Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/AVR/AVRRegisterInfo.cpp
96353 views
1
//===-- AVRRegisterInfo.cpp - AVR Register Information --------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the AVR implementation of the TargetRegisterInfo class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "AVRRegisterInfo.h"
14
15
#include "llvm/ADT/BitVector.h"
16
#include "llvm/CodeGen/MachineFrameInfo.h"
17
#include "llvm/CodeGen/MachineFunction.h"
18
#include "llvm/CodeGen/MachineInstrBuilder.h"
19
#include "llvm/CodeGen/MachineRegisterInfo.h"
20
#include "llvm/CodeGen/TargetFrameLowering.h"
21
#include "llvm/IR/Function.h"
22
23
#include "AVR.h"
24
#include "AVRInstrInfo.h"
25
#include "AVRMachineFunctionInfo.h"
26
#include "AVRTargetMachine.h"
27
#include "MCTargetDesc/AVRMCTargetDesc.h"
28
29
#define GET_REGINFO_TARGET_DESC
30
#include "AVRGenRegisterInfo.inc"
31
32
namespace llvm {
33
34
AVRRegisterInfo::AVRRegisterInfo() : AVRGenRegisterInfo(0) {}
35
36
const uint16_t *
37
AVRRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
38
const AVRMachineFunctionInfo *AFI = MF->getInfo<AVRMachineFunctionInfo>();
39
const AVRSubtarget &STI = MF->getSubtarget<AVRSubtarget>();
40
if (STI.hasTinyEncoding())
41
return AFI->isInterruptOrSignalHandler() ? CSR_InterruptsTiny_SaveList
42
: CSR_NormalTiny_SaveList;
43
else
44
return AFI->isInterruptOrSignalHandler() ? CSR_Interrupts_SaveList
45
: CSR_Normal_SaveList;
46
}
47
48
const uint32_t *
49
AVRRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
50
CallingConv::ID CC) const {
51
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
52
return STI.hasTinyEncoding() ? CSR_NormalTiny_RegMask : CSR_Normal_RegMask;
53
}
54
55
BitVector AVRRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
56
BitVector Reserved(getNumRegs());
57
58
// Reserve the intermediate result registers r1 and r2
59
// The result of instructions like 'mul' is always stored here.
60
// R0/R1/R1R0 are always reserved on both avr and avrtiny.
61
Reserved.set(AVR::R0);
62
Reserved.set(AVR::R1);
63
Reserved.set(AVR::R1R0);
64
65
// Reserve the stack pointer.
66
Reserved.set(AVR::SPL);
67
Reserved.set(AVR::SPH);
68
Reserved.set(AVR::SP);
69
70
// Reserve R2~R17 only on avrtiny.
71
if (MF.getSubtarget<AVRSubtarget>().hasTinyEncoding()) {
72
// Reserve 8-bit registers R2~R15, Rtmp(R16) and Zero(R17).
73
for (unsigned Reg = AVR::R2; Reg <= AVR::R17; Reg++)
74
Reserved.set(Reg);
75
// Reserve 16-bit registers R3R2~R18R17.
76
for (unsigned Reg = AVR::R3R2; Reg <= AVR::R18R17; Reg++)
77
Reserved.set(Reg);
78
}
79
80
// We tenatively reserve the frame pointer register r29:r28 because the
81
// function may require one, but we cannot tell until register allocation
82
// is complete, which can be too late.
83
//
84
// Instead we just unconditionally reserve the Y register.
85
//
86
// TODO: Write a pass to enumerate functions which reserved the Y register
87
// but didn't end up needing a frame pointer. In these, we can
88
// convert one or two of the spills inside to use the Y register.
89
Reserved.set(AVR::R28);
90
Reserved.set(AVR::R29);
91
Reserved.set(AVR::R29R28);
92
93
return Reserved;
94
}
95
96
const TargetRegisterClass *
97
AVRRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
98
const MachineFunction &MF) const {
99
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
100
if (TRI->isTypeLegalForClass(*RC, MVT::i16)) {
101
return &AVR::DREGSRegClass;
102
}
103
104
if (TRI->isTypeLegalForClass(*RC, MVT::i8)) {
105
return &AVR::GPR8RegClass;
106
}
107
108
llvm_unreachable("Invalid register size");
109
}
110
111
/// Fold a frame offset shared between two add instructions into a single one.
112
static void foldFrameOffset(MachineBasicBlock::iterator &II, int &Offset,
113
Register DstReg) {
114
MachineInstr &MI = *II;
115
int Opcode = MI.getOpcode();
116
117
// Don't bother trying if the next instruction is not an add or a sub.
118
if ((Opcode != AVR::SUBIWRdK) && (Opcode != AVR::ADIWRdK)) {
119
return;
120
}
121
122
// Check that DstReg matches with next instruction, otherwise the instruction
123
// is not related to stack address manipulation.
124
if (DstReg != MI.getOperand(0).getReg()) {
125
return;
126
}
127
128
// Add the offset in the next instruction to our offset.
129
switch (Opcode) {
130
case AVR::SUBIWRdK:
131
Offset += -MI.getOperand(2).getImm();
132
break;
133
case AVR::ADIWRdK:
134
Offset += MI.getOperand(2).getImm();
135
break;
136
}
137
138
// Finally remove the instruction.
139
II++;
140
MI.eraseFromParent();
141
}
142
143
bool AVRRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
144
int SPAdj, unsigned FIOperandNum,
145
RegScavenger *RS) const {
146
assert(SPAdj == 0 && "Unexpected SPAdj value");
147
148
MachineInstr &MI = *II;
149
DebugLoc dl = MI.getDebugLoc();
150
MachineBasicBlock &MBB = *MI.getParent();
151
const MachineFunction &MF = *MBB.getParent();
152
const AVRTargetMachine &TM = (const AVRTargetMachine &)MF.getTarget();
153
const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
154
const MachineFrameInfo &MFI = MF.getFrameInfo();
155
const TargetFrameLowering *TFI = TM.getSubtargetImpl()->getFrameLowering();
156
const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
157
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
158
int Offset = MFI.getObjectOffset(FrameIndex);
159
160
// Add one to the offset because SP points to an empty slot.
161
Offset += MFI.getStackSize() - TFI->getOffsetOfLocalArea() + 1;
162
// Fold incoming offset.
163
Offset += MI.getOperand(FIOperandNum + 1).getImm();
164
165
// This is actually "load effective address" of the stack slot
166
// instruction. We have only two-address instructions, thus we need to
167
// expand it into move + add.
168
if (MI.getOpcode() == AVR::FRMIDX) {
169
Register DstReg = MI.getOperand(0).getReg();
170
assert(DstReg != AVR::R29R28 && "Dest reg cannot be the frame pointer");
171
172
// Copy the frame pointer.
173
if (STI.hasMOVW()) {
174
BuildMI(MBB, MI, dl, TII.get(AVR::MOVWRdRr), DstReg)
175
.addReg(AVR::R29R28);
176
} else {
177
Register DstLoReg, DstHiReg;
178
splitReg(DstReg, DstLoReg, DstHiReg);
179
BuildMI(MBB, MI, dl, TII.get(AVR::MOVRdRr), DstLoReg)
180
.addReg(AVR::R28);
181
BuildMI(MBB, MI, dl, TII.get(AVR::MOVRdRr), DstHiReg)
182
.addReg(AVR::R29);
183
}
184
185
assert(Offset > 0 && "Invalid offset");
186
187
// We need to materialize the offset via an add instruction.
188
unsigned Opcode;
189
190
II++; // Skip over the FRMIDX instruction.
191
192
// Generally, to load a frame address two add instructions are emitted that
193
// could get folded into a single one:
194
// movw r31:r30, r29:r28
195
// adiw r31:r30, 29
196
// adiw r31:r30, 16
197
// to:
198
// movw r31:r30, r29:r28
199
// adiw r31:r30, 45
200
if (II != MBB.end())
201
foldFrameOffset(II, Offset, DstReg);
202
203
// Select the best opcode based on DstReg and the offset size.
204
switch (DstReg) {
205
case AVR::R25R24:
206
case AVR::R27R26:
207
case AVR::R31R30: {
208
if (isUInt<6>(Offset) && STI.hasADDSUBIW()) {
209
Opcode = AVR::ADIWRdK;
210
break;
211
}
212
[[fallthrough]];
213
}
214
default: {
215
// This opcode will get expanded into a pair of subi/sbci.
216
Opcode = AVR::SUBIWRdK;
217
Offset = -Offset;
218
break;
219
}
220
}
221
222
MachineInstr *New = BuildMI(MBB, II, dl, TII.get(Opcode), DstReg)
223
.addReg(DstReg, RegState::Kill)
224
.addImm(Offset);
225
New->getOperand(3).setIsDead();
226
227
MI.eraseFromParent(); // remove FRMIDX
228
229
return false;
230
}
231
232
// On most AVRs, we can use an offset up to 62 for load/store with
233
// displacement (63 for byte values, 62 for word values). However, the
234
// "reduced tiny" cores don't support load/store with displacement. So for
235
// them, we force an offset of 0 meaning that any positive offset will require
236
// adjusting the frame pointer.
237
int MaxOffset = STI.hasTinyEncoding() ? 0 : 62;
238
239
// If the offset is too big we have to adjust and restore the frame pointer
240
// to materialize a valid load/store with displacement.
241
//: TODO: consider using only one adiw/sbiw chain for more than one frame
242
//: index
243
if (Offset > MaxOffset) {
244
unsigned AddOpc = AVR::ADIWRdK, SubOpc = AVR::SBIWRdK;
245
int AddOffset = Offset - MaxOffset;
246
247
// For huge offsets where adiw/sbiw cannot be used use a pair of subi/sbci.
248
if ((Offset - MaxOffset) > 63 || !STI.hasADDSUBIW()) {
249
AddOpc = AVR::SUBIWRdK;
250
SubOpc = AVR::SUBIWRdK;
251
AddOffset = -AddOffset;
252
}
253
254
// It is possible that the spiller places this frame instruction in between
255
// a compare and branch, invalidating the contents of SREG set by the
256
// compare instruction because of the add/sub pairs. Conservatively save and
257
// restore SREG before and after each add/sub pair.
258
BuildMI(MBB, II, dl, TII.get(AVR::INRdA), STI.getTmpRegister())
259
.addImm(STI.getIORegSREG());
260
261
MachineInstr *New = BuildMI(MBB, II, dl, TII.get(AddOpc), AVR::R29R28)
262
.addReg(AVR::R29R28, RegState::Kill)
263
.addImm(AddOffset);
264
New->getOperand(3).setIsDead();
265
266
// Restore SREG.
267
BuildMI(MBB, std::next(II), dl, TII.get(AVR::OUTARr))
268
.addImm(STI.getIORegSREG())
269
.addReg(STI.getTmpRegister(), RegState::Kill);
270
271
// No need to set SREG as dead here otherwise if the next instruction is a
272
// cond branch it will be using a dead register.
273
BuildMI(MBB, std::next(II), dl, TII.get(SubOpc), AVR::R29R28)
274
.addReg(AVR::R29R28, RegState::Kill)
275
.addImm(Offset - MaxOffset);
276
277
Offset = MaxOffset;
278
}
279
280
MI.getOperand(FIOperandNum).ChangeToRegister(AVR::R29R28, false);
281
assert(isUInt<6>(Offset) && "Offset is out of range");
282
MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
283
return false;
284
}
285
286
Register AVRRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
287
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
288
if (TFI->hasFP(MF)) {
289
// The Y pointer register
290
return AVR::R28;
291
}
292
293
return AVR::SP;
294
}
295
296
const TargetRegisterClass *
297
AVRRegisterInfo::getPointerRegClass(const MachineFunction &MF,
298
unsigned Kind) const {
299
// FIXME: Currently we're using avr-gcc as reference, so we restrict
300
// ptrs to Y and Z regs. Though avr-gcc has buggy implementation
301
// of memory constraint, so we can fix it and bit avr-gcc here ;-)
302
return &AVR::PTRDISPREGSRegClass;
303
}
304
305
void AVRRegisterInfo::splitReg(Register Reg, Register &LoReg,
306
Register &HiReg) const {
307
assert(AVR::DREGSRegClass.contains(Reg) && "can only split 16-bit registers");
308
309
LoReg = getSubReg(Reg, AVR::sub_lo);
310
HiReg = getSubReg(Reg, AVR::sub_hi);
311
}
312
313
bool AVRRegisterInfo::shouldCoalesce(
314
MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg,
315
const TargetRegisterClass *DstRC, unsigned DstSubReg,
316
const TargetRegisterClass *NewRC, LiveIntervals &LIS) const {
317
if (this->getRegClass(AVR::PTRDISPREGSRegClassID)->hasSubClassEq(NewRC)) {
318
return false;
319
}
320
321
return TargetRegisterInfo::shouldCoalesce(MI, SrcRC, SubReg, DstRC, DstSubReg,
322
NewRC, LIS);
323
}
324
325
} // end of namespace llvm
326
327