Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/Lanai/LanaiISelLowering.cpp
35271 views
1
//===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the LanaiTargetLowering class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "LanaiISelLowering.h"
14
#include "Lanai.h"
15
#include "LanaiCondCode.h"
16
#include "LanaiMachineFunctionInfo.h"
17
#include "LanaiSubtarget.h"
18
#include "LanaiTargetObjectFile.h"
19
#include "MCTargetDesc/LanaiBaseInfo.h"
20
#include "llvm/ADT/APInt.h"
21
#include "llvm/ADT/ArrayRef.h"
22
#include "llvm/ADT/SmallVector.h"
23
#include "llvm/ADT/StringRef.h"
24
#include "llvm/ADT/StringSwitch.h"
25
#include "llvm/CodeGen/CallingConvLower.h"
26
#include "llvm/CodeGen/MachineFrameInfo.h"
27
#include "llvm/CodeGen/MachineFunction.h"
28
#include "llvm/CodeGen/MachineMemOperand.h"
29
#include "llvm/CodeGen/MachineRegisterInfo.h"
30
#include "llvm/CodeGen/RuntimeLibcallUtil.h"
31
#include "llvm/CodeGen/SelectionDAG.h"
32
#include "llvm/CodeGen/SelectionDAGNodes.h"
33
#include "llvm/CodeGen/TargetCallingConv.h"
34
#include "llvm/CodeGen/ValueTypes.h"
35
#include "llvm/CodeGenTypes/MachineValueType.h"
36
#include "llvm/IR/CallingConv.h"
37
#include "llvm/IR/DerivedTypes.h"
38
#include "llvm/IR/Function.h"
39
#include "llvm/IR/GlobalValue.h"
40
#include "llvm/Support/Casting.h"
41
#include "llvm/Support/CodeGen.h"
42
#include "llvm/Support/CommandLine.h"
43
#include "llvm/Support/Debug.h"
44
#include "llvm/Support/ErrorHandling.h"
45
#include "llvm/Support/KnownBits.h"
46
#include "llvm/Support/MathExtras.h"
47
#include "llvm/Support/raw_ostream.h"
48
#include "llvm/Target/TargetMachine.h"
49
#include <cassert>
50
#include <cmath>
51
#include <cstdint>
52
#include <cstdlib>
53
#include <utility>
54
55
#define DEBUG_TYPE "lanai-lower"
56
57
using namespace llvm;
58
59
// Limit on number of instructions the lowered multiplication may have before a
60
// call to the library function should be generated instead. The threshold is
61
// currently set to 14 as this was the smallest threshold that resulted in all
62
// constant multiplications being lowered. A threshold of 5 covered all cases
63
// except for one multiplication which required 14. mulsi3 requires 16
64
// instructions (including the prologue and epilogue but excluding instructions
65
// at call site). Until we can inline mulsi3, generating at most 14 instructions
66
// will be faster than invoking mulsi3.
67
static cl::opt<int> LanaiLowerConstantMulThreshold(
68
"lanai-constant-mul-threshold", cl::Hidden,
69
cl::desc("Maximum number of instruction to generate when lowering constant "
70
"multiplication instead of calling library function [default=14]"),
71
cl::init(14));
72
73
LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM,
74
const LanaiSubtarget &STI)
75
: TargetLowering(TM) {
76
// Set up the register classes.
77
addRegisterClass(MVT::i32, &Lanai::GPRRegClass);
78
79
// Compute derived properties from the register classes
80
TRI = STI.getRegisterInfo();
81
computeRegisterProperties(TRI);
82
83
setStackPointerRegisterToSaveRestore(Lanai::SP);
84
85
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
86
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
87
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
88
setOperationAction(ISD::SETCC, MVT::i32, Custom);
89
setOperationAction(ISD::SELECT, MVT::i32, Expand);
90
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
91
92
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
93
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
94
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
95
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
96
97
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
98
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
99
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
100
101
setOperationAction(ISD::VASTART, MVT::Other, Custom);
102
setOperationAction(ISD::VAARG, MVT::Other, Expand);
103
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
104
setOperationAction(ISD::VAEND, MVT::Other, Expand);
105
106
setOperationAction(ISD::SDIV, MVT::i32, Expand);
107
setOperationAction(ISD::UDIV, MVT::i32, Expand);
108
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
109
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
110
setOperationAction(ISD::SREM, MVT::i32, Expand);
111
setOperationAction(ISD::UREM, MVT::i32, Expand);
112
113
setOperationAction(ISD::MUL, MVT::i32, Custom);
114
setOperationAction(ISD::MULHU, MVT::i32, Expand);
115
setOperationAction(ISD::MULHS, MVT::i32, Expand);
116
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
117
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
118
119
setOperationAction(ISD::ROTR, MVT::i32, Expand);
120
setOperationAction(ISD::ROTL, MVT::i32, Expand);
121
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
122
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
123
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
124
125
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
126
setOperationAction(ISD::CTPOP, MVT::i32, Legal);
127
setOperationAction(ISD::CTLZ, MVT::i32, Legal);
128
setOperationAction(ISD::CTTZ, MVT::i32, Legal);
129
130
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
131
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
132
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
133
134
// Extended load operations for i1 types must be promoted
135
for (MVT VT : MVT::integer_valuetypes()) {
136
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
137
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
138
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
139
}
140
141
setTargetDAGCombine({ISD::ADD, ISD::SUB, ISD::AND, ISD::OR, ISD::XOR});
142
143
// Function alignments
144
setMinFunctionAlignment(Align(4));
145
setPrefFunctionAlignment(Align(4));
146
147
setJumpIsExpensive(true);
148
149
// TODO: Setting the minimum jump table entries needed before a
150
// switch is transformed to a jump table to 100 to avoid creating jump tables
151
// as this was causing bad performance compared to a large group of if
152
// statements. Re-evaluate this on new benchmarks.
153
setMinimumJumpTableEntries(100);
154
155
// Use fast calling convention for library functions.
156
for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) {
157
setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast);
158
}
159
160
MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
161
MaxStoresPerMemsetOptSize = 8;
162
MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
163
MaxStoresPerMemcpyOptSize = 8;
164
MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores
165
MaxStoresPerMemmoveOptSize = 8;
166
167
// Booleans always contain 0 or 1.
168
setBooleanContents(ZeroOrOneBooleanContent);
169
170
setMaxAtomicSizeInBitsSupported(0);
171
}
172
173
SDValue LanaiTargetLowering::LowerOperation(SDValue Op,
174
SelectionDAG &DAG) const {
175
switch (Op.getOpcode()) {
176
case ISD::MUL:
177
return LowerMUL(Op, DAG);
178
case ISD::BR_CC:
179
return LowerBR_CC(Op, DAG);
180
case ISD::ConstantPool:
181
return LowerConstantPool(Op, DAG);
182
case ISD::GlobalAddress:
183
return LowerGlobalAddress(Op, DAG);
184
case ISD::BlockAddress:
185
return LowerBlockAddress(Op, DAG);
186
case ISD::JumpTable:
187
return LowerJumpTable(Op, DAG);
188
case ISD::SELECT_CC:
189
return LowerSELECT_CC(Op, DAG);
190
case ISD::SETCC:
191
return LowerSETCC(Op, DAG);
192
case ISD::SHL_PARTS:
193
return LowerSHL_PARTS(Op, DAG);
194
case ISD::SRL_PARTS:
195
return LowerSRL_PARTS(Op, DAG);
196
case ISD::VASTART:
197
return LowerVASTART(Op, DAG);
198
case ISD::DYNAMIC_STACKALLOC:
199
return LowerDYNAMIC_STACKALLOC(Op, DAG);
200
case ISD::RETURNADDR:
201
return LowerRETURNADDR(Op, DAG);
202
case ISD::FRAMEADDR:
203
return LowerFRAMEADDR(Op, DAG);
204
default:
205
llvm_unreachable("unimplemented operand");
206
}
207
}
208
209
//===----------------------------------------------------------------------===//
210
// Lanai Inline Assembly Support
211
//===----------------------------------------------------------------------===//
212
213
Register LanaiTargetLowering::getRegisterByName(
214
const char *RegName, LLT /*VT*/,
215
const MachineFunction & /*MF*/) const {
216
// Only unallocatable registers should be matched here.
217
Register Reg = StringSwitch<unsigned>(RegName)
218
.Case("pc", Lanai::PC)
219
.Case("sp", Lanai::SP)
220
.Case("fp", Lanai::FP)
221
.Case("rr1", Lanai::RR1)
222
.Case("r10", Lanai::R10)
223
.Case("rr2", Lanai::RR2)
224
.Case("r11", Lanai::R11)
225
.Case("rca", Lanai::RCA)
226
.Default(0);
227
228
if (Reg)
229
return Reg;
230
report_fatal_error("Invalid register name global variable");
231
}
232
233
std::pair<unsigned, const TargetRegisterClass *>
234
LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
235
StringRef Constraint,
236
MVT VT) const {
237
if (Constraint.size() == 1)
238
// GCC Constraint Letters
239
switch (Constraint[0]) {
240
case 'r': // GENERAL_REGS
241
return std::make_pair(0U, &Lanai::GPRRegClass);
242
default:
243
break;
244
}
245
246
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
247
}
248
249
// Examine constraint type and operand type and determine a weight value.
250
// This object must already have been set up with the operand type
251
// and the current alternative constraint selected.
252
TargetLowering::ConstraintWeight
253
LanaiTargetLowering::getSingleConstraintMatchWeight(
254
AsmOperandInfo &Info, const char *Constraint) const {
255
ConstraintWeight Weight = CW_Invalid;
256
Value *CallOperandVal = Info.CallOperandVal;
257
// If we don't have a value, we can't do a match,
258
// but allow it at the lowest weight.
259
if (CallOperandVal == nullptr)
260
return CW_Default;
261
// Look at the constraint type.
262
switch (*Constraint) {
263
case 'I': // signed 16 bit immediate
264
case 'J': // integer zero
265
case 'K': // unsigned 16 bit immediate
266
case 'L': // immediate in the range 0 to 31
267
case 'M': // signed 32 bit immediate where lower 16 bits are 0
268
case 'N': // signed 26 bit immediate
269
case 'O': // integer zero
270
if (isa<ConstantInt>(CallOperandVal))
271
Weight = CW_Constant;
272
break;
273
default:
274
Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
275
break;
276
}
277
return Weight;
278
}
279
280
// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
281
// vector. If it is invalid, don't add anything to Ops.
282
void LanaiTargetLowering::LowerAsmOperandForConstraint(
283
SDValue Op, StringRef Constraint, std::vector<SDValue> &Ops,
284
SelectionDAG &DAG) const {
285
SDValue Result;
286
287
// Only support length 1 constraints for now.
288
if (Constraint.size() > 1)
289
return;
290
291
char ConstraintLetter = Constraint[0];
292
switch (ConstraintLetter) {
293
case 'I': // Signed 16 bit constant
294
// If this fails, the parent routine will give an error
295
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
296
if (isInt<16>(C->getSExtValue())) {
297
Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
298
Op.getValueType());
299
break;
300
}
301
}
302
return;
303
case 'J': // integer zero
304
case 'O':
305
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
306
if (C->getZExtValue() == 0) {
307
Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType());
308
break;
309
}
310
}
311
return;
312
case 'K': // unsigned 16 bit immediate
313
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
314
if (isUInt<16>(C->getZExtValue())) {
315
Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
316
Op.getValueType());
317
break;
318
}
319
}
320
return;
321
case 'L': // immediate in the range 0 to 31
322
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
323
if (C->getZExtValue() <= 31) {
324
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C),
325
Op.getValueType());
326
break;
327
}
328
}
329
return;
330
case 'M': // signed 32 bit immediate where lower 16 bits are 0
331
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
332
int64_t Val = C->getSExtValue();
333
if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) {
334
Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
335
break;
336
}
337
}
338
return;
339
case 'N': // signed 26 bit immediate
340
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
341
int64_t Val = C->getSExtValue();
342
if ((Val >= -33554432) && (Val <= 33554431)) {
343
Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
344
break;
345
}
346
}
347
return;
348
default:
349
break; // This will fall through to the generic implementation
350
}
351
352
if (Result.getNode()) {
353
Ops.push_back(Result);
354
return;
355
}
356
357
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
358
}
359
360
//===----------------------------------------------------------------------===//
361
// Calling Convention Implementation
362
//===----------------------------------------------------------------------===//
363
364
#include "LanaiGenCallingConv.inc"
365
366
static unsigned NumFixedArgs;
367
static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT,
368
CCValAssign::LocInfo LocInfo,
369
ISD::ArgFlagsTy ArgFlags, CCState &State) {
370
// Handle fixed arguments with default CC.
371
// Note: Both the default and fast CC handle VarArg the same and hence the
372
// calling convention of the function is not considered here.
373
if (ValNo < NumFixedArgs) {
374
return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
375
}
376
377
// Promote i8/i16 args to i32
378
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
379
LocVT = MVT::i32;
380
if (ArgFlags.isSExt())
381
LocInfo = CCValAssign::SExt;
382
else if (ArgFlags.isZExt())
383
LocInfo = CCValAssign::ZExt;
384
else
385
LocInfo = CCValAssign::AExt;
386
}
387
388
// VarArgs get passed on stack
389
unsigned Offset = State.AllocateStack(4, Align(4));
390
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
391
return false;
392
}
393
394
SDValue LanaiTargetLowering::LowerFormalArguments(
395
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
396
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
397
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
398
switch (CallConv) {
399
case CallingConv::C:
400
case CallingConv::Fast:
401
return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals);
402
default:
403
report_fatal_error("Unsupported calling convention");
404
}
405
}
406
407
SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
408
SmallVectorImpl<SDValue> &InVals) const {
409
SelectionDAG &DAG = CLI.DAG;
410
SDLoc &DL = CLI.DL;
411
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
412
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
413
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
414
SDValue Chain = CLI.Chain;
415
SDValue Callee = CLI.Callee;
416
bool &IsTailCall = CLI.IsTailCall;
417
CallingConv::ID CallConv = CLI.CallConv;
418
bool IsVarArg = CLI.IsVarArg;
419
420
// Lanai target does not yet support tail call optimization.
421
IsTailCall = false;
422
423
switch (CallConv) {
424
case CallingConv::Fast:
425
case CallingConv::C:
426
return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs,
427
OutVals, Ins, DL, DAG, InVals);
428
default:
429
report_fatal_error("Unsupported calling convention");
430
}
431
}
432
433
// LowerCCCArguments - transform physical registers into virtual registers and
434
// generate load operations for arguments places on the stack.
435
SDValue LanaiTargetLowering::LowerCCCArguments(
436
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
437
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
438
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
439
MachineFunction &MF = DAG.getMachineFunction();
440
MachineFrameInfo &MFI = MF.getFrameInfo();
441
MachineRegisterInfo &RegInfo = MF.getRegInfo();
442
LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
443
444
// Assign locations to all of the incoming arguments.
445
SmallVector<CCValAssign, 16> ArgLocs;
446
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
447
*DAG.getContext());
448
if (CallConv == CallingConv::Fast) {
449
CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast);
450
} else {
451
CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32);
452
}
453
454
for (const CCValAssign &VA : ArgLocs) {
455
if (VA.isRegLoc()) {
456
// Arguments passed in registers
457
EVT RegVT = VA.getLocVT();
458
switch (RegVT.getSimpleVT().SimpleTy) {
459
case MVT::i32: {
460
Register VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass);
461
RegInfo.addLiveIn(VA.getLocReg(), VReg);
462
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
463
464
// If this is an 8/16-bit value, it is really passed promoted to 32
465
// bits. Insert an assert[sz]ext to capture this, then truncate to the
466
// right size.
467
if (VA.getLocInfo() == CCValAssign::SExt)
468
ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
469
DAG.getValueType(VA.getValVT()));
470
else if (VA.getLocInfo() == CCValAssign::ZExt)
471
ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
472
DAG.getValueType(VA.getValVT()));
473
474
if (VA.getLocInfo() != CCValAssign::Full)
475
ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
476
477
InVals.push_back(ArgValue);
478
break;
479
}
480
default:
481
LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: "
482
<< RegVT << "\n");
483
llvm_unreachable("unhandled argument type");
484
}
485
} else {
486
// Only arguments passed on the stack should make it here.
487
assert(VA.isMemLoc());
488
// Load the argument to a virtual register
489
unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
490
// Check that the argument fits in stack slot
491
if (ObjSize > 4) {
492
errs() << "LowerFormalArguments Unhandled argument type: "
493
<< VA.getLocVT() << "\n";
494
}
495
// Create the frame index object for this incoming parameter...
496
int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
497
498
// Create the SelectionDAG nodes corresponding to a load
499
// from this parameter
500
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
501
InVals.push_back(DAG.getLoad(
502
VA.getLocVT(), DL, Chain, FIN,
503
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
504
}
505
}
506
507
// The Lanai ABI for returning structs by value requires that we copy
508
// the sret argument into rv for the return. Save the argument into
509
// a virtual register so that we can access it from the return points.
510
if (MF.getFunction().hasStructRetAttr()) {
511
Register Reg = LanaiMFI->getSRetReturnReg();
512
if (!Reg) {
513
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
514
LanaiMFI->setSRetReturnReg(Reg);
515
}
516
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
517
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
518
}
519
520
if (IsVarArg) {
521
// Record the frame index of the first variable argument
522
// which is a value necessary to VASTART.
523
int FI = MFI.CreateFixedObject(4, CCInfo.getStackSize(), true);
524
LanaiMFI->setVarArgsFrameIndex(FI);
525
}
526
527
return Chain;
528
}
529
530
bool LanaiTargetLowering::CanLowerReturn(
531
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
532
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
533
SmallVector<CCValAssign, 16> RVLocs;
534
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
535
536
return CCInfo.CheckReturn(Outs, RetCC_Lanai32);
537
}
538
539
SDValue
540
LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
541
bool IsVarArg,
542
const SmallVectorImpl<ISD::OutputArg> &Outs,
543
const SmallVectorImpl<SDValue> &OutVals,
544
const SDLoc &DL, SelectionDAG &DAG) const {
545
// CCValAssign - represent the assignment of the return value to a location
546
SmallVector<CCValAssign, 16> RVLocs;
547
548
// CCState - Info about the registers and stack slot.
549
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
550
*DAG.getContext());
551
552
// Analize return values.
553
CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32);
554
555
SDValue Glue;
556
SmallVector<SDValue, 4> RetOps(1, Chain);
557
558
// Copy the result values into the output registers.
559
for (unsigned i = 0; i != RVLocs.size(); ++i) {
560
CCValAssign &VA = RVLocs[i];
561
assert(VA.isRegLoc() && "Can only return in registers!");
562
563
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Glue);
564
565
// Guarantee that all emitted copies are stuck together with flags.
566
Glue = Chain.getValue(1);
567
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
568
}
569
570
// The Lanai ABI for returning structs by value requires that we copy
571
// the sret argument into rv for the return. We saved the argument into
572
// a virtual register in the entry block, so now we copy the value out
573
// and into rv.
574
if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) {
575
MachineFunction &MF = DAG.getMachineFunction();
576
LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
577
Register Reg = LanaiMFI->getSRetReturnReg();
578
assert(Reg &&
579
"SRetReturnReg should have been set in LowerFormalArguments().");
580
SDValue Val =
581
DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
582
583
Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Glue);
584
Glue = Chain.getValue(1);
585
RetOps.push_back(
586
DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout())));
587
}
588
589
RetOps[0] = Chain; // Update chain
590
591
unsigned Opc = LanaiISD::RET_GLUE;
592
if (Glue.getNode())
593
RetOps.push_back(Glue);
594
595
// Return Void
596
return DAG.getNode(Opc, DL, MVT::Other,
597
ArrayRef<SDValue>(&RetOps[0], RetOps.size()));
598
}
599
600
// LowerCCCCallTo - functions arguments are copied from virtual regs to
601
// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
602
SDValue LanaiTargetLowering::LowerCCCCallTo(
603
SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg,
604
bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs,
605
const SmallVectorImpl<SDValue> &OutVals,
606
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
607
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
608
// Analyze operands of the call, assigning locations to each operand.
609
SmallVector<CCValAssign, 16> ArgLocs;
610
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
611
*DAG.getContext());
612
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
613
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
614
615
NumFixedArgs = 0;
616
if (IsVarArg && G) {
617
const Function *CalleeFn = dyn_cast<Function>(G->getGlobal());
618
if (CalleeFn)
619
NumFixedArgs = CalleeFn->getFunctionType()->getNumParams();
620
}
621
if (NumFixedArgs)
622
CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg);
623
else {
624
if (CallConv == CallingConv::Fast)
625
CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast);
626
else
627
CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32);
628
}
629
630
// Get a count of how many bytes are to be pushed on the stack.
631
unsigned NumBytes = CCInfo.getStackSize();
632
633
// Create local copies for byval args.
634
SmallVector<SDValue, 8> ByValArgs;
635
for (unsigned I = 0, E = Outs.size(); I != E; ++I) {
636
ISD::ArgFlagsTy Flags = Outs[I].Flags;
637
if (!Flags.isByVal())
638
continue;
639
640
SDValue Arg = OutVals[I];
641
unsigned Size = Flags.getByValSize();
642
Align Alignment = Flags.getNonZeroByValAlign();
643
644
int FI = MFI.CreateStackObject(Size, Alignment, false);
645
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
646
SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32);
647
648
Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
649
/*IsVolatile=*/false,
650
/*AlwaysInline=*/false,
651
/*CI=*/nullptr, std::nullopt, MachinePointerInfo(),
652
MachinePointerInfo());
653
ByValArgs.push_back(FIPtr);
654
}
655
656
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
657
658
SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
659
SmallVector<SDValue, 12> MemOpChains;
660
SDValue StackPtr;
661
662
// Walk the register/memloc assignments, inserting copies/loads.
663
for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) {
664
CCValAssign &VA = ArgLocs[I];
665
SDValue Arg = OutVals[I];
666
ISD::ArgFlagsTy Flags = Outs[I].Flags;
667
668
// Promote the value if needed.
669
switch (VA.getLocInfo()) {
670
case CCValAssign::Full:
671
break;
672
case CCValAssign::SExt:
673
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
674
break;
675
case CCValAssign::ZExt:
676
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
677
break;
678
case CCValAssign::AExt:
679
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
680
break;
681
default:
682
llvm_unreachable("Unknown loc info!");
683
}
684
685
// Use local copy if it is a byval arg.
686
if (Flags.isByVal())
687
Arg = ByValArgs[J++];
688
689
// Arguments that can be passed on register must be kept at RegsToPass
690
// vector
691
if (VA.isRegLoc()) {
692
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
693
} else {
694
assert(VA.isMemLoc());
695
696
if (StackPtr.getNode() == nullptr)
697
StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP,
698
getPointerTy(DAG.getDataLayout()));
699
700
SDValue PtrOff =
701
DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
702
DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
703
704
MemOpChains.push_back(
705
DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
706
}
707
}
708
709
// Transform all store nodes into one single node because all store nodes are
710
// independent of each other.
711
if (!MemOpChains.empty())
712
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
713
ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size()));
714
715
SDValue InGlue;
716
717
// Build a sequence of copy-to-reg nodes chained together with token chain and
718
// flag operands which copy the outgoing args into registers. The InGlue in
719
// necessary since all emitted instructions must be stuck together.
720
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
721
Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
722
RegsToPass[I].second, InGlue);
723
InGlue = Chain.getValue(1);
724
}
725
726
// If the callee is a GlobalAddress node (quite common, every direct call is)
727
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
728
// Likewise ExternalSymbol -> TargetExternalSymbol.
729
uint8_t OpFlag = LanaiII::MO_NO_FLAG;
730
if (G) {
731
Callee = DAG.getTargetGlobalAddress(
732
G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag);
733
} else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
734
Callee = DAG.getTargetExternalSymbol(
735
E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag);
736
}
737
738
// Returns a chain & a flag for retval copy to use.
739
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
740
SmallVector<SDValue, 8> Ops;
741
Ops.push_back(Chain);
742
Ops.push_back(Callee);
743
744
// Add a register mask operand representing the call-preserved registers.
745
// TODO: Should return-twice functions be handled?
746
const uint32_t *Mask =
747
TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
748
assert(Mask && "Missing call preserved mask for calling convention");
749
Ops.push_back(DAG.getRegisterMask(Mask));
750
751
// Add argument registers to the end of the list so that they are
752
// known live into the call.
753
for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
754
Ops.push_back(DAG.getRegister(RegsToPass[I].first,
755
RegsToPass[I].second.getValueType()));
756
757
if (InGlue.getNode())
758
Ops.push_back(InGlue);
759
760
Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys,
761
ArrayRef<SDValue>(&Ops[0], Ops.size()));
762
InGlue = Chain.getValue(1);
763
764
// Create the CALLSEQ_END node.
765
Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL);
766
InGlue = Chain.getValue(1);
767
768
// Handle result values, copying them out of physregs into vregs that we
769
// return.
770
return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
771
InVals);
772
}
773
774
// LowerCallResult - Lower the result values of a call into the
775
// appropriate copies out of appropriate physical registers.
776
SDValue LanaiTargetLowering::LowerCallResult(
777
SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
778
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
779
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
780
// Assign locations to each value returned by this call.
781
SmallVector<CCValAssign, 16> RVLocs;
782
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
783
*DAG.getContext());
784
785
CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32);
786
787
// Copy all of the result registers out of their specified physreg.
788
for (unsigned I = 0; I != RVLocs.size(); ++I) {
789
Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(),
790
RVLocs[I].getValVT(), InGlue)
791
.getValue(1);
792
InGlue = Chain.getValue(2);
793
InVals.push_back(Chain.getValue(0));
794
}
795
796
return Chain;
797
}
798
799
//===----------------------------------------------------------------------===//
800
// Custom Lowerings
801
//===----------------------------------------------------------------------===//
802
803
static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL,
804
SDValue &RHS, SelectionDAG &DAG) {
805
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
806
807
// For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT,
808
// SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h)
809
// and Lanai only supports integer comparisons, so only provide definitions
810
// for them.
811
switch (SetCCOpcode) {
812
case ISD::SETEQ:
813
return LPCC::ICC_EQ;
814
case ISD::SETGT:
815
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
816
if (RHSC->getZExtValue() == 0xFFFFFFFF) {
817
// X > -1 -> X >= 0 -> is_plus(X)
818
RHS = DAG.getConstant(0, DL, RHS.getValueType());
819
return LPCC::ICC_PL;
820
}
821
return LPCC::ICC_GT;
822
case ISD::SETUGT:
823
return LPCC::ICC_UGT;
824
case ISD::SETLT:
825
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
826
if (RHSC->getZExtValue() == 0)
827
// X < 0 -> is_minus(X)
828
return LPCC::ICC_MI;
829
return LPCC::ICC_LT;
830
case ISD::SETULT:
831
return LPCC::ICC_ULT;
832
case ISD::SETLE:
833
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
834
if (RHSC->getZExtValue() == 0xFFFFFFFF) {
835
// X <= -1 -> X < 0 -> is_minus(X)
836
RHS = DAG.getConstant(0, DL, RHS.getValueType());
837
return LPCC::ICC_MI;
838
}
839
return LPCC::ICC_LE;
840
case ISD::SETULE:
841
return LPCC::ICC_ULE;
842
case ISD::SETGE:
843
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
844
if (RHSC->getZExtValue() == 0)
845
// X >= 0 -> is_plus(X)
846
return LPCC::ICC_PL;
847
return LPCC::ICC_GE;
848
case ISD::SETUGE:
849
return LPCC::ICC_UGE;
850
case ISD::SETNE:
851
return LPCC::ICC_NE;
852
case ISD::SETONE:
853
case ISD::SETUNE:
854
case ISD::SETOGE:
855
case ISD::SETOLE:
856
case ISD::SETOLT:
857
case ISD::SETOGT:
858
case ISD::SETOEQ:
859
case ISD::SETUEQ:
860
case ISD::SETO:
861
case ISD::SETUO:
862
llvm_unreachable("Unsupported comparison.");
863
default:
864
llvm_unreachable("Unknown integer condition code!");
865
}
866
}
867
868
SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
869
SDValue Chain = Op.getOperand(0);
870
SDValue Cond = Op.getOperand(1);
871
SDValue LHS = Op.getOperand(2);
872
SDValue RHS = Op.getOperand(3);
873
SDValue Dest = Op.getOperand(4);
874
SDLoc DL(Op);
875
876
LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
877
SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
878
SDValue Glue =
879
DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
880
881
return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest,
882
TargetCC, Glue);
883
}
884
885
SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
886
EVT VT = Op->getValueType(0);
887
if (VT != MVT::i32)
888
return SDValue();
889
890
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
891
if (!C)
892
return SDValue();
893
894
int64_t MulAmt = C->getSExtValue();
895
int32_t HighestOne = -1;
896
uint32_t NonzeroEntries = 0;
897
int SignedDigit[32] = {0};
898
899
// Convert to non-adjacent form (NAF) signed-digit representation.
900
// NAF is a signed-digit form where no adjacent digits are non-zero. It is the
901
// minimal Hamming weight representation of a number (on average 1/3 of the
902
// digits will be non-zero vs 1/2 for regular binary representation). And as
903
// the non-zero digits will be the only digits contributing to the instruction
904
// count, this is desirable. The next loop converts it to NAF (following the
905
// approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by
906
// choosing the non-zero coefficients such that the resulting quotient is
907
// divisible by 2 which will cause the next coefficient to be zero.
908
int64_t E = std::abs(MulAmt);
909
int S = (MulAmt < 0 ? -1 : 1);
910
int I = 0;
911
while (E > 0) {
912
int ZI = 0;
913
if (E % 2 == 1) {
914
ZI = 2 - (E % 4);
915
if (ZI != 0)
916
++NonzeroEntries;
917
}
918
SignedDigit[I] = S * ZI;
919
if (SignedDigit[I] == 1)
920
HighestOne = I;
921
E = (E - ZI) / 2;
922
++I;
923
}
924
925
// Compute number of instructions required. Due to differences in lowering
926
// between the different processors this count is not exact.
927
// Start by assuming a shift and a add/sub for every non-zero entry (hence
928
// every non-zero entry requires 1 shift and 1 add/sub except for the first
929
// entry).
930
int32_t InstrRequired = 2 * NonzeroEntries - 1;
931
// Correct possible over-adding due to shift by 0 (which is not emitted).
932
if (std::abs(MulAmt) % 2 == 1)
933
--InstrRequired;
934
// Return if the form generated would exceed the instruction threshold.
935
if (InstrRequired > LanaiLowerConstantMulThreshold)
936
return SDValue();
937
938
SDValue Res;
939
SDLoc DL(Op);
940
SDValue V = Op->getOperand(0);
941
942
// Initialize the running sum. Set the running sum to the maximal shifted
943
// positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a
944
// term NAF).
945
if (HighestOne == -1)
946
Res = DAG.getConstant(0, DL, MVT::i32);
947
else {
948
Res = DAG.getNode(ISD::SHL, DL, VT, V,
949
DAG.getConstant(HighestOne, DL, MVT::i32));
950
SignedDigit[HighestOne] = 0;
951
}
952
953
// Assemble multiplication from shift, add, sub using NAF form and running
954
// sum.
955
for (unsigned int I = 0; I < std::size(SignedDigit); ++I) {
956
if (SignedDigit[I] == 0)
957
continue;
958
959
// Shifted multiplicand (v<<i).
960
SDValue Op =
961
DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32));
962
if (SignedDigit[I] == 1)
963
Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op);
964
else if (SignedDigit[I] == -1)
965
Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op);
966
}
967
return Res;
968
}
969
970
SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
971
SDValue LHS = Op.getOperand(0);
972
SDValue RHS = Op.getOperand(1);
973
SDValue Cond = Op.getOperand(2);
974
SDLoc DL(Op);
975
976
LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
977
SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
978
SDValue Glue =
979
DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
980
981
return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Glue);
982
}
983
984
SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op,
985
SelectionDAG &DAG) const {
986
SDValue LHS = Op.getOperand(0);
987
SDValue RHS = Op.getOperand(1);
988
SDValue TrueV = Op.getOperand(2);
989
SDValue FalseV = Op.getOperand(3);
990
SDValue Cond = Op.getOperand(4);
991
SDLoc DL(Op);
992
993
LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
994
SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
995
SDValue Glue =
996
DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
997
998
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
999
return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC,
1000
Glue);
1001
}
1002
1003
SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1004
MachineFunction &MF = DAG.getMachineFunction();
1005
LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>();
1006
1007
SDLoc DL(Op);
1008
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1009
getPointerTy(DAG.getDataLayout()));
1010
1011
// vastart just stores the address of the VarArgsFrameIndex slot into the
1012
// memory location argument.
1013
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1014
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1015
MachinePointerInfo(SV));
1016
}
1017
1018
SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1019
SelectionDAG &DAG) const {
1020
SDValue Chain = Op.getOperand(0);
1021
SDValue Size = Op.getOperand(1);
1022
SDLoc DL(Op);
1023
1024
Register SPReg = getStackPointerRegisterToSaveRestore();
1025
1026
// Get a reference to the stack pointer.
1027
SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
1028
1029
// Subtract the dynamic size from the actual stack size to
1030
// obtain the new stack size.
1031
SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size);
1032
1033
// For Lanai, the outgoing memory arguments area should be on top of the
1034
// alloca area on the stack i.e., the outgoing memory arguments should be
1035
// at a lower address than the alloca area. Move the alloca area down the
1036
// stack by adding back the space reserved for outgoing arguments to SP
1037
// here.
1038
//
1039
// We do not know what the size of the outgoing args is at this point.
1040
// So, we add a pseudo instruction ADJDYNALLOC that will adjust the
1041
// stack pointer. We replace this instruction with on that has the correct,
1042
// known offset in emitPrologue().
1043
SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub);
1044
1045
// The Sub result contains the new stack start address, so it
1046
// must be placed in the stack pointer register.
1047
SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub);
1048
1049
SDValue Ops[2] = {ArgAdjust, CopyChain};
1050
return DAG.getMergeValues(Ops, DL);
1051
}
1052
1053
SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op,
1054
SelectionDAG &DAG) const {
1055
MachineFunction &MF = DAG.getMachineFunction();
1056
MachineFrameInfo &MFI = MF.getFrameInfo();
1057
MFI.setReturnAddressIsTaken(true);
1058
1059
EVT VT = Op.getValueType();
1060
SDLoc DL(Op);
1061
unsigned Depth = Op.getConstantOperandVal(0);
1062
if (Depth) {
1063
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1064
const unsigned Offset = -4;
1065
SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1066
DAG.getIntPtrConstant(Offset, DL));
1067
return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1068
}
1069
1070
// Return the link register, which contains the return address.
1071
// Mark it an implicit live-in.
1072
Register Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
1073
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
1074
}
1075
1076
SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op,
1077
SelectionDAG &DAG) const {
1078
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1079
MFI.setFrameAddressIsTaken(true);
1080
1081
EVT VT = Op.getValueType();
1082
SDLoc DL(Op);
1083
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT);
1084
unsigned Depth = Op.getConstantOperandVal(0);
1085
while (Depth--) {
1086
const unsigned Offset = -8;
1087
SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1088
DAG.getIntPtrConstant(Offset, DL));
1089
FrameAddr =
1090
DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1091
}
1092
return FrameAddr;
1093
}
1094
1095
const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const {
1096
switch (Opcode) {
1097
case LanaiISD::ADJDYNALLOC:
1098
return "LanaiISD::ADJDYNALLOC";
1099
case LanaiISD::RET_GLUE:
1100
return "LanaiISD::RET_GLUE";
1101
case LanaiISD::CALL:
1102
return "LanaiISD::CALL";
1103
case LanaiISD::SELECT_CC:
1104
return "LanaiISD::SELECT_CC";
1105
case LanaiISD::SETCC:
1106
return "LanaiISD::SETCC";
1107
case LanaiISD::SUBBF:
1108
return "LanaiISD::SUBBF";
1109
case LanaiISD::SET_FLAG:
1110
return "LanaiISD::SET_FLAG";
1111
case LanaiISD::BR_CC:
1112
return "LanaiISD::BR_CC";
1113
case LanaiISD::Wrapper:
1114
return "LanaiISD::Wrapper";
1115
case LanaiISD::HI:
1116
return "LanaiISD::HI";
1117
case LanaiISD::LO:
1118
return "LanaiISD::LO";
1119
case LanaiISD::SMALL:
1120
return "LanaiISD::SMALL";
1121
default:
1122
return nullptr;
1123
}
1124
}
1125
1126
SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op,
1127
SelectionDAG &DAG) const {
1128
SDLoc DL(Op);
1129
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1130
const Constant *C = N->getConstVal();
1131
const LanaiTargetObjectFile *TLOF =
1132
static_cast<const LanaiTargetObjectFile *>(
1133
getTargetMachine().getObjFileLowering());
1134
1135
// If the code model is small or constant will be placed in the small section,
1136
// then assume address will fit in 21-bits.
1137
if (getTargetMachine().getCodeModel() == CodeModel::Small ||
1138
TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) {
1139
SDValue Small = DAG.getTargetConstantPool(
1140
C, MVT::i32, N->getAlign(), N->getOffset(), LanaiII::MO_NO_FLAG);
1141
return DAG.getNode(ISD::OR, DL, MVT::i32,
1142
DAG.getRegister(Lanai::R0, MVT::i32),
1143
DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1144
} else {
1145
uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1146
uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1147
1148
SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(),
1149
N->getOffset(), OpFlagHi);
1150
SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlign(),
1151
N->getOffset(), OpFlagLo);
1152
Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1153
Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1154
SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1155
return Result;
1156
}
1157
}
1158
1159
SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op,
1160
SelectionDAG &DAG) const {
1161
SDLoc DL(Op);
1162
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1163
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1164
1165
const LanaiTargetObjectFile *TLOF =
1166
static_cast<const LanaiTargetObjectFile *>(
1167
getTargetMachine().getObjFileLowering());
1168
1169
// If the code model is small or global variable will be placed in the small
1170
// section, then assume address will fit in 21-bits.
1171
const GlobalObject *GO = GV->getAliaseeObject();
1172
if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) {
1173
SDValue Small = DAG.getTargetGlobalAddress(
1174
GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG);
1175
return DAG.getNode(ISD::OR, DL, MVT::i32,
1176
DAG.getRegister(Lanai::R0, MVT::i32),
1177
DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1178
} else {
1179
uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1180
uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1181
1182
// Create the TargetGlobalAddress node, folding in the constant offset.
1183
SDValue Hi = DAG.getTargetGlobalAddress(
1184
GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi);
1185
SDValue Lo = DAG.getTargetGlobalAddress(
1186
GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo);
1187
Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1188
Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1189
return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1190
}
1191
}
1192
1193
SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op,
1194
SelectionDAG &DAG) const {
1195
SDLoc DL(Op);
1196
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1197
1198
uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1199
uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1200
1201
SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi);
1202
SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo);
1203
Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1204
Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1205
SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1206
return Result;
1207
}
1208
1209
SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op,
1210
SelectionDAG &DAG) const {
1211
SDLoc DL(Op);
1212
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1213
1214
// If the code model is small assume address will fit in 21-bits.
1215
if (getTargetMachine().getCodeModel() == CodeModel::Small) {
1216
SDValue Small = DAG.getTargetJumpTable(
1217
JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG);
1218
return DAG.getNode(ISD::OR, DL, MVT::i32,
1219
DAG.getRegister(Lanai::R0, MVT::i32),
1220
DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1221
} else {
1222
uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1223
uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1224
1225
SDValue Hi = DAG.getTargetJumpTable(
1226
JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi);
1227
SDValue Lo = DAG.getTargetJumpTable(
1228
JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo);
1229
Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1230
Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1231
SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1232
return Result;
1233
}
1234
}
1235
1236
SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op,
1237
SelectionDAG &DAG) const {
1238
EVT VT = Op.getValueType();
1239
unsigned VTBits = VT.getSizeInBits();
1240
SDLoc dl(Op);
1241
assert(Op.getNumOperands() == 3 && "Unexpected SHL!");
1242
SDValue ShOpLo = Op.getOperand(0);
1243
SDValue ShOpHi = Op.getOperand(1);
1244
SDValue ShAmt = Op.getOperand(2);
1245
1246
// Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt:
1247
// LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt))
1248
// HiBitsForHi = ShOpHi << ShAmt
1249
// Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi)
1250
// Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt)
1251
// return (Hi << 32) | Lo;
1252
1253
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1254
DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1255
SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
1256
1257
// If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We
1258
// wanted 0, so CSEL it directly.
1259
SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1260
SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1261
LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi);
1262
1263
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1264
DAG.getConstant(VTBits, dl, MVT::i32));
1265
SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
1266
SDValue HiForNormalShift =
1267
DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
1268
1269
SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
1270
1271
SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE);
1272
SDValue Hi =
1273
DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift);
1274
1275
// Lanai shifts of larger than register sizes are wrapped rather than
1276
// clamped, so we can't just emit "lo << b" if b is too big.
1277
SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1278
SDValue Lo = DAG.getSelect(
1279
dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift);
1280
1281
SDValue Ops[2] = {Lo, Hi};
1282
return DAG.getMergeValues(Ops, dl);
1283
}
1284
1285
SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op,
1286
SelectionDAG &DAG) const {
1287
MVT VT = Op.getSimpleValueType();
1288
unsigned VTBits = VT.getSizeInBits();
1289
SDLoc dl(Op);
1290
SDValue ShOpLo = Op.getOperand(0);
1291
SDValue ShOpHi = Op.getOperand(1);
1292
SDValue ShAmt = Op.getOperand(2);
1293
1294
// Performs the following for a >> b:
1295
// unsigned r_high = a_high >> b;
1296
// r_high = (32 - b <= 0) ? 0 : r_high;
1297
//
1298
// unsigned r_low = a_low >> b;
1299
// r_low = (32 - b <= 0) ? r_high : r_low;
1300
// r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b));
1301
// return (unsigned long long)r_high << 32 | r_low;
1302
// Note: This takes advantage of Lanai's shift behavior to avoid needing to
1303
// mask the shift amount.
1304
1305
SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1306
SDValue NegatedPlus32 = DAG.getNode(
1307
ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1308
SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE);
1309
1310
SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt);
1311
Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi);
1312
1313
SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt);
1314
Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo);
1315
SDValue CarryBits =
1316
DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32);
1317
SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1318
Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo,
1319
DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits));
1320
1321
SDValue Ops[2] = {Lo, Hi};
1322
return DAG.getMergeValues(Ops, dl);
1323
}
1324
1325
// Helper function that checks if N is a null or all ones constant.
1326
static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
1327
return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
1328
}
1329
1330
// Return true if N is conditionally 0 or all ones.
1331
// Detects these expressions where cc is an i1 value:
1332
//
1333
// (select cc 0, y) [AllOnes=0]
1334
// (select cc y, 0) [AllOnes=0]
1335
// (zext cc) [AllOnes=0]
1336
// (sext cc) [AllOnes=0/1]
1337
// (select cc -1, y) [AllOnes=1]
1338
// (select cc y, -1) [AllOnes=1]
1339
//
1340
// * AllOnes determines whether to check for an all zero (AllOnes false) or an
1341
// all ones operand (AllOnes true).
1342
// * Invert is set when N is the all zero/ones constant when CC is false.
1343
// * OtherOp is set to the alternative value of N.
1344
//
1345
// For example, for (select cc X, Y) and AllOnes = 0 if:
1346
// * X = 0, Invert = False and OtherOp = Y
1347
// * Y = 0, Invert = True and OtherOp = X
1348
static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC,
1349
bool &Invert, SDValue &OtherOp,
1350
SelectionDAG &DAG) {
1351
switch (N->getOpcode()) {
1352
default:
1353
return false;
1354
case ISD::SELECT: {
1355
CC = N->getOperand(0);
1356
SDValue N1 = N->getOperand(1);
1357
SDValue N2 = N->getOperand(2);
1358
if (isZeroOrAllOnes(N1, AllOnes)) {
1359
Invert = false;
1360
OtherOp = N2;
1361
return true;
1362
}
1363
if (isZeroOrAllOnes(N2, AllOnes)) {
1364
Invert = true;
1365
OtherOp = N1;
1366
return true;
1367
}
1368
return false;
1369
}
1370
case ISD::ZERO_EXTEND: {
1371
// (zext cc) can never be the all ones value.
1372
if (AllOnes)
1373
return false;
1374
CC = N->getOperand(0);
1375
if (CC.getValueType() != MVT::i1)
1376
return false;
1377
SDLoc dl(N);
1378
EVT VT = N->getValueType(0);
1379
OtherOp = DAG.getConstant(1, dl, VT);
1380
Invert = true;
1381
return true;
1382
}
1383
case ISD::SIGN_EXTEND: {
1384
CC = N->getOperand(0);
1385
if (CC.getValueType() != MVT::i1)
1386
return false;
1387
SDLoc dl(N);
1388
EVT VT = N->getValueType(0);
1389
Invert = !AllOnes;
1390
if (AllOnes)
1391
// When looking for an AllOnes constant, N is an sext, and the 'other'
1392
// value is 0.
1393
OtherOp = DAG.getConstant(0, dl, VT);
1394
else
1395
OtherOp = DAG.getAllOnesConstant(dl, VT);
1396
return true;
1397
}
1398
}
1399
}
1400
1401
// Combine a constant select operand into its use:
1402
//
1403
// (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
1404
// (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1405
// (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
1406
// (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
1407
// (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
1408
//
1409
// The transform is rejected if the select doesn't have a constant operand that
1410
// is null, or all ones when AllOnes is set.
1411
//
1412
// Also recognize sext/zext from i1:
1413
//
1414
// (add (zext cc), x) -> (select cc (add x, 1), x)
1415
// (add (sext cc), x) -> (select cc (add x, -1), x)
1416
//
1417
// These transformations eventually create predicated instructions.
1418
static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
1419
TargetLowering::DAGCombinerInfo &DCI,
1420
bool AllOnes) {
1421
SelectionDAG &DAG = DCI.DAG;
1422
EVT VT = N->getValueType(0);
1423
SDValue NonConstantVal;
1424
SDValue CCOp;
1425
bool SwapSelectOps;
1426
if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
1427
NonConstantVal, DAG))
1428
return SDValue();
1429
1430
// Slct is now know to be the desired identity constant when CC is true.
1431
SDValue TrueVal = OtherOp;
1432
SDValue FalseVal =
1433
DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
1434
// Unless SwapSelectOps says CC should be false.
1435
if (SwapSelectOps)
1436
std::swap(TrueVal, FalseVal);
1437
1438
return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal);
1439
}
1440
1441
// Attempt combineSelectAndUse on each operand of a commutative operator N.
1442
static SDValue
1443
combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
1444
bool AllOnes) {
1445
SDValue N0 = N->getOperand(0);
1446
SDValue N1 = N->getOperand(1);
1447
if (N0.getNode()->hasOneUse())
1448
if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
1449
return Result;
1450
if (N1.getNode()->hasOneUse())
1451
if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
1452
return Result;
1453
return SDValue();
1454
}
1455
1456
// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
1457
static SDValue PerformSUBCombine(SDNode *N,
1458
TargetLowering::DAGCombinerInfo &DCI) {
1459
SDValue N0 = N->getOperand(0);
1460
SDValue N1 = N->getOperand(1);
1461
1462
// fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1463
if (N1.getNode()->hasOneUse())
1464
if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false))
1465
return Result;
1466
1467
return SDValue();
1468
}
1469
1470
SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N,
1471
DAGCombinerInfo &DCI) const {
1472
switch (N->getOpcode()) {
1473
default:
1474
break;
1475
case ISD::ADD:
1476
case ISD::OR:
1477
case ISD::XOR:
1478
return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false);
1479
case ISD::AND:
1480
return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true);
1481
case ISD::SUB:
1482
return PerformSUBCombine(N, DCI);
1483
}
1484
1485
return SDValue();
1486
}
1487
1488
void LanaiTargetLowering::computeKnownBitsForTargetNode(
1489
const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
1490
const SelectionDAG &DAG, unsigned Depth) const {
1491
unsigned BitWidth = Known.getBitWidth();
1492
switch (Op.getOpcode()) {
1493
default:
1494
break;
1495
case LanaiISD::SETCC:
1496
Known = KnownBits(BitWidth);
1497
Known.Zero.setBits(1, BitWidth);
1498
break;
1499
case LanaiISD::SELECT_CC:
1500
KnownBits Known2;
1501
Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1502
Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1503
Known = Known.intersectWith(Known2);
1504
break;
1505
}
1506
}
1507
1508