Path: blob/main/contrib/llvm-project/llvm/lib/Target/BPF/BPFInstrInfo.td
35269 views
//===-- BPFInstrInfo.td - Target Description for BPF Target ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the BPF instructions in TableGen format. // //===----------------------------------------------------------------------===// include "BPFInstrFormats.td" // Instruction Operands and Patterns // These are target-independent nodes, but have target-specific formats. def SDT_BPFCallSeqStart : SDCallSeqStart<[SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>; def SDT_BPFCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>; def SDT_BPFCall : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>; def SDT_BPFSetFlag : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>]>; def SDT_BPFSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>, SDTCisSameAs<0, 4>, SDTCisSameAs<4, 5>]>; def SDT_BPFBrCC : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>, SDTCisVT<3, OtherVT>]>; def SDT_BPFWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; def SDT_BPFMEMCPY : SDTypeProfile<0, 4, [SDTCisVT<0, i64>, SDTCisVT<1, i64>, SDTCisVT<2, i64>, SDTCisVT<3, i64>]>; def BPFcall : SDNode<"BPFISD::CALL", SDT_BPFCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def BPFretglue : SDNode<"BPFISD::RET_GLUE", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def BPFcallseq_start: SDNode<"ISD::CALLSEQ_START", SDT_BPFCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def BPFcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_BPFCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def BPFbrcc : SDNode<"BPFISD::BR_CC", SDT_BPFBrCC, [SDNPHasChain, SDNPOutGlue, SDNPInGlue]>; def BPFselectcc : SDNode<"BPFISD::SELECT_CC", SDT_BPFSelectCC, [SDNPInGlue]>; def BPFWrapper : SDNode<"BPFISD::Wrapper", SDT_BPFWrapper>; def BPFmemcpy : SDNode<"BPFISD::MEMCPY", SDT_BPFMEMCPY, [SDNPHasChain, SDNPInGlue, SDNPOutGlue, SDNPMayStore, SDNPMayLoad]>; def BPFIsLittleEndian : Predicate<"Subtarget->isLittleEndian()">; def BPFIsBigEndian : Predicate<"!Subtarget->isLittleEndian()">; def BPFHasALU32 : Predicate<"Subtarget->getHasAlu32()">; def BPFNoALU32 : Predicate<"!Subtarget->getHasAlu32()">; def BPFHasLdsx : Predicate<"Subtarget->hasLdsx()">; def BPFHasMovsx : Predicate<"Subtarget->hasMovsx()">; def BPFHasBswap : Predicate<"Subtarget->hasBswap()">; def BPFHasSdivSmod : Predicate<"Subtarget->hasSdivSmod()">; def BPFNoMovsx : Predicate<"!Subtarget->hasMovsx()">; def BPFNoBswap : Predicate<"!Subtarget->hasBswap()">; def BPFHasStoreImm : Predicate<"Subtarget->hasStoreImm()">; class ImmediateAsmOperand<string name> : AsmOperandClass { let Name = name; let RenderMethod = "addImmOperands"; let DiagnosticType = !strconcat("Invalid", name); } def SImm16AsmOperand : ImmediateAsmOperand<"SImm16">; def brtarget : Operand<OtherVT> { let PrintMethod = "printBrTargetOperand"; let ParserMatchClass = ImmediateAsmOperand<"BrTarget">; } def calltarget : Operand<i64>; def u64imm : Operand<i64> { let PrintMethod = "printImm64Operand"; } def s16imm : Operand<i16> { let ParserMatchClass = SImm16AsmOperand; } def gpr_or_imm : Operand<i64>; def i64immSExt32 : PatLeaf<(i64 imm), [{return isInt<32>(N->getSExtValue()); }]>; def i32immSExt32 : PatLeaf<(i32 imm), [{return isInt<32>(N->getSExtValue()); }]>; def i64immZExt32 : PatLeaf<(i64 imm), [{return isUInt<32>(N->getZExtValue()); }]>; def imm_to_i64 : SDNodeXForm<timm, [{ return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i64); }]>; // Addressing modes. def ADDRri : ComplexPattern<i64, 2, "SelectAddr", [], []>; def FIri : ComplexPattern<i64, 2, "SelectFIAddr", [add, or], []>; // Address operands def MEMri : Operand<i64> { let PrintMethod = "printMemOperand"; let EncoderMethod = "getMemoryOpValue"; let DecoderMethod = "decodeMemoryOpValue"; let MIOperandInfo = (ops GPR, s16imm); } // Conditional code predicates - used for pattern matching for jump instructions def BPF_CC_EQ : PatLeaf<(i64 imm), [{return (N->getZExtValue() == ISD::SETEQ);}]>; def BPF_CC_NE : PatLeaf<(i64 imm), [{return (N->getZExtValue() == ISD::SETNE);}]>; def BPF_CC_GE : PatLeaf<(i64 imm), [{return (N->getZExtValue() == ISD::SETGE);}]>; def BPF_CC_GT : PatLeaf<(i64 imm), [{return (N->getZExtValue() == ISD::SETGT);}]>; def BPF_CC_GTU : PatLeaf<(i64 imm), [{return (N->getZExtValue() == ISD::SETUGT);}]>; def BPF_CC_GEU : PatLeaf<(i64 imm), [{return (N->getZExtValue() == ISD::SETUGE);}]>; def BPF_CC_LE : PatLeaf<(i64 imm), [{return (N->getZExtValue() == ISD::SETLE);}]>; def BPF_CC_LT : PatLeaf<(i64 imm), [{return (N->getZExtValue() == ISD::SETLT);}]>; def BPF_CC_LTU : PatLeaf<(i64 imm), [{return (N->getZExtValue() == ISD::SETULT);}]>; def BPF_CC_LEU : PatLeaf<(i64 imm), [{return (N->getZExtValue() == ISD::SETULE);}]>; def BPF_CC_EQ_32 : PatLeaf<(i32 imm), [{return (N->getZExtValue() == ISD::SETEQ);}]>; def BPF_CC_NE_32 : PatLeaf<(i32 imm), [{return (N->getZExtValue() == ISD::SETNE);}]>; def BPF_CC_GE_32 : PatLeaf<(i32 imm), [{return (N->getZExtValue() == ISD::SETGE);}]>; def BPF_CC_GT_32 : PatLeaf<(i32 imm), [{return (N->getZExtValue() == ISD::SETGT);}]>; def BPF_CC_GTU_32 : PatLeaf<(i32 imm), [{return (N->getZExtValue() == ISD::SETUGT);}]>; def BPF_CC_GEU_32 : PatLeaf<(i32 imm), [{return (N->getZExtValue() == ISD::SETUGE);}]>; def BPF_CC_LE_32 : PatLeaf<(i32 imm), [{return (N->getZExtValue() == ISD::SETLE);}]>; def BPF_CC_LT_32 : PatLeaf<(i32 imm), [{return (N->getZExtValue() == ISD::SETLT);}]>; def BPF_CC_LTU_32 : PatLeaf<(i32 imm), [{return (N->getZExtValue() == ISD::SETULT);}]>; def BPF_CC_LEU_32 : PatLeaf<(i32 imm), [{return (N->getZExtValue() == ISD::SETULE);}]>; def NoCond : PatLeaf<(vt)> {} // For arithmetic and jump instructions the 8-bit 'code' // field is divided into three parts: // // +----------------+--------+--------------------+ // | 4 bits | 1 bit | 3 bits | // | operation code | source | instruction class | // +----------------+--------+--------------------+ // (MSB) (LSB) class TYPE_ALU_JMP<bits<4> op, bits<1> srctype, dag outs, dag ins, string asmstr, list<dag> pattern> : InstBPF<outs, ins, asmstr, pattern> { let Inst{63-60} = op; let Inst{59} = srctype; } //For load and store instructions the 8-bit 'code' field is divided as: // // +--------+--------+-------------------+ // | 3 bits | 2 bits | 3 bits | // | mode | size | instruction class | // +--------+--------+-------------------+ // (MSB) (LSB) class TYPE_LD_ST<bits<3> mode, bits<2> size, dag outs, dag ins, string asmstr, list<dag> pattern> : InstBPF<outs, ins, asmstr, pattern> { let Inst{63-61} = mode; let Inst{60-59} = size; } // jump instructions class JMP_RR<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond> : TYPE_ALU_JMP<Opc.Value, BPF_X.Value, (outs), (ins GPR:$dst, GPR:$src, brtarget:$BrDst), "if $dst "#OpcodeStr#" $src goto $BrDst", [(BPFbrcc i64:$dst, i64:$src, Cond, bb:$BrDst)]> { bits<4> dst; bits<4> src; bits<16> BrDst; let Inst{55-52} = src; let Inst{51-48} = dst; let Inst{47-32} = BrDst; let BPFClass = BPF_JMP; } class JMP_RI<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond> : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, (outs), (ins GPR:$dst, i64imm:$imm, brtarget:$BrDst), "if $dst "#OpcodeStr#" $imm goto $BrDst", [(BPFbrcc i64:$dst, i64immSExt32:$imm, Cond, bb:$BrDst)]> { bits<4> dst; bits<16> BrDst; bits<32> imm; let Inst{51-48} = dst; let Inst{47-32} = BrDst; let Inst{31-0} = imm; let BPFClass = BPF_JMP; } class JMP_JCOND<BPFJumpOp Opc, string OpcodeStr, list<dag> Pattern> : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, (outs), (ins brtarget:$BrDst), !strconcat(OpcodeStr, " $BrDst"), Pattern> { bits<16> BrDst; let Inst{47-32} = BrDst; let BPFClass = BPF_JMP; } class JMP_RR_32<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond> : TYPE_ALU_JMP<Opc.Value, BPF_X.Value, (outs), (ins GPR32:$dst, GPR32:$src, brtarget:$BrDst), "if $dst "#OpcodeStr#" $src goto $BrDst", [(BPFbrcc i32:$dst, i32:$src, Cond, bb:$BrDst)]> { bits<4> dst; bits<4> src; bits<16> BrDst; let Inst{55-52} = src; let Inst{51-48} = dst; let Inst{47-32} = BrDst; let BPFClass = BPF_JMP32; } class JMP_RI_32<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond> : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, (outs), (ins GPR32:$dst, i32imm:$imm, brtarget:$BrDst), "if $dst "#OpcodeStr#" $imm goto $BrDst", [(BPFbrcc i32:$dst, i32immSExt32:$imm, Cond, bb:$BrDst)]> { bits<4> dst; bits<16> BrDst; bits<32> imm; let Inst{51-48} = dst; let Inst{47-32} = BrDst; let Inst{31-0} = imm; let BPFClass = BPF_JMP32; } multiclass J<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond, PatLeaf Cond32> { def _rr : JMP_RR<Opc, OpcodeStr, Cond>; def _ri : JMP_RI<Opc, OpcodeStr, Cond>; def _rr_32 : JMP_RR_32<Opc, OpcodeStr, Cond32>; def _ri_32 : JMP_RI_32<Opc, OpcodeStr, Cond32>; } let isBranch = 1, isTerminator = 1, hasDelaySlot=0 in { // cmp+goto instructions defm JEQ : J<BPF_JEQ, "==", BPF_CC_EQ, BPF_CC_EQ_32>; defm JUGT : J<BPF_JGT, ">", BPF_CC_GTU, BPF_CC_GTU_32>; defm JUGE : J<BPF_JGE, ">=", BPF_CC_GEU, BPF_CC_GEU_32>; defm JNE : J<BPF_JNE, "!=", BPF_CC_NE, BPF_CC_NE_32>; defm JSGT : J<BPF_JSGT, "s>", BPF_CC_GT, BPF_CC_GT_32>; defm JSGE : J<BPF_JSGE, "s>=", BPF_CC_GE, BPF_CC_GE_32>; defm JULT : J<BPF_JLT, "<", BPF_CC_LTU, BPF_CC_LTU_32>; defm JULE : J<BPF_JLE, "<=", BPF_CC_LEU, BPF_CC_LEU_32>; defm JSLT : J<BPF_JSLT, "s<", BPF_CC_LT, BPF_CC_LT_32>; defm JSLE : J<BPF_JSLE, "s<=", BPF_CC_LE, BPF_CC_LE_32>; defm JSET : J<BPF_JSET, "&", NoCond, NoCond>; def JCOND : JMP_JCOND<BPF_JCOND, "may_goto", []>; } // ALU instructions class ALU_RI<BPFOpClass Class, BPFArithOp Opc, int off, dag outs, dag ins, string asmstr, list<dag> pattern> : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, outs, ins, asmstr, pattern> { bits<4> dst; bits<32> imm; let Inst{51-48} = dst; let Inst{47-32} = off; let Inst{31-0} = imm; let BPFClass = Class; } class ALU_RR<BPFOpClass Class, BPFArithOp Opc, int off, dag outs, dag ins, string asmstr, list<dag> pattern> : TYPE_ALU_JMP<Opc.Value, BPF_X.Value, outs, ins, asmstr, pattern> { bits<4> dst; bits<4> src; let Inst{55-52} = src; let Inst{51-48} = dst; let Inst{47-32} = off; let BPFClass = Class; } multiclass ALU<BPFArithOp Opc, int off, string OpcodeStr, SDNode OpNode> { def _rr : ALU_RR<BPF_ALU64, Opc, off, (outs GPR:$dst), (ins GPR:$src2, GPR:$src), "$dst "#OpcodeStr#" $src", [(set GPR:$dst, (OpNode i64:$src2, i64:$src))]>; def _ri : ALU_RI<BPF_ALU64, Opc, off, (outs GPR:$dst), (ins GPR:$src2, i64imm:$imm), "$dst "#OpcodeStr#" $imm", [(set GPR:$dst, (OpNode GPR:$src2, i64immSExt32:$imm))]>; def _rr_32 : ALU_RR<BPF_ALU, Opc, off, (outs GPR32:$dst), (ins GPR32:$src2, GPR32:$src), "$dst "#OpcodeStr#" $src", [(set GPR32:$dst, (OpNode i32:$src2, i32:$src))]>; def _ri_32 : ALU_RI<BPF_ALU, Opc, off, (outs GPR32:$dst), (ins GPR32:$src2, i32imm:$imm), "$dst "#OpcodeStr#" $imm", [(set GPR32:$dst, (OpNode GPR32:$src2, i32immSExt32:$imm))]>; } let Constraints = "$dst = $src2" in { let isAsCheapAsAMove = 1 in { defm ADD : ALU<BPF_ADD, 0, "+=", add>; defm SUB : ALU<BPF_SUB, 0, "-=", sub>; defm OR : ALU<BPF_OR, 0, "|=", or>; defm AND : ALU<BPF_AND, 0, "&=", and>; defm SLL : ALU<BPF_LSH, 0, "<<=", shl>; defm SRL : ALU<BPF_RSH, 0, ">>=", srl>; defm XOR : ALU<BPF_XOR, 0, "^=", xor>; defm SRA : ALU<BPF_ARSH, 0, "s>>=", sra>; } defm MUL : ALU<BPF_MUL, 0, "*=", mul>; defm DIV : ALU<BPF_DIV, 0, "/=", udiv>; defm MOD : ALU<BPF_MOD, 0, "%=", urem>; let Predicates = [BPFHasSdivSmod] in { defm SDIV : ALU<BPF_DIV, 1, "s/=", sdiv>; defm SMOD : ALU<BPF_MOD, 1, "s%=", srem>; } } class NEG_RR<BPFOpClass Class, BPFArithOp Opc, dag outs, dag ins, string asmstr, list<dag> pattern> : TYPE_ALU_JMP<Opc.Value, 0, outs, ins, asmstr, pattern> { bits<4> dst; let Inst{51-48} = dst; let BPFClass = Class; } let Constraints = "$dst = $src", isAsCheapAsAMove = 1 in { def NEG_64: NEG_RR<BPF_ALU64, BPF_NEG, (outs GPR:$dst), (ins GPR:$src), "$dst = -$src", [(set GPR:$dst, (ineg i64:$src))]>; def NEG_32: NEG_RR<BPF_ALU, BPF_NEG, (outs GPR32:$dst), (ins GPR32:$src), "$dst = -$src", [(set GPR32:$dst, (ineg i32:$src))]>; } class LD_IMM64<bits<4> Pseudo, string OpcodeStr> : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value, (outs GPR:$dst), (ins u64imm:$imm), "$dst "#OpcodeStr#" ${imm} ll", [(set GPR:$dst, (i64 imm:$imm))]> { bits<4> dst; bits<64> imm; let Inst{51-48} = dst; let Inst{55-52} = Pseudo; let Inst{47-32} = 0; let Inst{31-0} = imm{31-0}; let BPFClass = BPF_LD; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def LD_imm64 : LD_IMM64<0, "=">; def MOV_rr : ALU_RR<BPF_ALU64, BPF_MOV, 0, (outs GPR:$dst), (ins GPR:$src), "$dst = $src", []>; def MOV_ri : ALU_RI<BPF_ALU64, BPF_MOV, 0, (outs GPR:$dst), (ins i64imm:$imm), "$dst = $imm", [(set GPR:$dst, (i64 i64immSExt32:$imm))]>; def MOV_rr_32 : ALU_RR<BPF_ALU, BPF_MOV, 0, (outs GPR32:$dst), (ins GPR32:$src), "$dst = $src", []>; def MOV_ri_32 : ALU_RI<BPF_ALU, BPF_MOV, 0, (outs GPR32:$dst), (ins i32imm:$imm), "$dst = $imm", [(set GPR32:$dst, (i32 i32immSExt32:$imm))]>; let Predicates = [BPFHasMovsx] in { def MOVSX_rr_8 : ALU_RR<BPF_ALU64, BPF_MOV, 8, (outs GPR:$dst), (ins GPR:$src), "$dst = (s8)$src", [(set GPR:$dst, (sext_inreg GPR:$src, i8))]>; def MOVSX_rr_16 : ALU_RR<BPF_ALU64, BPF_MOV, 16, (outs GPR:$dst), (ins GPR:$src), "$dst = (s16)$src", [(set GPR:$dst, (sext_inreg GPR:$src, i16))]>; def MOVSX_rr_32 : ALU_RR<BPF_ALU64, BPF_MOV, 32, (outs GPR:$dst), (ins GPR:$src), "$dst = (s32)$src", [(set GPR:$dst, (sext_inreg GPR:$src, i32))]>; def MOVSX_rr_32_8 : ALU_RR<BPF_ALU, BPF_MOV, 8, (outs GPR32:$dst), (ins GPR32:$src), "$dst = (s8)$src", [(set GPR32:$dst, (sext_inreg GPR32:$src, i8))]>; def MOVSX_rr_32_16 : ALU_RR<BPF_ALU, BPF_MOV, 16, (outs GPR32:$dst), (ins GPR32:$src), "$dst = (s16)$src", [(set GPR32:$dst, (sext_inreg GPR32:$src, i16))]>; } } def ADDR_SPACE_CAST : ALU_RR<BPF_ALU64, BPF_MOV, 64, (outs GPR:$dst), (ins GPR:$src, i64imm:$dst_as, i64imm:$src_as), "$dst = addr_space_cast($src, $dst_as, $src_as)", []> { bits<64> dst_as; bits<64> src_as; let Inst{47-32} = 1; let Inst{31-16} = dst_as{15-0}; let Inst{15-0} = src_as{15-0}; } def SrcAddrSpace : SDNodeXForm<addrspacecast, [{ return CurDAG->getTargetConstant( cast<AddrSpaceCastSDNode>(N)->getSrcAddressSpace(), SDLoc(N), MVT::i64); }]>; def DstAddrSpace : SDNodeXForm<addrspacecast, [{ return CurDAG->getTargetConstant( cast<AddrSpaceCastSDNode>(N)->getDestAddressSpace(), SDLoc(N), MVT::i64); }]>; def : Pat<(addrspacecast:$this GPR:$src), (ADDR_SPACE_CAST $src, (DstAddrSpace $this), (SrcAddrSpace $this))>; def FI_ri : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value, (outs GPR:$dst), (ins MEMri:$addr), "lea\t$dst, $addr", [(set i64:$dst, FIri:$addr)]> { // This is a tentative instruction, and will be replaced // with MOV_rr and ADD_ri in PEI phase let Inst{51-48} = 0; let Inst{55-52} = 2; let Inst{47-32} = 0; let Inst{31-0} = 0; let BPFClass = BPF_LD; bit isPseudo = true; } def LD_pseudo : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value, (outs GPR:$dst), (ins i64imm:$pseudo, u64imm:$imm), "ld_pseudo\t$dst, $pseudo, $imm", [(set GPR:$dst, (int_bpf_pseudo imm:$pseudo, imm:$imm))]> { bits<4> dst; bits<64> imm; bits<4> pseudo; let Inst{51-48} = dst; let Inst{55-52} = pseudo; let Inst{47-32} = 0; let Inst{31-0} = imm{31-0}; let BPFClass = BPF_LD; } // STORE instructions class STORE<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern> : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value, (outs), (ins GPR:$src, MEMri:$addr), "*("#OpcodeStr#" *)($addr) = $src", Pattern> { bits<4> src; bits<20> addr; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = src; let Inst{47-32} = addr{15-0}; // offset let BPFClass = BPF_STX; } class STOREi64<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode> : STORE<Opc, OpcodeStr, [(OpNode GPR:$src, ADDRri:$addr)]>; let Predicates = [BPFNoALU32] in { def STW : STOREi64<BPF_W, "u32", truncstorei32>; def STH : STOREi64<BPF_H, "u16", truncstorei16>; def STB : STOREi64<BPF_B, "u8", truncstorei8>; } def STD : STOREi64<BPF_DW, "u64", store>; class STORE_imm<BPFWidthModifer SizeOp, string OpcodeStr, dag Pattern> : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value, (outs), (ins i64imm:$imm, MEMri:$addr), "*("#OpcodeStr#" *)($addr) = $imm", [Pattern]> { bits<20> addr; bits<32> imm; let Inst{51-48} = addr{19-16}; // base reg let Inst{47-32} = addr{15-0}; // offset let Inst{31-0} = imm; let BPFClass = BPF_ST; } let Predicates = [BPFHasStoreImm] in { // Opcode (BPF_ST | BPF_MEM | BPF_DW) implies sign extension for // value stored to memory: // - it is fine to generate such write when immediate is -1 // - it is incorrect to generate such write when immediate is // +0xffff_ffff. // // In the latter case two instructions would be generated instead of // one BPF_ST: // rA = 0xffffffff ll ; LD_imm64 // *(u64 *)(rB + 0) = rA ; STX // // For BPF_{B,H,W} the size of value stored matches size of the immediate. def STD_imm : STORE_imm<BPF_DW, "u64", (store (i64 i64immSExt32:$imm), ADDRri:$addr)>; def STW_imm : STORE_imm<BPF_W, "u32", (truncstorei32 (i64 i64immZExt32:$imm), ADDRri:$addr)>; def STH_imm : STORE_imm<BPF_H, "u16", (truncstorei16 (i64 i64immZExt32:$imm), ADDRri:$addr)>; def STB_imm : STORE_imm<BPF_B, "u8", (truncstorei8 (i64 i64immZExt32:$imm), ADDRri:$addr)>; } let Predicates = [BPFHasALU32, BPFHasStoreImm] in { def : Pat<(store (i32 imm:$src), ADDRri:$dst), (STW_imm (imm_to_i64 $src), ADDRri:$dst)>; def : Pat<(truncstorei16 (i32 imm:$src), ADDRri:$dst), (STH_imm (imm_to_i64 imm:$src), ADDRri:$dst)>; def : Pat<(truncstorei8 (i32 imm:$src), ADDRri:$dst), (STB_imm (imm_to_i64 imm:$src), ADDRri:$dst)>; } // LOAD instructions class LOAD<BPFWidthModifer SizeOp, BPFModeModifer ModOp, string OpcodeStr, list<dag> Pattern> : TYPE_LD_ST<ModOp.Value, SizeOp.Value, (outs GPR:$dst), (ins MEMri:$addr), "$dst = *("#OpcodeStr#" *)($addr)", Pattern> { bits<4> dst; bits<20> addr; let Inst{51-48} = dst; let Inst{55-52} = addr{19-16}; let Inst{47-32} = addr{15-0}; let BPFClass = BPF_LDX; } class LOADi64<BPFWidthModifer SizeOp, BPFModeModifer ModOp, string OpcodeStr, PatFrag OpNode> : LOAD<SizeOp, ModOp, OpcodeStr, [(set i64:$dst, (OpNode ADDRri:$addr))]>; let isCodeGenOnly = 1 in { class CORE_LD<RegisterClass RegClass, string Sz> : TYPE_LD_ST<BPF_MEM.Value, BPF_W.Value, (outs RegClass:$dst), (ins u64imm:$opcode, GPR:$src, u64imm:$offset), "$dst = core_ld"#Sz#"($opcode, $src, $offset)", []>; def CORE_LD64 : CORE_LD<GPR, "64">; def CORE_LD32 : CORE_LD<GPR32, "32">; def CORE_ST : TYPE_LD_ST<BPF_MEM.Value, BPF_W.Value, (outs), (ins gpr_or_imm:$src, u64imm:$opcode, GPR:$ptr, u64imm:$offset), "core_st($src, $opcode, $ptr, $offset)", []>; let Constraints = "$dst = $src" in { def CORE_SHIFT : ALU_RR<BPF_ALU64, BPF_LSH, 0, (outs GPR:$dst), (ins u64imm:$opcode, GPR:$src, u64imm:$offset), "$dst = core_shift($opcode, $src, $offset)", []>; } } let Predicates = [BPFNoALU32] in { def LDW : LOADi64<BPF_W, BPF_MEM, "u32", zextloadi32>; def LDH : LOADi64<BPF_H, BPF_MEM, "u16", zextloadi16>; def LDB : LOADi64<BPF_B, BPF_MEM, "u8", zextloadi8>; } let Predicates = [BPFHasLdsx] in { def LDWSX : LOADi64<BPF_W, BPF_MEMSX, "s32", sextloadi32>; def LDHSX : LOADi64<BPF_H, BPF_MEMSX, "s16", sextloadi16>; def LDBSX : LOADi64<BPF_B, BPF_MEMSX, "s8", sextloadi8>; } def LDD : LOADi64<BPF_DW, BPF_MEM, "u64", load>; class BRANCH<BPFJumpOp Opc, string OpcodeStr, list<dag> Pattern> : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, (outs), (ins brtarget:$BrDst), !strconcat(OpcodeStr, " $BrDst"), Pattern> { bits<16> BrDst; let Inst{47-32} = BrDst; let BPFClass = BPF_JMP; } class BRANCH_LONG<BPFJumpOp Opc, string OpcodeStr, list<dag> Pattern> : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, (outs), (ins brtarget:$BrDst), !strconcat(OpcodeStr, " $BrDst"), Pattern> { bits<32> BrDst; let Inst{31-0} = BrDst; let BPFClass = BPF_JMP32; } class CALL<string OpcodeStr> : TYPE_ALU_JMP<BPF_CALL.Value, BPF_K.Value, (outs), (ins calltarget:$BrDst), !strconcat(OpcodeStr, " $BrDst"), []> { bits<32> BrDst; let Inst{31-0} = BrDst; let BPFClass = BPF_JMP; } class CALLX<string OpcodeStr> : TYPE_ALU_JMP<BPF_CALL.Value, BPF_X.Value, (outs), (ins GPR:$BrDst), !strconcat(OpcodeStr, " $BrDst"), []> { bits<4> BrDst; let Inst{51-48} = BrDst; let BPFClass = BPF_JMP; } // Jump always let isBranch = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1 in { def JMP : BRANCH<BPF_JA, "goto", [(br bb:$BrDst)]>; def JMPL : BRANCH_LONG<BPF_JA, "gotol", []>; } // Jump and link let isCall=1, hasDelaySlot=0, Uses = [R11], // Potentially clobbered registers Defs = [R0, R1, R2, R3, R4, R5] in { def JAL : CALL<"call">; def JALX : CALLX<"callx">; } class NOP_I<string OpcodeStr> : TYPE_ALU_JMP<BPF_MOV.Value, BPF_X.Value, (outs), (ins i32imm:$imm), !strconcat(OpcodeStr, "\t$imm"), []> { // mov r0, r0 == nop let Inst{55-52} = 0; let Inst{51-48} = 0; let BPFClass = BPF_ALU64; } let hasSideEffects = 0, isCodeGenOnly = 1 in def NOP : NOP_I<"nop">; class RET<string OpcodeStr> : TYPE_ALU_JMP<BPF_EXIT.Value, BPF_K.Value, (outs), (ins), !strconcat(OpcodeStr, ""), [(BPFretglue)]> { let Inst{31-0} = 0; let BPFClass = BPF_JMP; } let isReturn = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1, isNotDuplicable = 1 in { def RET : RET<"exit">; } // ADJCALLSTACKDOWN/UP pseudo insns let Defs = [R11], Uses = [R11], isCodeGenOnly = 1 in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), "#ADJCALLSTACKDOWN $amt1 $amt2", [(BPFcallseq_start timm:$amt1, timm:$amt2)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), "#ADJCALLSTACKUP $amt1 $amt2", [(BPFcallseq_end timm:$amt1, timm:$amt2)]>; } let usesCustomInserter = 1, isCodeGenOnly = 1 in { def Select : Pseudo<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR:$src, GPR:$src2), "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", [(set i64:$dst, (BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i64:$src, i64:$src2))]>; def Select_Ri : Pseudo<(outs GPR:$dst), (ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR:$src, GPR:$src2), "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", [(set i64:$dst, (BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i64:$src, i64:$src2))]>; def Select_64_32 : Pseudo<(outs GPR32:$dst), (ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2), "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", [(set i32:$dst, (BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i32:$src, i32:$src2))]>; def Select_Ri_64_32 : Pseudo<(outs GPR32:$dst), (ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2), "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", [(set i32:$dst, (BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i32:$src, i32:$src2))]>; def Select_32 : Pseudo<(outs GPR32:$dst), (ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2), "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", [(set i32:$dst, (BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i32:$src, i32:$src2))]>; def Select_Ri_32 : Pseudo<(outs GPR32:$dst), (ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2), "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", [(set i32:$dst, (BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i32:$src, i32:$src2))]>; def Select_32_64 : Pseudo<(outs GPR:$dst), (ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR:$src, GPR:$src2), "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", [(set i64:$dst, (BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i64:$src, i64:$src2))]>; def Select_Ri_32_64 : Pseudo<(outs GPR:$dst), (ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR:$src, GPR:$src2), "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2", [(set i64:$dst, (BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i64:$src, i64:$src2))]>; } // load 64-bit global addr into register def : Pat<(BPFWrapper tglobaladdr:$in), (LD_imm64 tglobaladdr:$in)>; def : Pat<(BPFWrapper tconstpool:$in), (LD_imm64 tconstpool:$in)>; // 0xffffFFFF doesn't fit into simm32, optimize common case def : Pat<(i64 (and (i64 GPR:$src), 0xffffFFFF)), (SRL_ri (SLL_ri (i64 GPR:$src), 32), 32)>; // Calls def : Pat<(BPFcall tglobaladdr:$dst), (JAL tglobaladdr:$dst)>; def : Pat<(BPFcall texternalsym:$dst), (JAL texternalsym:$dst)>; def : Pat<(BPFcall imm:$dst), (JAL imm:$dst)>; def : Pat<(BPFcall GPR:$dst), (JALX GPR:$dst)>; // Loads let Predicates = [BPFNoALU32] in { def : Pat<(i64 (extloadi8 ADDRri:$src)), (i64 (LDB ADDRri:$src))>; def : Pat<(i64 (extloadi16 ADDRri:$src)), (i64 (LDH ADDRri:$src))>; def : Pat<(i64 (extloadi32 ADDRri:$src)), (i64 (LDW ADDRri:$src))>; } // Atomic XADD for BPFNoALU32 class XADD<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode> : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value, (outs GPR:$dst), (ins MEMri:$addr, GPR:$val), "lock *("#OpcodeStr#" *)($addr) += $val", [(set GPR:$dst, (OpNode ADDRri:$addr, GPR:$val))]> { bits<4> dst; bits<20> addr; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = dst; let Inst{47-32} = addr{15-0}; // offset let Inst{7-4} = BPF_ADD.Value; let BPFClass = BPF_STX; } let Constraints = "$dst = $val" in { let Predicates = [BPFNoALU32] in { def XADDW : XADD<BPF_W, "u32", atomic_load_add_i32>; } } // Atomic add, and, or, xor class ATOMIC_NOFETCH<BPFArithOp Opc, string Opstr> : TYPE_LD_ST<BPF_ATOMIC.Value, BPF_DW.Value, (outs GPR:$dst), (ins MEMri:$addr, GPR:$val), "lock *(u64 *)($addr) " #Opstr# "= $val", []> { bits<4> dst; bits<20> addr; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = dst; let Inst{47-32} = addr{15-0}; // offset let Inst{7-4} = Opc.Value; let BPFClass = BPF_STX; } class ATOMIC32_NOFETCH<BPFArithOp Opc, string Opstr> : TYPE_LD_ST<BPF_ATOMIC.Value, BPF_W.Value, (outs GPR32:$dst), (ins MEMri:$addr, GPR32:$val), "lock *(u32 *)($addr) " #Opstr# "= $val", []> { bits<4> dst; bits<20> addr; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = dst; let Inst{47-32} = addr{15-0}; // offset let Inst{7-4} = Opc.Value; let BPFClass = BPF_STX; } let Constraints = "$dst = $val" in { let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in { def XADDW32 : ATOMIC32_NOFETCH<BPF_ADD, "+">; def XANDW32 : ATOMIC32_NOFETCH<BPF_AND, "&">; def XORW32 : ATOMIC32_NOFETCH<BPF_OR, "|">; def XXORW32 : ATOMIC32_NOFETCH<BPF_XOR, "^">; } def XADDD : ATOMIC_NOFETCH<BPF_ADD, "+">; def XANDD : ATOMIC_NOFETCH<BPF_AND, "&">; def XORD : ATOMIC_NOFETCH<BPF_OR, "|">; def XXORD : ATOMIC_NOFETCH<BPF_XOR, "^">; } // Atomic Fetch-and-<add, and, or, xor> operations class XFALU64<BPFWidthModifer SizeOp, BPFArithOp Opc, string OpcodeStr, string OpcStr, PatFrag OpNode> : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value, (outs GPR:$dst), (ins MEMri:$addr, GPR:$val), "$dst = atomic_fetch_"#OpcStr#"(("#OpcodeStr#" *)($addr), $val)", [(set GPR:$dst, (OpNode ADDRri:$addr, GPR:$val))]> { bits<4> dst; bits<20> addr; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = dst; let Inst{47-32} = addr{15-0}; // offset let Inst{7-4} = Opc.Value; let Inst{3-0} = BPF_FETCH.Value; let BPFClass = BPF_STX; } class XFALU32<BPFWidthModifer SizeOp, BPFArithOp Opc, string OpcodeStr, string OpcStr, PatFrag OpNode> : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value, (outs GPR32:$dst), (ins MEMri:$addr, GPR32:$val), "$dst = atomic_fetch_"#OpcStr#"(("#OpcodeStr#" *)($addr), $val)", [(set GPR32:$dst, (OpNode ADDRri:$addr, GPR32:$val))]> { bits<4> dst; bits<20> addr; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = dst; let Inst{47-32} = addr{15-0}; // offset let Inst{7-4} = Opc.Value; let Inst{3-0} = BPF_FETCH.Value; let BPFClass = BPF_STX; } let Constraints = "$dst = $val" in { let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in { def XFADDW32 : XFALU32<BPF_W, BPF_ADD, "u32", "add", atomic_load_add_i32>; def XFANDW32 : XFALU32<BPF_W, BPF_AND, "u32", "and", atomic_load_and_i32>; def XFORW32 : XFALU32<BPF_W, BPF_OR, "u32", "or", atomic_load_or_i32>; def XFXORW32 : XFALU32<BPF_W, BPF_XOR, "u32", "xor", atomic_load_xor_i32>; } def XFADDD : XFALU64<BPF_DW, BPF_ADD, "u64", "add", atomic_load_add_i64>; def XFANDD : XFALU64<BPF_DW, BPF_AND, "u64", "and", atomic_load_and_i64>; def XFORD : XFALU64<BPF_DW, BPF_OR, "u64", "or", atomic_load_or_i64>; def XFXORD : XFALU64<BPF_DW, BPF_XOR, "u64", "xor", atomic_load_xor_i64>; } // atomic_load_sub can be represented as a neg followed // by an atomic_load_add. def : Pat<(atomic_load_sub_i32 ADDRri:$addr, GPR32:$val), (XFADDW32 ADDRri:$addr, (NEG_32 GPR32:$val))>; def : Pat<(atomic_load_sub_i64 ADDRri:$addr, GPR:$val), (XFADDD ADDRri:$addr, (NEG_64 GPR:$val))>; // Atomic Exchange class XCHG<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode> : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value, (outs GPR:$dst), (ins MEMri:$addr, GPR:$val), "$dst = xchg_"#OpcodeStr#"($addr, $val)", [(set GPR:$dst, (OpNode ADDRri:$addr,GPR:$val))]> { bits<4> dst; bits<20> addr; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = dst; let Inst{47-32} = addr{15-0}; // offset let Inst{7-4} = BPF_XCHG.Value; let Inst{3-0} = BPF_FETCH.Value; let BPFClass = BPF_STX; } class XCHG32<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode> : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value, (outs GPR32:$dst), (ins MEMri:$addr, GPR32:$val), "$dst = xchg32_"#OpcodeStr#"($addr, $val)", [(set GPR32:$dst, (OpNode ADDRri:$addr,GPR32:$val))]> { bits<4> dst; bits<20> addr; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = dst; let Inst{47-32} = addr{15-0}; // offset let Inst{7-4} = BPF_XCHG.Value; let Inst{3-0} = BPF_FETCH.Value; let BPFClass = BPF_STX; } let Constraints = "$dst = $val" in { let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in { def XCHGW32 : XCHG32<BPF_W, "32", atomic_swap_i32>; } def XCHGD : XCHG<BPF_DW, "64", atomic_swap_i64>; } // Compare-And-Exchange class CMPXCHG<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode> : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value, (outs), (ins MEMri:$addr, GPR:$new), "r0 = cmpxchg_"#OpcodeStr#"($addr, r0, $new)", [(set R0, (OpNode ADDRri:$addr, R0, GPR:$new))]> { bits<4> new; bits<20> addr; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = new; let Inst{47-32} = addr{15-0}; // offset let Inst{7-4} = BPF_CMPXCHG.Value; let Inst{3-0} = BPF_FETCH.Value; let BPFClass = BPF_STX; } class CMPXCHG32<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode> : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value, (outs), (ins MEMri:$addr, GPR32:$new), "w0 = cmpxchg32_"#OpcodeStr#"($addr, w0, $new)", [(set W0, (OpNode ADDRri:$addr, W0, GPR32:$new))]> { bits<4> new; bits<20> addr; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = new; let Inst{47-32} = addr{15-0}; // offset let Inst{7-4} = BPF_CMPXCHG.Value; let Inst{3-0} = BPF_FETCH.Value; let BPFClass = BPF_STX; } let Predicates = [BPFHasALU32], Defs = [W0], Uses = [W0], DecoderNamespace = "BPFALU32" in { def CMPXCHGW32 : CMPXCHG32<BPF_W, "32", atomic_cmp_swap_i32>; } let Defs = [R0], Uses = [R0] in { def CMPXCHGD : CMPXCHG<BPF_DW, "64", atomic_cmp_swap_i64>; } // bswap16, bswap32, bswap64 class BSWAP<BPFOpClass Class, bits<32> SizeOp, string OpcodeStr, BPFSrcType SrcType, list<dag> Pattern> : TYPE_ALU_JMP<BPF_END.Value, SrcType.Value, (outs GPR:$dst), (ins GPR:$src), "$dst = "#OpcodeStr#" $src", Pattern> { bits<4> dst; let Inst{51-48} = dst; let Inst{31-0} = SizeOp; let BPFClass = Class; } let Constraints = "$dst = $src" in { let Predicates = [BPFHasBswap] in { def BSWAP16 : BSWAP<BPF_ALU64, 16, "bswap16", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>; def BSWAP32 : BSWAP<BPF_ALU64, 32, "bswap32", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>; def BSWAP64 : BSWAP<BPF_ALU64, 64, "bswap64", BPF_TO_LE, [(set GPR:$dst, (bswap GPR:$src))]>; } let Predicates = [BPFNoBswap] in { let Predicates = [BPFIsLittleEndian] in { def BE16 : BSWAP<BPF_ALU, 16, "be16", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>; def BE32 : BSWAP<BPF_ALU, 32, "be32", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>; def BE64 : BSWAP<BPF_ALU, 64, "be64", BPF_TO_BE, [(set GPR:$dst, (bswap GPR:$src))]>; } let Predicates = [BPFIsBigEndian] in { def LE16 : BSWAP<BPF_ALU, 16, "le16", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>; def LE32 : BSWAP<BPF_ALU, 32, "le32", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>; def LE64 : BSWAP<BPF_ALU, 64, "le64", BPF_TO_LE, [(set GPR:$dst, (bswap GPR:$src))]>; } } } let Defs = [R0, R1, R2, R3, R4, R5], Uses = [R6], hasSideEffects = 1, hasExtraDefRegAllocReq = 1, hasExtraSrcRegAllocReq = 1, mayLoad = 1 in { class LOAD_ABS<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode> : TYPE_LD_ST<BPF_ABS.Value, SizeOp.Value, (outs), (ins GPR:$skb, i64imm:$imm), "r0 = *("#OpcodeStr#" *)skb[$imm]", [(set R0, (OpNode GPR:$skb, i64immSExt32:$imm))]> { bits<32> imm; let Inst{31-0} = imm; let BPFClass = BPF_LD; } class LOAD_IND<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode> : TYPE_LD_ST<BPF_IND.Value, SizeOp.Value, (outs), (ins GPR:$skb, GPR:$val), "r0 = *("#OpcodeStr#" *)skb[$val]", [(set R0, (OpNode GPR:$skb, GPR:$val))]> { bits<4> val; let Inst{55-52} = val; let BPFClass = BPF_LD; } } def LD_ABS_B : LOAD_ABS<BPF_B, "u8", int_bpf_load_byte>; def LD_ABS_H : LOAD_ABS<BPF_H, "u16", int_bpf_load_half>; def LD_ABS_W : LOAD_ABS<BPF_W, "u32", int_bpf_load_word>; def LD_IND_B : LOAD_IND<BPF_B, "u8", int_bpf_load_byte>; def LD_IND_H : LOAD_IND<BPF_H, "u16", int_bpf_load_half>; def LD_IND_W : LOAD_IND<BPF_W, "u32", int_bpf_load_word>; let isCodeGenOnly = 1 in { def MOV_32_64 : ALU_RR<BPF_ALU, BPF_MOV, 0, (outs GPR:$dst), (ins GPR32:$src), "$dst = $src", []>; } let Predicates = [BPFNoMovsx] in { def : Pat<(i64 (sext GPR32:$src)), (SRA_ri (SLL_ri (MOV_32_64 GPR32:$src), 32), 32)>; } let Predicates = [BPFHasMovsx] in { def : Pat<(i64 (sext GPR32:$src)), (MOVSX_rr_32 (MOV_32_64 GPR32:$src))>; } def : Pat<(i64 (zext GPR32:$src)), (MOV_32_64 GPR32:$src)>; // For i64 -> i32 truncation, use the 32-bit subregister directly. def : Pat<(i32 (trunc GPR:$src)), (i32 (EXTRACT_SUBREG GPR:$src, sub_32))>; // For i32 -> i64 anyext, we don't care about the high bits. def : Pat<(i64 (anyext GPR32:$src)), (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>; class STORE32<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern> : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value, (outs), (ins GPR32:$src, MEMri:$addr), "*("#OpcodeStr#" *)($addr) = $src", Pattern> { bits<4> src; bits<20> addr; let Inst{51-48} = addr{19-16}; // base reg let Inst{55-52} = src; let Inst{47-32} = addr{15-0}; // offset let BPFClass = BPF_STX; } class STOREi32<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode> : STORE32<Opc, OpcodeStr, [(OpNode GPR32:$src, ADDRri:$addr)]>; let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in { def STW32 : STOREi32<BPF_W, "u32", store>; def STH32 : STOREi32<BPF_H, "u16", truncstorei16>; def STB32 : STOREi32<BPF_B, "u8", truncstorei8>; } class LOAD32<BPFWidthModifer SizeOp, BPFModeModifer ModOp, string OpcodeStr, list<dag> Pattern> : TYPE_LD_ST<ModOp.Value, SizeOp.Value, (outs GPR32:$dst), (ins MEMri:$addr), "$dst = *("#OpcodeStr#" *)($addr)", Pattern> { bits<4> dst; bits<20> addr; let Inst{51-48} = dst; let Inst{55-52} = addr{19-16}; let Inst{47-32} = addr{15-0}; let BPFClass = BPF_LDX; } class LOADi32<BPFWidthModifer SizeOp, BPFModeModifer ModOp, string OpcodeStr, PatFrag OpNode> : LOAD32<SizeOp, ModOp, OpcodeStr, [(set i32:$dst, (OpNode ADDRri:$addr))]>; let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in { def LDW32 : LOADi32<BPF_W, BPF_MEM, "u32", load>; def LDH32 : LOADi32<BPF_H, BPF_MEM, "u16", zextloadi16>; def LDB32 : LOADi32<BPF_B, BPF_MEM, "u8", zextloadi8>; } let Predicates = [BPFHasALU32] in { def : Pat<(truncstorei8 GPR:$src, ADDRri:$dst), (STB32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>; def : Pat<(truncstorei16 GPR:$src, ADDRri:$dst), (STH32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>; def : Pat<(truncstorei32 GPR:$src, ADDRri:$dst), (STW32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>; def : Pat<(i32 (extloadi8 ADDRri:$src)), (i32 (LDB32 ADDRri:$src))>; def : Pat<(i32 (extloadi16 ADDRri:$src)), (i32 (LDH32 ADDRri:$src))>; let Predicates = [BPFHasLdsx] in { def : Pat<(i32 (sextloadi8 ADDRri:$src)), (EXTRACT_SUBREG (LDBSX ADDRri:$src), sub_32)>; def : Pat<(i32 (sextloadi16 ADDRri:$src)), (EXTRACT_SUBREG (LDHSX ADDRri:$src), sub_32)>; } def : Pat<(i64 (zextloadi8 ADDRri:$src)), (SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>; def : Pat<(i64 (zextloadi16 ADDRri:$src)), (SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>; def : Pat<(i64 (zextloadi32 ADDRri:$src)), (SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>; def : Pat<(i64 (extloadi8 ADDRri:$src)), (SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>; def : Pat<(i64 (extloadi16 ADDRri:$src)), (SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>; def : Pat<(i64 (extloadi32 ADDRri:$src)), (SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>; } let usesCustomInserter = 1, isCodeGenOnly = 1 in { def MEMCPY : Pseudo< (outs), (ins GPR:$dst, GPR:$src, i64imm:$len, i64imm:$align, variable_ops), "#memcpy dst: $dst, src: $src, len: $len, align: $align", [(BPFmemcpy GPR:$dst, GPR:$src, imm:$len, imm:$align)]>; }