Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/Hexagon/BitTracker.h
35266 views
1
//===- BitTracker.h ---------------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
10
#define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
11
12
#include "llvm/ADT/DenseSet.h"
13
#include "llvm/ADT/SetVector.h"
14
#include "llvm/ADT/SmallVector.h"
15
#include "llvm/CodeGen/MachineInstr.h"
16
#include "llvm/CodeGen/MachineOperand.h"
17
#include <cassert>
18
#include <cstdint>
19
#include <map>
20
#include <queue>
21
#include <set>
22
#include <utility>
23
24
namespace llvm {
25
26
class BitVector;
27
class ConstantInt;
28
class MachineRegisterInfo;
29
class MachineBasicBlock;
30
class MachineFunction;
31
class raw_ostream;
32
class TargetRegisterClass;
33
class TargetRegisterInfo;
34
35
struct BitTracker {
36
struct BitRef;
37
struct RegisterRef;
38
struct BitValue;
39
struct BitMask;
40
struct RegisterCell;
41
struct MachineEvaluator;
42
43
using BranchTargetList = SetVector<const MachineBasicBlock *>;
44
using CellMapType = std::map<unsigned, RegisterCell>;
45
46
BitTracker(const MachineEvaluator &E, MachineFunction &F);
47
~BitTracker();
48
49
void run();
50
void trace(bool On = false) { Trace = On; }
51
bool has(unsigned Reg) const;
52
const RegisterCell &lookup(unsigned Reg) const;
53
RegisterCell get(RegisterRef RR) const;
54
void put(RegisterRef RR, const RegisterCell &RC);
55
void subst(RegisterRef OldRR, RegisterRef NewRR);
56
bool reached(const MachineBasicBlock *B) const;
57
void visit(const MachineInstr &MI);
58
59
void print_cells(raw_ostream &OS) const;
60
61
private:
62
void visitPHI(const MachineInstr &PI);
63
void visitNonBranch(const MachineInstr &MI);
64
void visitBranchesFrom(const MachineInstr &BI);
65
void visitUsesOf(Register Reg);
66
67
using CFGEdge = std::pair<int, int>;
68
using EdgeSetType = std::set<CFGEdge>;
69
using InstrSetType = std::set<const MachineInstr *>;
70
using EdgeQueueType = std::queue<CFGEdge>;
71
72
// Priority queue of instructions using modified registers, ordered by
73
// their relative position in a basic block.
74
struct UseQueueType {
75
UseQueueType() : Uses(Dist) {}
76
77
unsigned size() const {
78
return Uses.size();
79
}
80
bool empty() const {
81
return size() == 0;
82
}
83
MachineInstr *front() const {
84
return Uses.top();
85
}
86
void push(MachineInstr *MI) {
87
if (Set.insert(MI).second)
88
Uses.push(MI);
89
}
90
void pop() {
91
Set.erase(front());
92
Uses.pop();
93
}
94
void reset() {
95
Dist.clear();
96
}
97
private:
98
struct Cmp {
99
Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {}
100
bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const;
101
DenseMap<const MachineInstr*,unsigned> &Dist;
102
};
103
std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses;
104
DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries.
105
DenseMap<const MachineInstr*,unsigned> Dist;
106
};
107
108
void reset();
109
void runEdgeQueue(BitVector &BlockScanned);
110
void runUseQueue();
111
112
const MachineEvaluator &ME;
113
MachineFunction &MF;
114
MachineRegisterInfo &MRI;
115
CellMapType &Map;
116
117
EdgeSetType EdgeExec; // Executable flow graph edges.
118
InstrSetType InstrExec; // Executable instructions.
119
UseQueueType UseQ; // Work queue of register uses.
120
EdgeQueueType FlowQ; // Work queue of CFG edges.
121
DenseSet<unsigned> ReachedBB; // Cache of reached blocks.
122
bool Trace; // Enable tracing for debugging.
123
};
124
125
// Abstraction of a reference to bit at position Pos from a register Reg.
126
struct BitTracker::BitRef {
127
BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
128
129
bool operator== (const BitRef &BR) const {
130
// If Reg is 0, disregard Pos.
131
return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
132
}
133
134
Register Reg;
135
uint16_t Pos;
136
};
137
138
// Abstraction of a register reference in MachineOperand. It contains the
139
// register number and the subregister index.
140
// FIXME: Consolidate duplicate definitions of RegisterRef
141
struct BitTracker::RegisterRef {
142
RegisterRef(Register R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
143
RegisterRef(const MachineOperand &MO)
144
: Reg(MO.getReg()), Sub(MO.getSubReg()) {}
145
146
Register Reg;
147
unsigned Sub;
148
};
149
150
// Value that a single bit can take. This is outside of the context of
151
// any register, it is more of an abstraction of the two-element set of
152
// possible bit values. One extension here is the "Ref" type, which
153
// indicates that this bit takes the same value as the bit described by
154
// RefInfo.
155
struct BitTracker::BitValue {
156
enum ValueType {
157
Top, // Bit not yet defined.
158
Zero, // Bit = 0.
159
One, // Bit = 1.
160
Ref // Bit value same as the one described in RefI.
161
// Conceptually, there is no explicit "bottom" value: the lattice's
162
// bottom will be expressed as a "ref to itself", which, in the context
163
// of registers, could be read as "this value of this bit is defined by
164
// this bit".
165
// The ordering is:
166
// x <= Top,
167
// Self <= x, where "Self" is "ref to itself".
168
// This makes the value lattice different for each virtual register
169
// (even for each bit in the same virtual register), since the "bottom"
170
// for one register will be a simple "ref" for another register.
171
// Since we do not store the "Self" bit and register number, the meet
172
// operation will need to take it as a parameter.
173
//
174
// In practice there is a special case for values that are not associa-
175
// ted with any specific virtual register. An example would be a value
176
// corresponding to a bit of a physical register, or an intermediate
177
// value obtained in some computation (such as instruction evaluation).
178
// Such cases are identical to the usual Ref type, but the register
179
// number is 0. In such case the Pos field of the reference is ignored.
180
//
181
// What is worthy of notice is that in value V (that is a "ref"), as long
182
// as the RefI.Reg is not 0, it may actually be the same register as the
183
// one in which V will be contained. If the RefI.Pos refers to the posi-
184
// tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
185
// otherwise V is taken to be identical to the referenced bit of the
186
// same register.
187
// If RefI.Reg is 0, however, such a reference to the same register is
188
// not possible. Any value V that is a "ref", and whose RefI.Reg is 0
189
// is treated as "bottom".
190
};
191
ValueType Type;
192
BitRef RefI;
193
194
BitValue(ValueType T = Top) : Type(T) {}
195
BitValue(bool B) : Type(B ? One : Zero) {}
196
BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
197
198
bool operator== (const BitValue &V) const {
199
if (Type != V.Type)
200
return false;
201
if (Type == Ref && !(RefI == V.RefI))
202
return false;
203
return true;
204
}
205
bool operator!= (const BitValue &V) const {
206
return !operator==(V);
207
}
208
209
bool is(unsigned T) const {
210
assert(T == 0 || T == 1);
211
return T == 0 ? Type == Zero
212
: (T == 1 ? Type == One : false);
213
}
214
215
// The "meet" operation is the "." operation in a semilattice (L, ., T, B):
216
// (1) x.x = x
217
// (2) x.y = y.x
218
// (3) x.(y.z) = (x.y).z
219
// (4) x.T = x (i.e. T = "top")
220
// (5) x.B = B (i.e. B = "bottom")
221
//
222
// This "meet" function will update the value of the "*this" object with
223
// the newly calculated one, and return "true" if the value of *this has
224
// changed, and "false" otherwise.
225
// To prove that it satisfies the conditions (1)-(5), it is sufficient
226
// to show that a relation
227
// x <= y <=> x.y = x
228
// defines a partial order (i.e. that "meet" is same as "infimum").
229
bool meet(const BitValue &V, const BitRef &Self) {
230
// First, check the cases where there is nothing to be done.
231
if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This)
232
return false;
233
if (V.Type == Top) // This.meet(Top) = This
234
return false;
235
if (*this == V) // This.meet(This) = This
236
return false;
237
238
// At this point, we know that the value of "this" will change.
239
// If it is Top, it will become the same as V, otherwise it will
240
// become "bottom" (i.e. Self).
241
if (Type == Top) {
242
Type = V.Type;
243
RefI = V.RefI; // This may be irrelevant, but copy anyway.
244
return true;
245
}
246
// Become "bottom".
247
Type = Ref;
248
RefI = Self;
249
return true;
250
}
251
252
// Create a reference to the bit value V.
253
static BitValue ref(const BitValue &V);
254
// Create a "self".
255
static BitValue self(const BitRef &Self = BitRef());
256
257
bool num() const {
258
return Type == Zero || Type == One;
259
}
260
261
operator bool() const {
262
assert(Type == Zero || Type == One);
263
return Type == One;
264
}
265
266
friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
267
};
268
269
// This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
270
inline BitTracker::BitValue
271
BitTracker::BitValue::ref(const BitValue &V) {
272
if (V.Type != Ref)
273
return BitValue(V.Type);
274
if (V.RefI.Reg != 0)
275
return BitValue(V.RefI.Reg, V.RefI.Pos);
276
return self();
277
}
278
279
inline BitTracker::BitValue
280
BitTracker::BitValue::self(const BitRef &Self) {
281
return BitValue(Self.Reg, Self.Pos);
282
}
283
284
// A sequence of bits starting from index B up to and including index E.
285
// If E < B, the mask represents two sections: [0..E] and [B..W) where
286
// W is the width of the register.
287
struct BitTracker::BitMask {
288
BitMask() = default;
289
BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
290
291
uint16_t first() const { return B; }
292
uint16_t last() const { return E; }
293
294
private:
295
uint16_t B = 0;
296
uint16_t E = 0;
297
};
298
299
// Representation of a register: a list of BitValues.
300
struct BitTracker::RegisterCell {
301
RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
302
303
uint16_t width() const {
304
return Bits.size();
305
}
306
307
const BitValue &operator[](uint16_t BitN) const {
308
assert(BitN < Bits.size());
309
return Bits[BitN];
310
}
311
BitValue &operator[](uint16_t BitN) {
312
assert(BitN < Bits.size());
313
return Bits[BitN];
314
}
315
316
bool meet(const RegisterCell &RC, Register SelfR);
317
RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
318
RegisterCell extract(const BitMask &M) const; // Returns a new cell.
319
RegisterCell &rol(uint16_t Sh); // Rotate left.
320
RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
321
RegisterCell &cat(const RegisterCell &RC); // Concatenate.
322
uint16_t cl(bool B) const;
323
uint16_t ct(bool B) const;
324
325
bool operator== (const RegisterCell &RC) const;
326
bool operator!= (const RegisterCell &RC) const {
327
return !operator==(RC);
328
}
329
330
// Replace the ref-to-reg-0 bit values with the given register.
331
RegisterCell &regify(unsigned R);
332
333
// Generate a "ref" cell for the corresponding register. In the resulting
334
// cell each bit will be described as being the same as the corresponding
335
// bit in register Reg (i.e. the cell is "defined" by register Reg).
336
static RegisterCell self(unsigned Reg, uint16_t Width);
337
// Generate a "top" cell of given size.
338
static RegisterCell top(uint16_t Width);
339
// Generate a cell that is a "ref" to another cell.
340
static RegisterCell ref(const RegisterCell &C);
341
342
private:
343
// The DefaultBitN is here only to avoid frequent reallocation of the
344
// memory in the vector.
345
static const unsigned DefaultBitN = 32;
346
using BitValueList = SmallVector<BitValue, DefaultBitN>;
347
BitValueList Bits;
348
349
friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
350
};
351
352
inline bool BitTracker::has(unsigned Reg) const {
353
return Map.find(Reg) != Map.end();
354
}
355
356
inline const BitTracker::RegisterCell&
357
BitTracker::lookup(unsigned Reg) const {
358
CellMapType::const_iterator F = Map.find(Reg);
359
assert(F != Map.end());
360
return F->second;
361
}
362
363
inline BitTracker::RegisterCell
364
BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
365
RegisterCell RC(Width);
366
for (uint16_t i = 0; i < Width; ++i)
367
RC.Bits[i] = BitValue::self(BitRef(Reg, i));
368
return RC;
369
}
370
371
inline BitTracker::RegisterCell
372
BitTracker::RegisterCell::top(uint16_t Width) {
373
RegisterCell RC(Width);
374
for (uint16_t i = 0; i < Width; ++i)
375
RC.Bits[i] = BitValue(BitValue::Top);
376
return RC;
377
}
378
379
inline BitTracker::RegisterCell
380
BitTracker::RegisterCell::ref(const RegisterCell &C) {
381
uint16_t W = C.width();
382
RegisterCell RC(W);
383
for (unsigned i = 0; i < W; ++i)
384
RC[i] = BitValue::ref(C[i]);
385
return RC;
386
}
387
388
// A class to evaluate target's instructions and update the cell maps.
389
// This is used internally by the bit tracker. A target that wants to
390
// utilize this should implement the evaluation functions (noted below)
391
// in a subclass of this class.
392
struct BitTracker::MachineEvaluator {
393
MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
394
: TRI(T), MRI(M) {}
395
virtual ~MachineEvaluator() = default;
396
397
uint16_t getRegBitWidth(const RegisterRef &RR) const;
398
399
RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
400
void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
401
402
// A result of any operation should use refs to the source cells, not
403
// the cells directly. This function is a convenience wrapper to quickly
404
// generate a ref for a cell corresponding to a register reference.
405
RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
406
RegisterCell RC = getCell(RR, M);
407
return RegisterCell::ref(RC);
408
}
409
410
// Helper functions.
411
// Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
412
bool isInt(const RegisterCell &A) const;
413
// Convert cell to an immediate value.
414
uint64_t toInt(const RegisterCell &A) const;
415
416
// Generate cell from an immediate value.
417
RegisterCell eIMM(int64_t V, uint16_t W) const;
418
RegisterCell eIMM(const ConstantInt *CI) const;
419
420
// Arithmetic.
421
RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
422
RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
423
RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
424
RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
425
426
// Shifts.
427
RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
428
RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
429
RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
430
431
// Logical.
432
RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
433
RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
434
RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
435
RegisterCell eNOT(const RegisterCell &A1) const;
436
437
// Set bit, clear bit.
438
RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
439
RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
440
441
// Count leading/trailing bits (zeros/ones).
442
RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
443
RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
444
445
// Sign/zero extension.
446
RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
447
RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
448
449
// Extract/insert
450
// XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1.
451
// INS R,S,b: take R and replace bits starting from b with S.
452
RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
453
RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
454
uint16_t AtN) const;
455
456
// User-provided functions for individual targets:
457
458
// Return a sub-register mask that indicates which bits in Reg belong
459
// to the subregister Sub. These bits are assumed to be contiguous in
460
// the super-register, and have the same ordering in the sub-register
461
// as in the super-register. It is valid to call this function with
462
// Sub == 0, in this case, the function should return a mask that spans
463
// the entire register Reg (which is what the default implementation
464
// does).
465
virtual BitMask mask(Register Reg, unsigned Sub) const;
466
// Indicate whether a given register class should be tracked.
467
virtual bool track(const TargetRegisterClass *RC) const { return true; }
468
// Evaluate a non-branching machine instruction, given the cell map with
469
// the input values. Place the results in the Outputs map. Return "true"
470
// if evaluation succeeded, "false" otherwise.
471
virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
472
CellMapType &Outputs) const;
473
// Evaluate a branch, given the cell map with the input values. Fill out
474
// a list of all possible branch targets and indicate (through a flag)
475
// whether the branch could fall-through. Return "true" if this information
476
// has been successfully computed, "false" otherwise.
477
virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
478
BranchTargetList &Targets, bool &FallsThru) const = 0;
479
// Given a register class RC, return a register class that should be assumed
480
// when a register from class RC is used with a subregister of index Idx.
481
virtual const TargetRegisterClass&
482
composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const {
483
if (Idx == 0)
484
return RC;
485
llvm_unreachable("Unimplemented composeWithSubRegIndex");
486
}
487
// Return the size in bits of the physical register Reg.
488
virtual uint16_t getPhysRegBitWidth(MCRegister Reg) const;
489
490
const TargetRegisterInfo &TRI;
491
MachineRegisterInfo &MRI;
492
};
493
494
} // end namespace llvm
495
496
#endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
497
498