Path: blob/main/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp
35294 views
//===- HexagonBitTracker.cpp ----------------------------------------------===//1//2// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.3// See https://llvm.org/LICENSE.txt for license information.4// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception5//6//===----------------------------------------------------------------------===//78#include "HexagonBitTracker.h"9#include "Hexagon.h"10#include "HexagonInstrInfo.h"11#include "HexagonRegisterInfo.h"12#include "HexagonSubtarget.h"13#include "llvm/CodeGen/MachineFrameInfo.h"14#include "llvm/CodeGen/MachineFunction.h"15#include "llvm/CodeGen/MachineInstr.h"16#include "llvm/CodeGen/MachineOperand.h"17#include "llvm/CodeGen/MachineRegisterInfo.h"18#include "llvm/CodeGen/TargetRegisterInfo.h"19#include "llvm/IR/Argument.h"20#include "llvm/IR/Attributes.h"21#include "llvm/IR/Function.h"22#include "llvm/IR/Type.h"23#include "llvm/Support/Compiler.h"24#include "llvm/Support/Debug.h"25#include "llvm/Support/ErrorHandling.h"26#include "llvm/Support/MathExtras.h"27#include "llvm/Support/raw_ostream.h"28#include <cassert>29#include <cstddef>30#include <cstdint>31#include <cstdlib>32#include <utility>33#include <vector>3435using namespace llvm;3637using BT = BitTracker;3839HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,40MachineRegisterInfo &mri,41const HexagonInstrInfo &tii,42MachineFunction &mf)43: MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {44// Populate the VRX map (VR to extension-type).45// Go over all the formal parameters of the function. If a given parameter46// P is sign- or zero-extended, locate the virtual register holding that47// parameter and create an entry in the VRX map indicating the type of ex-48// tension (and the source type).49// This is a bit complicated to do accurately, since the memory layout in-50// formation is necessary to precisely determine whether an aggregate para-51// meter will be passed in a register or in memory. What is given in MRI52// is the association between the physical register that is live-in (i.e.53// holds an argument), and the virtual register that this value will be54// copied into. This, by itself, is not sufficient to map back the virtual55// register to a formal parameter from Function (since consecutive live-ins56// from MRI may not correspond to consecutive formal parameters from Func-57// tion). To avoid the complications with in-memory arguments, only consi-58// der the initial sequence of formal parameters that are known to be59// passed via registers.60unsigned InVirtReg, InPhysReg = 0;6162for (const Argument &Arg : MF.getFunction().args()) {63Type *ATy = Arg.getType();64unsigned Width = 0;65if (ATy->isIntegerTy())66Width = ATy->getIntegerBitWidth();67else if (ATy->isPointerTy())68Width = 32;69// If pointer size is not set through target data, it will default to70// Module::AnyPointerSize.71if (Width == 0 || Width > 64)72break;73if (Arg.hasAttribute(Attribute::ByVal))74continue;75InPhysReg = getNextPhysReg(InPhysReg, Width);76if (!InPhysReg)77break;78InVirtReg = getVirtRegFor(InPhysReg);79if (!InVirtReg)80continue;81if (Arg.hasAttribute(Attribute::SExt))82VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));83else if (Arg.hasAttribute(Attribute::ZExt))84VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));85}86}8788BT::BitMask HexagonEvaluator::mask(Register Reg, unsigned Sub) const {89if (Sub == 0)90return MachineEvaluator::mask(Reg, 0);91const TargetRegisterClass &RC = *MRI.getRegClass(Reg);92unsigned ID = RC.getID();93uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));94const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);95bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));96switch (ID) {97case Hexagon::DoubleRegsRegClassID:98case Hexagon::HvxWRRegClassID:99case Hexagon::HvxVQRRegClassID:100return IsSubLo ? BT::BitMask(0, RW-1)101: BT::BitMask(RW, 2*RW-1);102default:103break;104}105#ifndef NDEBUG106dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "107<< TRI.getRegClassName(&RC) << '\n';108#endif109llvm_unreachable("Unexpected register/subregister");110}111112uint16_t HexagonEvaluator::getPhysRegBitWidth(MCRegister Reg) const {113using namespace Hexagon;114const auto &HST = MF.getSubtarget<HexagonSubtarget>();115if (HST.useHVXOps()) {116for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,117HvxVQRRegClass})118if (RC.contains(Reg))119return TRI.getRegSizeInBits(RC);120}121// Default treatment for other physical registers.122if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))123return TRI.getRegSizeInBits(*RC);124125llvm_unreachable(126(Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());127}128129const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(130const TargetRegisterClass &RC, unsigned Idx) const {131if (Idx == 0)132return RC;133134#ifndef NDEBUG135const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);136bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));137bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));138assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");139#endif140141switch (RC.getID()) {142case Hexagon::DoubleRegsRegClassID:143return Hexagon::IntRegsRegClass;144case Hexagon::HvxWRRegClassID:145return Hexagon::HvxVRRegClass;146case Hexagon::HvxVQRRegClassID:147return Hexagon::HvxWRRegClass;148default:149break;150}151#ifndef NDEBUG152dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';153#endif154llvm_unreachable("Unimplemented combination of reg class/subreg idx");155}156157namespace {158159class RegisterRefs {160std::vector<BT::RegisterRef> Vector;161162public:163RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {164for (unsigned i = 0, n = Vector.size(); i < n; ++i) {165const MachineOperand &MO = MI.getOperand(i);166if (MO.isReg())167Vector[i] = BT::RegisterRef(MO);168// For indices that don't correspond to registers, the entry will169// remain constructed via the default constructor.170}171}172173size_t size() const { return Vector.size(); }174175const BT::RegisterRef &operator[](unsigned n) const {176// The main purpose of this operator is to assert with bad argument.177assert(n < Vector.size());178return Vector[n];179}180};181182} // end anonymous namespace183184bool HexagonEvaluator::evaluate(const MachineInstr &MI,185const CellMapType &Inputs,186CellMapType &Outputs) const {187using namespace Hexagon;188189unsigned NumDefs = 0;190191// Basic correctness check: there should not be any defs with subregisters.192for (const MachineOperand &MO : MI.operands()) {193if (!MO.isReg() || !MO.isDef())194continue;195NumDefs++;196assert(MO.getSubReg() == 0);197}198199if (NumDefs == 0)200return false;201202unsigned Opc = MI.getOpcode();203204if (MI.mayLoad()) {205switch (Opc) {206// These instructions may be marked as mayLoad, but they are generating207// immediate values, so skip them.208case CONST32:209case CONST64:210break;211default:212return evaluateLoad(MI, Inputs, Outputs);213}214}215216// Check COPY instructions that copy formal parameters into virtual217// registers. Such parameters can be sign- or zero-extended at the218// call site, and we should take advantage of this knowledge. The MRI219// keeps a list of pairs of live-in physical and virtual registers,220// which provides information about which virtual registers will hold221// the argument values. The function will still contain instructions222// defining those virtual registers, and in practice those are COPY223// instructions from a physical to a virtual register. In such cases,224// applying the argument extension to the virtual register can be seen225// as simply mirroring the extension that had already been applied to226// the physical register at the call site. If the defining instruction227// was not a COPY, it would not be clear how to mirror that extension228// on the callee's side. For that reason, only check COPY instructions229// for potential extensions.230if (MI.isCopy()) {231if (evaluateFormalCopy(MI, Inputs, Outputs))232return true;233}234235// Beyond this point, if any operand is a global, skip that instruction.236// The reason is that certain instructions that can take an immediate237// operand can also have a global symbol in that operand. To avoid238// checking what kind of operand a given instruction has individually239// for each instruction, do it here. Global symbols as operands gene-240// rally do not provide any useful information.241for (const MachineOperand &MO : MI.operands()) {242if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||243MO.isCPI())244return false;245}246247RegisterRefs Reg(MI);248#define op(i) MI.getOperand(i)249#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))250#define im(i) MI.getOperand(i).getImm()251252// If the instruction has no register operands, skip it.253if (Reg.size() == 0)254return false;255256// Record result for register in operand 0.257auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)258-> bool {259putCell(Reg[0], Val, Outputs);260return true;261};262// Get the cell corresponding to the N-th operand.263auto cop = [this, &Reg, &MI, &Inputs](unsigned N,264uint16_t W) -> BT::RegisterCell {265const MachineOperand &Op = MI.getOperand(N);266if (Op.isImm())267return eIMM(Op.getImm(), W);268if (!Op.isReg())269return RegisterCell::self(0, W);270assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");271return rc(N);272};273// Extract RW low bits of the cell.274auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)275-> BT::RegisterCell {276assert(RW <= RC.width());277return eXTR(RC, 0, RW);278};279// Extract RW high bits of the cell.280auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)281-> BT::RegisterCell {282uint16_t W = RC.width();283assert(RW <= W);284return eXTR(RC, W-RW, W);285};286// Extract N-th halfword (counting from the least significant position).287auto half = [this] (const BT::RegisterCell &RC, unsigned N)288-> BT::RegisterCell {289assert(N*16+16 <= RC.width());290return eXTR(RC, N*16, N*16+16);291};292// Shuffle bits (pick even/odd from cells and merge into result).293auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,294uint16_t BW, bool Odd) -> BT::RegisterCell {295uint16_t I = Odd, Ws = Rs.width();296assert(Ws == Rt.width());297RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));298I += 2;299while (I*BW < Ws) {300RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));301I += 2;302}303return RC;304};305306// The bitwidth of the 0th operand. In most (if not all) of the307// instructions below, the 0th operand is the defined register.308// Pre-compute the bitwidth here, because it is needed in many cases309// cases below.310uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;311312// Register id of the 0th operand. It can be 0.313unsigned Reg0 = Reg[0].Reg;314315switch (Opc) {316// Transfer immediate:317318case A2_tfrsi:319case A2_tfrpi:320case CONST32:321case CONST64:322return rr0(eIMM(im(1), W0), Outputs);323case PS_false:324return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);325case PS_true:326return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);327case PS_fi: {328int FI = op(1).getIndex();329int Off = op(2).getImm();330unsigned A = MFI.getObjectAlign(FI).value() + std::abs(Off);331unsigned L = llvm::countr_zero(A);332RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);333RC.fill(0, L, BT::BitValue::Zero);334return rr0(RC, Outputs);335}336337// Transfer register:338339case A2_tfr:340case A2_tfrp:341case C2_pxfer_map:342return rr0(rc(1), Outputs);343case C2_tfrpr: {344uint16_t RW = W0;345uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);346assert(PW <= RW);347RegisterCell PC = eXTR(rc(1), 0, PW);348RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));349RC.fill(PW, RW, BT::BitValue::Zero);350return rr0(RC, Outputs);351}352case C2_tfrrp: {353uint16_t RW = W0;354uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);355RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);356RC.fill(PW, RW, BT::BitValue::Zero);357return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);358}359360// Arithmetic:361362case A2_abs:363case A2_absp:364// TODO365break;366367case A2_addsp: {368uint16_t W1 = getRegBitWidth(Reg[1]);369assert(W0 == 64 && W1 == 32);370RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));371RegisterCell RC = eADD(eSXT(CW, W1), rc(2));372return rr0(RC, Outputs);373}374case A2_add:375case A2_addp:376return rr0(eADD(rc(1), rc(2)), Outputs);377case A2_addi:378return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);379case S4_addi_asl_ri: {380RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));381return rr0(RC, Outputs);382}383case S4_addi_lsr_ri: {384RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));385return rr0(RC, Outputs);386}387case S4_addaddi: {388RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));389return rr0(RC, Outputs);390}391case M4_mpyri_addi: {392RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));393RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));394return rr0(RC, Outputs);395}396case M4_mpyrr_addi: {397RegisterCell M = eMLS(rc(2), rc(3));398RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));399return rr0(RC, Outputs);400}401case M4_mpyri_addr_u2: {402RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));403RegisterCell RC = eADD(rc(1), lo(M, W0));404return rr0(RC, Outputs);405}406case M4_mpyri_addr: {407RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));408RegisterCell RC = eADD(rc(1), lo(M, W0));409return rr0(RC, Outputs);410}411case M4_mpyrr_addr: {412RegisterCell M = eMLS(rc(2), rc(3));413RegisterCell RC = eADD(rc(1), lo(M, W0));414return rr0(RC, Outputs);415}416case S4_subaddi: {417RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));418return rr0(RC, Outputs);419}420case M2_accii: {421RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));422return rr0(RC, Outputs);423}424case M2_acci: {425RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));426return rr0(RC, Outputs);427}428case M2_subacc: {429RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));430return rr0(RC, Outputs);431}432case S2_addasl_rrri: {433RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));434return rr0(RC, Outputs);435}436case C4_addipc: {437RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);438RPC.fill(0, 2, BT::BitValue::Zero);439return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);440}441case A2_sub:442case A2_subp:443return rr0(eSUB(rc(1), rc(2)), Outputs);444case A2_subri:445return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);446case S4_subi_asl_ri: {447RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));448return rr0(RC, Outputs);449}450case S4_subi_lsr_ri: {451RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));452return rr0(RC, Outputs);453}454case M2_naccii: {455RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));456return rr0(RC, Outputs);457}458case M2_nacci: {459RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));460return rr0(RC, Outputs);461}462// 32-bit negation is done by "Rd = A2_subri 0, Rs"463case A2_negp:464return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);465466case M2_mpy_up: {467RegisterCell M = eMLS(rc(1), rc(2));468return rr0(hi(M, W0), Outputs);469}470case M2_dpmpyss_s0:471return rr0(eMLS(rc(1), rc(2)), Outputs);472case M2_dpmpyss_acc_s0:473return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);474case M2_dpmpyss_nac_s0:475return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);476case M2_mpyi: {477RegisterCell M = eMLS(rc(1), rc(2));478return rr0(lo(M, W0), Outputs);479}480case M2_macsip: {481RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));482RegisterCell RC = eADD(rc(1), lo(M, W0));483return rr0(RC, Outputs);484}485case M2_macsin: {486RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));487RegisterCell RC = eSUB(rc(1), lo(M, W0));488return rr0(RC, Outputs);489}490case M2_maci: {491RegisterCell M = eMLS(rc(2), rc(3));492RegisterCell RC = eADD(rc(1), lo(M, W0));493return rr0(RC, Outputs);494}495case M2_mnaci: {496RegisterCell M = eMLS(rc(2), rc(3));497RegisterCell RC = eSUB(rc(1), lo(M, W0));498return rr0(RC, Outputs);499}500case M2_mpysmi: {501RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));502return rr0(lo(M, 32), Outputs);503}504case M2_mpysin: {505RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));506return rr0(lo(M, 32), Outputs);507}508case M2_mpysip: {509RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));510return rr0(lo(M, 32), Outputs);511}512case M2_mpyu_up: {513RegisterCell M = eMLU(rc(1), rc(2));514return rr0(hi(M, W0), Outputs);515}516case M2_dpmpyuu_s0:517return rr0(eMLU(rc(1), rc(2)), Outputs);518case M2_dpmpyuu_acc_s0:519return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);520case M2_dpmpyuu_nac_s0:521return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);522//case M2_mpysu_up:523524// Logical/bitwise:525526case A2_andir:527return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);528case A2_and:529case A2_andp:530return rr0(eAND(rc(1), rc(2)), Outputs);531case A4_andn:532case A4_andnp:533return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);534case S4_andi_asl_ri: {535RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));536return rr0(RC, Outputs);537}538case S4_andi_lsr_ri: {539RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));540return rr0(RC, Outputs);541}542case M4_and_and:543return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);544case M4_and_andn:545return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);546case M4_and_or:547return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);548case M4_and_xor:549return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);550case A2_orir:551return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);552case A2_or:553case A2_orp:554return rr0(eORL(rc(1), rc(2)), Outputs);555case A4_orn:556case A4_ornp:557return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);558case S4_ori_asl_ri: {559RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));560return rr0(RC, Outputs);561}562case S4_ori_lsr_ri: {563RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));564return rr0(RC, Outputs);565}566case M4_or_and:567return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);568case M4_or_andn:569return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);570case S4_or_andi:571case S4_or_andix: {572RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));573return rr0(RC, Outputs);574}575case S4_or_ori: {576RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));577return rr0(RC, Outputs);578}579case M4_or_or:580return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);581case M4_or_xor:582return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);583case A2_xor:584case A2_xorp:585return rr0(eXOR(rc(1), rc(2)), Outputs);586case M4_xor_and:587return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);588case M4_xor_andn:589return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);590case M4_xor_or:591return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);592case M4_xor_xacc:593return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);594case A2_not:595case A2_notp:596return rr0(eNOT(rc(1)), Outputs);597598case S2_asl_i_r:599case S2_asl_i_p:600return rr0(eASL(rc(1), im(2)), Outputs);601case A2_aslh:602return rr0(eASL(rc(1), 16), Outputs);603case S2_asl_i_r_acc:604case S2_asl_i_p_acc:605return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);606case S2_asl_i_r_nac:607case S2_asl_i_p_nac:608return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);609case S2_asl_i_r_and:610case S2_asl_i_p_and:611return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);612case S2_asl_i_r_or:613case S2_asl_i_p_or:614return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);615case S2_asl_i_r_xacc:616case S2_asl_i_p_xacc:617return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);618case S2_asl_i_vh:619case S2_asl_i_vw:620// TODO621break;622623case S2_asr_i_r:624case S2_asr_i_p:625return rr0(eASR(rc(1), im(2)), Outputs);626case A2_asrh:627return rr0(eASR(rc(1), 16), Outputs);628case S2_asr_i_r_acc:629case S2_asr_i_p_acc:630return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);631case S2_asr_i_r_nac:632case S2_asr_i_p_nac:633return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);634case S2_asr_i_r_and:635case S2_asr_i_p_and:636return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);637case S2_asr_i_r_or:638case S2_asr_i_p_or:639return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);640case S2_asr_i_r_rnd: {641// The input is first sign-extended to 64 bits, then the output642// is truncated back to 32 bits.643assert(W0 == 32);644RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);645RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);646return rr0(eXTR(RC, 0, W0), Outputs);647}648case S2_asr_i_r_rnd_goodsyntax: {649int64_t S = im(2);650if (S == 0)651return rr0(rc(1), Outputs);652// Result: S2_asr_i_r_rnd Rs, u5-1653RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);654RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);655return rr0(eXTR(RC, 0, W0), Outputs);656}657case S2_asr_r_vh:658case S2_asr_i_vw:659case S2_asr_i_svw_trun:660// TODO661break;662663case S2_lsr_i_r:664case S2_lsr_i_p:665return rr0(eLSR(rc(1), im(2)), Outputs);666case S2_lsr_i_r_acc:667case S2_lsr_i_p_acc:668return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);669case S2_lsr_i_r_nac:670case S2_lsr_i_p_nac:671return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);672case S2_lsr_i_r_and:673case S2_lsr_i_p_and:674return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);675case S2_lsr_i_r_or:676case S2_lsr_i_p_or:677return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);678case S2_lsr_i_r_xacc:679case S2_lsr_i_p_xacc:680return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);681682case S2_clrbit_i: {683RegisterCell RC = rc(1);684RC[im(2)] = BT::BitValue::Zero;685return rr0(RC, Outputs);686}687case S2_setbit_i: {688RegisterCell RC = rc(1);689RC[im(2)] = BT::BitValue::One;690return rr0(RC, Outputs);691}692case S2_togglebit_i: {693RegisterCell RC = rc(1);694uint16_t BX = im(2);695RC[BX] = RC[BX].is(0) ? BT::BitValue::One696: RC[BX].is(1) ? BT::BitValue::Zero697: BT::BitValue::self();698return rr0(RC, Outputs);699}700701case A4_bitspliti: {702uint16_t W1 = getRegBitWidth(Reg[1]);703uint16_t BX = im(2);704// Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]705const BT::BitValue Zero = BT::BitValue::Zero;706RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)707.fill(W1+(W1-BX), W0, Zero);708RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);709RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);710return rr0(RC, Outputs);711}712case S4_extract:713case S4_extractp:714case S2_extractu:715case S2_extractup: {716uint16_t Wd = im(2), Of = im(3);717assert(Wd <= W0);718if (Wd == 0)719return rr0(eIMM(0, W0), Outputs);720// If the width extends beyond the register size, pad the register721// with 0 bits.722RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);723RegisterCell Ext = eXTR(Pad, Of, Wd+Of);724// Ext is short, need to extend it with 0s or sign bit.725RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));726if (Opc == S2_extractu || Opc == S2_extractup)727return rr0(eZXT(RC, Wd), Outputs);728return rr0(eSXT(RC, Wd), Outputs);729}730case S2_insert:731case S2_insertp: {732uint16_t Wd = im(3), Of = im(4);733assert(Wd < W0 && Of < W0);734// If Wd+Of exceeds W0, the inserted bits are truncated.735if (Wd+Of > W0)736Wd = W0-Of;737if (Wd == 0)738return rr0(rc(1), Outputs);739return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);740}741742// Bit permutations:743744case A2_combineii:745case A4_combineii:746case A4_combineir:747case A4_combineri:748case A2_combinew:749case V6_vcombine:750assert(W0 % 2 == 0);751return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);752case A2_combine_ll:753case A2_combine_lh:754case A2_combine_hl:755case A2_combine_hh: {756assert(W0 == 32);757assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);758// Low half in the output is 0 for _ll and _hl, 1 otherwise:759unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);760// High half in the output is 0 for _ll and _lh, 1 otherwise:761unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);762RegisterCell R1 = rc(1);763RegisterCell R2 = rc(2);764RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));765return rr0(RC, Outputs);766}767case S2_packhl: {768assert(W0 == 64);769assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);770RegisterCell R1 = rc(1);771RegisterCell R2 = rc(2);772RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))773.cat(half(R1, 1));774return rr0(RC, Outputs);775}776case S2_shuffeb: {777RegisterCell RC = shuffle(rc(1), rc(2), 8, false);778return rr0(RC, Outputs);779}780case S2_shuffeh: {781RegisterCell RC = shuffle(rc(1), rc(2), 16, false);782return rr0(RC, Outputs);783}784case S2_shuffob: {785RegisterCell RC = shuffle(rc(1), rc(2), 8, true);786return rr0(RC, Outputs);787}788case S2_shuffoh: {789RegisterCell RC = shuffle(rc(1), rc(2), 16, true);790return rr0(RC, Outputs);791}792case C2_mask: {793uint16_t WR = W0;794uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);795assert(WR == 64 && WP == 8);796RegisterCell R1 = rc(1);797RegisterCell RC(WR);798for (uint16_t i = 0; i < WP; ++i) {799const BT::BitValue &V = R1[i];800BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();801RC.fill(i*8, i*8+8, F);802}803return rr0(RC, Outputs);804}805806// Mux:807808case C2_muxii:809case C2_muxir:810case C2_muxri:811case C2_mux: {812BT::BitValue PC0 = rc(1)[0];813RegisterCell R2 = cop(2, W0);814RegisterCell R3 = cop(3, W0);815if (PC0.is(0) || PC0.is(1))816return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);817R2.meet(R3, Reg[0].Reg);818return rr0(R2, Outputs);819}820case C2_vmux:821// TODO822break;823824// Sign- and zero-extension:825826case A2_sxtb:827return rr0(eSXT(rc(1), 8), Outputs);828case A2_sxth:829return rr0(eSXT(rc(1), 16), Outputs);830case A2_sxtw: {831uint16_t W1 = getRegBitWidth(Reg[1]);832assert(W0 == 64 && W1 == 32);833RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);834return rr0(RC, Outputs);835}836case A2_zxtb:837return rr0(eZXT(rc(1), 8), Outputs);838case A2_zxth:839return rr0(eZXT(rc(1), 16), Outputs);840841// Saturations842843case A2_satb:844return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);845case A2_sath:846return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);847case A2_satub:848return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);849case A2_satuh:850return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);851852// Bit count:853854case S2_cl0:855case S2_cl0p:856// Always produce a 32-bit result.857return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);858case S2_cl1:859case S2_cl1p:860return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);861case S2_clb:862case S2_clbp: {863uint16_t W1 = getRegBitWidth(Reg[1]);864RegisterCell R1 = rc(1);865BT::BitValue TV = R1[W1-1];866if (TV.is(0) || TV.is(1))867return rr0(eCLB(R1, TV, 32), Outputs);868break;869}870case S2_ct0:871case S2_ct0p:872return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);873case S2_ct1:874case S2_ct1p:875return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);876case S5_popcountp:877// TODO878break;879880case C2_all8: {881RegisterCell P1 = rc(1);882bool Has0 = false, All1 = true;883for (uint16_t i = 0; i < 8/*XXX*/; ++i) {884if (!P1[i].is(1))885All1 = false;886if (!P1[i].is(0))887continue;888Has0 = true;889break;890}891if (!Has0 && !All1)892break;893RegisterCell RC(W0);894RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));895return rr0(RC, Outputs);896}897case C2_any8: {898RegisterCell P1 = rc(1);899bool Has1 = false, All0 = true;900for (uint16_t i = 0; i < 8/*XXX*/; ++i) {901if (!P1[i].is(0))902All0 = false;903if (!P1[i].is(1))904continue;905Has1 = true;906break;907}908if (!Has1 && !All0)909break;910RegisterCell RC(W0);911RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));912return rr0(RC, Outputs);913}914case C2_and:915return rr0(eAND(rc(1), rc(2)), Outputs);916case C2_andn:917return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);918case C2_not:919return rr0(eNOT(rc(1)), Outputs);920case C2_or:921return rr0(eORL(rc(1), rc(2)), Outputs);922case C2_orn:923return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);924case C2_xor:925return rr0(eXOR(rc(1), rc(2)), Outputs);926case C4_and_and:927return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);928case C4_and_andn:929return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);930case C4_and_or:931return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);932case C4_and_orn:933return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);934case C4_or_and:935return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);936case C4_or_andn:937return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);938case C4_or_or:939return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);940case C4_or_orn:941return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);942case C2_bitsclr:943case C2_bitsclri:944case C2_bitsset:945case C4_nbitsclr:946case C4_nbitsclri:947case C4_nbitsset:948// TODO949break;950case S2_tstbit_i:951case S4_ntstbit_i: {952BT::BitValue V = rc(1)[im(2)];953if (V.is(0) || V.is(1)) {954// If instruction is S2_tstbit_i, test for 1, otherwise test for 0.955bool TV = (Opc == S2_tstbit_i);956BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;957return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);958}959break;960}961962default:963// For instructions that define a single predicate registers, store964// the low 8 bits of the register only.965if (unsigned DefR = getUniqueDefVReg(MI)) {966if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {967BT::RegisterRef PD(DefR, 0);968uint16_t RW = getRegBitWidth(PD);969uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);970RegisterCell RC = RegisterCell::self(DefR, RW);971RC.fill(PW, RW, BT::BitValue::Zero);972putCell(PD, RC, Outputs);973return true;974}975}976return MachineEvaluator::evaluate(MI, Inputs, Outputs);977}978#undef im979#undef rc980#undef op981return false;982}983984bool HexagonEvaluator::evaluate(const MachineInstr &BI,985const CellMapType &Inputs,986BranchTargetList &Targets,987bool &FallsThru) const {988// We need to evaluate one branch at a time. TII::analyzeBranch checks989// all the branches in a basic block at once, so we cannot use it.990unsigned Opc = BI.getOpcode();991bool SimpleBranch = false;992bool Negated = false;993switch (Opc) {994case Hexagon::J2_jumpf:995case Hexagon::J2_jumpfpt:996case Hexagon::J2_jumpfnew:997case Hexagon::J2_jumpfnewpt:998Negated = true;999[[fallthrough]];1000case Hexagon::J2_jumpt:1001case Hexagon::J2_jumptpt:1002case Hexagon::J2_jumptnew:1003case Hexagon::J2_jumptnewpt:1004// Simple branch: if([!]Pn) jump ...1005// i.e. Op0 = predicate, Op1 = branch target.1006SimpleBranch = true;1007break;1008case Hexagon::J2_jump:1009Targets.insert(BI.getOperand(0).getMBB());1010FallsThru = false;1011return true;1012default:1013// If the branch is of unknown type, assume that all successors are1014// executable.1015return false;1016}10171018if (!SimpleBranch)1019return false;10201021// BI is a conditional branch if we got here.1022RegisterRef PR = BI.getOperand(0);1023RegisterCell PC = getCell(PR, Inputs);1024const BT::BitValue &Test = PC[0];10251026// If the condition is neither true nor false, then it's unknown.1027if (!Test.is(0) && !Test.is(1))1028return false;10291030// "Test.is(!Negated)" means "branch condition is true".1031if (!Test.is(!Negated)) {1032// Condition known to be false.1033FallsThru = true;1034return true;1035}10361037Targets.insert(BI.getOperand(1).getMBB());1038FallsThru = false;1039return true;1040}10411042unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {1043unsigned DefReg = 0;1044for (const MachineOperand &Op : MI.operands()) {1045if (!Op.isReg() || !Op.isDef())1046continue;1047Register R = Op.getReg();1048if (!R.isVirtual())1049continue;1050if (DefReg != 0)1051return 0;1052DefReg = R;1053}1054return DefReg;1055}10561057bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,1058const CellMapType &Inputs,1059CellMapType &Outputs) const {1060using namespace Hexagon;10611062if (TII.isPredicated(MI))1063return false;1064assert(MI.mayLoad() && "A load that mayn't?");1065unsigned Opc = MI.getOpcode();10661067uint16_t BitNum;1068bool SignEx;10691070switch (Opc) {1071default:1072return false;10731074#if 01075// memb_fifo1076case L2_loadalignb_pbr:1077case L2_loadalignb_pcr:1078case L2_loadalignb_pi:1079// memh_fifo1080case L2_loadalignh_pbr:1081case L2_loadalignh_pcr:1082case L2_loadalignh_pi:1083// membh1084case L2_loadbsw2_pbr:1085case L2_loadbsw2_pci:1086case L2_loadbsw2_pcr:1087case L2_loadbsw2_pi:1088case L2_loadbsw4_pbr:1089case L2_loadbsw4_pci:1090case L2_loadbsw4_pcr:1091case L2_loadbsw4_pi:1092// memubh1093case L2_loadbzw2_pbr:1094case L2_loadbzw2_pci:1095case L2_loadbzw2_pcr:1096case L2_loadbzw2_pi:1097case L2_loadbzw4_pbr:1098case L2_loadbzw4_pci:1099case L2_loadbzw4_pcr:1100case L2_loadbzw4_pi:1101#endif11021103case L2_loadrbgp:1104case L2_loadrb_io:1105case L2_loadrb_pbr:1106case L2_loadrb_pci:1107case L2_loadrb_pcr:1108case L2_loadrb_pi:1109case PS_loadrbabs:1110case L4_loadrb_ap:1111case L4_loadrb_rr:1112case L4_loadrb_ur:1113BitNum = 8;1114SignEx = true;1115break;11161117case L2_loadrubgp:1118case L2_loadrub_io:1119case L2_loadrub_pbr:1120case L2_loadrub_pci:1121case L2_loadrub_pcr:1122case L2_loadrub_pi:1123case PS_loadrubabs:1124case L4_loadrub_ap:1125case L4_loadrub_rr:1126case L4_loadrub_ur:1127BitNum = 8;1128SignEx = false;1129break;11301131case L2_loadrhgp:1132case L2_loadrh_io:1133case L2_loadrh_pbr:1134case L2_loadrh_pci:1135case L2_loadrh_pcr:1136case L2_loadrh_pi:1137case PS_loadrhabs:1138case L4_loadrh_ap:1139case L4_loadrh_rr:1140case L4_loadrh_ur:1141BitNum = 16;1142SignEx = true;1143break;11441145case L2_loadruhgp:1146case L2_loadruh_io:1147case L2_loadruh_pbr:1148case L2_loadruh_pci:1149case L2_loadruh_pcr:1150case L2_loadruh_pi:1151case L4_loadruh_rr:1152case PS_loadruhabs:1153case L4_loadruh_ap:1154case L4_loadruh_ur:1155BitNum = 16;1156SignEx = false;1157break;11581159case L2_loadrigp:1160case L2_loadri_io:1161case L2_loadri_pbr:1162case L2_loadri_pci:1163case L2_loadri_pcr:1164case L2_loadri_pi:1165case L2_loadw_locked:1166case PS_loadriabs:1167case L4_loadri_ap:1168case L4_loadri_rr:1169case L4_loadri_ur:1170case LDriw_pred:1171BitNum = 32;1172SignEx = true;1173break;11741175case L2_loadrdgp:1176case L2_loadrd_io:1177case L2_loadrd_pbr:1178case L2_loadrd_pci:1179case L2_loadrd_pcr:1180case L2_loadrd_pi:1181case L4_loadd_locked:1182case PS_loadrdabs:1183case L4_loadrd_ap:1184case L4_loadrd_rr:1185case L4_loadrd_ur:1186BitNum = 64;1187SignEx = true;1188break;1189}11901191const MachineOperand &MD = MI.getOperand(0);1192assert(MD.isReg() && MD.isDef());1193RegisterRef RD = MD;11941195uint16_t W = getRegBitWidth(RD);1196assert(W >= BitNum && BitNum > 0);1197RegisterCell Res(W);11981199for (uint16_t i = 0; i < BitNum; ++i)1200Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));12011202if (SignEx) {1203const BT::BitValue &Sign = Res[BitNum-1];1204for (uint16_t i = BitNum; i < W; ++i)1205Res[i] = BT::BitValue::ref(Sign);1206} else {1207for (uint16_t i = BitNum; i < W; ++i)1208Res[i] = BT::BitValue::Zero;1209}12101211putCell(RD, Res, Outputs);1212return true;1213}12141215bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,1216const CellMapType &Inputs,1217CellMapType &Outputs) const {1218// If MI defines a formal parameter, but is not a copy (loads are handled1219// in evaluateLoad), then it's not clear what to do.1220assert(MI.isCopy());12211222RegisterRef RD = MI.getOperand(0);1223RegisterRef RS = MI.getOperand(1);1224assert(RD.Sub == 0);1225if (!RS.Reg.isPhysical())1226return false;1227RegExtMap::const_iterator F = VRX.find(RD.Reg);1228if (F == VRX.end())1229return false;12301231uint16_t EW = F->second.Width;1232// Store RD's cell into the map. This will associate the cell with a virtual1233// register, and make zero-/sign-extends possible (otherwise we would be ex-1234// tending "self" bit values, which will have no effect, since "self" values1235// cannot be references to anything).1236putCell(RD, getCell(RS, Inputs), Outputs);12371238RegisterCell Res;1239// Read RD's cell from the outputs instead of RS's cell from the inputs:1240if (F->second.Type == ExtType::SExt)1241Res = eSXT(getCell(RD, Outputs), EW);1242else if (F->second.Type == ExtType::ZExt)1243Res = eZXT(getCell(RD, Outputs), EW);12441245putCell(RD, Res, Outputs);1246return true;1247}12481249unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {1250using namespace Hexagon;12511252bool Is64 = DoubleRegsRegClass.contains(PReg);1253assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));12541255static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };1256static const unsigned Phys64[] = { D0, D1, D2 };1257const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);1258const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);12591260// Return the first parameter register of the required width.1261if (PReg == 0)1262return (Width <= 32) ? Phys32[0] : Phys64[0];12631264// Set Idx32, Idx64 in such a way that Idx+1 would give the index of the1265// next register.1266unsigned Idx32 = 0, Idx64 = 0;1267if (!Is64) {1268while (Idx32 < Num32) {1269if (Phys32[Idx32] == PReg)1270break;1271Idx32++;1272}1273Idx64 = Idx32/2;1274} else {1275while (Idx64 < Num64) {1276if (Phys64[Idx64] == PReg)1277break;1278Idx64++;1279}1280Idx32 = Idx64*2+1;1281}12821283if (Width <= 32)1284return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;1285return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;1286}12871288unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {1289for (std::pair<unsigned,unsigned> P : MRI.liveins())1290if (P.first == PReg)1291return P.second;1292return 0;1293}129412951296