Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/LoongArch/MCTargetDesc/LoongArchAsmBackend.cpp
35294 views
1
//===-- LoongArchAsmBackend.cpp - LoongArch Assembler Backend -*- C++ -*---===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the LoongArchAsmBackend class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "LoongArchAsmBackend.h"
14
#include "LoongArchFixupKinds.h"
15
#include "llvm/MC/MCAsmInfo.h"
16
#include "llvm/MC/MCAssembler.h"
17
#include "llvm/MC/MCContext.h"
18
#include "llvm/MC/MCELFObjectWriter.h"
19
#include "llvm/MC/MCExpr.h"
20
#include "llvm/MC/MCSection.h"
21
#include "llvm/MC/MCValue.h"
22
#include "llvm/Support/EndianStream.h"
23
#include "llvm/Support/LEB128.h"
24
#include "llvm/Support/MathExtras.h"
25
26
#define DEBUG_TYPE "loongarch-asmbackend"
27
28
using namespace llvm;
29
30
std::optional<MCFixupKind>
31
LoongArchAsmBackend::getFixupKind(StringRef Name) const {
32
if (STI.getTargetTriple().isOSBinFormatELF()) {
33
auto Type = llvm::StringSwitch<unsigned>(Name)
34
#define ELF_RELOC(X, Y) .Case(#X, Y)
35
#include "llvm/BinaryFormat/ELFRelocs/LoongArch.def"
36
#undef ELF_RELOC
37
.Case("BFD_RELOC_NONE", ELF::R_LARCH_NONE)
38
.Case("BFD_RELOC_32", ELF::R_LARCH_32)
39
.Case("BFD_RELOC_64", ELF::R_LARCH_64)
40
.Default(-1u);
41
if (Type != -1u)
42
return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
43
}
44
return std::nullopt;
45
}
46
47
const MCFixupKindInfo &
48
LoongArchAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
49
const static MCFixupKindInfo Infos[] = {
50
// This table *must* be in the order that the fixup_* kinds are defined in
51
// LoongArchFixupKinds.h.
52
//
53
// {name, offset, bits, flags}
54
{"fixup_loongarch_b16", 10, 16, MCFixupKindInfo::FKF_IsPCRel},
55
{"fixup_loongarch_b21", 0, 26, MCFixupKindInfo::FKF_IsPCRel},
56
{"fixup_loongarch_b26", 0, 26, MCFixupKindInfo::FKF_IsPCRel},
57
{"fixup_loongarch_abs_hi20", 5, 20, 0},
58
{"fixup_loongarch_abs_lo12", 10, 12, 0},
59
{"fixup_loongarch_abs64_lo20", 5, 20, 0},
60
{"fixup_loongarch_abs64_hi12", 10, 12, 0},
61
{"fixup_loongarch_tls_le_hi20", 5, 20, 0},
62
{"fixup_loongarch_tls_le_lo12", 10, 12, 0},
63
{"fixup_loongarch_tls_le64_lo20", 5, 20, 0},
64
{"fixup_loongarch_tls_le64_hi12", 10, 12, 0},
65
// TODO: Add more fixup kinds.
66
};
67
68
static_assert((std::size(Infos)) == LoongArch::NumTargetFixupKinds,
69
"Not all fixup kinds added to Infos array");
70
71
// Fixup kinds from .reloc directive are like R_LARCH_NONE. They
72
// do not require any extra processing.
73
if (Kind >= FirstLiteralRelocationKind)
74
return MCAsmBackend::getFixupKindInfo(FK_NONE);
75
76
if (Kind < FirstTargetFixupKind)
77
return MCAsmBackend::getFixupKindInfo(Kind);
78
79
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
80
"Invalid kind!");
81
return Infos[Kind - FirstTargetFixupKind];
82
}
83
84
static void reportOutOfRangeError(MCContext &Ctx, SMLoc Loc, unsigned N) {
85
Ctx.reportError(Loc, "fixup value out of range [" + Twine(llvm::minIntN(N)) +
86
", " + Twine(llvm::maxIntN(N)) + "]");
87
}
88
89
static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
90
MCContext &Ctx) {
91
switch (Fixup.getTargetKind()) {
92
default:
93
llvm_unreachable("Unknown fixup kind");
94
case FK_Data_1:
95
case FK_Data_2:
96
case FK_Data_4:
97
case FK_Data_8:
98
case FK_Data_leb128:
99
return Value;
100
case LoongArch::fixup_loongarch_b16: {
101
if (!isInt<18>(Value))
102
reportOutOfRangeError(Ctx, Fixup.getLoc(), 18);
103
if (Value % 4)
104
Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
105
return (Value >> 2) & 0xffff;
106
}
107
case LoongArch::fixup_loongarch_b21: {
108
if (!isInt<23>(Value))
109
reportOutOfRangeError(Ctx, Fixup.getLoc(), 23);
110
if (Value % 4)
111
Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
112
return ((Value & 0x3fffc) << 8) | ((Value >> 18) & 0x1f);
113
}
114
case LoongArch::fixup_loongarch_b26: {
115
if (!isInt<28>(Value))
116
reportOutOfRangeError(Ctx, Fixup.getLoc(), 28);
117
if (Value % 4)
118
Ctx.reportError(Fixup.getLoc(), "fixup value must be 4-byte aligned");
119
return ((Value & 0x3fffc) << 8) | ((Value >> 18) & 0x3ff);
120
}
121
case LoongArch::fixup_loongarch_abs_hi20:
122
case LoongArch::fixup_loongarch_tls_le_hi20:
123
return (Value >> 12) & 0xfffff;
124
case LoongArch::fixup_loongarch_abs_lo12:
125
case LoongArch::fixup_loongarch_tls_le_lo12:
126
return Value & 0xfff;
127
case LoongArch::fixup_loongarch_abs64_lo20:
128
case LoongArch::fixup_loongarch_tls_le64_lo20:
129
return (Value >> 32) & 0xfffff;
130
case LoongArch::fixup_loongarch_abs64_hi12:
131
case LoongArch::fixup_loongarch_tls_le64_hi12:
132
return (Value >> 52) & 0xfff;
133
}
134
}
135
136
static void fixupLeb128(MCContext &Ctx, const MCFixup &Fixup,
137
MutableArrayRef<char> Data, uint64_t Value) {
138
unsigned I;
139
for (I = 0; I != Data.size() && Value; ++I, Value >>= 7)
140
Data[I] |= uint8_t(Value & 0x7f);
141
if (Value)
142
Ctx.reportError(Fixup.getLoc(), "Invalid uleb128 value!");
143
}
144
145
void LoongArchAsmBackend::applyFixup(const MCAssembler &Asm,
146
const MCFixup &Fixup,
147
const MCValue &Target,
148
MutableArrayRef<char> Data, uint64_t Value,
149
bool IsResolved,
150
const MCSubtargetInfo *STI) const {
151
if (!Value)
152
return; // Doesn't change encoding.
153
154
MCFixupKind Kind = Fixup.getKind();
155
if (Kind >= FirstLiteralRelocationKind)
156
return;
157
MCFixupKindInfo Info = getFixupKindInfo(Kind);
158
MCContext &Ctx = Asm.getContext();
159
160
// Fixup leb128 separately.
161
if (Fixup.getTargetKind() == FK_Data_leb128)
162
return fixupLeb128(Ctx, Fixup, Data, Value);
163
164
// Apply any target-specific value adjustments.
165
Value = adjustFixupValue(Fixup, Value, Ctx);
166
167
// Shift the value into position.
168
Value <<= Info.TargetOffset;
169
170
unsigned Offset = Fixup.getOffset();
171
unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;
172
173
assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
174
// For each byte of the fragment that the fixup touches, mask in the
175
// bits from the fixup value.
176
for (unsigned I = 0; I != NumBytes; ++I) {
177
Data[Offset + I] |= uint8_t((Value >> (I * 8)) & 0xff);
178
}
179
}
180
181
// Linker relaxation may change code size. We have to insert Nops
182
// for .align directive when linker relaxation enabled. So then Linker
183
// could satisfy alignment by removing Nops.
184
// The function returns the total Nops Size we need to insert.
185
bool LoongArchAsmBackend::shouldInsertExtraNopBytesForCodeAlign(
186
const MCAlignFragment &AF, unsigned &Size) {
187
// Calculate Nops Size only when linker relaxation enabled.
188
if (!AF.getSubtargetInfo()->hasFeature(LoongArch::FeatureRelax))
189
return false;
190
191
// Ignore alignment if MaxBytesToEmit is less than the minimum Nop size.
192
const unsigned MinNopLen = 4;
193
if (AF.getMaxBytesToEmit() < MinNopLen)
194
return false;
195
Size = AF.getAlignment().value() - MinNopLen;
196
return AF.getAlignment() > MinNopLen;
197
}
198
199
// We need to insert R_LARCH_ALIGN relocation type to indicate the
200
// position of Nops and the total bytes of the Nops have been inserted
201
// when linker relaxation enabled.
202
// The function inserts fixup_loongarch_align fixup which eventually will
203
// transfer to R_LARCH_ALIGN relocation type.
204
// The improved R_LARCH_ALIGN requires symbol index. The lowest 8 bits of
205
// addend represent alignment and the other bits of addend represent the
206
// maximum number of bytes to emit. The maximum number of bytes is zero
207
// means ignore the emit limit.
208
bool LoongArchAsmBackend::shouldInsertFixupForCodeAlign(MCAssembler &Asm,
209
MCAlignFragment &AF) {
210
// Insert the fixup only when linker relaxation enabled.
211
if (!AF.getSubtargetInfo()->hasFeature(LoongArch::FeatureRelax))
212
return false;
213
214
// Calculate total Nops we need to insert. If there are none to insert
215
// then simply return.
216
unsigned InsertedNopBytes;
217
if (!shouldInsertExtraNopBytesForCodeAlign(AF, InsertedNopBytes))
218
return false;
219
220
MCSection *Sec = AF.getParent();
221
MCContext &Ctx = Asm.getContext();
222
const MCExpr *Dummy = MCConstantExpr::create(0, Ctx);
223
// Create fixup_loongarch_align fixup.
224
MCFixup Fixup =
225
MCFixup::create(0, Dummy, MCFixupKind(LoongArch::fixup_loongarch_align));
226
unsigned MaxBytesToEmit = AF.getMaxBytesToEmit();
227
228
auto createExtendedValue = [&]() {
229
const MCSymbolRefExpr *MCSym = getSecToAlignSym()[Sec];
230
if (MCSym == nullptr) {
231
// Define a marker symbol at the section with an offset of 0.
232
MCSymbol *Sym = Ctx.createNamedTempSymbol("la-relax-align");
233
Sym->setFragment(&*Sec->getBeginSymbol()->getFragment());
234
Asm.registerSymbol(*Sym);
235
MCSym = MCSymbolRefExpr::create(Sym, Ctx);
236
getSecToAlignSym()[Sec] = MCSym;
237
}
238
return MCValue::get(MCSym, nullptr,
239
MaxBytesToEmit << 8 | Log2(AF.getAlignment()));
240
};
241
242
uint64_t FixedValue = 0;
243
MCValue Value = MaxBytesToEmit >= InsertedNopBytes
244
? MCValue::get(InsertedNopBytes)
245
: createExtendedValue();
246
Asm.getWriter().recordRelocation(Asm, &AF, Fixup, Value, FixedValue);
247
248
return true;
249
}
250
251
bool LoongArchAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
252
const MCFixup &Fixup,
253
const MCValue &Target,
254
const MCSubtargetInfo *STI) {
255
if (Fixup.getKind() >= FirstLiteralRelocationKind)
256
return true;
257
switch (Fixup.getTargetKind()) {
258
default:
259
return STI->hasFeature(LoongArch::FeatureRelax);
260
case FK_Data_1:
261
case FK_Data_2:
262
case FK_Data_4:
263
case FK_Data_8:
264
case FK_Data_leb128:
265
return !Target.isAbsolute();
266
}
267
}
268
269
static inline std::pair<MCFixupKind, MCFixupKind>
270
getRelocPairForSize(unsigned Size) {
271
switch (Size) {
272
default:
273
llvm_unreachable("unsupported fixup size");
274
case 6:
275
return std::make_pair(
276
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD6),
277
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB6));
278
case 8:
279
return std::make_pair(
280
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD8),
281
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB8));
282
case 16:
283
return std::make_pair(
284
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD16),
285
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB16));
286
case 32:
287
return std::make_pair(
288
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD32),
289
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB32));
290
case 64:
291
return std::make_pair(
292
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD64),
293
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB64));
294
case 128:
295
return std::make_pair(
296
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_ADD_ULEB128),
297
MCFixupKind(FirstLiteralRelocationKind + ELF::R_LARCH_SUB_ULEB128));
298
}
299
}
300
301
std::pair<bool, bool> LoongArchAsmBackend::relaxLEB128(const MCAssembler &Asm,
302
MCLEBFragment &LF,
303
int64_t &Value) const {
304
const MCExpr &Expr = LF.getValue();
305
if (LF.isSigned() || !Expr.evaluateKnownAbsolute(Value, Asm))
306
return std::make_pair(false, false);
307
LF.getFixups().push_back(
308
MCFixup::create(0, &Expr, FK_Data_leb128, Expr.getLoc()));
309
return std::make_pair(true, true);
310
}
311
312
bool LoongArchAsmBackend::relaxDwarfLineAddr(const MCAssembler &Asm,
313
MCDwarfLineAddrFragment &DF,
314
bool &WasRelaxed) const {
315
MCContext &C = Asm.getContext();
316
317
int64_t LineDelta = DF.getLineDelta();
318
const MCExpr &AddrDelta = DF.getAddrDelta();
319
SmallVectorImpl<char> &Data = DF.getContents();
320
SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
321
size_t OldSize = Data.size();
322
323
int64_t Value;
324
if (AddrDelta.evaluateAsAbsolute(Value, Asm))
325
return false;
326
bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Asm);
327
assert(IsAbsolute && "CFA with invalid expression");
328
(void)IsAbsolute;
329
330
Data.clear();
331
Fixups.clear();
332
raw_svector_ostream OS(Data);
333
334
// INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
335
if (LineDelta != INT64_MAX) {
336
OS << uint8_t(dwarf::DW_LNS_advance_line);
337
encodeSLEB128(LineDelta, OS);
338
}
339
340
unsigned Offset;
341
std::pair<MCFixupKind, MCFixupKind> FK;
342
343
// According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
344
// takes a single unsigned half (unencoded) operand. The maximum encodable
345
// value is therefore 65535. Set a conservative upper bound for relaxation.
346
if (Value > 60000) {
347
unsigned PtrSize = C.getAsmInfo()->getCodePointerSize();
348
349
OS << uint8_t(dwarf::DW_LNS_extended_op);
350
encodeULEB128(PtrSize + 1, OS);
351
352
OS << uint8_t(dwarf::DW_LNE_set_address);
353
Offset = OS.tell();
354
assert((PtrSize == 4 || PtrSize == 8) && "Unexpected pointer size");
355
FK = getRelocPairForSize(PtrSize == 4 ? 32 : 64);
356
OS.write_zeros(PtrSize);
357
} else {
358
OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
359
Offset = OS.tell();
360
FK = getRelocPairForSize(16);
361
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
362
}
363
364
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
365
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(FK)));
366
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(FK)));
367
368
if (LineDelta == INT64_MAX) {
369
OS << uint8_t(dwarf::DW_LNS_extended_op);
370
OS << uint8_t(1);
371
OS << uint8_t(dwarf::DW_LNE_end_sequence);
372
} else {
373
OS << uint8_t(dwarf::DW_LNS_copy);
374
}
375
376
WasRelaxed = OldSize != Data.size();
377
return true;
378
}
379
380
bool LoongArchAsmBackend::relaxDwarfCFA(const MCAssembler &Asm,
381
MCDwarfCallFrameFragment &DF,
382
bool &WasRelaxed) const {
383
const MCExpr &AddrDelta = DF.getAddrDelta();
384
SmallVectorImpl<char> &Data = DF.getContents();
385
SmallVectorImpl<MCFixup> &Fixups = DF.getFixups();
386
size_t OldSize = Data.size();
387
388
int64_t Value;
389
if (AddrDelta.evaluateAsAbsolute(Value, Asm))
390
return false;
391
bool IsAbsolute = AddrDelta.evaluateKnownAbsolute(Value, Asm);
392
assert(IsAbsolute && "CFA with invalid expression");
393
(void)IsAbsolute;
394
395
Data.clear();
396
Fixups.clear();
397
raw_svector_ostream OS(Data);
398
399
assert(Asm.getContext().getAsmInfo()->getMinInstAlignment() == 1 &&
400
"expected 1-byte alignment");
401
if (Value == 0) {
402
WasRelaxed = OldSize != Data.size();
403
return true;
404
}
405
406
auto AddFixups = [&Fixups,
407
&AddrDelta](unsigned Offset,
408
std::pair<MCFixupKind, MCFixupKind> FK) {
409
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
410
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(FK)));
411
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(FK)));
412
};
413
414
if (isUIntN(6, Value)) {
415
OS << uint8_t(dwarf::DW_CFA_advance_loc);
416
AddFixups(0, getRelocPairForSize(6));
417
} else if (isUInt<8>(Value)) {
418
OS << uint8_t(dwarf::DW_CFA_advance_loc1);
419
support::endian::write<uint8_t>(OS, 0, llvm::endianness::little);
420
AddFixups(1, getRelocPairForSize(8));
421
} else if (isUInt<16>(Value)) {
422
OS << uint8_t(dwarf::DW_CFA_advance_loc2);
423
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
424
AddFixups(1, getRelocPairForSize(16));
425
} else if (isUInt<32>(Value)) {
426
OS << uint8_t(dwarf::DW_CFA_advance_loc4);
427
support::endian::write<uint32_t>(OS, 0, llvm::endianness::little);
428
AddFixups(1, getRelocPairForSize(32));
429
} else {
430
llvm_unreachable("unsupported CFA encoding");
431
}
432
433
WasRelaxed = OldSize != Data.size();
434
return true;
435
}
436
437
bool LoongArchAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
438
const MCSubtargetInfo *STI) const {
439
// We mostly follow binutils' convention here: align to 4-byte boundary with a
440
// 0-fill padding.
441
OS.write_zeros(Count % 4);
442
443
// The remainder is now padded with 4-byte nops.
444
// nop: andi r0, r0, 0
445
for (; Count >= 4; Count -= 4)
446
OS.write("\0\0\x40\x03", 4);
447
448
return true;
449
}
450
451
bool LoongArchAsmBackend::handleAddSubRelocations(const MCAssembler &Asm,
452
const MCFragment &F,
453
const MCFixup &Fixup,
454
const MCValue &Target,
455
uint64_t &FixedValue) const {
456
std::pair<MCFixupKind, MCFixupKind> FK;
457
uint64_t FixedValueA, FixedValueB;
458
const MCSymbol &SA = Target.getSymA()->getSymbol();
459
const MCSymbol &SB = Target.getSymB()->getSymbol();
460
461
bool force = !SA.isInSection() || !SB.isInSection();
462
if (!force) {
463
const MCSection &SecA = SA.getSection();
464
const MCSection &SecB = SB.getSection();
465
466
// We need record relocation if SecA != SecB. Usually SecB is same as the
467
// section of Fixup, which will be record the relocation as PCRel. If SecB
468
// is not same as the section of Fixup, it will report error. Just return
469
// false and then this work can be finished by handleFixup.
470
if (&SecA != &SecB)
471
return false;
472
473
// In SecA == SecB case. If the linker relaxation is enabled, we need record
474
// the ADD, SUB relocations. Otherwise the FixedValue has already been calc-
475
// ulated out in evaluateFixup, return true and avoid record relocations.
476
if (!STI.hasFeature(LoongArch::FeatureRelax))
477
return true;
478
}
479
480
switch (Fixup.getKind()) {
481
case llvm::FK_Data_1:
482
FK = getRelocPairForSize(8);
483
break;
484
case llvm::FK_Data_2:
485
FK = getRelocPairForSize(16);
486
break;
487
case llvm::FK_Data_4:
488
FK = getRelocPairForSize(32);
489
break;
490
case llvm::FK_Data_8:
491
FK = getRelocPairForSize(64);
492
break;
493
case llvm::FK_Data_leb128:
494
FK = getRelocPairForSize(128);
495
break;
496
default:
497
llvm_unreachable("unsupported fixup size");
498
}
499
MCValue A = MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
500
MCValue B = MCValue::get(Target.getSymB());
501
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, std::get<0>(FK));
502
auto FB = MCFixup::create(Fixup.getOffset(), nullptr, std::get<1>(FK));
503
auto &Assembler = const_cast<MCAssembler &>(Asm);
504
Asm.getWriter().recordRelocation(Assembler, &F, FA, A, FixedValueA);
505
Asm.getWriter().recordRelocation(Assembler, &F, FB, B, FixedValueB);
506
FixedValue = FixedValueA - FixedValueB;
507
return true;
508
}
509
510
std::unique_ptr<MCObjectTargetWriter>
511
LoongArchAsmBackend::createObjectTargetWriter() const {
512
return createLoongArchELFObjectWriter(
513
OSABI, Is64Bit, STI.hasFeature(LoongArch::FeatureRelax));
514
}
515
516
MCAsmBackend *llvm::createLoongArchAsmBackend(const Target &T,
517
const MCSubtargetInfo &STI,
518
const MCRegisterInfo &MRI,
519
const MCTargetOptions &Options) {
520
const Triple &TT = STI.getTargetTriple();
521
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
522
return new LoongArchAsmBackend(STI, OSABI, TT.isArch64Bit(), Options);
523
}
524
525