Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/BPF/BPFISelLowering.cpp
35268 views
1
//===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation ------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the interfaces that BPF uses to lower LLVM code into a
10
// selection DAG.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "BPFISelLowering.h"
15
#include "BPF.h"
16
#include "BPFSubtarget.h"
17
#include "BPFTargetMachine.h"
18
#include "llvm/CodeGen/CallingConvLower.h"
19
#include "llvm/CodeGen/MachineFrameInfo.h"
20
#include "llvm/CodeGen/MachineFunction.h"
21
#include "llvm/CodeGen/MachineInstrBuilder.h"
22
#include "llvm/CodeGen/MachineRegisterInfo.h"
23
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24
#include "llvm/CodeGen/ValueTypes.h"
25
#include "llvm/IR/DiagnosticInfo.h"
26
#include "llvm/IR/DiagnosticPrinter.h"
27
#include "llvm/Support/Debug.h"
28
#include "llvm/Support/ErrorHandling.h"
29
#include "llvm/Support/MathExtras.h"
30
#include "llvm/Support/raw_ostream.h"
31
32
using namespace llvm;
33
34
#define DEBUG_TYPE "bpf-lower"
35
36
static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
37
cl::Hidden, cl::init(false),
38
cl::desc("Expand memcpy into load/store pairs in order"));
39
40
static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg,
41
SDValue Val = {}) {
42
std::string Str;
43
if (Val) {
44
raw_string_ostream OS(Str);
45
Val->print(OS);
46
OS << ' ';
47
}
48
MachineFunction &MF = DAG.getMachineFunction();
49
DAG.getContext()->diagnose(DiagnosticInfoUnsupported(
50
MF.getFunction(), Twine(Str).concat(Msg), DL.getDebugLoc()));
51
}
52
53
BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
54
const BPFSubtarget &STI)
55
: TargetLowering(TM) {
56
57
// Set up the register classes.
58
addRegisterClass(MVT::i64, &BPF::GPRRegClass);
59
if (STI.getHasAlu32())
60
addRegisterClass(MVT::i32, &BPF::GPR32RegClass);
61
62
// Compute derived properties from the register classes
63
computeRegisterProperties(STI.getRegisterInfo());
64
65
setStackPointerRegisterToSaveRestore(BPF::R11);
66
67
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
68
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
69
setOperationAction(ISD::BRIND, MVT::Other, Expand);
70
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
71
72
setOperationAction({ISD::GlobalAddress, ISD::ConstantPool}, MVT::i64, Custom);
73
74
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
75
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
76
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
77
78
// Set unsupported atomic operations as Custom so
79
// we can emit better error messages than fatal error
80
// from selectiondag.
81
for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
82
if (VT == MVT::i32) {
83
if (STI.getHasAlu32())
84
continue;
85
} else {
86
setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom);
87
}
88
89
setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom);
90
setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom);
91
setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom);
92
setOperationAction(ISD::ATOMIC_SWAP, VT, Custom);
93
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
94
}
95
96
for (auto VT : { MVT::i32, MVT::i64 }) {
97
if (VT == MVT::i32 && !STI.getHasAlu32())
98
continue;
99
100
setOperationAction(ISD::SDIVREM, VT, Expand);
101
setOperationAction(ISD::UDIVREM, VT, Expand);
102
if (!STI.hasSdivSmod()) {
103
setOperationAction(ISD::SDIV, VT, Custom);
104
setOperationAction(ISD::SREM, VT, Custom);
105
}
106
setOperationAction(ISD::MULHU, VT, Expand);
107
setOperationAction(ISD::MULHS, VT, Expand);
108
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
109
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
110
setOperationAction(ISD::ROTR, VT, Expand);
111
setOperationAction(ISD::ROTL, VT, Expand);
112
setOperationAction(ISD::SHL_PARTS, VT, Expand);
113
setOperationAction(ISD::SRL_PARTS, VT, Expand);
114
setOperationAction(ISD::SRA_PARTS, VT, Expand);
115
setOperationAction(ISD::CTPOP, VT, Expand);
116
setOperationAction(ISD::CTTZ, VT, Expand);
117
setOperationAction(ISD::CTLZ, VT, Expand);
118
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
119
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
120
121
setOperationAction(ISD::SETCC, VT, Expand);
122
setOperationAction(ISD::SELECT, VT, Expand);
123
setOperationAction(ISD::SELECT_CC, VT, Custom);
124
}
125
126
if (STI.getHasAlu32()) {
127
setOperationAction(ISD::BSWAP, MVT::i32, Promote);
128
setOperationAction(ISD::BR_CC, MVT::i32,
129
STI.getHasJmp32() ? Custom : Promote);
130
}
131
132
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
133
if (!STI.hasMovsx()) {
134
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
135
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
136
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
137
}
138
139
// Extended load operations for i1 types must be promoted
140
for (MVT VT : MVT::integer_valuetypes()) {
141
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
142
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
143
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
144
145
if (!STI.hasLdsx()) {
146
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
147
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
148
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
149
}
150
}
151
152
setBooleanContents(ZeroOrOneBooleanContent);
153
setMaxAtomicSizeInBitsSupported(64);
154
155
// Function alignments
156
setMinFunctionAlignment(Align(8));
157
setPrefFunctionAlignment(Align(8));
158
159
if (BPFExpandMemcpyInOrder) {
160
// LLVM generic code will try to expand memcpy into load/store pairs at this
161
// stage which is before quite a few IR optimization passes, therefore the
162
// loads and stores could potentially be moved apart from each other which
163
// will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
164
// compilers.
165
//
166
// When -bpf-expand-memcpy-in-order specified, we want to defer the expand
167
// of memcpy to later stage in IR optimization pipeline so those load/store
168
// pairs won't be touched and could be kept in order. Hence, we set
169
// MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
170
// code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
171
MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
172
MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
173
MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
174
MaxLoadsPerMemcmp = 0;
175
} else {
176
// inline memcpy() for kernel to see explicit copy
177
unsigned CommonMaxStores =
178
STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();
179
180
MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
181
MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
182
MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
183
MaxLoadsPerMemcmp = MaxLoadsPerMemcmpOptSize = CommonMaxStores;
184
}
185
186
// CPU/Feature control
187
HasAlu32 = STI.getHasAlu32();
188
HasJmp32 = STI.getHasJmp32();
189
HasJmpExt = STI.getHasJmpExt();
190
HasMovsx = STI.hasMovsx();
191
}
192
193
bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
194
return false;
195
}
196
197
bool BPFTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
198
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
199
return false;
200
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
201
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
202
return NumBits1 > NumBits2;
203
}
204
205
bool BPFTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
206
if (!VT1.isInteger() || !VT2.isInteger())
207
return false;
208
unsigned NumBits1 = VT1.getSizeInBits();
209
unsigned NumBits2 = VT2.getSizeInBits();
210
return NumBits1 > NumBits2;
211
}
212
213
bool BPFTargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
214
if (!getHasAlu32() || !Ty1->isIntegerTy() || !Ty2->isIntegerTy())
215
return false;
216
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
217
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
218
return NumBits1 == 32 && NumBits2 == 64;
219
}
220
221
bool BPFTargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
222
if (!getHasAlu32() || !VT1.isInteger() || !VT2.isInteger())
223
return false;
224
unsigned NumBits1 = VT1.getSizeInBits();
225
unsigned NumBits2 = VT2.getSizeInBits();
226
return NumBits1 == 32 && NumBits2 == 64;
227
}
228
229
bool BPFTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
230
EVT VT1 = Val.getValueType();
231
if (Val.getOpcode() == ISD::LOAD && VT1.isSimple() && VT2.isSimple()) {
232
MVT MT1 = VT1.getSimpleVT().SimpleTy;
233
MVT MT2 = VT2.getSimpleVT().SimpleTy;
234
if ((MT1 == MVT::i8 || MT1 == MVT::i16 || MT1 == MVT::i32) &&
235
(MT2 == MVT::i32 || MT2 == MVT::i64))
236
return true;
237
}
238
return TargetLoweringBase::isZExtFree(Val, VT2);
239
}
240
241
BPFTargetLowering::ConstraintType
242
BPFTargetLowering::getConstraintType(StringRef Constraint) const {
243
if (Constraint.size() == 1) {
244
switch (Constraint[0]) {
245
default:
246
break;
247
case 'w':
248
return C_RegisterClass;
249
}
250
}
251
252
return TargetLowering::getConstraintType(Constraint);
253
}
254
255
std::pair<unsigned, const TargetRegisterClass *>
256
BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
257
StringRef Constraint,
258
MVT VT) const {
259
if (Constraint.size() == 1) {
260
// GCC Constraint Letters
261
switch (Constraint[0]) {
262
case 'r': // GENERAL_REGS
263
return std::make_pair(0U, &BPF::GPRRegClass);
264
case 'w':
265
if (HasAlu32)
266
return std::make_pair(0U, &BPF::GPR32RegClass);
267
break;
268
default:
269
break;
270
}
271
}
272
273
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
274
}
275
276
void BPFTargetLowering::ReplaceNodeResults(
277
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
278
const char *Msg;
279
uint32_t Opcode = N->getOpcode();
280
switch (Opcode) {
281
default:
282
report_fatal_error("unhandled custom legalization: " + Twine(Opcode));
283
case ISD::ATOMIC_LOAD_ADD:
284
case ISD::ATOMIC_LOAD_AND:
285
case ISD::ATOMIC_LOAD_OR:
286
case ISD::ATOMIC_LOAD_XOR:
287
case ISD::ATOMIC_SWAP:
288
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
289
if (HasAlu32 || Opcode == ISD::ATOMIC_LOAD_ADD)
290
Msg = "unsupported atomic operation, please use 32/64 bit version";
291
else
292
Msg = "unsupported atomic operation, please use 64 bit version";
293
break;
294
}
295
296
SDLoc DL(N);
297
// We'll still produce a fatal error downstream, but this diagnostic is more
298
// user-friendly.
299
fail(DL, DAG, Msg);
300
}
301
302
SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
303
switch (Op.getOpcode()) {
304
default:
305
report_fatal_error("unimplemented opcode: " + Twine(Op.getOpcode()));
306
case ISD::BR_CC:
307
return LowerBR_CC(Op, DAG);
308
case ISD::GlobalAddress:
309
return LowerGlobalAddress(Op, DAG);
310
case ISD::ConstantPool:
311
return LowerConstantPool(Op, DAG);
312
case ISD::SELECT_CC:
313
return LowerSELECT_CC(Op, DAG);
314
case ISD::SDIV:
315
case ISD::SREM:
316
return LowerSDIVSREM(Op, DAG);
317
case ISD::DYNAMIC_STACKALLOC:
318
return LowerDYNAMIC_STACKALLOC(Op, DAG);
319
}
320
}
321
322
// Calling Convention Implementation
323
#include "BPFGenCallingConv.inc"
324
325
SDValue BPFTargetLowering::LowerFormalArguments(
326
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
327
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
328
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
329
switch (CallConv) {
330
default:
331
report_fatal_error("unimplemented calling convention: " + Twine(CallConv));
332
case CallingConv::C:
333
case CallingConv::Fast:
334
break;
335
}
336
337
MachineFunction &MF = DAG.getMachineFunction();
338
MachineRegisterInfo &RegInfo = MF.getRegInfo();
339
340
// Assign locations to all of the incoming arguments.
341
SmallVector<CCValAssign, 16> ArgLocs;
342
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
343
CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);
344
345
bool HasMemArgs = false;
346
for (size_t I = 0; I < ArgLocs.size(); ++I) {
347
auto &VA = ArgLocs[I];
348
349
if (VA.isRegLoc()) {
350
// Arguments passed in registers
351
EVT RegVT = VA.getLocVT();
352
MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
353
switch (SimpleTy) {
354
default: {
355
std::string Str;
356
{
357
raw_string_ostream OS(Str);
358
RegVT.print(OS);
359
}
360
report_fatal_error("unhandled argument type: " + Twine(Str));
361
}
362
case MVT::i32:
363
case MVT::i64:
364
Register VReg = RegInfo.createVirtualRegister(
365
SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass);
366
RegInfo.addLiveIn(VA.getLocReg(), VReg);
367
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
368
369
// If this is an value that has been promoted to wider types, insert an
370
// assert[sz]ext to capture this, then truncate to the right size.
371
if (VA.getLocInfo() == CCValAssign::SExt)
372
ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
373
DAG.getValueType(VA.getValVT()));
374
else if (VA.getLocInfo() == CCValAssign::ZExt)
375
ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
376
DAG.getValueType(VA.getValVT()));
377
378
if (VA.getLocInfo() != CCValAssign::Full)
379
ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
380
381
InVals.push_back(ArgValue);
382
383
break;
384
}
385
} else {
386
if (VA.isMemLoc())
387
HasMemArgs = true;
388
else
389
report_fatal_error("unhandled argument location");
390
InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
391
}
392
}
393
if (HasMemArgs)
394
fail(DL, DAG, "stack arguments are not supported");
395
if (IsVarArg)
396
fail(DL, DAG, "variadic functions are not supported");
397
if (MF.getFunction().hasStructRetAttr())
398
fail(DL, DAG, "aggregate returns are not supported");
399
400
return Chain;
401
}
402
403
const size_t BPFTargetLowering::MaxArgs = 5;
404
405
SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
406
SmallVectorImpl<SDValue> &InVals) const {
407
SelectionDAG &DAG = CLI.DAG;
408
auto &Outs = CLI.Outs;
409
auto &OutVals = CLI.OutVals;
410
auto &Ins = CLI.Ins;
411
SDValue Chain = CLI.Chain;
412
SDValue Callee = CLI.Callee;
413
bool &IsTailCall = CLI.IsTailCall;
414
CallingConv::ID CallConv = CLI.CallConv;
415
bool IsVarArg = CLI.IsVarArg;
416
MachineFunction &MF = DAG.getMachineFunction();
417
418
// BPF target does not support tail call optimization.
419
IsTailCall = false;
420
421
switch (CallConv) {
422
default:
423
report_fatal_error("unsupported calling convention: " + Twine(CallConv));
424
case CallingConv::Fast:
425
case CallingConv::C:
426
break;
427
}
428
429
// Analyze operands of the call, assigning locations to each operand.
430
SmallVector<CCValAssign, 16> ArgLocs;
431
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
432
433
CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);
434
435
unsigned NumBytes = CCInfo.getStackSize();
436
437
if (Outs.size() > MaxArgs)
438
fail(CLI.DL, DAG, "too many arguments", Callee);
439
440
for (auto &Arg : Outs) {
441
ISD::ArgFlagsTy Flags = Arg.Flags;
442
if (!Flags.isByVal())
443
continue;
444
fail(CLI.DL, DAG, "pass by value not supported", Callee);
445
break;
446
}
447
448
auto PtrVT = getPointerTy(MF.getDataLayout());
449
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
450
451
SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;
452
453
// Walk arg assignments
454
for (size_t i = 0; i < std::min(ArgLocs.size(), MaxArgs); ++i) {
455
CCValAssign &VA = ArgLocs[i];
456
SDValue &Arg = OutVals[i];
457
458
// Promote the value if needed.
459
switch (VA.getLocInfo()) {
460
default:
461
report_fatal_error("unhandled location info: " + Twine(VA.getLocInfo()));
462
case CCValAssign::Full:
463
break;
464
case CCValAssign::SExt:
465
Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
466
break;
467
case CCValAssign::ZExt:
468
Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
469
break;
470
case CCValAssign::AExt:
471
Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
472
break;
473
}
474
475
// Push arguments into RegsToPass vector
476
if (VA.isRegLoc())
477
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
478
else
479
report_fatal_error("stack arguments are not supported");
480
}
481
482
SDValue InGlue;
483
484
// Build a sequence of copy-to-reg nodes chained together with token chain and
485
// flag operands which copy the outgoing args into registers. The InGlue in
486
// necessary since all emitted instructions must be stuck together.
487
for (auto &Reg : RegsToPass) {
488
Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InGlue);
489
InGlue = Chain.getValue(1);
490
}
491
492
// If the callee is a GlobalAddress node (quite common, every direct call is)
493
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
494
// Likewise ExternalSymbol -> TargetExternalSymbol.
495
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
496
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
497
G->getOffset(), 0);
498
} else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
499
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
500
fail(CLI.DL, DAG,
501
Twine("A call to built-in function '" + StringRef(E->getSymbol()) +
502
"' is not supported."));
503
}
504
505
// Returns a chain & a flag for retval copy to use.
506
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
507
SmallVector<SDValue, 8> Ops;
508
Ops.push_back(Chain);
509
Ops.push_back(Callee);
510
511
// Add argument registers to the end of the list so that they are
512
// known live into the call.
513
for (auto &Reg : RegsToPass)
514
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
515
516
if (InGlue.getNode())
517
Ops.push_back(InGlue);
518
519
Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
520
InGlue = Chain.getValue(1);
521
522
DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
523
524
// Create the CALLSEQ_END node.
525
Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, CLI.DL);
526
InGlue = Chain.getValue(1);
527
528
// Handle result values, copying them out of physregs into vregs that we
529
// return.
530
return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, CLI.DL, DAG,
531
InVals);
532
}
533
534
SDValue
535
BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
536
bool IsVarArg,
537
const SmallVectorImpl<ISD::OutputArg> &Outs,
538
const SmallVectorImpl<SDValue> &OutVals,
539
const SDLoc &DL, SelectionDAG &DAG) const {
540
unsigned Opc = BPFISD::RET_GLUE;
541
542
// CCValAssign - represent the assignment of the return value to a location
543
SmallVector<CCValAssign, 16> RVLocs;
544
MachineFunction &MF = DAG.getMachineFunction();
545
546
// CCState - Info about the registers and stack slot.
547
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
548
549
if (MF.getFunction().getReturnType()->isAggregateType()) {
550
fail(DL, DAG, "aggregate returns are not supported");
551
return DAG.getNode(Opc, DL, MVT::Other, Chain);
552
}
553
554
// Analize return values.
555
CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
556
557
SDValue Glue;
558
SmallVector<SDValue, 4> RetOps(1, Chain);
559
560
// Copy the result values into the output registers.
561
for (size_t i = 0; i != RVLocs.size(); ++i) {
562
CCValAssign &VA = RVLocs[i];
563
if (!VA.isRegLoc())
564
report_fatal_error("stack return values are not supported");
565
566
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Glue);
567
568
// Guarantee that all emitted copies are stuck together,
569
// avoiding something bad.
570
Glue = Chain.getValue(1);
571
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
572
}
573
574
RetOps[0] = Chain; // Update chain.
575
576
// Add the glue if we have it.
577
if (Glue.getNode())
578
RetOps.push_back(Glue);
579
580
return DAG.getNode(Opc, DL, MVT::Other, RetOps);
581
}
582
583
SDValue BPFTargetLowering::LowerCallResult(
584
SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
585
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
586
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
587
588
MachineFunction &MF = DAG.getMachineFunction();
589
// Assign locations to each value returned by this call.
590
SmallVector<CCValAssign, 16> RVLocs;
591
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
592
593
if (Ins.size() > 1) {
594
fail(DL, DAG, "only small returns supported");
595
for (auto &In : Ins)
596
InVals.push_back(DAG.getConstant(0, DL, In.VT));
597
return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InGlue).getValue(1);
598
}
599
600
CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
601
602
// Copy all of the result registers out of their specified physreg.
603
for (auto &Val : RVLocs) {
604
Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
605
Val.getValVT(), InGlue).getValue(1);
606
InGlue = Chain.getValue(2);
607
InVals.push_back(Chain.getValue(0));
608
}
609
610
return Chain;
611
}
612
613
static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
614
switch (CC) {
615
default:
616
break;
617
case ISD::SETULT:
618
case ISD::SETULE:
619
case ISD::SETLT:
620
case ISD::SETLE:
621
CC = ISD::getSetCCSwappedOperands(CC);
622
std::swap(LHS, RHS);
623
break;
624
}
625
}
626
627
SDValue BPFTargetLowering::LowerSDIVSREM(SDValue Op, SelectionDAG &DAG) const {
628
SDLoc DL(Op);
629
fail(DL, DAG,
630
"unsupported signed division, please convert to unsigned div/mod.");
631
return DAG.getUNDEF(Op->getValueType(0));
632
}
633
634
SDValue BPFTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
635
SelectionDAG &DAG) const {
636
SDLoc DL(Op);
637
fail(DL, DAG, "unsupported dynamic stack allocation");
638
auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
639
return DAG.getMergeValues(Ops, SDLoc());
640
}
641
642
SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
643
SDValue Chain = Op.getOperand(0);
644
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
645
SDValue LHS = Op.getOperand(2);
646
SDValue RHS = Op.getOperand(3);
647
SDValue Dest = Op.getOperand(4);
648
SDLoc DL(Op);
649
650
if (!getHasJmpExt())
651
NegateCC(LHS, RHS, CC);
652
653
return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
654
DAG.getConstant(CC, DL, LHS.getValueType()), Dest);
655
}
656
657
SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
658
SDValue LHS = Op.getOperand(0);
659
SDValue RHS = Op.getOperand(1);
660
SDValue TrueV = Op.getOperand(2);
661
SDValue FalseV = Op.getOperand(3);
662
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
663
SDLoc DL(Op);
664
665
if (!getHasJmpExt())
666
NegateCC(LHS, RHS, CC);
667
668
SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
669
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
670
SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
671
672
return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
673
}
674
675
const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
676
switch ((BPFISD::NodeType)Opcode) {
677
case BPFISD::FIRST_NUMBER:
678
break;
679
case BPFISD::RET_GLUE:
680
return "BPFISD::RET_GLUE";
681
case BPFISD::CALL:
682
return "BPFISD::CALL";
683
case BPFISD::SELECT_CC:
684
return "BPFISD::SELECT_CC";
685
case BPFISD::BR_CC:
686
return "BPFISD::BR_CC";
687
case BPFISD::Wrapper:
688
return "BPFISD::Wrapper";
689
case BPFISD::MEMCPY:
690
return "BPFISD::MEMCPY";
691
}
692
return nullptr;
693
}
694
695
static SDValue getTargetNode(GlobalAddressSDNode *N, const SDLoc &DL, EVT Ty,
696
SelectionDAG &DAG, unsigned Flags) {
697
return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
698
}
699
700
static SDValue getTargetNode(ConstantPoolSDNode *N, const SDLoc &DL, EVT Ty,
701
SelectionDAG &DAG, unsigned Flags) {
702
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
703
N->getOffset(), Flags);
704
}
705
706
template <class NodeTy>
707
SDValue BPFTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
708
unsigned Flags) const {
709
SDLoc DL(N);
710
711
SDValue GA = getTargetNode(N, DL, MVT::i64, DAG, Flags);
712
713
return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
714
}
715
716
SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
717
SelectionDAG &DAG) const {
718
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
719
if (N->getOffset() != 0)
720
report_fatal_error("invalid offset for global address: " +
721
Twine(N->getOffset()));
722
return getAddr(N, DAG);
723
}
724
725
SDValue BPFTargetLowering::LowerConstantPool(SDValue Op,
726
SelectionDAG &DAG) const {
727
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
728
729
return getAddr(N, DAG);
730
}
731
732
unsigned
733
BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
734
unsigned Reg, bool isSigned) const {
735
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
736
const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
737
int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
738
MachineFunction *F = BB->getParent();
739
DebugLoc DL = MI.getDebugLoc();
740
741
MachineRegisterInfo &RegInfo = F->getRegInfo();
742
743
if (!isSigned) {
744
Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
745
BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
746
return PromotedReg0;
747
}
748
Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
749
Register PromotedReg1 = RegInfo.createVirtualRegister(RC);
750
Register PromotedReg2 = RegInfo.createVirtualRegister(RC);
751
if (HasMovsx) {
752
BuildMI(BB, DL, TII.get(BPF::MOVSX_rr_32), PromotedReg0).addReg(Reg);
753
} else {
754
BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
755
BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
756
.addReg(PromotedReg0).addImm(32);
757
BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
758
.addReg(PromotedReg1).addImm(32);
759
}
760
761
return PromotedReg2;
762
}
763
764
MachineBasicBlock *
765
BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
766
MachineBasicBlock *BB)
767
const {
768
MachineFunction *MF = MI.getParent()->getParent();
769
MachineRegisterInfo &MRI = MF->getRegInfo();
770
MachineInstrBuilder MIB(*MF, MI);
771
unsigned ScratchReg;
772
773
// This function does custom insertion during lowering BPFISD::MEMCPY which
774
// only has two register operands from memcpy semantics, the copy source
775
// address and the copy destination address.
776
//
777
// Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
778
// a third scratch register to serve as the destination register of load and
779
// source register of store.
780
//
781
// The scratch register here is with the Define | Dead | EarlyClobber flags.
782
// The EarlyClobber flag has the semantic property that the operand it is
783
// attached to is clobbered before the rest of the inputs are read. Hence it
784
// must be unique among the operands to the instruction. The Define flag is
785
// needed to coerce the machine verifier that an Undef value isn't a problem
786
// as we anyway is loading memory into it. The Dead flag is needed as the
787
// value in scratch isn't supposed to be used by any other instruction.
788
ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
789
MIB.addReg(ScratchReg,
790
RegState::Define | RegState::Dead | RegState::EarlyClobber);
791
792
return BB;
793
}
794
795
MachineBasicBlock *
796
BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
797
MachineBasicBlock *BB) const {
798
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
799
DebugLoc DL = MI.getDebugLoc();
800
unsigned Opc = MI.getOpcode();
801
bool isSelectRROp = (Opc == BPF::Select ||
802
Opc == BPF::Select_64_32 ||
803
Opc == BPF::Select_32 ||
804
Opc == BPF::Select_32_64);
805
806
bool isMemcpyOp = Opc == BPF::MEMCPY;
807
808
#ifndef NDEBUG
809
bool isSelectRIOp = (Opc == BPF::Select_Ri ||
810
Opc == BPF::Select_Ri_64_32 ||
811
Opc == BPF::Select_Ri_32 ||
812
Opc == BPF::Select_Ri_32_64);
813
814
if (!(isSelectRROp || isSelectRIOp || isMemcpyOp))
815
report_fatal_error("unhandled instruction type: " + Twine(Opc));
816
#endif
817
818
if (isMemcpyOp)
819
return EmitInstrWithCustomInserterMemcpy(MI, BB);
820
821
bool is32BitCmp = (Opc == BPF::Select_32 ||
822
Opc == BPF::Select_32_64 ||
823
Opc == BPF::Select_Ri_32 ||
824
Opc == BPF::Select_Ri_32_64);
825
826
// To "insert" a SELECT instruction, we actually have to insert the diamond
827
// control-flow pattern. The incoming instruction knows the destination vreg
828
// to set, the condition code register to branch on, the true/false values to
829
// select between, and a branch opcode to use.
830
const BasicBlock *LLVM_BB = BB->getBasicBlock();
831
MachineFunction::iterator I = ++BB->getIterator();
832
833
// ThisMBB:
834
// ...
835
// TrueVal = ...
836
// jmp_XX r1, r2 goto Copy1MBB
837
// fallthrough --> Copy0MBB
838
MachineBasicBlock *ThisMBB = BB;
839
MachineFunction *F = BB->getParent();
840
MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
841
MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
842
843
F->insert(I, Copy0MBB);
844
F->insert(I, Copy1MBB);
845
// Update machine-CFG edges by transferring all successors of the current
846
// block to the new block which will contain the Phi node for the select.
847
Copy1MBB->splice(Copy1MBB->begin(), BB,
848
std::next(MachineBasicBlock::iterator(MI)), BB->end());
849
Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
850
// Next, add the true and fallthrough blocks as its successors.
851
BB->addSuccessor(Copy0MBB);
852
BB->addSuccessor(Copy1MBB);
853
854
// Insert Branch if Flag
855
int CC = MI.getOperand(3).getImm();
856
int NewCC;
857
switch (CC) {
858
#define SET_NEWCC(X, Y) \
859
case ISD::X: \
860
if (is32BitCmp && HasJmp32) \
861
NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \
862
else \
863
NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \
864
break
865
SET_NEWCC(SETGT, JSGT);
866
SET_NEWCC(SETUGT, JUGT);
867
SET_NEWCC(SETGE, JSGE);
868
SET_NEWCC(SETUGE, JUGE);
869
SET_NEWCC(SETEQ, JEQ);
870
SET_NEWCC(SETNE, JNE);
871
SET_NEWCC(SETLT, JSLT);
872
SET_NEWCC(SETULT, JULT);
873
SET_NEWCC(SETLE, JSLE);
874
SET_NEWCC(SETULE, JULE);
875
default:
876
report_fatal_error("unimplemented select CondCode " + Twine(CC));
877
}
878
879
Register LHS = MI.getOperand(1).getReg();
880
bool isSignedCmp = (CC == ISD::SETGT ||
881
CC == ISD::SETGE ||
882
CC == ISD::SETLT ||
883
CC == ISD::SETLE);
884
885
// eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
886
// to be promoted, however if the 32-bit comparison operands are destination
887
// registers then they are implicitly zero-extended already, there is no
888
// need of explicit zero-extend sequence for them.
889
//
890
// We simply do extension for all situations in this method, but we will
891
// try to remove those unnecessary in BPFMIPeephole pass.
892
if (is32BitCmp && !HasJmp32)
893
LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);
894
895
if (isSelectRROp) {
896
Register RHS = MI.getOperand(2).getReg();
897
898
if (is32BitCmp && !HasJmp32)
899
RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);
900
901
BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
902
} else {
903
int64_t imm32 = MI.getOperand(2).getImm();
904
// Check before we build J*_ri instruction.
905
if (!isInt<32>(imm32))
906
report_fatal_error("immediate overflows 32 bits: " + Twine(imm32));
907
BuildMI(BB, DL, TII.get(NewCC))
908
.addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
909
}
910
911
// Copy0MBB:
912
// %FalseValue = ...
913
// # fallthrough to Copy1MBB
914
BB = Copy0MBB;
915
916
// Update machine-CFG edges
917
BB->addSuccessor(Copy1MBB);
918
919
// Copy1MBB:
920
// %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
921
// ...
922
BB = Copy1MBB;
923
BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
924
.addReg(MI.getOperand(5).getReg())
925
.addMBB(Copy0MBB)
926
.addReg(MI.getOperand(4).getReg())
927
.addMBB(ThisMBB);
928
929
MI.eraseFromParent(); // The pseudo instruction is gone now.
930
return BB;
931
}
932
933
EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
934
EVT VT) const {
935
return getHasAlu32() ? MVT::i32 : MVT::i64;
936
}
937
938
MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
939
EVT VT) const {
940
return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;
941
}
942
943
bool BPFTargetLowering::isLegalAddressingMode(const DataLayout &DL,
944
const AddrMode &AM, Type *Ty,
945
unsigned AS,
946
Instruction *I) const {
947
// No global is ever allowed as a base.
948
if (AM.BaseGV)
949
return false;
950
951
switch (AM.Scale) {
952
case 0: // "r+i" or just "i", depending on HasBaseReg.
953
break;
954
case 1:
955
if (!AM.HasBaseReg) // allow "r+i".
956
break;
957
return false; // disallow "r+r" or "r+r+i".
958
default:
959
return false;
960
}
961
962
return true;
963
}
964
965