Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp
35266 views
1
//===- HexagonCommonGEP.cpp -----------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "llvm/ADT/ArrayRef.h"
10
#include "llvm/ADT/FoldingSet.h"
11
#include "llvm/ADT/GraphTraits.h"
12
#include "llvm/ADT/STLExtras.h"
13
#include "llvm/ADT/SetVector.h"
14
#include "llvm/ADT/SmallVector.h"
15
#include "llvm/ADT/StringRef.h"
16
#include "llvm/Analysis/LoopInfo.h"
17
#include "llvm/Analysis/PostDominators.h"
18
#include "llvm/IR/BasicBlock.h"
19
#include "llvm/IR/Constant.h"
20
#include "llvm/IR/Constants.h"
21
#include "llvm/IR/DerivedTypes.h"
22
#include "llvm/IR/Dominators.h"
23
#include "llvm/IR/Function.h"
24
#include "llvm/IR/Instruction.h"
25
#include "llvm/IR/Instructions.h"
26
#include "llvm/IR/Type.h"
27
#include "llvm/IR/Use.h"
28
#include "llvm/IR/User.h"
29
#include "llvm/IR/Value.h"
30
#include "llvm/IR/Verifier.h"
31
#include "llvm/InitializePasses.h"
32
#include "llvm/Pass.h"
33
#include "llvm/Support/Allocator.h"
34
#include "llvm/Support/Casting.h"
35
#include "llvm/Support/CommandLine.h"
36
#include "llvm/Support/Compiler.h"
37
#include "llvm/Support/Debug.h"
38
#include "llvm/Support/raw_ostream.h"
39
#include "llvm/Transforms/Utils/Local.h"
40
#include <algorithm>
41
#include <cassert>
42
#include <cstddef>
43
#include <cstdint>
44
#include <iterator>
45
#include <map>
46
#include <set>
47
#include <utility>
48
#include <vector>
49
50
#define DEBUG_TYPE "commgep"
51
52
using namespace llvm;
53
54
static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
55
cl::Hidden);
56
57
static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden);
58
59
static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
60
cl::Hidden);
61
62
namespace llvm {
63
64
void initializeHexagonCommonGEPPass(PassRegistry&);
65
66
} // end namespace llvm
67
68
namespace {
69
70
struct GepNode;
71
using NodeSet = std::set<GepNode *>;
72
using NodeToValueMap = std::map<GepNode *, Value *>;
73
using NodeVect = std::vector<GepNode *>;
74
using NodeChildrenMap = std::map<GepNode *, NodeVect>;
75
using UseSet = SetVector<Use *>;
76
using NodeToUsesMap = std::map<GepNode *, UseSet>;
77
78
// Numbering map for gep nodes. Used to keep track of ordering for
79
// gep nodes.
80
struct NodeOrdering {
81
NodeOrdering() = default;
82
83
void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
84
void clear() { Map.clear(); }
85
86
bool operator()(const GepNode *N1, const GepNode *N2) const {
87
auto F1 = Map.find(N1), F2 = Map.find(N2);
88
assert(F1 != Map.end() && F2 != Map.end());
89
return F1->second < F2->second;
90
}
91
92
private:
93
std::map<const GepNode *, unsigned> Map;
94
unsigned LastNum = 0;
95
};
96
97
class HexagonCommonGEP : public FunctionPass {
98
public:
99
static char ID;
100
101
HexagonCommonGEP() : FunctionPass(ID) {
102
initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
103
}
104
105
bool runOnFunction(Function &F) override;
106
StringRef getPassName() const override { return "Hexagon Common GEP"; }
107
108
void getAnalysisUsage(AnalysisUsage &AU) const override {
109
AU.addRequired<DominatorTreeWrapperPass>();
110
AU.addPreserved<DominatorTreeWrapperPass>();
111
AU.addRequired<PostDominatorTreeWrapperPass>();
112
AU.addPreserved<PostDominatorTreeWrapperPass>();
113
AU.addRequired<LoopInfoWrapperPass>();
114
AU.addPreserved<LoopInfoWrapperPass>();
115
FunctionPass::getAnalysisUsage(AU);
116
}
117
118
private:
119
using ValueToNodeMap = std::map<Value *, GepNode *>;
120
using ValueVect = std::vector<Value *>;
121
using NodeToValuesMap = std::map<GepNode *, ValueVect>;
122
123
void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
124
bool isHandledGepForm(GetElementPtrInst *GepI);
125
void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
126
void collect();
127
void common();
128
129
BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
130
NodeToValueMap &Loc);
131
BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
132
NodeToValueMap &Loc);
133
bool isInvariantIn(Value *Val, Loop *L);
134
bool isInvariantIn(GepNode *Node, Loop *L);
135
bool isInMainPath(BasicBlock *B, Loop *L);
136
BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
137
NodeToValueMap &Loc);
138
void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
139
void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
140
NodeToValueMap &Loc);
141
void computeNodePlacement(NodeToValueMap &Loc);
142
143
Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
144
BasicBlock *LocB);
145
void getAllUsersForNode(GepNode *Node, ValueVect &Values,
146
NodeChildrenMap &NCM);
147
void materialize(NodeToValueMap &Loc);
148
149
void removeDeadCode();
150
151
NodeVect Nodes;
152
NodeToUsesMap Uses;
153
NodeOrdering NodeOrder; // Node ordering, for deterministic behavior.
154
SpecificBumpPtrAllocator<GepNode> *Mem;
155
LLVMContext *Ctx;
156
LoopInfo *LI;
157
DominatorTree *DT;
158
PostDominatorTree *PDT;
159
Function *Fn;
160
};
161
162
} // end anonymous namespace
163
164
char HexagonCommonGEP::ID = 0;
165
166
INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
167
false, false)
168
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
169
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
170
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
171
INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
172
false, false)
173
174
namespace {
175
176
struct GepNode {
177
enum {
178
None = 0,
179
Root = 0x01,
180
Internal = 0x02,
181
Used = 0x04,
182
InBounds = 0x08,
183
Pointer = 0x10, // See note below.
184
};
185
// Note: GEP indices generally traverse nested types, and so a GepNode
186
// (representing a single index) can be associated with some composite
187
// type. The exception is the GEP input, which is a pointer, and not
188
// a composite type (at least not in the sense of having sub-types).
189
// Also, the corresponding index plays a different role as well: it is
190
// simply added to the input pointer. Since pointer types are becoming
191
// opaque (i.e. are no longer going to include the pointee type), the
192
// two pieces of information (1) the fact that it's a pointer, and
193
// (2) the pointee type, need to be stored separately. The pointee type
194
// will be stored in the PTy member, while the fact that the node
195
// operates on a pointer will be reflected by the flag "Pointer".
196
197
uint32_t Flags = 0;
198
union {
199
GepNode *Parent;
200
Value *BaseVal;
201
};
202
Value *Idx = nullptr;
203
Type *PTy = nullptr; // Type indexed by this node. For pointer nodes
204
// this is the "pointee" type, and indexing a
205
// pointer does not change the type.
206
207
GepNode() : Parent(nullptr) {}
208
GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
209
if (Flags & Root)
210
BaseVal = N->BaseVal;
211
else
212
Parent = N->Parent;
213
}
214
215
friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
216
};
217
218
raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
219
OS << "{ {";
220
bool Comma = false;
221
if (GN.Flags & GepNode::Root) {
222
OS << "root";
223
Comma = true;
224
}
225
if (GN.Flags & GepNode::Internal) {
226
if (Comma)
227
OS << ',';
228
OS << "internal";
229
Comma = true;
230
}
231
if (GN.Flags & GepNode::Used) {
232
if (Comma)
233
OS << ',';
234
OS << "used";
235
}
236
if (GN.Flags & GepNode::InBounds) {
237
if (Comma)
238
OS << ',';
239
OS << "inbounds";
240
}
241
if (GN.Flags & GepNode::Pointer) {
242
if (Comma)
243
OS << ',';
244
OS << "pointer";
245
}
246
OS << "} ";
247
if (GN.Flags & GepNode::Root)
248
OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
249
else
250
OS << "Parent:" << GN.Parent;
251
252
OS << " Idx:";
253
if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
254
OS << CI->getValue().getSExtValue();
255
else if (GN.Idx->hasName())
256
OS << GN.Idx->getName();
257
else
258
OS << "<anon> =" << *GN.Idx;
259
260
OS << " PTy:";
261
if (GN.PTy->isStructTy()) {
262
StructType *STy = cast<StructType>(GN.PTy);
263
if (!STy->isLiteral())
264
OS << GN.PTy->getStructName();
265
else
266
OS << "<anon-struct>:" << *STy;
267
}
268
else
269
OS << *GN.PTy;
270
OS << " }";
271
return OS;
272
}
273
274
template <typename NodeContainer>
275
void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
276
using const_iterator = typename NodeContainer::const_iterator;
277
278
for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
279
OS << *I << ' ' << **I << '\n';
280
}
281
282
raw_ostream &operator<< (raw_ostream &OS,
283
const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
284
raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
285
dump_node_container(OS, S);
286
return OS;
287
}
288
289
raw_ostream &operator<< (raw_ostream &OS,
290
const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
291
raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
292
for (const auto &I : M) {
293
const UseSet &Us = I.second;
294
OS << I.first << " -> #" << Us.size() << '{';
295
for (const Use *U : Us) {
296
User *R = U->getUser();
297
if (R->hasName())
298
OS << ' ' << R->getName();
299
else
300
OS << " <?>(" << *R << ')';
301
}
302
OS << " }\n";
303
}
304
return OS;
305
}
306
307
struct in_set {
308
in_set(const NodeSet &S) : NS(S) {}
309
310
bool operator() (GepNode *N) const {
311
return NS.find(N) != NS.end();
312
}
313
314
private:
315
const NodeSet &NS;
316
};
317
318
} // end anonymous namespace
319
320
inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
321
return A.Allocate();
322
}
323
324
void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
325
ValueVect &Order) {
326
// Compute block ordering for a typical DT-based traversal of the flow
327
// graph: "before visiting a block, all of its dominators must have been
328
// visited".
329
330
Order.push_back(Root);
331
for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root)))
332
getBlockTraversalOrder(DTN->getBlock(), Order);
333
}
334
335
bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
336
// No vector GEPs.
337
if (!GepI->getType()->isPointerTy())
338
return false;
339
// No GEPs without any indices. (Is this possible?)
340
if (GepI->idx_begin() == GepI->idx_end())
341
return false;
342
return true;
343
}
344
345
void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
346
ValueToNodeMap &NM) {
347
LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
348
GepNode *N = new (*Mem) GepNode;
349
Value *PtrOp = GepI->getPointerOperand();
350
uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0;
351
ValueToNodeMap::iterator F = NM.find(PtrOp);
352
if (F == NM.end()) {
353
N->BaseVal = PtrOp;
354
N->Flags |= GepNode::Root | InBounds;
355
} else {
356
// If PtrOp was a GEP instruction, it must have already been processed.
357
// The ValueToNodeMap entry for it is the last gep node in the generated
358
// chain. Link to it here.
359
N->Parent = F->second;
360
}
361
N->PTy = GepI->getSourceElementType();
362
N->Flags |= GepNode::Pointer;
363
N->Idx = *GepI->idx_begin();
364
365
// Collect the list of users of this GEP instruction. Will add it to the
366
// last node created for it.
367
UseSet Us;
368
for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
369
UI != UE; ++UI) {
370
// Check if this gep is used by anything other than other geps that
371
// we will process.
372
if (isa<GetElementPtrInst>(*UI)) {
373
GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
374
if (isHandledGepForm(UserG))
375
continue;
376
}
377
Us.insert(&UI.getUse());
378
}
379
Nodes.push_back(N);
380
NodeOrder.insert(N);
381
382
// Skip the first index operand, since it was already handled above. This
383
// dereferences the pointer operand.
384
GepNode *PN = N;
385
Type *PtrTy = GepI->getSourceElementType();
386
for (Use &U : llvm::drop_begin(GepI->indices())) {
387
Value *Op = U;
388
GepNode *Nx = new (*Mem) GepNode;
389
Nx->Parent = PN; // Link Nx to the previous node.
390
Nx->Flags |= GepNode::Internal | InBounds;
391
Nx->PTy = PtrTy;
392
Nx->Idx = Op;
393
Nodes.push_back(Nx);
394
NodeOrder.insert(Nx);
395
PN = Nx;
396
397
PtrTy = GetElementPtrInst::getTypeAtIndex(PtrTy, Op);
398
}
399
400
// After last node has been created, update the use information.
401
if (!Us.empty()) {
402
PN->Flags |= GepNode::Used;
403
Uses[PN].insert(Us.begin(), Us.end());
404
}
405
406
// Link the last node with the originating GEP instruction. This is to
407
// help with linking chained GEP instructions.
408
NM.insert(std::make_pair(GepI, PN));
409
}
410
411
void HexagonCommonGEP::collect() {
412
// Establish depth-first traversal order of the dominator tree.
413
ValueVect BO;
414
getBlockTraversalOrder(&Fn->front(), BO);
415
416
// The creation of gep nodes requires DT-traversal. When processing a GEP
417
// instruction that uses another GEP instruction as the base pointer, the
418
// gep node for the base pointer should already exist.
419
ValueToNodeMap NM;
420
for (Value *I : BO) {
421
BasicBlock *B = cast<BasicBlock>(I);
422
for (Instruction &J : *B)
423
if (auto *GepI = dyn_cast<GetElementPtrInst>(&J))
424
if (isHandledGepForm(GepI))
425
processGepInst(GepI, NM);
426
}
427
428
LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
429
}
430
431
static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
432
NodeVect &Roots) {
433
for (GepNode *N : Nodes) {
434
if (N->Flags & GepNode::Root) {
435
Roots.push_back(N);
436
continue;
437
}
438
GepNode *PN = N->Parent;
439
NCM[PN].push_back(N);
440
}
441
}
442
443
static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM,
444
NodeSet &Nodes) {
445
NodeVect Work;
446
Work.push_back(Root);
447
Nodes.insert(Root);
448
449
while (!Work.empty()) {
450
NodeVect::iterator First = Work.begin();
451
GepNode *N = *First;
452
Work.erase(First);
453
NodeChildrenMap::iterator CF = NCM.find(N);
454
if (CF != NCM.end()) {
455
llvm::append_range(Work, CF->second);
456
Nodes.insert(CF->second.begin(), CF->second.end());
457
}
458
}
459
}
460
461
namespace {
462
463
using NodeSymRel = std::set<NodeSet>;
464
using NodePair = std::pair<GepNode *, GepNode *>;
465
using NodePairSet = std::set<NodePair>;
466
467
} // end anonymous namespace
468
469
static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
470
for (const NodeSet &S : Rel)
471
if (S.count(N))
472
return &S;
473
return nullptr;
474
}
475
476
// Create an ordered pair of GepNode pointers. The pair will be used in
477
// determining equality. The only purpose of the ordering is to eliminate
478
// duplication due to the commutativity of equality/non-equality.
479
static NodePair node_pair(GepNode *N1, GepNode *N2) {
480
uintptr_t P1 = reinterpret_cast<uintptr_t>(N1);
481
uintptr_t P2 = reinterpret_cast<uintptr_t>(N2);
482
if (P1 <= P2)
483
return std::make_pair(N1, N2);
484
return std::make_pair(N2, N1);
485
}
486
487
static unsigned node_hash(GepNode *N) {
488
// Include everything except flags and parent.
489
FoldingSetNodeID ID;
490
ID.AddPointer(N->Idx);
491
ID.AddPointer(N->PTy);
492
return ID.ComputeHash();
493
}
494
495
static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq,
496
NodePairSet &Ne) {
497
// Don't cache the result for nodes with different hashes. The hash
498
// comparison is fast enough.
499
if (node_hash(N1) != node_hash(N2))
500
return false;
501
502
NodePair NP = node_pair(N1, N2);
503
NodePairSet::iterator FEq = Eq.find(NP);
504
if (FEq != Eq.end())
505
return true;
506
NodePairSet::iterator FNe = Ne.find(NP);
507
if (FNe != Ne.end())
508
return false;
509
// Not previously compared.
510
bool Root1 = N1->Flags & GepNode::Root;
511
uint32_t CmpFlags = GepNode::Root | GepNode::Pointer;
512
bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags);
513
NodePair P = node_pair(N1, N2);
514
// If the root/pointer flags have different values, the nodes are
515
// different.
516
// If both nodes are root nodes, but their base pointers differ,
517
// they are different.
518
if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) {
519
Ne.insert(P);
520
return false;
521
}
522
// Here the root/pointer flags are identical, and for root nodes the
523
// base pointers are equal, so the root nodes are equal.
524
// For non-root nodes, compare their parent nodes.
525
if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
526
Eq.insert(P);
527
return true;
528
}
529
return false;
530
}
531
532
void HexagonCommonGEP::common() {
533
// The essence of this commoning is finding gep nodes that are equal.
534
// To do this we need to compare all pairs of nodes. To save time,
535
// first, partition the set of all nodes into sets of potentially equal
536
// nodes, and then compare pairs from within each partition.
537
using NodeSetMap = std::map<unsigned, NodeSet>;
538
NodeSetMap MaybeEq;
539
540
for (GepNode *N : Nodes) {
541
unsigned H = node_hash(N);
542
MaybeEq[H].insert(N);
543
}
544
545
// Compute the equivalence relation for the gep nodes. Use two caches,
546
// one for equality and the other for non-equality.
547
NodeSymRel EqRel; // Equality relation (as set of equivalence classes).
548
NodePairSet Eq, Ne; // Caches.
549
for (auto &I : MaybeEq) {
550
NodeSet &S = I.second;
551
for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
552
GepNode *N = *NI;
553
// If node already has a class, then the class must have been created
554
// in a prior iteration of this loop. Since equality is transitive,
555
// nothing more will be added to that class, so skip it.
556
if (node_class(N, EqRel))
557
continue;
558
559
// Create a new class candidate now.
560
NodeSet C;
561
for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
562
if (node_eq(N, *NJ, Eq, Ne))
563
C.insert(*NJ);
564
// If Tmp is empty, N would be the only element in it. Don't bother
565
// creating a class for it then.
566
if (!C.empty()) {
567
C.insert(N); // Finalize the set before adding it to the relation.
568
std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
569
(void)Ins;
570
assert(Ins.second && "Cannot add a class");
571
}
572
}
573
}
574
575
LLVM_DEBUG({
576
dbgs() << "Gep node equality:\n";
577
for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
578
dbgs() << "{ " << I->first << ", " << I->second << " }\n";
579
580
dbgs() << "Gep equivalence classes:\n";
581
for (const NodeSet &S : EqRel) {
582
dbgs() << '{';
583
for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
584
if (J != S.begin())
585
dbgs() << ',';
586
dbgs() << ' ' << *J;
587
}
588
dbgs() << " }\n";
589
}
590
});
591
592
// Create a projection from a NodeSet to the minimal element in it.
593
using ProjMap = std::map<const NodeSet *, GepNode *>;
594
ProjMap PM;
595
for (const NodeSet &S : EqRel) {
596
GepNode *Min = *llvm::min_element(S, NodeOrder);
597
std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
598
(void)Ins;
599
assert(Ins.second && "Cannot add minimal element");
600
601
// Update the min element's flags, and user list.
602
uint32_t Flags = 0;
603
UseSet &MinUs = Uses[Min];
604
for (GepNode *N : S) {
605
uint32_t NF = N->Flags;
606
// If N is used, append all original values of N to the list of
607
// original values of Min.
608
if (NF & GepNode::Used)
609
MinUs.insert(Uses[N].begin(), Uses[N].end());
610
Flags |= NF;
611
}
612
if (MinUs.empty())
613
Uses.erase(Min);
614
615
// The collected flags should include all the flags from the min element.
616
assert((Min->Flags & Flags) == Min->Flags);
617
Min->Flags = Flags;
618
}
619
620
// Commoning: for each non-root gep node, replace "Parent" with the
621
// selected (minimum) node from the corresponding equivalence class.
622
// If a given parent does not have an equivalence class, leave it
623
// unchanged (it means that it's the only element in its class).
624
for (GepNode *N : Nodes) {
625
if (N->Flags & GepNode::Root)
626
continue;
627
const NodeSet *PC = node_class(N->Parent, EqRel);
628
if (!PC)
629
continue;
630
ProjMap::iterator F = PM.find(PC);
631
if (F == PM.end())
632
continue;
633
// Found a replacement, use it.
634
GepNode *Rep = F->second;
635
N->Parent = Rep;
636
}
637
638
LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
639
640
// Finally, erase the nodes that are no longer used.
641
NodeSet Erase;
642
for (GepNode *N : Nodes) {
643
const NodeSet *PC = node_class(N, EqRel);
644
if (!PC)
645
continue;
646
ProjMap::iterator F = PM.find(PC);
647
if (F == PM.end())
648
continue;
649
if (N == F->second)
650
continue;
651
// Node for removal.
652
Erase.insert(N);
653
}
654
erase_if(Nodes, in_set(Erase));
655
656
LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
657
}
658
659
template <typename T>
660
static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
661
LLVM_DEBUG({
662
dbgs() << "NCD of {";
663
for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E;
664
++I) {
665
if (!*I)
666
continue;
667
BasicBlock *B = cast<BasicBlock>(*I);
668
dbgs() << ' ' << B->getName();
669
}
670
dbgs() << " }\n";
671
});
672
673
// Allow null basic blocks in Blocks. In such cases, return nullptr.
674
typename T::iterator I = Blocks.begin(), E = Blocks.end();
675
if (I == E || !*I)
676
return nullptr;
677
BasicBlock *Dom = cast<BasicBlock>(*I);
678
while (++I != E) {
679
BasicBlock *B = cast_or_null<BasicBlock>(*I);
680
Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr;
681
if (!Dom)
682
return nullptr;
683
}
684
LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
685
return Dom;
686
}
687
688
template <typename T>
689
static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
690
// If two blocks, A and B, dominate a block C, then A dominates B,
691
// or B dominates A.
692
typename T::iterator I = Blocks.begin(), E = Blocks.end();
693
// Find the first non-null block.
694
while (I != E && !*I)
695
++I;
696
if (I == E)
697
return DT->getRoot();
698
BasicBlock *DomB = cast<BasicBlock>(*I);
699
while (++I != E) {
700
if (!*I)
701
continue;
702
BasicBlock *B = cast<BasicBlock>(*I);
703
if (DT->dominates(B, DomB))
704
continue;
705
if (!DT->dominates(DomB, B))
706
return nullptr;
707
DomB = B;
708
}
709
return DomB;
710
}
711
712
// Find the first use in B of any value from Values. If no such use,
713
// return B->end().
714
template <typename T>
715
static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
716
BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
717
718
using iterator = typename T::iterator;
719
720
for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
721
Value *V = *I;
722
// If V is used in a PHI node, the use belongs to the incoming block,
723
// not the block with the PHI node. In the incoming block, the use
724
// would be considered as being at the end of it, so it cannot
725
// influence the position of the first use (which is assumed to be
726
// at the end to start with).
727
if (isa<PHINode>(V))
728
continue;
729
if (!isa<Instruction>(V))
730
continue;
731
Instruction *In = cast<Instruction>(V);
732
if (In->getParent() != B)
733
continue;
734
BasicBlock::iterator It = In->getIterator();
735
if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
736
FirstUse = It;
737
}
738
return FirstUse;
739
}
740
741
static bool is_empty(const BasicBlock *B) {
742
return B->empty() || (&*B->begin() == B->getTerminator());
743
}
744
745
BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
746
NodeChildrenMap &NCM, NodeToValueMap &Loc) {
747
LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n');
748
// Recalculate the placement for Node, assuming that the locations of
749
// its children in Loc are valid.
750
// Return nullptr if there is no valid placement for Node (for example, it
751
// uses an index value that is not available at the location required
752
// to dominate all children, etc.).
753
754
// Find the nearest common dominator for:
755
// - all users, if the node is used, and
756
// - all children.
757
ValueVect Bs;
758
if (Node->Flags & GepNode::Used) {
759
// Append all blocks with uses of the original values to the
760
// block vector Bs.
761
NodeToUsesMap::iterator UF = Uses.find(Node);
762
assert(UF != Uses.end() && "Used node with no use information");
763
UseSet &Us = UF->second;
764
for (Use *U : Us) {
765
User *R = U->getUser();
766
if (!isa<Instruction>(R))
767
continue;
768
BasicBlock *PB = isa<PHINode>(R)
769
? cast<PHINode>(R)->getIncomingBlock(*U)
770
: cast<Instruction>(R)->getParent();
771
Bs.push_back(PB);
772
}
773
}
774
// Append the location of each child.
775
NodeChildrenMap::iterator CF = NCM.find(Node);
776
if (CF != NCM.end()) {
777
NodeVect &Cs = CF->second;
778
for (GepNode *CN : Cs) {
779
NodeToValueMap::iterator LF = Loc.find(CN);
780
// If the child is only used in GEP instructions (i.e. is not used in
781
// non-GEP instructions), the nearest dominator computed for it may
782
// have been null. In such case it won't have a location available.
783
if (LF == Loc.end())
784
continue;
785
Bs.push_back(LF->second);
786
}
787
}
788
789
BasicBlock *DomB = nearest_common_dominator(DT, Bs);
790
if (!DomB)
791
return nullptr;
792
// Check if the index used by Node dominates the computed dominator.
793
Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
794
if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
795
return nullptr;
796
797
// Avoid putting nodes into empty blocks.
798
while (is_empty(DomB)) {
799
DomTreeNode *N = (*DT)[DomB]->getIDom();
800
if (!N)
801
break;
802
DomB = N->getBlock();
803
}
804
805
// Otherwise, DomB is fine. Update the location map.
806
Loc[Node] = DomB;
807
return DomB;
808
}
809
810
BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
811
NodeChildrenMap &NCM, NodeToValueMap &Loc) {
812
LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
813
// Recalculate the placement of Node, after recursively recalculating the
814
// placements of all its children.
815
NodeChildrenMap::iterator CF = NCM.find(Node);
816
if (CF != NCM.end()) {
817
NodeVect &Cs = CF->second;
818
for (GepNode *C : Cs)
819
recalculatePlacementRec(C, NCM, Loc);
820
}
821
BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
822
LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
823
return LB;
824
}
825
826
bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
827
if (isa<Constant>(Val) || isa<Argument>(Val))
828
return true;
829
Instruction *In = dyn_cast<Instruction>(Val);
830
if (!In)
831
return false;
832
BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
833
return DT->properlyDominates(DefB, HdrB);
834
}
835
836
bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
837
if (Node->Flags & GepNode::Root)
838
if (!isInvariantIn(Node->BaseVal, L))
839
return false;
840
return isInvariantIn(Node->Idx, L);
841
}
842
843
bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
844
BasicBlock *HB = L->getHeader();
845
BasicBlock *LB = L->getLoopLatch();
846
// B must post-dominate the loop header or dominate the loop latch.
847
if (PDT->dominates(B, HB))
848
return true;
849
if (LB && DT->dominates(B, LB))
850
return true;
851
return false;
852
}
853
854
static BasicBlock *preheader(DominatorTree *DT, Loop *L) {
855
if (BasicBlock *PH = L->getLoopPreheader())
856
return PH;
857
if (!OptSpeculate)
858
return nullptr;
859
DomTreeNode *DN = DT->getNode(L->getHeader());
860
if (!DN)
861
return nullptr;
862
return DN->getIDom()->getBlock();
863
}
864
865
BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
866
NodeChildrenMap &NCM, NodeToValueMap &Loc) {
867
// Find the "topmost" location for Node: it must be dominated by both,
868
// its parent (or the BaseVal, if it's a root node), and by the index
869
// value.
870
ValueVect Bs;
871
if (Node->Flags & GepNode::Root) {
872
if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
873
Bs.push_back(PIn->getParent());
874
} else {
875
Bs.push_back(Loc[Node->Parent]);
876
}
877
if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
878
Bs.push_back(IIn->getParent());
879
BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
880
881
// Traverse the loop nest upwards until we find a loop in which Node
882
// is no longer invariant, or until we get to the upper limit of Node's
883
// placement. The traversal will also stop when a suitable "preheader"
884
// cannot be found for a given loop. The "preheader" may actually be
885
// a regular block outside of the loop (i.e. not guarded), in which case
886
// the Node will be speculated.
887
// For nodes that are not in the main path of the containing loop (i.e.
888
// are not executed in each iteration), do not move them out of the loop.
889
BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
890
if (LocB) {
891
Loop *Lp = LI->getLoopFor(LocB);
892
while (Lp) {
893
if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
894
break;
895
BasicBlock *NewLoc = preheader(DT, Lp);
896
if (!NewLoc || !DT->dominates(TopB, NewLoc))
897
break;
898
Lp = Lp->getParentLoop();
899
LocB = NewLoc;
900
}
901
}
902
Loc[Node] = LocB;
903
904
// Recursively compute the locations of all children nodes.
905
NodeChildrenMap::iterator CF = NCM.find(Node);
906
if (CF != NCM.end()) {
907
NodeVect &Cs = CF->second;
908
for (GepNode *C : Cs)
909
adjustForInvariance(C, NCM, Loc);
910
}
911
return LocB;
912
}
913
914
namespace {
915
916
struct LocationAsBlock {
917
LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
918
919
const NodeToValueMap &Map;
920
};
921
922
raw_ostream &operator<< (raw_ostream &OS,
923
const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
924
raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
925
for (const auto &I : Loc.Map) {
926
OS << I.first << " -> ";
927
if (BasicBlock *B = cast_or_null<BasicBlock>(I.second))
928
OS << B->getName() << '(' << B << ')';
929
else
930
OS << "<null-block>";
931
OS << '\n';
932
}
933
return OS;
934
}
935
936
inline bool is_constant(GepNode *N) {
937
return isa<ConstantInt>(N->Idx);
938
}
939
940
} // end anonymous namespace
941
942
void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
943
NodeToValueMap &Loc) {
944
User *R = U->getUser();
945
LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R
946
<< '\n');
947
BasicBlock *PB = cast<Instruction>(R)->getParent();
948
949
GepNode *N = Node;
950
GepNode *C = nullptr, *NewNode = nullptr;
951
while (is_constant(N) && !(N->Flags & GepNode::Root)) {
952
// XXX if (single-use) dont-replicate;
953
GepNode *NewN = new (*Mem) GepNode(N);
954
Nodes.push_back(NewN);
955
Loc[NewN] = PB;
956
957
if (N == Node)
958
NewNode = NewN;
959
NewN->Flags &= ~GepNode::Used;
960
if (C)
961
C->Parent = NewN;
962
C = NewN;
963
N = N->Parent;
964
}
965
if (!NewNode)
966
return;
967
968
// Move over all uses that share the same user as U from Node to NewNode.
969
NodeToUsesMap::iterator UF = Uses.find(Node);
970
assert(UF != Uses.end());
971
UseSet &Us = UF->second;
972
UseSet NewUs;
973
for (Use *U : Us) {
974
if (U->getUser() == R)
975
NewUs.insert(U);
976
}
977
for (Use *U : NewUs)
978
Us.remove(U); // erase takes an iterator.
979
980
if (Us.empty()) {
981
Node->Flags &= ~GepNode::Used;
982
Uses.erase(UF);
983
}
984
985
// Should at least have U in NewUs.
986
NewNode->Flags |= GepNode::Used;
987
LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n');
988
assert(!NewUs.empty());
989
Uses[NewNode] = NewUs;
990
}
991
992
void HexagonCommonGEP::separateConstantChains(GepNode *Node,
993
NodeChildrenMap &NCM, NodeToValueMap &Loc) {
994
// First approximation: extract all chains.
995
NodeSet Ns;
996
nodes_for_root(Node, NCM, Ns);
997
998
LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
999
// Collect all used nodes together with the uses from loads and stores,
1000
// where the GEP node could be folded into the load/store instruction.
1001
NodeToUsesMap FNs; // Foldable nodes.
1002
for (GepNode *N : Ns) {
1003
if (!(N->Flags & GepNode::Used))
1004
continue;
1005
NodeToUsesMap::iterator UF = Uses.find(N);
1006
assert(UF != Uses.end());
1007
UseSet &Us = UF->second;
1008
// Loads/stores that use the node N.
1009
UseSet LSs;
1010
for (Use *U : Us) {
1011
User *R = U->getUser();
1012
// We're interested in uses that provide the address. It can happen
1013
// that the value may also be provided via GEP, but we won't handle
1014
// those cases here for now.
1015
if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1016
unsigned PtrX = LoadInst::getPointerOperandIndex();
1017
if (&Ld->getOperandUse(PtrX) == U)
1018
LSs.insert(U);
1019
} else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1020
unsigned PtrX = StoreInst::getPointerOperandIndex();
1021
if (&St->getOperandUse(PtrX) == U)
1022
LSs.insert(U);
1023
}
1024
}
1025
// Even if the total use count is 1, separating the chain may still be
1026
// beneficial, since the constant chain may be longer than the GEP alone
1027
// would be (e.g. if the parent node has a constant index and also has
1028
// other children).
1029
if (!LSs.empty())
1030
FNs.insert(std::make_pair(N, LSs));
1031
}
1032
1033
LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1034
1035
for (auto &FN : FNs) {
1036
GepNode *N = FN.first;
1037
UseSet &Us = FN.second;
1038
for (Use *U : Us)
1039
separateChainForNode(N, U, Loc);
1040
}
1041
}
1042
1043
void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1044
// Compute the inverse of the Node.Parent links. Also, collect the set
1045
// of root nodes.
1046
NodeChildrenMap NCM;
1047
NodeVect Roots;
1048
invert_find_roots(Nodes, NCM, Roots);
1049
1050
// Compute the initial placement determined by the users' locations, and
1051
// the locations of the child nodes.
1052
for (GepNode *Root : Roots)
1053
recalculatePlacementRec(Root, NCM, Loc);
1054
1055
LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1056
1057
if (OptEnableInv) {
1058
for (GepNode *Root : Roots)
1059
adjustForInvariance(Root, NCM, Loc);
1060
1061
LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1062
<< LocationAsBlock(Loc));
1063
}
1064
if (OptEnableConst) {
1065
for (GepNode *Root : Roots)
1066
separateConstantChains(Root, NCM, Loc);
1067
}
1068
LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses);
1069
1070
// At the moment, there is no further refinement of the initial placement.
1071
// Such a refinement could include splitting the nodes if they are placed
1072
// too far from some of its users.
1073
1074
LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1075
}
1076
1077
Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1078
BasicBlock *LocB) {
1079
LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1080
<< " for nodes:\n"
1081
<< NA);
1082
unsigned Num = NA.size();
1083
GepNode *RN = NA[0];
1084
assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1085
1086
GetElementPtrInst *NewInst = nullptr;
1087
Value *Input = RN->BaseVal;
1088
Type *InpTy = RN->PTy;
1089
1090
unsigned Idx = 0;
1091
do {
1092
SmallVector<Value*, 4> IdxList;
1093
// If the type of the input of the first node is not a pointer,
1094
// we need to add an artificial i32 0 to the indices (because the
1095
// actual input in the IR will be a pointer).
1096
if (!(NA[Idx]->Flags & GepNode::Pointer)) {
1097
Type *Int32Ty = Type::getInt32Ty(*Ctx);
1098
IdxList.push_back(ConstantInt::get(Int32Ty, 0));
1099
}
1100
1101
// Keep adding indices from NA until we have to stop and generate
1102
// an "intermediate" GEP.
1103
while (++Idx <= Num) {
1104
GepNode *N = NA[Idx-1];
1105
IdxList.push_back(N->Idx);
1106
if (Idx < Num) {
1107
// We have to stop if we reach a pointer.
1108
if (NA[Idx]->Flags & GepNode::Pointer)
1109
break;
1110
}
1111
}
1112
NewInst = GetElementPtrInst::Create(InpTy, Input, IdxList, "cgep", At);
1113
NewInst->setIsInBounds(RN->Flags & GepNode::InBounds);
1114
LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1115
if (Idx < Num) {
1116
Input = NewInst;
1117
InpTy = NA[Idx]->PTy;
1118
}
1119
} while (Idx <= Num);
1120
1121
return NewInst;
1122
}
1123
1124
void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1125
NodeChildrenMap &NCM) {
1126
NodeVect Work;
1127
Work.push_back(Node);
1128
1129
while (!Work.empty()) {
1130
NodeVect::iterator First = Work.begin();
1131
GepNode *N = *First;
1132
Work.erase(First);
1133
if (N->Flags & GepNode::Used) {
1134
NodeToUsesMap::iterator UF = Uses.find(N);
1135
assert(UF != Uses.end() && "No use information for used node");
1136
UseSet &Us = UF->second;
1137
for (const auto &U : Us)
1138
Values.push_back(U->getUser());
1139
}
1140
NodeChildrenMap::iterator CF = NCM.find(N);
1141
if (CF != NCM.end()) {
1142
NodeVect &Cs = CF->second;
1143
llvm::append_range(Work, Cs);
1144
}
1145
}
1146
}
1147
1148
void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1149
LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1150
NodeChildrenMap NCM;
1151
NodeVect Roots;
1152
// Compute the inversion again, since computing placement could alter
1153
// "parent" relation between nodes.
1154
invert_find_roots(Nodes, NCM, Roots);
1155
1156
while (!Roots.empty()) {
1157
NodeVect::iterator First = Roots.begin();
1158
GepNode *Root = *First, *Last = *First;
1159
Roots.erase(First);
1160
1161
NodeVect NA; // Nodes to assemble.
1162
// Append to NA all child nodes up to (and including) the first child
1163
// that:
1164
// (1) has more than 1 child, or
1165
// (2) is used, or
1166
// (3) has a child located in a different block.
1167
bool LastUsed = false;
1168
unsigned LastCN = 0;
1169
// The location may be null if the computation failed (it can legitimately
1170
// happen for nodes created from dead GEPs).
1171
Value *LocV = Loc[Last];
1172
if (!LocV)
1173
continue;
1174
BasicBlock *LastB = cast<BasicBlock>(LocV);
1175
do {
1176
NA.push_back(Last);
1177
LastUsed = (Last->Flags & GepNode::Used);
1178
if (LastUsed)
1179
break;
1180
NodeChildrenMap::iterator CF = NCM.find(Last);
1181
LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1182
if (LastCN != 1)
1183
break;
1184
GepNode *Child = CF->second.front();
1185
BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1186
if (ChildB != nullptr && LastB != ChildB)
1187
break;
1188
Last = Child;
1189
} while (true);
1190
1191
BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1192
if (LastUsed || LastCN > 0) {
1193
ValueVect Urs;
1194
getAllUsersForNode(Root, Urs, NCM);
1195
BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1196
if (FirstUse != LastB->end())
1197
InsertAt = FirstUse;
1198
}
1199
1200
// Generate a new instruction for NA.
1201
Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1202
1203
// Convert all the children of Last node into roots, and append them
1204
// to the Roots list.
1205
if (LastCN > 0) {
1206
NodeVect &Cs = NCM[Last];
1207
for (GepNode *CN : Cs) {
1208
CN->Flags &= ~GepNode::Internal;
1209
CN->Flags |= GepNode::Root;
1210
CN->BaseVal = NewInst;
1211
Roots.push_back(CN);
1212
}
1213
}
1214
1215
// Lastly, if the Last node was used, replace all uses with the new GEP.
1216
// The uses reference the original GEP values.
1217
if (LastUsed) {
1218
NodeToUsesMap::iterator UF = Uses.find(Last);
1219
assert(UF != Uses.end() && "No use information found");
1220
UseSet &Us = UF->second;
1221
for (Use *U : Us)
1222
U->set(NewInst);
1223
}
1224
}
1225
}
1226
1227
void HexagonCommonGEP::removeDeadCode() {
1228
ValueVect BO;
1229
BO.push_back(&Fn->front());
1230
1231
for (unsigned i = 0; i < BO.size(); ++i) {
1232
BasicBlock *B = cast<BasicBlock>(BO[i]);
1233
for (auto *DTN : children<DomTreeNode *>(DT->getNode(B)))
1234
BO.push_back(DTN->getBlock());
1235
}
1236
1237
for (Value *V : llvm::reverse(BO)) {
1238
BasicBlock *B = cast<BasicBlock>(V);
1239
ValueVect Ins;
1240
for (Instruction &I : llvm::reverse(*B))
1241
Ins.push_back(&I);
1242
for (Value *I : Ins) {
1243
Instruction *In = cast<Instruction>(I);
1244
if (isInstructionTriviallyDead(In))
1245
In->eraseFromParent();
1246
}
1247
}
1248
}
1249
1250
bool HexagonCommonGEP::runOnFunction(Function &F) {
1251
if (skipFunction(F))
1252
return false;
1253
1254
// For now bail out on C++ exception handling.
1255
for (const BasicBlock &BB : F)
1256
for (const Instruction &I : BB)
1257
if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1258
return false;
1259
1260
Fn = &F;
1261
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1262
PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1263
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1264
Ctx = &F.getContext();
1265
1266
Nodes.clear();
1267
Uses.clear();
1268
NodeOrder.clear();
1269
1270
SpecificBumpPtrAllocator<GepNode> Allocator;
1271
Mem = &Allocator;
1272
1273
collect();
1274
common();
1275
1276
NodeToValueMap Loc;
1277
computeNodePlacement(Loc);
1278
materialize(Loc);
1279
removeDeadCode();
1280
1281
#ifdef EXPENSIVE_CHECKS
1282
// Run this only when expensive checks are enabled.
1283
if (verifyFunction(F, &dbgs()))
1284
report_fatal_error("Broken function");
1285
#endif
1286
return true;
1287
}
1288
1289
namespace llvm {
1290
1291
FunctionPass *createHexagonCommonGEP() {
1292
return new HexagonCommonGEP();
1293
}
1294
1295
} // end namespace llvm
1296
1297