Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.cpp
35294 views
1
//===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the ValueEnumerator class.
10
// Forked from lib/Bitcode/Writer
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "DXILValueEnumerator.h"
15
#include "llvm/ADT/SmallVector.h"
16
#include "llvm/Config/llvm-config.h"
17
#include "llvm/IR/Argument.h"
18
#include "llvm/IR/BasicBlock.h"
19
#include "llvm/IR/Constant.h"
20
#include "llvm/IR/DebugInfoMetadata.h"
21
#include "llvm/IR/DerivedTypes.h"
22
#include "llvm/IR/Function.h"
23
#include "llvm/IR/GlobalAlias.h"
24
#include "llvm/IR/GlobalIFunc.h"
25
#include "llvm/IR/GlobalObject.h"
26
#include "llvm/IR/GlobalValue.h"
27
#include "llvm/IR/GlobalVariable.h"
28
#include "llvm/IR/Instruction.h"
29
#include "llvm/IR/Instructions.h"
30
#include "llvm/IR/Metadata.h"
31
#include "llvm/IR/Module.h"
32
#include "llvm/IR/Operator.h"
33
#include "llvm/IR/Type.h"
34
#include "llvm/IR/TypedPointerType.h"
35
#include "llvm/IR/Use.h"
36
#include "llvm/IR/User.h"
37
#include "llvm/IR/Value.h"
38
#include "llvm/IR/ValueSymbolTable.h"
39
#include "llvm/Support/Casting.h"
40
#include "llvm/Support/Compiler.h"
41
#include "llvm/Support/Debug.h"
42
#include "llvm/Support/MathExtras.h"
43
#include "llvm/Support/raw_ostream.h"
44
#include <algorithm>
45
#include <cstddef>
46
#include <iterator>
47
#include <tuple>
48
49
using namespace llvm;
50
using namespace llvm::dxil;
51
52
namespace {
53
54
struct OrderMap {
55
DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
56
unsigned LastGlobalConstantID = 0;
57
unsigned LastGlobalValueID = 0;
58
59
OrderMap() = default;
60
61
bool isGlobalConstant(unsigned ID) const {
62
return ID <= LastGlobalConstantID;
63
}
64
65
bool isGlobalValue(unsigned ID) const {
66
return ID <= LastGlobalValueID && !isGlobalConstant(ID);
67
}
68
69
unsigned size() const { return IDs.size(); }
70
std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
71
72
std::pair<unsigned, bool> lookup(const Value *V) const {
73
return IDs.lookup(V);
74
}
75
76
void index(const Value *V) {
77
// Explicitly sequence get-size and insert-value operations to avoid UB.
78
unsigned ID = IDs.size() + 1;
79
IDs[V].first = ID;
80
}
81
};
82
83
} // end anonymous namespace
84
85
static void orderValue(const Value *V, OrderMap &OM) {
86
if (OM.lookup(V).first)
87
return;
88
89
if (const Constant *C = dyn_cast<Constant>(V)) {
90
if (C->getNumOperands() && !isa<GlobalValue>(C)) {
91
for (const Value *Op : C->operands())
92
if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
93
orderValue(Op, OM);
94
if (auto *CE = dyn_cast<ConstantExpr>(C))
95
if (CE->getOpcode() == Instruction::ShuffleVector)
96
orderValue(CE->getShuffleMaskForBitcode(), OM);
97
}
98
}
99
100
// Note: we cannot cache this lookup above, since inserting into the map
101
// changes the map's size, and thus affects the other IDs.
102
OM.index(V);
103
}
104
105
static OrderMap orderModule(const Module &M) {
106
// This needs to match the order used by ValueEnumerator::ValueEnumerator()
107
// and ValueEnumerator::incorporateFunction().
108
OrderMap OM;
109
110
// In the reader, initializers of GlobalValues are set *after* all the
111
// globals have been read. Rather than awkwardly modeling this behaviour
112
// directly in predictValueUseListOrderImpl(), just assign IDs to
113
// initializers of GlobalValues before GlobalValues themselves to model this
114
// implicitly.
115
for (const GlobalVariable &G : M.globals())
116
if (G.hasInitializer())
117
if (!isa<GlobalValue>(G.getInitializer()))
118
orderValue(G.getInitializer(), OM);
119
for (const GlobalAlias &A : M.aliases())
120
if (!isa<GlobalValue>(A.getAliasee()))
121
orderValue(A.getAliasee(), OM);
122
for (const GlobalIFunc &I : M.ifuncs())
123
if (!isa<GlobalValue>(I.getResolver()))
124
orderValue(I.getResolver(), OM);
125
for (const Function &F : M) {
126
for (const Use &U : F.operands())
127
if (!isa<GlobalValue>(U.get()))
128
orderValue(U.get(), OM);
129
}
130
131
// As constants used in metadata operands are emitted as module-level
132
// constants, we must order them before other operands. Also, we must order
133
// these before global values, as these will be read before setting the
134
// global values' initializers. The latter matters for constants which have
135
// uses towards other constants that are used as initializers.
136
auto orderConstantValue = [&OM](const Value *V) {
137
if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V))
138
orderValue(V, OM);
139
};
140
for (const Function &F : M) {
141
if (F.isDeclaration())
142
continue;
143
for (const BasicBlock &BB : F)
144
for (const Instruction &I : BB)
145
for (const Value *V : I.operands()) {
146
if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
147
if (const auto *VAM =
148
dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
149
orderConstantValue(VAM->getValue());
150
} else if (const auto *AL =
151
dyn_cast<DIArgList>(MAV->getMetadata())) {
152
for (const auto *VAM : AL->getArgs())
153
orderConstantValue(VAM->getValue());
154
}
155
}
156
}
157
}
158
OM.LastGlobalConstantID = OM.size();
159
160
// Initializers of GlobalValues are processed in
161
// BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather
162
// than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
163
// by giving IDs in reverse order.
164
//
165
// Since GlobalValues never reference each other directly (just through
166
// initializers), their relative IDs only matter for determining order of
167
// uses in their initializers.
168
for (const Function &F : M)
169
orderValue(&F, OM);
170
for (const GlobalAlias &A : M.aliases())
171
orderValue(&A, OM);
172
for (const GlobalIFunc &I : M.ifuncs())
173
orderValue(&I, OM);
174
for (const GlobalVariable &G : M.globals())
175
orderValue(&G, OM);
176
OM.LastGlobalValueID = OM.size();
177
178
for (const Function &F : M) {
179
if (F.isDeclaration())
180
continue;
181
// Here we need to match the union of ValueEnumerator::incorporateFunction()
182
// and WriteFunction(). Basic blocks are implicitly declared before
183
// anything else (by declaring their size).
184
for (const BasicBlock &BB : F)
185
orderValue(&BB, OM);
186
for (const Argument &A : F.args())
187
orderValue(&A, OM);
188
for (const BasicBlock &BB : F)
189
for (const Instruction &I : BB) {
190
for (const Value *Op : I.operands())
191
if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
192
isa<InlineAsm>(*Op))
193
orderValue(Op, OM);
194
if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
195
orderValue(SVI->getShuffleMaskForBitcode(), OM);
196
}
197
for (const BasicBlock &BB : F)
198
for (const Instruction &I : BB)
199
orderValue(&I, OM);
200
}
201
return OM;
202
}
203
204
static void predictValueUseListOrderImpl(const Value *V, const Function *F,
205
unsigned ID, const OrderMap &OM,
206
UseListOrderStack &Stack) {
207
// Predict use-list order for this one.
208
using Entry = std::pair<const Use *, unsigned>;
209
SmallVector<Entry, 64> List;
210
for (const Use &U : V->uses())
211
// Check if this user will be serialized.
212
if (OM.lookup(U.getUser()).first)
213
List.push_back(std::make_pair(&U, List.size()));
214
215
if (List.size() < 2)
216
// We may have lost some users.
217
return;
218
219
bool IsGlobalValue = OM.isGlobalValue(ID);
220
llvm::sort(List, [&](const Entry &L, const Entry &R) {
221
const Use *LU = L.first;
222
const Use *RU = R.first;
223
if (LU == RU)
224
return false;
225
226
auto LID = OM.lookup(LU->getUser()).first;
227
auto RID = OM.lookup(RU->getUser()).first;
228
229
// Global values are processed in reverse order.
230
//
231
// Moreover, initializers of GlobalValues are set *after* all the globals
232
// have been read (despite having earlier IDs). Rather than awkwardly
233
// modeling this behaviour here, orderModule() has assigned IDs to
234
// initializers of GlobalValues before GlobalValues themselves.
235
if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) {
236
if (LID == RID)
237
return LU->getOperandNo() > RU->getOperandNo();
238
return LID < RID;
239
}
240
241
// If ID is 4, then expect: 7 6 5 1 2 3.
242
if (LID < RID) {
243
if (RID <= ID)
244
if (!IsGlobalValue) // GlobalValue uses don't get reversed.
245
return true;
246
return false;
247
}
248
if (RID < LID) {
249
if (LID <= ID)
250
if (!IsGlobalValue) // GlobalValue uses don't get reversed.
251
return false;
252
return true;
253
}
254
255
// LID and RID are equal, so we have different operands of the same user.
256
// Assume operands are added in order for all instructions.
257
if (LID <= ID)
258
if (!IsGlobalValue) // GlobalValue uses don't get reversed.
259
return LU->getOperandNo() < RU->getOperandNo();
260
return LU->getOperandNo() > RU->getOperandNo();
261
});
262
263
if (llvm::is_sorted(List, llvm::less_second()))
264
// Order is already correct.
265
return;
266
267
// Store the shuffle.
268
Stack.emplace_back(V, F, List.size());
269
assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
270
for (size_t I = 0, E = List.size(); I != E; ++I)
271
Stack.back().Shuffle[I] = List[I].second;
272
}
273
274
static void predictValueUseListOrder(const Value *V, const Function *F,
275
OrderMap &OM, UseListOrderStack &Stack) {
276
auto &IDPair = OM[V];
277
assert(IDPair.first && "Unmapped value");
278
if (IDPair.second)
279
// Already predicted.
280
return;
281
282
// Do the actual prediction.
283
IDPair.second = true;
284
if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
285
predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
286
287
// Recursive descent into constants.
288
if (const Constant *C = dyn_cast<Constant>(V)) {
289
if (C->getNumOperands()) { // Visit GlobalValues.
290
for (const Value *Op : C->operands())
291
if (isa<Constant>(Op)) // Visit GlobalValues.
292
predictValueUseListOrder(Op, F, OM, Stack);
293
if (auto *CE = dyn_cast<ConstantExpr>(C))
294
if (CE->getOpcode() == Instruction::ShuffleVector)
295
predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
296
Stack);
297
}
298
}
299
}
300
301
static UseListOrderStack predictUseListOrder(const Module &M) {
302
OrderMap OM = orderModule(M);
303
304
// Use-list orders need to be serialized after all the users have been added
305
// to a value, or else the shuffles will be incomplete. Store them per
306
// function in a stack.
307
//
308
// Aside from function order, the order of values doesn't matter much here.
309
UseListOrderStack Stack;
310
311
// We want to visit the functions backward now so we can list function-local
312
// constants in the last Function they're used in. Module-level constants
313
// have already been visited above.
314
for (const Function &F : llvm::reverse(M)) {
315
if (F.isDeclaration())
316
continue;
317
for (const BasicBlock &BB : F)
318
predictValueUseListOrder(&BB, &F, OM, Stack);
319
for (const Argument &A : F.args())
320
predictValueUseListOrder(&A, &F, OM, Stack);
321
for (const BasicBlock &BB : F)
322
for (const Instruction &I : BB) {
323
for (const Value *Op : I.operands())
324
if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
325
predictValueUseListOrder(Op, &F, OM, Stack);
326
if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
327
predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
328
Stack);
329
}
330
for (const BasicBlock &BB : F)
331
for (const Instruction &I : BB)
332
predictValueUseListOrder(&I, &F, OM, Stack);
333
}
334
335
// Visit globals last, since the module-level use-list block will be seen
336
// before the function bodies are processed.
337
for (const GlobalVariable &G : M.globals())
338
predictValueUseListOrder(&G, nullptr, OM, Stack);
339
for (const Function &F : M)
340
predictValueUseListOrder(&F, nullptr, OM, Stack);
341
for (const GlobalAlias &A : M.aliases())
342
predictValueUseListOrder(&A, nullptr, OM, Stack);
343
for (const GlobalIFunc &I : M.ifuncs())
344
predictValueUseListOrder(&I, nullptr, OM, Stack);
345
for (const GlobalVariable &G : M.globals())
346
if (G.hasInitializer())
347
predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
348
for (const GlobalAlias &A : M.aliases())
349
predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
350
for (const GlobalIFunc &I : M.ifuncs())
351
predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
352
for (const Function &F : M) {
353
for (const Use &U : F.operands())
354
predictValueUseListOrder(U.get(), nullptr, OM, Stack);
355
}
356
357
return Stack;
358
}
359
360
ValueEnumerator::ValueEnumerator(const Module &M, Type *PrefixType) {
361
EnumerateType(PrefixType);
362
363
UseListOrders = predictUseListOrder(M);
364
365
// Enumerate the global variables.
366
for (const GlobalVariable &GV : M.globals()) {
367
EnumerateValue(&GV);
368
EnumerateType(GV.getValueType());
369
}
370
371
// Enumerate the functions.
372
for (const Function &F : M) {
373
EnumerateValue(&F);
374
EnumerateType(F.getValueType());
375
EnumerateType(
376
TypedPointerType::get(F.getFunctionType(), F.getAddressSpace()));
377
EnumerateAttributes(F.getAttributes());
378
}
379
380
// Enumerate the aliases.
381
for (const GlobalAlias &GA : M.aliases()) {
382
EnumerateValue(&GA);
383
EnumerateType(GA.getValueType());
384
}
385
386
// Enumerate the ifuncs.
387
for (const GlobalIFunc &GIF : M.ifuncs()) {
388
EnumerateValue(&GIF);
389
EnumerateType(GIF.getValueType());
390
}
391
392
// Enumerate the global variable initializers and attributes.
393
for (const GlobalVariable &GV : M.globals()) {
394
if (GV.hasInitializer())
395
EnumerateValue(GV.getInitializer());
396
EnumerateType(
397
TypedPointerType::get(GV.getValueType(), GV.getAddressSpace()));
398
if (GV.hasAttributes())
399
EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
400
}
401
402
// Enumerate the aliasees.
403
for (const GlobalAlias &GA : M.aliases())
404
EnumerateValue(GA.getAliasee());
405
406
// Enumerate the ifunc resolvers.
407
for (const GlobalIFunc &GIF : M.ifuncs())
408
EnumerateValue(GIF.getResolver());
409
410
// Enumerate any optional Function data.
411
for (const Function &F : M)
412
for (const Use &U : F.operands())
413
EnumerateValue(U.get());
414
415
// Enumerate the metadata type.
416
//
417
// TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
418
// only encodes the metadata type when it's used as a value.
419
EnumerateType(Type::getMetadataTy(M.getContext()));
420
421
// Insert constants and metadata that are named at module level into the slot
422
// pool so that the module symbol table can refer to them...
423
EnumerateValueSymbolTable(M.getValueSymbolTable());
424
EnumerateNamedMetadata(M);
425
426
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
427
for (const GlobalVariable &GV : M.globals()) {
428
MDs.clear();
429
GV.getAllMetadata(MDs);
430
for (const auto &I : MDs)
431
// FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
432
// to write metadata to the global variable's own metadata block
433
// (PR28134).
434
EnumerateMetadata(nullptr, I.second);
435
}
436
437
// Enumerate types used by function bodies and argument lists.
438
for (const Function &F : M) {
439
for (const Argument &A : F.args())
440
EnumerateType(A.getType());
441
442
// Enumerate metadata attached to this function.
443
MDs.clear();
444
F.getAllMetadata(MDs);
445
for (const auto &I : MDs)
446
EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
447
448
for (const BasicBlock &BB : F)
449
for (const Instruction &I : BB) {
450
for (const Use &Op : I.operands()) {
451
auto *MD = dyn_cast<MetadataAsValue>(&Op);
452
if (!MD) {
453
EnumerateOperandType(Op);
454
continue;
455
}
456
457
// Local metadata is enumerated during function-incorporation, but
458
// any ConstantAsMetadata arguments in a DIArgList should be examined
459
// now.
460
if (isa<LocalAsMetadata>(MD->getMetadata()))
461
continue;
462
if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) {
463
for (auto *VAM : AL->getArgs())
464
if (isa<ConstantAsMetadata>(VAM))
465
EnumerateMetadata(&F, VAM);
466
continue;
467
}
468
469
EnumerateMetadata(&F, MD->getMetadata());
470
}
471
if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
472
EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
473
if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
474
EnumerateType(GEP->getSourceElementType());
475
if (auto *AI = dyn_cast<AllocaInst>(&I))
476
EnumerateType(AI->getAllocatedType());
477
EnumerateType(I.getType());
478
if (const auto *Call = dyn_cast<CallBase>(&I)) {
479
EnumerateAttributes(Call->getAttributes());
480
EnumerateType(Call->getFunctionType());
481
}
482
483
// Enumerate metadata attached with this instruction.
484
MDs.clear();
485
I.getAllMetadataOtherThanDebugLoc(MDs);
486
for (unsigned i = 0, e = MDs.size(); i != e; ++i)
487
EnumerateMetadata(&F, MDs[i].second);
488
489
// Don't enumerate the location directly -- it has a special record
490
// type -- but enumerate its operands.
491
if (DILocation *L = I.getDebugLoc())
492
for (const Metadata *Op : L->operands())
493
EnumerateMetadata(&F, Op);
494
}
495
}
496
497
// Organize metadata ordering.
498
organizeMetadata();
499
}
500
501
unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
502
InstructionMapType::const_iterator I = InstructionMap.find(Inst);
503
assert(I != InstructionMap.end() && "Instruction is not mapped!");
504
return I->second;
505
}
506
507
unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
508
unsigned ComdatID = Comdats.idFor(C);
509
assert(ComdatID && "Comdat not found!");
510
return ComdatID;
511
}
512
513
void ValueEnumerator::setInstructionID(const Instruction *I) {
514
InstructionMap[I] = InstructionCount++;
515
}
516
517
unsigned ValueEnumerator::getValueID(const Value *V) const {
518
if (auto *MD = dyn_cast<MetadataAsValue>(V))
519
return getMetadataID(MD->getMetadata());
520
521
ValueMapType::const_iterator I = ValueMap.find(V);
522
assert(I != ValueMap.end() && "Value not in slotcalculator!");
523
return I->second - 1;
524
}
525
526
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
527
LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
528
print(dbgs(), ValueMap, "Default");
529
dbgs() << '\n';
530
print(dbgs(), MetadataMap, "MetaData");
531
dbgs() << '\n';
532
}
533
#endif
534
535
void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
536
const char *Name) const {
537
OS << "Map Name: " << Name << "\n";
538
OS << "Size: " << Map.size() << "\n";
539
for (const auto &I : Map) {
540
const Value *V = I.first;
541
if (V->hasName())
542
OS << "Value: " << V->getName();
543
else
544
OS << "Value: [null]\n";
545
V->print(errs());
546
errs() << '\n';
547
548
OS << " Uses(" << V->getNumUses() << "):";
549
for (const Use &U : V->uses()) {
550
if (&U != &*V->use_begin())
551
OS << ",";
552
if (U->hasName())
553
OS << " " << U->getName();
554
else
555
OS << " [null]";
556
}
557
OS << "\n\n";
558
}
559
}
560
561
void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
562
const char *Name) const {
563
OS << "Map Name: " << Name << "\n";
564
OS << "Size: " << Map.size() << "\n";
565
for (const auto &I : Map) {
566
const Metadata *MD = I.first;
567
OS << "Metadata: slot = " << I.second.ID << "\n";
568
OS << "Metadata: function = " << I.second.F << "\n";
569
MD->print(OS);
570
OS << "\n";
571
}
572
}
573
574
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
575
/// table into the values table.
576
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
577
for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
578
VI != VE; ++VI)
579
EnumerateValue(VI->getValue());
580
}
581
582
/// Insert all of the values referenced by named metadata in the specified
583
/// module.
584
void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
585
for (const auto &I : M.named_metadata())
586
EnumerateNamedMDNode(&I);
587
}
588
589
void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
590
for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
591
EnumerateMetadata(nullptr, MD->getOperand(i));
592
}
593
594
unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
595
return F ? getValueID(F) + 1 : 0;
596
}
597
598
void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
599
EnumerateMetadata(getMetadataFunctionID(F), MD);
600
}
601
602
void ValueEnumerator::EnumerateFunctionLocalMetadata(
603
const Function &F, const LocalAsMetadata *Local) {
604
EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
605
}
606
607
void ValueEnumerator::EnumerateFunctionLocalListMetadata(
608
const Function &F, const DIArgList *ArgList) {
609
EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
610
}
611
612
void ValueEnumerator::dropFunctionFromMetadata(
613
MetadataMapType::value_type &FirstMD) {
614
SmallVector<const MDNode *, 64> Worklist;
615
auto push = [&Worklist](MetadataMapType::value_type &MD) {
616
auto &Entry = MD.second;
617
618
// Nothing to do if this metadata isn't tagged.
619
if (!Entry.F)
620
return;
621
622
// Drop the function tag.
623
Entry.F = 0;
624
625
// If this is has an ID and is an MDNode, then its operands have entries as
626
// well. We need to drop the function from them too.
627
if (Entry.ID)
628
if (auto *N = dyn_cast<MDNode>(MD.first))
629
Worklist.push_back(N);
630
};
631
push(FirstMD);
632
while (!Worklist.empty())
633
for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
634
if (!Op)
635
continue;
636
auto MD = MetadataMap.find(Op);
637
if (MD != MetadataMap.end())
638
push(*MD);
639
}
640
}
641
642
void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
643
// It's vital for reader efficiency that uniqued subgraphs are done in
644
// post-order; it's expensive when their operands have forward references.
645
// If a distinct node is referenced from a uniqued node, it'll be delayed
646
// until the uniqued subgraph has been completely traversed.
647
SmallVector<const MDNode *, 32> DelayedDistinctNodes;
648
649
// Start by enumerating MD, and then work through its transitive operands in
650
// post-order. This requires a depth-first search.
651
SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
652
if (const MDNode *N = enumerateMetadataImpl(F, MD))
653
Worklist.push_back(std::make_pair(N, N->op_begin()));
654
655
while (!Worklist.empty()) {
656
const MDNode *N = Worklist.back().first;
657
658
// Enumerate operands until we hit a new node. We need to traverse these
659
// nodes' operands before visiting the rest of N's operands.
660
MDNode::op_iterator I = std::find_if(
661
Worklist.back().second, N->op_end(),
662
[&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
663
if (I != N->op_end()) {
664
auto *Op = cast<MDNode>(*I);
665
Worklist.back().second = ++I;
666
667
// Delay traversing Op if it's a distinct node and N is uniqued.
668
if (Op->isDistinct() && !N->isDistinct())
669
DelayedDistinctNodes.push_back(Op);
670
else
671
Worklist.push_back(std::make_pair(Op, Op->op_begin()));
672
continue;
673
}
674
675
// All the operands have been visited. Now assign an ID.
676
Worklist.pop_back();
677
MDs.push_back(N);
678
MetadataMap[N].ID = MDs.size();
679
680
// Flush out any delayed distinct nodes; these are all the distinct nodes
681
// that are leaves in last uniqued subgraph.
682
if (Worklist.empty() || Worklist.back().first->isDistinct()) {
683
for (const MDNode *N : DelayedDistinctNodes)
684
Worklist.push_back(std::make_pair(N, N->op_begin()));
685
DelayedDistinctNodes.clear();
686
}
687
}
688
}
689
690
const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F,
691
const Metadata *MD) {
692
if (!MD)
693
return nullptr;
694
695
assert(
696
(isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
697
"Invalid metadata kind");
698
699
auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
700
MDIndex &Entry = Insertion.first->second;
701
if (!Insertion.second) {
702
// Already mapped. If F doesn't match the function tag, drop it.
703
if (Entry.hasDifferentFunction(F))
704
dropFunctionFromMetadata(*Insertion.first);
705
return nullptr;
706
}
707
708
// Don't assign IDs to metadata nodes.
709
if (auto *N = dyn_cast<MDNode>(MD))
710
return N;
711
712
// Save the metadata.
713
MDs.push_back(MD);
714
Entry.ID = MDs.size();
715
716
// Enumerate the constant, if any.
717
if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
718
EnumerateValue(C->getValue());
719
720
return nullptr;
721
}
722
723
/// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
724
/// information reachable from the metadata.
725
void ValueEnumerator::EnumerateFunctionLocalMetadata(
726
unsigned F, const LocalAsMetadata *Local) {
727
assert(F && "Expected a function");
728
729
// Check to see if it's already in!
730
MDIndex &Index = MetadataMap[Local];
731
if (Index.ID) {
732
assert(Index.F == F && "Expected the same function");
733
return;
734
}
735
736
MDs.push_back(Local);
737
Index.F = F;
738
Index.ID = MDs.size();
739
740
EnumerateValue(Local->getValue());
741
}
742
743
/// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
744
/// information reachable from the metadata.
745
void ValueEnumerator::EnumerateFunctionLocalListMetadata(
746
unsigned F, const DIArgList *ArgList) {
747
assert(F && "Expected a function");
748
749
// Check to see if it's already in!
750
MDIndex &Index = MetadataMap[ArgList];
751
if (Index.ID) {
752
assert(Index.F == F && "Expected the same function");
753
return;
754
}
755
756
for (ValueAsMetadata *VAM : ArgList->getArgs()) {
757
if (isa<LocalAsMetadata>(VAM)) {
758
assert(MetadataMap.count(VAM) &&
759
"LocalAsMetadata should be enumerated before DIArgList");
760
assert(MetadataMap[VAM].F == F &&
761
"Expected LocalAsMetadata in the same function");
762
} else {
763
assert(isa<ConstantAsMetadata>(VAM) &&
764
"Expected LocalAsMetadata or ConstantAsMetadata");
765
assert(ValueMap.count(VAM->getValue()) &&
766
"Constant should be enumerated beforeDIArgList");
767
EnumerateMetadata(F, VAM);
768
}
769
}
770
771
MDs.push_back(ArgList);
772
Index.F = F;
773
Index.ID = MDs.size();
774
}
775
776
static unsigned getMetadataTypeOrder(const Metadata *MD) {
777
// Strings are emitted in bulk and must come first.
778
if (isa<MDString>(MD))
779
return 0;
780
781
// ConstantAsMetadata doesn't reference anything. We may as well shuffle it
782
// to the front since we can detect it.
783
auto *N = dyn_cast<MDNode>(MD);
784
if (!N)
785
return 1;
786
787
// The reader is fast forward references for distinct node operands, but slow
788
// when uniqued operands are unresolved.
789
return N->isDistinct() ? 2 : 3;
790
}
791
792
void ValueEnumerator::organizeMetadata() {
793
assert(MetadataMap.size() == MDs.size() &&
794
"Metadata map and vector out of sync");
795
796
if (MDs.empty())
797
return;
798
799
// Copy out the index information from MetadataMap in order to choose a new
800
// order.
801
SmallVector<MDIndex, 64> Order;
802
Order.reserve(MetadataMap.size());
803
for (const Metadata *MD : MDs)
804
Order.push_back(MetadataMap.lookup(MD));
805
806
// Partition:
807
// - by function, then
808
// - by isa<MDString>
809
// and then sort by the original/current ID. Since the IDs are guaranteed to
810
// be unique, the result of llvm::sort will be deterministic. There's no need
811
// for std::stable_sort.
812
llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
813
return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
814
std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
815
});
816
817
// Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
818
// and fix up MetadataMap.
819
std::vector<const Metadata *> OldMDs;
820
MDs.swap(OldMDs);
821
MDs.reserve(OldMDs.size());
822
for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
823
auto *MD = Order[I].get(OldMDs);
824
MDs.push_back(MD);
825
MetadataMap[MD].ID = I + 1;
826
if (isa<MDString>(MD))
827
++NumMDStrings;
828
}
829
830
// Return early if there's nothing for the functions.
831
if (MDs.size() == Order.size())
832
return;
833
834
// Build the function metadata ranges.
835
MDRange R;
836
FunctionMDs.reserve(OldMDs.size());
837
unsigned PrevF = 0;
838
for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
839
++I) {
840
unsigned F = Order[I].F;
841
if (!PrevF) {
842
PrevF = F;
843
} else if (PrevF != F) {
844
R.Last = FunctionMDs.size();
845
std::swap(R, FunctionMDInfo[PrevF]);
846
R.First = FunctionMDs.size();
847
848
ID = MDs.size();
849
PrevF = F;
850
}
851
852
auto *MD = Order[I].get(OldMDs);
853
FunctionMDs.push_back(MD);
854
MetadataMap[MD].ID = ++ID;
855
if (isa<MDString>(MD))
856
++R.NumStrings;
857
}
858
R.Last = FunctionMDs.size();
859
FunctionMDInfo[PrevF] = R;
860
}
861
862
void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
863
NumModuleMDs = MDs.size();
864
865
auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
866
NumMDStrings = R.NumStrings;
867
MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
868
FunctionMDs.begin() + R.Last);
869
}
870
871
void ValueEnumerator::EnumerateValue(const Value *V) {
872
assert(!V->getType()->isVoidTy() && "Can't insert void values!");
873
assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
874
875
// Check to see if it's already in!
876
unsigned &ValueID = ValueMap[V];
877
if (ValueID) {
878
// Increment use count.
879
Values[ValueID - 1].second++;
880
return;
881
}
882
883
if (auto *GO = dyn_cast<GlobalObject>(V))
884
if (const Comdat *C = GO->getComdat())
885
Comdats.insert(C);
886
887
// Enumerate the type of this value.
888
EnumerateType(V->getType());
889
890
if (const Constant *C = dyn_cast<Constant>(V)) {
891
if (isa<GlobalValue>(C)) {
892
// Initializers for globals are handled explicitly elsewhere.
893
} else if (C->getNumOperands()) {
894
// If a constant has operands, enumerate them. This makes sure that if a
895
// constant has uses (for example an array of const ints), that they are
896
// inserted also.
897
898
// We prefer to enumerate them with values before we enumerate the user
899
// itself. This makes it more likely that we can avoid forward references
900
// in the reader. We know that there can be no cycles in the constants
901
// graph that don't go through a global variable.
902
for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E;
903
++I)
904
if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
905
EnumerateValue(*I);
906
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
907
if (CE->getOpcode() == Instruction::ShuffleVector)
908
EnumerateValue(CE->getShuffleMaskForBitcode());
909
if (auto *GEP = dyn_cast<GEPOperator>(CE))
910
EnumerateType(GEP->getSourceElementType());
911
}
912
913
// Finally, add the value. Doing this could make the ValueID reference be
914
// dangling, don't reuse it.
915
Values.push_back(std::make_pair(V, 1U));
916
ValueMap[V] = Values.size();
917
return;
918
}
919
}
920
921
// Add the value.
922
Values.push_back(std::make_pair(V, 1U));
923
ValueID = Values.size();
924
}
925
926
void ValueEnumerator::EnumerateType(Type *Ty) {
927
unsigned *TypeID = &TypeMap[Ty];
928
929
// We've already seen this type.
930
if (*TypeID)
931
return;
932
933
// If it is a non-anonymous struct, mark the type as being visited so that we
934
// don't recursively visit it. This is safe because we allow forward
935
// references of these in the bitcode reader.
936
if (StructType *STy = dyn_cast<StructType>(Ty))
937
if (!STy->isLiteral())
938
*TypeID = ~0U;
939
940
// Enumerate all of the subtypes before we enumerate this type. This ensures
941
// that the type will be enumerated in an order that can be directly built.
942
for (Type *SubTy : Ty->subtypes())
943
EnumerateType(SubTy);
944
945
// Refresh the TypeID pointer in case the table rehashed.
946
TypeID = &TypeMap[Ty];
947
948
// Check to see if we got the pointer another way. This can happen when
949
// enumerating recursive types that hit the base case deeper than they start.
950
//
951
// If this is actually a struct that we are treating as forward ref'able,
952
// then emit the definition now that all of its contents are available.
953
if (*TypeID && *TypeID != ~0U)
954
return;
955
956
// Add this type now that its contents are all happily enumerated.
957
Types.push_back(Ty);
958
959
*TypeID = Types.size();
960
}
961
962
// Enumerate the types for the specified value. If the value is a constant,
963
// walk through it, enumerating the types of the constant.
964
void ValueEnumerator::EnumerateOperandType(const Value *V) {
965
EnumerateType(V->getType());
966
967
assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
968
969
const Constant *C = dyn_cast<Constant>(V);
970
if (!C)
971
return;
972
973
// If this constant is already enumerated, ignore it, we know its type must
974
// be enumerated.
975
if (ValueMap.count(C))
976
return;
977
978
// This constant may have operands, make sure to enumerate the types in
979
// them.
980
for (const Value *Op : C->operands()) {
981
// Don't enumerate basic blocks here, this happens as operands to
982
// blockaddress.
983
if (isa<BasicBlock>(Op))
984
continue;
985
986
EnumerateOperandType(Op);
987
}
988
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
989
if (CE->getOpcode() == Instruction::ShuffleVector)
990
EnumerateOperandType(CE->getShuffleMaskForBitcode());
991
if (CE->getOpcode() == Instruction::GetElementPtr)
992
EnumerateType(cast<GEPOperator>(CE)->getSourceElementType());
993
}
994
}
995
996
void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
997
if (PAL.isEmpty())
998
return; // null is always 0.
999
1000
// Do a lookup.
1001
unsigned &Entry = AttributeListMap[PAL];
1002
if (Entry == 0) {
1003
// Never saw this before, add it.
1004
AttributeLists.push_back(PAL);
1005
Entry = AttributeLists.size();
1006
}
1007
1008
// Do lookups for all attribute groups.
1009
for (unsigned i : PAL.indexes()) {
1010
AttributeSet AS = PAL.getAttributes(i);
1011
if (!AS.hasAttributes())
1012
continue;
1013
IndexAndAttrSet Pair = {i, AS};
1014
unsigned &Entry = AttributeGroupMap[Pair];
1015
if (Entry == 0) {
1016
AttributeGroups.push_back(Pair);
1017
Entry = AttributeGroups.size();
1018
1019
for (Attribute Attr : AS) {
1020
if (Attr.isTypeAttribute())
1021
EnumerateType(Attr.getValueAsType());
1022
}
1023
}
1024
}
1025
}
1026
1027
void ValueEnumerator::incorporateFunction(const Function &F) {
1028
InstructionCount = 0;
1029
NumModuleValues = Values.size();
1030
1031
// Add global metadata to the function block. This doesn't include
1032
// LocalAsMetadata.
1033
incorporateFunctionMetadata(F);
1034
1035
// Adding function arguments to the value table.
1036
for (const auto &I : F.args()) {
1037
EnumerateValue(&I);
1038
if (I.hasAttribute(Attribute::ByVal))
1039
EnumerateType(I.getParamByValType());
1040
else if (I.hasAttribute(Attribute::StructRet))
1041
EnumerateType(I.getParamStructRetType());
1042
else if (I.hasAttribute(Attribute::ByRef))
1043
EnumerateType(I.getParamByRefType());
1044
}
1045
FirstFuncConstantID = Values.size();
1046
1047
// Add all function-level constants to the value table.
1048
for (const BasicBlock &BB : F) {
1049
for (const Instruction &I : BB) {
1050
for (const Use &OI : I.operands()) {
1051
if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1052
EnumerateValue(OI);
1053
}
1054
if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1055
EnumerateValue(SVI->getShuffleMaskForBitcode());
1056
}
1057
BasicBlocks.push_back(&BB);
1058
ValueMap[&BB] = BasicBlocks.size();
1059
}
1060
1061
// Add the function's parameter attributes so they are available for use in
1062
// the function's instruction.
1063
EnumerateAttributes(F.getAttributes());
1064
1065
FirstInstID = Values.size();
1066
1067
SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1068
SmallVector<DIArgList *, 8> ArgListMDVector;
1069
// Add all of the instructions.
1070
for (const BasicBlock &BB : F) {
1071
for (const Instruction &I : BB) {
1072
for (const Use &OI : I.operands()) {
1073
if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
1074
if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
1075
// Enumerate metadata after the instructions they might refer to.
1076
FnLocalMDVector.push_back(Local);
1077
} else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
1078
ArgListMDVector.push_back(ArgList);
1079
for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1080
if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1081
// Enumerate metadata after the instructions they might refer
1082
// to.
1083
FnLocalMDVector.push_back(Local);
1084
}
1085
}
1086
}
1087
}
1088
}
1089
1090
if (!I.getType()->isVoidTy())
1091
EnumerateValue(&I);
1092
}
1093
}
1094
1095
// Add all of the function-local metadata.
1096
for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1097
// At this point, every local values have been incorporated, we shouldn't
1098
// have a metadata operand that references a value that hasn't been seen.
1099
assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1100
"Missing value for metadata operand");
1101
EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1102
}
1103
// DIArgList entries must come after function-local metadata, as it is not
1104
// possible to forward-reference them.
1105
for (const DIArgList *ArgList : ArgListMDVector)
1106
EnumerateFunctionLocalListMetadata(F, ArgList);
1107
}
1108
1109
void ValueEnumerator::purgeFunction() {
1110
/// Remove purged values from the ValueMap.
1111
for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1112
ValueMap.erase(Values[i].first);
1113
for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1114
MetadataMap.erase(MDs[i]);
1115
for (const BasicBlock *BB : BasicBlocks)
1116
ValueMap.erase(BB);
1117
1118
Values.resize(NumModuleValues);
1119
MDs.resize(NumModuleMDs);
1120
BasicBlocks.clear();
1121
NumMDStrings = 0;
1122
}
1123
1124
static void IncorporateFunctionInfoGlobalBBIDs(
1125
const Function *F, DenseMap<const BasicBlock *, unsigned> &IDMap) {
1126
unsigned Counter = 0;
1127
for (const BasicBlock &BB : *F)
1128
IDMap[&BB] = ++Counter;
1129
}
1130
1131
/// getGlobalBasicBlockID - This returns the function-specific ID for the
1132
/// specified basic block. This is relatively expensive information, so it
1133
/// should only be used by rare constructs such as address-of-label.
1134
unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1135
unsigned &Idx = GlobalBasicBlockIDs[BB];
1136
if (Idx != 0)
1137
return Idx - 1;
1138
1139
IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1140
return getGlobalBasicBlockID(BB);
1141
}
1142
1143
uint64_t ValueEnumerator::computeBitsRequiredForTypeIndices() const {
1144
return Log2_32_Ceil(getTypes().size() + 1);
1145
}
1146
1147