Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/CSKY/CSKYConstantIslandPass.cpp
35269 views
1
//===- CSKYConstantIslandPass.cpp - Emit PC Relative loads ----------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
//
10
// Loading constants inline is expensive on CSKY and it's in general better
11
// to place the constant nearby in code space and then it can be loaded with a
12
// simple 16/32 bit load instruction like lrw.
13
//
14
// The constants can be not just numbers but addresses of functions and labels.
15
// This can be particularly helpful in static relocation mode for embedded
16
// non-linux targets.
17
//
18
//===----------------------------------------------------------------------===//
19
20
#include "CSKY.h"
21
#include "CSKYConstantPoolValue.h"
22
#include "CSKYMachineFunctionInfo.h"
23
#include "CSKYSubtarget.h"
24
#include "llvm/ADT/STLExtras.h"
25
#include "llvm/ADT/SmallSet.h"
26
#include "llvm/ADT/SmallVector.h"
27
#include "llvm/ADT/Statistic.h"
28
#include "llvm/ADT/StringRef.h"
29
#include "llvm/CodeGen/MachineBasicBlock.h"
30
#include "llvm/CodeGen/MachineConstantPool.h"
31
#include "llvm/CodeGen/MachineDominators.h"
32
#include "llvm/CodeGen/MachineFrameInfo.h"
33
#include "llvm/CodeGen/MachineFunction.h"
34
#include "llvm/CodeGen/MachineFunctionPass.h"
35
#include "llvm/CodeGen/MachineInstr.h"
36
#include "llvm/CodeGen/MachineInstrBuilder.h"
37
#include "llvm/CodeGen/MachineOperand.h"
38
#include "llvm/CodeGen/MachineRegisterInfo.h"
39
#include "llvm/Config/llvm-config.h"
40
#include "llvm/IR/Constants.h"
41
#include "llvm/IR/DataLayout.h"
42
#include "llvm/IR/DebugLoc.h"
43
#include "llvm/IR/Function.h"
44
#include "llvm/IR/Type.h"
45
#include "llvm/Support/CommandLine.h"
46
#include "llvm/Support/Compiler.h"
47
#include "llvm/Support/Debug.h"
48
#include "llvm/Support/ErrorHandling.h"
49
#include "llvm/Support/Format.h"
50
#include "llvm/Support/MathExtras.h"
51
#include "llvm/Support/raw_ostream.h"
52
#include <algorithm>
53
#include <cassert>
54
#include <cstdint>
55
#include <iterator>
56
#include <vector>
57
58
using namespace llvm;
59
60
#define DEBUG_TYPE "CSKY-constant-islands"
61
62
STATISTIC(NumCPEs, "Number of constpool entries");
63
STATISTIC(NumSplit, "Number of uncond branches inserted");
64
STATISTIC(NumCBrFixed, "Number of cond branches fixed");
65
STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
66
67
namespace {
68
69
using Iter = MachineBasicBlock::iterator;
70
using ReverseIter = MachineBasicBlock::reverse_iterator;
71
72
/// CSKYConstantIslands - Due to limited PC-relative displacements, CSKY
73
/// requires constant pool entries to be scattered among the instructions
74
/// inside a function. To do this, it completely ignores the normal LLVM
75
/// constant pool; instead, it places constants wherever it feels like with
76
/// special instructions.
77
///
78
/// The terminology used in this pass includes:
79
/// Islands - Clumps of constants placed in the function.
80
/// Water - Potential places where an island could be formed.
81
/// CPE - A constant pool entry that has been placed somewhere, which
82
/// tracks a list of users.
83
84
class CSKYConstantIslands : public MachineFunctionPass {
85
/// BasicBlockInfo - Information about the offset and size of a single
86
/// basic block.
87
struct BasicBlockInfo {
88
/// Offset - Distance from the beginning of the function to the beginning
89
/// of this basic block.
90
///
91
/// Offsets are computed assuming worst case padding before an aligned
92
/// block. This means that subtracting basic block offsets always gives a
93
/// conservative estimate of the real distance which may be smaller.
94
///
95
/// Because worst case padding is used, the computed offset of an aligned
96
/// block may not actually be aligned.
97
unsigned Offset = 0;
98
99
/// Size - Size of the basic block in bytes. If the block contains
100
/// inline assembly, this is a worst case estimate.
101
///
102
/// The size does not include any alignment padding whether from the
103
/// beginning of the block, or from an aligned jump table at the end.
104
unsigned Size = 0;
105
106
BasicBlockInfo() = default;
107
108
unsigned postOffset() const { return Offset + Size; }
109
};
110
111
std::vector<BasicBlockInfo> BBInfo;
112
113
/// WaterList - A sorted list of basic blocks where islands could be placed
114
/// (i.e. blocks that don't fall through to the following block, due
115
/// to a return, unreachable, or unconditional branch).
116
std::vector<MachineBasicBlock *> WaterList;
117
118
/// NewWaterList - The subset of WaterList that was created since the
119
/// previous iteration by inserting unconditional branches.
120
SmallSet<MachineBasicBlock *, 4> NewWaterList;
121
122
using water_iterator = std::vector<MachineBasicBlock *>::iterator;
123
124
/// CPUser - One user of a constant pool, keeping the machine instruction
125
/// pointer, the constant pool being referenced, and the max displacement
126
/// allowed from the instruction to the CP. The HighWaterMark records the
127
/// highest basic block where a new CPEntry can be placed. To ensure this
128
/// pass terminates, the CP entries are initially placed at the end of the
129
/// function and then move monotonically to lower addresses. The
130
/// exception to this rule is when the current CP entry for a particular
131
/// CPUser is out of range, but there is another CP entry for the same
132
/// constant value in range. We want to use the existing in-range CP
133
/// entry, but if it later moves out of range, the search for new water
134
/// should resume where it left off. The HighWaterMark is used to record
135
/// that point.
136
struct CPUser {
137
MachineInstr *MI;
138
MachineInstr *CPEMI;
139
MachineBasicBlock *HighWaterMark;
140
141
private:
142
unsigned MaxDisp;
143
144
public:
145
bool NegOk;
146
147
CPUser(MachineInstr *Mi, MachineInstr *Cpemi, unsigned Maxdisp, bool Neg)
148
: MI(Mi), CPEMI(Cpemi), MaxDisp(Maxdisp), NegOk(Neg) {
149
HighWaterMark = CPEMI->getParent();
150
}
151
152
/// getMaxDisp - Returns the maximum displacement supported by MI.
153
unsigned getMaxDisp() const { return MaxDisp - 16; }
154
155
void setMaxDisp(unsigned Val) { MaxDisp = Val; }
156
};
157
158
/// CPUsers - Keep track of all of the machine instructions that use various
159
/// constant pools and their max displacement.
160
std::vector<CPUser> CPUsers;
161
162
/// CPEntry - One per constant pool entry, keeping the machine instruction
163
/// pointer, the constpool index, and the number of CPUser's which
164
/// reference this entry.
165
struct CPEntry {
166
MachineInstr *CPEMI;
167
unsigned CPI;
168
unsigned RefCount;
169
170
CPEntry(MachineInstr *Cpemi, unsigned Cpi, unsigned Rc = 0)
171
: CPEMI(Cpemi), CPI(Cpi), RefCount(Rc) {}
172
};
173
174
/// CPEntries - Keep track of all of the constant pool entry machine
175
/// instructions. For each original constpool index (i.e. those that
176
/// existed upon entry to this pass), it keeps a vector of entries.
177
/// Original elements are cloned as we go along; the clones are
178
/// put in the vector of the original element, but have distinct CPIs.
179
std::vector<std::vector<CPEntry>> CPEntries;
180
181
/// ImmBranch - One per immediate branch, keeping the machine instruction
182
/// pointer, conditional or unconditional, the max displacement,
183
/// and (if isCond is true) the corresponding unconditional branch
184
/// opcode.
185
struct ImmBranch {
186
MachineInstr *MI;
187
unsigned MaxDisp : 31;
188
bool IsCond : 1;
189
int UncondBr;
190
191
ImmBranch(MachineInstr *Mi, unsigned Maxdisp, bool Cond, int Ubr)
192
: MI(Mi), MaxDisp(Maxdisp), IsCond(Cond), UncondBr(Ubr) {}
193
};
194
195
/// ImmBranches - Keep track of all the immediate branch instructions.
196
///
197
std::vector<ImmBranch> ImmBranches;
198
199
const CSKYSubtarget *STI = nullptr;
200
const CSKYInstrInfo *TII;
201
CSKYMachineFunctionInfo *MFI;
202
MachineFunction *MF = nullptr;
203
MachineConstantPool *MCP = nullptr;
204
205
unsigned PICLabelUId;
206
207
void initPICLabelUId(unsigned UId) { PICLabelUId = UId; }
208
209
unsigned createPICLabelUId() { return PICLabelUId++; }
210
211
public:
212
static char ID;
213
214
CSKYConstantIslands() : MachineFunctionPass(ID) {}
215
216
StringRef getPassName() const override { return "CSKY Constant Islands"; }
217
218
bool runOnMachineFunction(MachineFunction &F) override;
219
220
void getAnalysisUsage(AnalysisUsage &AU) const override {
221
AU.addRequired<MachineDominatorTreeWrapperPass>();
222
MachineFunctionPass::getAnalysisUsage(AU);
223
}
224
225
MachineFunctionProperties getRequiredProperties() const override {
226
return MachineFunctionProperties().set(
227
MachineFunctionProperties::Property::NoVRegs);
228
}
229
230
void doInitialPlacement(std::vector<MachineInstr *> &CPEMIs);
231
CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
232
Align getCPEAlign(const MachineInstr &CPEMI);
233
void initializeFunctionInfo(const std::vector<MachineInstr *> &CPEMIs);
234
unsigned getOffsetOf(MachineInstr *MI) const;
235
unsigned getUserOffset(CPUser &) const;
236
void dumpBBs();
237
238
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, unsigned Disp,
239
bool NegativeOK);
240
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
241
const CPUser &U);
242
243
void computeBlockSize(MachineBasicBlock *MBB);
244
MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
245
void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
246
void adjustBBOffsetsAfter(MachineBasicBlock *BB);
247
bool decrementCPEReferenceCount(unsigned CPI, MachineInstr *CPEMI);
248
int findInRangeCPEntry(CPUser &U, unsigned UserOffset);
249
bool findAvailableWater(CPUser &U, unsigned UserOffset,
250
water_iterator &WaterIter);
251
void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
252
MachineBasicBlock *&NewMBB);
253
bool handleConstantPoolUser(unsigned CPUserIndex);
254
void removeDeadCPEMI(MachineInstr *CPEMI);
255
bool removeUnusedCPEntries();
256
bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
257
MachineInstr *CPEMI, unsigned Disp, bool NegOk,
258
bool DoDump = false);
259
bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, CPUser &U,
260
unsigned &Growth);
261
bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
262
bool fixupImmediateBr(ImmBranch &Br);
263
bool fixupConditionalBr(ImmBranch &Br);
264
bool fixupUnconditionalBr(ImmBranch &Br);
265
};
266
} // end anonymous namespace
267
268
char CSKYConstantIslands::ID = 0;
269
270
bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset,
271
unsigned TrialOffset,
272
const CPUser &U) {
273
return isOffsetInRange(UserOffset, TrialOffset, U.getMaxDisp(), U.NegOk);
274
}
275
276
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
277
/// print block size and offset information - debugging
278
LLVM_DUMP_METHOD void CSKYConstantIslands::dumpBBs() {
279
for (unsigned J = 0, E = BBInfo.size(); J != E; ++J) {
280
const BasicBlockInfo &BBI = BBInfo[J];
281
dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
282
<< format(" size=%#x\n", BBInfo[J].Size);
283
}
284
}
285
#endif
286
287
bool CSKYConstantIslands::runOnMachineFunction(MachineFunction &Mf) {
288
MF = &Mf;
289
MCP = Mf.getConstantPool();
290
STI = &Mf.getSubtarget<CSKYSubtarget>();
291
292
LLVM_DEBUG(dbgs() << "***** CSKYConstantIslands: "
293
<< MCP->getConstants().size() << " CP entries, aligned to "
294
<< MCP->getConstantPoolAlign().value() << " bytes *****\n");
295
296
TII = STI->getInstrInfo();
297
MFI = MF->getInfo<CSKYMachineFunctionInfo>();
298
299
// This pass invalidates liveness information when it splits basic blocks.
300
MF->getRegInfo().invalidateLiveness();
301
302
// Renumber all of the machine basic blocks in the function, guaranteeing that
303
// the numbers agree with the position of the block in the function.
304
MF->RenumberBlocks();
305
306
bool MadeChange = false;
307
308
// Perform the initial placement of the constant pool entries. To start with,
309
// we put them all at the end of the function.
310
std::vector<MachineInstr *> CPEMIs;
311
if (!MCP->isEmpty())
312
doInitialPlacement(CPEMIs);
313
314
/// The next UID to take is the first unused one.
315
initPICLabelUId(CPEMIs.size());
316
317
// Do the initial scan of the function, building up information about the
318
// sizes of each block, the location of all the water, and finding all of the
319
// constant pool users.
320
initializeFunctionInfo(CPEMIs);
321
CPEMIs.clear();
322
LLVM_DEBUG(dumpBBs());
323
324
/// Remove dead constant pool entries.
325
MadeChange |= removeUnusedCPEntries();
326
327
// Iteratively place constant pool entries and fix up branches until there
328
// is no change.
329
unsigned NoCPIters = 0, NoBRIters = 0;
330
(void)NoBRIters;
331
while (true) {
332
LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
333
bool CPChange = false;
334
for (unsigned I = 0, E = CPUsers.size(); I != E; ++I)
335
CPChange |= handleConstantPoolUser(I);
336
if (CPChange && ++NoCPIters > 30)
337
report_fatal_error("Constant Island pass failed to converge!");
338
LLVM_DEBUG(dumpBBs());
339
340
// Clear NewWaterList now. If we split a block for branches, it should
341
// appear as "new water" for the next iteration of constant pool placement.
342
NewWaterList.clear();
343
344
LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
345
bool BRChange = false;
346
for (unsigned I = 0, E = ImmBranches.size(); I != E; ++I)
347
BRChange |= fixupImmediateBr(ImmBranches[I]);
348
if (BRChange && ++NoBRIters > 30)
349
report_fatal_error("Branch Fix Up pass failed to converge!");
350
LLVM_DEBUG(dumpBBs());
351
if (!CPChange && !BRChange)
352
break;
353
MadeChange = true;
354
}
355
356
LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
357
358
BBInfo.clear();
359
WaterList.clear();
360
CPUsers.clear();
361
CPEntries.clear();
362
ImmBranches.clear();
363
return MadeChange;
364
}
365
366
/// doInitialPlacement - Perform the initial placement of the constant pool
367
/// entries. To start with, we put them all at the end of the function.
368
void CSKYConstantIslands::doInitialPlacement(
369
std::vector<MachineInstr *> &CPEMIs) {
370
// Create the basic block to hold the CPE's.
371
MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
372
MF->push_back(BB);
373
374
// MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
375
const Align MaxAlign = MCP->getConstantPoolAlign();
376
377
// Mark the basic block as required by the const-pool.
378
BB->setAlignment(Align(2));
379
380
// The function needs to be as aligned as the basic blocks. The linker may
381
// move functions around based on their alignment.
382
MF->ensureAlignment(BB->getAlignment());
383
384
// Order the entries in BB by descending alignment. That ensures correct
385
// alignment of all entries as long as BB is sufficiently aligned. Keep
386
// track of the insertion point for each alignment. We are going to bucket
387
// sort the entries as they are created.
388
SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1,
389
BB->end());
390
391
// Add all of the constants from the constant pool to the end block, use an
392
// identity mapping of CPI's to CPE's.
393
const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
394
395
const DataLayout &TD = MF->getDataLayout();
396
for (unsigned I = 0, E = CPs.size(); I != E; ++I) {
397
unsigned Size = CPs[I].getSizeInBytes(TD);
398
assert(Size >= 4 && "Too small constant pool entry");
399
Align Alignment = CPs[I].getAlign();
400
// Verify that all constant pool entries are a multiple of their alignment.
401
// If not, we would have to pad them out so that instructions stay aligned.
402
assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!");
403
404
// Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
405
unsigned LogAlign = Log2(Alignment);
406
MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
407
408
MachineInstr *CPEMI =
409
BuildMI(*BB, InsAt, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY))
410
.addImm(I)
411
.addConstantPoolIndex(I)
412
.addImm(Size);
413
414
CPEMIs.push_back(CPEMI);
415
416
// Ensure that future entries with higher alignment get inserted before
417
// CPEMI. This is bucket sort with iterators.
418
for (unsigned A = LogAlign + 1; A <= Log2(MaxAlign); ++A)
419
if (InsPoint[A] == InsAt)
420
InsPoint[A] = CPEMI;
421
// Add a new CPEntry, but no corresponding CPUser yet.
422
CPEntries.emplace_back(1, CPEntry(CPEMI, I));
423
++NumCPEs;
424
LLVM_DEBUG(dbgs() << "Moved CPI#" << I << " to end of function, size = "
425
<< Size << ", align = " << Alignment.value() << '\n');
426
}
427
LLVM_DEBUG(BB->dump());
428
}
429
430
/// BBHasFallthrough - Return true if the specified basic block can fallthrough
431
/// into the block immediately after it.
432
static bool bbHasFallthrough(MachineBasicBlock *MBB) {
433
// Get the next machine basic block in the function.
434
MachineFunction::iterator MBBI = MBB->getIterator();
435
// Can't fall off end of function.
436
if (std::next(MBBI) == MBB->getParent()->end())
437
return false;
438
439
MachineBasicBlock *NextBB = &*std::next(MBBI);
440
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
441
E = MBB->succ_end();
442
I != E; ++I)
443
if (*I == NextBB)
444
return true;
445
446
return false;
447
}
448
449
/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
450
/// look up the corresponding CPEntry.
451
CSKYConstantIslands::CPEntry *
452
CSKYConstantIslands::findConstPoolEntry(unsigned CPI,
453
const MachineInstr *CPEMI) {
454
std::vector<CPEntry> &CPEs = CPEntries[CPI];
455
// Number of entries per constpool index should be small, just do a
456
// linear search.
457
for (unsigned I = 0, E = CPEs.size(); I != E; ++I) {
458
if (CPEs[I].CPEMI == CPEMI)
459
return &CPEs[I];
460
}
461
return nullptr;
462
}
463
464
/// getCPEAlign - Returns the required alignment of the constant pool entry
465
/// represented by CPEMI. Alignment is measured in log2(bytes) units.
466
Align CSKYConstantIslands::getCPEAlign(const MachineInstr &CPEMI) {
467
assert(CPEMI.getOpcode() == CSKY::CONSTPOOL_ENTRY);
468
469
unsigned CPI = CPEMI.getOperand(1).getIndex();
470
assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
471
return MCP->getConstants()[CPI].getAlign();
472
}
473
474
/// initializeFunctionInfo - Do the initial scan of the function, building up
475
/// information about the sizes of each block, the location of all the water,
476
/// and finding all of the constant pool users.
477
void CSKYConstantIslands::initializeFunctionInfo(
478
const std::vector<MachineInstr *> &CPEMIs) {
479
BBInfo.clear();
480
BBInfo.resize(MF->getNumBlockIDs());
481
482
// First thing, compute the size of all basic blocks, and see if the function
483
// has any inline assembly in it. If so, we have to be conservative about
484
// alignment assumptions, as we don't know for sure the size of any
485
// instructions in the inline assembly.
486
for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
487
computeBlockSize(&*I);
488
489
// Compute block offsets.
490
adjustBBOffsetsAfter(&MF->front());
491
492
// Now go back through the instructions and build up our data structures.
493
for (MachineBasicBlock &MBB : *MF) {
494
// If this block doesn't fall through into the next MBB, then this is
495
// 'water' that a constant pool island could be placed.
496
if (!bbHasFallthrough(&MBB))
497
WaterList.push_back(&MBB);
498
for (MachineInstr &MI : MBB) {
499
if (MI.isDebugInstr())
500
continue;
501
502
int Opc = MI.getOpcode();
503
if (MI.isBranch() && !MI.isIndirectBranch()) {
504
bool IsCond = MI.isConditionalBranch();
505
unsigned Bits = 0;
506
unsigned Scale = 1;
507
int UOpc = CSKY::BR32;
508
509
switch (MI.getOpcode()) {
510
case CSKY::BR16:
511
case CSKY::BF16:
512
case CSKY::BT16:
513
Bits = 10;
514
Scale = 2;
515
break;
516
default:
517
Bits = 16;
518
Scale = 2;
519
break;
520
}
521
522
// Record this immediate branch.
523
unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale;
524
ImmBranches.push_back(ImmBranch(&MI, MaxOffs, IsCond, UOpc));
525
}
526
527
if (Opc == CSKY::CONSTPOOL_ENTRY)
528
continue;
529
530
// Scan the instructions for constant pool operands.
531
for (unsigned Op = 0, E = MI.getNumOperands(); Op != E; ++Op)
532
if (MI.getOperand(Op).isCPI()) {
533
// We found one. The addressing mode tells us the max displacement
534
// from the PC that this instruction permits.
535
536
// Basic size info comes from the TSFlags field.
537
unsigned Bits = 0;
538
unsigned Scale = 1;
539
bool NegOk = false;
540
541
switch (Opc) {
542
default:
543
llvm_unreachable("Unknown addressing mode for CP reference!");
544
case CSKY::MOVIH32:
545
case CSKY::ORI32:
546
continue;
547
case CSKY::PseudoTLSLA32:
548
case CSKY::JSRI32:
549
case CSKY::JMPI32:
550
case CSKY::LRW32:
551
case CSKY::LRW32_Gen:
552
Bits = 16;
553
Scale = 4;
554
break;
555
case CSKY::f2FLRW_S:
556
case CSKY::f2FLRW_D:
557
Bits = 8;
558
Scale = 4;
559
break;
560
case CSKY::GRS32:
561
Bits = 17;
562
Scale = 2;
563
NegOk = true;
564
break;
565
}
566
// Remember that this is a user of a CP entry.
567
unsigned CPI = MI.getOperand(Op).getIndex();
568
MachineInstr *CPEMI = CPEMIs[CPI];
569
unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
570
CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk));
571
572
// Increment corresponding CPEntry reference count.
573
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
574
assert(CPE && "Cannot find a corresponding CPEntry!");
575
CPE->RefCount++;
576
}
577
}
578
}
579
}
580
581
/// computeBlockSize - Compute the size and some alignment information for MBB.
582
/// This function updates BBInfo directly.
583
void CSKYConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
584
BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
585
BBI.Size = 0;
586
587
for (const MachineInstr &MI : *MBB)
588
BBI.Size += TII->getInstSizeInBytes(MI);
589
}
590
591
/// getOffsetOf - Return the current offset of the specified machine instruction
592
/// from the start of the function. This offset changes as stuff is moved
593
/// around inside the function.
594
unsigned CSKYConstantIslands::getOffsetOf(MachineInstr *MI) const {
595
MachineBasicBlock *MBB = MI->getParent();
596
597
// The offset is composed of two things: the sum of the sizes of all MBB's
598
// before this instruction's block, and the offset from the start of the block
599
// it is in.
600
unsigned Offset = BBInfo[MBB->getNumber()].Offset;
601
602
// Sum instructions before MI in MBB.
603
for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
604
assert(I != MBB->end() && "Didn't find MI in its own basic block?");
605
Offset += TII->getInstSizeInBytes(*I);
606
}
607
return Offset;
608
}
609
610
/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
611
/// ID.
612
static bool compareMbbNumbers(const MachineBasicBlock *LHS,
613
const MachineBasicBlock *RHS) {
614
return LHS->getNumber() < RHS->getNumber();
615
}
616
617
/// updateForInsertedWaterBlock - When a block is newly inserted into the
618
/// machine function, it upsets all of the block numbers. Renumber the blocks
619
/// and update the arrays that parallel this numbering.
620
void CSKYConstantIslands::updateForInsertedWaterBlock(
621
MachineBasicBlock *NewBB) {
622
// Renumber the MBB's to keep them consecutive.
623
NewBB->getParent()->RenumberBlocks(NewBB);
624
625
// Insert an entry into BBInfo to align it properly with the (newly
626
// renumbered) block numbers.
627
BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
628
629
// Next, update WaterList. Specifically, we need to add NewMBB as having
630
// available water after it.
631
water_iterator IP = llvm::lower_bound(WaterList, NewBB, compareMbbNumbers);
632
WaterList.insert(IP, NewBB);
633
}
634
635
unsigned CSKYConstantIslands::getUserOffset(CPUser &U) const {
636
unsigned UserOffset = getOffsetOf(U.MI);
637
638
UserOffset &= ~3u;
639
640
return UserOffset;
641
}
642
643
/// Split the basic block containing MI into two blocks, which are joined by
644
/// an unconditional branch. Update data structures and renumber blocks to
645
/// account for this change and returns the newly created block.
646
MachineBasicBlock *
647
CSKYConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
648
MachineBasicBlock *OrigBB = MI.getParent();
649
650
// Create a new MBB for the code after the OrigBB.
651
MachineBasicBlock *NewBB =
652
MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
653
MachineFunction::iterator MBBI = ++OrigBB->getIterator();
654
MF->insert(MBBI, NewBB);
655
656
// Splice the instructions starting with MI over to NewBB.
657
NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
658
659
// Add an unconditional branch from OrigBB to NewBB.
660
// Note the new unconditional branch is not being recorded.
661
// There doesn't seem to be meaningful DebugInfo available; this doesn't
662
// correspond to anything in the source.
663
664
// TODO: Add support for 16bit instr.
665
BuildMI(OrigBB, DebugLoc(), TII->get(CSKY::BR32)).addMBB(NewBB);
666
++NumSplit;
667
668
// Update the CFG. All succs of OrigBB are now succs of NewBB.
669
NewBB->transferSuccessors(OrigBB);
670
671
// OrigBB branches to NewBB.
672
OrigBB->addSuccessor(NewBB);
673
674
// Update internal data structures to account for the newly inserted MBB.
675
// This is almost the same as updateForInsertedWaterBlock, except that
676
// the Water goes after OrigBB, not NewBB.
677
MF->RenumberBlocks(NewBB);
678
679
// Insert an entry into BBInfo to align it properly with the (newly
680
// renumbered) block numbers.
681
BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
682
683
// Next, update WaterList. Specifically, we need to add OrigMBB as having
684
// available water after it (but not if it's already there, which happens
685
// when splitting before a conditional branch that is followed by an
686
// unconditional branch - in that case we want to insert NewBB).
687
water_iterator IP = llvm::lower_bound(WaterList, OrigBB, compareMbbNumbers);
688
MachineBasicBlock *WaterBB = *IP;
689
if (WaterBB == OrigBB)
690
WaterList.insert(std::next(IP), NewBB);
691
else
692
WaterList.insert(IP, OrigBB);
693
NewWaterList.insert(OrigBB);
694
695
// Figure out how large the OrigBB is. As the first half of the original
696
// block, it cannot contain a tablejump. The size includes
697
// the new jump we added. (It should be possible to do this without
698
// recounting everything, but it's very confusing, and this is rarely
699
// executed.)
700
computeBlockSize(OrigBB);
701
702
// Figure out how large the NewMBB is. As the second half of the original
703
// block, it may contain a tablejump.
704
computeBlockSize(NewBB);
705
706
// All BBOffsets following these blocks must be modified.
707
adjustBBOffsetsAfter(OrigBB);
708
709
return NewBB;
710
}
711
712
/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
713
/// reference) is within MaxDisp of TrialOffset (a proposed location of a
714
/// constant pool entry).
715
bool CSKYConstantIslands::isOffsetInRange(unsigned UserOffset,
716
unsigned TrialOffset,
717
unsigned MaxDisp, bool NegativeOK) {
718
if (UserOffset <= TrialOffset) {
719
// User before the Trial.
720
if (TrialOffset - UserOffset <= MaxDisp)
721
return true;
722
} else if (NegativeOK) {
723
if (UserOffset - TrialOffset <= MaxDisp)
724
return true;
725
}
726
return false;
727
}
728
729
/// isWaterInRange - Returns true if a CPE placed after the specified
730
/// Water (a basic block) will be in range for the specific MI.
731
///
732
/// Compute how much the function will grow by inserting a CPE after Water.
733
bool CSKYConstantIslands::isWaterInRange(unsigned UserOffset,
734
MachineBasicBlock *Water, CPUser &U,
735
unsigned &Growth) {
736
unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset();
737
unsigned NextBlockOffset;
738
Align NextBlockAlignment;
739
MachineFunction::const_iterator NextBlock = ++Water->getIterator();
740
if (NextBlock == MF->end()) {
741
NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
742
NextBlockAlignment = Align(4);
743
} else {
744
NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
745
NextBlockAlignment = NextBlock->getAlignment();
746
}
747
unsigned Size = U.CPEMI->getOperand(2).getImm();
748
unsigned CPEEnd = CPEOffset + Size;
749
750
// The CPE may be able to hide in the alignment padding before the next
751
// block. It may also cause more padding to be required if it is more aligned
752
// that the next block.
753
if (CPEEnd > NextBlockOffset) {
754
Growth = CPEEnd - NextBlockOffset;
755
// Compute the padding that would go at the end of the CPE to align the next
756
// block.
757
Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
758
759
// If the CPE is to be inserted before the instruction, that will raise
760
// the offset of the instruction. Also account for unknown alignment padding
761
// in blocks between CPE and the user.
762
if (CPEOffset < UserOffset)
763
UserOffset += Growth;
764
} else
765
// CPE fits in existing padding.
766
Growth = 0;
767
768
return isOffsetInRange(UserOffset, CPEOffset, U);
769
}
770
771
/// isCPEntryInRange - Returns true if the distance between specific MI and
772
/// specific ConstPool entry instruction can fit in MI's displacement field.
773
bool CSKYConstantIslands::isCPEntryInRange(MachineInstr *MI,
774
unsigned UserOffset,
775
MachineInstr *CPEMI,
776
unsigned MaxDisp, bool NegOk,
777
bool DoDump) {
778
unsigned CPEOffset = getOffsetOf(CPEMI);
779
780
if (DoDump) {
781
LLVM_DEBUG({
782
unsigned Block = MI->getParent()->getNumber();
783
const BasicBlockInfo &BBI = BBInfo[Block];
784
dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
785
<< " max delta=" << MaxDisp
786
<< format(" insn address=%#x", UserOffset) << " in "
787
<< printMBBReference(*MI->getParent()) << ": "
788
<< format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
789
<< format("CPE address=%#x offset=%+d: ", CPEOffset,
790
int(CPEOffset - UserOffset));
791
});
792
}
793
794
return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
795
}
796
797
#ifndef NDEBUG
798
/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
799
/// unconditionally branches to its only successor.
800
static bool bbIsJumpedOver(MachineBasicBlock *MBB) {
801
if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
802
return false;
803
MachineBasicBlock *Succ = *MBB->succ_begin();
804
MachineBasicBlock *Pred = *MBB->pred_begin();
805
MachineInstr *PredMI = &Pred->back();
806
if (PredMI->getOpcode() == CSKY::BR32 /*TODO: change to 16bit instr. */)
807
return PredMI->getOperand(0).getMBB() == Succ;
808
return false;
809
}
810
#endif
811
812
void CSKYConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
813
unsigned BBNum = BB->getNumber();
814
for (unsigned I = BBNum + 1, E = MF->getNumBlockIDs(); I < E; ++I) {
815
// Get the offset and known bits at the end of the layout predecessor.
816
// Include the alignment of the current block.
817
unsigned Offset = BBInfo[I - 1].Offset + BBInfo[I - 1].Size;
818
BBInfo[I].Offset = Offset;
819
}
820
}
821
822
/// decrementCPEReferenceCount - find the constant pool entry with index CPI
823
/// and instruction CPEMI, and decrement its refcount. If the refcount
824
/// becomes 0 remove the entry and instruction. Returns true if we removed
825
/// the entry, false if we didn't.
826
bool CSKYConstantIslands::decrementCPEReferenceCount(unsigned CPI,
827
MachineInstr *CPEMI) {
828
// Find the old entry. Eliminate it if it is no longer used.
829
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
830
assert(CPE && "Unexpected!");
831
if (--CPE->RefCount == 0) {
832
removeDeadCPEMI(CPEMI);
833
CPE->CPEMI = nullptr;
834
--NumCPEs;
835
return true;
836
}
837
return false;
838
}
839
840
/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
841
/// if not, see if an in-range clone of the CPE is in range, and if so,
842
/// change the data structures so the user references the clone. Returns:
843
/// 0 = no existing entry found
844
/// 1 = entry found, and there were no code insertions or deletions
845
/// 2 = entry found, and there were code insertions or deletions
846
int CSKYConstantIslands::findInRangeCPEntry(CPUser &U, unsigned UserOffset) {
847
MachineInstr *UserMI = U.MI;
848
MachineInstr *CPEMI = U.CPEMI;
849
850
// Check to see if the CPE is already in-range.
851
if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
852
true)) {
853
LLVM_DEBUG(dbgs() << "In range\n");
854
return 1;
855
}
856
857
// No. Look for previously created clones of the CPE that are in range.
858
unsigned CPI = CPEMI->getOperand(1).getIndex();
859
std::vector<CPEntry> &CPEs = CPEntries[CPI];
860
for (unsigned I = 0, E = CPEs.size(); I != E; ++I) {
861
// We already tried this one
862
if (CPEs[I].CPEMI == CPEMI)
863
continue;
864
// Removing CPEs can leave empty entries, skip
865
if (CPEs[I].CPEMI == nullptr)
866
continue;
867
if (isCPEntryInRange(UserMI, UserOffset, CPEs[I].CPEMI, U.getMaxDisp(),
868
U.NegOk)) {
869
LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
870
<< CPEs[I].CPI << "\n");
871
// Point the CPUser node to the replacement
872
U.CPEMI = CPEs[I].CPEMI;
873
// Change the CPI in the instruction operand to refer to the clone.
874
for (unsigned J = 0, E = UserMI->getNumOperands(); J != E; ++J)
875
if (UserMI->getOperand(J).isCPI()) {
876
UserMI->getOperand(J).setIndex(CPEs[I].CPI);
877
break;
878
}
879
// Adjust the refcount of the clone...
880
CPEs[I].RefCount++;
881
// ...and the original. If we didn't remove the old entry, none of the
882
// addresses changed, so we don't need another pass.
883
return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
884
}
885
}
886
return 0;
887
}
888
889
/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
890
/// the specific unconditional branch instruction.
891
static inline unsigned getUnconditionalBrDisp(int Opc) {
892
unsigned Bits, Scale;
893
894
switch (Opc) {
895
case CSKY::BR16:
896
Bits = 10;
897
Scale = 2;
898
break;
899
case CSKY::BR32:
900
Bits = 16;
901
Scale = 2;
902
break;
903
default:
904
llvm_unreachable("");
905
}
906
907
unsigned MaxOffs = ((1 << (Bits - 1)) - 1) * Scale;
908
return MaxOffs;
909
}
910
911
/// findAvailableWater - Look for an existing entry in the WaterList in which
912
/// we can place the CPE referenced from U so it's within range of U's MI.
913
/// Returns true if found, false if not. If it returns true, WaterIter
914
/// is set to the WaterList entry.
915
/// To ensure that this pass
916
/// terminates, the CPE location for a particular CPUser is only allowed to
917
/// move to a lower address, so search backward from the end of the list and
918
/// prefer the first water that is in range.
919
bool CSKYConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
920
water_iterator &WaterIter) {
921
if (WaterList.empty())
922
return false;
923
924
unsigned BestGrowth = ~0u;
925
for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
926
--IP) {
927
MachineBasicBlock *WaterBB = *IP;
928
// Check if water is in range and is either at a lower address than the
929
// current "high water mark" or a new water block that was created since
930
// the previous iteration by inserting an unconditional branch. In the
931
// latter case, we want to allow resetting the high water mark back to
932
// this new water since we haven't seen it before. Inserting branches
933
// should be relatively uncommon and when it does happen, we want to be
934
// sure to take advantage of it for all the CPEs near that block, so that
935
// we don't insert more branches than necessary.
936
unsigned Growth;
937
if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
938
(WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
939
NewWaterList.count(WaterBB)) &&
940
Growth < BestGrowth) {
941
// This is the least amount of required padding seen so far.
942
BestGrowth = Growth;
943
WaterIter = IP;
944
LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
945
<< " Growth=" << Growth << '\n');
946
947
// Keep looking unless it is perfect.
948
if (BestGrowth == 0)
949
return true;
950
}
951
if (IP == B)
952
break;
953
}
954
return BestGrowth != ~0u;
955
}
956
957
/// createNewWater - No existing WaterList entry will work for
958
/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
959
/// block is used if in range, and the conditional branch munged so control
960
/// flow is correct. Otherwise the block is split to create a hole with an
961
/// unconditional branch around it. In either case NewMBB is set to a
962
/// block following which the new island can be inserted (the WaterList
963
/// is not adjusted).
964
void CSKYConstantIslands::createNewWater(unsigned CPUserIndex,
965
unsigned UserOffset,
966
MachineBasicBlock *&NewMBB) {
967
CPUser &U = CPUsers[CPUserIndex];
968
MachineInstr *UserMI = U.MI;
969
MachineInstr *CPEMI = U.CPEMI;
970
MachineBasicBlock *UserMBB = UserMI->getParent();
971
const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
972
973
// If the block does not end in an unconditional branch already, and if the
974
// end of the block is within range, make new water there.
975
if (bbHasFallthrough(UserMBB)) {
976
// Size of branch to insert.
977
unsigned Delta = 4;
978
// Compute the offset where the CPE will begin.
979
unsigned CPEOffset = UserBBI.postOffset() + Delta;
980
981
if (isOffsetInRange(UserOffset, CPEOffset, U)) {
982
LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
983
<< format(", expected CPE offset %#x\n", CPEOffset));
984
NewMBB = &*++UserMBB->getIterator();
985
// Add an unconditional branch from UserMBB to fallthrough block. Record
986
// it for branch lengthening; this new branch will not get out of range,
987
// but if the preceding conditional branch is out of range, the targets
988
// will be exchanged, and the altered branch may be out of range, so the
989
// machinery has to know about it.
990
991
// TODO: Add support for 16bit instr.
992
int UncondBr = CSKY::BR32;
993
auto *NewMI = BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
994
.addMBB(NewMBB)
995
.getInstr();
996
unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
997
ImmBranches.push_back(
998
ImmBranch(&UserMBB->back(), MaxDisp, false, UncondBr));
999
BBInfo[UserMBB->getNumber()].Size += TII->getInstSizeInBytes(*NewMI);
1000
adjustBBOffsetsAfter(UserMBB);
1001
return;
1002
}
1003
}
1004
1005
// What a big block. Find a place within the block to split it.
1006
1007
// Try to split the block so it's fully aligned. Compute the latest split
1008
// point where we can add a 4-byte branch instruction, and then align to
1009
// Align which is the largest possible alignment in the function.
1010
const Align Align = MF->getAlignment();
1011
unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1012
LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1013
BaseInsertOffset));
1014
1015
// The 4 in the following is for the unconditional branch we'll be inserting
1016
// Alignment of the island is handled
1017
// inside isOffsetInRange.
1018
BaseInsertOffset -= 4;
1019
1020
LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1021
<< " la=" << Log2(Align) << '\n');
1022
1023
// This could point off the end of the block if we've already got constant
1024
// pool entries following this block; only the last one is in the water list.
1025
// Back past any possible branches (allow for a conditional and a maximally
1026
// long unconditional).
1027
if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1028
BaseInsertOffset = UserBBI.postOffset() - 8;
1029
LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1030
}
1031
unsigned EndInsertOffset =
1032
BaseInsertOffset + 4 + CPEMI->getOperand(2).getImm();
1033
MachineBasicBlock::iterator MI = UserMI;
1034
++MI;
1035
unsigned CPUIndex = CPUserIndex + 1;
1036
unsigned NumCPUsers = CPUsers.size();
1037
for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1038
Offset < BaseInsertOffset;
1039
Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1040
assert(MI != UserMBB->end() && "Fell off end of block");
1041
if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1042
CPUser &U = CPUsers[CPUIndex];
1043
if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1044
// Shift intertion point by one unit of alignment so it is within reach.
1045
BaseInsertOffset -= Align.value();
1046
EndInsertOffset -= Align.value();
1047
}
1048
// This is overly conservative, as we don't account for CPEMIs being
1049
// reused within the block, but it doesn't matter much. Also assume CPEs
1050
// are added in order with alignment padding. We may eventually be able
1051
// to pack the aligned CPEs better.
1052
EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1053
CPUIndex++;
1054
}
1055
}
1056
1057
NewMBB = splitBlockBeforeInstr(*--MI);
1058
}
1059
1060
/// handleConstantPoolUser - Analyze the specified user, checking to see if it
1061
/// is out-of-range. If so, pick up the constant pool value and move it some
1062
/// place in-range. Return true if we changed any addresses (thus must run
1063
/// another pass of branch lengthening), false otherwise.
1064
bool CSKYConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1065
CPUser &U = CPUsers[CPUserIndex];
1066
MachineInstr *UserMI = U.MI;
1067
MachineInstr *CPEMI = U.CPEMI;
1068
unsigned CPI = CPEMI->getOperand(1).getIndex();
1069
unsigned Size = CPEMI->getOperand(2).getImm();
1070
// Compute this only once, it's expensive.
1071
unsigned UserOffset = getUserOffset(U);
1072
1073
// See if the current entry is within range, or there is a clone of it
1074
// in range.
1075
int result = findInRangeCPEntry(U, UserOffset);
1076
if (result == 1)
1077
return false;
1078
if (result == 2)
1079
return true;
1080
1081
// Look for water where we can place this CPE.
1082
MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1083
MachineBasicBlock *NewMBB;
1084
water_iterator IP;
1085
if (findAvailableWater(U, UserOffset, IP)) {
1086
LLVM_DEBUG(dbgs() << "Found water in range\n");
1087
MachineBasicBlock *WaterBB = *IP;
1088
1089
// If the original WaterList entry was "new water" on this iteration,
1090
// propagate that to the new island. This is just keeping NewWaterList
1091
// updated to match the WaterList, which will be updated below.
1092
if (NewWaterList.erase(WaterBB))
1093
NewWaterList.insert(NewIsland);
1094
1095
// The new CPE goes before the following block (NewMBB).
1096
NewMBB = &*++WaterBB->getIterator();
1097
} else {
1098
LLVM_DEBUG(dbgs() << "No water found\n");
1099
createNewWater(CPUserIndex, UserOffset, NewMBB);
1100
1101
// splitBlockBeforeInstr adds to WaterList, which is important when it is
1102
// called while handling branches so that the water will be seen on the
1103
// next iteration for constant pools, but in this context, we don't want
1104
// it. Check for this so it will be removed from the WaterList.
1105
// Also remove any entry from NewWaterList.
1106
MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1107
IP = llvm::find(WaterList, WaterBB);
1108
if (IP != WaterList.end())
1109
NewWaterList.erase(WaterBB);
1110
1111
// We are adding new water. Update NewWaterList.
1112
NewWaterList.insert(NewIsland);
1113
}
1114
1115
// Remove the original WaterList entry; we want subsequent insertions in
1116
// this vicinity to go after the one we're about to insert. This
1117
// considerably reduces the number of times we have to move the same CPE
1118
// more than once and is also important to ensure the algorithm terminates.
1119
if (IP != WaterList.end())
1120
WaterList.erase(IP);
1121
1122
// Okay, we know we can put an island before NewMBB now, do it!
1123
MF->insert(NewMBB->getIterator(), NewIsland);
1124
1125
// Update internal data structures to account for the newly inserted MBB.
1126
updateForInsertedWaterBlock(NewIsland);
1127
1128
// Decrement the old entry, and remove it if refcount becomes 0.
1129
decrementCPEReferenceCount(CPI, CPEMI);
1130
1131
// No existing clone of this CPE is within range.
1132
// We will be generating a new clone. Get a UID for it.
1133
unsigned ID = createPICLabelUId();
1134
1135
// Now that we have an island to add the CPE to, clone the original CPE and
1136
// add it to the island.
1137
U.HighWaterMark = NewIsland;
1138
U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(CSKY::CONSTPOOL_ENTRY))
1139
.addImm(ID)
1140
.addConstantPoolIndex(CPI)
1141
.addImm(Size);
1142
CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1143
++NumCPEs;
1144
1145
// Mark the basic block as aligned as required by the const-pool entry.
1146
NewIsland->setAlignment(getCPEAlign(*U.CPEMI));
1147
1148
// Increase the size of the island block to account for the new entry.
1149
BBInfo[NewIsland->getNumber()].Size += Size;
1150
adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1151
1152
// Finally, change the CPI in the instruction operand to be ID.
1153
for (unsigned I = 0, E = UserMI->getNumOperands(); I != E; ++I)
1154
if (UserMI->getOperand(I).isCPI()) {
1155
UserMI->getOperand(I).setIndex(ID);
1156
break;
1157
}
1158
1159
LLVM_DEBUG(
1160
dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1161
<< format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1162
1163
return true;
1164
}
1165
1166
/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1167
/// sizes and offsets of impacted basic blocks.
1168
void CSKYConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1169
MachineBasicBlock *CPEBB = CPEMI->getParent();
1170
unsigned Size = CPEMI->getOperand(2).getImm();
1171
CPEMI->eraseFromParent();
1172
BBInfo[CPEBB->getNumber()].Size -= Size;
1173
// All succeeding offsets have the current size value added in, fix this.
1174
if (CPEBB->empty()) {
1175
BBInfo[CPEBB->getNumber()].Size = 0;
1176
1177
// This block no longer needs to be aligned.
1178
CPEBB->setAlignment(Align(4));
1179
} else {
1180
// Entries are sorted by descending alignment, so realign from the front.
1181
CPEBB->setAlignment(getCPEAlign(*CPEBB->begin()));
1182
}
1183
1184
adjustBBOffsetsAfter(CPEBB);
1185
// An island has only one predecessor BB and one successor BB. Check if
1186
// this BB's predecessor jumps directly to this BB's successor. This
1187
// shouldn't happen currently.
1188
assert(!bbIsJumpedOver(CPEBB) && "How did this happen?");
1189
// FIXME: remove the empty blocks after all the work is done?
1190
}
1191
1192
/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1193
/// are zero.
1194
bool CSKYConstantIslands::removeUnusedCPEntries() {
1195
unsigned MadeChange = false;
1196
for (unsigned I = 0, E = CPEntries.size(); I != E; ++I) {
1197
std::vector<CPEntry> &CPEs = CPEntries[I];
1198
for (unsigned J = 0, Ee = CPEs.size(); J != Ee; ++J) {
1199
if (CPEs[J].RefCount == 0 && CPEs[J].CPEMI) {
1200
removeDeadCPEMI(CPEs[J].CPEMI);
1201
CPEs[J].CPEMI = nullptr;
1202
MadeChange = true;
1203
}
1204
}
1205
}
1206
return MadeChange;
1207
}
1208
1209
/// isBBInRange - Returns true if the distance between specific MI and
1210
/// specific BB can fit in MI's displacement field.
1211
bool CSKYConstantIslands::isBBInRange(MachineInstr *MI,
1212
MachineBasicBlock *DestBB,
1213
unsigned MaxDisp) {
1214
unsigned BrOffset = getOffsetOf(MI);
1215
unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1216
1217
LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1218
<< " from " << printMBBReference(*MI->getParent())
1219
<< " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1220
<< " to " << DestOffset << " offset "
1221
<< int(DestOffset - BrOffset) << "\t" << *MI);
1222
1223
if (BrOffset <= DestOffset) {
1224
// Branch before the Dest.
1225
if (DestOffset - BrOffset <= MaxDisp)
1226
return true;
1227
} else {
1228
if (BrOffset - DestOffset <= MaxDisp)
1229
return true;
1230
}
1231
return false;
1232
}
1233
1234
/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1235
/// away to fit in its displacement field.
1236
bool CSKYConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1237
MachineInstr *MI = Br.MI;
1238
MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI);
1239
1240
// Check to see if the DestBB is already in-range.
1241
if (isBBInRange(MI, DestBB, Br.MaxDisp))
1242
return false;
1243
1244
if (!Br.IsCond)
1245
return fixupUnconditionalBr(Br);
1246
return fixupConditionalBr(Br);
1247
}
1248
1249
/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1250
/// too far away to fit in its displacement field. If the LR register has been
1251
/// spilled in the epilogue, then we can use BSR to implement a far jump.
1252
/// Otherwise, add an intermediate branch instruction to a branch.
1253
bool CSKYConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1254
MachineInstr *MI = Br.MI;
1255
MachineBasicBlock *MBB = MI->getParent();
1256
1257
if (!MFI->isLRSpilled())
1258
report_fatal_error("underestimated function size");
1259
1260
// Use BSR to implement far jump.
1261
Br.MaxDisp = ((1 << (26 - 1)) - 1) * 2;
1262
MI->setDesc(TII->get(CSKY::BSR32_BR));
1263
BBInfo[MBB->getNumber()].Size += 4;
1264
adjustBBOffsetsAfter(MBB);
1265
++NumUBrFixed;
1266
1267
LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI);
1268
1269
return true;
1270
}
1271
1272
/// fixupConditionalBr - Fix up a conditional branch whose destination is too
1273
/// far away to fit in its displacement field. It is converted to an inverse
1274
/// conditional branch + an unconditional branch to the destination.
1275
bool CSKYConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1276
MachineInstr *MI = Br.MI;
1277
MachineBasicBlock *DestBB = TII->getBranchDestBlock(*MI);
1278
1279
SmallVector<MachineOperand, 4> Cond;
1280
Cond.push_back(MachineOperand::CreateImm(MI->getOpcode()));
1281
Cond.push_back(MI->getOperand(0));
1282
TII->reverseBranchCondition(Cond);
1283
1284
// Add an unconditional branch to the destination and invert the branch
1285
// condition to jump over it:
1286
// bteqz L1
1287
// =>
1288
// bnez L2
1289
// b L1
1290
// L2:
1291
1292
// If the branch is at the end of its MBB and that has a fall-through block,
1293
// direct the updated conditional branch to the fall-through block. Otherwise,
1294
// split the MBB before the next instruction.
1295
MachineBasicBlock *MBB = MI->getParent();
1296
MachineInstr *BMI = &MBB->back();
1297
bool NeedSplit = (BMI != MI) || !bbHasFallthrough(MBB);
1298
1299
++NumCBrFixed;
1300
if (BMI != MI) {
1301
if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1302
BMI->isUnconditionalBranch()) {
1303
// Last MI in the BB is an unconditional branch. Can we simply invert the
1304
// condition and swap destinations:
1305
// beqz L1
1306
// b L2
1307
// =>
1308
// bnez L2
1309
// b L1
1310
MachineBasicBlock *NewDest = TII->getBranchDestBlock(*BMI);
1311
if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1312
LLVM_DEBUG(
1313
dbgs() << " Invert Bcc condition and swap its destination with "
1314
<< *BMI);
1315
BMI->getOperand(BMI->getNumExplicitOperands() - 1).setMBB(DestBB);
1316
MI->getOperand(MI->getNumExplicitOperands() - 1).setMBB(NewDest);
1317
1318
MI->setDesc(TII->get(Cond[0].getImm()));
1319
return true;
1320
}
1321
}
1322
}
1323
1324
if (NeedSplit) {
1325
splitBlockBeforeInstr(*MI);
1326
// No need for the branch to the next block. We're adding an unconditional
1327
// branch to the destination.
1328
int Delta = TII->getInstSizeInBytes(MBB->back());
1329
BBInfo[MBB->getNumber()].Size -= Delta;
1330
MBB->back().eraseFromParent();
1331
// BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1332
1333
// The conditional successor will be swapped between the BBs after this, so
1334
// update CFG.
1335
MBB->addSuccessor(DestBB);
1336
std::next(MBB->getIterator())->removeSuccessor(DestBB);
1337
}
1338
MachineBasicBlock *NextBB = &*++MBB->getIterator();
1339
1340
LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB)
1341
<< " also invert condition and change dest. to "
1342
<< printMBBReference(*NextBB) << "\n");
1343
1344
// Insert a new conditional branch and a new unconditional branch.
1345
// Also update the ImmBranch as well as adding a new entry for the new branch.
1346
1347
BuildMI(MBB, DebugLoc(), TII->get(Cond[0].getImm()))
1348
.addReg(MI->getOperand(0).getReg())
1349
.addMBB(NextBB);
1350
1351
Br.MI = &MBB->back();
1352
BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1353
BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1354
BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1355
unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1356
ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1357
1358
// Remove the old conditional branch. It may or may not still be in MBB.
1359
BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1360
MI->eraseFromParent();
1361
adjustBBOffsetsAfter(MBB);
1362
return true;
1363
}
1364
1365
/// Returns a pass that converts branches to long branches.
1366
FunctionPass *llvm::createCSKYConstantIslandPass() {
1367
return new CSKYConstantIslands();
1368
}
1369
1370
INITIALIZE_PASS(CSKYConstantIslands, DEBUG_TYPE,
1371
"CSKY constant island placement and branch shortening pass",
1372
false, false)
1373
1374