Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonGenInsert.cpp
35266 views
1
//===- HexagonGenInsert.cpp -----------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "BitTracker.h"
10
#include "HexagonBitTracker.h"
11
#include "HexagonInstrInfo.h"
12
#include "HexagonRegisterInfo.h"
13
#include "HexagonSubtarget.h"
14
#include "llvm/ADT/BitVector.h"
15
#include "llvm/ADT/DenseMap.h"
16
#include "llvm/ADT/GraphTraits.h"
17
#include "llvm/ADT/PostOrderIterator.h"
18
#include "llvm/ADT/STLExtras.h"
19
#include "llvm/ADT/SmallSet.h"
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/ADT/StringRef.h"
22
#include "llvm/CodeGen/MachineBasicBlock.h"
23
#include "llvm/CodeGen/MachineDominators.h"
24
#include "llvm/CodeGen/MachineFunction.h"
25
#include "llvm/CodeGen/MachineFunctionPass.h"
26
#include "llvm/CodeGen/MachineInstr.h"
27
#include "llvm/CodeGen/MachineInstrBuilder.h"
28
#include "llvm/CodeGen/MachineOperand.h"
29
#include "llvm/CodeGen/MachineRegisterInfo.h"
30
#include "llvm/CodeGen/TargetRegisterInfo.h"
31
#include "llvm/IR/DebugLoc.h"
32
#include "llvm/InitializePasses.h"
33
#include "llvm/Pass.h"
34
#include "llvm/Support/CommandLine.h"
35
#include "llvm/Support/Debug.h"
36
#include "llvm/Support/MathExtras.h"
37
#include "llvm/Support/Timer.h"
38
#include "llvm/Support/raw_ostream.h"
39
#include <algorithm>
40
#include <cassert>
41
#include <cstdint>
42
#include <iterator>
43
#include <utility>
44
#include <vector>
45
46
#define DEBUG_TYPE "hexinsert"
47
48
using namespace llvm;
49
50
static cl::opt<unsigned>
51
VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U), cl::Hidden,
52
cl::desc("Vreg# cutoff for insert generation."));
53
// The distance cutoff is selected based on the precheckin-perf results:
54
// cutoffs 20, 25, 35, and 40 are worse than 30.
55
static cl::opt<unsigned>
56
VRegDistCutoff("insert-dist-cutoff", cl::init(30U), cl::Hidden,
57
cl::desc("Vreg distance cutoff for insert "
58
"generation."));
59
60
// Limit the container sizes for extreme cases where we run out of memory.
61
static cl::opt<unsigned>
62
MaxORLSize("insert-max-orl", cl::init(4096), cl::Hidden,
63
cl::desc("Maximum size of OrderedRegisterList"));
64
static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
65
cl::Hidden,
66
cl::desc("Maximum size of IFMap"));
67
68
static cl::opt<bool> OptTiming("insert-timing", cl::Hidden,
69
cl::desc("Enable timing of insert generation"));
70
static cl::opt<bool>
71
OptTimingDetail("insert-timing-detail", cl::Hidden,
72
cl::desc("Enable detailed timing of insert "
73
"generation"));
74
75
static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden);
76
static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden);
77
// Whether to construct constant values via "insert". Could eliminate constant
78
// extenders, but often not practical.
79
static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden);
80
81
// The preprocessor gets confused when the DEBUG macro is passed larger
82
// chunks of code. Use this function to detect debugging.
83
inline static bool isDebug() {
84
#ifndef NDEBUG
85
return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
86
#else
87
return false;
88
#endif
89
}
90
91
namespace {
92
93
// Set of virtual registers, based on BitVector.
94
struct RegisterSet : private BitVector {
95
RegisterSet() = default;
96
explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
97
RegisterSet(const RegisterSet &RS) = default;
98
RegisterSet &operator=(const RegisterSet &RS) = default;
99
100
using BitVector::clear;
101
102
unsigned find_first() const {
103
int First = BitVector::find_first();
104
if (First < 0)
105
return 0;
106
return x2v(First);
107
}
108
109
unsigned find_next(unsigned Prev) const {
110
int Next = BitVector::find_next(v2x(Prev));
111
if (Next < 0)
112
return 0;
113
return x2v(Next);
114
}
115
116
RegisterSet &insert(unsigned R) {
117
unsigned Idx = v2x(R);
118
ensure(Idx);
119
return static_cast<RegisterSet&>(BitVector::set(Idx));
120
}
121
RegisterSet &remove(unsigned R) {
122
unsigned Idx = v2x(R);
123
if (Idx >= size())
124
return *this;
125
return static_cast<RegisterSet&>(BitVector::reset(Idx));
126
}
127
128
RegisterSet &insert(const RegisterSet &Rs) {
129
return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
130
}
131
RegisterSet &remove(const RegisterSet &Rs) {
132
return static_cast<RegisterSet&>(BitVector::reset(Rs));
133
}
134
135
reference operator[](unsigned R) {
136
unsigned Idx = v2x(R);
137
ensure(Idx);
138
return BitVector::operator[](Idx);
139
}
140
bool operator[](unsigned R) const {
141
unsigned Idx = v2x(R);
142
assert(Idx < size());
143
return BitVector::operator[](Idx);
144
}
145
bool has(unsigned R) const {
146
unsigned Idx = v2x(R);
147
if (Idx >= size())
148
return false;
149
return BitVector::test(Idx);
150
}
151
152
bool empty() const {
153
return !BitVector::any();
154
}
155
bool includes(const RegisterSet &Rs) const {
156
// A.BitVector::test(B) <=> A-B != {}
157
return !Rs.BitVector::test(*this);
158
}
159
bool intersects(const RegisterSet &Rs) const {
160
return BitVector::anyCommon(Rs);
161
}
162
163
private:
164
void ensure(unsigned Idx) {
165
if (size() <= Idx)
166
resize(std::max(Idx+1, 32U));
167
}
168
169
static inline unsigned v2x(unsigned v) {
170
return Register::virtReg2Index(v);
171
}
172
173
static inline unsigned x2v(unsigned x) {
174
return Register::index2VirtReg(x);
175
}
176
};
177
178
struct PrintRegSet {
179
PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
180
: RS(S), TRI(RI) {}
181
182
friend raw_ostream &operator<< (raw_ostream &OS,
183
const PrintRegSet &P);
184
185
private:
186
const RegisterSet &RS;
187
const TargetRegisterInfo *TRI;
188
};
189
190
raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
191
OS << '{';
192
for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
193
OS << ' ' << printReg(R, P.TRI);
194
OS << " }";
195
return OS;
196
}
197
198
// A convenience class to associate unsigned numbers (such as virtual
199
// registers) with unsigned numbers.
200
struct UnsignedMap : public DenseMap<unsigned,unsigned> {
201
UnsignedMap() = default;
202
203
private:
204
using BaseType = DenseMap<unsigned, unsigned>;
205
};
206
207
// A utility to establish an ordering between virtual registers:
208
// VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
209
// This is meant as a cache for the ordering of virtual registers defined
210
// by a potentially expensive comparison function, or obtained by a proce-
211
// dure that should not be repeated each time two registers are compared.
212
struct RegisterOrdering : public UnsignedMap {
213
RegisterOrdering() = default;
214
215
unsigned operator[](unsigned VR) const {
216
const_iterator F = find(VR);
217
assert(F != end());
218
return F->second;
219
}
220
221
// Add operator(), so that objects of this class can be used as
222
// comparators in std::sort et al.
223
bool operator() (unsigned VR1, unsigned VR2) const {
224
return operator[](VR1) < operator[](VR2);
225
}
226
};
227
228
// Ordering of bit values. This class does not have operator[], but
229
// is supplies a comparison operator() for use in std:: algorithms.
230
// The order is as follows:
231
// - 0 < 1 < ref
232
// - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
233
// or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
234
struct BitValueOrdering {
235
BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
236
237
bool operator() (const BitTracker::BitValue &V1,
238
const BitTracker::BitValue &V2) const;
239
240
const RegisterOrdering &BaseOrd;
241
};
242
243
} // end anonymous namespace
244
245
bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
246
const BitTracker::BitValue &V2) const {
247
if (V1 == V2)
248
return false;
249
// V1==0 => true, V2==0 => false
250
if (V1.is(0) || V2.is(0))
251
return V1.is(0);
252
// Neither of V1,V2 is 0, and V1!=V2.
253
// V2==1 => false, V1==1 => true
254
if (V2.is(1) || V1.is(1))
255
return !V2.is(1);
256
// Both V1,V2 are refs.
257
unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
258
if (Ind1 != Ind2)
259
return Ind1 < Ind2;
260
// If V1.Pos==V2.Pos
261
assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
262
return V1.RefI.Pos < V2.RefI.Pos;
263
}
264
265
namespace {
266
267
// Cache for the BitTracker's cell map. Map lookup has a logarithmic
268
// complexity, this class will memoize the lookup results to reduce
269
// the access time for repeated lookups of the same cell.
270
struct CellMapShadow {
271
CellMapShadow(const BitTracker &T) : BT(T) {}
272
273
const BitTracker::RegisterCell &lookup(unsigned VR) {
274
unsigned RInd = Register::virtReg2Index(VR);
275
// Grow the vector to at least 32 elements.
276
if (RInd >= CVect.size())
277
CVect.resize(std::max(RInd+16, 32U), nullptr);
278
const BitTracker::RegisterCell *CP = CVect[RInd];
279
if (CP == nullptr)
280
CP = CVect[RInd] = &BT.lookup(VR);
281
return *CP;
282
}
283
284
const BitTracker &BT;
285
286
private:
287
using CellVectType = std::vector<const BitTracker::RegisterCell *>;
288
289
CellVectType CVect;
290
};
291
292
// Comparator class for lexicographic ordering of virtual registers
293
// according to the corresponding BitTracker::RegisterCell objects.
294
struct RegisterCellLexCompare {
295
RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
296
: BitOrd(BO), CM(M) {}
297
298
bool operator() (unsigned VR1, unsigned VR2) const;
299
300
private:
301
const BitValueOrdering &BitOrd;
302
CellMapShadow &CM;
303
};
304
305
// Comparator class for lexicographic ordering of virtual registers
306
// according to the specified bits of the corresponding BitTracker::
307
// RegisterCell objects.
308
// Specifically, this class will be used to compare bit B of a register
309
// cell for a selected virtual register R with bit N of any register
310
// other than R.
311
struct RegisterCellBitCompareSel {
312
RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
313
const BitValueOrdering &BO, CellMapShadow &M)
314
: SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
315
316
bool operator() (unsigned VR1, unsigned VR2) const;
317
318
private:
319
const unsigned SelR, SelB;
320
const unsigned BitN;
321
const BitValueOrdering &BitOrd;
322
CellMapShadow &CM;
323
};
324
325
} // end anonymous namespace
326
327
bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
328
// Ordering of registers, made up from two given orderings:
329
// - the ordering of the register numbers, and
330
// - the ordering of register cells.
331
// Def. R1 < R2 if:
332
// - cell(R1) < cell(R2), or
333
// - cell(R1) == cell(R2), and index(R1) < index(R2).
334
//
335
// For register cells, the ordering is lexicographic, with index 0 being
336
// the most significant.
337
if (VR1 == VR2)
338
return false;
339
340
const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
341
uint16_t W1 = RC1.width(), W2 = RC2.width();
342
for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
343
const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
344
if (V1 != V2)
345
return BitOrd(V1, V2);
346
}
347
// Cells are equal up until the common length.
348
if (W1 != W2)
349
return W1 < W2;
350
351
return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
352
}
353
354
bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
355
if (VR1 == VR2)
356
return false;
357
const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
358
const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
359
uint16_t W1 = RC1.width(), W2 = RC2.width();
360
uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
361
uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
362
// If Bit1 exceeds the width of VR1, then:
363
// - return false, if at the same time Bit2 exceeds VR2, or
364
// - return true, otherwise.
365
// (I.e. "a bit value that does not exist is less than any bit value
366
// that does exist".)
367
if (W1 <= Bit1)
368
return Bit2 < W2;
369
// If Bit1 is within VR1, but Bit2 is not within VR2, return false.
370
if (W2 <= Bit2)
371
return false;
372
373
const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
374
if (V1 != V2)
375
return BitOrd(V1, V2);
376
return false;
377
}
378
379
namespace {
380
381
class OrderedRegisterList {
382
using ListType = std::vector<unsigned>;
383
const unsigned MaxSize;
384
385
public:
386
OrderedRegisterList(const RegisterOrdering &RO)
387
: MaxSize(MaxORLSize), Ord(RO) {}
388
389
void insert(unsigned VR);
390
void remove(unsigned VR);
391
392
unsigned operator[](unsigned Idx) const {
393
assert(Idx < Seq.size());
394
return Seq[Idx];
395
}
396
397
unsigned size() const {
398
return Seq.size();
399
}
400
401
using iterator = ListType::iterator;
402
using const_iterator = ListType::const_iterator;
403
404
iterator begin() { return Seq.begin(); }
405
iterator end() { return Seq.end(); }
406
const_iterator begin() const { return Seq.begin(); }
407
const_iterator end() const { return Seq.end(); }
408
409
// Convenience function to convert an iterator to the corresponding index.
410
unsigned idx(iterator It) const { return It-begin(); }
411
412
private:
413
ListType Seq;
414
const RegisterOrdering &Ord;
415
};
416
417
struct PrintORL {
418
PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
419
: RL(L), TRI(RI) {}
420
421
friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
422
423
private:
424
const OrderedRegisterList &RL;
425
const TargetRegisterInfo *TRI;
426
};
427
428
raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
429
OS << '(';
430
OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
431
for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
432
if (I != B)
433
OS << ", ";
434
OS << printReg(*I, P.TRI);
435
}
436
OS << ')';
437
return OS;
438
}
439
440
} // end anonymous namespace
441
442
void OrderedRegisterList::insert(unsigned VR) {
443
iterator L = llvm::lower_bound(Seq, VR, Ord);
444
if (L == Seq.end())
445
Seq.push_back(VR);
446
else
447
Seq.insert(L, VR);
448
449
unsigned S = Seq.size();
450
if (S > MaxSize)
451
Seq.resize(MaxSize);
452
assert(Seq.size() <= MaxSize);
453
}
454
455
void OrderedRegisterList::remove(unsigned VR) {
456
iterator L = llvm::lower_bound(Seq, VR, Ord);
457
if (L != Seq.end())
458
Seq.erase(L);
459
}
460
461
namespace {
462
463
// A record of the insert form. The fields correspond to the operands
464
// of the "insert" instruction:
465
// ... = insert(SrcR, InsR, #Wdh, #Off)
466
struct IFRecord {
467
IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
468
: SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
469
470
unsigned SrcR, InsR;
471
uint16_t Wdh, Off;
472
};
473
474
struct PrintIFR {
475
PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
476
: IFR(R), TRI(RI) {}
477
478
private:
479
friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
480
481
const IFRecord &IFR;
482
const TargetRegisterInfo *TRI;
483
};
484
485
raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
486
unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
487
OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
488
<< ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
489
return OS;
490
}
491
492
using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
493
494
} // end anonymous namespace
495
496
namespace llvm {
497
498
void initializeHexagonGenInsertPass(PassRegistry&);
499
FunctionPass *createHexagonGenInsert();
500
501
} // end namespace llvm
502
503
namespace {
504
505
class HexagonGenInsert : public MachineFunctionPass {
506
public:
507
static char ID;
508
509
HexagonGenInsert() : MachineFunctionPass(ID) {
510
initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
511
}
512
513
StringRef getPassName() const override {
514
return "Hexagon generate \"insert\" instructions";
515
}
516
517
void getAnalysisUsage(AnalysisUsage &AU) const override {
518
AU.addRequired<MachineDominatorTreeWrapperPass>();
519
AU.addPreserved<MachineDominatorTreeWrapperPass>();
520
MachineFunctionPass::getAnalysisUsage(AU);
521
}
522
523
bool runOnMachineFunction(MachineFunction &MF) override;
524
525
private:
526
using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
527
528
void buildOrderingMF(RegisterOrdering &RO) const;
529
void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
530
bool isIntClass(const TargetRegisterClass *RC) const;
531
bool isConstant(unsigned VR) const;
532
bool isSmallConstant(unsigned VR) const;
533
bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
534
uint16_t L, uint16_t S) const;
535
bool findSelfReference(unsigned VR) const;
536
bool findNonSelfReference(unsigned VR) const;
537
void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
538
void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
539
unsigned distance(const MachineBasicBlock *FromB,
540
const MachineBasicBlock *ToB, const UnsignedMap &RPO,
541
PairMapType &M) const;
542
unsigned distance(MachineBasicBlock::const_iterator FromI,
543
MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
544
PairMapType &M) const;
545
bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
546
void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
547
void findRemovableRegisters(unsigned VR, IFRecord IF,
548
RegisterSet &RMs) const;
549
void computeRemovableRegisters();
550
551
void pruneEmptyLists();
552
void pruneCoveredSets(unsigned VR);
553
void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
554
void pruneRegCopies(unsigned VR);
555
void pruneCandidates();
556
void selectCandidates();
557
bool generateInserts();
558
559
bool removeDeadCode(MachineDomTreeNode *N);
560
561
// IFRecord coupled with a set of potentially removable registers:
562
using IFListType = std::vector<IFRecordWithRegSet>;
563
using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
564
565
void dump_map() const;
566
567
const HexagonInstrInfo *HII = nullptr;
568
const HexagonRegisterInfo *HRI = nullptr;
569
570
MachineFunction *MFN;
571
MachineRegisterInfo *MRI;
572
MachineDominatorTree *MDT;
573
CellMapShadow *CMS;
574
575
RegisterOrdering BaseOrd;
576
RegisterOrdering CellOrd;
577
IFMapType IFMap;
578
};
579
580
} // end anonymous namespace
581
582
char HexagonGenInsert::ID = 0;
583
584
void HexagonGenInsert::dump_map() const {
585
for (const auto &I : IFMap) {
586
dbgs() << " " << printReg(I.first, HRI) << ":\n";
587
const IFListType &LL = I.second;
588
for (const auto &J : LL)
589
dbgs() << " " << PrintIFR(J.first, HRI) << ", "
590
<< PrintRegSet(J.second, HRI) << '\n';
591
}
592
}
593
594
void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
595
unsigned Index = 0;
596
597
for (const MachineBasicBlock &B : *MFN) {
598
if (!CMS->BT.reached(&B))
599
continue;
600
601
for (const MachineInstr &MI : B) {
602
for (const MachineOperand &MO : MI.operands()) {
603
if (MO.isReg() && MO.isDef()) {
604
Register R = MO.getReg();
605
assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
606
if (R.isVirtual())
607
RO.insert(std::make_pair(R, Index++));
608
}
609
}
610
}
611
}
612
// Since some virtual registers may have had their def and uses eliminated,
613
// they are no longer referenced in the code, and so they will not appear
614
// in the map.
615
}
616
617
void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
618
RegisterOrdering &RO) const {
619
// Create a vector of all virtual registers (collect them from the base
620
// ordering RB), and then sort it using the RegisterCell comparator.
621
BitValueOrdering BVO(RB);
622
RegisterCellLexCompare LexCmp(BVO, *CMS);
623
624
using SortableVectorType = std::vector<unsigned>;
625
626
SortableVectorType VRs;
627
for (auto &I : RB)
628
VRs.push_back(I.first);
629
llvm::sort(VRs, LexCmp);
630
// Transfer the results to the outgoing register ordering.
631
for (unsigned i = 0, n = VRs.size(); i < n; ++i)
632
RO.insert(std::make_pair(VRs[i], i));
633
}
634
635
inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
636
return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
637
}
638
639
bool HexagonGenInsert::isConstant(unsigned VR) const {
640
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
641
uint16_t W = RC.width();
642
for (uint16_t i = 0; i < W; ++i) {
643
const BitTracker::BitValue &BV = RC[i];
644
if (BV.is(0) || BV.is(1))
645
continue;
646
return false;
647
}
648
return true;
649
}
650
651
bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
652
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
653
uint16_t W = RC.width();
654
if (W > 64)
655
return false;
656
uint64_t V = 0, B = 1;
657
for (uint16_t i = 0; i < W; ++i) {
658
const BitTracker::BitValue &BV = RC[i];
659
if (BV.is(1))
660
V |= B;
661
else if (!BV.is(0))
662
return false;
663
B <<= 1;
664
}
665
666
// For 32-bit registers, consider: Rd = #s16.
667
if (W == 32)
668
return isInt<16>(V);
669
670
// For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
671
return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
672
}
673
674
bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
675
unsigned InsR, uint16_t L, uint16_t S) const {
676
const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
677
const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
678
const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
679
// Only integet (32-/64-bit) register classes.
680
if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
681
return false;
682
// The "source" register must be of the same class as DstR.
683
if (DstRC != SrcRC)
684
return false;
685
if (DstRC == InsRC)
686
return true;
687
// A 64-bit register can only be generated from other 64-bit registers.
688
if (DstRC == &Hexagon::DoubleRegsRegClass)
689
return false;
690
// Otherwise, the L and S cannot span 32-bit word boundary.
691
if (S < 32 && S+L > 32)
692
return false;
693
return true;
694
}
695
696
bool HexagonGenInsert::findSelfReference(unsigned VR) const {
697
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
698
for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
699
const BitTracker::BitValue &V = RC[i];
700
if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
701
return true;
702
}
703
return false;
704
}
705
706
bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
707
BitTracker::RegisterCell RC = CMS->lookup(VR);
708
for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
709
const BitTracker::BitValue &V = RC[i];
710
if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
711
return true;
712
}
713
return false;
714
}
715
716
void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
717
RegisterSet &Defs) const {
718
for (const MachineOperand &MO : MI->operands()) {
719
if (!MO.isReg() || !MO.isDef())
720
continue;
721
Register R = MO.getReg();
722
if (!R.isVirtual())
723
continue;
724
Defs.insert(R);
725
}
726
}
727
728
void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
729
RegisterSet &Uses) const {
730
for (const MachineOperand &MO : MI->operands()) {
731
if (!MO.isReg() || !MO.isUse())
732
continue;
733
Register R = MO.getReg();
734
if (!R.isVirtual())
735
continue;
736
Uses.insert(R);
737
}
738
}
739
740
unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
741
const MachineBasicBlock *ToB, const UnsignedMap &RPO,
742
PairMapType &M) const {
743
// Forward distance from the end of a block to the beginning of it does
744
// not make sense. This function should not be called with FromB == ToB.
745
assert(FromB != ToB);
746
747
unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
748
// If we have already computed it, return the cached result.
749
PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
750
if (F != M.end())
751
return F->second;
752
unsigned ToRPO = RPO.lookup(ToN);
753
754
unsigned MaxD = 0;
755
756
for (const MachineBasicBlock *PB : ToB->predecessors()) {
757
// Skip back edges. Also, if FromB is a predecessor of ToB, the distance
758
// along that path will be 0, and we don't need to do any calculations
759
// on it.
760
if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
761
continue;
762
unsigned D = PB->size() + distance(FromB, PB, RPO, M);
763
if (D > MaxD)
764
MaxD = D;
765
}
766
767
// Memoize the result for later lookup.
768
M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
769
return MaxD;
770
}
771
772
unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
773
MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
774
PairMapType &M) const {
775
const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
776
if (FB == TB)
777
return std::distance(FromI, ToI);
778
unsigned D1 = std::distance(TB->begin(), ToI);
779
unsigned D2 = distance(FB, TB, RPO, M);
780
unsigned D3 = std::distance(FromI, FB->end());
781
return D1+D2+D3;
782
}
783
784
bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
785
OrderedRegisterList &AVs) {
786
if (isDebug()) {
787
dbgs() << __func__ << ": " << printReg(VR, HRI)
788
<< " AVs: " << PrintORL(AVs, HRI) << "\n";
789
}
790
if (AVs.size() == 0)
791
return false;
792
793
using iterator = OrderedRegisterList::iterator;
794
795
BitValueOrdering BVO(BaseOrd);
796
const BitTracker::RegisterCell &RC = CMS->lookup(VR);
797
uint16_t W = RC.width();
798
799
using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
800
using RSListType = std::vector<RSRecord>;
801
// Have a map, with key being the matching prefix length, and the value
802
// being the list of pairs (R,S), where R's prefix matches VR at S.
803
// (DenseMap<uint16_t,RSListType> fails to instantiate.)
804
using LRSMapType = DenseMap<unsigned, RSListType>;
805
LRSMapType LM;
806
807
// Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
808
// and find matching prefixes from AVs with the rotated RC. Such a prefix
809
// would match a string of bits (of length L) in RC starting at S.
810
for (uint16_t S = 0; S < W; ++S) {
811
iterator B = AVs.begin(), E = AVs.end();
812
// The registers in AVs are ordered according to the lexical order of
813
// the corresponding register cells. This means that the range of regis-
814
// ters in AVs that match a prefix of length L+1 will be contained in
815
// the range that matches a prefix of length L. This means that we can
816
// keep narrowing the search space as the prefix length goes up. This
817
// helps reduce the overall complexity of the search.
818
uint16_t L;
819
for (L = 0; L < W-S; ++L) {
820
// Compare against VR's bits starting at S, which emulates rotation
821
// of VR by S.
822
RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
823
iterator NewB = std::lower_bound(B, E, VR, RCB);
824
iterator NewE = std::upper_bound(NewB, E, VR, RCB);
825
// For the registers that are eliminated from the next range, L is
826
// the longest prefix matching VR at position S (their prefixes
827
// differ from VR at S+L). If L>0, record this information for later
828
// use.
829
if (L > 0) {
830
for (iterator I = B; I != NewB; ++I)
831
LM[L].push_back(std::make_pair(*I, S));
832
for (iterator I = NewE; I != E; ++I)
833
LM[L].push_back(std::make_pair(*I, S));
834
}
835
B = NewB, E = NewE;
836
if (B == E)
837
break;
838
}
839
// Record the final register range. If this range is non-empty, then
840
// L=W-S.
841
assert(B == E || L == W-S);
842
if (B != E) {
843
for (iterator I = B; I != E; ++I)
844
LM[L].push_back(std::make_pair(*I, S));
845
// If B!=E, then we found a range of registers whose prefixes cover the
846
// rest of VR from position S. There is no need to further advance S.
847
break;
848
}
849
}
850
851
if (isDebug()) {
852
dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
853
for (const auto &I : LM) {
854
dbgs() << " L=" << I.first << ':';
855
const RSListType &LL = I.second;
856
for (const auto &J : LL)
857
dbgs() << " (" << printReg(J.first, HRI) << ",@" << J.second << ')';
858
dbgs() << '\n';
859
}
860
}
861
862
bool Recorded = false;
863
864
for (unsigned SrcR : AVs) {
865
int FDi = -1, LDi = -1; // First/last different bit.
866
const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
867
uint16_t AW = AC.width();
868
for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
869
if (RC[i] == AC[i])
870
continue;
871
if (FDi == -1)
872
FDi = i;
873
LDi = i;
874
}
875
if (FDi == -1)
876
continue; // TODO (future): Record identical registers.
877
// Look for a register whose prefix could patch the range [FD..LD]
878
// where VR and SrcR differ.
879
uint16_t FD = FDi, LD = LDi; // Switch to unsigned type.
880
uint16_t MinL = LD-FD+1;
881
for (uint16_t L = MinL; L < W; ++L) {
882
LRSMapType::iterator F = LM.find(L);
883
if (F == LM.end())
884
continue;
885
RSListType &LL = F->second;
886
for (const auto &I : LL) {
887
uint16_t S = I.second;
888
// MinL is the minimum length of the prefix. Any length above MinL
889
// allows some flexibility as to where the prefix can start:
890
// given the extra length EL=L-MinL, the prefix must start between
891
// max(0,FD-EL) and FD.
892
if (S > FD) // Starts too late.
893
continue;
894
uint16_t EL = L-MinL;
895
uint16_t LowS = (EL < FD) ? FD-EL : 0;
896
if (S < LowS) // Starts too early.
897
continue;
898
unsigned InsR = I.first;
899
if (!isValidInsertForm(VR, SrcR, InsR, L, S))
900
continue;
901
if (isDebug()) {
902
dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
903
<< ',' << printReg(InsR, HRI) << ",#" << L << ",#"
904
<< S << ")\n";
905
}
906
IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
907
IFMap[VR].push_back(RR);
908
Recorded = true;
909
}
910
}
911
}
912
913
return Recorded;
914
}
915
916
void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
917
OrderedRegisterList &AVs) {
918
if (isDebug())
919
dbgs() << "visiting block " << printMBBReference(*B) << "\n";
920
921
// First, check if this block is reachable at all. If not, the bit tracker
922
// will not have any information about registers in it.
923
if (!CMS->BT.reached(B))
924
return;
925
926
bool DoConst = OptConst;
927
// Keep a separate set of registers defined in this block, so that we
928
// can remove them from the list of available registers once all DT
929
// successors have been processed.
930
RegisterSet BlockDefs, InsDefs;
931
for (MachineInstr &MI : *B) {
932
InsDefs.clear();
933
getInstrDefs(&MI, InsDefs);
934
// Leave those alone. They are more transparent than "insert".
935
bool Skip = MI.isCopy() || MI.isRegSequence();
936
937
if (!Skip) {
938
// Visit all defined registers, and attempt to find the corresponding
939
// "insert" representations.
940
for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
941
// Do not collect registers that are known to be compile-time cons-
942
// tants, unless requested.
943
if (!DoConst && isConstant(VR))
944
continue;
945
// If VR's cell contains a reference to VR, then VR cannot be defined
946
// via "insert". If VR is a constant that can be generated in a single
947
// instruction (without constant extenders), generating it via insert
948
// makes no sense.
949
if (findSelfReference(VR) || isSmallConstant(VR))
950
continue;
951
952
findRecordInsertForms(VR, AVs);
953
// Stop if the map size is too large.
954
if (IFMap.size() > MaxIFMSize)
955
return;
956
}
957
}
958
959
// Insert the defined registers into the list of available registers
960
// after they have been processed.
961
for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
962
AVs.insert(VR);
963
BlockDefs.insert(InsDefs);
964
}
965
966
for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
967
MachineBasicBlock *SB = DTN->getBlock();
968
collectInBlock(SB, AVs);
969
}
970
971
for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
972
AVs.remove(VR);
973
}
974
975
void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
976
RegisterSet &RMs) const {
977
// For a given register VR and a insert form, find the registers that are
978
// used by the current definition of VR, and which would no longer be
979
// needed for it after the definition of VR is replaced with the insert
980
// form. These are the registers that could potentially become dead.
981
RegisterSet Regs[2];
982
983
unsigned S = 0; // Register set selector.
984
Regs[S].insert(VR);
985
986
while (!Regs[S].empty()) {
987
// Breadth-first search.
988
unsigned OtherS = 1-S;
989
Regs[OtherS].clear();
990
for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
991
Regs[S].remove(R);
992
if (R == IF.SrcR || R == IF.InsR)
993
continue;
994
// Check if a given register has bits that are references to any other
995
// registers. This is to detect situations where the instruction that
996
// defines register R takes register Q as an operand, but R itself does
997
// not contain any bits from Q. Loads are examples of how this could
998
// happen:
999
// R = load Q
1000
// In this case (assuming we do not have any knowledge about the loaded
1001
// value), we must not treat R as a "conveyance" of the bits from Q.
1002
// (The information in BT about R's bits would have them as constants,
1003
// in case of zero-extending loads, or refs to R.)
1004
if (!findNonSelfReference(R))
1005
continue;
1006
RMs.insert(R);
1007
const MachineInstr *DefI = MRI->getVRegDef(R);
1008
assert(DefI);
1009
// Do not iterate past PHI nodes to avoid infinite loops. This can
1010
// make the final set a bit less accurate, but the removable register
1011
// sets are an approximation anyway.
1012
if (DefI->isPHI())
1013
continue;
1014
getInstrUses(DefI, Regs[OtherS]);
1015
}
1016
S = OtherS;
1017
}
1018
// The register VR is added to the list as a side-effect of the algorithm,
1019
// but it is not "potentially removable". A potentially removable register
1020
// is one that may become unused (dead) after conversion to the insert form
1021
// IF, and obviously VR (or its replacement) will not become dead by apply-
1022
// ing IF.
1023
RMs.remove(VR);
1024
}
1025
1026
void HexagonGenInsert::computeRemovableRegisters() {
1027
for (auto &I : IFMap) {
1028
IFListType &LL = I.second;
1029
for (auto &J : LL)
1030
findRemovableRegisters(I.first, J.first, J.second);
1031
}
1032
}
1033
1034
void HexagonGenInsert::pruneEmptyLists() {
1035
// Remove all entries from the map, where the register has no insert forms
1036
// associated with it.
1037
using IterListType = SmallVector<IFMapType::iterator, 16>;
1038
IterListType Prune;
1039
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1040
if (I->second.empty())
1041
Prune.push_back(I);
1042
}
1043
for (const auto &It : Prune)
1044
IFMap.erase(It);
1045
}
1046
1047
void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1048
IFMapType::iterator F = IFMap.find(VR);
1049
assert(F != IFMap.end());
1050
IFListType &LL = F->second;
1051
1052
// First, examine the IF candidates for register VR whose removable-regis-
1053
// ter sets are empty. This means that a given candidate will not help eli-
1054
// minate any registers, but since "insert" is not a constant-extendable
1055
// instruction, using such a candidate may reduce code size if the defini-
1056
// tion of VR is constant-extended.
1057
// If there exists a candidate with a non-empty set, the ones with empty
1058
// sets will not be used and can be removed.
1059
MachineInstr *DefVR = MRI->getVRegDef(VR);
1060
bool DefEx = HII->isConstExtended(*DefVR);
1061
bool HasNE = false;
1062
for (const auto &I : LL) {
1063
if (I.second.empty())
1064
continue;
1065
HasNE = true;
1066
break;
1067
}
1068
if (!DefEx || HasNE) {
1069
// The definition of VR is not constant-extended, or there is a candidate
1070
// with a non-empty set. Remove all candidates with empty sets.
1071
auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1072
return IR.second.empty();
1073
};
1074
llvm::erase_if(LL, IsEmpty);
1075
} else {
1076
// The definition of VR is constant-extended, and all candidates have
1077
// empty removable-register sets. Pick the maximum candidate, and remove
1078
// all others. The "maximum" does not have any special meaning here, it
1079
// is only so that the candidate that will remain on the list is selec-
1080
// ted deterministically.
1081
IFRecord MaxIF = LL[0].first;
1082
for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1083
// If LL[MaxI] < LL[i], then MaxI = i.
1084
const IFRecord &IF = LL[i].first;
1085
unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1086
unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1087
if (M0 > R0)
1088
continue;
1089
if (M0 == R0) {
1090
if (M1 > R1)
1091
continue;
1092
if (M1 == R1) {
1093
if (MaxIF.Wdh > IF.Wdh)
1094
continue;
1095
if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1096
continue;
1097
}
1098
}
1099
// MaxIF < IF.
1100
MaxIF = IF;
1101
}
1102
// Remove everything except the maximum candidate. All register sets
1103
// are empty, so no need to preserve anything.
1104
LL.clear();
1105
LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1106
}
1107
1108
// Now, remove those whose sets of potentially removable registers are
1109
// contained in another IF candidate for VR. For example, given these
1110
// candidates for %45,
1111
// %45:
1112
// (%44,%41,#9,#8), { %42 }
1113
// (%43,%41,#9,#8), { %42 %44 }
1114
// remove the first one, since it is contained in the second one.
1115
for (unsigned i = 0, n = LL.size(); i < n; ) {
1116
const RegisterSet &RMi = LL[i].second;
1117
unsigned j = 0;
1118
while (j < n) {
1119
if (j != i && LL[j].second.includes(RMi))
1120
break;
1121
j++;
1122
}
1123
if (j == n) { // RMi not contained in anything else.
1124
i++;
1125
continue;
1126
}
1127
LL.erase(LL.begin()+i);
1128
n = LL.size();
1129
}
1130
}
1131
1132
void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1133
PairMapType &M) {
1134
IFMapType::iterator F = IFMap.find(VR);
1135
assert(F != IFMap.end());
1136
IFListType &LL = F->second;
1137
unsigned Cutoff = VRegDistCutoff;
1138
const MachineInstr *DefV = MRI->getVRegDef(VR);
1139
1140
for (unsigned i = LL.size(); i > 0; --i) {
1141
unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1142
const MachineInstr *DefS = MRI->getVRegDef(SR);
1143
const MachineInstr *DefI = MRI->getVRegDef(IR);
1144
unsigned DSV = distance(DefS, DefV, RPO, M);
1145
if (DSV < Cutoff) {
1146
unsigned DIV = distance(DefI, DefV, RPO, M);
1147
if (DIV < Cutoff)
1148
continue;
1149
}
1150
LL.erase(LL.begin()+(i-1));
1151
}
1152
}
1153
1154
void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1155
IFMapType::iterator F = IFMap.find(VR);
1156
assert(F != IFMap.end());
1157
IFListType &LL = F->second;
1158
1159
auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1160
return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1161
};
1162
llvm::erase_if(LL, IsCopy);
1163
}
1164
1165
void HexagonGenInsert::pruneCandidates() {
1166
// Remove candidates that are not beneficial, regardless of the final
1167
// selection method.
1168
// First, remove candidates whose potentially removable set is a subset
1169
// of another candidate's set.
1170
for (const auto &I : IFMap)
1171
pruneCoveredSets(I.first);
1172
1173
UnsignedMap RPO;
1174
1175
using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
1176
1177
RPOTType RPOT(MFN);
1178
unsigned RPON = 0;
1179
for (const auto &I : RPOT)
1180
RPO[I->getNumber()] = RPON++;
1181
1182
PairMapType Memo; // Memoization map for distance calculation.
1183
// Remove candidates that would use registers defined too far away.
1184
for (const auto &I : IFMap)
1185
pruneUsesTooFar(I.first, RPO, Memo);
1186
1187
pruneEmptyLists();
1188
1189
for (const auto &I : IFMap)
1190
pruneRegCopies(I.first);
1191
}
1192
1193
namespace {
1194
1195
// Class for comparing IF candidates for registers that have multiple of
1196
// them. The smaller the candidate, according to this ordering, the better.
1197
// First, compare the number of zeros in the associated potentially remova-
1198
// ble register sets. "Zero" indicates that the register is very likely to
1199
// become dead after this transformation.
1200
// Second, compare "averages", i.e. use-count per size. The lower wins.
1201
// After that, it does not really matter which one is smaller. Resolve
1202
// the tie in some deterministic way.
1203
struct IFOrdering {
1204
IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1205
: UseC(UC), BaseOrd(BO) {}
1206
1207
bool operator() (const IFRecordWithRegSet &A,
1208
const IFRecordWithRegSet &B) const;
1209
1210
private:
1211
void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1212
unsigned &Sum) const;
1213
1214
const UnsignedMap &UseC;
1215
const RegisterOrdering &BaseOrd;
1216
};
1217
1218
} // end anonymous namespace
1219
1220
bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1221
const IFRecordWithRegSet &B) const {
1222
unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1223
unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1224
stats(A.second, SizeA, ZeroA, SumA);
1225
stats(B.second, SizeB, ZeroB, SumB);
1226
1227
// We will pick the minimum element. The more zeros, the better.
1228
if (ZeroA != ZeroB)
1229
return ZeroA > ZeroB;
1230
// Compare SumA/SizeA with SumB/SizeB, lower is better.
1231
uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1232
if (AvgA != AvgB)
1233
return AvgA < AvgB;
1234
1235
// The sets compare identical so far. Resort to comparing the IF records.
1236
// The actual values don't matter, this is only for determinism.
1237
unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1238
if (OSA != OSB)
1239
return OSA < OSB;
1240
unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1241
if (OIA != OIB)
1242
return OIA < OIB;
1243
if (A.first.Wdh != B.first.Wdh)
1244
return A.first.Wdh < B.first.Wdh;
1245
return A.first.Off < B.first.Off;
1246
}
1247
1248
void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1249
unsigned &Sum) const {
1250
for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1251
UnsignedMap::const_iterator F = UseC.find(R);
1252
assert(F != UseC.end());
1253
unsigned UC = F->second;
1254
if (UC == 0)
1255
Zero++;
1256
Sum += UC;
1257
Size++;
1258
}
1259
}
1260
1261
void HexagonGenInsert::selectCandidates() {
1262
// Some registers may have multiple valid candidates. Pick the best one
1263
// (or decide not to use any).
1264
1265
// Compute the "removability" measure of R:
1266
// For each potentially removable register R, record the number of regis-
1267
// ters with IF candidates, where R appears in at least one set.
1268
RegisterSet AllRMs;
1269
UnsignedMap UseC, RemC;
1270
IFMapType::iterator End = IFMap.end();
1271
1272
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1273
const IFListType &LL = I->second;
1274
RegisterSet TT;
1275
for (const auto &J : LL)
1276
TT.insert(J.second);
1277
for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1278
RemC[R]++;
1279
AllRMs.insert(TT);
1280
}
1281
1282
for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1283
using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
1284
using InstrSet = SmallSet<const MachineInstr *, 16>;
1285
1286
InstrSet UIs;
1287
// Count as the number of instructions in which R is used, not the
1288
// number of operands.
1289
use_iterator E = MRI->use_nodbg_end();
1290
for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1291
UIs.insert(I->getParent());
1292
unsigned C = UIs.size();
1293
// Calculate a measure, which is the number of instructions using R,
1294
// minus the "removability" count computed earlier.
1295
unsigned D = RemC[R];
1296
UseC[R] = (C > D) ? C-D : 0; // doz
1297
}
1298
1299
bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1300
if (!SelectAll0 && !SelectHas0)
1301
SelectAll0 = true;
1302
1303
// The smaller the number UseC for a given register R, the "less used"
1304
// R is aside from the opportunities for removal offered by generating
1305
// "insert" instructions.
1306
// Iterate over the IF map, and for those registers that have multiple
1307
// candidates, pick the minimum one according to IFOrdering.
1308
IFOrdering IFO(UseC, BaseOrd);
1309
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1310
IFListType &LL = I->second;
1311
if (LL.empty())
1312
continue;
1313
// Get the minimum element, remember it and clear the list. If the
1314
// element found is adequate, we will put it back on the list, other-
1315
// wise the list will remain empty, and the entry for this register
1316
// will be removed (i.e. this register will not be replaced by insert).
1317
IFListType::iterator MinI = llvm::min_element(LL, IFO);
1318
assert(MinI != LL.end());
1319
IFRecordWithRegSet M = *MinI;
1320
LL.clear();
1321
1322
// We want to make sure that this replacement will have a chance to be
1323
// beneficial, and that means that we want to have indication that some
1324
// register will be removed. The most likely registers to be eliminated
1325
// are the use operands in the definition of I->first. Accept/reject a
1326
// candidate based on how many of its uses it can potentially eliminate.
1327
1328
RegisterSet Us;
1329
const MachineInstr *DefI = MRI->getVRegDef(I->first);
1330
getInstrUses(DefI, Us);
1331
bool Accept = false;
1332
1333
if (SelectAll0) {
1334
bool All0 = true;
1335
for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1336
if (UseC[R] == 0)
1337
continue;
1338
All0 = false;
1339
break;
1340
}
1341
Accept = All0;
1342
} else if (SelectHas0) {
1343
bool Has0 = false;
1344
for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1345
if (UseC[R] != 0)
1346
continue;
1347
Has0 = true;
1348
break;
1349
}
1350
Accept = Has0;
1351
}
1352
if (Accept)
1353
LL.push_back(M);
1354
}
1355
1356
// Remove candidates that add uses of removable registers, unless the
1357
// removable registers are among replacement candidates.
1358
// Recompute the removable registers, since some candidates may have
1359
// been eliminated.
1360
AllRMs.clear();
1361
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1362
const IFListType &LL = I->second;
1363
if (!LL.empty())
1364
AllRMs.insert(LL[0].second);
1365
}
1366
for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1367
IFListType &LL = I->second;
1368
if (LL.empty())
1369
continue;
1370
unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1371
if (AllRMs[SR] || AllRMs[IR])
1372
LL.clear();
1373
}
1374
1375
pruneEmptyLists();
1376
}
1377
1378
bool HexagonGenInsert::generateInserts() {
1379
// Create a new register for each one from IFMap, and store them in the
1380
// map.
1381
UnsignedMap RegMap;
1382
for (auto &I : IFMap) {
1383
unsigned VR = I.first;
1384
const TargetRegisterClass *RC = MRI->getRegClass(VR);
1385
Register NewVR = MRI->createVirtualRegister(RC);
1386
RegMap[VR] = NewVR;
1387
}
1388
1389
// We can generate the "insert" instructions using potentially stale re-
1390
// gisters: SrcR and InsR for a given VR may be among other registers that
1391
// are also replaced. This is fine, we will do the mass "rauw" a bit later.
1392
for (auto &I : IFMap) {
1393
MachineInstr *MI = MRI->getVRegDef(I.first);
1394
MachineBasicBlock &B = *MI->getParent();
1395
DebugLoc DL = MI->getDebugLoc();
1396
unsigned NewR = RegMap[I.first];
1397
bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1398
const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1399
: HII->get(Hexagon::S2_insertp);
1400
IFRecord IF = I.second[0].first;
1401
unsigned Wdh = IF.Wdh, Off = IF.Off;
1402
unsigned InsS = 0;
1403
if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1404
InsS = Hexagon::isub_lo;
1405
if (Off >= 32) {
1406
InsS = Hexagon::isub_hi;
1407
Off -= 32;
1408
}
1409
}
1410
// Advance to the proper location for inserting instructions. This could
1411
// be B.end().
1412
MachineBasicBlock::iterator At = MI;
1413
if (MI->isPHI())
1414
At = B.getFirstNonPHI();
1415
1416
BuildMI(B, At, DL, D, NewR)
1417
.addReg(IF.SrcR)
1418
.addReg(IF.InsR, 0, InsS)
1419
.addImm(Wdh)
1420
.addImm(Off);
1421
1422
MRI->clearKillFlags(IF.SrcR);
1423
MRI->clearKillFlags(IF.InsR);
1424
}
1425
1426
for (const auto &I : IFMap) {
1427
MachineInstr *DefI = MRI->getVRegDef(I.first);
1428
MRI->replaceRegWith(I.first, RegMap[I.first]);
1429
DefI->eraseFromParent();
1430
}
1431
1432
return true;
1433
}
1434
1435
bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1436
bool Changed = false;
1437
1438
for (auto *DTN : children<MachineDomTreeNode*>(N))
1439
Changed |= removeDeadCode(DTN);
1440
1441
MachineBasicBlock *B = N->getBlock();
1442
std::vector<MachineInstr*> Instrs;
1443
for (MachineInstr &MI : llvm::reverse(*B))
1444
Instrs.push_back(&MI);
1445
1446
for (MachineInstr *MI : Instrs) {
1447
unsigned Opc = MI->getOpcode();
1448
// Do not touch lifetime markers. This is why the target-independent DCE
1449
// cannot be used.
1450
if (Opc == TargetOpcode::LIFETIME_START ||
1451
Opc == TargetOpcode::LIFETIME_END)
1452
continue;
1453
bool Store = false;
1454
if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store))
1455
continue;
1456
1457
bool AllDead = true;
1458
SmallVector<unsigned,2> Regs;
1459
for (const MachineOperand &MO : MI->operands()) {
1460
if (!MO.isReg() || !MO.isDef())
1461
continue;
1462
Register R = MO.getReg();
1463
if (!R.isVirtual() || !MRI->use_nodbg_empty(R)) {
1464
AllDead = false;
1465
break;
1466
}
1467
Regs.push_back(R);
1468
}
1469
if (!AllDead)
1470
continue;
1471
1472
B->erase(MI);
1473
for (unsigned Reg : Regs)
1474
MRI->markUsesInDebugValueAsUndef(Reg);
1475
Changed = true;
1476
}
1477
1478
return Changed;
1479
}
1480
1481
bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1482
if (skipFunction(MF.getFunction()))
1483
return false;
1484
1485
bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1486
bool Changed = false;
1487
1488
// Verify: one, but not both.
1489
assert(!OptSelectAll0 || !OptSelectHas0);
1490
1491
IFMap.clear();
1492
BaseOrd.clear();
1493
CellOrd.clear();
1494
1495
const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1496
HII = ST.getInstrInfo();
1497
HRI = ST.getRegisterInfo();
1498
MFN = &MF;
1499
MRI = &MF.getRegInfo();
1500
MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1501
1502
// Clean up before any further processing, so that dead code does not
1503
// get used in a newly generated "insert" instruction. Have a custom
1504
// version of DCE that preserves lifetime markers. Without it, merging
1505
// of stack objects can fail to recognize and merge disjoint objects
1506
// leading to unnecessary stack growth.
1507
Changed = removeDeadCode(MDT->getRootNode());
1508
1509
const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1510
BitTracker BTLoc(HE, MF);
1511
BTLoc.trace(isDebug());
1512
BTLoc.run();
1513
CellMapShadow MS(BTLoc);
1514
CMS = &MS;
1515
1516
buildOrderingMF(BaseOrd);
1517
buildOrderingBT(BaseOrd, CellOrd);
1518
1519
if (isDebug()) {
1520
dbgs() << "Cell ordering:\n";
1521
for (const auto &I : CellOrd) {
1522
unsigned VR = I.first, Pos = I.second;
1523
dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
1524
}
1525
}
1526
1527
// Collect candidates for conversion into the insert forms.
1528
MachineBasicBlock *RootB = MDT->getRoot();
1529
OrderedRegisterList AvailR(CellOrd);
1530
1531
const char *const TGName = "hexinsert";
1532
const char *const TGDesc = "Generate Insert Instructions";
1533
1534
{
1535
NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
1536
TimingDetail);
1537
collectInBlock(RootB, AvailR);
1538
// Complete the information gathered in IFMap.
1539
computeRemovableRegisters();
1540
}
1541
1542
if (isDebug()) {
1543
dbgs() << "Candidates after collection:\n";
1544
dump_map();
1545
}
1546
1547
if (IFMap.empty())
1548
return Changed;
1549
1550
{
1551
NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
1552
pruneCandidates();
1553
}
1554
1555
if (isDebug()) {
1556
dbgs() << "Candidates after pruning:\n";
1557
dump_map();
1558
}
1559
1560
if (IFMap.empty())
1561
return Changed;
1562
1563
{
1564
NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
1565
selectCandidates();
1566
}
1567
1568
if (isDebug()) {
1569
dbgs() << "Candidates after selection:\n";
1570
dump_map();
1571
}
1572
1573
// Filter out vregs beyond the cutoff.
1574
if (VRegIndexCutoff.getPosition()) {
1575
unsigned Cutoff = VRegIndexCutoff;
1576
1577
using IterListType = SmallVector<IFMapType::iterator, 16>;
1578
1579
IterListType Out;
1580
for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1581
unsigned Idx = Register::virtReg2Index(I->first);
1582
if (Idx >= Cutoff)
1583
Out.push_back(I);
1584
}
1585
for (const auto &It : Out)
1586
IFMap.erase(It);
1587
}
1588
if (IFMap.empty())
1589
return Changed;
1590
1591
{
1592
NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
1593
TimingDetail);
1594
generateInserts();
1595
}
1596
1597
return true;
1598
}
1599
1600
FunctionPass *llvm::createHexagonGenInsert() {
1601
return new HexagonGenInsert();
1602
}
1603
1604
//===----------------------------------------------------------------------===//
1605
// Public Constructor Functions
1606
//===----------------------------------------------------------------------===//
1607
1608
INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1609
"Hexagon generate \"insert\" instructions", false, false)
1610
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
1611
INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1612
"Hexagon generate \"insert\" instructions", false, false)
1613
1614