Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp
35293 views
1
//===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Bitcode writer implementation.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "DXILBitcodeWriter.h"
14
#include "DXILValueEnumerator.h"
15
#include "DirectXIRPasses/PointerTypeAnalysis.h"
16
#include "llvm/ADT/STLExtras.h"
17
#include "llvm/Bitcode/BitcodeCommon.h"
18
#include "llvm/Bitcode/BitcodeReader.h"
19
#include "llvm/Bitcode/LLVMBitCodes.h"
20
#include "llvm/Bitstream/BitCodes.h"
21
#include "llvm/Bitstream/BitstreamWriter.h"
22
#include "llvm/IR/Attributes.h"
23
#include "llvm/IR/BasicBlock.h"
24
#include "llvm/IR/Comdat.h"
25
#include "llvm/IR/Constant.h"
26
#include "llvm/IR/Constants.h"
27
#include "llvm/IR/DebugInfoMetadata.h"
28
#include "llvm/IR/DebugLoc.h"
29
#include "llvm/IR/DerivedTypes.h"
30
#include "llvm/IR/Function.h"
31
#include "llvm/IR/GlobalAlias.h"
32
#include "llvm/IR/GlobalIFunc.h"
33
#include "llvm/IR/GlobalObject.h"
34
#include "llvm/IR/GlobalValue.h"
35
#include "llvm/IR/GlobalVariable.h"
36
#include "llvm/IR/InlineAsm.h"
37
#include "llvm/IR/InstrTypes.h"
38
#include "llvm/IR/Instruction.h"
39
#include "llvm/IR/Instructions.h"
40
#include "llvm/IR/LLVMContext.h"
41
#include "llvm/IR/Metadata.h"
42
#include "llvm/IR/Module.h"
43
#include "llvm/IR/ModuleSummaryIndex.h"
44
#include "llvm/IR/Operator.h"
45
#include "llvm/IR/Type.h"
46
#include "llvm/IR/UseListOrder.h"
47
#include "llvm/IR/Value.h"
48
#include "llvm/IR/ValueSymbolTable.h"
49
#include "llvm/Object/IRSymtab.h"
50
#include "llvm/Support/ErrorHandling.h"
51
#include "llvm/Support/ModRef.h"
52
#include "llvm/Support/SHA1.h"
53
#include "llvm/TargetParser/Triple.h"
54
55
namespace llvm {
56
namespace dxil {
57
58
// Generates an enum to use as an index in the Abbrev array of Metadata record.
59
enum MetadataAbbrev : unsigned {
60
#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
61
#include "llvm/IR/Metadata.def"
62
LastPlusOne
63
};
64
65
class DXILBitcodeWriter {
66
67
/// These are manifest constants used by the bitcode writer. They do not need
68
/// to be kept in sync with the reader, but need to be consistent within this
69
/// file.
70
enum {
71
// VALUE_SYMTAB_BLOCK abbrev id's.
72
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
73
VST_ENTRY_7_ABBREV,
74
VST_ENTRY_6_ABBREV,
75
VST_BBENTRY_6_ABBREV,
76
77
// CONSTANTS_BLOCK abbrev id's.
78
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
79
CONSTANTS_INTEGER_ABBREV,
80
CONSTANTS_CE_CAST_Abbrev,
81
CONSTANTS_NULL_Abbrev,
82
83
// FUNCTION_BLOCK abbrev id's.
84
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
85
FUNCTION_INST_BINOP_ABBREV,
86
FUNCTION_INST_BINOP_FLAGS_ABBREV,
87
FUNCTION_INST_CAST_ABBREV,
88
FUNCTION_INST_RET_VOID_ABBREV,
89
FUNCTION_INST_RET_VAL_ABBREV,
90
FUNCTION_INST_UNREACHABLE_ABBREV,
91
FUNCTION_INST_GEP_ABBREV,
92
};
93
94
// Cache some types
95
Type *I8Ty;
96
Type *I8PtrTy;
97
98
/// The stream created and owned by the client.
99
BitstreamWriter &Stream;
100
101
StringTableBuilder &StrtabBuilder;
102
103
/// The Module to write to bitcode.
104
const Module &M;
105
106
/// Enumerates ids for all values in the module.
107
ValueEnumerator VE;
108
109
/// Map that holds the correspondence between GUIDs in the summary index,
110
/// that came from indirect call profiles, and a value id generated by this
111
/// class to use in the VST and summary block records.
112
std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
113
114
/// Tracks the last value id recorded in the GUIDToValueMap.
115
unsigned GlobalValueId;
116
117
/// Saves the offset of the VSTOffset record that must eventually be
118
/// backpatched with the offset of the actual VST.
119
uint64_t VSTOffsetPlaceholder = 0;
120
121
/// Pointer to the buffer allocated by caller for bitcode writing.
122
const SmallVectorImpl<char> &Buffer;
123
124
/// The start bit of the identification block.
125
uint64_t BitcodeStartBit;
126
127
/// This maps values to their typed pointers
128
PointerTypeMap PointerMap;
129
130
public:
131
/// Constructs a ModuleBitcodeWriter object for the given Module,
132
/// writing to the provided \p Buffer.
133
DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
134
StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
135
: I8Ty(Type::getInt8Ty(M.getContext())),
136
I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
137
StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
138
BitcodeStartBit(Stream.GetCurrentBitNo()),
139
PointerMap(PointerTypeAnalysis::run(M)) {
140
GlobalValueId = VE.getValues().size();
141
// Enumerate the typed pointers
142
for (auto El : PointerMap)
143
VE.EnumerateType(El.second);
144
}
145
146
/// Emit the current module to the bitstream.
147
void write();
148
149
static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
150
static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
151
StringRef Str, unsigned AbbrevToUse);
152
static void writeIdentificationBlock(BitstreamWriter &Stream);
153
static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
154
static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
155
156
static unsigned getEncodedComdatSelectionKind(const Comdat &C);
157
static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
158
static unsigned getEncodedLinkage(const GlobalValue &GV);
159
static unsigned getEncodedVisibility(const GlobalValue &GV);
160
static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
161
static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
162
static unsigned getEncodedCastOpcode(unsigned Opcode);
163
static unsigned getEncodedUnaryOpcode(unsigned Opcode);
164
static unsigned getEncodedBinaryOpcode(unsigned Opcode);
165
static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
166
static unsigned getEncodedOrdering(AtomicOrdering Ordering);
167
static uint64_t getOptimizationFlags(const Value *V);
168
169
private:
170
void writeModuleVersion();
171
void writePerModuleGlobalValueSummary();
172
173
void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
174
GlobalValueSummary *Summary,
175
unsigned ValueID,
176
unsigned FSCallsAbbrev,
177
unsigned FSCallsProfileAbbrev,
178
const Function &F);
179
void writeModuleLevelReferences(const GlobalVariable &V,
180
SmallVector<uint64_t, 64> &NameVals,
181
unsigned FSModRefsAbbrev,
182
unsigned FSModVTableRefsAbbrev);
183
184
void assignValueId(GlobalValue::GUID ValGUID) {
185
GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
186
}
187
188
unsigned getValueId(GlobalValue::GUID ValGUID) {
189
const auto &VMI = GUIDToValueIdMap.find(ValGUID);
190
// Expect that any GUID value had a value Id assigned by an
191
// earlier call to assignValueId.
192
assert(VMI != GUIDToValueIdMap.end() &&
193
"GUID does not have assigned value Id");
194
return VMI->second;
195
}
196
197
// Helper to get the valueId for the type of value recorded in VI.
198
unsigned getValueId(ValueInfo VI) {
199
if (!VI.haveGVs() || !VI.getValue())
200
return getValueId(VI.getGUID());
201
return VE.getValueID(VI.getValue());
202
}
203
204
std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
205
206
uint64_t bitcodeStartBit() { return BitcodeStartBit; }
207
208
size_t addToStrtab(StringRef Str);
209
210
unsigned createDILocationAbbrev();
211
unsigned createGenericDINodeAbbrev();
212
213
void writeAttributeGroupTable();
214
void writeAttributeTable();
215
void writeTypeTable();
216
void writeComdats();
217
void writeValueSymbolTableForwardDecl();
218
void writeModuleInfo();
219
void writeValueAsMetadata(const ValueAsMetadata *MD,
220
SmallVectorImpl<uint64_t> &Record);
221
void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
222
unsigned Abbrev);
223
void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
224
unsigned &Abbrev);
225
void writeGenericDINode(const GenericDINode *N,
226
SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
227
llvm_unreachable("DXIL cannot contain GenericDI Nodes");
228
}
229
void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
230
unsigned Abbrev);
231
void writeDIGenericSubrange(const DIGenericSubrange *N,
232
SmallVectorImpl<uint64_t> &Record,
233
unsigned Abbrev) {
234
llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
235
}
236
void writeDIEnumerator(const DIEnumerator *N,
237
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
238
void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
239
unsigned Abbrev);
240
void writeDIStringType(const DIStringType *N,
241
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
242
llvm_unreachable("DXIL cannot contain DIStringType Nodes");
243
}
244
void writeDIDerivedType(const DIDerivedType *N,
245
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
246
void writeDICompositeType(const DICompositeType *N,
247
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
248
void writeDISubroutineType(const DISubroutineType *N,
249
SmallVectorImpl<uint64_t> &Record,
250
unsigned Abbrev);
251
void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
252
unsigned Abbrev);
253
void writeDICompileUnit(const DICompileUnit *N,
254
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
255
void writeDISubprogram(const DISubprogram *N,
256
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
257
void writeDILexicalBlock(const DILexicalBlock *N,
258
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
259
void writeDILexicalBlockFile(const DILexicalBlockFile *N,
260
SmallVectorImpl<uint64_t> &Record,
261
unsigned Abbrev);
262
void writeDICommonBlock(const DICommonBlock *N,
263
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
264
llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
265
}
266
void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
267
unsigned Abbrev);
268
void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
269
unsigned Abbrev) {
270
llvm_unreachable("DXIL cannot contain DIMacro Nodes");
271
}
272
void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
273
unsigned Abbrev) {
274
llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
275
}
276
void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
277
unsigned Abbrev) {
278
llvm_unreachable("DXIL cannot contain DIArgList Nodes");
279
}
280
void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
281
unsigned Abbrev) {
282
// DIAssignID is experimental feature to track variable location in IR..
283
// FIXME: translate DIAssignID to debug info DXIL supports.
284
// See https://github.com/llvm/llvm-project/issues/58989
285
llvm_unreachable("DXIL cannot contain DIAssignID Nodes");
286
}
287
void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
288
unsigned Abbrev);
289
void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
290
SmallVectorImpl<uint64_t> &Record,
291
unsigned Abbrev);
292
void writeDITemplateValueParameter(const DITemplateValueParameter *N,
293
SmallVectorImpl<uint64_t> &Record,
294
unsigned Abbrev);
295
void writeDIGlobalVariable(const DIGlobalVariable *N,
296
SmallVectorImpl<uint64_t> &Record,
297
unsigned Abbrev);
298
void writeDILocalVariable(const DILocalVariable *N,
299
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
300
void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
301
unsigned Abbrev) {
302
llvm_unreachable("DXIL cannot contain DILabel Nodes");
303
}
304
void writeDIExpression(const DIExpression *N,
305
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
306
void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
307
SmallVectorImpl<uint64_t> &Record,
308
unsigned Abbrev) {
309
llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
310
}
311
void writeDIObjCProperty(const DIObjCProperty *N,
312
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313
void writeDIImportedEntity(const DIImportedEntity *N,
314
SmallVectorImpl<uint64_t> &Record,
315
unsigned Abbrev);
316
unsigned createNamedMetadataAbbrev();
317
void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
318
unsigned createMetadataStringsAbbrev();
319
void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
320
SmallVectorImpl<uint64_t> &Record);
321
void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
322
SmallVectorImpl<uint64_t> &Record,
323
std::vector<unsigned> *MDAbbrevs = nullptr,
324
std::vector<uint64_t> *IndexPos = nullptr);
325
void writeModuleMetadata();
326
void writeFunctionMetadata(const Function &F);
327
void writeFunctionMetadataAttachment(const Function &F);
328
void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
329
const GlobalObject &GO);
330
void writeModuleMetadataKinds();
331
void writeOperandBundleTags();
332
void writeSyncScopeNames();
333
void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
334
void writeModuleConstants();
335
bool pushValueAndType(const Value *V, unsigned InstID,
336
SmallVectorImpl<unsigned> &Vals);
337
void writeOperandBundles(const CallBase &CB, unsigned InstID);
338
void pushValue(const Value *V, unsigned InstID,
339
SmallVectorImpl<unsigned> &Vals);
340
void pushValueSigned(const Value *V, unsigned InstID,
341
SmallVectorImpl<uint64_t> &Vals);
342
void writeInstruction(const Instruction &I, unsigned InstID,
343
SmallVectorImpl<unsigned> &Vals);
344
void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
345
void writeGlobalValueSymbolTable(
346
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
347
void writeFunction(const Function &F);
348
void writeBlockInfo();
349
350
unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
351
352
unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
353
354
unsigned getTypeID(Type *T, const Value *V = nullptr);
355
/// getGlobalObjectValueTypeID - returns the element type for a GlobalObject
356
///
357
/// GlobalObject types are saved by PointerTypeAnalysis as pointers to the
358
/// GlobalObject, but in the bitcode writer we need the pointer element type.
359
unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G);
360
};
361
362
} // namespace dxil
363
} // namespace llvm
364
365
using namespace llvm;
366
using namespace llvm::dxil;
367
368
////////////////////////////////////////////////////////////////////////////////
369
/// Begin dxil::BitcodeWriter Implementation
370
////////////////////////////////////////////////////////////////////////////////
371
372
dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
373
: Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
374
// Emit the file header.
375
Stream->Emit((unsigned)'B', 8);
376
Stream->Emit((unsigned)'C', 8);
377
Stream->Emit(0x0, 4);
378
Stream->Emit(0xC, 4);
379
Stream->Emit(0xE, 4);
380
Stream->Emit(0xD, 4);
381
}
382
383
dxil::BitcodeWriter::~BitcodeWriter() { }
384
385
/// Write the specified module to the specified output stream.
386
void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
387
SmallVector<char, 0> Buffer;
388
Buffer.reserve(256 * 1024);
389
390
// If this is darwin or another generic macho target, reserve space for the
391
// header.
392
Triple TT(M.getTargetTriple());
393
if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
394
Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
395
396
BitcodeWriter Writer(Buffer);
397
Writer.writeModule(M);
398
399
// Write the generated bitstream to "Out".
400
if (!Buffer.empty())
401
Out.write((char *)&Buffer.front(), Buffer.size());
402
}
403
404
void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
405
Stream->EnterSubblock(Block, 3);
406
407
auto Abbv = std::make_shared<BitCodeAbbrev>();
408
Abbv->Add(BitCodeAbbrevOp(Record));
409
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
410
auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
411
412
Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
413
414
Stream->ExitBlock();
415
}
416
417
void BitcodeWriter::writeModule(const Module &M) {
418
419
// The Mods vector is used by irsymtab::build, which requires non-const
420
// Modules in case it needs to materialize metadata. But the bitcode writer
421
// requires that the module is materialized, so we can cast to non-const here,
422
// after checking that it is in fact materialized.
423
assert(M.isMaterialized());
424
Mods.push_back(const_cast<Module *>(&M));
425
426
DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
427
ModuleWriter.write();
428
}
429
430
////////////////////////////////////////////////////////////////////////////////
431
/// Begin dxil::BitcodeWriterBase Implementation
432
////////////////////////////////////////////////////////////////////////////////
433
434
unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
435
switch (Opcode) {
436
default:
437
llvm_unreachable("Unknown cast instruction!");
438
case Instruction::Trunc:
439
return bitc::CAST_TRUNC;
440
case Instruction::ZExt:
441
return bitc::CAST_ZEXT;
442
case Instruction::SExt:
443
return bitc::CAST_SEXT;
444
case Instruction::FPToUI:
445
return bitc::CAST_FPTOUI;
446
case Instruction::FPToSI:
447
return bitc::CAST_FPTOSI;
448
case Instruction::UIToFP:
449
return bitc::CAST_UITOFP;
450
case Instruction::SIToFP:
451
return bitc::CAST_SITOFP;
452
case Instruction::FPTrunc:
453
return bitc::CAST_FPTRUNC;
454
case Instruction::FPExt:
455
return bitc::CAST_FPEXT;
456
case Instruction::PtrToInt:
457
return bitc::CAST_PTRTOINT;
458
case Instruction::IntToPtr:
459
return bitc::CAST_INTTOPTR;
460
case Instruction::BitCast:
461
return bitc::CAST_BITCAST;
462
case Instruction::AddrSpaceCast:
463
return bitc::CAST_ADDRSPACECAST;
464
}
465
}
466
467
unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
468
switch (Opcode) {
469
default:
470
llvm_unreachable("Unknown binary instruction!");
471
case Instruction::FNeg:
472
return bitc::UNOP_FNEG;
473
}
474
}
475
476
unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
477
switch (Opcode) {
478
default:
479
llvm_unreachable("Unknown binary instruction!");
480
case Instruction::Add:
481
case Instruction::FAdd:
482
return bitc::BINOP_ADD;
483
case Instruction::Sub:
484
case Instruction::FSub:
485
return bitc::BINOP_SUB;
486
case Instruction::Mul:
487
case Instruction::FMul:
488
return bitc::BINOP_MUL;
489
case Instruction::UDiv:
490
return bitc::BINOP_UDIV;
491
case Instruction::FDiv:
492
case Instruction::SDiv:
493
return bitc::BINOP_SDIV;
494
case Instruction::URem:
495
return bitc::BINOP_UREM;
496
case Instruction::FRem:
497
case Instruction::SRem:
498
return bitc::BINOP_SREM;
499
case Instruction::Shl:
500
return bitc::BINOP_SHL;
501
case Instruction::LShr:
502
return bitc::BINOP_LSHR;
503
case Instruction::AShr:
504
return bitc::BINOP_ASHR;
505
case Instruction::And:
506
return bitc::BINOP_AND;
507
case Instruction::Or:
508
return bitc::BINOP_OR;
509
case Instruction::Xor:
510
return bitc::BINOP_XOR;
511
}
512
}
513
514
unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
515
if (!T->isPointerTy() &&
516
// For Constant, always check PointerMap to make sure OpaquePointer in
517
// things like constant struct/array works.
518
(!V || !isa<Constant>(V)))
519
return VE.getTypeID(T);
520
auto It = PointerMap.find(V);
521
if (It != PointerMap.end())
522
return VE.getTypeID(It->second);
523
// For Constant, return T when cannot find in PointerMap.
524
// FIXME: support ConstantPointerNull which could map to more than one
525
// TypedPointerType.
526
// See https://github.com/llvm/llvm-project/issues/57942.
527
if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V))
528
return VE.getTypeID(T);
529
return VE.getTypeID(I8PtrTy);
530
}
531
532
unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T,
533
const GlobalObject *G) {
534
auto It = PointerMap.find(G);
535
if (It != PointerMap.end()) {
536
TypedPointerType *PtrTy = cast<TypedPointerType>(It->second);
537
return VE.getTypeID(PtrTy->getElementType());
538
}
539
return VE.getTypeID(T);
540
}
541
542
unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
543
switch (Op) {
544
default:
545
llvm_unreachable("Unknown RMW operation!");
546
case AtomicRMWInst::Xchg:
547
return bitc::RMW_XCHG;
548
case AtomicRMWInst::Add:
549
return bitc::RMW_ADD;
550
case AtomicRMWInst::Sub:
551
return bitc::RMW_SUB;
552
case AtomicRMWInst::And:
553
return bitc::RMW_AND;
554
case AtomicRMWInst::Nand:
555
return bitc::RMW_NAND;
556
case AtomicRMWInst::Or:
557
return bitc::RMW_OR;
558
case AtomicRMWInst::Xor:
559
return bitc::RMW_XOR;
560
case AtomicRMWInst::Max:
561
return bitc::RMW_MAX;
562
case AtomicRMWInst::Min:
563
return bitc::RMW_MIN;
564
case AtomicRMWInst::UMax:
565
return bitc::RMW_UMAX;
566
case AtomicRMWInst::UMin:
567
return bitc::RMW_UMIN;
568
case AtomicRMWInst::FAdd:
569
return bitc::RMW_FADD;
570
case AtomicRMWInst::FSub:
571
return bitc::RMW_FSUB;
572
case AtomicRMWInst::FMax:
573
return bitc::RMW_FMAX;
574
case AtomicRMWInst::FMin:
575
return bitc::RMW_FMIN;
576
}
577
}
578
579
unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
580
switch (Ordering) {
581
case AtomicOrdering::NotAtomic:
582
return bitc::ORDERING_NOTATOMIC;
583
case AtomicOrdering::Unordered:
584
return bitc::ORDERING_UNORDERED;
585
case AtomicOrdering::Monotonic:
586
return bitc::ORDERING_MONOTONIC;
587
case AtomicOrdering::Acquire:
588
return bitc::ORDERING_ACQUIRE;
589
case AtomicOrdering::Release:
590
return bitc::ORDERING_RELEASE;
591
case AtomicOrdering::AcquireRelease:
592
return bitc::ORDERING_ACQREL;
593
case AtomicOrdering::SequentiallyConsistent:
594
return bitc::ORDERING_SEQCST;
595
}
596
llvm_unreachable("Invalid ordering");
597
}
598
599
void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
600
unsigned Code, StringRef Str,
601
unsigned AbbrevToUse) {
602
SmallVector<unsigned, 64> Vals;
603
604
// Code: [strchar x N]
605
for (char C : Str) {
606
if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
607
AbbrevToUse = 0;
608
Vals.push_back(C);
609
}
610
611
// Emit the finished record.
612
Stream.EmitRecord(Code, Vals, AbbrevToUse);
613
}
614
615
uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
616
switch (Kind) {
617
case Attribute::Alignment:
618
return bitc::ATTR_KIND_ALIGNMENT;
619
case Attribute::AlwaysInline:
620
return bitc::ATTR_KIND_ALWAYS_INLINE;
621
case Attribute::Builtin:
622
return bitc::ATTR_KIND_BUILTIN;
623
case Attribute::ByVal:
624
return bitc::ATTR_KIND_BY_VAL;
625
case Attribute::Convergent:
626
return bitc::ATTR_KIND_CONVERGENT;
627
case Attribute::InAlloca:
628
return bitc::ATTR_KIND_IN_ALLOCA;
629
case Attribute::Cold:
630
return bitc::ATTR_KIND_COLD;
631
case Attribute::InlineHint:
632
return bitc::ATTR_KIND_INLINE_HINT;
633
case Attribute::InReg:
634
return bitc::ATTR_KIND_IN_REG;
635
case Attribute::JumpTable:
636
return bitc::ATTR_KIND_JUMP_TABLE;
637
case Attribute::MinSize:
638
return bitc::ATTR_KIND_MIN_SIZE;
639
case Attribute::Naked:
640
return bitc::ATTR_KIND_NAKED;
641
case Attribute::Nest:
642
return bitc::ATTR_KIND_NEST;
643
case Attribute::NoAlias:
644
return bitc::ATTR_KIND_NO_ALIAS;
645
case Attribute::NoBuiltin:
646
return bitc::ATTR_KIND_NO_BUILTIN;
647
case Attribute::NoCapture:
648
return bitc::ATTR_KIND_NO_CAPTURE;
649
case Attribute::NoDuplicate:
650
return bitc::ATTR_KIND_NO_DUPLICATE;
651
case Attribute::NoImplicitFloat:
652
return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
653
case Attribute::NoInline:
654
return bitc::ATTR_KIND_NO_INLINE;
655
case Attribute::NonLazyBind:
656
return bitc::ATTR_KIND_NON_LAZY_BIND;
657
case Attribute::NonNull:
658
return bitc::ATTR_KIND_NON_NULL;
659
case Attribute::Dereferenceable:
660
return bitc::ATTR_KIND_DEREFERENCEABLE;
661
case Attribute::DereferenceableOrNull:
662
return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
663
case Attribute::NoRedZone:
664
return bitc::ATTR_KIND_NO_RED_ZONE;
665
case Attribute::NoReturn:
666
return bitc::ATTR_KIND_NO_RETURN;
667
case Attribute::NoUnwind:
668
return bitc::ATTR_KIND_NO_UNWIND;
669
case Attribute::OptimizeForSize:
670
return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
671
case Attribute::OptimizeNone:
672
return bitc::ATTR_KIND_OPTIMIZE_NONE;
673
case Attribute::ReadNone:
674
return bitc::ATTR_KIND_READ_NONE;
675
case Attribute::ReadOnly:
676
return bitc::ATTR_KIND_READ_ONLY;
677
case Attribute::Returned:
678
return bitc::ATTR_KIND_RETURNED;
679
case Attribute::ReturnsTwice:
680
return bitc::ATTR_KIND_RETURNS_TWICE;
681
case Attribute::SExt:
682
return bitc::ATTR_KIND_S_EXT;
683
case Attribute::StackAlignment:
684
return bitc::ATTR_KIND_STACK_ALIGNMENT;
685
case Attribute::StackProtect:
686
return bitc::ATTR_KIND_STACK_PROTECT;
687
case Attribute::StackProtectReq:
688
return bitc::ATTR_KIND_STACK_PROTECT_REQ;
689
case Attribute::StackProtectStrong:
690
return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
691
case Attribute::SafeStack:
692
return bitc::ATTR_KIND_SAFESTACK;
693
case Attribute::StructRet:
694
return bitc::ATTR_KIND_STRUCT_RET;
695
case Attribute::SanitizeAddress:
696
return bitc::ATTR_KIND_SANITIZE_ADDRESS;
697
case Attribute::SanitizeThread:
698
return bitc::ATTR_KIND_SANITIZE_THREAD;
699
case Attribute::SanitizeMemory:
700
return bitc::ATTR_KIND_SANITIZE_MEMORY;
701
case Attribute::UWTable:
702
return bitc::ATTR_KIND_UW_TABLE;
703
case Attribute::ZExt:
704
return bitc::ATTR_KIND_Z_EXT;
705
case Attribute::EndAttrKinds:
706
llvm_unreachable("Can not encode end-attribute kinds marker.");
707
case Attribute::None:
708
llvm_unreachable("Can not encode none-attribute.");
709
case Attribute::EmptyKey:
710
case Attribute::TombstoneKey:
711
llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
712
default:
713
llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
714
"should be stripped in DXILPrepare");
715
}
716
717
llvm_unreachable("Trying to encode unknown attribute");
718
}
719
720
void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
721
uint64_t V) {
722
if ((int64_t)V >= 0)
723
Vals.push_back(V << 1);
724
else
725
Vals.push_back((-V << 1) | 1);
726
}
727
728
void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
729
const APInt &A) {
730
// We have an arbitrary precision integer value to write whose
731
// bit width is > 64. However, in canonical unsigned integer
732
// format it is likely that the high bits are going to be zero.
733
// So, we only write the number of active words.
734
unsigned NumWords = A.getActiveWords();
735
const uint64_t *RawData = A.getRawData();
736
for (unsigned i = 0; i < NumWords; i++)
737
emitSignedInt64(Vals, RawData[i]);
738
}
739
740
uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
741
uint64_t Flags = 0;
742
743
if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
744
if (OBO->hasNoSignedWrap())
745
Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
746
if (OBO->hasNoUnsignedWrap())
747
Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
748
} else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
749
if (PEO->isExact())
750
Flags |= 1 << bitc::PEO_EXACT;
751
} else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
752
if (FPMO->hasAllowReassoc())
753
Flags |= bitc::AllowReassoc;
754
if (FPMO->hasNoNaNs())
755
Flags |= bitc::NoNaNs;
756
if (FPMO->hasNoInfs())
757
Flags |= bitc::NoInfs;
758
if (FPMO->hasNoSignedZeros())
759
Flags |= bitc::NoSignedZeros;
760
if (FPMO->hasAllowReciprocal())
761
Flags |= bitc::AllowReciprocal;
762
if (FPMO->hasAllowContract())
763
Flags |= bitc::AllowContract;
764
if (FPMO->hasApproxFunc())
765
Flags |= bitc::ApproxFunc;
766
}
767
768
return Flags;
769
}
770
771
unsigned
772
DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
773
switch (Linkage) {
774
case GlobalValue::ExternalLinkage:
775
return 0;
776
case GlobalValue::WeakAnyLinkage:
777
return 16;
778
case GlobalValue::AppendingLinkage:
779
return 2;
780
case GlobalValue::InternalLinkage:
781
return 3;
782
case GlobalValue::LinkOnceAnyLinkage:
783
return 18;
784
case GlobalValue::ExternalWeakLinkage:
785
return 7;
786
case GlobalValue::CommonLinkage:
787
return 8;
788
case GlobalValue::PrivateLinkage:
789
return 9;
790
case GlobalValue::WeakODRLinkage:
791
return 17;
792
case GlobalValue::LinkOnceODRLinkage:
793
return 19;
794
case GlobalValue::AvailableExternallyLinkage:
795
return 12;
796
}
797
llvm_unreachable("Invalid linkage");
798
}
799
800
unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
801
return getEncodedLinkage(GV.getLinkage());
802
}
803
804
unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
805
switch (GV.getVisibility()) {
806
case GlobalValue::DefaultVisibility:
807
return 0;
808
case GlobalValue::HiddenVisibility:
809
return 1;
810
case GlobalValue::ProtectedVisibility:
811
return 2;
812
}
813
llvm_unreachable("Invalid visibility");
814
}
815
816
unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
817
switch (GV.getDLLStorageClass()) {
818
case GlobalValue::DefaultStorageClass:
819
return 0;
820
case GlobalValue::DLLImportStorageClass:
821
return 1;
822
case GlobalValue::DLLExportStorageClass:
823
return 2;
824
}
825
llvm_unreachable("Invalid DLL storage class");
826
}
827
828
unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
829
switch (GV.getThreadLocalMode()) {
830
case GlobalVariable::NotThreadLocal:
831
return 0;
832
case GlobalVariable::GeneralDynamicTLSModel:
833
return 1;
834
case GlobalVariable::LocalDynamicTLSModel:
835
return 2;
836
case GlobalVariable::InitialExecTLSModel:
837
return 3;
838
case GlobalVariable::LocalExecTLSModel:
839
return 4;
840
}
841
llvm_unreachable("Invalid TLS model");
842
}
843
844
unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
845
switch (C.getSelectionKind()) {
846
case Comdat::Any:
847
return bitc::COMDAT_SELECTION_KIND_ANY;
848
case Comdat::ExactMatch:
849
return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
850
case Comdat::Largest:
851
return bitc::COMDAT_SELECTION_KIND_LARGEST;
852
case Comdat::NoDeduplicate:
853
return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
854
case Comdat::SameSize:
855
return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
856
}
857
llvm_unreachable("Invalid selection kind");
858
}
859
860
////////////////////////////////////////////////////////////////////////////////
861
/// Begin DXILBitcodeWriter Implementation
862
////////////////////////////////////////////////////////////////////////////////
863
864
void DXILBitcodeWriter::writeAttributeGroupTable() {
865
const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
866
VE.getAttributeGroups();
867
if (AttrGrps.empty())
868
return;
869
870
Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
871
872
SmallVector<uint64_t, 64> Record;
873
for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
874
unsigned AttrListIndex = Pair.first;
875
AttributeSet AS = Pair.second;
876
Record.push_back(VE.getAttributeGroupID(Pair));
877
Record.push_back(AttrListIndex);
878
879
for (Attribute Attr : AS) {
880
if (Attr.isEnumAttribute()) {
881
uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
882
assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
883
"DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
884
Record.push_back(0);
885
Record.push_back(Val);
886
} else if (Attr.isIntAttribute()) {
887
if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) {
888
MemoryEffects ME = Attr.getMemoryEffects();
889
if (ME.doesNotAccessMemory()) {
890
Record.push_back(0);
891
Record.push_back(bitc::ATTR_KIND_READ_NONE);
892
} else {
893
if (ME.onlyReadsMemory()) {
894
Record.push_back(0);
895
Record.push_back(bitc::ATTR_KIND_READ_ONLY);
896
}
897
if (ME.onlyAccessesArgPointees()) {
898
Record.push_back(0);
899
Record.push_back(bitc::ATTR_KIND_ARGMEMONLY);
900
}
901
}
902
} else {
903
uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
904
assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
905
"DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
906
Record.push_back(1);
907
Record.push_back(Val);
908
Record.push_back(Attr.getValueAsInt());
909
}
910
} else {
911
StringRef Kind = Attr.getKindAsString();
912
StringRef Val = Attr.getValueAsString();
913
914
Record.push_back(Val.empty() ? 3 : 4);
915
Record.append(Kind.begin(), Kind.end());
916
Record.push_back(0);
917
if (!Val.empty()) {
918
Record.append(Val.begin(), Val.end());
919
Record.push_back(0);
920
}
921
}
922
}
923
924
Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
925
Record.clear();
926
}
927
928
Stream.ExitBlock();
929
}
930
931
void DXILBitcodeWriter::writeAttributeTable() {
932
const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
933
if (Attrs.empty())
934
return;
935
936
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
937
938
SmallVector<uint64_t, 64> Record;
939
for (AttributeList AL : Attrs) {
940
for (unsigned i : AL.indexes()) {
941
AttributeSet AS = AL.getAttributes(i);
942
if (AS.hasAttributes())
943
Record.push_back(VE.getAttributeGroupID({i, AS}));
944
}
945
946
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
947
Record.clear();
948
}
949
950
Stream.ExitBlock();
951
}
952
953
/// WriteTypeTable - Write out the type table for a module.
954
void DXILBitcodeWriter::writeTypeTable() {
955
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
956
957
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
958
SmallVector<uint64_t, 64> TypeVals;
959
960
uint64_t NumBits = VE.computeBitsRequiredForTypeIndices();
961
962
// Abbrev for TYPE_CODE_POINTER.
963
auto Abbv = std::make_shared<BitCodeAbbrev>();
964
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
965
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
966
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
967
unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
968
969
// Abbrev for TYPE_CODE_FUNCTION.
970
Abbv = std::make_shared<BitCodeAbbrev>();
971
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
972
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
973
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
974
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
975
unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
976
977
// Abbrev for TYPE_CODE_STRUCT_ANON.
978
Abbv = std::make_shared<BitCodeAbbrev>();
979
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
980
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
981
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
982
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
983
unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
984
985
// Abbrev for TYPE_CODE_STRUCT_NAME.
986
Abbv = std::make_shared<BitCodeAbbrev>();
987
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
988
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
989
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
990
unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
991
992
// Abbrev for TYPE_CODE_STRUCT_NAMED.
993
Abbv = std::make_shared<BitCodeAbbrev>();
994
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
995
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
996
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
997
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
998
unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
999
1000
// Abbrev for TYPE_CODE_ARRAY.
1001
Abbv = std::make_shared<BitCodeAbbrev>();
1002
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1003
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1004
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1005
unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1006
1007
// Emit an entry count so the reader can reserve space.
1008
TypeVals.push_back(TypeList.size());
1009
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1010
TypeVals.clear();
1011
1012
// Loop over all of the types, emitting each in turn.
1013
for (Type *T : TypeList) {
1014
int AbbrevToUse = 0;
1015
unsigned Code = 0;
1016
1017
switch (T->getTypeID()) {
1018
case Type::BFloatTyID:
1019
case Type::X86_AMXTyID:
1020
case Type::TokenTyID:
1021
case Type::TargetExtTyID:
1022
llvm_unreachable("These should never be used!!!");
1023
break;
1024
case Type::VoidTyID:
1025
Code = bitc::TYPE_CODE_VOID;
1026
break;
1027
case Type::HalfTyID:
1028
Code = bitc::TYPE_CODE_HALF;
1029
break;
1030
case Type::FloatTyID:
1031
Code = bitc::TYPE_CODE_FLOAT;
1032
break;
1033
case Type::DoubleTyID:
1034
Code = bitc::TYPE_CODE_DOUBLE;
1035
break;
1036
case Type::X86_FP80TyID:
1037
Code = bitc::TYPE_CODE_X86_FP80;
1038
break;
1039
case Type::FP128TyID:
1040
Code = bitc::TYPE_CODE_FP128;
1041
break;
1042
case Type::PPC_FP128TyID:
1043
Code = bitc::TYPE_CODE_PPC_FP128;
1044
break;
1045
case Type::LabelTyID:
1046
Code = bitc::TYPE_CODE_LABEL;
1047
break;
1048
case Type::MetadataTyID:
1049
Code = bitc::TYPE_CODE_METADATA;
1050
break;
1051
case Type::X86_MMXTyID:
1052
Code = bitc::TYPE_CODE_X86_MMX;
1053
break;
1054
case Type::IntegerTyID:
1055
// INTEGER: [width]
1056
Code = bitc::TYPE_CODE_INTEGER;
1057
TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1058
break;
1059
case Type::TypedPointerTyID: {
1060
TypedPointerType *PTy = cast<TypedPointerType>(T);
1061
// POINTER: [pointee type, address space]
1062
Code = bitc::TYPE_CODE_POINTER;
1063
TypeVals.push_back(getTypeID(PTy->getElementType()));
1064
unsigned AddressSpace = PTy->getAddressSpace();
1065
TypeVals.push_back(AddressSpace);
1066
if (AddressSpace == 0)
1067
AbbrevToUse = PtrAbbrev;
1068
break;
1069
}
1070
case Type::PointerTyID: {
1071
// POINTER: [pointee type, address space]
1072
// Emitting an empty struct type for the pointer's type allows this to be
1073
// order-independent. Non-struct types must be emitted in bitcode before
1074
// they can be referenced.
1075
TypeVals.push_back(false);
1076
Code = bitc::TYPE_CODE_OPAQUE;
1077
writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
1078
"dxilOpaquePtrReservedName", StructNameAbbrev);
1079
break;
1080
}
1081
case Type::FunctionTyID: {
1082
FunctionType *FT = cast<FunctionType>(T);
1083
// FUNCTION: [isvararg, retty, paramty x N]
1084
Code = bitc::TYPE_CODE_FUNCTION;
1085
TypeVals.push_back(FT->isVarArg());
1086
TypeVals.push_back(getTypeID(FT->getReturnType()));
1087
for (Type *PTy : FT->params())
1088
TypeVals.push_back(getTypeID(PTy));
1089
AbbrevToUse = FunctionAbbrev;
1090
break;
1091
}
1092
case Type::StructTyID: {
1093
StructType *ST = cast<StructType>(T);
1094
// STRUCT: [ispacked, eltty x N]
1095
TypeVals.push_back(ST->isPacked());
1096
// Output all of the element types.
1097
for (Type *ElTy : ST->elements())
1098
TypeVals.push_back(getTypeID(ElTy));
1099
1100
if (ST->isLiteral()) {
1101
Code = bitc::TYPE_CODE_STRUCT_ANON;
1102
AbbrevToUse = StructAnonAbbrev;
1103
} else {
1104
if (ST->isOpaque()) {
1105
Code = bitc::TYPE_CODE_OPAQUE;
1106
} else {
1107
Code = bitc::TYPE_CODE_STRUCT_NAMED;
1108
AbbrevToUse = StructNamedAbbrev;
1109
}
1110
1111
// Emit the name if it is present.
1112
if (!ST->getName().empty())
1113
writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1114
StructNameAbbrev);
1115
}
1116
break;
1117
}
1118
case Type::ArrayTyID: {
1119
ArrayType *AT = cast<ArrayType>(T);
1120
// ARRAY: [numelts, eltty]
1121
Code = bitc::TYPE_CODE_ARRAY;
1122
TypeVals.push_back(AT->getNumElements());
1123
TypeVals.push_back(getTypeID(AT->getElementType()));
1124
AbbrevToUse = ArrayAbbrev;
1125
break;
1126
}
1127
case Type::FixedVectorTyID:
1128
case Type::ScalableVectorTyID: {
1129
VectorType *VT = cast<VectorType>(T);
1130
// VECTOR [numelts, eltty]
1131
Code = bitc::TYPE_CODE_VECTOR;
1132
TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1133
TypeVals.push_back(getTypeID(VT->getElementType()));
1134
break;
1135
}
1136
}
1137
1138
// Emit the finished record.
1139
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1140
TypeVals.clear();
1141
}
1142
1143
Stream.ExitBlock();
1144
}
1145
1146
void DXILBitcodeWriter::writeComdats() {
1147
SmallVector<uint16_t, 64> Vals;
1148
for (const Comdat *C : VE.getComdats()) {
1149
// COMDAT: [selection_kind, name]
1150
Vals.push_back(getEncodedComdatSelectionKind(*C));
1151
size_t Size = C->getName().size();
1152
assert(isUInt<16>(Size));
1153
Vals.push_back(Size);
1154
for (char Chr : C->getName())
1155
Vals.push_back((unsigned char)Chr);
1156
Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1157
Vals.clear();
1158
}
1159
}
1160
1161
void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1162
1163
/// Emit top-level description of module, including target triple, inline asm,
1164
/// descriptors for global variables, and function prototype info.
1165
/// Returns the bit offset to backpatch with the location of the real VST.
1166
void DXILBitcodeWriter::writeModuleInfo() {
1167
// Emit various pieces of data attached to a module.
1168
if (!M.getTargetTriple().empty())
1169
writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1170
0 /*TODO*/);
1171
const std::string &DL = M.getDataLayoutStr();
1172
if (!DL.empty())
1173
writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1174
if (!M.getModuleInlineAsm().empty())
1175
writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1176
0 /*TODO*/);
1177
1178
// Emit information about sections and GC, computing how many there are. Also
1179
// compute the maximum alignment value.
1180
std::map<std::string, unsigned> SectionMap;
1181
std::map<std::string, unsigned> GCMap;
1182
MaybeAlign MaxAlignment;
1183
unsigned MaxGlobalType = 0;
1184
const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1185
if (A)
1186
MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1187
};
1188
for (const GlobalVariable &GV : M.globals()) {
1189
UpdateMaxAlignment(GV.getAlign());
1190
// Use getGlobalObjectValueTypeID to look up the enumerated type ID for
1191
// Global Variable types.
1192
MaxGlobalType = std::max(
1193
MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1194
if (GV.hasSection()) {
1195
// Give section names unique ID's.
1196
unsigned &Entry = SectionMap[std::string(GV.getSection())];
1197
if (!Entry) {
1198
writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
1199
GV.getSection(), 0 /*TODO*/);
1200
Entry = SectionMap.size();
1201
}
1202
}
1203
}
1204
for (const Function &F : M) {
1205
UpdateMaxAlignment(F.getAlign());
1206
if (F.hasSection()) {
1207
// Give section names unique ID's.
1208
unsigned &Entry = SectionMap[std::string(F.getSection())];
1209
if (!Entry) {
1210
writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1211
0 /*TODO*/);
1212
Entry = SectionMap.size();
1213
}
1214
}
1215
if (F.hasGC()) {
1216
// Same for GC names.
1217
unsigned &Entry = GCMap[F.getGC()];
1218
if (!Entry) {
1219
writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1220
0 /*TODO*/);
1221
Entry = GCMap.size();
1222
}
1223
}
1224
}
1225
1226
// Emit abbrev for globals, now that we know # sections and max alignment.
1227
unsigned SimpleGVarAbbrev = 0;
1228
if (!M.global_empty()) {
1229
// Add an abbrev for common globals with no visibility or thread
1230
// localness.
1231
auto Abbv = std::make_shared<BitCodeAbbrev>();
1232
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1233
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1234
Log2_32_Ceil(MaxGlobalType + 1)));
1235
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1236
//| explicitType << 1
1237
//| constant
1238
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1239
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1240
if (!MaxAlignment) // Alignment.
1241
Abbv->Add(BitCodeAbbrevOp(0));
1242
else {
1243
unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1244
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1245
Log2_32_Ceil(MaxEncAlignment + 1)));
1246
}
1247
if (SectionMap.empty()) // Section.
1248
Abbv->Add(BitCodeAbbrevOp(0));
1249
else
1250
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1251
Log2_32_Ceil(SectionMap.size() + 1)));
1252
// Don't bother emitting vis + thread local.
1253
SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1254
}
1255
1256
// Emit the global variable information.
1257
SmallVector<unsigned, 64> Vals;
1258
for (const GlobalVariable &GV : M.globals()) {
1259
unsigned AbbrevToUse = 0;
1260
1261
// GLOBALVAR: [type, isconst, initid,
1262
// linkage, alignment, section, visibility, threadlocal,
1263
// unnamed_addr, externally_initialized, dllstorageclass,
1264
// comdat]
1265
Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1266
Vals.push_back(
1267
GV.getType()->getAddressSpace() << 2 | 2 |
1268
(GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1269
// unsigned int and bool
1270
Vals.push_back(
1271
GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
1272
Vals.push_back(getEncodedLinkage(GV));
1273
Vals.push_back(getEncodedAlign(GV.getAlign()));
1274
Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1275
: 0);
1276
if (GV.isThreadLocal() ||
1277
GV.getVisibility() != GlobalValue::DefaultVisibility ||
1278
GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1279
GV.isExternallyInitialized() ||
1280
GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1281
GV.hasComdat()) {
1282
Vals.push_back(getEncodedVisibility(GV));
1283
Vals.push_back(getEncodedThreadLocalMode(GV));
1284
Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1285
Vals.push_back(GV.isExternallyInitialized());
1286
Vals.push_back(getEncodedDLLStorageClass(GV));
1287
Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1288
} else {
1289
AbbrevToUse = SimpleGVarAbbrev;
1290
}
1291
1292
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1293
Vals.clear();
1294
}
1295
1296
// Emit the function proto information.
1297
for (const Function &F : M) {
1298
// FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
1299
// section, visibility, gc, unnamed_addr, prologuedata,
1300
// dllstorageclass, comdat, prefixdata, personalityfn]
1301
Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F));
1302
Vals.push_back(F.getCallingConv());
1303
Vals.push_back(F.isDeclaration());
1304
Vals.push_back(getEncodedLinkage(F));
1305
Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1306
Vals.push_back(getEncodedAlign(F.getAlign()));
1307
Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1308
: 0);
1309
Vals.push_back(getEncodedVisibility(F));
1310
Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1311
Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1312
Vals.push_back(
1313
F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
1314
Vals.push_back(getEncodedDLLStorageClass(F));
1315
Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1316
Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1317
: 0);
1318
Vals.push_back(
1319
F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1320
1321
unsigned AbbrevToUse = 0;
1322
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1323
Vals.clear();
1324
}
1325
1326
// Emit the alias information.
1327
for (const GlobalAlias &A : M.aliases()) {
1328
// ALIAS: [alias type, aliasee val#, linkage, visibility]
1329
Vals.push_back(getTypeID(A.getValueType(), &A));
1330
Vals.push_back(VE.getValueID(A.getAliasee()));
1331
Vals.push_back(getEncodedLinkage(A));
1332
Vals.push_back(getEncodedVisibility(A));
1333
Vals.push_back(getEncodedDLLStorageClass(A));
1334
Vals.push_back(getEncodedThreadLocalMode(A));
1335
Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1336
unsigned AbbrevToUse = 0;
1337
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
1338
Vals.clear();
1339
}
1340
}
1341
1342
void DXILBitcodeWriter::writeValueAsMetadata(
1343
const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1344
// Mimic an MDNode with a value as one operand.
1345
Value *V = MD->getValue();
1346
Type *Ty = V->getType();
1347
if (Function *F = dyn_cast<Function>(V))
1348
Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
1349
else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1350
Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
1351
Record.push_back(getTypeID(Ty));
1352
Record.push_back(VE.getValueID(V));
1353
Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1354
Record.clear();
1355
}
1356
1357
void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
1358
SmallVectorImpl<uint64_t> &Record,
1359
unsigned Abbrev) {
1360
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1361
Metadata *MD = N->getOperand(i);
1362
assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1363
"Unexpected function-local metadata");
1364
Record.push_back(VE.getMetadataOrNullID(MD));
1365
}
1366
Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1367
: bitc::METADATA_NODE,
1368
Record, Abbrev);
1369
Record.clear();
1370
}
1371
1372
void DXILBitcodeWriter::writeDILocation(const DILocation *N,
1373
SmallVectorImpl<uint64_t> &Record,
1374
unsigned &Abbrev) {
1375
if (!Abbrev)
1376
Abbrev = createDILocationAbbrev();
1377
Record.push_back(N->isDistinct());
1378
Record.push_back(N->getLine());
1379
Record.push_back(N->getColumn());
1380
Record.push_back(VE.getMetadataID(N->getScope()));
1381
Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1382
1383
Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1384
Record.clear();
1385
}
1386
1387
static uint64_t rotateSign(APInt Val) {
1388
int64_t I = Val.getSExtValue();
1389
uint64_t U = I;
1390
return I < 0 ? ~(U << 1) : U << 1;
1391
}
1392
1393
void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
1394
SmallVectorImpl<uint64_t> &Record,
1395
unsigned Abbrev) {
1396
Record.push_back(N->isDistinct());
1397
1398
// TODO: Do we need to handle DIExpression here? What about cases where Count
1399
// isn't specified but UpperBound and such are?
1400
ConstantInt *Count = N->getCount().dyn_cast<ConstantInt *>();
1401
assert(Count && "Count is missing or not ConstantInt");
1402
Record.push_back(Count->getValue().getSExtValue());
1403
1404
// TODO: Similarly, DIExpression is allowed here now
1405
DISubrange::BoundType LowerBound = N->getLowerBound();
1406
assert((LowerBound.isNull() || LowerBound.is<ConstantInt *>()) &&
1407
"Lower bound provided but not ConstantInt");
1408
Record.push_back(
1409
LowerBound ? rotateSign(LowerBound.get<ConstantInt *>()->getValue()) : 0);
1410
1411
Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1412
Record.clear();
1413
}
1414
1415
void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1416
SmallVectorImpl<uint64_t> &Record,
1417
unsigned Abbrev) {
1418
Record.push_back(N->isDistinct());
1419
Record.push_back(rotateSign(N->getValue()));
1420
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1421
1422
Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1423
Record.clear();
1424
}
1425
1426
void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1427
SmallVectorImpl<uint64_t> &Record,
1428
unsigned Abbrev) {
1429
Record.push_back(N->isDistinct());
1430
Record.push_back(N->getTag());
1431
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1432
Record.push_back(N->getSizeInBits());
1433
Record.push_back(N->getAlignInBits());
1434
Record.push_back(N->getEncoding());
1435
1436
Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1437
Record.clear();
1438
}
1439
1440
void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1441
SmallVectorImpl<uint64_t> &Record,
1442
unsigned Abbrev) {
1443
Record.push_back(N->isDistinct());
1444
Record.push_back(N->getTag());
1445
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1446
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1447
Record.push_back(N->getLine());
1448
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1449
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1450
Record.push_back(N->getSizeInBits());
1451
Record.push_back(N->getAlignInBits());
1452
Record.push_back(N->getOffsetInBits());
1453
Record.push_back(N->getFlags());
1454
Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1455
1456
Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1457
Record.clear();
1458
}
1459
1460
void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
1461
SmallVectorImpl<uint64_t> &Record,
1462
unsigned Abbrev) {
1463
Record.push_back(N->isDistinct());
1464
Record.push_back(N->getTag());
1465
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1466
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1467
Record.push_back(N->getLine());
1468
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1469
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1470
Record.push_back(N->getSizeInBits());
1471
Record.push_back(N->getAlignInBits());
1472
Record.push_back(N->getOffsetInBits());
1473
Record.push_back(N->getFlags());
1474
Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1475
Record.push_back(N->getRuntimeLang());
1476
Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1477
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1478
Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1479
1480
Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1481
Record.clear();
1482
}
1483
1484
void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
1485
SmallVectorImpl<uint64_t> &Record,
1486
unsigned Abbrev) {
1487
Record.push_back(N->isDistinct());
1488
Record.push_back(N->getFlags());
1489
Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1490
1491
Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1492
Record.clear();
1493
}
1494
1495
void DXILBitcodeWriter::writeDIFile(const DIFile *N,
1496
SmallVectorImpl<uint64_t> &Record,
1497
unsigned Abbrev) {
1498
Record.push_back(N->isDistinct());
1499
Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1500
Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1501
1502
Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1503
Record.clear();
1504
}
1505
1506
void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1507
SmallVectorImpl<uint64_t> &Record,
1508
unsigned Abbrev) {
1509
Record.push_back(N->isDistinct());
1510
Record.push_back(N->getSourceLanguage());
1511
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1512
Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1513
Record.push_back(N->isOptimized());
1514
Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1515
Record.push_back(N->getRuntimeVersion());
1516
Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1517
Record.push_back(N->getEmissionKind());
1518
Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1519
Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1520
Record.push_back(/* subprograms */ 0);
1521
Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1522
Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1523
Record.push_back(N->getDWOId());
1524
1525
Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1526
Record.clear();
1527
}
1528
1529
void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1530
SmallVectorImpl<uint64_t> &Record,
1531
unsigned Abbrev) {
1532
Record.push_back(N->isDistinct());
1533
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1534
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1535
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1536
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1537
Record.push_back(N->getLine());
1538
Record.push_back(VE.getMetadataOrNullID(N->getType()));
1539
Record.push_back(N->isLocalToUnit());
1540
Record.push_back(N->isDefinition());
1541
Record.push_back(N->getScopeLine());
1542
Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1543
Record.push_back(N->getVirtuality());
1544
Record.push_back(N->getVirtualIndex());
1545
Record.push_back(N->getFlags());
1546
Record.push_back(N->isOptimized());
1547
Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1548
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1549
Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1550
Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1551
1552
Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1553
Record.clear();
1554
}
1555
1556
void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1557
SmallVectorImpl<uint64_t> &Record,
1558
unsigned Abbrev) {
1559
Record.push_back(N->isDistinct());
1560
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1561
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1562
Record.push_back(N->getLine());
1563
Record.push_back(N->getColumn());
1564
1565
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1566
Record.clear();
1567
}
1568
1569
void DXILBitcodeWriter::writeDILexicalBlockFile(
1570
const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1571
unsigned Abbrev) {
1572
Record.push_back(N->isDistinct());
1573
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1574
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1575
Record.push_back(N->getDiscriminator());
1576
1577
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1578
Record.clear();
1579
}
1580
1581
void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
1582
SmallVectorImpl<uint64_t> &Record,
1583
unsigned Abbrev) {
1584
Record.push_back(N->isDistinct());
1585
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1586
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1587
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1588
Record.push_back(/* line number */ 0);
1589
1590
Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1591
Record.clear();
1592
}
1593
1594
void DXILBitcodeWriter::writeDIModule(const DIModule *N,
1595
SmallVectorImpl<uint64_t> &Record,
1596
unsigned Abbrev) {
1597
Record.push_back(N->isDistinct());
1598
for (auto &I : N->operands())
1599
Record.push_back(VE.getMetadataOrNullID(I));
1600
1601
Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1602
Record.clear();
1603
}
1604
1605
void DXILBitcodeWriter::writeDITemplateTypeParameter(
1606
const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1607
unsigned Abbrev) {
1608
Record.push_back(N->isDistinct());
1609
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1610
Record.push_back(VE.getMetadataOrNullID(N->getType()));
1611
1612
Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1613
Record.clear();
1614
}
1615
1616
void DXILBitcodeWriter::writeDITemplateValueParameter(
1617
const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1618
unsigned Abbrev) {
1619
Record.push_back(N->isDistinct());
1620
Record.push_back(N->getTag());
1621
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1622
Record.push_back(VE.getMetadataOrNullID(N->getType()));
1623
Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1624
1625
Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1626
Record.clear();
1627
}
1628
1629
void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
1630
SmallVectorImpl<uint64_t> &Record,
1631
unsigned Abbrev) {
1632
Record.push_back(N->isDistinct());
1633
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1634
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1635
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1636
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1637
Record.push_back(N->getLine());
1638
Record.push_back(VE.getMetadataOrNullID(N->getType()));
1639
Record.push_back(N->isLocalToUnit());
1640
Record.push_back(N->isDefinition());
1641
Record.push_back(/* N->getRawVariable() */ 0);
1642
Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1643
1644
Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1645
Record.clear();
1646
}
1647
1648
void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
1649
SmallVectorImpl<uint64_t> &Record,
1650
unsigned Abbrev) {
1651
Record.push_back(N->isDistinct());
1652
Record.push_back(N->getTag());
1653
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1654
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1655
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1656
Record.push_back(N->getLine());
1657
Record.push_back(VE.getMetadataOrNullID(N->getType()));
1658
Record.push_back(N->getArg());
1659
Record.push_back(N->getFlags());
1660
1661
Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1662
Record.clear();
1663
}
1664
1665
void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
1666
SmallVectorImpl<uint64_t> &Record,
1667
unsigned Abbrev) {
1668
Record.reserve(N->getElements().size() + 1);
1669
1670
Record.push_back(N->isDistinct());
1671
Record.append(N->elements_begin(), N->elements_end());
1672
1673
Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1674
Record.clear();
1675
}
1676
1677
void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1678
SmallVectorImpl<uint64_t> &Record,
1679
unsigned Abbrev) {
1680
llvm_unreachable("DXIL does not support objc!!!");
1681
}
1682
1683
void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
1684
SmallVectorImpl<uint64_t> &Record,
1685
unsigned Abbrev) {
1686
Record.push_back(N->isDistinct());
1687
Record.push_back(N->getTag());
1688
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1689
Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1690
Record.push_back(N->getLine());
1691
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1692
1693
Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1694
Record.clear();
1695
}
1696
1697
unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1698
// Abbrev for METADATA_LOCATION.
1699
//
1700
// Assume the column is usually under 128, and always output the inlined-at
1701
// location (it's never more expensive than building an array size 1).
1702
std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1703
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1704
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1705
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1706
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1707
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1708
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1709
return Stream.EmitAbbrev(std::move(Abbv));
1710
}
1711
1712
unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1713
// Abbrev for METADATA_GENERIC_DEBUG.
1714
//
1715
// Assume the column is usually under 128, and always output the inlined-at
1716
// location (it's never more expensive than building an array size 1).
1717
std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1718
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1719
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1720
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1721
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1722
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1723
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1724
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1725
return Stream.EmitAbbrev(std::move(Abbv));
1726
}
1727
1728
void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
1729
SmallVectorImpl<uint64_t> &Record,
1730
std::vector<unsigned> *MDAbbrevs,
1731
std::vector<uint64_t> *IndexPos) {
1732
if (MDs.empty())
1733
return;
1734
1735
// Initialize MDNode abbreviations.
1736
#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1737
#include "llvm/IR/Metadata.def"
1738
1739
for (const Metadata *MD : MDs) {
1740
if (IndexPos)
1741
IndexPos->push_back(Stream.GetCurrentBitNo());
1742
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1743
assert(N->isResolved() && "Expected forward references to be resolved");
1744
1745
switch (N->getMetadataID()) {
1746
default:
1747
llvm_unreachable("Invalid MDNode subclass");
1748
#define HANDLE_MDNODE_LEAF(CLASS) \
1749
case Metadata::CLASS##Kind: \
1750
if (MDAbbrevs) \
1751
write##CLASS(cast<CLASS>(N), Record, \
1752
(*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
1753
else \
1754
write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
1755
continue;
1756
#include "llvm/IR/Metadata.def"
1757
}
1758
}
1759
writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1760
}
1761
}
1762
1763
unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1764
auto Abbv = std::make_shared<BitCodeAbbrev>();
1765
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
1766
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1767
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1768
return Stream.EmitAbbrev(std::move(Abbv));
1769
}
1770
1771
void DXILBitcodeWriter::writeMetadataStrings(
1772
ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1773
if (Strings.empty())
1774
return;
1775
1776
unsigned MDSAbbrev = createMetadataStringsAbbrev();
1777
1778
for (const Metadata *MD : Strings) {
1779
const MDString *MDS = cast<MDString>(MD);
1780
// Code: [strchar x N]
1781
Record.append(MDS->bytes_begin(), MDS->bytes_end());
1782
1783
// Emit the finished record.
1784
Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev);
1785
Record.clear();
1786
}
1787
}
1788
1789
void DXILBitcodeWriter::writeModuleMetadata() {
1790
if (!VE.hasMDs() && M.named_metadata_empty())
1791
return;
1792
1793
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
1794
1795
// Emit all abbrevs upfront, so that the reader can jump in the middle of the
1796
// block and load any metadata.
1797
std::vector<unsigned> MDAbbrevs;
1798
1799
MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1800
MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1801
MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1802
createGenericDINodeAbbrev();
1803
1804
unsigned NameAbbrev = 0;
1805
if (!M.named_metadata_empty()) {
1806
// Abbrev for METADATA_NAME.
1807
std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1808
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1809
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1810
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1811
NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1812
}
1813
1814
SmallVector<uint64_t, 64> Record;
1815
writeMetadataStrings(VE.getMDStrings(), Record);
1816
1817
std::vector<uint64_t> IndexPos;
1818
IndexPos.reserve(VE.getNonMDStrings().size());
1819
writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1820
1821
// Write named metadata.
1822
for (const NamedMDNode &NMD : M.named_metadata()) {
1823
// Write name.
1824
StringRef Str = NMD.getName();
1825
Record.append(Str.bytes_begin(), Str.bytes_end());
1826
Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1827
Record.clear();
1828
1829
// Write named metadata operands.
1830
for (const MDNode *N : NMD.operands())
1831
Record.push_back(VE.getMetadataID(N));
1832
Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1833
Record.clear();
1834
}
1835
1836
Stream.ExitBlock();
1837
}
1838
1839
void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
1840
if (!VE.hasMDs())
1841
return;
1842
1843
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1844
SmallVector<uint64_t, 64> Record;
1845
writeMetadataStrings(VE.getMDStrings(), Record);
1846
writeMetadataRecords(VE.getNonMDStrings(), Record);
1847
Stream.ExitBlock();
1848
}
1849
1850
void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1851
Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1852
1853
SmallVector<uint64_t, 64> Record;
1854
1855
// Write metadata attachments
1856
// METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1857
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1858
F.getAllMetadata(MDs);
1859
if (!MDs.empty()) {
1860
for (const auto &I : MDs) {
1861
Record.push_back(I.first);
1862
Record.push_back(VE.getMetadataID(I.second));
1863
}
1864
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1865
Record.clear();
1866
}
1867
1868
for (const BasicBlock &BB : F)
1869
for (const Instruction &I : BB) {
1870
MDs.clear();
1871
I.getAllMetadataOtherThanDebugLoc(MDs);
1872
1873
// If no metadata, ignore instruction.
1874
if (MDs.empty())
1875
continue;
1876
1877
Record.push_back(VE.getInstructionID(&I));
1878
1879
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1880
Record.push_back(MDs[i].first);
1881
Record.push_back(VE.getMetadataID(MDs[i].second));
1882
}
1883
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1884
Record.clear();
1885
}
1886
1887
Stream.ExitBlock();
1888
}
1889
1890
void DXILBitcodeWriter::writeModuleMetadataKinds() {
1891
SmallVector<uint64_t, 64> Record;
1892
1893
// Write metadata kinds
1894
// METADATA_KIND - [n x [id, name]]
1895
SmallVector<StringRef, 8> Names;
1896
M.getMDKindNames(Names);
1897
1898
if (Names.empty())
1899
return;
1900
1901
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1902
1903
for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1904
Record.push_back(MDKindID);
1905
StringRef KName = Names[MDKindID];
1906
Record.append(KName.begin(), KName.end());
1907
1908
Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1909
Record.clear();
1910
}
1911
1912
Stream.ExitBlock();
1913
}
1914
1915
void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1916
bool isGlobal) {
1917
if (FirstVal == LastVal)
1918
return;
1919
1920
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1921
1922
unsigned AggregateAbbrev = 0;
1923
unsigned String8Abbrev = 0;
1924
unsigned CString7Abbrev = 0;
1925
unsigned CString6Abbrev = 0;
1926
// If this is a constant pool for the module, emit module-specific abbrevs.
1927
if (isGlobal) {
1928
// Abbrev for CST_CODE_AGGREGATE.
1929
auto Abbv = std::make_shared<BitCodeAbbrev>();
1930
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1931
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1932
Abbv->Add(
1933
BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
1934
AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1935
1936
// Abbrev for CST_CODE_STRING.
1937
Abbv = std::make_shared<BitCodeAbbrev>();
1938
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1939
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1940
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1941
String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1942
// Abbrev for CST_CODE_CSTRING.
1943
Abbv = std::make_shared<BitCodeAbbrev>();
1944
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1945
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1946
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1947
CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1948
// Abbrev for CST_CODE_CSTRING.
1949
Abbv = std::make_shared<BitCodeAbbrev>();
1950
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1951
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1952
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1953
CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1954
}
1955
1956
SmallVector<uint64_t, 64> Record;
1957
1958
const ValueEnumerator::ValueList &Vals = VE.getValues();
1959
Type *LastTy = nullptr;
1960
for (unsigned i = FirstVal; i != LastVal; ++i) {
1961
const Value *V = Vals[i].first;
1962
// If we need to switch types, do so now.
1963
if (V->getType() != LastTy) {
1964
LastTy = V->getType();
1965
Record.push_back(getTypeID(LastTy, V));
1966
Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1967
CONSTANTS_SETTYPE_ABBREV);
1968
Record.clear();
1969
}
1970
1971
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1972
Record.push_back(unsigned(IA->hasSideEffects()) |
1973
unsigned(IA->isAlignStack()) << 1 |
1974
unsigned(IA->getDialect() & 1) << 2);
1975
1976
// Add the asm string.
1977
const std::string &AsmStr = IA->getAsmString();
1978
Record.push_back(AsmStr.size());
1979
Record.append(AsmStr.begin(), AsmStr.end());
1980
1981
// Add the constraint string.
1982
const std::string &ConstraintStr = IA->getConstraintString();
1983
Record.push_back(ConstraintStr.size());
1984
Record.append(ConstraintStr.begin(), ConstraintStr.end());
1985
Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1986
Record.clear();
1987
continue;
1988
}
1989
const Constant *C = cast<Constant>(V);
1990
unsigned Code = -1U;
1991
unsigned AbbrevToUse = 0;
1992
if (C->isNullValue()) {
1993
Code = bitc::CST_CODE_NULL;
1994
} else if (isa<UndefValue>(C)) {
1995
Code = bitc::CST_CODE_UNDEF;
1996
} else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1997
if (IV->getBitWidth() <= 64) {
1998
uint64_t V = IV->getSExtValue();
1999
emitSignedInt64(Record, V);
2000
Code = bitc::CST_CODE_INTEGER;
2001
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2002
} else { // Wide integers, > 64 bits in size.
2003
// We have an arbitrary precision integer value to write whose
2004
// bit width is > 64. However, in canonical unsigned integer
2005
// format it is likely that the high bits are going to be zero.
2006
// So, we only write the number of active words.
2007
unsigned NWords = IV->getValue().getActiveWords();
2008
const uint64_t *RawWords = IV->getValue().getRawData();
2009
for (unsigned i = 0; i != NWords; ++i) {
2010
emitSignedInt64(Record, RawWords[i]);
2011
}
2012
Code = bitc::CST_CODE_WIDE_INTEGER;
2013
}
2014
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2015
Code = bitc::CST_CODE_FLOAT;
2016
Type *Ty = CFP->getType();
2017
if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2018
Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2019
} else if (Ty->isX86_FP80Ty()) {
2020
// api needed to prevent premature destruction
2021
// bits are not in the same order as a normal i80 APInt, compensate.
2022
APInt api = CFP->getValueAPF().bitcastToAPInt();
2023
const uint64_t *p = api.getRawData();
2024
Record.push_back((p[1] << 48) | (p[0] >> 16));
2025
Record.push_back(p[0] & 0xffffLL);
2026
} else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2027
APInt api = CFP->getValueAPF().bitcastToAPInt();
2028
const uint64_t *p = api.getRawData();
2029
Record.push_back(p[0]);
2030
Record.push_back(p[1]);
2031
} else {
2032
assert(0 && "Unknown FP type!");
2033
}
2034
} else if (isa<ConstantDataSequential>(C) &&
2035
cast<ConstantDataSequential>(C)->isString()) {
2036
const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2037
// Emit constant strings specially.
2038
unsigned NumElts = Str->getNumElements();
2039
// If this is a null-terminated string, use the denser CSTRING encoding.
2040
if (Str->isCString()) {
2041
Code = bitc::CST_CODE_CSTRING;
2042
--NumElts; // Don't encode the null, which isn't allowed by char6.
2043
} else {
2044
Code = bitc::CST_CODE_STRING;
2045
AbbrevToUse = String8Abbrev;
2046
}
2047
bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2048
bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2049
for (unsigned i = 0; i != NumElts; ++i) {
2050
unsigned char V = Str->getElementAsInteger(i);
2051
Record.push_back(V);
2052
isCStr7 &= (V & 128) == 0;
2053
if (isCStrChar6)
2054
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2055
}
2056
2057
if (isCStrChar6)
2058
AbbrevToUse = CString6Abbrev;
2059
else if (isCStr7)
2060
AbbrevToUse = CString7Abbrev;
2061
} else if (const ConstantDataSequential *CDS =
2062
dyn_cast<ConstantDataSequential>(C)) {
2063
Code = bitc::CST_CODE_DATA;
2064
Type *EltTy = CDS->getElementType();
2065
if (isa<IntegerType>(EltTy)) {
2066
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2067
Record.push_back(CDS->getElementAsInteger(i));
2068
} else if (EltTy->isFloatTy()) {
2069
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2070
union {
2071
float F;
2072
uint32_t I;
2073
};
2074
F = CDS->getElementAsFloat(i);
2075
Record.push_back(I);
2076
}
2077
} else {
2078
assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
2079
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2080
union {
2081
double F;
2082
uint64_t I;
2083
};
2084
F = CDS->getElementAsDouble(i);
2085
Record.push_back(I);
2086
}
2087
}
2088
} else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2089
isa<ConstantVector>(C)) {
2090
Code = bitc::CST_CODE_AGGREGATE;
2091
for (const Value *Op : C->operands())
2092
Record.push_back(VE.getValueID(Op));
2093
AbbrevToUse = AggregateAbbrev;
2094
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2095
switch (CE->getOpcode()) {
2096
default:
2097
if (Instruction::isCast(CE->getOpcode())) {
2098
Code = bitc::CST_CODE_CE_CAST;
2099
Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2100
Record.push_back(
2101
getTypeID(C->getOperand(0)->getType(), C->getOperand(0)));
2102
Record.push_back(VE.getValueID(C->getOperand(0)));
2103
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2104
} else {
2105
assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2106
Code = bitc::CST_CODE_CE_BINOP;
2107
Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2108
Record.push_back(VE.getValueID(C->getOperand(0)));
2109
Record.push_back(VE.getValueID(C->getOperand(1)));
2110
uint64_t Flags = getOptimizationFlags(CE);
2111
if (Flags != 0)
2112
Record.push_back(Flags);
2113
}
2114
break;
2115
case Instruction::GetElementPtr: {
2116
Code = bitc::CST_CODE_CE_GEP;
2117
const auto *GO = cast<GEPOperator>(C);
2118
if (GO->isInBounds())
2119
Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2120
Record.push_back(getTypeID(GO->getSourceElementType()));
2121
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2122
Record.push_back(
2123
getTypeID(C->getOperand(i)->getType(), C->getOperand(i)));
2124
Record.push_back(VE.getValueID(C->getOperand(i)));
2125
}
2126
break;
2127
}
2128
case Instruction::Select:
2129
Code = bitc::CST_CODE_CE_SELECT;
2130
Record.push_back(VE.getValueID(C->getOperand(0)));
2131
Record.push_back(VE.getValueID(C->getOperand(1)));
2132
Record.push_back(VE.getValueID(C->getOperand(2)));
2133
break;
2134
case Instruction::ExtractElement:
2135
Code = bitc::CST_CODE_CE_EXTRACTELT;
2136
Record.push_back(getTypeID(C->getOperand(0)->getType()));
2137
Record.push_back(VE.getValueID(C->getOperand(0)));
2138
Record.push_back(getTypeID(C->getOperand(1)->getType()));
2139
Record.push_back(VE.getValueID(C->getOperand(1)));
2140
break;
2141
case Instruction::InsertElement:
2142
Code = bitc::CST_CODE_CE_INSERTELT;
2143
Record.push_back(VE.getValueID(C->getOperand(0)));
2144
Record.push_back(VE.getValueID(C->getOperand(1)));
2145
Record.push_back(getTypeID(C->getOperand(2)->getType()));
2146
Record.push_back(VE.getValueID(C->getOperand(2)));
2147
break;
2148
case Instruction::ShuffleVector:
2149
// If the return type and argument types are the same, this is a
2150
// standard shufflevector instruction. If the types are different,
2151
// then the shuffle is widening or truncating the input vectors, and
2152
// the argument type must also be encoded.
2153
if (C->getType() == C->getOperand(0)->getType()) {
2154
Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2155
} else {
2156
Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2157
Record.push_back(getTypeID(C->getOperand(0)->getType()));
2158
}
2159
Record.push_back(VE.getValueID(C->getOperand(0)));
2160
Record.push_back(VE.getValueID(C->getOperand(1)));
2161
Record.push_back(VE.getValueID(C->getOperand(2)));
2162
break;
2163
}
2164
} else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2165
Code = bitc::CST_CODE_BLOCKADDRESS;
2166
Record.push_back(getTypeID(BA->getFunction()->getType()));
2167
Record.push_back(VE.getValueID(BA->getFunction()));
2168
Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2169
} else {
2170
#ifndef NDEBUG
2171
C->dump();
2172
#endif
2173
llvm_unreachable("Unknown constant!");
2174
}
2175
Stream.EmitRecord(Code, Record, AbbrevToUse);
2176
Record.clear();
2177
}
2178
2179
Stream.ExitBlock();
2180
}
2181
2182
void DXILBitcodeWriter::writeModuleConstants() {
2183
const ValueEnumerator::ValueList &Vals = VE.getValues();
2184
2185
// Find the first constant to emit, which is the first non-globalvalue value.
2186
// We know globalvalues have been emitted by WriteModuleInfo.
2187
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2188
if (!isa<GlobalValue>(Vals[i].first)) {
2189
writeConstants(i, Vals.size(), true);
2190
return;
2191
}
2192
}
2193
}
2194
2195
/// pushValueAndType - The file has to encode both the value and type id for
2196
/// many values, because we need to know what type to create for forward
2197
/// references. However, most operands are not forward references, so this type
2198
/// field is not needed.
2199
///
2200
/// This function adds V's value ID to Vals. If the value ID is higher than the
2201
/// instruction ID, then it is a forward reference, and it also includes the
2202
/// type ID. The value ID that is written is encoded relative to the InstID.
2203
bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2204
SmallVectorImpl<unsigned> &Vals) {
2205
unsigned ValID = VE.getValueID(V);
2206
// Make encoding relative to the InstID.
2207
Vals.push_back(InstID - ValID);
2208
if (ValID >= InstID) {
2209
Vals.push_back(getTypeID(V->getType(), V));
2210
return true;
2211
}
2212
return false;
2213
}
2214
2215
/// pushValue - Like pushValueAndType, but where the type of the value is
2216
/// omitted (perhaps it was already encoded in an earlier operand).
2217
void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2218
SmallVectorImpl<unsigned> &Vals) {
2219
unsigned ValID = VE.getValueID(V);
2220
Vals.push_back(InstID - ValID);
2221
}
2222
2223
void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2224
SmallVectorImpl<uint64_t> &Vals) {
2225
unsigned ValID = VE.getValueID(V);
2226
int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2227
emitSignedInt64(Vals, diff);
2228
}
2229
2230
/// WriteInstruction - Emit an instruction
2231
void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
2232
SmallVectorImpl<unsigned> &Vals) {
2233
unsigned Code = 0;
2234
unsigned AbbrevToUse = 0;
2235
VE.setInstructionID(&I);
2236
switch (I.getOpcode()) {
2237
default:
2238
if (Instruction::isCast(I.getOpcode())) {
2239
Code = bitc::FUNC_CODE_INST_CAST;
2240
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2241
AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
2242
Vals.push_back(getTypeID(I.getType(), &I));
2243
Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2244
} else {
2245
assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2246
Code = bitc::FUNC_CODE_INST_BINOP;
2247
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2248
AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
2249
pushValue(I.getOperand(1), InstID, Vals);
2250
Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2251
uint64_t Flags = getOptimizationFlags(&I);
2252
if (Flags != 0) {
2253
if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
2254
AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
2255
Vals.push_back(Flags);
2256
}
2257
}
2258
break;
2259
2260
case Instruction::GetElementPtr: {
2261
Code = bitc::FUNC_CODE_INST_GEP;
2262
AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
2263
auto &GEPInst = cast<GetElementPtrInst>(I);
2264
Vals.push_back(GEPInst.isInBounds());
2265
Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
2266
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2267
pushValueAndType(I.getOperand(i), InstID, Vals);
2268
break;
2269
}
2270
case Instruction::ExtractValue: {
2271
Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2272
pushValueAndType(I.getOperand(0), InstID, Vals);
2273
const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2274
Vals.append(EVI->idx_begin(), EVI->idx_end());
2275
break;
2276
}
2277
case Instruction::InsertValue: {
2278
Code = bitc::FUNC_CODE_INST_INSERTVAL;
2279
pushValueAndType(I.getOperand(0), InstID, Vals);
2280
pushValueAndType(I.getOperand(1), InstID, Vals);
2281
const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2282
Vals.append(IVI->idx_begin(), IVI->idx_end());
2283
break;
2284
}
2285
case Instruction::Select:
2286
Code = bitc::FUNC_CODE_INST_VSELECT;
2287
pushValueAndType(I.getOperand(1), InstID, Vals);
2288
pushValue(I.getOperand(2), InstID, Vals);
2289
pushValueAndType(I.getOperand(0), InstID, Vals);
2290
break;
2291
case Instruction::ExtractElement:
2292
Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2293
pushValueAndType(I.getOperand(0), InstID, Vals);
2294
pushValueAndType(I.getOperand(1), InstID, Vals);
2295
break;
2296
case Instruction::InsertElement:
2297
Code = bitc::FUNC_CODE_INST_INSERTELT;
2298
pushValueAndType(I.getOperand(0), InstID, Vals);
2299
pushValue(I.getOperand(1), InstID, Vals);
2300
pushValueAndType(I.getOperand(2), InstID, Vals);
2301
break;
2302
case Instruction::ShuffleVector:
2303
Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2304
pushValueAndType(I.getOperand(0), InstID, Vals);
2305
pushValue(I.getOperand(1), InstID, Vals);
2306
pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID,
2307
Vals);
2308
break;
2309
case Instruction::ICmp:
2310
case Instruction::FCmp: {
2311
// compare returning Int1Ty or vector of Int1Ty
2312
Code = bitc::FUNC_CODE_INST_CMP2;
2313
pushValueAndType(I.getOperand(0), InstID, Vals);
2314
pushValue(I.getOperand(1), InstID, Vals);
2315
Vals.push_back(cast<CmpInst>(I).getPredicate());
2316
uint64_t Flags = getOptimizationFlags(&I);
2317
if (Flags != 0)
2318
Vals.push_back(Flags);
2319
break;
2320
}
2321
2322
case Instruction::Ret: {
2323
Code = bitc::FUNC_CODE_INST_RET;
2324
unsigned NumOperands = I.getNumOperands();
2325
if (NumOperands == 0)
2326
AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
2327
else if (NumOperands == 1) {
2328
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2329
AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
2330
} else {
2331
for (unsigned i = 0, e = NumOperands; i != e; ++i)
2332
pushValueAndType(I.getOperand(i), InstID, Vals);
2333
}
2334
} break;
2335
case Instruction::Br: {
2336
Code = bitc::FUNC_CODE_INST_BR;
2337
const BranchInst &II = cast<BranchInst>(I);
2338
Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2339
if (II.isConditional()) {
2340
Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2341
pushValue(II.getCondition(), InstID, Vals);
2342
}
2343
} break;
2344
case Instruction::Switch: {
2345
Code = bitc::FUNC_CODE_INST_SWITCH;
2346
const SwitchInst &SI = cast<SwitchInst>(I);
2347
Vals.push_back(getTypeID(SI.getCondition()->getType()));
2348
pushValue(SI.getCondition(), InstID, Vals);
2349
Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2350
for (auto Case : SI.cases()) {
2351
Vals.push_back(VE.getValueID(Case.getCaseValue()));
2352
Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2353
}
2354
} break;
2355
case Instruction::IndirectBr:
2356
Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2357
Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2358
// Encode the address operand as relative, but not the basic blocks.
2359
pushValue(I.getOperand(0), InstID, Vals);
2360
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2361
Vals.push_back(VE.getValueID(I.getOperand(i)));
2362
break;
2363
2364
case Instruction::Invoke: {
2365
const InvokeInst *II = cast<InvokeInst>(&I);
2366
const Value *Callee = II->getCalledOperand();
2367
FunctionType *FTy = II->getFunctionType();
2368
Code = bitc::FUNC_CODE_INST_INVOKE;
2369
2370
Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2371
Vals.push_back(II->getCallingConv() | 1 << 13);
2372
Vals.push_back(VE.getValueID(II->getNormalDest()));
2373
Vals.push_back(VE.getValueID(II->getUnwindDest()));
2374
Vals.push_back(getTypeID(FTy));
2375
pushValueAndType(Callee, InstID, Vals);
2376
2377
// Emit value #'s for the fixed parameters.
2378
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2379
pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2380
2381
// Emit type/value pairs for varargs params.
2382
if (FTy->isVarArg()) {
2383
for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
2384
++i)
2385
pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2386
}
2387
break;
2388
}
2389
case Instruction::Resume:
2390
Code = bitc::FUNC_CODE_INST_RESUME;
2391
pushValueAndType(I.getOperand(0), InstID, Vals);
2392
break;
2393
case Instruction::Unreachable:
2394
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2395
AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
2396
break;
2397
2398
case Instruction::PHI: {
2399
const PHINode &PN = cast<PHINode>(I);
2400
Code = bitc::FUNC_CODE_INST_PHI;
2401
// With the newer instruction encoding, forward references could give
2402
// negative valued IDs. This is most common for PHIs, so we use
2403
// signed VBRs.
2404
SmallVector<uint64_t, 128> Vals64;
2405
Vals64.push_back(getTypeID(PN.getType()));
2406
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2407
pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2408
Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2409
}
2410
// Emit a Vals64 vector and exit.
2411
Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2412
Vals64.clear();
2413
return;
2414
}
2415
2416
case Instruction::LandingPad: {
2417
const LandingPadInst &LP = cast<LandingPadInst>(I);
2418
Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2419
Vals.push_back(getTypeID(LP.getType()));
2420
Vals.push_back(LP.isCleanup());
2421
Vals.push_back(LP.getNumClauses());
2422
for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2423
if (LP.isCatch(I))
2424
Vals.push_back(LandingPadInst::Catch);
2425
else
2426
Vals.push_back(LandingPadInst::Filter);
2427
pushValueAndType(LP.getClause(I), InstID, Vals);
2428
}
2429
break;
2430
}
2431
2432
case Instruction::Alloca: {
2433
Code = bitc::FUNC_CODE_INST_ALLOCA;
2434
const AllocaInst &AI = cast<AllocaInst>(I);
2435
Vals.push_back(getTypeID(AI.getAllocatedType()));
2436
Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2437
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2438
unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1;
2439
assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2440
AlignRecord |= AI.isUsedWithInAlloca() << 5;
2441
AlignRecord |= 1 << 6;
2442
Vals.push_back(AlignRecord);
2443
break;
2444
}
2445
2446
case Instruction::Load:
2447
if (cast<LoadInst>(I).isAtomic()) {
2448
Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2449
pushValueAndType(I.getOperand(0), InstID, Vals);
2450
} else {
2451
Code = bitc::FUNC_CODE_INST_LOAD;
2452
if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2453
AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
2454
}
2455
Vals.push_back(getTypeID(I.getType()));
2456
Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
2457
Vals.push_back(cast<LoadInst>(I).isVolatile());
2458
if (cast<LoadInst>(I).isAtomic()) {
2459
Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2460
Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2461
}
2462
break;
2463
case Instruction::Store:
2464
if (cast<StoreInst>(I).isAtomic())
2465
Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2466
else
2467
Code = bitc::FUNC_CODE_INST_STORE;
2468
pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2469
pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2470
Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
2471
Vals.push_back(cast<StoreInst>(I).isVolatile());
2472
if (cast<StoreInst>(I).isAtomic()) {
2473
Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2474
Vals.push_back(
2475
getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2476
}
2477
break;
2478
case Instruction::AtomicCmpXchg:
2479
Code = bitc::FUNC_CODE_INST_CMPXCHG;
2480
pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2481
pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2482
pushValue(I.getOperand(2), InstID, Vals); // newval.
2483
Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2484
Vals.push_back(
2485
getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2486
Vals.push_back(
2487
getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2488
Vals.push_back(
2489
getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2490
Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2491
break;
2492
case Instruction::AtomicRMW:
2493
Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2494
pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2495
pushValue(I.getOperand(1), InstID, Vals); // val.
2496
Vals.push_back(
2497
getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2498
Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2499
Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2500
Vals.push_back(
2501
getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2502
break;
2503
case Instruction::Fence:
2504
Code = bitc::FUNC_CODE_INST_FENCE;
2505
Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2506
Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2507
break;
2508
case Instruction::Call: {
2509
const CallInst &CI = cast<CallInst>(I);
2510
FunctionType *FTy = CI.getFunctionType();
2511
2512
Code = bitc::FUNC_CODE_INST_CALL;
2513
2514
Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2515
Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2516
unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2517
Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction()));
2518
pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
2519
2520
// Emit value #'s for the fixed parameters.
2521
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2522
// Check for labels (can happen with asm labels).
2523
if (FTy->getParamType(i)->isLabelTy())
2524
Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2525
else
2526
pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2527
}
2528
2529
// Emit type/value pairs for varargs params.
2530
if (FTy->isVarArg()) {
2531
for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
2532
pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2533
}
2534
break;
2535
}
2536
case Instruction::VAArg:
2537
Code = bitc::FUNC_CODE_INST_VAARG;
2538
Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
2539
pushValue(I.getOperand(0), InstID, Vals); // valist.
2540
Vals.push_back(getTypeID(I.getType())); // restype.
2541
break;
2542
}
2543
2544
Stream.EmitRecord(Code, Vals, AbbrevToUse);
2545
Vals.clear();
2546
}
2547
2548
// Emit names for globals/functions etc.
2549
void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2550
const ValueSymbolTable &VST) {
2551
if (VST.empty())
2552
return;
2553
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2554
2555
SmallVector<unsigned, 64> NameVals;
2556
2557
// HLSL Change
2558
// Read the named values from a sorted list instead of the original list
2559
// to ensure the binary is the same no matter what values ever existed.
2560
SmallVector<const ValueName *, 16> SortedTable;
2561
2562
for (auto &VI : VST) {
2563
SortedTable.push_back(VI.second->getValueName());
2564
}
2565
// The keys are unique, so there shouldn't be stability issues.
2566
llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) {
2567
return A->first() < B->first();
2568
});
2569
2570
for (const ValueName *SI : SortedTable) {
2571
auto &Name = *SI;
2572
2573
// Figure out the encoding to use for the name.
2574
bool is7Bit = true;
2575
bool isChar6 = true;
2576
for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
2577
C != E; ++C) {
2578
if (isChar6)
2579
isChar6 = BitCodeAbbrevOp::isChar6(*C);
2580
if ((unsigned char)*C & 128) {
2581
is7Bit = false;
2582
break; // don't bother scanning the rest.
2583
}
2584
}
2585
2586
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2587
2588
// VST_ENTRY: [valueid, namechar x N]
2589
// VST_BBENTRY: [bbid, namechar x N]
2590
unsigned Code;
2591
if (isa<BasicBlock>(SI->getValue())) {
2592
Code = bitc::VST_CODE_BBENTRY;
2593
if (isChar6)
2594
AbbrevToUse = VST_BBENTRY_6_ABBREV;
2595
} else {
2596
Code = bitc::VST_CODE_ENTRY;
2597
if (isChar6)
2598
AbbrevToUse = VST_ENTRY_6_ABBREV;
2599
else if (is7Bit)
2600
AbbrevToUse = VST_ENTRY_7_ABBREV;
2601
}
2602
2603
NameVals.push_back(VE.getValueID(SI->getValue()));
2604
for (const char *P = Name.getKeyData(),
2605
*E = Name.getKeyData() + Name.getKeyLength();
2606
P != E; ++P)
2607
NameVals.push_back((unsigned char)*P);
2608
2609
// Emit the finished record.
2610
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2611
NameVals.clear();
2612
}
2613
Stream.ExitBlock();
2614
}
2615
2616
/// Emit a function body to the module stream.
2617
void DXILBitcodeWriter::writeFunction(const Function &F) {
2618
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2619
VE.incorporateFunction(F);
2620
2621
SmallVector<unsigned, 64> Vals;
2622
2623
// Emit the number of basic blocks, so the reader can create them ahead of
2624
// time.
2625
Vals.push_back(VE.getBasicBlocks().size());
2626
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2627
Vals.clear();
2628
2629
// If there are function-local constants, emit them now.
2630
unsigned CstStart, CstEnd;
2631
VE.getFunctionConstantRange(CstStart, CstEnd);
2632
writeConstants(CstStart, CstEnd, false);
2633
2634
// If there is function-local metadata, emit it now.
2635
writeFunctionMetadata(F);
2636
2637
// Keep a running idea of what the instruction ID is.
2638
unsigned InstID = CstEnd;
2639
2640
bool NeedsMetadataAttachment = F.hasMetadata();
2641
2642
DILocation *LastDL = nullptr;
2643
2644
// Finally, emit all the instructions, in order.
2645
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2646
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
2647
++I) {
2648
writeInstruction(*I, InstID, Vals);
2649
2650
if (!I->getType()->isVoidTy())
2651
++InstID;
2652
2653
// If the instruction has metadata, write a metadata attachment later.
2654
NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2655
2656
// If the instruction has a debug location, emit it.
2657
DILocation *DL = I->getDebugLoc();
2658
if (!DL)
2659
continue;
2660
2661
if (DL == LastDL) {
2662
// Just repeat the same debug loc as last time.
2663
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2664
continue;
2665
}
2666
2667
Vals.push_back(DL->getLine());
2668
Vals.push_back(DL->getColumn());
2669
Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2670
Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2671
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2672
Vals.clear();
2673
2674
LastDL = DL;
2675
}
2676
2677
// Emit names for all the instructions etc.
2678
if (auto *Symtab = F.getValueSymbolTable())
2679
writeFunctionLevelValueSymbolTable(*Symtab);
2680
2681
if (NeedsMetadataAttachment)
2682
writeFunctionMetadataAttachment(F);
2683
2684
VE.purgeFunction();
2685
Stream.ExitBlock();
2686
}
2687
2688
// Emit blockinfo, which defines the standard abbreviations etc.
2689
void DXILBitcodeWriter::writeBlockInfo() {
2690
// We only want to emit block info records for blocks that have multiple
2691
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2692
// Other blocks can define their abbrevs inline.
2693
Stream.EnterBlockInfoBlock();
2694
2695
{ // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2696
auto Abbv = std::make_shared<BitCodeAbbrev>();
2697
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2698
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2699
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2700
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2701
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2702
std::move(Abbv)) != VST_ENTRY_8_ABBREV)
2703
assert(false && "Unexpected abbrev ordering!");
2704
}
2705
2706
{ // 7-bit fixed width VST_ENTRY strings.
2707
auto Abbv = std::make_shared<BitCodeAbbrev>();
2708
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2709
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2710
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2711
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2712
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2713
std::move(Abbv)) != VST_ENTRY_7_ABBREV)
2714
assert(false && "Unexpected abbrev ordering!");
2715
}
2716
{ // 6-bit char6 VST_ENTRY strings.
2717
auto Abbv = std::make_shared<BitCodeAbbrev>();
2718
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2719
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2720
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2721
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2722
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2723
std::move(Abbv)) != VST_ENTRY_6_ABBREV)
2724
assert(false && "Unexpected abbrev ordering!");
2725
}
2726
{ // 6-bit char6 VST_BBENTRY strings.
2727
auto Abbv = std::make_shared<BitCodeAbbrev>();
2728
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2729
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2730
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2731
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2732
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2733
std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
2734
assert(false && "Unexpected abbrev ordering!");
2735
}
2736
2737
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
2738
auto Abbv = std::make_shared<BitCodeAbbrev>();
2739
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2740
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2741
VE.computeBitsRequiredForTypeIndices()));
2742
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2743
CONSTANTS_SETTYPE_ABBREV)
2744
assert(false && "Unexpected abbrev ordering!");
2745
}
2746
2747
{ // INTEGER abbrev for CONSTANTS_BLOCK.
2748
auto Abbv = std::make_shared<BitCodeAbbrev>();
2749
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2750
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2751
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2752
CONSTANTS_INTEGER_ABBREV)
2753
assert(false && "Unexpected abbrev ordering!");
2754
}
2755
2756
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
2757
auto Abbv = std::make_shared<BitCodeAbbrev>();
2758
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2759
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2760
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
2761
VE.computeBitsRequiredForTypeIndices()));
2762
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2763
2764
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2765
CONSTANTS_CE_CAST_Abbrev)
2766
assert(false && "Unexpected abbrev ordering!");
2767
}
2768
{ // NULL abbrev for CONSTANTS_BLOCK.
2769
auto Abbv = std::make_shared<BitCodeAbbrev>();
2770
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2771
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2772
CONSTANTS_NULL_Abbrev)
2773
assert(false && "Unexpected abbrev ordering!");
2774
}
2775
2776
// FIXME: This should only use space for first class types!
2777
2778
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
2779
auto Abbv = std::make_shared<BitCodeAbbrev>();
2780
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2781
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2782
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2783
VE.computeBitsRequiredForTypeIndices()));
2784
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2785
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2786
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2787
(unsigned)FUNCTION_INST_LOAD_ABBREV)
2788
assert(false && "Unexpected abbrev ordering!");
2789
}
2790
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
2791
auto Abbv = std::make_shared<BitCodeAbbrev>();
2792
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2793
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2794
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2795
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2796
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2797
(unsigned)FUNCTION_INST_BINOP_ABBREV)
2798
assert(false && "Unexpected abbrev ordering!");
2799
}
2800
{ // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2801
auto Abbv = std::make_shared<BitCodeAbbrev>();
2802
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2803
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2804
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2805
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2806
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2807
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2808
(unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
2809
assert(false && "Unexpected abbrev ordering!");
2810
}
2811
{ // INST_CAST abbrev for FUNCTION_BLOCK.
2812
auto Abbv = std::make_shared<BitCodeAbbrev>();
2813
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2814
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2815
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2816
VE.computeBitsRequiredForTypeIndices()));
2817
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2818
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2819
(unsigned)FUNCTION_INST_CAST_ABBREV)
2820
assert(false && "Unexpected abbrev ordering!");
2821
}
2822
2823
{ // INST_RET abbrev for FUNCTION_BLOCK.
2824
auto Abbv = std::make_shared<BitCodeAbbrev>();
2825
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2826
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2827
(unsigned)FUNCTION_INST_RET_VOID_ABBREV)
2828
assert(false && "Unexpected abbrev ordering!");
2829
}
2830
{ // INST_RET abbrev for FUNCTION_BLOCK.
2831
auto Abbv = std::make_shared<BitCodeAbbrev>();
2832
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2833
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2834
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2835
(unsigned)FUNCTION_INST_RET_VAL_ABBREV)
2836
assert(false && "Unexpected abbrev ordering!");
2837
}
2838
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2839
auto Abbv = std::make_shared<BitCodeAbbrev>();
2840
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2841
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2842
(unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
2843
assert(false && "Unexpected abbrev ordering!");
2844
}
2845
{
2846
auto Abbv = std::make_shared<BitCodeAbbrev>();
2847
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2848
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2849
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2850
Log2_32_Ceil(VE.getTypes().size() + 1)));
2851
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2852
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2853
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2854
(unsigned)FUNCTION_INST_GEP_ABBREV)
2855
assert(false && "Unexpected abbrev ordering!");
2856
}
2857
2858
Stream.ExitBlock();
2859
}
2860
2861
void DXILBitcodeWriter::writeModuleVersion() {
2862
// VERSION: [version#]
2863
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
2864
}
2865
2866
/// WriteModule - Emit the specified module to the bitstream.
2867
void DXILBitcodeWriter::write() {
2868
// The identification block is new since llvm-3.7, but the old bitcode reader
2869
// will skip it.
2870
// writeIdentificationBlock(Stream);
2871
2872
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2873
2874
// It is redundant to fully-specify this here, but nice to make it explicit
2875
// so that it is clear the DXIL module version is different.
2876
DXILBitcodeWriter::writeModuleVersion();
2877
2878
// Emit blockinfo, which defines the standard abbreviations etc.
2879
writeBlockInfo();
2880
2881
// Emit information about attribute groups.
2882
writeAttributeGroupTable();
2883
2884
// Emit information about parameter attributes.
2885
writeAttributeTable();
2886
2887
// Emit information describing all of the types in the module.
2888
writeTypeTable();
2889
2890
writeComdats();
2891
2892
// Emit top-level description of module, including target triple, inline asm,
2893
// descriptors for global variables, and function prototype info.
2894
writeModuleInfo();
2895
2896
// Emit constants.
2897
writeModuleConstants();
2898
2899
// Emit metadata.
2900
writeModuleMetadataKinds();
2901
2902
// Emit metadata.
2903
writeModuleMetadata();
2904
2905
// Emit names for globals/functions etc.
2906
// DXIL uses the same format for module-level value symbol table as for the
2907
// function level table.
2908
writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
2909
2910
// Emit function bodies.
2911
for (const Function &F : M)
2912
if (!F.isDeclaration())
2913
writeFunction(F);
2914
2915
Stream.ExitBlock();
2916
}
2917
2918