Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp
35294 views
1
//===- HexagonBitTracker.cpp ----------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "HexagonBitTracker.h"
10
#include "Hexagon.h"
11
#include "HexagonInstrInfo.h"
12
#include "HexagonRegisterInfo.h"
13
#include "HexagonSubtarget.h"
14
#include "llvm/CodeGen/MachineFrameInfo.h"
15
#include "llvm/CodeGen/MachineFunction.h"
16
#include "llvm/CodeGen/MachineInstr.h"
17
#include "llvm/CodeGen/MachineOperand.h"
18
#include "llvm/CodeGen/MachineRegisterInfo.h"
19
#include "llvm/CodeGen/TargetRegisterInfo.h"
20
#include "llvm/IR/Argument.h"
21
#include "llvm/IR/Attributes.h"
22
#include "llvm/IR/Function.h"
23
#include "llvm/IR/Type.h"
24
#include "llvm/Support/Compiler.h"
25
#include "llvm/Support/Debug.h"
26
#include "llvm/Support/ErrorHandling.h"
27
#include "llvm/Support/MathExtras.h"
28
#include "llvm/Support/raw_ostream.h"
29
#include <cassert>
30
#include <cstddef>
31
#include <cstdint>
32
#include <cstdlib>
33
#include <utility>
34
#include <vector>
35
36
using namespace llvm;
37
38
using BT = BitTracker;
39
40
HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
41
MachineRegisterInfo &mri,
42
const HexagonInstrInfo &tii,
43
MachineFunction &mf)
44
: MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
45
// Populate the VRX map (VR to extension-type).
46
// Go over all the formal parameters of the function. If a given parameter
47
// P is sign- or zero-extended, locate the virtual register holding that
48
// parameter and create an entry in the VRX map indicating the type of ex-
49
// tension (and the source type).
50
// This is a bit complicated to do accurately, since the memory layout in-
51
// formation is necessary to precisely determine whether an aggregate para-
52
// meter will be passed in a register or in memory. What is given in MRI
53
// is the association between the physical register that is live-in (i.e.
54
// holds an argument), and the virtual register that this value will be
55
// copied into. This, by itself, is not sufficient to map back the virtual
56
// register to a formal parameter from Function (since consecutive live-ins
57
// from MRI may not correspond to consecutive formal parameters from Func-
58
// tion). To avoid the complications with in-memory arguments, only consi-
59
// der the initial sequence of formal parameters that are known to be
60
// passed via registers.
61
unsigned InVirtReg, InPhysReg = 0;
62
63
for (const Argument &Arg : MF.getFunction().args()) {
64
Type *ATy = Arg.getType();
65
unsigned Width = 0;
66
if (ATy->isIntegerTy())
67
Width = ATy->getIntegerBitWidth();
68
else if (ATy->isPointerTy())
69
Width = 32;
70
// If pointer size is not set through target data, it will default to
71
// Module::AnyPointerSize.
72
if (Width == 0 || Width > 64)
73
break;
74
if (Arg.hasAttribute(Attribute::ByVal))
75
continue;
76
InPhysReg = getNextPhysReg(InPhysReg, Width);
77
if (!InPhysReg)
78
break;
79
InVirtReg = getVirtRegFor(InPhysReg);
80
if (!InVirtReg)
81
continue;
82
if (Arg.hasAttribute(Attribute::SExt))
83
VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
84
else if (Arg.hasAttribute(Attribute::ZExt))
85
VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
86
}
87
}
88
89
BT::BitMask HexagonEvaluator::mask(Register Reg, unsigned Sub) const {
90
if (Sub == 0)
91
return MachineEvaluator::mask(Reg, 0);
92
const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
93
unsigned ID = RC.getID();
94
uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
95
const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
96
bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
97
switch (ID) {
98
case Hexagon::DoubleRegsRegClassID:
99
case Hexagon::HvxWRRegClassID:
100
case Hexagon::HvxVQRRegClassID:
101
return IsSubLo ? BT::BitMask(0, RW-1)
102
: BT::BitMask(RW, 2*RW-1);
103
default:
104
break;
105
}
106
#ifndef NDEBUG
107
dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
108
<< TRI.getRegClassName(&RC) << '\n';
109
#endif
110
llvm_unreachable("Unexpected register/subregister");
111
}
112
113
uint16_t HexagonEvaluator::getPhysRegBitWidth(MCRegister Reg) const {
114
using namespace Hexagon;
115
const auto &HST = MF.getSubtarget<HexagonSubtarget>();
116
if (HST.useHVXOps()) {
117
for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
118
HvxVQRRegClass})
119
if (RC.contains(Reg))
120
return TRI.getRegSizeInBits(RC);
121
}
122
// Default treatment for other physical registers.
123
if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
124
return TRI.getRegSizeInBits(*RC);
125
126
llvm_unreachable(
127
(Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
128
}
129
130
const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
131
const TargetRegisterClass &RC, unsigned Idx) const {
132
if (Idx == 0)
133
return RC;
134
135
#ifndef NDEBUG
136
const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
137
bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
138
bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
139
assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
140
#endif
141
142
switch (RC.getID()) {
143
case Hexagon::DoubleRegsRegClassID:
144
return Hexagon::IntRegsRegClass;
145
case Hexagon::HvxWRRegClassID:
146
return Hexagon::HvxVRRegClass;
147
case Hexagon::HvxVQRRegClassID:
148
return Hexagon::HvxWRRegClass;
149
default:
150
break;
151
}
152
#ifndef NDEBUG
153
dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
154
#endif
155
llvm_unreachable("Unimplemented combination of reg class/subreg idx");
156
}
157
158
namespace {
159
160
class RegisterRefs {
161
std::vector<BT::RegisterRef> Vector;
162
163
public:
164
RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
165
for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
166
const MachineOperand &MO = MI.getOperand(i);
167
if (MO.isReg())
168
Vector[i] = BT::RegisterRef(MO);
169
// For indices that don't correspond to registers, the entry will
170
// remain constructed via the default constructor.
171
}
172
}
173
174
size_t size() const { return Vector.size(); }
175
176
const BT::RegisterRef &operator[](unsigned n) const {
177
// The main purpose of this operator is to assert with bad argument.
178
assert(n < Vector.size());
179
return Vector[n];
180
}
181
};
182
183
} // end anonymous namespace
184
185
bool HexagonEvaluator::evaluate(const MachineInstr &MI,
186
const CellMapType &Inputs,
187
CellMapType &Outputs) const {
188
using namespace Hexagon;
189
190
unsigned NumDefs = 0;
191
192
// Basic correctness check: there should not be any defs with subregisters.
193
for (const MachineOperand &MO : MI.operands()) {
194
if (!MO.isReg() || !MO.isDef())
195
continue;
196
NumDefs++;
197
assert(MO.getSubReg() == 0);
198
}
199
200
if (NumDefs == 0)
201
return false;
202
203
unsigned Opc = MI.getOpcode();
204
205
if (MI.mayLoad()) {
206
switch (Opc) {
207
// These instructions may be marked as mayLoad, but they are generating
208
// immediate values, so skip them.
209
case CONST32:
210
case CONST64:
211
break;
212
default:
213
return evaluateLoad(MI, Inputs, Outputs);
214
}
215
}
216
217
// Check COPY instructions that copy formal parameters into virtual
218
// registers. Such parameters can be sign- or zero-extended at the
219
// call site, and we should take advantage of this knowledge. The MRI
220
// keeps a list of pairs of live-in physical and virtual registers,
221
// which provides information about which virtual registers will hold
222
// the argument values. The function will still contain instructions
223
// defining those virtual registers, and in practice those are COPY
224
// instructions from a physical to a virtual register. In such cases,
225
// applying the argument extension to the virtual register can be seen
226
// as simply mirroring the extension that had already been applied to
227
// the physical register at the call site. If the defining instruction
228
// was not a COPY, it would not be clear how to mirror that extension
229
// on the callee's side. For that reason, only check COPY instructions
230
// for potential extensions.
231
if (MI.isCopy()) {
232
if (evaluateFormalCopy(MI, Inputs, Outputs))
233
return true;
234
}
235
236
// Beyond this point, if any operand is a global, skip that instruction.
237
// The reason is that certain instructions that can take an immediate
238
// operand can also have a global symbol in that operand. To avoid
239
// checking what kind of operand a given instruction has individually
240
// for each instruction, do it here. Global symbols as operands gene-
241
// rally do not provide any useful information.
242
for (const MachineOperand &MO : MI.operands()) {
243
if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
244
MO.isCPI())
245
return false;
246
}
247
248
RegisterRefs Reg(MI);
249
#define op(i) MI.getOperand(i)
250
#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
251
#define im(i) MI.getOperand(i).getImm()
252
253
// If the instruction has no register operands, skip it.
254
if (Reg.size() == 0)
255
return false;
256
257
// Record result for register in operand 0.
258
auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
259
-> bool {
260
putCell(Reg[0], Val, Outputs);
261
return true;
262
};
263
// Get the cell corresponding to the N-th operand.
264
auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
265
uint16_t W) -> BT::RegisterCell {
266
const MachineOperand &Op = MI.getOperand(N);
267
if (Op.isImm())
268
return eIMM(Op.getImm(), W);
269
if (!Op.isReg())
270
return RegisterCell::self(0, W);
271
assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
272
return rc(N);
273
};
274
// Extract RW low bits of the cell.
275
auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
276
-> BT::RegisterCell {
277
assert(RW <= RC.width());
278
return eXTR(RC, 0, RW);
279
};
280
// Extract RW high bits of the cell.
281
auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
282
-> BT::RegisterCell {
283
uint16_t W = RC.width();
284
assert(RW <= W);
285
return eXTR(RC, W-RW, W);
286
};
287
// Extract N-th halfword (counting from the least significant position).
288
auto half = [this] (const BT::RegisterCell &RC, unsigned N)
289
-> BT::RegisterCell {
290
assert(N*16+16 <= RC.width());
291
return eXTR(RC, N*16, N*16+16);
292
};
293
// Shuffle bits (pick even/odd from cells and merge into result).
294
auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
295
uint16_t BW, bool Odd) -> BT::RegisterCell {
296
uint16_t I = Odd, Ws = Rs.width();
297
assert(Ws == Rt.width());
298
RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
299
I += 2;
300
while (I*BW < Ws) {
301
RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
302
I += 2;
303
}
304
return RC;
305
};
306
307
// The bitwidth of the 0th operand. In most (if not all) of the
308
// instructions below, the 0th operand is the defined register.
309
// Pre-compute the bitwidth here, because it is needed in many cases
310
// cases below.
311
uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
312
313
// Register id of the 0th operand. It can be 0.
314
unsigned Reg0 = Reg[0].Reg;
315
316
switch (Opc) {
317
// Transfer immediate:
318
319
case A2_tfrsi:
320
case A2_tfrpi:
321
case CONST32:
322
case CONST64:
323
return rr0(eIMM(im(1), W0), Outputs);
324
case PS_false:
325
return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
326
case PS_true:
327
return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
328
case PS_fi: {
329
int FI = op(1).getIndex();
330
int Off = op(2).getImm();
331
unsigned A = MFI.getObjectAlign(FI).value() + std::abs(Off);
332
unsigned L = llvm::countr_zero(A);
333
RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
334
RC.fill(0, L, BT::BitValue::Zero);
335
return rr0(RC, Outputs);
336
}
337
338
// Transfer register:
339
340
case A2_tfr:
341
case A2_tfrp:
342
case C2_pxfer_map:
343
return rr0(rc(1), Outputs);
344
case C2_tfrpr: {
345
uint16_t RW = W0;
346
uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
347
assert(PW <= RW);
348
RegisterCell PC = eXTR(rc(1), 0, PW);
349
RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
350
RC.fill(PW, RW, BT::BitValue::Zero);
351
return rr0(RC, Outputs);
352
}
353
case C2_tfrrp: {
354
uint16_t RW = W0;
355
uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
356
RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
357
RC.fill(PW, RW, BT::BitValue::Zero);
358
return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
359
}
360
361
// Arithmetic:
362
363
case A2_abs:
364
case A2_absp:
365
// TODO
366
break;
367
368
case A2_addsp: {
369
uint16_t W1 = getRegBitWidth(Reg[1]);
370
assert(W0 == 64 && W1 == 32);
371
RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
372
RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
373
return rr0(RC, Outputs);
374
}
375
case A2_add:
376
case A2_addp:
377
return rr0(eADD(rc(1), rc(2)), Outputs);
378
case A2_addi:
379
return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
380
case S4_addi_asl_ri: {
381
RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
382
return rr0(RC, Outputs);
383
}
384
case S4_addi_lsr_ri: {
385
RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
386
return rr0(RC, Outputs);
387
}
388
case S4_addaddi: {
389
RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
390
return rr0(RC, Outputs);
391
}
392
case M4_mpyri_addi: {
393
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
394
RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
395
return rr0(RC, Outputs);
396
}
397
case M4_mpyrr_addi: {
398
RegisterCell M = eMLS(rc(2), rc(3));
399
RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
400
return rr0(RC, Outputs);
401
}
402
case M4_mpyri_addr_u2: {
403
RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
404
RegisterCell RC = eADD(rc(1), lo(M, W0));
405
return rr0(RC, Outputs);
406
}
407
case M4_mpyri_addr: {
408
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
409
RegisterCell RC = eADD(rc(1), lo(M, W0));
410
return rr0(RC, Outputs);
411
}
412
case M4_mpyrr_addr: {
413
RegisterCell M = eMLS(rc(2), rc(3));
414
RegisterCell RC = eADD(rc(1), lo(M, W0));
415
return rr0(RC, Outputs);
416
}
417
case S4_subaddi: {
418
RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
419
return rr0(RC, Outputs);
420
}
421
case M2_accii: {
422
RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
423
return rr0(RC, Outputs);
424
}
425
case M2_acci: {
426
RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
427
return rr0(RC, Outputs);
428
}
429
case M2_subacc: {
430
RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
431
return rr0(RC, Outputs);
432
}
433
case S2_addasl_rrri: {
434
RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
435
return rr0(RC, Outputs);
436
}
437
case C4_addipc: {
438
RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
439
RPC.fill(0, 2, BT::BitValue::Zero);
440
return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
441
}
442
case A2_sub:
443
case A2_subp:
444
return rr0(eSUB(rc(1), rc(2)), Outputs);
445
case A2_subri:
446
return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
447
case S4_subi_asl_ri: {
448
RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
449
return rr0(RC, Outputs);
450
}
451
case S4_subi_lsr_ri: {
452
RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
453
return rr0(RC, Outputs);
454
}
455
case M2_naccii: {
456
RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
457
return rr0(RC, Outputs);
458
}
459
case M2_nacci: {
460
RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
461
return rr0(RC, Outputs);
462
}
463
// 32-bit negation is done by "Rd = A2_subri 0, Rs"
464
case A2_negp:
465
return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
466
467
case M2_mpy_up: {
468
RegisterCell M = eMLS(rc(1), rc(2));
469
return rr0(hi(M, W0), Outputs);
470
}
471
case M2_dpmpyss_s0:
472
return rr0(eMLS(rc(1), rc(2)), Outputs);
473
case M2_dpmpyss_acc_s0:
474
return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
475
case M2_dpmpyss_nac_s0:
476
return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
477
case M2_mpyi: {
478
RegisterCell M = eMLS(rc(1), rc(2));
479
return rr0(lo(M, W0), Outputs);
480
}
481
case M2_macsip: {
482
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
483
RegisterCell RC = eADD(rc(1), lo(M, W0));
484
return rr0(RC, Outputs);
485
}
486
case M2_macsin: {
487
RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
488
RegisterCell RC = eSUB(rc(1), lo(M, W0));
489
return rr0(RC, Outputs);
490
}
491
case M2_maci: {
492
RegisterCell M = eMLS(rc(2), rc(3));
493
RegisterCell RC = eADD(rc(1), lo(M, W0));
494
return rr0(RC, Outputs);
495
}
496
case M2_mnaci: {
497
RegisterCell M = eMLS(rc(2), rc(3));
498
RegisterCell RC = eSUB(rc(1), lo(M, W0));
499
return rr0(RC, Outputs);
500
}
501
case M2_mpysmi: {
502
RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
503
return rr0(lo(M, 32), Outputs);
504
}
505
case M2_mpysin: {
506
RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
507
return rr0(lo(M, 32), Outputs);
508
}
509
case M2_mpysip: {
510
RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
511
return rr0(lo(M, 32), Outputs);
512
}
513
case M2_mpyu_up: {
514
RegisterCell M = eMLU(rc(1), rc(2));
515
return rr0(hi(M, W0), Outputs);
516
}
517
case M2_dpmpyuu_s0:
518
return rr0(eMLU(rc(1), rc(2)), Outputs);
519
case M2_dpmpyuu_acc_s0:
520
return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
521
case M2_dpmpyuu_nac_s0:
522
return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
523
//case M2_mpysu_up:
524
525
// Logical/bitwise:
526
527
case A2_andir:
528
return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
529
case A2_and:
530
case A2_andp:
531
return rr0(eAND(rc(1), rc(2)), Outputs);
532
case A4_andn:
533
case A4_andnp:
534
return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
535
case S4_andi_asl_ri: {
536
RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
537
return rr0(RC, Outputs);
538
}
539
case S4_andi_lsr_ri: {
540
RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
541
return rr0(RC, Outputs);
542
}
543
case M4_and_and:
544
return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
545
case M4_and_andn:
546
return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
547
case M4_and_or:
548
return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
549
case M4_and_xor:
550
return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
551
case A2_orir:
552
return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
553
case A2_or:
554
case A2_orp:
555
return rr0(eORL(rc(1), rc(2)), Outputs);
556
case A4_orn:
557
case A4_ornp:
558
return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
559
case S4_ori_asl_ri: {
560
RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
561
return rr0(RC, Outputs);
562
}
563
case S4_ori_lsr_ri: {
564
RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
565
return rr0(RC, Outputs);
566
}
567
case M4_or_and:
568
return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
569
case M4_or_andn:
570
return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
571
case S4_or_andi:
572
case S4_or_andix: {
573
RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
574
return rr0(RC, Outputs);
575
}
576
case S4_or_ori: {
577
RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
578
return rr0(RC, Outputs);
579
}
580
case M4_or_or:
581
return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
582
case M4_or_xor:
583
return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
584
case A2_xor:
585
case A2_xorp:
586
return rr0(eXOR(rc(1), rc(2)), Outputs);
587
case M4_xor_and:
588
return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
589
case M4_xor_andn:
590
return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
591
case M4_xor_or:
592
return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
593
case M4_xor_xacc:
594
return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
595
case A2_not:
596
case A2_notp:
597
return rr0(eNOT(rc(1)), Outputs);
598
599
case S2_asl_i_r:
600
case S2_asl_i_p:
601
return rr0(eASL(rc(1), im(2)), Outputs);
602
case A2_aslh:
603
return rr0(eASL(rc(1), 16), Outputs);
604
case S2_asl_i_r_acc:
605
case S2_asl_i_p_acc:
606
return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
607
case S2_asl_i_r_nac:
608
case S2_asl_i_p_nac:
609
return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
610
case S2_asl_i_r_and:
611
case S2_asl_i_p_and:
612
return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
613
case S2_asl_i_r_or:
614
case S2_asl_i_p_or:
615
return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
616
case S2_asl_i_r_xacc:
617
case S2_asl_i_p_xacc:
618
return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
619
case S2_asl_i_vh:
620
case S2_asl_i_vw:
621
// TODO
622
break;
623
624
case S2_asr_i_r:
625
case S2_asr_i_p:
626
return rr0(eASR(rc(1), im(2)), Outputs);
627
case A2_asrh:
628
return rr0(eASR(rc(1), 16), Outputs);
629
case S2_asr_i_r_acc:
630
case S2_asr_i_p_acc:
631
return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
632
case S2_asr_i_r_nac:
633
case S2_asr_i_p_nac:
634
return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
635
case S2_asr_i_r_and:
636
case S2_asr_i_p_and:
637
return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
638
case S2_asr_i_r_or:
639
case S2_asr_i_p_or:
640
return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
641
case S2_asr_i_r_rnd: {
642
// The input is first sign-extended to 64 bits, then the output
643
// is truncated back to 32 bits.
644
assert(W0 == 32);
645
RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
646
RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
647
return rr0(eXTR(RC, 0, W0), Outputs);
648
}
649
case S2_asr_i_r_rnd_goodsyntax: {
650
int64_t S = im(2);
651
if (S == 0)
652
return rr0(rc(1), Outputs);
653
// Result: S2_asr_i_r_rnd Rs, u5-1
654
RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
655
RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
656
return rr0(eXTR(RC, 0, W0), Outputs);
657
}
658
case S2_asr_r_vh:
659
case S2_asr_i_vw:
660
case S2_asr_i_svw_trun:
661
// TODO
662
break;
663
664
case S2_lsr_i_r:
665
case S2_lsr_i_p:
666
return rr0(eLSR(rc(1), im(2)), Outputs);
667
case S2_lsr_i_r_acc:
668
case S2_lsr_i_p_acc:
669
return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
670
case S2_lsr_i_r_nac:
671
case S2_lsr_i_p_nac:
672
return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
673
case S2_lsr_i_r_and:
674
case S2_lsr_i_p_and:
675
return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
676
case S2_lsr_i_r_or:
677
case S2_lsr_i_p_or:
678
return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
679
case S2_lsr_i_r_xacc:
680
case S2_lsr_i_p_xacc:
681
return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
682
683
case S2_clrbit_i: {
684
RegisterCell RC = rc(1);
685
RC[im(2)] = BT::BitValue::Zero;
686
return rr0(RC, Outputs);
687
}
688
case S2_setbit_i: {
689
RegisterCell RC = rc(1);
690
RC[im(2)] = BT::BitValue::One;
691
return rr0(RC, Outputs);
692
}
693
case S2_togglebit_i: {
694
RegisterCell RC = rc(1);
695
uint16_t BX = im(2);
696
RC[BX] = RC[BX].is(0) ? BT::BitValue::One
697
: RC[BX].is(1) ? BT::BitValue::Zero
698
: BT::BitValue::self();
699
return rr0(RC, Outputs);
700
}
701
702
case A4_bitspliti: {
703
uint16_t W1 = getRegBitWidth(Reg[1]);
704
uint16_t BX = im(2);
705
// Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
706
const BT::BitValue Zero = BT::BitValue::Zero;
707
RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
708
.fill(W1+(W1-BX), W0, Zero);
709
RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
710
RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
711
return rr0(RC, Outputs);
712
}
713
case S4_extract:
714
case S4_extractp:
715
case S2_extractu:
716
case S2_extractup: {
717
uint16_t Wd = im(2), Of = im(3);
718
assert(Wd <= W0);
719
if (Wd == 0)
720
return rr0(eIMM(0, W0), Outputs);
721
// If the width extends beyond the register size, pad the register
722
// with 0 bits.
723
RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
724
RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
725
// Ext is short, need to extend it with 0s or sign bit.
726
RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
727
if (Opc == S2_extractu || Opc == S2_extractup)
728
return rr0(eZXT(RC, Wd), Outputs);
729
return rr0(eSXT(RC, Wd), Outputs);
730
}
731
case S2_insert:
732
case S2_insertp: {
733
uint16_t Wd = im(3), Of = im(4);
734
assert(Wd < W0 && Of < W0);
735
// If Wd+Of exceeds W0, the inserted bits are truncated.
736
if (Wd+Of > W0)
737
Wd = W0-Of;
738
if (Wd == 0)
739
return rr0(rc(1), Outputs);
740
return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
741
}
742
743
// Bit permutations:
744
745
case A2_combineii:
746
case A4_combineii:
747
case A4_combineir:
748
case A4_combineri:
749
case A2_combinew:
750
case V6_vcombine:
751
assert(W0 % 2 == 0);
752
return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
753
case A2_combine_ll:
754
case A2_combine_lh:
755
case A2_combine_hl:
756
case A2_combine_hh: {
757
assert(W0 == 32);
758
assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
759
// Low half in the output is 0 for _ll and _hl, 1 otherwise:
760
unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
761
// High half in the output is 0 for _ll and _lh, 1 otherwise:
762
unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
763
RegisterCell R1 = rc(1);
764
RegisterCell R2 = rc(2);
765
RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
766
return rr0(RC, Outputs);
767
}
768
case S2_packhl: {
769
assert(W0 == 64);
770
assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
771
RegisterCell R1 = rc(1);
772
RegisterCell R2 = rc(2);
773
RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
774
.cat(half(R1, 1));
775
return rr0(RC, Outputs);
776
}
777
case S2_shuffeb: {
778
RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
779
return rr0(RC, Outputs);
780
}
781
case S2_shuffeh: {
782
RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
783
return rr0(RC, Outputs);
784
}
785
case S2_shuffob: {
786
RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
787
return rr0(RC, Outputs);
788
}
789
case S2_shuffoh: {
790
RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
791
return rr0(RC, Outputs);
792
}
793
case C2_mask: {
794
uint16_t WR = W0;
795
uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
796
assert(WR == 64 && WP == 8);
797
RegisterCell R1 = rc(1);
798
RegisterCell RC(WR);
799
for (uint16_t i = 0; i < WP; ++i) {
800
const BT::BitValue &V = R1[i];
801
BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
802
RC.fill(i*8, i*8+8, F);
803
}
804
return rr0(RC, Outputs);
805
}
806
807
// Mux:
808
809
case C2_muxii:
810
case C2_muxir:
811
case C2_muxri:
812
case C2_mux: {
813
BT::BitValue PC0 = rc(1)[0];
814
RegisterCell R2 = cop(2, W0);
815
RegisterCell R3 = cop(3, W0);
816
if (PC0.is(0) || PC0.is(1))
817
return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
818
R2.meet(R3, Reg[0].Reg);
819
return rr0(R2, Outputs);
820
}
821
case C2_vmux:
822
// TODO
823
break;
824
825
// Sign- and zero-extension:
826
827
case A2_sxtb:
828
return rr0(eSXT(rc(1), 8), Outputs);
829
case A2_sxth:
830
return rr0(eSXT(rc(1), 16), Outputs);
831
case A2_sxtw: {
832
uint16_t W1 = getRegBitWidth(Reg[1]);
833
assert(W0 == 64 && W1 == 32);
834
RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
835
return rr0(RC, Outputs);
836
}
837
case A2_zxtb:
838
return rr0(eZXT(rc(1), 8), Outputs);
839
case A2_zxth:
840
return rr0(eZXT(rc(1), 16), Outputs);
841
842
// Saturations
843
844
case A2_satb:
845
return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
846
case A2_sath:
847
return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
848
case A2_satub:
849
return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
850
case A2_satuh:
851
return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
852
853
// Bit count:
854
855
case S2_cl0:
856
case S2_cl0p:
857
// Always produce a 32-bit result.
858
return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
859
case S2_cl1:
860
case S2_cl1p:
861
return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
862
case S2_clb:
863
case S2_clbp: {
864
uint16_t W1 = getRegBitWidth(Reg[1]);
865
RegisterCell R1 = rc(1);
866
BT::BitValue TV = R1[W1-1];
867
if (TV.is(0) || TV.is(1))
868
return rr0(eCLB(R1, TV, 32), Outputs);
869
break;
870
}
871
case S2_ct0:
872
case S2_ct0p:
873
return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
874
case S2_ct1:
875
case S2_ct1p:
876
return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
877
case S5_popcountp:
878
// TODO
879
break;
880
881
case C2_all8: {
882
RegisterCell P1 = rc(1);
883
bool Has0 = false, All1 = true;
884
for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
885
if (!P1[i].is(1))
886
All1 = false;
887
if (!P1[i].is(0))
888
continue;
889
Has0 = true;
890
break;
891
}
892
if (!Has0 && !All1)
893
break;
894
RegisterCell RC(W0);
895
RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
896
return rr0(RC, Outputs);
897
}
898
case C2_any8: {
899
RegisterCell P1 = rc(1);
900
bool Has1 = false, All0 = true;
901
for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
902
if (!P1[i].is(0))
903
All0 = false;
904
if (!P1[i].is(1))
905
continue;
906
Has1 = true;
907
break;
908
}
909
if (!Has1 && !All0)
910
break;
911
RegisterCell RC(W0);
912
RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
913
return rr0(RC, Outputs);
914
}
915
case C2_and:
916
return rr0(eAND(rc(1), rc(2)), Outputs);
917
case C2_andn:
918
return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
919
case C2_not:
920
return rr0(eNOT(rc(1)), Outputs);
921
case C2_or:
922
return rr0(eORL(rc(1), rc(2)), Outputs);
923
case C2_orn:
924
return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
925
case C2_xor:
926
return rr0(eXOR(rc(1), rc(2)), Outputs);
927
case C4_and_and:
928
return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
929
case C4_and_andn:
930
return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
931
case C4_and_or:
932
return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
933
case C4_and_orn:
934
return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
935
case C4_or_and:
936
return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
937
case C4_or_andn:
938
return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
939
case C4_or_or:
940
return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
941
case C4_or_orn:
942
return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
943
case C2_bitsclr:
944
case C2_bitsclri:
945
case C2_bitsset:
946
case C4_nbitsclr:
947
case C4_nbitsclri:
948
case C4_nbitsset:
949
// TODO
950
break;
951
case S2_tstbit_i:
952
case S4_ntstbit_i: {
953
BT::BitValue V = rc(1)[im(2)];
954
if (V.is(0) || V.is(1)) {
955
// If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
956
bool TV = (Opc == S2_tstbit_i);
957
BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
958
return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
959
}
960
break;
961
}
962
963
default:
964
// For instructions that define a single predicate registers, store
965
// the low 8 bits of the register only.
966
if (unsigned DefR = getUniqueDefVReg(MI)) {
967
if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
968
BT::RegisterRef PD(DefR, 0);
969
uint16_t RW = getRegBitWidth(PD);
970
uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
971
RegisterCell RC = RegisterCell::self(DefR, RW);
972
RC.fill(PW, RW, BT::BitValue::Zero);
973
putCell(PD, RC, Outputs);
974
return true;
975
}
976
}
977
return MachineEvaluator::evaluate(MI, Inputs, Outputs);
978
}
979
#undef im
980
#undef rc
981
#undef op
982
return false;
983
}
984
985
bool HexagonEvaluator::evaluate(const MachineInstr &BI,
986
const CellMapType &Inputs,
987
BranchTargetList &Targets,
988
bool &FallsThru) const {
989
// We need to evaluate one branch at a time. TII::analyzeBranch checks
990
// all the branches in a basic block at once, so we cannot use it.
991
unsigned Opc = BI.getOpcode();
992
bool SimpleBranch = false;
993
bool Negated = false;
994
switch (Opc) {
995
case Hexagon::J2_jumpf:
996
case Hexagon::J2_jumpfpt:
997
case Hexagon::J2_jumpfnew:
998
case Hexagon::J2_jumpfnewpt:
999
Negated = true;
1000
[[fallthrough]];
1001
case Hexagon::J2_jumpt:
1002
case Hexagon::J2_jumptpt:
1003
case Hexagon::J2_jumptnew:
1004
case Hexagon::J2_jumptnewpt:
1005
// Simple branch: if([!]Pn) jump ...
1006
// i.e. Op0 = predicate, Op1 = branch target.
1007
SimpleBranch = true;
1008
break;
1009
case Hexagon::J2_jump:
1010
Targets.insert(BI.getOperand(0).getMBB());
1011
FallsThru = false;
1012
return true;
1013
default:
1014
// If the branch is of unknown type, assume that all successors are
1015
// executable.
1016
return false;
1017
}
1018
1019
if (!SimpleBranch)
1020
return false;
1021
1022
// BI is a conditional branch if we got here.
1023
RegisterRef PR = BI.getOperand(0);
1024
RegisterCell PC = getCell(PR, Inputs);
1025
const BT::BitValue &Test = PC[0];
1026
1027
// If the condition is neither true nor false, then it's unknown.
1028
if (!Test.is(0) && !Test.is(1))
1029
return false;
1030
1031
// "Test.is(!Negated)" means "branch condition is true".
1032
if (!Test.is(!Negated)) {
1033
// Condition known to be false.
1034
FallsThru = true;
1035
return true;
1036
}
1037
1038
Targets.insert(BI.getOperand(1).getMBB());
1039
FallsThru = false;
1040
return true;
1041
}
1042
1043
unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
1044
unsigned DefReg = 0;
1045
for (const MachineOperand &Op : MI.operands()) {
1046
if (!Op.isReg() || !Op.isDef())
1047
continue;
1048
Register R = Op.getReg();
1049
if (!R.isVirtual())
1050
continue;
1051
if (DefReg != 0)
1052
return 0;
1053
DefReg = R;
1054
}
1055
return DefReg;
1056
}
1057
1058
bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
1059
const CellMapType &Inputs,
1060
CellMapType &Outputs) const {
1061
using namespace Hexagon;
1062
1063
if (TII.isPredicated(MI))
1064
return false;
1065
assert(MI.mayLoad() && "A load that mayn't?");
1066
unsigned Opc = MI.getOpcode();
1067
1068
uint16_t BitNum;
1069
bool SignEx;
1070
1071
switch (Opc) {
1072
default:
1073
return false;
1074
1075
#if 0
1076
// memb_fifo
1077
case L2_loadalignb_pbr:
1078
case L2_loadalignb_pcr:
1079
case L2_loadalignb_pi:
1080
// memh_fifo
1081
case L2_loadalignh_pbr:
1082
case L2_loadalignh_pcr:
1083
case L2_loadalignh_pi:
1084
// membh
1085
case L2_loadbsw2_pbr:
1086
case L2_loadbsw2_pci:
1087
case L2_loadbsw2_pcr:
1088
case L2_loadbsw2_pi:
1089
case L2_loadbsw4_pbr:
1090
case L2_loadbsw4_pci:
1091
case L2_loadbsw4_pcr:
1092
case L2_loadbsw4_pi:
1093
// memubh
1094
case L2_loadbzw2_pbr:
1095
case L2_loadbzw2_pci:
1096
case L2_loadbzw2_pcr:
1097
case L2_loadbzw2_pi:
1098
case L2_loadbzw4_pbr:
1099
case L2_loadbzw4_pci:
1100
case L2_loadbzw4_pcr:
1101
case L2_loadbzw4_pi:
1102
#endif
1103
1104
case L2_loadrbgp:
1105
case L2_loadrb_io:
1106
case L2_loadrb_pbr:
1107
case L2_loadrb_pci:
1108
case L2_loadrb_pcr:
1109
case L2_loadrb_pi:
1110
case PS_loadrbabs:
1111
case L4_loadrb_ap:
1112
case L4_loadrb_rr:
1113
case L4_loadrb_ur:
1114
BitNum = 8;
1115
SignEx = true;
1116
break;
1117
1118
case L2_loadrubgp:
1119
case L2_loadrub_io:
1120
case L2_loadrub_pbr:
1121
case L2_loadrub_pci:
1122
case L2_loadrub_pcr:
1123
case L2_loadrub_pi:
1124
case PS_loadrubabs:
1125
case L4_loadrub_ap:
1126
case L4_loadrub_rr:
1127
case L4_loadrub_ur:
1128
BitNum = 8;
1129
SignEx = false;
1130
break;
1131
1132
case L2_loadrhgp:
1133
case L2_loadrh_io:
1134
case L2_loadrh_pbr:
1135
case L2_loadrh_pci:
1136
case L2_loadrh_pcr:
1137
case L2_loadrh_pi:
1138
case PS_loadrhabs:
1139
case L4_loadrh_ap:
1140
case L4_loadrh_rr:
1141
case L4_loadrh_ur:
1142
BitNum = 16;
1143
SignEx = true;
1144
break;
1145
1146
case L2_loadruhgp:
1147
case L2_loadruh_io:
1148
case L2_loadruh_pbr:
1149
case L2_loadruh_pci:
1150
case L2_loadruh_pcr:
1151
case L2_loadruh_pi:
1152
case L4_loadruh_rr:
1153
case PS_loadruhabs:
1154
case L4_loadruh_ap:
1155
case L4_loadruh_ur:
1156
BitNum = 16;
1157
SignEx = false;
1158
break;
1159
1160
case L2_loadrigp:
1161
case L2_loadri_io:
1162
case L2_loadri_pbr:
1163
case L2_loadri_pci:
1164
case L2_loadri_pcr:
1165
case L2_loadri_pi:
1166
case L2_loadw_locked:
1167
case PS_loadriabs:
1168
case L4_loadri_ap:
1169
case L4_loadri_rr:
1170
case L4_loadri_ur:
1171
case LDriw_pred:
1172
BitNum = 32;
1173
SignEx = true;
1174
break;
1175
1176
case L2_loadrdgp:
1177
case L2_loadrd_io:
1178
case L2_loadrd_pbr:
1179
case L2_loadrd_pci:
1180
case L2_loadrd_pcr:
1181
case L2_loadrd_pi:
1182
case L4_loadd_locked:
1183
case PS_loadrdabs:
1184
case L4_loadrd_ap:
1185
case L4_loadrd_rr:
1186
case L4_loadrd_ur:
1187
BitNum = 64;
1188
SignEx = true;
1189
break;
1190
}
1191
1192
const MachineOperand &MD = MI.getOperand(0);
1193
assert(MD.isReg() && MD.isDef());
1194
RegisterRef RD = MD;
1195
1196
uint16_t W = getRegBitWidth(RD);
1197
assert(W >= BitNum && BitNum > 0);
1198
RegisterCell Res(W);
1199
1200
for (uint16_t i = 0; i < BitNum; ++i)
1201
Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1202
1203
if (SignEx) {
1204
const BT::BitValue &Sign = Res[BitNum-1];
1205
for (uint16_t i = BitNum; i < W; ++i)
1206
Res[i] = BT::BitValue::ref(Sign);
1207
} else {
1208
for (uint16_t i = BitNum; i < W; ++i)
1209
Res[i] = BT::BitValue::Zero;
1210
}
1211
1212
putCell(RD, Res, Outputs);
1213
return true;
1214
}
1215
1216
bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1217
const CellMapType &Inputs,
1218
CellMapType &Outputs) const {
1219
// If MI defines a formal parameter, but is not a copy (loads are handled
1220
// in evaluateLoad), then it's not clear what to do.
1221
assert(MI.isCopy());
1222
1223
RegisterRef RD = MI.getOperand(0);
1224
RegisterRef RS = MI.getOperand(1);
1225
assert(RD.Sub == 0);
1226
if (!RS.Reg.isPhysical())
1227
return false;
1228
RegExtMap::const_iterator F = VRX.find(RD.Reg);
1229
if (F == VRX.end())
1230
return false;
1231
1232
uint16_t EW = F->second.Width;
1233
// Store RD's cell into the map. This will associate the cell with a virtual
1234
// register, and make zero-/sign-extends possible (otherwise we would be ex-
1235
// tending "self" bit values, which will have no effect, since "self" values
1236
// cannot be references to anything).
1237
putCell(RD, getCell(RS, Inputs), Outputs);
1238
1239
RegisterCell Res;
1240
// Read RD's cell from the outputs instead of RS's cell from the inputs:
1241
if (F->second.Type == ExtType::SExt)
1242
Res = eSXT(getCell(RD, Outputs), EW);
1243
else if (F->second.Type == ExtType::ZExt)
1244
Res = eZXT(getCell(RD, Outputs), EW);
1245
1246
putCell(RD, Res, Outputs);
1247
return true;
1248
}
1249
1250
unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1251
using namespace Hexagon;
1252
1253
bool Is64 = DoubleRegsRegClass.contains(PReg);
1254
assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1255
1256
static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1257
static const unsigned Phys64[] = { D0, D1, D2 };
1258
const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1259
const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1260
1261
// Return the first parameter register of the required width.
1262
if (PReg == 0)
1263
return (Width <= 32) ? Phys32[0] : Phys64[0];
1264
1265
// Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1266
// next register.
1267
unsigned Idx32 = 0, Idx64 = 0;
1268
if (!Is64) {
1269
while (Idx32 < Num32) {
1270
if (Phys32[Idx32] == PReg)
1271
break;
1272
Idx32++;
1273
}
1274
Idx64 = Idx32/2;
1275
} else {
1276
while (Idx64 < Num64) {
1277
if (Phys64[Idx64] == PReg)
1278
break;
1279
Idx64++;
1280
}
1281
Idx32 = Idx64*2+1;
1282
}
1283
1284
if (Width <= 32)
1285
return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1286
return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1287
}
1288
1289
unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
1290
for (std::pair<unsigned,unsigned> P : MRI.liveins())
1291
if (P.first == PReg)
1292
return P.second;
1293
return 0;
1294
}
1295
1296