), MaxC) ||
18009
MaxC != ~SaturateC)
18010
return false;
18011
return true;
18012
};
18013
18014
if (IsSignedSaturate(N, N0.getNode())) {
18015
SDLoc DL(N);
18016
MVT ExtVT, HalfVT;
18017
if (VT == MVT::v4i32) {
18018
HalfVT = MVT::v8i16;
18019
ExtVT = MVT::v4i16;
18020
} else { // if (VT == MVT::v8i16)
18021
HalfVT = MVT::v16i8;
18022
ExtVT = MVT::v8i8;
18023
}
18024
18025
// Create a VQMOVNB with undef top lanes, then signed extended into the top
18026
// half. That extend will hopefully be removed if only the bottom bits are
18027
// demanded (though a truncating store, for example).
18028
SDValue VQMOVN =
18029
DAG.getNode(ARMISD::VQMOVNs, DL, HalfVT, DAG.getUNDEF(HalfVT),
18030
N0->getOperand(0), DAG.getConstant(0, DL, MVT::i32));
18031
SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
18032
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Bitcast,
18033
DAG.getValueType(ExtVT));
18034
}
18035
18036
auto IsUnsignedSaturate = [&](SDNode *Min) {
18037
// For unsigned, we just need to check for <= 0xffff
18038
if (Min->getOpcode() != ISD::UMIN)
18039
return false;
18040
18041
APInt SaturateC;
18042
if (VT == MVT::v4i32)
18043
SaturateC = APInt(32, (1 << 16) - 1, true);
18044
else //if (VT == MVT::v8i16)
18045
SaturateC = APInt(16, (1 << 8) - 1, true);
18046
18047
APInt MinC;
18048
if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
18049
MinC != SaturateC)
18050
return false;
18051
return true;
18052
};
18053
18054
if (IsUnsignedSaturate(N)) {
18055
SDLoc DL(N);
18056
MVT HalfVT;
18057
unsigned ExtConst;
18058
if (VT == MVT::v4i32) {
18059
HalfVT = MVT::v8i16;
18060
ExtConst = 0x0000FFFF;
18061
} else { //if (VT == MVT::v8i16)
18062
HalfVT = MVT::v16i8;
18063
ExtConst = 0x00FF;
18064
}
18065
18066
// Create a VQMOVNB with undef top lanes, then ZExt into the top half with
18067
// an AND. That extend will hopefully be removed if only the bottom bits are
18068
// demanded (though a truncating store, for example).
18069
SDValue VQMOVN =
18070
DAG.getNode(ARMISD::VQMOVNu, DL, HalfVT, DAG.getUNDEF(HalfVT), N0,
18071
DAG.getConstant(0, DL, MVT::i32));
18072
SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
18073
return DAG.getNode(ISD::AND, DL, VT, Bitcast,
18074
DAG.getConstant(ExtConst, DL, VT));
18075
}
18076
18077
return SDValue();
18078
}
18079
18080
static const APInt *isPowerOf2Constant(SDValue V) {
18081
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
18082
if (!C)
18083
return nullptr;
18084
const APInt *CV = &C->getAPIntValue();
18085
return CV->isPowerOf2() ? CV : nullptr;
18086
}
18087
18088
SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
18089
// If we have a CMOV, OR and AND combination such as:
18090
// if (x & CN)
18091
// y |= CM;
18092
//
18093
// And:
18094
// * CN is a single bit;
18095
// * All bits covered by CM are known zero in y
18096
//
18097
// Then we can convert this into a sequence of BFI instructions. This will
18098
// always be a win if CM is a single bit, will always be no worse than the
18099
// TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
18100
// three bits (due to the extra IT instruction).
18101
18102
SDValue Op0 = CMOV->getOperand(0);
18103
SDValue Op1 = CMOV->getOperand(1);
18104
auto CC = CMOV->getConstantOperandAPInt(2).getLimitedValue();
18105
SDValue CmpZ = CMOV->getOperand(4);
18106
18107
// The compare must be against zero.
18108
if (!isNullConstant(CmpZ->getOperand(1)))
18109
return SDValue();
18110
18111
assert(CmpZ->getOpcode() == ARMISD::CMPZ);
18112
SDValue And = CmpZ->getOperand(0);
18113
if (And->getOpcode() != ISD::AND)
18114
return SDValue();
18115
const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
18116
if (!AndC)
18117
return SDValue();
18118
SDValue X = And->getOperand(0);
18119
18120
if (CC == ARMCC::EQ) {
18121
// We're performing an "equal to zero" compare. Swap the operands so we
18122
// canonicalize on a "not equal to zero" compare.
18123
std::swap(Op0, Op1);
18124
} else {
18125
assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
18126
}
18127
18128
if (Op1->getOpcode() != ISD::OR)
18129
return SDValue();
18130
18131
ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
18132
if (!OrC)
18133
return SDValue();
18134
SDValue Y = Op1->getOperand(0);
18135
18136
if (Op0 != Y)
18137
return SDValue();
18138
18139
// Now, is it profitable to continue?
18140
APInt OrCI = OrC->getAPIntValue();
18141
unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
18142
if (OrCI.popcount() > Heuristic)
18143
return SDValue();
18144
18145
// Lastly, can we determine that the bits defined by OrCI
18146
// are zero in Y?
18147
KnownBits Known = DAG.computeKnownBits(Y);
18148
if ((OrCI & Known.Zero) != OrCI)
18149
return SDValue();
18150
18151
// OK, we can do the combine.
18152
SDValue V = Y;
18153
SDLoc dl(X);
18154
EVT VT = X.getValueType();
18155
unsigned BitInX = AndC->logBase2();
18156
18157
if (BitInX != 0) {
18158
// We must shift X first.
18159
X = DAG.getNode(ISD::SRL, dl, VT, X,
18160
DAG.getConstant(BitInX, dl, VT));
18161
}
18162
18163
for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
18164
BitInY < NumActiveBits; ++BitInY) {
18165
if (OrCI[BitInY] == 0)
18166
continue;
18167
APInt Mask(VT.getSizeInBits(), 0);
18168
Mask.setBit(BitInY);
18169
V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
18170
// Confusingly, the operand is an *inverted* mask.
18171
DAG.getConstant(~Mask, dl, VT));
18172
}
18173
18174
return V;
18175
}
18176
18177
// Given N, the value controlling the conditional branch, search for the loop
18178
// intrinsic, returning it, along with how the value is used. We need to handle
18179
// patterns such as the following:
18180
// (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
18181
// (brcond (setcc (loop.decrement), 0, eq), exit)
18182
// (brcond (setcc (loop.decrement), 0, ne), header)
18183
static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
18184
bool &Negate) {
18185
switch (N->getOpcode()) {
18186
default:
18187
break;
18188
case ISD::XOR: {
18189
if (!isa<ConstantSDNode>(N.getOperand(1)))
18190
return SDValue();
18191
if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
18192
return SDValue();
18193
Negate = !Negate;
18194
return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
18195
}
18196
case ISD::SETCC: {
18197
auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
18198
if (!Const)
18199
return SDValue();
18200
if (Const->isZero())
18201
Imm = 0;
18202
else if (Const->isOne())
18203
Imm = 1;
18204
else
18205
return SDValue();
18206
CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
18207
return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
18208
}
18209
case ISD::INTRINSIC_W_CHAIN: {
18210
unsigned IntOp = N.getConstantOperandVal(1);
18211
if (IntOp != Intrinsic::test_start_loop_iterations &&
18212
IntOp != Intrinsic::loop_decrement_reg)
18213
return SDValue();
18214
return N;
18215
}
18216
}
18217
return SDValue();
18218
}
18219
18220
static SDValue PerformHWLoopCombine(SDNode *N,
18221
TargetLowering::DAGCombinerInfo &DCI,
18222
const ARMSubtarget *ST) {
18223
18224
// The hwloop intrinsics that we're interested are used for control-flow,
18225
// either for entering or exiting the loop:
18226
// - test.start.loop.iterations will test whether its operand is zero. If it
18227
// is zero, the proceeding branch should not enter the loop.
18228
// - loop.decrement.reg also tests whether its operand is zero. If it is
18229
// zero, the proceeding branch should not branch back to the beginning of
18230
// the loop.
18231
// So here, we need to check that how the brcond is using the result of each
18232
// of the intrinsics to ensure that we're branching to the right place at the
18233
// right time.
18234
18235
ISD::CondCode CC;
18236
SDValue Cond;
18237
int Imm = 1;
18238
bool Negate = false;
18239
SDValue Chain = N->getOperand(0);
18240
SDValue Dest;
18241
18242
if (N->getOpcode() == ISD::BRCOND) {
18243
CC = ISD::SETEQ;
18244
Cond = N->getOperand(1);
18245
Dest = N->getOperand(2);
18246
} else {
18247
assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
18248
CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
18249
Cond = N->getOperand(2);
18250
Dest = N->getOperand(4);
18251
if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
18252
if (!Const->isOne() && !Const->isZero())
18253
return SDValue();
18254
Imm = Const->getZExtValue();
18255
} else
18256
return SDValue();
18257
}
18258
18259
SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
18260
if (!Int)
18261
return SDValue();
18262
18263
if (Negate)
18264
CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32);
18265
18266
auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
18267
return (CC == ISD::SETEQ && Imm == 0) ||
18268
(CC == ISD::SETNE && Imm == 1) ||
18269
(CC == ISD::SETLT && Imm == 1) ||
18270
(CC == ISD::SETULT && Imm == 1);
18271
};
18272
18273
auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
18274
return (CC == ISD::SETEQ && Imm == 1) ||
18275
(CC == ISD::SETNE && Imm == 0) ||
18276
(CC == ISD::SETGT && Imm == 0) ||
18277
(CC == ISD::SETUGT && Imm == 0) ||
18278
(CC == ISD::SETGE && Imm == 1) ||
18279
(CC == ISD::SETUGE && Imm == 1);
18280
};
18281
18282
assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
18283
"unsupported condition");
18284
18285
SDLoc dl(Int);
18286
SelectionDAG &DAG = DCI.DAG;
18287
SDValue Elements = Int.getOperand(2);
18288
unsigned IntOp = Int->getConstantOperandVal(1);
18289
assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
18290
&& "expected single br user");
18291
SDNode *Br = *N->use_begin();
18292
SDValue OtherTarget = Br->getOperand(1);
18293
18294
// Update the unconditional branch to branch to the given Dest.
18295
auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
18296
SDValue NewBrOps[] = { Br->getOperand(0), Dest };
18297
SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
18298
DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
18299
};
18300
18301
if (IntOp == Intrinsic::test_start_loop_iterations) {
18302
SDValue Res;
18303
SDValue Setup = DAG.getNode(ARMISD::WLSSETUP, dl, MVT::i32, Elements);
18304
// We expect this 'instruction' to branch when the counter is zero.
18305
if (IsTrueIfZero(CC, Imm)) {
18306
SDValue Ops[] = {Chain, Setup, Dest};
18307
Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
18308
} else {
18309
// The logic is the reverse of what we need for WLS, so find the other
18310
// basic block target: the target of the proceeding br.
18311
UpdateUncondBr(Br, Dest, DAG);
18312
18313
SDValue Ops[] = {Chain, Setup, OtherTarget};
18314
Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
18315
}
18316
// Update LR count to the new value
18317
DAG.ReplaceAllUsesOfValueWith(Int.getValue(0), Setup);
18318
// Update chain
18319
DAG.ReplaceAllUsesOfValueWith(Int.getValue(2), Int.getOperand(0));
18320
return Res;
18321
} else {
18322
SDValue Size =
18323
DAG.getTargetConstant(Int.getConstantOperandVal(3), dl, MVT::i32);
18324
SDValue Args[] = { Int.getOperand(0), Elements, Size, };
18325
SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
18326
DAG.getVTList(MVT::i32, MVT::Other), Args);
18327
DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
18328
18329
// We expect this instruction to branch when the count is not zero.
18330
SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
18331
18332
// Update the unconditional branch to target the loop preheader if we've
18333
// found the condition has been reversed.
18334
if (Target == OtherTarget)
18335
UpdateUncondBr(Br, Dest, DAG);
18336
18337
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
18338
SDValue(LoopDec.getNode(), 1), Chain);
18339
18340
SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
18341
return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
18342
}
18343
return SDValue();
18344
}
18345
18346
/// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
18347
SDValue
18348
ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
18349
SDValue Cmp = N->getOperand(4);
18350
if (Cmp.getOpcode() != ARMISD::CMPZ)
18351
// Only looking at NE cases.
18352
return SDValue();
18353
18354
EVT VT = N->getValueType(0);
18355
SDLoc dl(N);
18356
SDValue LHS = Cmp.getOperand(0);
18357
SDValue RHS = Cmp.getOperand(1);
18358
SDValue Chain = N->getOperand(0);
18359
SDValue BB = N->getOperand(1);
18360
SDValue ARMcc = N->getOperand(2);
18361
ARMCC::CondCodes CC = (ARMCC::CondCodes)ARMcc->getAsZExtVal();
18362
18363
// (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
18364
// -> (brcond Chain BB CC CPSR Cmp)
18365
if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
18366
LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
18367
LHS->getOperand(0)->hasOneUse() &&
18368
isNullConstant(LHS->getOperand(0)->getOperand(0)) &&
18369
isOneConstant(LHS->getOperand(0)->getOperand(1)) &&
18370
isOneConstant(LHS->getOperand(1)) && isNullConstant(RHS)) {
18371
return DAG.getNode(
18372
ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
18373
LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
18374
}
18375
18376
return SDValue();
18377
}
18378
18379
/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
18380
SDValue
18381
ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
18382
SDValue Cmp = N->getOperand(4);
18383
if (Cmp.getOpcode() != ARMISD::CMPZ)
18384
// Only looking at EQ and NE cases.
18385
return SDValue();
18386
18387
EVT VT = N->getValueType(0);
18388
SDLoc dl(N);
18389
SDValue LHS = Cmp.getOperand(0);
18390
SDValue RHS = Cmp.getOperand(1);
18391
SDValue FalseVal = N->getOperand(0);
18392
SDValue TrueVal = N->getOperand(1);
18393
SDValue ARMcc = N->getOperand(2);
18394
ARMCC::CondCodes CC = (ARMCC::CondCodes)ARMcc->getAsZExtVal();
18395
18396
// BFI is only available on V6T2+.
18397
if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
18398
SDValue R = PerformCMOVToBFICombine(N, DAG);
18399
if (R)
18400
return R;
18401
}
18402
18403
// Simplify
18404
// mov r1, r0
18405
// cmp r1, x
18406
// mov r0, y
18407
// moveq r0, x
18408
// to
18409
// cmp r0, x
18410
// movne r0, y
18411
//
18412
// mov r1, r0
18413
// cmp r1, x
18414
// mov r0, x
18415
// movne r0, y
18416
// to
18417
// cmp r0, x
18418
// movne r0, y
18419
/// FIXME: Turn this into a target neutral optimization?
18420
SDValue Res;
18421
if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
18422
Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
18423
N->getOperand(3), Cmp);
18424
} else if (CC == ARMCC::EQ && TrueVal == RHS) {
18425
SDValue ARMcc;
18426
SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
18427
Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
18428
N->getOperand(3), NewCmp);
18429
}
18430
18431
// (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
18432
// -> (cmov F T CC CPSR Cmp)
18433
if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse() &&
18434
isNullConstant(LHS->getOperand(0)) && isOneConstant(LHS->getOperand(1)) &&
18435
isNullConstant(RHS)) {
18436
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
18437
LHS->getOperand(2), LHS->getOperand(3),
18438
LHS->getOperand(4));
18439
}
18440
18441
if (!VT.isInteger())
18442
return SDValue();
18443
18444
// Fold away an unneccessary CMPZ/CMOV
18445
// CMOV A, B, C1, $cpsr, (CMPZ (CMOV 1, 0, C2, D), 0) ->
18446
// if C1==EQ -> CMOV A, B, C2, $cpsr, D
18447
// if C1==NE -> CMOV A, B, NOT(C2), $cpsr, D
18448
if (N->getConstantOperandVal(2) == ARMCC::EQ ||
18449
N->getConstantOperandVal(2) == ARMCC::NE) {
18450
ARMCC::CondCodes Cond;
18451
if (SDValue C = IsCMPZCSINC(N->getOperand(4).getNode(), Cond)) {
18452
if (N->getConstantOperandVal(2) == ARMCC::NE)
18453
Cond = ARMCC::getOppositeCondition(Cond);
18454
return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
18455
N->getOperand(1),
18456
DAG.getTargetConstant(Cond, SDLoc(N), MVT::i32),
18457
N->getOperand(3), C);
18458
}
18459
}
18460
18461
// Materialize a boolean comparison for integers so we can avoid branching.
18462
if (isNullConstant(FalseVal)) {
18463
if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
18464
if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
18465
// If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
18466
// right 5 bits will make that 32 be 1, otherwise it will be 0.
18467
// CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
18468
SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
18469
Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
18470
DAG.getConstant(5, dl, MVT::i32));
18471
} else {
18472
// CMOV 0, 1, ==, (CMPZ x, y) ->
18473
// (UADDO_CARRY (SUB x, y), t:0, t:1)
18474
// where t = (USUBO_CARRY 0, (SUB x, y), 0)
18475
//
18476
// The USUBO_CARRY computes 0 - (x - y) and this will give a borrow when
18477
// x != y. In other words, a carry C == 1 when x == y, C == 0
18478
// otherwise.
18479
// The final UADDO_CARRY computes
18480
// x - y + (0 - (x - y)) + C == C
18481
SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
18482
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
18483
SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
18484
// ISD::USUBO_CARRY returns a borrow but we want the carry here
18485
// actually.
18486
SDValue Carry =
18487
DAG.getNode(ISD::SUB, dl, MVT::i32,
18488
DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
18489
Res = DAG.getNode(ISD::UADDO_CARRY, dl, VTs, Sub, Neg, Carry);
18490
}
18491
} else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
18492
(!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
18493
// This seems pointless but will allow us to combine it further below.
18494
// CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBC x, y), z, !=, (SUBC x, y):1
18495
SDValue Sub =
18496
DAG.getNode(ARMISD::SUBC, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
18497
SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
18498
Sub.getValue(1), SDValue());
18499
Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
18500
N->getOperand(3), CPSRGlue.getValue(1));
18501
FalseVal = Sub;
18502
}
18503
} else if (isNullConstant(TrueVal)) {
18504
if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
18505
(!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
18506
// This seems pointless but will allow us to combine it further below
18507
// Note that we change == for != as this is the dual for the case above.
18508
// CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBC x, y), z, !=, (SUBC x, y):1
18509
SDValue Sub =
18510
DAG.getNode(ARMISD::SUBC, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
18511
SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
18512
Sub.getValue(1), SDValue());
18513
Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
18514
DAG.getConstant(ARMCC::NE, dl, MVT::i32),
18515
N->getOperand(3), CPSRGlue.getValue(1));
18516
FalseVal = Sub;
18517
}
18518
}
18519
18520
// On Thumb1, the DAG above may be further combined if z is a power of 2
18521
// (z == 2 ^ K).
18522
// CMOV (SUBC x, y), z, !=, (SUBC x, y):1 ->
18523
// t1 = (USUBO (SUB x, y), 1)
18524
// t2 = (USUBO_CARRY (SUB x, y), t1:0, t1:1)
18525
// Result = if K != 0 then (SHL t2:0, K) else t2:0
18526
//
18527
// This also handles the special case of comparing against zero; it's
18528
// essentially, the same pattern, except there's no SUBC:
18529
// CMOV x, z, !=, (CMPZ x, 0) ->
18530
// t1 = (USUBO x, 1)
18531
// t2 = (USUBO_CARRY x, t1:0, t1:1)
18532
// Result = if K != 0 then (SHL t2:0, K) else t2:0
18533
const APInt *TrueConst;
18534
if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
18535
((FalseVal.getOpcode() == ARMISD::SUBC && FalseVal.getOperand(0) == LHS &&
18536
FalseVal.getOperand(1) == RHS) ||
18537
(FalseVal == LHS && isNullConstant(RHS))) &&
18538
(TrueConst = isPowerOf2Constant(TrueVal))) {
18539
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
18540
unsigned ShiftAmount = TrueConst->logBase2();
18541
if (ShiftAmount)
18542
TrueVal = DAG.getConstant(1, dl, VT);
18543
SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
18544
Res = DAG.getNode(ISD::USUBO_CARRY, dl, VTs, FalseVal, Subc,
18545
Subc.getValue(1));
18546
18547
if (ShiftAmount)
18548
Res = DAG.getNode(ISD::SHL, dl, VT, Res,
18549
DAG.getConstant(ShiftAmount, dl, MVT::i32));
18550
}
18551
18552
if (Res.getNode()) {
18553
KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
18554
// Capture demanded bits information that would be otherwise lost.
18555
if (Known.Zero == 0xfffffffe)
18556
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18557
DAG.getValueType(MVT::i1));
18558
else if (Known.Zero == 0xffffff00)
18559
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18560
DAG.getValueType(MVT::i8));
18561
else if (Known.Zero == 0xffff0000)
18562
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18563
DAG.getValueType(MVT::i16));
18564
}
18565
18566
return Res;
18567
}
18568
18569
static SDValue PerformBITCASTCombine(SDNode *N,
18570
TargetLowering::DAGCombinerInfo &DCI,
18571
const ARMSubtarget *ST) {
18572
SelectionDAG &DAG = DCI.DAG;
18573
SDValue Src = N->getOperand(0);
18574
EVT DstVT = N->getValueType(0);
18575
18576
// Convert v4f32 bitcast (v4i32 vdup (i32)) -> v4f32 vdup (i32) under MVE.
18577
if (ST->hasMVEIntegerOps() && Src.getOpcode() == ARMISD::VDUP) {
18578
EVT SrcVT = Src.getValueType();
18579
if (SrcVT.getScalarSizeInBits() == DstVT.getScalarSizeInBits())
18580
return DAG.getNode(ARMISD::VDUP, SDLoc(N), DstVT, Src.getOperand(0));
18581
}
18582
18583
// We may have a bitcast of something that has already had this bitcast
18584
// combine performed on it, so skip past any VECTOR_REG_CASTs.
18585
while (Src.getOpcode() == ARMISD::VECTOR_REG_CAST)
18586
Src = Src.getOperand(0);
18587
18588
// Bitcast from element-wise VMOV or VMVN doesn't need VREV if the VREV that
18589
// would be generated is at least the width of the element type.
18590
EVT SrcVT = Src.getValueType();
18591
if ((Src.getOpcode() == ARMISD::VMOVIMM ||
18592
Src.getOpcode() == ARMISD::VMVNIMM ||
18593
Src.getOpcode() == ARMISD::VMOVFPIMM) &&
18594
SrcVT.getScalarSizeInBits() <= DstVT.getScalarSizeInBits() &&
18595
DAG.getDataLayout().isBigEndian())
18596
return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(N), DstVT, Src);
18597
18598
// bitcast(extract(x, n)); bitcast(extract(x, n+1)) -> VMOVRRD x
18599
if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
18600
return R;
18601
18602
return SDValue();
18603
}
18604
18605
// Some combines for the MVETrunc truncations legalizer helper. Also lowers the
18606
// node into stack operations after legalizeOps.
18607
SDValue ARMTargetLowering::PerformMVETruncCombine(
18608
SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const {
18609
SelectionDAG &DAG = DCI.DAG;
18610
EVT VT = N->getValueType(0);
18611
SDLoc DL(N);
18612
18613
// MVETrunc(Undef, Undef) -> Undef
18614
if (all_of(N->ops(), [](SDValue Op) { return Op.isUndef(); }))
18615
return DAG.getUNDEF(VT);
18616
18617
// MVETrunc(MVETrunc a b, MVETrunc c, d) -> MVETrunc
18618
if (N->getNumOperands() == 2 &&
18619
N->getOperand(0).getOpcode() == ARMISD::MVETRUNC &&
18620
N->getOperand(1).getOpcode() == ARMISD::MVETRUNC)
18621
return DAG.getNode(ARMISD::MVETRUNC, DL, VT, N->getOperand(0).getOperand(0),
18622
N->getOperand(0).getOperand(1),
18623
N->getOperand(1).getOperand(0),
18624
N->getOperand(1).getOperand(1));
18625
18626
// MVETrunc(shuffle, shuffle) -> VMOVN
18627
if (N->getNumOperands() == 2 &&
18628
N->getOperand(0).getOpcode() == ISD::VECTOR_SHUFFLE &&
18629
N->getOperand(1).getOpcode() == ISD::VECTOR_SHUFFLE) {
18630
auto *S0 = cast<ShuffleVectorSDNode>(N->getOperand(0).getNode());
18631
auto *S1 = cast<ShuffleVectorSDNode>(N->getOperand(1).getNode());
18632
18633
if (S0->getOperand(0) == S1->getOperand(0) &&
18634
S0->getOperand(1) == S1->getOperand(1)) {
18635
// Construct complete shuffle mask
18636
SmallVector<int, 8> Mask(S0->getMask());
18637
Mask.append(S1->getMask().begin(), S1->getMask().end());
18638
18639
if (isVMOVNTruncMask(Mask, VT, false))
18640
return DAG.getNode(
18641
ARMISD::VMOVN, DL, VT,
18642
DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)),
18643
DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)),
18644
DAG.getConstant(1, DL, MVT::i32));
18645
if (isVMOVNTruncMask(Mask, VT, true))
18646
return DAG.getNode(
18647
ARMISD::VMOVN, DL, VT,
18648
DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)),
18649
DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)),
18650
DAG.getConstant(1, DL, MVT::i32));
18651
}
18652
}
18653
18654
// For MVETrunc of a buildvector or shuffle, it can be beneficial to lower the
18655
// truncate to a buildvector to allow the generic optimisations to kick in.
18656
if (all_of(N->ops(), [](SDValue Op) {
18657
return Op.getOpcode() == ISD::BUILD_VECTOR ||
18658
Op.getOpcode() == ISD::VECTOR_SHUFFLE ||
18659
(Op.getOpcode() == ISD::BITCAST &&
18660
Op.getOperand(0).getOpcode() == ISD::BUILD_VECTOR);
18661
})) {
18662
SmallVector<SDValue, 8> Extracts;
18663
for (unsigned Op = 0; Op < N->getNumOperands(); Op++) {
18664
SDValue O = N->getOperand(Op);
18665
for (unsigned i = 0; i < O.getValueType().getVectorNumElements(); i++) {
18666
SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, O,
18667
DAG.getConstant(i, DL, MVT::i32));
18668
Extracts.push_back(Ext);
18669
}
18670
}
18671
return DAG.getBuildVector(VT, DL, Extracts);
18672
}
18673
18674
// If we are late in the legalization process and nothing has optimised
18675
// the trunc to anything better, lower it to a stack store and reload,
18676
// performing the truncation whilst keeping the lanes in the correct order:
18677
// VSTRH.32 a, stack; VSTRH.32 b, stack+8; VLDRW.32 stack;
18678
if (!DCI.isAfterLegalizeDAG())
18679
return SDValue();
18680
18681
SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::getFixed(16), Align(4));
18682
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18683
int NumIns = N->getNumOperands();
18684
assert((NumIns == 2 || NumIns == 4) &&
18685
"Expected 2 or 4 inputs to an MVETrunc");
18686
EVT StoreVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
18687
if (N->getNumOperands() == 4)
18688
StoreVT = StoreVT.getHalfNumVectorElementsVT(*DAG.getContext());
18689
18690
SmallVector<SDValue> Chains;
18691
for (int I = 0; I < NumIns; I++) {
18692
SDValue Ptr = DAG.getNode(
18693
ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
18694
DAG.getConstant(I * 16 / NumIns, DL, StackPtr.getValueType()));
18695
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(
18696
DAG.getMachineFunction(), SPFI, I * 16 / NumIns);
18697
SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), DL, N->getOperand(I),
18698
Ptr, MPI, StoreVT, Align(4));
18699
Chains.push_back(Ch);
18700
}
18701
18702
SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
18703
MachinePointerInfo MPI =
18704
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0);
18705
return DAG.getLoad(VT, DL, Chain, StackPtr, MPI, Align(4));
18706
}
18707
18708
// Take a MVEEXT(load x) and split that into (extload x, extload x+8)
18709
static SDValue PerformSplittingMVEEXTToWideningLoad(SDNode *N,
18710
SelectionDAG &DAG) {
18711
SDValue N0 = N->getOperand(0);
18712
LoadSDNode *LD = dyn_cast<LoadSDNode>(N0.getNode());
18713
if (!LD || !LD->isSimple() || !N0.hasOneUse() || LD->isIndexed())
18714
return SDValue();
18715
18716
EVT FromVT = LD->getMemoryVT();
18717
EVT ToVT = N->getValueType(0);
18718
if (!ToVT.isVector())
18719
return SDValue();
18720
assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements() * 2);
18721
EVT ToEltVT = ToVT.getVectorElementType();
18722
EVT FromEltVT = FromVT.getVectorElementType();
18723
18724
unsigned NumElements = 0;
18725
if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
18726
NumElements = 4;
18727
if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
18728
NumElements = 8;
18729
assert(NumElements != 0);
18730
18731
ISD::LoadExtType NewExtType =
18732
N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
18733
if (LD->getExtensionType() != ISD::NON_EXTLOAD &&
18734
LD->getExtensionType() != ISD::EXTLOAD &&
18735
LD->getExtensionType() != NewExtType)
18736
return SDValue();
18737
18738
LLVMContext &C = *DAG.getContext();
18739
SDLoc DL(LD);
18740
// Details about the old load
18741
SDValue Ch = LD->getChain();
18742
SDValue BasePtr = LD->getBasePtr();
18743
Align Alignment = LD->getOriginalAlign();
18744
MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
18745
AAMDNodes AAInfo = LD->getAAInfo();
18746
18747
SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
18748
EVT NewFromVT = EVT::getVectorVT(
18749
C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
18750
EVT NewToVT = EVT::getVectorVT(
18751
C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
18752
18753
SmallVector<SDValue, 4> Loads;
18754
SmallVector<SDValue, 4> Chains;
18755
for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
18756
unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
18757
SDValue NewPtr =
18758
DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
18759
18760
SDValue NewLoad =
18761
DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
18762
LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
18763
Alignment, MMOFlags, AAInfo);
18764
Loads.push_back(NewLoad);
18765
Chains.push_back(SDValue(NewLoad.getNode(), 1));
18766
}
18767
18768
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
18769
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
18770
return DAG.getMergeValues(Loads, DL);
18771
}
18772
18773
// Perform combines for MVEEXT. If it has not be optimized to anything better
18774
// before lowering, it gets converted to stack store and extloads performing the
18775
// extend whilst still keeping the same lane ordering.
18776
SDValue ARMTargetLowering::PerformMVEExtCombine(
18777
SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const {
18778
SelectionDAG &DAG = DCI.DAG;
18779
EVT VT = N->getValueType(0);
18780
SDLoc DL(N);
18781
assert(N->getNumValues() == 2 && "Expected MVEEXT with 2 elements");
18782
assert((VT == MVT::v4i32 || VT == MVT::v8i16) && "Unexpected MVEEXT type");
18783
18784
EVT ExtVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18785
*DAG.getContext());
18786
auto Extend = [&](SDValue V) {
18787
SDValue VVT = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, V);
18788
return N->getOpcode() == ARMISD::MVESEXT
18789
? DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, VVT,
18790
DAG.getValueType(ExtVT))
18791
: DAG.getZeroExtendInReg(VVT, DL, ExtVT);
18792
};
18793
18794
// MVEEXT(VDUP) -> SIGN_EXTEND_INREG(VDUP)
18795
if (N->getOperand(0).getOpcode() == ARMISD::VDUP) {
18796
SDValue Ext = Extend(N->getOperand(0));
18797
return DAG.getMergeValues({Ext, Ext}, DL);
18798
}
18799
18800
// MVEEXT(shuffle) -> SIGN_EXTEND_INREG/ZERO_EXTEND_INREG
18801
if (auto *SVN = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0))) {
18802
ArrayRef<int> Mask = SVN->getMask();
18803
assert(Mask.size() == 2 * VT.getVectorNumElements());
18804
assert(Mask.size() == SVN->getValueType(0).getVectorNumElements());
18805
unsigned Rev = VT == MVT::v4i32 ? ARMISD::VREV32 : ARMISD::VREV16;
18806
SDValue Op0 = SVN->getOperand(0);
18807
SDValue Op1 = SVN->getOperand(1);
18808
18809
auto CheckInregMask = [&](int Start, int Offset) {
18810
for (int Idx = 0, E = VT.getVectorNumElements(); Idx < E; ++Idx)
18811
if (Mask[Start + Idx] >= 0 && Mask[Start + Idx] != Idx * 2 + Offset)
18812
return false;
18813
return true;
18814
};
18815
SDValue V0 = SDValue(N, 0);
18816
SDValue V1 = SDValue(N, 1);
18817
if (CheckInregMask(0, 0))
18818
V0 = Extend(Op0);
18819
else if (CheckInregMask(0, 1))
18820
V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0));
18821
else if (CheckInregMask(0, Mask.size()))
18822
V0 = Extend(Op1);
18823
else if (CheckInregMask(0, Mask.size() + 1))
18824
V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1));
18825
18826
if (CheckInregMask(VT.getVectorNumElements(), Mask.size()))
18827
V1 = Extend(Op1);
18828
else if (CheckInregMask(VT.getVectorNumElements(), Mask.size() + 1))
18829
V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1));
18830
else if (CheckInregMask(VT.getVectorNumElements(), 0))
18831
V1 = Extend(Op0);
18832
else if (CheckInregMask(VT.getVectorNumElements(), 1))
18833
V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0));
18834
18835
if (V0.getNode() != N || V1.getNode() != N)
18836
return DAG.getMergeValues({V0, V1}, DL);
18837
}
18838
18839
// MVEEXT(load) -> extload, extload
18840
if (N->getOperand(0)->getOpcode() == ISD::LOAD)
18841
if (SDValue L = PerformSplittingMVEEXTToWideningLoad(N, DAG))
18842
return L;
18843
18844
if (!DCI.isAfterLegalizeDAG())
18845
return SDValue();
18846
18847
// Lower to a stack store and reload:
18848
// VSTRW.32 a, stack; VLDRH.32 stack; VLDRH.32 stack+8;
18849
SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::getFixed(16), Align(4));
18850
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18851
int NumOuts = N->getNumValues();
18852
assert((NumOuts == 2 || NumOuts == 4) &&
18853
"Expected 2 or 4 outputs to an MVEEXT");
18854
EVT LoadVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18855
*DAG.getContext());
18856
if (N->getNumOperands() == 4)
18857
LoadVT = LoadVT.getHalfNumVectorElementsVT(*DAG.getContext());
18858
18859
MachinePointerInfo MPI =
18860
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0);
18861
SDValue Chain = DAG.getStore(DAG.getEntryNode(), DL, N->getOperand(0),
18862
StackPtr, MPI, Align(4));
18863
18864
SmallVector<SDValue> Loads;
18865
for (int I = 0; I < NumOuts; I++) {
18866
SDValue Ptr = DAG.getNode(
18867
ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
18868
DAG.getConstant(I * 16 / NumOuts, DL, StackPtr.getValueType()));
18869
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(
18870
DAG.getMachineFunction(), SPFI, I * 16 / NumOuts);
18871
SDValue Load = DAG.getExtLoad(
18872
N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD, DL,
18873
VT, Chain, Ptr, MPI, LoadVT, Align(4));
18874
Loads.push_back(Load);
18875
}
18876
18877
return DAG.getMergeValues(Loads, DL);
18878
}
18879
18880
SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
18881
DAGCombinerInfo &DCI) const {
18882
switch (N->getOpcode()) {
18883
default: break;
18884
case ISD::SELECT_CC:
18885
case ISD::SELECT: return PerformSELECTCombine(N, DCI, Subtarget);
18886
case ISD::VSELECT: return PerformVSELECTCombine(N, DCI, Subtarget);
18887
case ISD::SETCC: return PerformVSetCCToVCTPCombine(N, DCI, Subtarget);
18888
case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget);
18889
case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget);
18890
case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
18891
case ISD::SUB: return PerformSUBCombine(N, DCI, Subtarget);
18892
case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
18893
case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
18894
case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
18895
case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
18896
case ISD::BRCOND:
18897
case ISD::BR_CC: return PerformHWLoopCombine(N, DCI, Subtarget);
18898
case ARMISD::ADDC:
18899
case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget);
18900
case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget);
18901
case ARMISD::BFI: return PerformBFICombine(N, DCI.DAG);
18902
case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
18903
case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
18904
case ARMISD::VMOVhr: return PerformVMOVhrCombine(N, DCI);
18905
case ARMISD::VMOVrh: return PerformVMOVrhCombine(N, DCI.DAG);
18906
case ISD::STORE: return PerformSTORECombine(N, DCI, Subtarget);
18907
case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
18908
case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
18909
case ISD::EXTRACT_VECTOR_ELT:
18910
return PerformExtractEltCombine(N, DCI, Subtarget);
18911
case ISD::SIGN_EXTEND_INREG: return PerformSignExtendInregCombine(N, DCI.DAG);
18912
case ISD::INSERT_SUBVECTOR: return PerformInsertSubvectorCombine(N, DCI);
18913
case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
18914
case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI, Subtarget);
18915
case ARMISD::VDUP: return PerformVDUPCombine(N, DCI.DAG, Subtarget);
18916
case ISD::FP_TO_SINT:
18917
case ISD::FP_TO_UINT:
18918
return PerformVCVTCombine(N, DCI.DAG, Subtarget);
18919
case ISD::FADD:
18920
return PerformFADDCombine(N, DCI.DAG, Subtarget);
18921
case ISD::FMUL:
18922
return PerformVMulVCTPCombine(N, DCI.DAG, Subtarget);
18923
case ISD::INTRINSIC_WO_CHAIN:
18924
return PerformIntrinsicCombine(N, DCI);
18925
case ISD::SHL:
18926
case ISD::SRA:
18927
case ISD::SRL:
18928
return PerformShiftCombine(N, DCI, Subtarget);
18929
case ISD::SIGN_EXTEND:
18930
case ISD::ZERO_EXTEND:
18931
case ISD::ANY_EXTEND:
18932
return PerformExtendCombine(N, DCI.DAG, Subtarget);
18933
case ISD::FP_EXTEND:
18934
return PerformFPExtendCombine(N, DCI.DAG, Subtarget);
18935
case ISD::SMIN:
18936
case ISD::UMIN:
18937
case ISD::SMAX:
18938
case ISD::UMAX:
18939
return PerformMinMaxCombine(N, DCI.DAG, Subtarget);
18940
case ARMISD::CMOV:
18941
return PerformCMOVCombine(N, DCI.DAG);
18942
case ARMISD::BRCOND:
18943
return PerformBRCONDCombine(N, DCI.DAG);
18944
case ARMISD::CMPZ:
18945
return PerformCMPZCombine(N, DCI.DAG);
18946
case ARMISD::CSINC:
18947
case ARMISD::CSINV:
18948
case ARMISD::CSNEG:
18949
return PerformCSETCombine(N, DCI.DAG);
18950
case ISD::LOAD:
18951
return PerformLOADCombine(N, DCI, Subtarget);
18952
case ARMISD::VLD1DUP:
18953
case ARMISD::VLD2DUP:
18954
case ARMISD::VLD3DUP:
18955
case ARMISD::VLD4DUP:
18956
return PerformVLDCombine(N, DCI);
18957
case ARMISD::BUILD_VECTOR:
18958
return PerformARMBUILD_VECTORCombine(N, DCI);
18959
case ISD::BITCAST:
18960
return PerformBITCASTCombine(N, DCI, Subtarget);
18961
case ARMISD::PREDICATE_CAST:
18962
return PerformPREDICATE_CASTCombine(N, DCI);
18963
case ARMISD::VECTOR_REG_CAST:
18964
return PerformVECTOR_REG_CASTCombine(N, DCI.DAG, Subtarget);
18965
case ARMISD::MVETRUNC:
18966
return PerformMVETruncCombine(N, DCI);
18967
case ARMISD::MVESEXT:
18968
case ARMISD::MVEZEXT:
18969
return PerformMVEExtCombine(N, DCI);
18970
case ARMISD::VCMP:
18971
return PerformVCMPCombine(N, DCI.DAG, Subtarget);
18972
case ISD::VECREDUCE_ADD:
18973
return PerformVECREDUCE_ADDCombine(N, DCI.DAG, Subtarget);
18974
case ARMISD::VADDVs:
18975
case ARMISD::VADDVu:
18976
case ARMISD::VADDLVs:
18977
case ARMISD::VADDLVu:
18978
case ARMISD::VADDLVAs:
18979
case ARMISD::VADDLVAu:
18980
case ARMISD::VMLAVs:
18981
case ARMISD::VMLAVu:
18982
case ARMISD::VMLALVs:
18983
case ARMISD::VMLALVu:
18984
case ARMISD::VMLALVAs:
18985
case ARMISD::VMLALVAu:
18986
return PerformReduceShuffleCombine(N, DCI.DAG);
18987
case ARMISD::VMOVN:
18988
return PerformVMOVNCombine(N, DCI);
18989
case ARMISD::VQMOVNs:
18990
case ARMISD::VQMOVNu:
18991
return PerformVQMOVNCombine(N, DCI);
18992
case ARMISD::VQDMULH:
18993
return PerformVQDMULHCombine(N, DCI);
18994
case ARMISD::ASRL:
18995
case ARMISD::LSRL:
18996
case ARMISD::LSLL:
18997
return PerformLongShiftCombine(N, DCI.DAG);
18998
case ARMISD::SMULWB: {
18999
unsigned BitWidth = N->getValueType(0).getSizeInBits();
19000
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
19001
if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
19002
return SDValue();
19003
break;
19004
}
19005
case ARMISD::SMULWT: {
19006
unsigned BitWidth = N->getValueType(0).getSizeInBits();
19007
APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
19008
if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
19009
return SDValue();
19010
break;
19011
}
19012
case ARMISD::SMLALBB:
19013
case ARMISD::QADD16b:
19014
case ARMISD::QSUB16b:
19015
case ARMISD::UQADD16b:
19016
case ARMISD::UQSUB16b: {
19017
unsigned BitWidth = N->getValueType(0).getSizeInBits();
19018
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
19019
if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
19020
(SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
19021
return SDValue();
19022
break;
19023
}
19024
case ARMISD::SMLALBT: {
19025
unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
19026
APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
19027
unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
19028
APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
19029
if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
19030
(SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
19031
return SDValue();
19032
break;
19033
}
19034
case ARMISD::SMLALTB: {
19035
unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
19036
APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
19037
unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
19038
APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
19039
if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
19040
(SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
19041
return SDValue();
19042
break;
19043
}
19044
case ARMISD::SMLALTT: {
19045
unsigned BitWidth = N->getValueType(0).getSizeInBits();
19046
APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
19047
if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
19048
(SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
19049
return SDValue();
19050
break;
19051
}
19052
case ARMISD::QADD8b:
19053
case ARMISD::QSUB8b:
19054
case ARMISD::UQADD8b:
19055
case ARMISD::UQSUB8b: {
19056
unsigned BitWidth = N->getValueType(0).getSizeInBits();
19057
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
19058
if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
19059
(SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
19060
return SDValue();
19061
break;
19062
}
19063
case ISD::INTRINSIC_VOID:
19064
case ISD::INTRINSIC_W_CHAIN:
19065
switch (N->getConstantOperandVal(1)) {
19066
case Intrinsic::arm_neon_vld1:
19067
case Intrinsic::arm_neon_vld1x2:
19068
case Intrinsic::arm_neon_vld1x3:
19069
case Intrinsic::arm_neon_vld1x4:
19070
case Intrinsic::arm_neon_vld2:
19071
case Intrinsic::arm_neon_vld3:
19072
case Intrinsic::arm_neon_vld4:
19073
case Intrinsic::arm_neon_vld2lane:
19074
case Intrinsic::arm_neon_vld3lane:
19075
case Intrinsic::arm_neon_vld4lane:
19076
case Intrinsic::arm_neon_vld2dup:
19077
case Intrinsic::arm_neon_vld3dup:
19078
case Intrinsic::arm_neon_vld4dup:
19079
case Intrinsic::arm_neon_vst1:
19080
case Intrinsic::arm_neon_vst1x2:
19081
case Intrinsic::arm_neon_vst1x3:
19082
case Intrinsic::arm_neon_vst1x4:
19083
case Intrinsic::arm_neon_vst2:
19084
case Intrinsic::arm_neon_vst3:
19085
case Intrinsic::arm_neon_vst4:
19086
case Intrinsic::arm_neon_vst2lane:
19087
case Intrinsic::arm_neon_vst3lane:
19088
case Intrinsic::arm_neon_vst4lane:
19089
return PerformVLDCombine(N, DCI);
19090
case Intrinsic::arm_mve_vld2q:
19091
case Intrinsic::arm_mve_vld4q:
19092
case Intrinsic::arm_mve_vst2q:
19093
case Intrinsic::arm_mve_vst4q:
19094
return PerformMVEVLDCombine(N, DCI);
19095
default: break;
19096
}
19097
break;
19098
}
19099
return SDValue();
19100
}
19101
19102
bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
19103
EVT VT) const {
19104
return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
19105
}
19106
19107
bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
19108
Align Alignment,
19109
MachineMemOperand::Flags,
19110
unsigned *Fast) const {
19111
// Depends what it gets converted into if the type is weird.
19112
if (!VT.isSimple())
19113
return false;
19114
19115
// The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
19116
bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
19117
auto Ty = VT.getSimpleVT().SimpleTy;
19118
19119
if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
19120
// Unaligned access can use (for example) LRDB, LRDH, LDR
19121
if (AllowsUnaligned) {
19122
if (Fast)
19123
*Fast = Subtarget->hasV7Ops();
19124
return true;
19125
}
19126
}
19127
19128
if (Ty == MVT::f64 || Ty == MVT::v2f64) {
19129
// For any little-endian targets with neon, we can support unaligned ld/st
19130
// of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
19131
// A big-endian target may also explicitly support unaligned accesses
19132
if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
19133
if (Fast)
19134
*Fast = 1;
19135
return true;
19136
}
19137
}
19138
19139
if (!Subtarget->hasMVEIntegerOps())
19140
return false;
19141
19142
// These are for predicates
19143
if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1 ||
19144
Ty == MVT::v2i1)) {
19145
if (Fast)
19146
*Fast = 1;
19147
return true;
19148
}
19149
19150
// These are for truncated stores/narrowing loads. They are fine so long as
19151
// the alignment is at least the size of the item being loaded
19152
if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
19153
Alignment >= VT.getScalarSizeInBits() / 8) {
19154
if (Fast)
19155
*Fast = true;
19156
return true;
19157
}
19158
19159
// In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
19160
// VSTRW.U32 all store the vector register in exactly the same format, and
19161
// differ only in the range of their immediate offset field and the required
19162
// alignment. So there is always a store that can be used, regardless of
19163
// actual type.
19164
//
19165
// For big endian, that is not the case. But can still emit a (VSTRB.U8;
19166
// VREV64.8) pair and get the same effect. This will likely be better than
19167
// aligning the vector through the stack.
19168
if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
19169
Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
19170
Ty == MVT::v2f64) {
19171
if (Fast)
19172
*Fast = 1;
19173
return true;
19174
}
19175
19176
return false;
19177
}
19178
19179
19180
EVT ARMTargetLowering::getOptimalMemOpType(
19181
const MemOp &Op, const AttributeList &FuncAttributes) const {
19182
// See if we can use NEON instructions for this...
19183
if ((Op.isMemcpy() || Op.isZeroMemset()) && Subtarget->hasNEON() &&
19184
!FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat)) {
19185
unsigned Fast;
19186
if (Op.size() >= 16 &&
19187
(Op.isAligned(Align(16)) ||
19188
(allowsMisalignedMemoryAccesses(MVT::v2f64, 0, Align(1),
19189
MachineMemOperand::MONone, &Fast) &&
19190
Fast))) {
19191
return MVT::v2f64;
19192
} else if (Op.size() >= 8 &&
19193
(Op.isAligned(Align(8)) ||
19194
(allowsMisalignedMemoryAccesses(
19195
MVT::f64, 0, Align(1), MachineMemOperand::MONone, &Fast) &&
19196
Fast))) {
19197
return MVT::f64;
19198
}
19199
}
19200
19201
// Let the target-independent logic figure it out.
19202
return MVT::Other;
19203
}
19204
19205
// 64-bit integers are split into their high and low parts and held in two
19206
// different registers, so the trunc is free since the low register can just
19207
// be used.
19208
bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
19209
if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
19210
return false;
19211
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
19212
unsigned DestBits = DstTy->getPrimitiveSizeInBits();
19213
return (SrcBits == 64 && DestBits == 32);
19214
}
19215
19216
bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
19217
if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
19218
!DstVT.isInteger())
19219
return false;
19220
unsigned SrcBits = SrcVT.getSizeInBits();
19221
unsigned DestBits = DstVT.getSizeInBits();
19222
return (SrcBits == 64 && DestBits == 32);
19223
}
19224
19225
bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
19226
if (Val.getOpcode() != ISD::LOAD)
19227
return false;
19228
19229
EVT VT1 = Val.getValueType();
19230
if (!VT1.isSimple() || !VT1.isInteger() ||
19231
!VT2.isSimple() || !VT2.isInteger())
19232
return false;
19233
19234
switch (VT1.getSimpleVT().SimpleTy) {
19235
default: break;
19236
case MVT::i1:
19237
case MVT::i8:
19238
case MVT::i16:
19239
// 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
19240
return true;
19241
}
19242
19243
return false;
19244
}
19245
19246
bool ARMTargetLowering::isFNegFree(EVT VT) const {
19247
if (!VT.isSimple())
19248
return false;
19249
19250
// There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
19251
// negate values directly (fneg is free). So, we don't want to let the DAG
19252
// combiner rewrite fneg into xors and some other instructions. For f16 and
19253
// FullFP16 argument passing, some bitcast nodes may be introduced,
19254
// triggering this DAG combine rewrite, so we are avoiding that with this.
19255
switch (VT.getSimpleVT().SimpleTy) {
19256
default: break;
19257
case MVT::f16:
19258
return Subtarget->hasFullFP16();
19259
}
19260
19261
return false;
19262
}
19263
19264
/// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
19265
/// of the vector elements.
19266
static bool areExtractExts(Value *Ext1, Value *Ext2) {
19267
auto areExtDoubled = [](Instruction *Ext) {
19268
return Ext->getType()->getScalarSizeInBits() ==
19269
2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
19270
};
19271
19272
if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
19273
!match(Ext2, m_ZExtOrSExt(m_Value())) ||
19274
!areExtDoubled(cast<Instruction>(Ext1)) ||
19275
!areExtDoubled(cast<Instruction>(Ext2)))
19276
return false;
19277
19278
return true;
19279
}
19280
19281
/// Check if sinking \p I's operands to I's basic block is profitable, because
19282
/// the operands can be folded into a target instruction, e.g.
19283
/// sext/zext can be folded into vsubl.
19284
bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
19285
SmallVectorImpl<Use *> &Ops) const {
19286
if (!I->getType()->isVectorTy())
19287
return false;
19288
19289
if (Subtarget->hasNEON()) {
19290
switch (I->getOpcode()) {
19291
case Instruction::Sub:
19292
case Instruction::Add: {
19293
if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
19294
return false;
19295
Ops.push_back(&I->getOperandUse(0));
19296
Ops.push_back(&I->getOperandUse(1));
19297
return true;
19298
}
19299
default:
19300
return false;
19301
}
19302
}
19303
19304
if (!Subtarget->hasMVEIntegerOps())
19305
return false;
19306
19307
auto IsFMSMul = [&](Instruction *I) {
19308
if (!I->hasOneUse())
19309
return false;
19310
auto *Sub = cast<Instruction>(*I->users().begin());
19311
return Sub->getOpcode() == Instruction::FSub && Sub->getOperand(1) == I;
19312
};
19313
auto IsFMS = [&](Instruction *I) {
19314
if (match(I->getOperand(0), m_FNeg(m_Value())) ||
19315
match(I->getOperand(1), m_FNeg(m_Value())))
19316
return true;
19317
return false;
19318
};
19319
19320
auto IsSinker = [&](Instruction *I, int Operand) {
19321
switch (I->getOpcode()) {
19322
case Instruction::Add:
19323
case Instruction::Mul:
19324
case Instruction::FAdd:
19325
case Instruction::ICmp:
19326
case Instruction::FCmp:
19327
return true;
19328
case Instruction::FMul:
19329
return !IsFMSMul(I);
19330
case Instruction::Sub:
19331
case Instruction::FSub:
19332
case Instruction::Shl:
19333
case Instruction::LShr:
19334
case Instruction::AShr:
19335
return Operand == 1;
19336
case Instruction::Call:
19337
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
19338
switch (II->getIntrinsicID()) {
19339
case Intrinsic::fma:
19340
return !IsFMS(I);
19341
case Intrinsic::sadd_sat:
19342
case Intrinsic::uadd_sat:
19343
case Intrinsic::arm_mve_add_predicated:
19344
case Intrinsic::arm_mve_mul_predicated:
19345
case Intrinsic::arm_mve_qadd_predicated:
19346
case Intrinsic::arm_mve_vhadd:
19347
case Intrinsic::arm_mve_hadd_predicated:
19348
case Intrinsic::arm_mve_vqdmull:
19349
case Intrinsic::arm_mve_vqdmull_predicated:
19350
case Intrinsic::arm_mve_vqdmulh:
19351
case Intrinsic::arm_mve_qdmulh_predicated:
19352
case Intrinsic::arm_mve_vqrdmulh:
19353
case Intrinsic::arm_mve_qrdmulh_predicated:
19354
case Intrinsic::arm_mve_fma_predicated:
19355
return true;
19356
case Intrinsic::ssub_sat:
19357
case Intrinsic::usub_sat:
19358
case Intrinsic::arm_mve_sub_predicated:
19359
case Intrinsic::arm_mve_qsub_predicated:
19360
case Intrinsic::arm_mve_hsub_predicated:
19361
case Intrinsic::arm_mve_vhsub:
19362
return Operand == 1;
19363
default:
19364
return false;
19365
}
19366
}
19367
return false;
19368
default:
19369
return false;
19370
}
19371
};
19372
19373
for (auto OpIdx : enumerate(I->operands())) {
19374
Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
19375
// Make sure we are not already sinking this operand
19376
if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
19377
continue;
19378
19379
Instruction *Shuffle = Op;
19380
if (Shuffle->getOpcode() == Instruction::BitCast)
19381
Shuffle = dyn_cast<Instruction>(Shuffle->getOperand(0));
19382
// We are looking for a splat that can be sunk.
19383
if (!Shuffle ||
19384
!match(Shuffle, m_Shuffle(
19385
m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
19386
m_Undef(), m_ZeroMask())))
19387
continue;
19388
if (!IsSinker(I, OpIdx.index()))
19389
continue;
19390
19391
// All uses of the shuffle should be sunk to avoid duplicating it across gpr
19392
// and vector registers
19393
for (Use &U : Op->uses()) {
19394
Instruction *Insn = cast<Instruction>(U.getUser());
19395
if (!IsSinker(Insn, U.getOperandNo()))
19396
return false;
19397
}
19398
19399
Ops.push_back(&Shuffle->getOperandUse(0));
19400
if (Shuffle != Op)
19401
Ops.push_back(&Op->getOperandUse(0));
19402
Ops.push_back(&OpIdx.value());
19403
}
19404
return true;
19405
}
19406
19407
Type *ARMTargetLowering::shouldConvertSplatType(ShuffleVectorInst *SVI) const {
19408
if (!Subtarget->hasMVEIntegerOps())
19409
return nullptr;
19410
Type *SVIType = SVI->getType();
19411
Type *ScalarType = SVIType->getScalarType();
19412
19413
if (ScalarType->isFloatTy())
19414
return Type::getInt32Ty(SVIType->getContext());
19415
if (ScalarType->isHalfTy())
19416
return Type::getInt16Ty(SVIType->getContext());
19417
return nullptr;
19418
}
19419
19420
bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
19421
EVT VT = ExtVal.getValueType();
19422
19423
if (!isTypeLegal(VT))
19424
return false;
19425
19426
if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
19427
if (Ld->isExpandingLoad())
19428
return false;
19429
}
19430
19431
if (Subtarget->hasMVEIntegerOps())
19432
return true;
19433
19434
// Don't create a loadext if we can fold the extension into a wide/long
19435
// instruction.
19436
// If there's more than one user instruction, the loadext is desirable no
19437
// matter what. There can be two uses by the same instruction.
19438
if (ExtVal->use_empty() ||
19439
!ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
19440
return true;
19441
19442
SDNode *U = *ExtVal->use_begin();
19443
if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
19444
U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
19445
return false;
19446
19447
return true;
19448
}
19449
19450
bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
19451
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
19452
return false;
19453
19454
if (!isTypeLegal(EVT::getEVT(Ty1)))
19455
return false;
19456
19457
assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
19458
19459
// Assuming the caller doesn't have a zeroext or signext return parameter,
19460
// truncation all the way down to i1 is valid.
19461
return true;
19462
}
19463
19464
/// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
19465
/// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
19466
/// expanded to FMAs when this method returns true, otherwise fmuladd is
19467
/// expanded to fmul + fadd.
19468
///
19469
/// ARM supports both fused and unfused multiply-add operations; we already
19470
/// lower a pair of fmul and fadd to the latter so it's not clear that there
19471
/// would be a gain or that the gain would be worthwhile enough to risk
19472
/// correctness bugs.
19473
///
19474
/// For MVE, we set this to true as it helps simplify the need for some
19475
/// patterns (and we don't have the non-fused floating point instruction).
19476
bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
19477
EVT VT) const {
19478
if (!VT.isSimple())
19479
return false;
19480
19481
switch (VT.getSimpleVT().SimpleTy) {
19482
case MVT::v4f32:
19483
case MVT::v8f16:
19484
return Subtarget->hasMVEFloatOps();
19485
case MVT::f16:
19486
return Subtarget->useFPVFMx16();
19487
case MVT::f32:
19488
return Subtarget->useFPVFMx();
19489
case MVT::f64:
19490
return Subtarget->useFPVFMx64();
19491
default:
19492
break;
19493
}
19494
19495
return false;
19496
}
19497
19498
static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
19499
if (V < 0)
19500
return false;
19501
19502
unsigned Scale = 1;
19503
switch (VT.getSimpleVT().SimpleTy) {
19504
case MVT::i1:
19505
case MVT::i8:
19506
// Scale == 1;
19507
break;
19508
case MVT::i16:
19509
// Scale == 2;
19510
Scale = 2;
19511
break;
19512
default:
19513
// On thumb1 we load most things (i32, i64, floats, etc) with a LDR
19514
// Scale == 4;
19515
Scale = 4;
19516
break;
19517
}
19518
19519
if ((V & (Scale - 1)) != 0)
19520
return false;
19521
return isUInt<5>(V / Scale);
19522
}
19523
19524
static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
19525
const ARMSubtarget *Subtarget) {
19526
if (!VT.isInteger() && !VT.isFloatingPoint())
19527
return false;
19528
if (VT.isVector() && Subtarget->hasNEON())
19529
return false;
19530
if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
19531
!Subtarget->hasMVEFloatOps())
19532
return false;
19533
19534
bool IsNeg = false;
19535
if (V < 0) {
19536
IsNeg = true;
19537
V = -V;
19538
}
19539
19540
unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U);
19541
19542
// MVE: size * imm7
19543
if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
19544
switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
19545
case MVT::i32:
19546
case MVT::f32:
19547
return isShiftedUInt<7,2>(V);
19548
case MVT::i16:
19549
case MVT::f16:
19550
return isShiftedUInt<7,1>(V);
19551
case MVT::i8:
19552
return isUInt<7>(V);
19553
default:
19554
return false;
19555
}
19556
}
19557
19558
// half VLDR: 2 * imm8
19559
if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
19560
return isShiftedUInt<8, 1>(V);
19561
// VLDR and LDRD: 4 * imm8
19562
if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
19563
return isShiftedUInt<8, 2>(V);
19564
19565
if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
19566
// + imm12 or - imm8
19567
if (IsNeg)
19568
return isUInt<8>(V);
19569
return isUInt<12>(V);
19570
}
19571
19572
return false;
19573
}
19574
19575
/// isLegalAddressImmediate - Return true if the integer value can be used
19576
/// as the offset of the target addressing mode for load / store of the
19577
/// given type.
19578
static bool isLegalAddressImmediate(int64_t V, EVT VT,
19579
const ARMSubtarget *Subtarget) {
19580
if (V == 0)
19581
return true;
19582
19583
if (!VT.isSimple())
19584
return false;
19585
19586
if (Subtarget->isThumb1Only())
19587
return isLegalT1AddressImmediate(V, VT);
19588
else if (Subtarget->isThumb2())
19589
return isLegalT2AddressImmediate(V, VT, Subtarget);
19590
19591
// ARM mode.
19592
if (V < 0)
19593
V = - V;
19594
switch (VT.getSimpleVT().SimpleTy) {
19595
default: return false;
19596
case MVT::i1:
19597
case MVT::i8:
19598
case MVT::i32:
19599
// +- imm12
19600
return isUInt<12>(V);
19601
case MVT::i16:
19602
// +- imm8
19603
return isUInt<8>(V);
19604
case MVT::f32:
19605
case MVT::f64:
19606
if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
19607
return false;
19608
return isShiftedUInt<8, 2>(V);
19609
}
19610
}
19611
19612
bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
19613
EVT VT) const {
19614
int Scale = AM.Scale;
19615
if (Scale < 0)
19616
return false;
19617
19618
switch (VT.getSimpleVT().SimpleTy) {
19619
default: return false;
19620
case MVT::i1:
19621
case MVT::i8:
19622
case MVT::i16:
19623
case MVT::i32:
19624
if (Scale == 1)
19625
return true;
19626
// r + r << imm
19627
Scale = Scale & ~1;
19628
return Scale == 2 || Scale == 4 || Scale == 8;
19629
case MVT::i64:
19630
// FIXME: What are we trying to model here? ldrd doesn't have an r + r
19631
// version in Thumb mode.
19632
// r + r
19633
if (Scale == 1)
19634
return true;
19635
// r * 2 (this can be lowered to r + r).
19636
if (!AM.HasBaseReg && Scale == 2)
19637
return true;
19638
return false;
19639
case MVT::isVoid:
19640
// Note, we allow "void" uses (basically, uses that aren't loads or
19641
// stores), because arm allows folding a scale into many arithmetic
19642
// operations. This should be made more precise and revisited later.
19643
19644
// Allow r << imm, but the imm has to be a multiple of two.
19645
if (Scale & 1) return false;
19646
return isPowerOf2_32(Scale);
19647
}
19648
}
19649
19650
bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
19651
EVT VT) const {
19652
const int Scale = AM.Scale;
19653
19654
// Negative scales are not supported in Thumb1.
19655
if (Scale < 0)
19656
return false;
19657
19658
// Thumb1 addressing modes do not support register scaling excepting the
19659
// following cases:
19660
// 1. Scale == 1 means no scaling.
19661
// 2. Scale == 2 this can be lowered to r + r if there is no base register.
19662
return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
19663
}
19664
19665
/// isLegalAddressingMode - Return true if the addressing mode represented
19666
/// by AM is legal for this target, for a load/store of the specified type.
19667
bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
19668
const AddrMode &AM, Type *Ty,
19669
unsigned AS, Instruction *I) const {
19670
EVT VT = getValueType(DL, Ty, true);
19671
if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
19672
return false;
19673
19674
// Can never fold addr of global into load/store.
19675
if (AM.BaseGV)
19676
return false;
19677
19678
switch (AM.Scale) {
19679
case 0: // no scale reg, must be "r+i" or "r", or "i".
19680
break;
19681
default:
19682
// ARM doesn't support any R+R*scale+imm addr modes.
19683
if (AM.BaseOffs)
19684
return false;
19685
19686
if (!VT.isSimple())
19687
return false;
19688
19689
if (Subtarget->isThumb1Only())
19690
return isLegalT1ScaledAddressingMode(AM, VT);
19691
19692
if (Subtarget->isThumb2())
19693
return isLegalT2ScaledAddressingMode(AM, VT);
19694
19695
int Scale = AM.Scale;
19696
switch (VT.getSimpleVT().SimpleTy) {
19697
default: return false;
19698
case MVT::i1:
19699
case MVT::i8:
19700
case MVT::i32:
19701
if (Scale < 0) Scale = -Scale;
19702
if (Scale == 1)
19703
return true;
19704
// r + r << imm
19705
return isPowerOf2_32(Scale & ~1);
19706
case MVT::i16:
19707
case MVT::i64:
19708
// r +/- r
19709
if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
19710
return true;
19711
// r * 2 (this can be lowered to r + r).
19712
if (!AM.HasBaseReg && Scale == 2)
19713
return true;
19714
return false;
19715
19716
case MVT::isVoid:
19717
// Note, we allow "void" uses (basically, uses that aren't loads or
19718
// stores), because arm allows folding a scale into many arithmetic
19719
// operations. This should be made more precise and revisited later.
19720
19721
// Allow r << imm, but the imm has to be a multiple of two.
19722
if (Scale & 1) return false;
19723
return isPowerOf2_32(Scale);
19724
}
19725
}
19726
return true;
19727
}
19728
19729
/// isLegalICmpImmediate - Return true if the specified immediate is legal
19730
/// icmp immediate, that is the target has icmp instructions which can compare
19731
/// a register against the immediate without having to materialize the
19732
/// immediate into a register.
19733
bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
19734
// Thumb2 and ARM modes can use cmn for negative immediates.
19735
if (!Subtarget->isThumb())
19736
return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
19737
ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
19738
if (Subtarget->isThumb2())
19739
return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
19740
ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
19741
// Thumb1 doesn't have cmn, and only 8-bit immediates.
19742
return Imm >= 0 && Imm <= 255;
19743
}
19744
19745
/// isLegalAddImmediate - Return true if the specified immediate is a legal add
19746
/// *or sub* immediate, that is the target has add or sub instructions which can
19747
/// add a register with the immediate without having to materialize the
19748
/// immediate into a register.
19749
bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
19750
// Same encoding for add/sub, just flip the sign.
19751
int64_t AbsImm = std::abs(Imm);
19752
if (!Subtarget->isThumb())
19753
return ARM_AM::getSOImmVal(AbsImm) != -1;
19754
if (Subtarget->isThumb2())
19755
return ARM_AM::getT2SOImmVal(AbsImm) != -1;
19756
// Thumb1 only has 8-bit unsigned immediate.
19757
return AbsImm >= 0 && AbsImm <= 255;
19758
}
19759
19760
// Return false to prevent folding
19761
// (mul (add r, c0), c1) -> (add (mul r, c1), c0*c1) in DAGCombine,
19762
// if the folding leads to worse code.
19763
bool ARMTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
19764
SDValue ConstNode) const {
19765
// Let the DAGCombiner decide for vector types and large types.
19766
const EVT VT = AddNode.getValueType();
19767
if (VT.isVector() || VT.getScalarSizeInBits() > 32)
19768
return true;
19769
19770
// It is worse if c0 is legal add immediate, while c1*c0 is not
19771
// and has to be composed by at least two instructions.
19772
const ConstantSDNode *C0Node = cast<ConstantSDNode>(AddNode.getOperand(1));
19773
const ConstantSDNode *C1Node = cast<ConstantSDNode>(ConstNode);
19774
const int64_t C0 = C0Node->getSExtValue();
19775
APInt CA = C0Node->getAPIntValue() * C1Node->getAPIntValue();
19776
if (!isLegalAddImmediate(C0) || isLegalAddImmediate(CA.getSExtValue()))
19777
return true;
19778
if (ConstantMaterializationCost((unsigned)CA.getZExtValue(), Subtarget) > 1)
19779
return false;
19780
19781
// Default to true and let the DAGCombiner decide.
19782
return true;
19783
}
19784
19785
static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
19786
bool isSEXTLoad, SDValue &Base,
19787
SDValue &Offset, bool &isInc,
19788
SelectionDAG &DAG) {
19789
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19790
return false;
19791
19792
if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
19793
// AddressingMode 3
19794
Base = Ptr->getOperand(0);
19795
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19796
int RHSC = (int)RHS->getZExtValue();
19797
if (RHSC < 0 && RHSC > -256) {
19798
assert(Ptr->getOpcode() == ISD::ADD);
19799
isInc = false;
19800
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19801
return true;
19802
}
19803
}
19804
isInc = (Ptr->getOpcode() == ISD::ADD);
19805
Offset = Ptr->getOperand(1);
19806
return true;
19807
} else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
19808
// AddressingMode 2
19809
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19810
int RHSC = (int)RHS->getZExtValue();
19811
if (RHSC < 0 && RHSC > -0x1000) {
19812
assert(Ptr->getOpcode() == ISD::ADD);
19813
isInc = false;
19814
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19815
Base = Ptr->getOperand(0);
19816
return true;
19817
}
19818
}
19819
19820
if (Ptr->getOpcode() == ISD::ADD) {
19821
isInc = true;
19822
ARM_AM::ShiftOpc ShOpcVal=
19823
ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
19824
if (ShOpcVal != ARM_AM::no_shift) {
19825
Base = Ptr->getOperand(1);
19826
Offset = Ptr->getOperand(0);
19827
} else {
19828
Base = Ptr->getOperand(0);
19829
Offset = Ptr->getOperand(1);
19830
}
19831
return true;
19832
}
19833
19834
isInc = (Ptr->getOpcode() == ISD::ADD);
19835
Base = Ptr->getOperand(0);
19836
Offset = Ptr->getOperand(1);
19837
return true;
19838
}
19839
19840
// FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
19841
return false;
19842
}
19843
19844
static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
19845
bool isSEXTLoad, SDValue &Base,
19846
SDValue &Offset, bool &isInc,
19847
SelectionDAG &DAG) {
19848
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19849
return false;
19850
19851
Base = Ptr->getOperand(0);
19852
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19853
int RHSC = (int)RHS->getZExtValue();
19854
if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
19855
assert(Ptr->getOpcode() == ISD::ADD);
19856
isInc = false;
19857
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19858
return true;
19859
} else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
19860
isInc = Ptr->getOpcode() == ISD::ADD;
19861
Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
19862
return true;
19863
}
19864
}
19865
19866
return false;
19867
}
19868
19869
static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, Align Alignment,
19870
bool isSEXTLoad, bool IsMasked, bool isLE,
19871
SDValue &Base, SDValue &Offset,
19872
bool &isInc, SelectionDAG &DAG) {
19873
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19874
return false;
19875
if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
19876
return false;
19877
19878
// We allow LE non-masked loads to change the type (for example use a vldrb.8
19879
// as opposed to a vldrw.32). This can allow extra addressing modes or
19880
// alignments for what is otherwise an equivalent instruction.
19881
bool CanChangeType = isLE && !IsMasked;
19882
19883
ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
19884
int RHSC = (int)RHS->getZExtValue();
19885
19886
auto IsInRange = [&](int RHSC, int Limit, int Scale) {
19887
if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
19888
assert(Ptr->getOpcode() == ISD::ADD);
19889
isInc = false;
19890
Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19891
return true;
19892
} else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
19893
isInc = Ptr->getOpcode() == ISD::ADD;
19894
Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
19895
return true;
19896
}
19897
return false;
19898
};
19899
19900
// Try to find a matching instruction based on s/zext, Alignment, Offset and
19901
// (in BE/masked) type.
19902
Base = Ptr->getOperand(0);
19903
if (VT == MVT::v4i16) {
19904
if (Alignment >= 2 && IsInRange(RHSC, 0x80, 2))
19905
return true;
19906
} else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
19907
if (IsInRange(RHSC, 0x80, 1))
19908
return true;
19909
} else if (Alignment >= 4 &&
19910
(CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
19911
IsInRange(RHSC, 0x80, 4))
19912
return true;
19913
else if (Alignment >= 2 &&
19914
(CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
19915
IsInRange(RHSC, 0x80, 2))
19916
return true;
19917
else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
19918
return true;
19919
return false;
19920
}
19921
19922
/// getPreIndexedAddressParts - returns true by value, base pointer and
19923
/// offset pointer and addressing mode by reference if the node's address
19924
/// can be legally represented as pre-indexed load / store address.
19925
bool
19926
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
19927
SDValue &Offset,
19928
ISD::MemIndexedMode &AM,
19929
SelectionDAG &DAG) const {
19930
if (Subtarget->isThumb1Only())
19931
return false;
19932
19933
EVT VT;
19934
SDValue Ptr;
19935
Align Alignment;
19936
bool isSEXTLoad = false;
19937
bool IsMasked = false;
19938
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19939
Ptr = LD->getBasePtr();
19940
VT = LD->getMemoryVT();
19941
Alignment = LD->getAlign();
19942
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19943
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
19944
Ptr = ST->getBasePtr();
19945
VT = ST->getMemoryVT();
19946
Alignment = ST->getAlign();
19947
} else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
19948
Ptr = LD->getBasePtr();
19949
VT = LD->getMemoryVT();
19950
Alignment = LD->getAlign();
19951
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19952
IsMasked = true;
19953
} else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
19954
Ptr = ST->getBasePtr();
19955
VT = ST->getMemoryVT();
19956
Alignment = ST->getAlign();
19957
IsMasked = true;
19958
} else
19959
return false;
19960
19961
bool isInc;
19962
bool isLegal = false;
19963
if (VT.isVector())
19964
isLegal = Subtarget->hasMVEIntegerOps() &&
19965
getMVEIndexedAddressParts(
19966
Ptr.getNode(), VT, Alignment, isSEXTLoad, IsMasked,
19967
Subtarget->isLittle(), Base, Offset, isInc, DAG);
19968
else {
19969
if (Subtarget->isThumb2())
19970
isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
19971
Offset, isInc, DAG);
19972
else
19973
isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
19974
Offset, isInc, DAG);
19975
}
19976
if (!isLegal)
19977
return false;
19978
19979
AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
19980
return true;
19981
}
19982
19983
/// getPostIndexedAddressParts - returns true by value, base pointer and
19984
/// offset pointer and addressing mode by reference if this node can be
19985
/// combined with a load / store to form a post-indexed load / store.
19986
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
19987
SDValue &Base,
19988
SDValue &Offset,
19989
ISD::MemIndexedMode &AM,
19990
SelectionDAG &DAG) const {
19991
EVT VT;
19992
SDValue Ptr;
19993
Align Alignment;
19994
bool isSEXTLoad = false, isNonExt;
19995
bool IsMasked = false;
19996
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19997
VT = LD->getMemoryVT();
19998
Ptr = LD->getBasePtr();
19999
Alignment = LD->getAlign();
20000
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
20001
isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
20002
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
20003
VT = ST->getMemoryVT();
20004
Ptr = ST->getBasePtr();
20005
Alignment = ST->getAlign();
20006
isNonExt = !ST->isTruncatingStore();
20007
} else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
20008
VT = LD->getMemoryVT();
20009
Ptr = LD->getBasePtr();
20010
Alignment = LD->getAlign();
20011
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
20012
isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
20013
IsMasked = true;
20014
} else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
20015
VT = ST->getMemoryVT();
20016
Ptr = ST->getBasePtr();
20017
Alignment = ST->getAlign();
20018
isNonExt = !ST->isTruncatingStore();
20019
IsMasked = true;
20020
} else
20021
return false;
20022
20023
if (Subtarget->isThumb1Only()) {
20024
// Thumb-1 can do a limited post-inc load or store as an updating LDM. It
20025
// must be non-extending/truncating, i32, with an offset of 4.
20026
assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
20027
if (Op->getOpcode() != ISD::ADD || !isNonExt)
20028
return false;
20029
auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
20030
if (!RHS || RHS->getZExtValue() != 4)
20031
return false;
20032
if (Alignment < Align(4))
20033
return false;
20034
20035
Offset = Op->getOperand(1);
20036
Base = Op->getOperand(0);
20037
AM = ISD::POST_INC;
20038
return true;
20039
}
20040
20041
bool isInc;
20042
bool isLegal = false;
20043
if (VT.isVector())
20044
isLegal = Subtarget->hasMVEIntegerOps() &&
20045
getMVEIndexedAddressParts(Op, VT, Alignment, isSEXTLoad, IsMasked,
20046
Subtarget->isLittle(), Base, Offset,
20047
isInc, DAG);
20048
else {
20049
if (Subtarget->isThumb2())
20050
isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
20051
isInc, DAG);
20052
else
20053
isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
20054
isInc, DAG);
20055
}
20056
if (!isLegal)
20057
return false;
20058
20059
if (Ptr != Base) {
20060
// Swap base ptr and offset to catch more post-index load / store when
20061
// it's legal. In Thumb2 mode, offset must be an immediate.
20062
if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
20063
!Subtarget->isThumb2())
20064
std::swap(Base, Offset);
20065
20066
// Post-indexed load / store update the base pointer.
20067
if (Ptr != Base)
20068
return false;
20069
}
20070
20071
AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
20072
return true;
20073
}
20074
20075
void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
20076
KnownBits &Known,
20077
const APInt &DemandedElts,
20078
const SelectionDAG &DAG,
20079
unsigned Depth) const {
20080
unsigned BitWidth = Known.getBitWidth();
20081
Known.resetAll();
20082
switch (Op.getOpcode()) {
20083
default: break;
20084
case ARMISD::ADDC:
20085
case ARMISD::ADDE:
20086
case ARMISD::SUBC:
20087
case ARMISD::SUBE:
20088
// Special cases when we convert a carry to a boolean.
20089
if (Op.getResNo() == 0) {
20090
SDValue LHS = Op.getOperand(0);
20091
SDValue RHS = Op.getOperand(1);
20092
// (ADDE 0, 0, C) will give us a single bit.
20093
if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
20094
isNullConstant(RHS)) {
20095
Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
20096
return;
20097
}
20098
}
20099
break;
20100
case ARMISD::CMOV: {
20101
// Bits are known zero/one if known on the LHS and RHS.
20102
Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
20103
if (Known.isUnknown())
20104
return;
20105
20106
KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
20107
Known = Known.intersectWith(KnownRHS);
20108
return;
20109
}
20110
case ISD::INTRINSIC_W_CHAIN: {
20111
Intrinsic::ID IntID =
20112
static_cast<Intrinsic::ID>(Op->getConstantOperandVal(1));
20113
switch (IntID) {
20114
default: return;
20115
case Intrinsic::arm_ldaex:
20116
case Intrinsic::arm_ldrex: {
20117
EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
20118
unsigned MemBits = VT.getScalarSizeInBits();
20119
Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
20120
return;
20121
}
20122
}
20123
}
20124
case ARMISD::BFI: {
20125
// Conservatively, we can recurse down the first operand
20126
// and just mask out all affected bits.
20127
Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
20128
20129
// The operand to BFI is already a mask suitable for removing the bits it
20130
// sets.
20131
const APInt &Mask = Op.getConstantOperandAPInt(2);
20132
Known.Zero &= Mask;
20133
Known.One &= Mask;
20134
return;
20135
}
20136
case ARMISD::VGETLANEs:
20137
case ARMISD::VGETLANEu: {
20138
const SDValue &SrcSV = Op.getOperand(0);
20139
EVT VecVT = SrcSV.getValueType();
20140
assert(VecVT.isVector() && "VGETLANE expected a vector type");
20141
const unsigned NumSrcElts = VecVT.getVectorNumElements();
20142
ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
20143
assert(Pos->getAPIntValue().ult(NumSrcElts) &&
20144
"VGETLANE index out of bounds");
20145
unsigned Idx = Pos->getZExtValue();
20146
APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
20147
Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
20148
20149
EVT VT = Op.getValueType();
20150
const unsigned DstSz = VT.getScalarSizeInBits();
20151
const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
20152
(void)SrcSz;
20153
assert(SrcSz == Known.getBitWidth());
20154
assert(DstSz > SrcSz);
20155
if (Op.getOpcode() == ARMISD::VGETLANEs)
20156
Known = Known.sext(DstSz);
20157
else {
20158
Known = Known.zext(DstSz);
20159
}
20160
assert(DstSz == Known.getBitWidth());
20161
break;
20162
}
20163
case ARMISD::VMOVrh: {
20164
KnownBits KnownOp = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
20165
assert(KnownOp.getBitWidth() == 16);
20166
Known = KnownOp.zext(32);
20167
break;
20168
}
20169
case ARMISD::CSINC:
20170
case ARMISD::CSINV:
20171
case ARMISD::CSNEG: {
20172
KnownBits KnownOp0 = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
20173
KnownBits KnownOp1 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
20174
20175
// The result is either:
20176
// CSINC: KnownOp0 or KnownOp1 + 1
20177
// CSINV: KnownOp0 or ~KnownOp1
20178
// CSNEG: KnownOp0 or KnownOp1 * -1
20179
if (Op.getOpcode() == ARMISD::CSINC)
20180
KnownOp1 = KnownBits::computeForAddSub(
20181
/*Add=*/true, /*NSW=*/false, /*NUW=*/false, KnownOp1,
20182
KnownBits::makeConstant(APInt(32, 1)));
20183
else if (Op.getOpcode() == ARMISD::CSINV)
20184
std::swap(KnownOp1.Zero, KnownOp1.One);
20185
else if (Op.getOpcode() == ARMISD::CSNEG)
20186
KnownOp1 = KnownBits::mul(
20187
KnownOp1, KnownBits::makeConstant(APInt(32, -1)));
20188
20189
Known = KnownOp0.intersectWith(KnownOp1);
20190
break;
20191
}
20192
}
20193
}
20194
20195
bool ARMTargetLowering::targetShrinkDemandedConstant(
20196
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
20197
TargetLoweringOpt &TLO) const {
20198
// Delay optimization, so we don't have to deal with illegal types, or block
20199
// optimizations.
20200
if (!TLO.LegalOps)
20201
return false;
20202
20203
// Only optimize AND for now.
20204
if (Op.getOpcode() != ISD::AND)
20205
return false;
20206
20207
EVT VT = Op.getValueType();
20208
20209
// Ignore vectors.
20210
if (VT.isVector())
20211
return false;
20212
20213
assert(VT == MVT::i32 && "Unexpected integer type");
20214
20215
// Make sure the RHS really is a constant.
20216
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
20217
if (!C)
20218
return false;
20219
20220
unsigned Mask = C->getZExtValue();
20221
20222
unsigned Demanded = DemandedBits.getZExtValue();
20223
unsigned ShrunkMask = Mask & Demanded;
20224
unsigned ExpandedMask = Mask | ~Demanded;
20225
20226
// If the mask is all zeros, let the target-independent code replace the
20227
// result with zero.
20228
if (ShrunkMask == 0)
20229
return false;
20230
20231
// If the mask is all ones, erase the AND. (Currently, the target-independent
20232
// code won't do this, so we have to do it explicitly to avoid an infinite
20233
// loop in obscure cases.)
20234
if (ExpandedMask == ~0U)
20235
return TLO.CombineTo(Op, Op.getOperand(0));
20236
20237
auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
20238
return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
20239
};
20240
auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
20241
if (NewMask == Mask)
20242
return true;
20243
SDLoc DL(Op);
20244
SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
20245
SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
20246
return TLO.CombineTo(Op, NewOp);
20247
};
20248
20249
// Prefer uxtb mask.
20250
if (IsLegalMask(0xFF))
20251
return UseMask(0xFF);
20252
20253
// Prefer uxth mask.
20254
if (IsLegalMask(0xFFFF))
20255
return UseMask(0xFFFF);
20256
20257
// [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
20258
// FIXME: Prefer a contiguous sequence of bits for other optimizations.
20259
if (ShrunkMask < 256)
20260
return UseMask(ShrunkMask);
20261
20262
// [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
20263
// FIXME: Prefer a contiguous sequence of bits for other optimizations.
20264
if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
20265
return UseMask(ExpandedMask);
20266
20267
// Potential improvements:
20268
//
20269
// We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
20270
// We could try to prefer Thumb1 immediates which can be lowered to a
20271
// two-instruction sequence.
20272
// We could try to recognize more legal ARM/Thumb2 immediates here.
20273
20274
return false;
20275
}
20276
20277
bool ARMTargetLowering::SimplifyDemandedBitsForTargetNode(
20278
SDValue Op, const APInt &OriginalDemandedBits,
20279
const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
20280
unsigned Depth) const {
20281
unsigned Opc = Op.getOpcode();
20282
20283
switch (Opc) {
20284
case ARMISD::ASRL:
20285
case ARMISD::LSRL: {
20286
// If this is result 0 and the other result is unused, see if the demand
20287
// bits allow us to shrink this long shift into a standard small shift in
20288
// the opposite direction.
20289
if (Op.getResNo() == 0 && !Op->hasAnyUseOfValue(1) &&
20290
isa<ConstantSDNode>(Op->getOperand(2))) {
20291
unsigned ShAmt = Op->getConstantOperandVal(2);
20292
if (ShAmt < 32 && OriginalDemandedBits.isSubsetOf(APInt::getAllOnes(32)
20293
<< (32 - ShAmt)))
20294
return TLO.CombineTo(
20295
Op, TLO.DAG.getNode(
20296
ISD::SHL, SDLoc(Op), MVT::i32, Op.getOperand(1),
20297
TLO.DAG.getConstant(32 - ShAmt, SDLoc(Op), MVT::i32)));
20298
}
20299
break;
20300
}
20301
case ARMISD::VBICIMM: {
20302
SDValue Op0 = Op.getOperand(0);
20303
unsigned ModImm = Op.getConstantOperandVal(1);
20304
unsigned EltBits = 0;
20305
uint64_t Mask = ARM_AM::decodeVMOVModImm(ModImm, EltBits);
20306
if ((OriginalDemandedBits & Mask) == 0)
20307
return TLO.CombineTo(Op, Op0);
20308
}
20309
}
20310
20311
return TargetLowering::SimplifyDemandedBitsForTargetNode(
20312
Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
20313
}
20314
20315
//===----------------------------------------------------------------------===//
20316
// ARM Inline Assembly Support
20317
//===----------------------------------------------------------------------===//
20318
20319
bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
20320
// Looking for "rev" which is V6+.
20321
if (!Subtarget->hasV6Ops())
20322
return false;
20323
20324
InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
20325
StringRef AsmStr = IA->getAsmString();
20326
SmallVector<StringRef, 4> AsmPieces;
20327
SplitString(AsmStr, AsmPieces, ";\n");
20328
20329
switch (AsmPieces.size()) {
20330
default: return false;
20331
case 1:
20332
AsmStr = AsmPieces[0];
20333
AsmPieces.clear();
20334
SplitString(AsmStr, AsmPieces, " \t,");
20335
20336
// rev $0, $1
20337
if (AsmPieces.size() == 3 &&
20338
AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
20339
IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
20340
IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
20341
if (Ty && Ty->getBitWidth() == 32)
20342
return IntrinsicLowering::LowerToByteSwap(CI);
20343
}
20344
break;
20345
}
20346
20347
return false;
20348
}
20349
20350
const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
20351
// At this point, we have to lower this constraint to something else, so we
20352
// lower it to an "r" or "w". However, by doing this we will force the result
20353
// to be in register, while the X constraint is much more permissive.
20354
//
20355
// Although we are correct (we are free to emit anything, without
20356
// constraints), we might break use cases that would expect us to be more
20357
// efficient and emit something else.
20358
if (!Subtarget->hasVFP2Base())
20359
return "r";
20360
if (ConstraintVT.isFloatingPoint())
20361
return "w";
20362
if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
20363
(ConstraintVT.getSizeInBits() == 64 ||
20364
ConstraintVT.getSizeInBits() == 128))
20365
return "w";
20366
20367
return "r";
20368
}
20369
20370
/// getConstraintType - Given a constraint letter, return the type of
20371
/// constraint it is for this target.
20372
ARMTargetLowering::ConstraintType
20373
ARMTargetLowering::getConstraintType(StringRef Constraint) const {
20374
unsigned S = Constraint.size();
20375
if (S == 1) {
20376
switch (Constraint[0]) {
20377
default: break;
20378
case 'l': return C_RegisterClass;
20379
case 'w': return C_RegisterClass;
20380
case 'h': return C_RegisterClass;
20381
case 'x': return C_RegisterClass;
20382
case 't': return C_RegisterClass;
20383
case 'j': return C_Immediate; // Constant for movw.
20384
// An address with a single base register. Due to the way we
20385
// currently handle addresses it is the same as an 'r' memory constraint.
20386
case 'Q': return C_Memory;
20387
}
20388
} else if (S == 2) {
20389
switch (Constraint[0]) {
20390
default: break;
20391
case 'T': return C_RegisterClass;
20392
// All 'U+' constraints are addresses.
20393
case 'U': return C_Memory;
20394
}
20395
}
20396
return TargetLowering::getConstraintType(Constraint);
20397
}
20398
20399
/// Examine constraint type and operand type and determine a weight value.
20400
/// This object must already have been set up with the operand type
20401
/// and the current alternative constraint selected.
20402
TargetLowering::ConstraintWeight
20403
ARMTargetLowering::getSingleConstraintMatchWeight(
20404
AsmOperandInfo &info, const char *constraint) const {
20405
ConstraintWeight weight = CW_Invalid;
20406
Value *CallOperandVal = info.CallOperandVal;
20407
// If we don't have a value, we can't do a match,
20408
// but allow it at the lowest weight.
20409
if (!CallOperandVal)
20410
return CW_Default;
20411
Type *type = CallOperandVal->getType();
20412
// Look at the constraint type.
20413
switch (*constraint) {
20414
default:
20415
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
20416
break;
20417
case 'l':
20418
if (type->isIntegerTy()) {
20419
if (Subtarget->isThumb())
20420
weight = CW_SpecificReg;
20421
else
20422
weight = CW_Register;
20423
}
20424
break;
20425
case 'w':
20426
if (type->isFloatingPointTy())
20427
weight = CW_Register;
20428
break;
20429
}
20430
return weight;
20431
}
20432
20433
using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
20434
20435
RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
20436
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
20437
switch (Constraint.size()) {
20438
case 1:
20439
// GCC ARM Constraint Letters
20440
switch (Constraint[0]) {
20441
case 'l': // Low regs or general regs.
20442
if (Subtarget->isThumb())
20443
return RCPair(0U, &ARM::tGPRRegClass);
20444
return RCPair(0U, &ARM::GPRRegClass);
20445
case 'h': // High regs or no regs.
20446
if (Subtarget->isThumb())
20447
return RCPair(0U, &ARM::hGPRRegClass);
20448
break;
20449
case 'r':
20450
if (Subtarget->isThumb1Only())
20451
return RCPair(0U, &ARM::tGPRRegClass);
20452
return RCPair(0U, &ARM::GPRRegClass);
20453
case 'w':
20454
if (VT == MVT::Other)
20455
break;
20456
if (VT == MVT::f32 || VT == MVT::f16 || VT == MVT::bf16)
20457
return RCPair(0U, &ARM::SPRRegClass);
20458
if (VT.getSizeInBits() == 64)
20459
return RCPair(0U, &ARM::DPRRegClass);
20460
if (VT.getSizeInBits() == 128)
20461
return RCPair(0U, &ARM::QPRRegClass);
20462
break;
20463
case 'x':
20464
if (VT == MVT::Other)
20465
break;
20466
if (VT == MVT::f32 || VT == MVT::f16 || VT == MVT::bf16)
20467
return RCPair(0U, &ARM::SPR_8RegClass);
20468
if (VT.getSizeInBits() == 64)
20469
return RCPair(0U, &ARM::DPR_8RegClass);
20470
if (VT.getSizeInBits() == 128)
20471
return RCPair(0U, &ARM::QPR_8RegClass);
20472
break;
20473
case 't':
20474
if (VT == MVT::Other)
20475
break;
20476
if (VT == MVT::f32 || VT == MVT::i32 || VT == MVT::f16 || VT == MVT::bf16)
20477
return RCPair(0U, &ARM::SPRRegClass);
20478
if (VT.getSizeInBits() == 64)
20479
return RCPair(0U, &ARM::DPR_VFP2RegClass);
20480
if (VT.getSizeInBits() == 128)
20481
return RCPair(0U, &ARM::QPR_VFP2RegClass);
20482
break;
20483
}
20484
break;
20485
20486
case 2:
20487
if (Constraint[0] == 'T') {
20488
switch (Constraint[1]) {
20489
default:
20490
break;
20491
case 'e':
20492
return RCPair(0U, &ARM::tGPREvenRegClass);
20493
case 'o':
20494
return RCPair(0U, &ARM::tGPROddRegClass);
20495
}
20496
}
20497
break;
20498
20499
default:
20500
break;
20501
}
20502
20503
if (StringRef("{cc}").equals_insensitive(Constraint))
20504
return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
20505
20506
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
20507
}
20508
20509
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
20510
/// vector. If it is invalid, don't add anything to Ops.
20511
void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
20512
StringRef Constraint,
20513
std::vector<SDValue> &Ops,
20514
SelectionDAG &DAG) const {
20515
SDValue Result;
20516
20517
// Currently only support length 1 constraints.
20518
if (Constraint.size() != 1)
20519
return;
20520
20521
char ConstraintLetter = Constraint[0];
20522
switch (ConstraintLetter) {
20523
default: break;
20524
case 'j':
20525
case 'I': case 'J': case 'K': case 'L':
20526
case 'M': case 'N': case 'O':
20527
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
20528
if (!C)
20529
return;
20530
20531
int64_t CVal64 = C->getSExtValue();
20532
int CVal = (int) CVal64;
20533
// None of these constraints allow values larger than 32 bits. Check
20534
// that the value fits in an int.
20535
if (CVal != CVal64)
20536
return;
20537
20538
switch (ConstraintLetter) {
20539
case 'j':
20540
// Constant suitable for movw, must be between 0 and
20541
// 65535.
20542
if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
20543
if (CVal >= 0 && CVal <= 65535)
20544
break;
20545
return;
20546
case 'I':
20547
if (Subtarget->isThumb1Only()) {
20548
// This must be a constant between 0 and 255, for ADD
20549
// immediates.
20550
if (CVal >= 0 && CVal <= 255)
20551
break;
20552
} else if (Subtarget->isThumb2()) {
20553
// A constant that can be used as an immediate value in a
20554
// data-processing instruction.
20555
if (ARM_AM::getT2SOImmVal(CVal) != -1)
20556
break;
20557
} else {
20558
// A constant that can be used as an immediate value in a
20559
// data-processing instruction.
20560
if (ARM_AM::getSOImmVal(CVal) != -1)
20561
break;
20562
}
20563
return;
20564
20565
case 'J':
20566
if (Subtarget->isThumb1Only()) {
20567
// This must be a constant between -255 and -1, for negated ADD
20568
// immediates. This can be used in GCC with an "n" modifier that
20569
// prints the negated value, for use with SUB instructions. It is
20570
// not useful otherwise but is implemented for compatibility.
20571
if (CVal >= -255 && CVal <= -1)
20572
break;
20573
} else {
20574
// This must be a constant between -4095 and 4095. It is not clear
20575
// what this constraint is intended for. Implemented for
20576
// compatibility with GCC.
20577
if (CVal >= -4095 && CVal <= 4095)
20578
break;
20579
}
20580
return;
20581
20582
case 'K':
20583
if (Subtarget->isThumb1Only()) {
20584
// A 32-bit value where only one byte has a nonzero value. Exclude
20585
// zero to match GCC. This constraint is used by GCC internally for
20586
// constants that can be loaded with a move/shift combination.
20587
// It is not useful otherwise but is implemented for compatibility.
20588
if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
20589
break;
20590
} else if (Subtarget->isThumb2()) {
20591
// A constant whose bitwise inverse can be used as an immediate
20592
// value in a data-processing instruction. This can be used in GCC
20593
// with a "B" modifier that prints the inverted value, for use with
20594
// BIC and MVN instructions. It is not useful otherwise but is
20595
// implemented for compatibility.
20596
if (ARM_AM::getT2SOImmVal(~CVal) != -1)
20597
break;
20598
} else {
20599
// A constant whose bitwise inverse can be used as an immediate
20600
// value in a data-processing instruction. This can be used in GCC
20601
// with a "B" modifier that prints the inverted value, for use with
20602
// BIC and MVN instructions. It is not useful otherwise but is
20603
// implemented for compatibility.
20604
if (ARM_AM::getSOImmVal(~CVal) != -1)
20605
break;
20606
}
20607
return;
20608
20609
case 'L':
20610
if (Subtarget->isThumb1Only()) {
20611
// This must be a constant between -7 and 7,
20612
// for 3-operand ADD/SUB immediate instructions.
20613
if (CVal >= -7 && CVal < 7)
20614
break;
20615
} else if (Subtarget->isThumb2()) {
20616
// A constant whose negation can be used as an immediate value in a
20617
// data-processing instruction. This can be used in GCC with an "n"
20618
// modifier that prints the negated value, for use with SUB
20619
// instructions. It is not useful otherwise but is implemented for
20620
// compatibility.
20621
if (ARM_AM::getT2SOImmVal(-CVal) != -1)
20622
break;
20623
} else {
20624
// A constant whose negation can be used as an immediate value in a
20625
// data-processing instruction. This can be used in GCC with an "n"
20626
// modifier that prints the negated value, for use with SUB
20627
// instructions. It is not useful otherwise but is implemented for
20628
// compatibility.
20629
if (ARM_AM::getSOImmVal(-CVal) != -1)
20630
break;
20631
}
20632
return;
20633
20634
case 'M':
20635
if (Subtarget->isThumb1Only()) {
20636
// This must be a multiple of 4 between 0 and 1020, for
20637
// ADD sp + immediate.
20638
if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
20639
break;
20640
} else {
20641
// A power of two or a constant between 0 and 32. This is used in
20642
// GCC for the shift amount on shifted register operands, but it is
20643
// useful in general for any shift amounts.
20644
if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
20645
break;
20646
}
20647
return;
20648
20649
case 'N':
20650
if (Subtarget->isThumb1Only()) {
20651
// This must be a constant between 0 and 31, for shift amounts.
20652
if (CVal >= 0 && CVal <= 31)
20653
break;
20654
}
20655
return;
20656
20657
case 'O':
20658
if (Subtarget->isThumb1Only()) {
20659
// This must be a multiple of 4 between -508 and 508, for
20660
// ADD/SUB sp = sp + immediate.
20661
if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
20662
break;
20663
}
20664
return;
20665
}
20666
Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
20667
break;
20668
}
20669
20670
if (Result.getNode()) {
20671
Ops.push_back(Result);
20672
return;
20673
}
20674
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
20675
}
20676
20677
static RTLIB::Libcall getDivRemLibcall(
20678
const SDNode *N, MVT::SimpleValueType SVT) {
20679
assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
20680
N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
20681
"Unhandled Opcode in getDivRemLibcall");
20682
bool isSigned = N->getOpcode() == ISD::SDIVREM ||
20683
N->getOpcode() == ISD::SREM;
20684
RTLIB::Libcall LC;
20685
switch (SVT) {
20686
default: llvm_unreachable("Unexpected request for libcall!");
20687
case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
20688
case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
20689
case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
20690
case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
20691
}
20692
return LC;
20693
}
20694
20695
static TargetLowering::ArgListTy getDivRemArgList(
20696
const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
20697
assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
20698
N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
20699
"Unhandled Opcode in getDivRemArgList");
20700
bool isSigned = N->getOpcode() == ISD::SDIVREM ||
20701
N->getOpcode() == ISD::SREM;
20702
TargetLowering::ArgListTy Args;
20703
TargetLowering::ArgListEntry Entry;
20704
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
20705
EVT ArgVT = N->getOperand(i).getValueType();
20706
Type *ArgTy = ArgVT.getTypeForEVT(*Context);
20707
Entry.Node = N->getOperand(i);
20708
Entry.Ty = ArgTy;
20709
Entry.IsSExt = isSigned;
20710
Entry.IsZExt = !isSigned;
20711
Args.push_back(Entry);
20712
}
20713
if (Subtarget->isTargetWindows() && Args.size() >= 2)
20714
std::swap(Args[0], Args[1]);
20715
return Args;
20716
}
20717
20718
SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
20719
assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
20720
Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
20721
Subtarget->isTargetWindows()) &&
20722
"Register-based DivRem lowering only");
20723
unsigned Opcode = Op->getOpcode();
20724
assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
20725
"Invalid opcode for Div/Rem lowering");
20726
bool isSigned = (Opcode == ISD::SDIVREM);
20727
EVT VT = Op->getValueType(0);
20728
SDLoc dl(Op);
20729
20730
if (VT == MVT::i64 && isa<ConstantSDNode>(Op.getOperand(1))) {
20731
SmallVector<SDValue> Result;
20732
if (expandDIVREMByConstant(Op.getNode(), Result, MVT::i32, DAG)) {
20733
SDValue Res0 =
20734
DAG.getNode(ISD::BUILD_PAIR, dl, VT, Result[0], Result[1]);
20735
SDValue Res1 =
20736
DAG.getNode(ISD::BUILD_PAIR, dl, VT, Result[2], Result[3]);
20737
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
20738
{Res0, Res1});
20739
}
20740
}
20741
20742
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
20743
20744
// If the target has hardware divide, use divide + multiply + subtract:
20745
// div = a / b
20746
// rem = a - b * div
20747
// return {div, rem}
20748
// This should be lowered into UDIV/SDIV + MLS later on.
20749
bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
20750
: Subtarget->hasDivideInARMMode();
20751
if (hasDivide && Op->getValueType(0).isSimple() &&
20752
Op->getSimpleValueType(0) == MVT::i32) {
20753
unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
20754
const SDValue Dividend = Op->getOperand(0);
20755
const SDValue Divisor = Op->getOperand(1);
20756
SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
20757
SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
20758
SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
20759
20760
SDValue Values[2] = {Div, Rem};
20761
return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
20762
}
20763
20764
RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
20765
VT.getSimpleVT().SimpleTy);
20766
SDValue InChain = DAG.getEntryNode();
20767
20768
TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
20769
DAG.getContext(),
20770
Subtarget);
20771
20772
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
20773
getPointerTy(DAG.getDataLayout()));
20774
20775
Type *RetTy = StructType::get(Ty, Ty);
20776
20777
if (Subtarget->isTargetWindows())
20778
InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
20779
20780
TargetLowering::CallLoweringInfo CLI(DAG);
20781
CLI.setDebugLoc(dl).setChain(InChain)
20782
.setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
20783
.setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
20784
20785
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
20786
return CallInfo.first;
20787
}
20788
20789
// Lowers REM using divmod helpers
20790
// see RTABI section 4.2/4.3
20791
SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
20792
EVT VT = N->getValueType(0);
20793
20794
if (VT == MVT::i64 && isa<ConstantSDNode>(N->getOperand(1))) {
20795
SmallVector<SDValue> Result;
20796
if (expandDIVREMByConstant(N, Result, MVT::i32, DAG))
20797
return DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), N->getValueType(0),
20798
Result[0], Result[1]);
20799
}
20800
20801
// Build return types (div and rem)
20802
std::vector<Type*> RetTyParams;
20803
Type *RetTyElement;
20804
20805
switch (VT.getSimpleVT().SimpleTy) {
20806
default: llvm_unreachable("Unexpected request for libcall!");
20807
case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break;
20808
case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
20809
case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
20810
case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
20811
}
20812
20813
RetTyParams.push_back(RetTyElement);
20814
RetTyParams.push_back(RetTyElement);
20815
ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
20816
Type *RetTy = StructType::get(*DAG.getContext(), ret);
20817
20818
RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
20819
SimpleTy);
20820
SDValue InChain = DAG.getEntryNode();
20821
TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
20822
Subtarget);
20823
bool isSigned = N->getOpcode() == ISD::SREM;
20824
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
20825
getPointerTy(DAG.getDataLayout()));
20826
20827
if (Subtarget->isTargetWindows())
20828
InChain = WinDBZCheckDenominator(DAG, N, InChain);
20829
20830
// Lower call
20831
CallLoweringInfo CLI(DAG);
20832
CLI.setChain(InChain)
20833
.setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
20834
.setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
20835
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
20836
20837
// Return second (rem) result operand (first contains div)
20838
SDNode *ResNode = CallResult.first.getNode();
20839
assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
20840
return ResNode->getOperand(1);
20841
}
20842
20843
SDValue
20844
ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
20845
assert(Subtarget->isTargetWindows() && "unsupported target platform");
20846
SDLoc DL(Op);
20847
20848
// Get the inputs.
20849
SDValue Chain = Op.getOperand(0);
20850
SDValue Size = Op.getOperand(1);
20851
20852
if (DAG.getMachineFunction().getFunction().hasFnAttribute(
20853
"no-stack-arg-probe")) {
20854
MaybeAlign Align =
20855
cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
20856
SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
20857
Chain = SP.getValue(1);
20858
SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
20859
if (Align)
20860
SP =
20861
DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
20862
DAG.getConstant(-(uint64_t)Align->value(), DL, MVT::i32));
20863
Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
20864
SDValue Ops[2] = { SP, Chain };
20865
return DAG.getMergeValues(Ops, DL);
20866
}
20867
20868
SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
20869
DAG.getConstant(2, DL, MVT::i32));
20870
20871
SDValue Glue;
20872
Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Glue);
20873
Glue = Chain.getValue(1);
20874
20875
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
20876
Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Glue);
20877
20878
SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
20879
Chain = NewSP.getValue(1);
20880
20881
SDValue Ops[2] = { NewSP, Chain };
20882
return DAG.getMergeValues(Ops, DL);
20883
}
20884
20885
SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
20886
bool IsStrict = Op->isStrictFPOpcode();
20887
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
20888
const unsigned DstSz = Op.getValueType().getSizeInBits();
20889
const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
20890
assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
20891
"Unexpected type for custom-lowering FP_EXTEND");
20892
20893
assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
20894
"With both FP DP and 16, any FP conversion is legal!");
20895
20896
assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
20897
"With FP16, 16 to 32 conversion is legal!");
20898
20899
// Converting from 32 -> 64 is valid if we have FP64.
20900
if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) {
20901
// FIXME: Remove this when we have strict fp instruction selection patterns
20902
if (IsStrict) {
20903
SDLoc Loc(Op);
20904
SDValue Result = DAG.getNode(ISD::FP_EXTEND,
20905
Loc, Op.getValueType(), SrcVal);
20906
return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
20907
}
20908
return Op;
20909
}
20910
20911
// Either we are converting from 16 -> 64, without FP16 and/or
20912
// FP.double-precision or without Armv8-fp. So we must do it in two
20913
// steps.
20914
// Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
20915
// without FP16. So we must do a function call.
20916
SDLoc Loc(Op);
20917
RTLIB::Libcall LC;
20918
MakeLibCallOptions CallOptions;
20919
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20920
for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
20921
bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
20922
MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
20923
MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
20924
if (Supported) {
20925
if (IsStrict) {
20926
SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc,
20927
{DstVT, MVT::Other}, {Chain, SrcVal});
20928
Chain = SrcVal.getValue(1);
20929
} else {
20930
SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal);
20931
}
20932
} else {
20933
LC = RTLIB::getFPEXT(SrcVT, DstVT);
20934
assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20935
"Unexpected type for custom-lowering FP_EXTEND");
20936
std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20937
Loc, Chain);
20938
}
20939
}
20940
20941
return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
20942
}
20943
20944
SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
20945
bool IsStrict = Op->isStrictFPOpcode();
20946
20947
SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
20948
EVT SrcVT = SrcVal.getValueType();
20949
EVT DstVT = Op.getValueType();
20950
const unsigned DstSz = Op.getValueType().getSizeInBits();
20951
const unsigned SrcSz = SrcVT.getSizeInBits();
20952
(void)DstSz;
20953
assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
20954
"Unexpected type for custom-lowering FP_ROUND");
20955
20956
assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
20957
"With both FP DP and 16, any FP conversion is legal!");
20958
20959
SDLoc Loc(Op);
20960
20961
// Instruction from 32 -> 16 if hasFP16 is valid
20962
if (SrcSz == 32 && Subtarget->hasFP16())
20963
return Op;
20964
20965
// Lib call from 32 -> 16 / 64 -> [32, 16]
20966
RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
20967
assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20968
"Unexpected type for custom-lowering FP_ROUND");
20969
MakeLibCallOptions CallOptions;
20970
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20971
SDValue Result;
20972
std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20973
Loc, Chain);
20974
return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
20975
}
20976
20977
bool
20978
ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
20979
// The ARM target isn't yet aware of offsets.
20980
return false;
20981
}
20982
20983
bool ARM::isBitFieldInvertedMask(unsigned v) {
20984
if (v == 0xffffffff)
20985
return false;
20986
20987
// there can be 1's on either or both "outsides", all the "inside"
20988
// bits must be 0's
20989
return isShiftedMask_32(~v);
20990
}
20991
20992
/// isFPImmLegal - Returns true if the target can instruction select the
20993
/// specified FP immediate natively. If false, the legalizer will
20994
/// materialize the FP immediate as a load from a constant pool.
20995
bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
20996
bool ForCodeSize) const {
20997
if (!Subtarget->hasVFP3Base())
20998
return false;
20999
if (VT == MVT::f16 && Subtarget->hasFullFP16())
21000
return ARM_AM::getFP16Imm(Imm) != -1;
21001
if (VT == MVT::f32 && Subtarget->hasFullFP16() &&
21002
ARM_AM::getFP32FP16Imm(Imm) != -1)
21003
return true;
21004
if (VT == MVT::f32)
21005
return ARM_AM::getFP32Imm(Imm) != -1;
21006
if (VT == MVT::f64 && Subtarget->hasFP64())
21007
return ARM_AM::getFP64Imm(Imm) != -1;
21008
return false;
21009
}
21010
21011
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
21012
/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
21013
/// specified in the intrinsic calls.
21014
bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
21015
const CallInst &I,
21016
MachineFunction &MF,
21017
unsigned Intrinsic) const {
21018
switch (Intrinsic) {
21019
case Intrinsic::arm_neon_vld1:
21020
case Intrinsic::arm_neon_vld2:
21021
case Intrinsic::arm_neon_vld3:
21022
case Intrinsic::arm_neon_vld4:
21023
case Intrinsic::arm_neon_vld2lane:
21024
case Intrinsic::arm_neon_vld3lane:
21025
case Intrinsic::arm_neon_vld4lane:
21026
case Intrinsic::arm_neon_vld2dup:
21027
case Intrinsic::arm_neon_vld3dup:
21028
case Intrinsic::arm_neon_vld4dup: {
21029
Info.opc = ISD::INTRINSIC_W_CHAIN;
21030
// Conservatively set memVT to the entire set of vectors loaded.
21031
auto &DL = I.getDataLayout();
21032
uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
21033
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
21034
Info.ptrVal = I.getArgOperand(0);
21035
Info.offset = 0;
21036
Value *AlignArg = I.getArgOperand(I.arg_size() - 1);
21037
Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
21038
// volatile loads with NEON intrinsics not supported
21039
Info.flags = MachineMemOperand::MOLoad;
21040
return true;
21041
}
21042
case Intrinsic::arm_neon_vld1x2:
21043
case Intrinsic::arm_neon_vld1x3:
21044
case Intrinsic::arm_neon_vld1x4: {
21045
Info.opc = ISD::INTRINSIC_W_CHAIN;
21046
// Conservatively set memVT to the entire set of vectors loaded.
21047
auto &DL = I.getDataLayout();
21048
uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
21049
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
21050
Info.ptrVal = I.getArgOperand(I.arg_size() - 1);
21051
Info.offset = 0;
21052
Info.align.reset();
21053
// volatile loads with NEON intrinsics not supported
21054
Info.flags = MachineMemOperand::MOLoad;
21055
return true;
21056
}
21057
case Intrinsic::arm_neon_vst1:
21058
case Intrinsic::arm_neon_vst2:
21059
case Intrinsic::arm_neon_vst3:
21060
case Intrinsic::arm_neon_vst4:
21061
case Intrinsic::arm_neon_vst2lane:
21062
case Intrinsic::arm_neon_vst3lane:
21063
case Intrinsic::arm_neon_vst4lane: {
21064
Info.opc = ISD::INTRINSIC_VOID;
21065
// Conservatively set memVT to the entire set of vectors stored.
21066
auto &DL = I.getDataLayout();
21067
unsigned NumElts = 0;
21068
for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) {
21069
Type *ArgTy = I.getArgOperand(ArgI)->getType();
21070
if (!ArgTy->isVectorTy())
21071
break;
21072
NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
21073
}
21074
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
21075
Info.ptrVal = I.getArgOperand(0);
21076
Info.offset = 0;
21077
Value *AlignArg = I.getArgOperand(I.arg_size() - 1);
21078
Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
21079
// volatile stores with NEON intrinsics not supported
21080
Info.flags = MachineMemOperand::MOStore;
21081
return true;
21082
}
21083
case Intrinsic::arm_neon_vst1x2:
21084
case Intrinsic::arm_neon_vst1x3:
21085
case Intrinsic::arm_neon_vst1x4: {
21086
Info.opc = ISD::INTRINSIC_VOID;
21087
// Conservatively set memVT to the entire set of vectors stored.
21088
auto &DL = I.getDataLayout();
21089
unsigned NumElts = 0;
21090
for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) {
21091
Type *ArgTy = I.getArgOperand(ArgI)->getType();
21092
if (!ArgTy->isVectorTy())
21093
break;
21094
NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
21095
}
21096
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
21097
Info.ptrVal = I.getArgOperand(0);
21098
Info.offset = 0;
21099
Info.align.reset();
21100
// volatile stores with NEON intrinsics not supported
21101
Info.flags = MachineMemOperand::MOStore;
21102
return true;
21103
}
21104
case Intrinsic::arm_mve_vld2q:
21105
case Intrinsic::arm_mve_vld4q: {
21106
Info.opc = ISD::INTRINSIC_W_CHAIN;
21107
// Conservatively set memVT to the entire set of vectors loaded.
21108
Type *VecTy = cast<StructType>(I.getType())->getElementType(1);
21109
unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4;
21110
Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
21111
Info.ptrVal = I.getArgOperand(0);
21112
Info.offset = 0;
21113
Info.align = Align(VecTy->getScalarSizeInBits() / 8);
21114
// volatile loads with MVE intrinsics not supported
21115
Info.flags = MachineMemOperand::MOLoad;
21116
return true;
21117
}
21118
case Intrinsic::arm_mve_vst2q:
21119
case Intrinsic::arm_mve_vst4q: {
21120
Info.opc = ISD::INTRINSIC_VOID;
21121
// Conservatively set memVT to the entire set of vectors stored.
21122
Type *VecTy = I.getArgOperand(1)->getType();
21123
unsigned Factor = Intrinsic == Intrinsic::arm_mve_vst2q ? 2 : 4;
21124
Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
21125
Info.ptrVal = I.getArgOperand(0);
21126
Info.offset = 0;
21127
Info.align = Align(VecTy->getScalarSizeInBits() / 8);
21128
// volatile stores with MVE intrinsics not supported
21129
Info.flags = MachineMemOperand::MOStore;
21130
return true;
21131
}
21132
case Intrinsic::arm_mve_vldr_gather_base:
21133
case Intrinsic::arm_mve_vldr_gather_base_predicated: {
21134
Info.opc = ISD::INTRINSIC_W_CHAIN;
21135
Info.ptrVal = nullptr;
21136
Info.memVT = MVT::getVT(I.getType());
21137
Info.align = Align(1);
21138
Info.flags |= MachineMemOperand::MOLoad;
21139
return true;
21140
}
21141
case Intrinsic::arm_mve_vldr_gather_base_wb:
21142
case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: {
21143
Info.opc = ISD::INTRINSIC_W_CHAIN;
21144
Info.ptrVal = nullptr;
21145
Info.memVT = MVT::getVT(I.getType()->getContainedType(0));
21146
Info.align = Align(1);
21147
Info.flags |= MachineMemOperand::MOLoad;
21148
return true;
21149
}
21150
case Intrinsic::arm_mve_vldr_gather_offset:
21151
case Intrinsic::arm_mve_vldr_gather_offset_predicated: {
21152
Info.opc = ISD::INTRINSIC_W_CHAIN;
21153
Info.ptrVal = nullptr;
21154
MVT DataVT = MVT::getVT(I.getType());
21155
unsigned MemSize = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
21156
Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
21157
DataVT.getVectorNumElements());
21158
Info.align = Align(1);
21159
Info.flags |= MachineMemOperand::MOLoad;
21160
return true;
21161
}
21162
case Intrinsic::arm_mve_vstr_scatter_base:
21163
case Intrinsic::arm_mve_vstr_scatter_base_predicated: {
21164
Info.opc = ISD::INTRINSIC_VOID;
21165
Info.ptrVal = nullptr;
21166
Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
21167
Info.align = Align(1);
21168
Info.flags |= MachineMemOperand::MOStore;
21169
return true;
21170
}
21171
case Intrinsic::arm_mve_vstr_scatter_base_wb:
21172
case Intrinsic::arm_mve_vstr_scatter_base_wb_predicated: {
21173
Info.opc = ISD::INTRINSIC_W_CHAIN;
21174
Info.ptrVal = nullptr;
21175
Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
21176
Info.align = Align(1);
21177
Info.flags |= MachineMemOperand::MOStore;
21178
return true;
21179
}
21180
case Intrinsic::arm_mve_vstr_scatter_offset:
21181
case Intrinsic::arm_mve_vstr_scatter_offset_predicated: {
21182
Info.opc = ISD::INTRINSIC_VOID;
21183
Info.ptrVal = nullptr;
21184
MVT DataVT = MVT::getVT(I.getArgOperand(2)->getType());
21185
unsigned MemSize = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
21186
Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
21187
DataVT.getVectorNumElements());
21188
Info.align = Align(1);
21189
Info.flags |= MachineMemOperand::MOStore;
21190
return true;
21191
}
21192
case Intrinsic::arm_ldaex:
21193
case Intrinsic::arm_ldrex: {
21194
auto &DL = I.getDataLayout();
21195
Type *ValTy = I.getParamElementType(0);
21196
Info.opc = ISD::INTRINSIC_W_CHAIN;
21197
Info.memVT = MVT::getVT(ValTy);
21198
Info.ptrVal = I.getArgOperand(0);
21199
Info.offset = 0;
21200
Info.align = DL.getABITypeAlign(ValTy);
21201
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
21202
return true;
21203
}
21204
case Intrinsic::arm_stlex:
21205
case Intrinsic::arm_strex: {
21206
auto &DL = I.getDataLayout();
21207
Type *ValTy = I.getParamElementType(1);
21208
Info.opc = ISD::INTRINSIC_W_CHAIN;
21209
Info.memVT = MVT::getVT(ValTy);
21210
Info.ptrVal = I.getArgOperand(1);
21211
Info.offset = 0;
21212
Info.align = DL.getABITypeAlign(ValTy);
21213
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
21214
return true;
21215
}
21216
case Intrinsic::arm_stlexd:
21217
case Intrinsic::arm_strexd:
21218
Info.opc = ISD::INTRINSIC_W_CHAIN;
21219
Info.memVT = MVT::i64;
21220
Info.ptrVal = I.getArgOperand(2);
21221
Info.offset = 0;
21222
Info.align = Align(8);
21223
Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
21224
return true;
21225
21226
case Intrinsic::arm_ldaexd:
21227
case Intrinsic::arm_ldrexd:
21228
Info.opc = ISD::INTRINSIC_W_CHAIN;
21229
Info.memVT = MVT::i64;
21230
Info.ptrVal = I.getArgOperand(0);
21231
Info.offset = 0;
21232
Info.align = Align(8);
21233
Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
21234
return true;
21235
21236
default:
21237
break;
21238
}
21239
21240
return false;
21241
}
21242
21243
/// Returns true if it is beneficial to convert a load of a constant
21244
/// to just the constant itself.
21245
bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
21246
Type *Ty) const {
21247
assert(Ty->isIntegerTy());
21248
21249
unsigned Bits = Ty->getPrimitiveSizeInBits();
21250
if (Bits == 0 || Bits > 32)
21251
return false;
21252
return true;
21253
}
21254
21255
bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
21256
unsigned Index) const {
21257
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
21258
return false;
21259
21260
return (Index == 0 || Index == ResVT.getVectorNumElements());
21261
}
21262
21263
Instruction *ARMTargetLowering::makeDMB(IRBuilderBase &Builder,
21264
ARM_MB::MemBOpt Domain) const {
21265
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21266
21267
// First, if the target has no DMB, see what fallback we can use.
21268
if (!Subtarget->hasDataBarrier()) {
21269
// Some ARMv6 cpus can support data barriers with an mcr instruction.
21270
// Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
21271
// here.
21272
if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
21273
Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
21274
Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
21275
Builder.getInt32(0), Builder.getInt32(7),
21276
Builder.getInt32(10), Builder.getInt32(5)};
21277
return Builder.CreateCall(MCR, args);
21278
} else {
21279
// Instead of using barriers, atomic accesses on these subtargets use
21280
// libcalls.
21281
llvm_unreachable("makeDMB on a target so old that it has no barriers");
21282
}
21283
} else {
21284
Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
21285
// Only a full system barrier exists in the M-class architectures.
21286
Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
21287
Constant *CDomain = Builder.getInt32(Domain);
21288
return Builder.CreateCall(DMB, CDomain);
21289
}
21290
}
21291
21292
// Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
21293
Instruction *ARMTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
21294
Instruction *Inst,
21295
AtomicOrdering Ord) const {
21296
switch (Ord) {
21297
case AtomicOrdering::NotAtomic:
21298
case AtomicOrdering::Unordered:
21299
llvm_unreachable("Invalid fence: unordered/non-atomic");
21300
case AtomicOrdering::Monotonic:
21301
case AtomicOrdering::Acquire:
21302
return nullptr; // Nothing to do
21303
case AtomicOrdering::SequentiallyConsistent:
21304
if (!Inst->hasAtomicStore())
21305
return nullptr; // Nothing to do
21306
[[fallthrough]];
21307
case AtomicOrdering::Release:
21308
case AtomicOrdering::AcquireRelease:
21309
if (Subtarget->preferISHSTBarriers())
21310
return makeDMB(Builder, ARM_MB::ISHST);
21311
// FIXME: add a comment with a link to documentation justifying this.
21312
else
21313
return makeDMB(Builder, ARM_MB::ISH);
21314
}
21315
llvm_unreachable("Unknown fence ordering in emitLeadingFence");
21316
}
21317
21318
Instruction *ARMTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
21319
Instruction *Inst,
21320
AtomicOrdering Ord) const {
21321
switch (Ord) {
21322
case AtomicOrdering::NotAtomic:
21323
case AtomicOrdering::Unordered:
21324
llvm_unreachable("Invalid fence: unordered/not-atomic");
21325
case AtomicOrdering::Monotonic:
21326
case AtomicOrdering::Release:
21327
return nullptr; // Nothing to do
21328
case AtomicOrdering::Acquire:
21329
case AtomicOrdering::AcquireRelease:
21330
case AtomicOrdering::SequentiallyConsistent:
21331
return makeDMB(Builder, ARM_MB::ISH);
21332
}
21333
llvm_unreachable("Unknown fence ordering in emitTrailingFence");
21334
}
21335
21336
// Loads and stores less than 64-bits are already atomic; ones above that
21337
// are doomed anyway, so defer to the default libcall and blame the OS when
21338
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
21339
// anything for those.
21340
TargetLoweringBase::AtomicExpansionKind
21341
ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
21342
bool has64BitAtomicStore;
21343
if (Subtarget->isMClass())
21344
has64BitAtomicStore = false;
21345
else if (Subtarget->isThumb())
21346
has64BitAtomicStore = Subtarget->hasV7Ops();
21347
else
21348
has64BitAtomicStore = Subtarget->hasV6Ops();
21349
21350
unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
21351
return Size == 64 && has64BitAtomicStore ? AtomicExpansionKind::Expand
21352
: AtomicExpansionKind::None;
21353
}
21354
21355
// Loads and stores less than 64-bits are already atomic; ones above that
21356
// are doomed anyway, so defer to the default libcall and blame the OS when
21357
// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
21358
// anything for those.
21359
// FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
21360
// guarantee, see DDI0406C ARM architecture reference manual,
21361
// sections A8.8.72-74 LDRD)
21362
TargetLowering::AtomicExpansionKind
21363
ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
21364
bool has64BitAtomicLoad;
21365
if (Subtarget->isMClass())
21366
has64BitAtomicLoad = false;
21367
else if (Subtarget->isThumb())
21368
has64BitAtomicLoad = Subtarget->hasV7Ops();
21369
else
21370
has64BitAtomicLoad = Subtarget->hasV6Ops();
21371
21372
unsigned Size = LI->getType()->getPrimitiveSizeInBits();
21373
return (Size == 64 && has64BitAtomicLoad) ? AtomicExpansionKind::LLOnly
21374
: AtomicExpansionKind::None;
21375
}
21376
21377
// For the real atomic operations, we have ldrex/strex up to 32 bits,
21378
// and up to 64 bits on the non-M profiles
21379
TargetLowering::AtomicExpansionKind
21380
ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
21381
if (AI->isFloatingPointOperation())
21382
return AtomicExpansionKind::CmpXChg;
21383
21384
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
21385
bool hasAtomicRMW;
21386
if (Subtarget->isMClass())
21387
hasAtomicRMW = Subtarget->hasV8MBaselineOps();
21388
else if (Subtarget->isThumb())
21389
hasAtomicRMW = Subtarget->hasV7Ops();
21390
else
21391
hasAtomicRMW = Subtarget->hasV6Ops();
21392
if (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW) {
21393
// At -O0, fast-regalloc cannot cope with the live vregs necessary to
21394
// implement atomicrmw without spilling. If the target address is also on
21395
// the stack and close enough to the spill slot, this can lead to a
21396
// situation where the monitor always gets cleared and the atomic operation
21397
// can never succeed. So at -O0 lower this operation to a CAS loop.
21398
if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None)
21399
return AtomicExpansionKind::CmpXChg;
21400
return AtomicExpansionKind::LLSC;
21401
}
21402
return AtomicExpansionKind::None;
21403
}
21404
21405
// Similar to shouldExpandAtomicRMWInIR, ldrex/strex can be used up to 32
21406
// bits, and up to 64 bits on the non-M profiles.
21407
TargetLowering::AtomicExpansionKind
21408
ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
21409
// At -O0, fast-regalloc cannot cope with the live vregs necessary to
21410
// implement cmpxchg without spilling. If the address being exchanged is also
21411
// on the stack and close enough to the spill slot, this can lead to a
21412
// situation where the monitor always gets cleared and the atomic operation
21413
// can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
21414
unsigned Size = AI->getOperand(1)->getType()->getPrimitiveSizeInBits();
21415
bool HasAtomicCmpXchg;
21416
if (Subtarget->isMClass())
21417
HasAtomicCmpXchg = Subtarget->hasV8MBaselineOps();
21418
else if (Subtarget->isThumb())
21419
HasAtomicCmpXchg = Subtarget->hasV7Ops();
21420
else
21421
HasAtomicCmpXchg = Subtarget->hasV6Ops();
21422
if (getTargetMachine().getOptLevel() != CodeGenOptLevel::None &&
21423
HasAtomicCmpXchg && Size <= (Subtarget->isMClass() ? 32U : 64U))
21424
return AtomicExpansionKind::LLSC;
21425
return AtomicExpansionKind::None;
21426
}
21427
21428
bool ARMTargetLowering::shouldInsertFencesForAtomic(
21429
const Instruction *I) const {
21430
return InsertFencesForAtomic;
21431
}
21432
21433
bool ARMTargetLowering::useLoadStackGuardNode() const {
21434
// ROPI/RWPI are not supported currently.
21435
return !Subtarget->isROPI() && !Subtarget->isRWPI();
21436
}
21437
21438
void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
21439
if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21440
return TargetLowering::insertSSPDeclarations(M);
21441
21442
// MSVC CRT has a global variable holding security cookie.
21443
M.getOrInsertGlobal("__security_cookie",
21444
PointerType::getUnqual(M.getContext()));
21445
21446
// MSVC CRT has a function to validate security cookie.
21447
FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
21448
"__security_check_cookie", Type::getVoidTy(M.getContext()),
21449
PointerType::getUnqual(M.getContext()));
21450
if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
21451
F->addParamAttr(0, Attribute::AttrKind::InReg);
21452
}
21453
21454
Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
21455
// MSVC CRT has a global variable holding security cookie.
21456
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21457
return M.getGlobalVariable("__security_cookie");
21458
return TargetLowering::getSDagStackGuard(M);
21459
}
21460
21461
Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
21462
// MSVC CRT has a function to validate security cookie.
21463
if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21464
return M.getFunction("__security_check_cookie");
21465
return TargetLowering::getSSPStackGuardCheck(M);
21466
}
21467
21468
bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
21469
unsigned &Cost) const {
21470
// If we do not have NEON, vector types are not natively supported.
21471
if (!Subtarget->hasNEON())
21472
return false;
21473
21474
// Floating point values and vector values map to the same register file.
21475
// Therefore, although we could do a store extract of a vector type, this is
21476
// better to leave at float as we have more freedom in the addressing mode for
21477
// those.
21478
if (VectorTy->isFPOrFPVectorTy())
21479
return false;
21480
21481
// If the index is unknown at compile time, this is very expensive to lower
21482
// and it is not possible to combine the store with the extract.
21483
if (!isa<ConstantInt>(Idx))
21484
return false;
21485
21486
assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
21487
unsigned BitWidth = VectorTy->getPrimitiveSizeInBits().getFixedValue();
21488
// We can do a store + vector extract on any vector that fits perfectly in a D
21489
// or Q register.
21490
if (BitWidth == 64 || BitWidth == 128) {
21491
Cost = 0;
21492
return true;
21493
}
21494
return false;
21495
}
21496
21497
bool ARMTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
21498
return Subtarget->hasV6T2Ops();
21499
}
21500
21501
bool ARMTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
21502
return Subtarget->hasV6T2Ops();
21503
}
21504
21505
bool ARMTargetLowering::isMaskAndCmp0FoldingBeneficial(
21506
const Instruction &AndI) const {
21507
if (!Subtarget->hasV7Ops())
21508
return false;
21509
21510
// Sink the `and` instruction only if the mask would fit into a modified
21511
// immediate operand.
21512
ConstantInt *Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
21513
if (!Mask || Mask->getValue().getBitWidth() > 32u)
21514
return false;
21515
auto MaskVal = unsigned(Mask->getValue().getZExtValue());
21516
return (Subtarget->isThumb2() ? ARM_AM::getT2SOImmVal(MaskVal)
21517
: ARM_AM::getSOImmVal(MaskVal)) != -1;
21518
}
21519
21520
TargetLowering::ShiftLegalizationStrategy
21521
ARMTargetLowering::preferredShiftLegalizationStrategy(
21522
SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const {
21523
if (Subtarget->hasMinSize() && !Subtarget->isTargetWindows())
21524
return ShiftLegalizationStrategy::LowerToLibcall;
21525
return TargetLowering::preferredShiftLegalizationStrategy(DAG, N,
21526
ExpansionFactor);
21527
}
21528
21529
Value *ARMTargetLowering::emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
21530
Value *Addr,
21531
AtomicOrdering Ord) const {
21532
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21533
bool IsAcquire = isAcquireOrStronger(Ord);
21534
21535
// Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
21536
// intrinsic must return {i32, i32} and we have to recombine them into a
21537
// single i64 here.
21538
if (ValueTy->getPrimitiveSizeInBits() == 64) {
21539
Intrinsic::ID Int =
21540
IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
21541
Function *Ldrex = Intrinsic::getDeclaration(M, Int);
21542
21543
Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
21544
21545
Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
21546
Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
21547
if (!Subtarget->isLittle())
21548
std::swap (Lo, Hi);
21549
Lo = Builder.CreateZExt(Lo, ValueTy, "lo64");
21550
Hi = Builder.CreateZExt(Hi, ValueTy, "hi64");
21551
return Builder.CreateOr(
21552
Lo, Builder.CreateShl(Hi, ConstantInt::get(ValueTy, 32)), "val64");
21553
}
21554
21555
Type *Tys[] = { Addr->getType() };
21556
Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
21557
Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
21558
CallInst *CI = Builder.CreateCall(Ldrex, Addr);
21559
21560
CI->addParamAttr(
21561
0, Attribute::get(M->getContext(), Attribute::ElementType, ValueTy));
21562
return Builder.CreateTruncOrBitCast(CI, ValueTy);
21563
}
21564
21565
void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
21566
IRBuilderBase &Builder) const {
21567
if (!Subtarget->hasV7Ops())
21568
return;
21569
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21570
Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
21571
}
21572
21573
Value *ARMTargetLowering::emitStoreConditional(IRBuilderBase &Builder,
21574
Value *Val, Value *Addr,
21575
AtomicOrdering Ord) const {
21576
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21577
bool IsRelease = isReleaseOrStronger(Ord);
21578
21579
// Since the intrinsics must have legal type, the i64 intrinsics take two
21580
// parameters: "i32, i32". We must marshal Val into the appropriate form
21581
// before the call.
21582
if (Val->getType()->getPrimitiveSizeInBits() == 64) {
21583
Intrinsic::ID Int =
21584
IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
21585
Function *Strex = Intrinsic::getDeclaration(M, Int);
21586
Type *Int32Ty = Type::getInt32Ty(M->getContext());
21587
21588
Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
21589
Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
21590
if (!Subtarget->isLittle())
21591
std::swap(Lo, Hi);
21592
return Builder.CreateCall(Strex, {Lo, Hi, Addr});
21593
}
21594
21595
Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
21596
Type *Tys[] = { Addr->getType() };
21597
Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
21598
21599
CallInst *CI = Builder.CreateCall(
21600
Strex, {Builder.CreateZExtOrBitCast(
21601
Val, Strex->getFunctionType()->getParamType(0)),
21602
Addr});
21603
CI->addParamAttr(1, Attribute::get(M->getContext(), Attribute::ElementType,
21604
Val->getType()));
21605
return CI;
21606
}
21607
21608
21609
bool ARMTargetLowering::alignLoopsWithOptSize() const {
21610
return Subtarget->isMClass();
21611
}
21612
21613
/// A helper function for determining the number of interleaved accesses we
21614
/// will generate when lowering accesses of the given type.
21615
unsigned
21616
ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
21617
const DataLayout &DL) const {
21618
return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
21619
}
21620
21621
bool ARMTargetLowering::isLegalInterleavedAccessType(
21622
unsigned Factor, FixedVectorType *VecTy, Align Alignment,
21623
const DataLayout &DL) const {
21624
21625
unsigned VecSize = DL.getTypeSizeInBits(VecTy);
21626
unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
21627
21628
if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
21629
return false;
21630
21631
// Ensure the vector doesn't have f16 elements. Even though we could do an
21632
// i16 vldN, we can't hold the f16 vectors and will end up converting via
21633
// f32.
21634
if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy())
21635
return false;
21636
if (Subtarget->hasMVEIntegerOps() && Factor == 3)
21637
return false;
21638
21639
// Ensure the number of vector elements is greater than 1.
21640
if (VecTy->getNumElements() < 2)
21641
return false;
21642
21643
// Ensure the element type is legal.
21644
if (ElSize != 8 && ElSize != 16 && ElSize != 32)
21645
return false;
21646
// And the alignment if high enough under MVE.
21647
if (Subtarget->hasMVEIntegerOps() && Alignment < ElSize / 8)
21648
return false;
21649
21650
// Ensure the total vector size is 64 or a multiple of 128. Types larger than
21651
// 128 will be split into multiple interleaved accesses.
21652
if (Subtarget->hasNEON() && VecSize == 64)
21653
return true;
21654
return VecSize % 128 == 0;
21655
}
21656
21657
unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
21658
if (Subtarget->hasNEON())
21659
return 4;
21660
if (Subtarget->hasMVEIntegerOps())
21661
return MVEMaxSupportedInterleaveFactor;
21662
return TargetLoweringBase::getMaxSupportedInterleaveFactor();
21663
}
21664
21665
/// Lower an interleaved load into a vldN intrinsic.
21666
///
21667
/// E.g. Lower an interleaved load (Factor = 2):
21668
/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
21669
/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
21670
/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
21671
///
21672
/// Into:
21673
/// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
21674
/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
21675
/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
21676
bool ARMTargetLowering::lowerInterleavedLoad(
21677
LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
21678
ArrayRef<unsigned> Indices, unsigned Factor) const {
21679
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
21680
"Invalid interleave factor");
21681
assert(!Shuffles.empty() && "Empty shufflevector input");
21682
assert(Shuffles.size() == Indices.size() &&
21683
"Unmatched number of shufflevectors and indices");
21684
21685
auto *VecTy = cast<FixedVectorType>(Shuffles[0]->getType());
21686
Type *EltTy = VecTy->getElementType();
21687
21688
const DataLayout &DL = LI->getDataLayout();
21689
Align Alignment = LI->getAlign();
21690
21691
// Skip if we do not have NEON and skip illegal vector types. We can
21692
// "legalize" wide vector types into multiple interleaved accesses as long as
21693
// the vector types are divisible by 128.
21694
if (!isLegalInterleavedAccessType(Factor, VecTy, Alignment, DL))
21695
return false;
21696
21697
unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
21698
21699
// A pointer vector can not be the return type of the ldN intrinsics. Need to
21700
// load integer vectors first and then convert to pointer vectors.
21701
if (EltTy->isPointerTy())
21702
VecTy = FixedVectorType::get(DL.getIntPtrType(EltTy), VecTy);
21703
21704
IRBuilder<> Builder(LI);
21705
21706
// The base address of the load.
21707
Value *BaseAddr = LI->getPointerOperand();
21708
21709
if (NumLoads > 1) {
21710
// If we're going to generate more than one load, reset the sub-vector type
21711
// to something legal.
21712
VecTy = FixedVectorType::get(VecTy->getElementType(),
21713
VecTy->getNumElements() / NumLoads);
21714
}
21715
21716
assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
21717
21718
auto createLoadIntrinsic = [&](Value *BaseAddr) {
21719
if (Subtarget->hasNEON()) {
21720
Type *PtrTy = Builder.getPtrTy(LI->getPointerAddressSpace());
21721
Type *Tys[] = {VecTy, PtrTy};
21722
static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
21723
Intrinsic::arm_neon_vld3,
21724
Intrinsic::arm_neon_vld4};
21725
Function *VldnFunc =
21726
Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
21727
21728
SmallVector<Value *, 2> Ops;
21729
Ops.push_back(BaseAddr);
21730
Ops.push_back(Builder.getInt32(LI->getAlign().value()));
21731
21732
return Builder.CreateCall(VldnFunc, Ops, "vldN");
21733
} else {
21734
assert((Factor == 2 || Factor == 4) &&
21735
"expected interleave factor of 2 or 4 for MVE");
21736
Intrinsic::ID LoadInts =
21737
Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
21738
Type *PtrTy = Builder.getPtrTy(LI->getPointerAddressSpace());
21739
Type *Tys[] = {VecTy, PtrTy};
21740
Function *VldnFunc =
21741
Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys);
21742
21743
SmallVector<Value *, 2> Ops;
21744
Ops.push_back(BaseAddr);
21745
return Builder.CreateCall(VldnFunc, Ops, "vldN");
21746
}
21747
};
21748
21749
// Holds sub-vectors extracted from the load intrinsic return values. The
21750
// sub-vectors are associated with the shufflevector instructions they will
21751
// replace.
21752
DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
21753
21754
for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
21755
// If we're generating more than one load, compute the base address of
21756
// subsequent loads as an offset from the previous.
21757
if (LoadCount > 0)
21758
BaseAddr = Builder.CreateConstGEP1_32(VecTy->getElementType(), BaseAddr,
21759
VecTy->getNumElements() * Factor);
21760
21761
CallInst *VldN = createLoadIntrinsic(BaseAddr);
21762
21763
// Replace uses of each shufflevector with the corresponding vector loaded
21764
// by ldN.
21765
for (unsigned i = 0; i < Shuffles.size(); i++) {
21766
ShuffleVectorInst *SV = Shuffles[i];
21767
unsigned Index = Indices[i];
21768
21769
Value *SubVec = Builder.CreateExtractValue(VldN, Index);
21770
21771
// Convert the integer vector to pointer vector if the element is pointer.
21772
if (EltTy->isPointerTy())
21773
SubVec = Builder.CreateIntToPtr(
21774
SubVec,
21775
FixedVectorType::get(SV->getType()->getElementType(), VecTy));
21776
21777
SubVecs[SV].push_back(SubVec);
21778
}
21779
}
21780
21781
// Replace uses of the shufflevector instructions with the sub-vectors
21782
// returned by the load intrinsic. If a shufflevector instruction is
21783
// associated with more than one sub-vector, those sub-vectors will be
21784
// concatenated into a single wide vector.
21785
for (ShuffleVectorInst *SVI : Shuffles) {
21786
auto &SubVec = SubVecs[SVI];
21787
auto *WideVec =
21788
SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
21789
SVI->replaceAllUsesWith(WideVec);
21790
}
21791
21792
return true;
21793
}
21794
21795
/// Lower an interleaved store into a vstN intrinsic.
21796
///
21797
/// E.g. Lower an interleaved store (Factor = 3):
21798
/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
21799
/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
21800
/// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
21801
///
21802
/// Into:
21803
/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
21804
/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
21805
/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
21806
/// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21807
///
21808
/// Note that the new shufflevectors will be removed and we'll only generate one
21809
/// vst3 instruction in CodeGen.
21810
///
21811
/// Example for a more general valid mask (Factor 3). Lower:
21812
/// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
21813
/// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
21814
/// store <12 x i32> %i.vec, <12 x i32>* %ptr
21815
///
21816
/// Into:
21817
/// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
21818
/// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
21819
/// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
21820
/// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21821
bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
21822
ShuffleVectorInst *SVI,
21823
unsigned Factor) const {
21824
assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
21825
"Invalid interleave factor");
21826
21827
auto *VecTy = cast<FixedVectorType>(SVI->getType());
21828
assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store");
21829
21830
unsigned LaneLen = VecTy->getNumElements() / Factor;
21831
Type *EltTy = VecTy->getElementType();
21832
auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen);
21833
21834
const DataLayout &DL = SI->getDataLayout();
21835
Align Alignment = SI->getAlign();
21836
21837
// Skip if we do not have NEON and skip illegal vector types. We can
21838
// "legalize" wide vector types into multiple interleaved accesses as long as
21839
// the vector types are divisible by 128.
21840
if (!isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
21841
return false;
21842
21843
unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
21844
21845
Value *Op0 = SVI->getOperand(0);
21846
Value *Op1 = SVI->getOperand(1);
21847
IRBuilder<> Builder(SI);
21848
21849
// StN intrinsics don't support pointer vectors as arguments. Convert pointer
21850
// vectors to integer vectors.
21851
if (EltTy->isPointerTy()) {
21852
Type *IntTy = DL.getIntPtrType(EltTy);
21853
21854
// Convert to the corresponding integer vector.
21855
auto *IntVecTy =
21856
FixedVectorType::get(IntTy, cast<FixedVectorType>(Op0->getType()));
21857
Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
21858
Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
21859
21860
SubVecTy = FixedVectorType::get(IntTy, LaneLen);
21861
}
21862
21863
// The base address of the store.
21864
Value *BaseAddr = SI->getPointerOperand();
21865
21866
if (NumStores > 1) {
21867
// If we're going to generate more than one store, reset the lane length
21868
// and sub-vector type to something legal.
21869
LaneLen /= NumStores;
21870
SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen);
21871
}
21872
21873
assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
21874
21875
auto Mask = SVI->getShuffleMask();
21876
21877
auto createStoreIntrinsic = [&](Value *BaseAddr,
21878
SmallVectorImpl<Value *> &Shuffles) {
21879
if (Subtarget->hasNEON()) {
21880
static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
21881
Intrinsic::arm_neon_vst3,
21882
Intrinsic::arm_neon_vst4};
21883
Type *PtrTy = Builder.getPtrTy(SI->getPointerAddressSpace());
21884
Type *Tys[] = {PtrTy, SubVecTy};
21885
21886
Function *VstNFunc = Intrinsic::getDeclaration(
21887
SI->getModule(), StoreInts[Factor - 2], Tys);
21888
21889
SmallVector<Value *, 6> Ops;
21890
Ops.push_back(BaseAddr);
21891
append_range(Ops, Shuffles);
21892
Ops.push_back(Builder.getInt32(SI->getAlign().value()));
21893
Builder.CreateCall(VstNFunc, Ops);
21894
} else {
21895
assert((Factor == 2 || Factor == 4) &&
21896
"expected interleave factor of 2 or 4 for MVE");
21897
Intrinsic::ID StoreInts =
21898
Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
21899
Type *PtrTy = Builder.getPtrTy(SI->getPointerAddressSpace());
21900
Type *Tys[] = {PtrTy, SubVecTy};
21901
Function *VstNFunc =
21902
Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys);
21903
21904
SmallVector<Value *, 6> Ops;
21905
Ops.push_back(BaseAddr);
21906
append_range(Ops, Shuffles);
21907
for (unsigned F = 0; F < Factor; F++) {
21908
Ops.push_back(Builder.getInt32(F));
21909
Builder.CreateCall(VstNFunc, Ops);
21910
Ops.pop_back();
21911
}
21912
}
21913
};
21914
21915
for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
21916
// If we generating more than one store, we compute the base address of
21917
// subsequent stores as an offset from the previous.
21918
if (StoreCount > 0)
21919
BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(),
21920
BaseAddr, LaneLen * Factor);
21921
21922
SmallVector<Value *, 4> Shuffles;
21923
21924
// Split the shufflevector operands into sub vectors for the new vstN call.
21925
for (unsigned i = 0; i < Factor; i++) {
21926
unsigned IdxI = StoreCount * LaneLen * Factor + i;
21927
if (Mask[IdxI] >= 0) {
21928
Shuffles.push_back(Builder.CreateShuffleVector(
21929
Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0)));
21930
} else {
21931
unsigned StartMask = 0;
21932
for (unsigned j = 1; j < LaneLen; j++) {
21933
unsigned IdxJ = StoreCount * LaneLen * Factor + j;
21934
if (Mask[IdxJ * Factor + IdxI] >= 0) {
21935
StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
21936
break;
21937
}
21938
}
21939
// Note: If all elements in a chunk are undefs, StartMask=0!
21940
// Note: Filling undef gaps with random elements is ok, since
21941
// those elements were being written anyway (with undefs).
21942
// In the case of all undefs we're defaulting to using elems from 0
21943
// Note: StartMask cannot be negative, it's checked in
21944
// isReInterleaveMask
21945
Shuffles.push_back(Builder.CreateShuffleVector(
21946
Op0, Op1, createSequentialMask(StartMask, LaneLen, 0)));
21947
}
21948
}
21949
21950
createStoreIntrinsic(BaseAddr, Shuffles);
21951
}
21952
return true;
21953
}
21954
21955
enum HABaseType {
21956
HA_UNKNOWN = 0,
21957
HA_FLOAT,
21958
HA_DOUBLE,
21959
HA_VECT64,
21960
HA_VECT128
21961
};
21962
21963
static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
21964
uint64_t &Members) {
21965
if (auto *ST = dyn_cast<StructType>(Ty)) {
21966
for (unsigned i = 0; i < ST->getNumElements(); ++i) {
21967
uint64_t SubMembers = 0;
21968
if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
21969
return false;
21970
Members += SubMembers;
21971
}
21972
} else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
21973
uint64_t SubMembers = 0;
21974
if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
21975
return false;
21976
Members += SubMembers * AT->getNumElements();
21977
} else if (Ty->isFloatTy()) {
21978
if (Base != HA_UNKNOWN && Base != HA_FLOAT)
21979
return false;
21980
Members = 1;
21981
Base = HA_FLOAT;
21982
} else if (Ty->isDoubleTy()) {
21983
if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
21984
return false;
21985
Members = 1;
21986
Base = HA_DOUBLE;
21987
} else if (auto *VT = dyn_cast<VectorType>(Ty)) {
21988
Members = 1;
21989
switch (Base) {
21990
case HA_FLOAT:
21991
case HA_DOUBLE:
21992
return false;
21993
case HA_VECT64:
21994
return VT->getPrimitiveSizeInBits().getFixedValue() == 64;
21995
case HA_VECT128:
21996
return VT->getPrimitiveSizeInBits().getFixedValue() == 128;
21997
case HA_UNKNOWN:
21998
switch (VT->getPrimitiveSizeInBits().getFixedValue()) {
21999
case 64:
22000
Base = HA_VECT64;
22001
return true;
22002
case 128:
22003
Base = HA_VECT128;
22004
return true;
22005
default:
22006
return false;
22007
}
22008
}
22009
}
22010
22011
return (Members > 0 && Members <= 4);
22012
}
22013
22014
/// Return the correct alignment for the current calling convention.
22015
Align ARMTargetLowering::getABIAlignmentForCallingConv(
22016
Type *ArgTy, const DataLayout &DL) const {
22017
const Align ABITypeAlign = DL.getABITypeAlign(ArgTy);
22018
if (!ArgTy->isVectorTy())
22019
return ABITypeAlign;
22020
22021
// Avoid over-aligning vector parameters. It would require realigning the
22022
// stack and waste space for no real benefit.
22023
return std::min(ABITypeAlign, DL.getStackAlignment());
22024
}
22025
22026
/// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
22027
/// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
22028
/// passing according to AAPCS rules.
22029
bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
22030
Type *Ty, CallingConv::ID CallConv, bool isVarArg,
22031
const DataLayout &DL) const {
22032
if (getEffectiveCallingConv(CallConv, isVarArg) !=
22033
CallingConv::ARM_AAPCS_VFP)
22034
return false;
22035
22036
HABaseType Base = HA_UNKNOWN;
22037
uint64_t Members = 0;
22038
bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
22039
LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
22040
22041
bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
22042
return IsHA || IsIntArray;
22043
}
22044
22045
Register ARMTargetLowering::getExceptionPointerRegister(
22046
const Constant *PersonalityFn) const {
22047
// Platforms which do not use SjLj EH may return values in these registers
22048
// via the personality function.
22049
return Subtarget->useSjLjEH() ? Register() : ARM::R0;
22050
}
22051
22052
Register ARMTargetLowering::getExceptionSelectorRegister(
22053
const Constant *PersonalityFn) const {
22054
// Platforms which do not use SjLj EH may return values in these registers
22055
// via the personality function.
22056
return Subtarget->useSjLjEH() ? Register() : ARM::R1;
22057
}
22058
22059
void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
22060
// Update IsSplitCSR in ARMFunctionInfo.
22061
ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
22062
AFI->setIsSplitCSR(true);
22063
}
22064
22065
void ARMTargetLowering::insertCopiesSplitCSR(
22066
MachineBasicBlock *Entry,
22067
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
22068
const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
22069
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
22070
if (!IStart)
22071
return;
22072
22073
const TargetInstrInfo *TII = Subtarget->getInstrInfo();
22074
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
22075
MachineBasicBlock::iterator MBBI = Entry->begin();
22076
for (const MCPhysReg *I = IStart; *I; ++I) {
22077
const TargetRegisterClass *RC = nullptr;
22078
if (ARM::GPRRegClass.contains(*I))
22079
RC = &ARM::GPRRegClass;
22080
else if (ARM::DPRRegClass.contains(*I))
22081
RC = &ARM::DPRRegClass;
22082
else
22083
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
22084
22085
Register NewVR = MRI->createVirtualRegister(RC);
22086
// Create copy from CSR to a virtual register.
22087
// FIXME: this currently does not emit CFI pseudo-instructions, it works
22088
// fine for CXX_FAST_TLS since the C++-style TLS access functions should be
22089
// nounwind. If we want to generalize this later, we may need to emit
22090
// CFI pseudo-instructions.
22091
assert(Entry->getParent()->getFunction().hasFnAttribute(
22092
Attribute::NoUnwind) &&
22093
"Function should be nounwind in insertCopiesSplitCSR!");
22094
Entry->addLiveIn(*I);
22095
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
22096
.addReg(*I);
22097
22098
// Insert the copy-back instructions right before the terminator.
22099
for (auto *Exit : Exits)
22100
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
22101
TII->get(TargetOpcode::COPY), *I)
22102
.addReg(NewVR);
22103
}
22104
}
22105
22106
void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
22107
MF.getFrameInfo().computeMaxCallFrameSize(MF);
22108
TargetLoweringBase::finalizeLowering(MF);
22109
}
22110
22111
bool ARMTargetLowering::isComplexDeinterleavingSupported() const {
22112
return Subtarget->hasMVEIntegerOps();
22113
}
22114
22115
bool ARMTargetLowering::isComplexDeinterleavingOperationSupported(
22116
ComplexDeinterleavingOperation Operation, Type *Ty) const {
22117
auto *VTy = dyn_cast<FixedVectorType>(Ty);
22118
if (!VTy)
22119
return false;
22120
22121
auto *ScalarTy = VTy->getScalarType();
22122
unsigned NumElements = VTy->getNumElements();
22123
22124
unsigned VTyWidth = VTy->getScalarSizeInBits() * NumElements;
22125
if (VTyWidth < 128 || !llvm::isPowerOf2_32(VTyWidth))
22126
return false;
22127
22128
// Both VCADD and VCMUL/VCMLA support the same types, F16 and F32
22129
if (ScalarTy->isHalfTy() || ScalarTy->isFloatTy())
22130
return Subtarget->hasMVEFloatOps();
22131
22132
if (Operation != ComplexDeinterleavingOperation::CAdd)
22133
return false;
22134
22135
return Subtarget->hasMVEIntegerOps() &&
22136
(ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
22137
ScalarTy->isIntegerTy(32));
22138
}
22139
22140
Value *ARMTargetLowering::createComplexDeinterleavingIR(
22141
IRBuilderBase &B, ComplexDeinterleavingOperation OperationType,
22142
ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
22143
Value *Accumulator) const {
22144
22145
FixedVectorType *Ty = cast<FixedVectorType>(InputA->getType());
22146
22147
unsigned TyWidth = Ty->getScalarSizeInBits() * Ty->getNumElements();
22148
22149
assert(TyWidth >= 128 && "Width of vector type must be at least 128 bits");
22150
22151
if (TyWidth > 128) {
22152
int Stride = Ty->getNumElements() / 2;
22153
auto SplitSeq = llvm::seq<int>(0, Ty->getNumElements());
22154
auto SplitSeqVec = llvm::to_vector(SplitSeq);
22155
ArrayRef<int> LowerSplitMask(&SplitSeqVec[0], Stride);
22156
ArrayRef<int> UpperSplitMask(&SplitSeqVec[Stride], Stride);
22157
22158
auto *LowerSplitA = B.CreateShuffleVector(InputA, LowerSplitMask);
22159
auto *LowerSplitB = B.CreateShuffleVector(InputB, LowerSplitMask);
22160
auto *UpperSplitA = B.CreateShuffleVector(InputA, UpperSplitMask);
22161
auto *UpperSplitB = B.CreateShuffleVector(InputB, UpperSplitMask);
22162
Value *LowerSplitAcc = nullptr;
22163
Value *UpperSplitAcc = nullptr;
22164
22165
if (Accumulator) {
22166
LowerSplitAcc = B.CreateShuffleVector(Accumulator, LowerSplitMask);
22167
UpperSplitAcc = B.CreateShuffleVector(Accumulator, UpperSplitMask);
22168
}
22169
22170
auto *LowerSplitInt = createComplexDeinterleavingIR(
22171
B, OperationType, Rotation, LowerSplitA, LowerSplitB, LowerSplitAcc);
22172
auto *UpperSplitInt = createComplexDeinterleavingIR(
22173
B, OperationType, Rotation, UpperSplitA, UpperSplitB, UpperSplitAcc);
22174
22175
ArrayRef<int> JoinMask(&SplitSeqVec[0], Ty->getNumElements());
22176
return B.CreateShuffleVector(LowerSplitInt, UpperSplitInt, JoinMask);
22177
}
22178
22179
auto *IntTy = Type::getInt32Ty(B.getContext());
22180
22181
ConstantInt *ConstRotation = nullptr;
22182
if (OperationType == ComplexDeinterleavingOperation::CMulPartial) {
22183
ConstRotation = ConstantInt::get(IntTy, (int)Rotation);
22184
22185
if (Accumulator)
22186
return B.CreateIntrinsic(Intrinsic::arm_mve_vcmlaq, Ty,
22187
{ConstRotation, Accumulator, InputB, InputA});
22188
return B.CreateIntrinsic(Intrinsic::arm_mve_vcmulq, Ty,
22189
{ConstRotation, InputB, InputA});
22190
}
22191
22192
if (OperationType == ComplexDeinterleavingOperation::CAdd) {
22193
// 1 means the value is not halved.
22194
auto *ConstHalving = ConstantInt::get(IntTy, 1);
22195
22196
if (Rotation == ComplexDeinterleavingRotation::Rotation_90)
22197
ConstRotation = ConstantInt::get(IntTy, 0);
22198
else if (Rotation == ComplexDeinterleavingRotation::Rotation_270)
22199
ConstRotation = ConstantInt::get(IntTy, 1);
22200
22201
if (!ConstRotation)
22202
return nullptr; // Invalid rotation for arm_mve_vcaddq
22203
22204
return B.CreateIntrinsic(Intrinsic::arm_mve_vcaddq, Ty,
22205
{ConstHalving, ConstRotation, InputA, InputB});
22206
}
22207
22208
return nullptr;
22209
}
22210
22211