Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/MSP430/MSP430ISelLowering.cpp
35266 views
1
//===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the MSP430TargetLowering class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "MSP430ISelLowering.h"
14
#include "MSP430.h"
15
#include "MSP430MachineFunctionInfo.h"
16
#include "MSP430Subtarget.h"
17
#include "MSP430TargetMachine.h"
18
#include "llvm/CodeGen/CallingConvLower.h"
19
#include "llvm/CodeGen/MachineFrameInfo.h"
20
#include "llvm/CodeGen/MachineFunction.h"
21
#include "llvm/CodeGen/MachineInstrBuilder.h"
22
#include "llvm/CodeGen/MachineRegisterInfo.h"
23
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24
#include "llvm/CodeGen/ValueTypes.h"
25
#include "llvm/IR/CallingConv.h"
26
#include "llvm/IR/DerivedTypes.h"
27
#include "llvm/IR/Function.h"
28
#include "llvm/IR/GlobalAlias.h"
29
#include "llvm/IR/GlobalVariable.h"
30
#include "llvm/IR/Intrinsics.h"
31
#include "llvm/Support/CommandLine.h"
32
#include "llvm/Support/Debug.h"
33
#include "llvm/Support/ErrorHandling.h"
34
#include "llvm/Support/raw_ostream.h"
35
using namespace llvm;
36
37
#define DEBUG_TYPE "msp430-lower"
38
39
static cl::opt<bool>MSP430NoLegalImmediate(
40
"msp430-no-legal-immediate", cl::Hidden,
41
cl::desc("Enable non legal immediates (for testing purposes only)"),
42
cl::init(false));
43
44
MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
45
const MSP430Subtarget &STI)
46
: TargetLowering(TM) {
47
48
// Set up the register classes.
49
addRegisterClass(MVT::i8, &MSP430::GR8RegClass);
50
addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
51
52
// Compute derived properties from the register classes
53
computeRegisterProperties(STI.getRegisterInfo());
54
55
// Provide all sorts of operation actions
56
setStackPointerRegisterToSaveRestore(MSP430::SP);
57
setBooleanContents(ZeroOrOneBooleanContent);
58
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
59
60
// We have post-incremented loads / stores.
61
setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
62
setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
63
64
for (MVT VT : MVT::integer_valuetypes()) {
65
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
66
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
67
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
68
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
69
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
70
}
71
72
// We don't have any truncstores
73
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
74
75
setOperationAction(ISD::SRA, MVT::i8, Custom);
76
setOperationAction(ISD::SHL, MVT::i8, Custom);
77
setOperationAction(ISD::SRL, MVT::i8, Custom);
78
setOperationAction(ISD::SRA, MVT::i16, Custom);
79
setOperationAction(ISD::SHL, MVT::i16, Custom);
80
setOperationAction(ISD::SRL, MVT::i16, Custom);
81
setOperationAction(ISD::ROTL, MVT::i8, Expand);
82
setOperationAction(ISD::ROTR, MVT::i8, Expand);
83
setOperationAction(ISD::ROTL, MVT::i16, Expand);
84
setOperationAction(ISD::ROTR, MVT::i16, Expand);
85
setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
86
setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom);
87
setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
88
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
89
setOperationAction(ISD::BR_CC, MVT::i8, Custom);
90
setOperationAction(ISD::BR_CC, MVT::i16, Custom);
91
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
92
setOperationAction(ISD::SETCC, MVT::i8, Custom);
93
setOperationAction(ISD::SETCC, MVT::i16, Custom);
94
setOperationAction(ISD::SELECT, MVT::i8, Expand);
95
setOperationAction(ISD::SELECT, MVT::i16, Expand);
96
setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
97
setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
98
setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom);
99
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
100
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
101
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
102
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
103
104
setOperationAction(ISD::CTTZ, MVT::i8, Expand);
105
setOperationAction(ISD::CTTZ, MVT::i16, Expand);
106
setOperationAction(ISD::CTLZ, MVT::i8, Expand);
107
setOperationAction(ISD::CTLZ, MVT::i16, Expand);
108
setOperationAction(ISD::CTPOP, MVT::i8, Expand);
109
setOperationAction(ISD::CTPOP, MVT::i16, Expand);
110
111
setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand);
112
setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
113
setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand);
114
setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
115
setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand);
116
setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
117
118
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
119
120
// FIXME: Implement efficiently multiplication by a constant
121
setOperationAction(ISD::MUL, MVT::i8, Promote);
122
setOperationAction(ISD::MULHS, MVT::i8, Promote);
123
setOperationAction(ISD::MULHU, MVT::i8, Promote);
124
setOperationAction(ISD::SMUL_LOHI, MVT::i8, Promote);
125
setOperationAction(ISD::UMUL_LOHI, MVT::i8, Promote);
126
setOperationAction(ISD::MUL, MVT::i16, LibCall);
127
setOperationAction(ISD::MULHS, MVT::i16, Expand);
128
setOperationAction(ISD::MULHU, MVT::i16, Expand);
129
setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
130
setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
131
132
setOperationAction(ISD::UDIV, MVT::i8, Promote);
133
setOperationAction(ISD::UDIVREM, MVT::i8, Promote);
134
setOperationAction(ISD::UREM, MVT::i8, Promote);
135
setOperationAction(ISD::SDIV, MVT::i8, Promote);
136
setOperationAction(ISD::SDIVREM, MVT::i8, Promote);
137
setOperationAction(ISD::SREM, MVT::i8, Promote);
138
setOperationAction(ISD::UDIV, MVT::i16, LibCall);
139
setOperationAction(ISD::UDIVREM, MVT::i16, Expand);
140
setOperationAction(ISD::UREM, MVT::i16, LibCall);
141
setOperationAction(ISD::SDIV, MVT::i16, LibCall);
142
setOperationAction(ISD::SDIVREM, MVT::i16, Expand);
143
setOperationAction(ISD::SREM, MVT::i16, LibCall);
144
145
// varargs support
146
setOperationAction(ISD::VASTART, MVT::Other, Custom);
147
setOperationAction(ISD::VAARG, MVT::Other, Expand);
148
setOperationAction(ISD::VAEND, MVT::Other, Expand);
149
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
150
setOperationAction(ISD::JumpTable, MVT::i16, Custom);
151
152
// EABI Libcalls - EABI Section 6.2
153
const struct {
154
const RTLIB::Libcall Op;
155
const char * const Name;
156
const ISD::CondCode Cond;
157
} LibraryCalls[] = {
158
// Floating point conversions - EABI Table 6
159
{ RTLIB::FPROUND_F64_F32, "__mspabi_cvtdf", ISD::SETCC_INVALID },
160
{ RTLIB::FPEXT_F32_F64, "__mspabi_cvtfd", ISD::SETCC_INVALID },
161
// The following is NOT implemented in libgcc
162
//{ RTLIB::FPTOSINT_F64_I16, "__mspabi_fixdi", ISD::SETCC_INVALID },
163
{ RTLIB::FPTOSINT_F64_I32, "__mspabi_fixdli", ISD::SETCC_INVALID },
164
{ RTLIB::FPTOSINT_F64_I64, "__mspabi_fixdlli", ISD::SETCC_INVALID },
165
// The following is NOT implemented in libgcc
166
//{ RTLIB::FPTOUINT_F64_I16, "__mspabi_fixdu", ISD::SETCC_INVALID },
167
{ RTLIB::FPTOUINT_F64_I32, "__mspabi_fixdul", ISD::SETCC_INVALID },
168
{ RTLIB::FPTOUINT_F64_I64, "__mspabi_fixdull", ISD::SETCC_INVALID },
169
// The following is NOT implemented in libgcc
170
//{ RTLIB::FPTOSINT_F32_I16, "__mspabi_fixfi", ISD::SETCC_INVALID },
171
{ RTLIB::FPTOSINT_F32_I32, "__mspabi_fixfli", ISD::SETCC_INVALID },
172
{ RTLIB::FPTOSINT_F32_I64, "__mspabi_fixflli", ISD::SETCC_INVALID },
173
// The following is NOT implemented in libgcc
174
//{ RTLIB::FPTOUINT_F32_I16, "__mspabi_fixfu", ISD::SETCC_INVALID },
175
{ RTLIB::FPTOUINT_F32_I32, "__mspabi_fixful", ISD::SETCC_INVALID },
176
{ RTLIB::FPTOUINT_F32_I64, "__mspabi_fixfull", ISD::SETCC_INVALID },
177
// TODO The following IS implemented in libgcc
178
//{ RTLIB::SINTTOFP_I16_F64, "__mspabi_fltid", ISD::SETCC_INVALID },
179
{ RTLIB::SINTTOFP_I32_F64, "__mspabi_fltlid", ISD::SETCC_INVALID },
180
// TODO The following IS implemented in libgcc but is not in the EABI
181
{ RTLIB::SINTTOFP_I64_F64, "__mspabi_fltllid", ISD::SETCC_INVALID },
182
// TODO The following IS implemented in libgcc
183
//{ RTLIB::UINTTOFP_I16_F64, "__mspabi_fltud", ISD::SETCC_INVALID },
184
{ RTLIB::UINTTOFP_I32_F64, "__mspabi_fltuld", ISD::SETCC_INVALID },
185
// The following IS implemented in libgcc but is not in the EABI
186
{ RTLIB::UINTTOFP_I64_F64, "__mspabi_fltulld", ISD::SETCC_INVALID },
187
// TODO The following IS implemented in libgcc
188
//{ RTLIB::SINTTOFP_I16_F32, "__mspabi_fltif", ISD::SETCC_INVALID },
189
{ RTLIB::SINTTOFP_I32_F32, "__mspabi_fltlif", ISD::SETCC_INVALID },
190
// TODO The following IS implemented in libgcc but is not in the EABI
191
{ RTLIB::SINTTOFP_I64_F32, "__mspabi_fltllif", ISD::SETCC_INVALID },
192
// TODO The following IS implemented in libgcc
193
//{ RTLIB::UINTTOFP_I16_F32, "__mspabi_fltuf", ISD::SETCC_INVALID },
194
{ RTLIB::UINTTOFP_I32_F32, "__mspabi_fltulf", ISD::SETCC_INVALID },
195
// The following IS implemented in libgcc but is not in the EABI
196
{ RTLIB::UINTTOFP_I64_F32, "__mspabi_fltullf", ISD::SETCC_INVALID },
197
198
// Floating point comparisons - EABI Table 7
199
{ RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ },
200
{ RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE },
201
{ RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE },
202
{ RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT },
203
{ RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE },
204
{ RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT },
205
{ RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ },
206
{ RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE },
207
{ RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE },
208
{ RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT },
209
{ RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE },
210
{ RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT },
211
212
// Floating point arithmetic - EABI Table 8
213
{ RTLIB::ADD_F64, "__mspabi_addd", ISD::SETCC_INVALID },
214
{ RTLIB::ADD_F32, "__mspabi_addf", ISD::SETCC_INVALID },
215
{ RTLIB::DIV_F64, "__mspabi_divd", ISD::SETCC_INVALID },
216
{ RTLIB::DIV_F32, "__mspabi_divf", ISD::SETCC_INVALID },
217
{ RTLIB::MUL_F64, "__mspabi_mpyd", ISD::SETCC_INVALID },
218
{ RTLIB::MUL_F32, "__mspabi_mpyf", ISD::SETCC_INVALID },
219
{ RTLIB::SUB_F64, "__mspabi_subd", ISD::SETCC_INVALID },
220
{ RTLIB::SUB_F32, "__mspabi_subf", ISD::SETCC_INVALID },
221
// The following are NOT implemented in libgcc
222
// { RTLIB::NEG_F64, "__mspabi_negd", ISD::SETCC_INVALID },
223
// { RTLIB::NEG_F32, "__mspabi_negf", ISD::SETCC_INVALID },
224
225
// Universal Integer Operations - EABI Table 9
226
{ RTLIB::SDIV_I16, "__mspabi_divi", ISD::SETCC_INVALID },
227
{ RTLIB::SDIV_I32, "__mspabi_divli", ISD::SETCC_INVALID },
228
{ RTLIB::SDIV_I64, "__mspabi_divlli", ISD::SETCC_INVALID },
229
{ RTLIB::UDIV_I16, "__mspabi_divu", ISD::SETCC_INVALID },
230
{ RTLIB::UDIV_I32, "__mspabi_divul", ISD::SETCC_INVALID },
231
{ RTLIB::UDIV_I64, "__mspabi_divull", ISD::SETCC_INVALID },
232
{ RTLIB::SREM_I16, "__mspabi_remi", ISD::SETCC_INVALID },
233
{ RTLIB::SREM_I32, "__mspabi_remli", ISD::SETCC_INVALID },
234
{ RTLIB::SREM_I64, "__mspabi_remlli", ISD::SETCC_INVALID },
235
{ RTLIB::UREM_I16, "__mspabi_remu", ISD::SETCC_INVALID },
236
{ RTLIB::UREM_I32, "__mspabi_remul", ISD::SETCC_INVALID },
237
{ RTLIB::UREM_I64, "__mspabi_remull", ISD::SETCC_INVALID },
238
239
// Bitwise Operations - EABI Table 10
240
// TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc
241
{ RTLIB::SRL_I32, "__mspabi_srll", ISD::SETCC_INVALID },
242
{ RTLIB::SRA_I32, "__mspabi_sral", ISD::SETCC_INVALID },
243
{ RTLIB::SHL_I32, "__mspabi_slll", ISD::SETCC_INVALID },
244
// __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc
245
246
};
247
248
for (const auto &LC : LibraryCalls) {
249
setLibcallName(LC.Op, LC.Name);
250
if (LC.Cond != ISD::SETCC_INVALID)
251
setCmpLibcallCC(LC.Op, LC.Cond);
252
}
253
254
if (STI.hasHWMult16()) {
255
const struct {
256
const RTLIB::Libcall Op;
257
const char * const Name;
258
} LibraryCalls[] = {
259
// Integer Multiply - EABI Table 9
260
{ RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
261
{ RTLIB::MUL_I32, "__mspabi_mpyl_hw" },
262
{ RTLIB::MUL_I64, "__mspabi_mpyll_hw" },
263
// TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc
264
// TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc
265
};
266
for (const auto &LC : LibraryCalls) {
267
setLibcallName(LC.Op, LC.Name);
268
}
269
} else if (STI.hasHWMult32()) {
270
const struct {
271
const RTLIB::Libcall Op;
272
const char * const Name;
273
} LibraryCalls[] = {
274
// Integer Multiply - EABI Table 9
275
{ RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
276
{ RTLIB::MUL_I32, "__mspabi_mpyl_hw32" },
277
{ RTLIB::MUL_I64, "__mspabi_mpyll_hw32" },
278
// TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc
279
// TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc
280
};
281
for (const auto &LC : LibraryCalls) {
282
setLibcallName(LC.Op, LC.Name);
283
}
284
} else if (STI.hasHWMultF5()) {
285
const struct {
286
const RTLIB::Libcall Op;
287
const char * const Name;
288
} LibraryCalls[] = {
289
// Integer Multiply - EABI Table 9
290
{ RTLIB::MUL_I16, "__mspabi_mpyi_f5hw" },
291
{ RTLIB::MUL_I32, "__mspabi_mpyl_f5hw" },
292
{ RTLIB::MUL_I64, "__mspabi_mpyll_f5hw" },
293
// TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc
294
// TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc
295
};
296
for (const auto &LC : LibraryCalls) {
297
setLibcallName(LC.Op, LC.Name);
298
}
299
} else { // NoHWMult
300
const struct {
301
const RTLIB::Libcall Op;
302
const char * const Name;
303
} LibraryCalls[] = {
304
// Integer Multiply - EABI Table 9
305
{ RTLIB::MUL_I16, "__mspabi_mpyi" },
306
{ RTLIB::MUL_I32, "__mspabi_mpyl" },
307
{ RTLIB::MUL_I64, "__mspabi_mpyll" },
308
// The __mspabi_mpysl* functions are NOT implemented in libgcc
309
// The __mspabi_mpyul* functions are NOT implemented in libgcc
310
};
311
for (const auto &LC : LibraryCalls) {
312
setLibcallName(LC.Op, LC.Name);
313
}
314
setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::MSP430_BUILTIN);
315
}
316
317
// Several of the runtime library functions use a special calling conv
318
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN);
319
setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN);
320
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN);
321
setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN);
322
setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN);
323
setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN);
324
setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN);
325
setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN);
326
setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN);
327
setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN);
328
setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN);
329
setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN);
330
setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN);
331
setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN);
332
// TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
333
334
setMinFunctionAlignment(Align(2));
335
setPrefFunctionAlignment(Align(2));
336
setMaxAtomicSizeInBitsSupported(0);
337
}
338
339
SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
340
SelectionDAG &DAG) const {
341
switch (Op.getOpcode()) {
342
case ISD::SHL: // FALLTHROUGH
343
case ISD::SRL:
344
case ISD::SRA: return LowerShifts(Op, DAG);
345
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
346
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
347
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
348
case ISD::SETCC: return LowerSETCC(Op, DAG);
349
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
350
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
351
case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
352
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
353
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
354
case ISD::VASTART: return LowerVASTART(Op, DAG);
355
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
356
default:
357
llvm_unreachable("unimplemented operand");
358
}
359
}
360
361
// Define non profitable transforms into shifts
362
bool MSP430TargetLowering::shouldAvoidTransformToShift(EVT VT,
363
unsigned Amount) const {
364
return !(Amount == 8 || Amount == 9 || Amount<=2);
365
}
366
367
// Implemented to verify test case assertions in
368
// tests/codegen/msp430/shift-amount-threshold-b.ll
369
bool MSP430TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
370
if (MSP430NoLegalImmediate)
371
return Immed >= -32 && Immed < 32;
372
return TargetLowering::isLegalICmpImmediate(Immed);
373
}
374
375
//===----------------------------------------------------------------------===//
376
// MSP430 Inline Assembly Support
377
//===----------------------------------------------------------------------===//
378
379
/// getConstraintType - Given a constraint letter, return the type of
380
/// constraint it is for this target.
381
TargetLowering::ConstraintType
382
MSP430TargetLowering::getConstraintType(StringRef Constraint) const {
383
if (Constraint.size() == 1) {
384
switch (Constraint[0]) {
385
case 'r':
386
return C_RegisterClass;
387
default:
388
break;
389
}
390
}
391
return TargetLowering::getConstraintType(Constraint);
392
}
393
394
std::pair<unsigned, const TargetRegisterClass *>
395
MSP430TargetLowering::getRegForInlineAsmConstraint(
396
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
397
if (Constraint.size() == 1) {
398
// GCC Constraint Letters
399
switch (Constraint[0]) {
400
default: break;
401
case 'r': // GENERAL_REGS
402
if (VT == MVT::i8)
403
return std::make_pair(0U, &MSP430::GR8RegClass);
404
405
return std::make_pair(0U, &MSP430::GR16RegClass);
406
}
407
}
408
409
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
410
}
411
412
//===----------------------------------------------------------------------===//
413
// Calling Convention Implementation
414
//===----------------------------------------------------------------------===//
415
416
#include "MSP430GenCallingConv.inc"
417
418
/// For each argument in a function store the number of pieces it is composed
419
/// of.
420
template<typename ArgT>
421
static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
422
SmallVectorImpl<unsigned> &Out) {
423
unsigned CurrentArgIndex;
424
425
if (Args.empty())
426
return;
427
428
CurrentArgIndex = Args[0].OrigArgIndex;
429
Out.push_back(0);
430
431
for (auto &Arg : Args) {
432
if (CurrentArgIndex == Arg.OrigArgIndex) {
433
Out.back() += 1;
434
} else {
435
Out.push_back(1);
436
CurrentArgIndex = Arg.OrigArgIndex;
437
}
438
}
439
}
440
441
static void AnalyzeVarArgs(CCState &State,
442
const SmallVectorImpl<ISD::OutputArg> &Outs) {
443
State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
444
}
445
446
static void AnalyzeVarArgs(CCState &State,
447
const SmallVectorImpl<ISD::InputArg> &Ins) {
448
State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
449
}
450
451
/// Analyze incoming and outgoing function arguments. We need custom C++ code
452
/// to handle special constraints in the ABI like reversing the order of the
453
/// pieces of splitted arguments. In addition, all pieces of a certain argument
454
/// have to be passed either using registers or the stack but never mixing both.
455
template<typename ArgT>
456
static void AnalyzeArguments(CCState &State,
457
SmallVectorImpl<CCValAssign> &ArgLocs,
458
const SmallVectorImpl<ArgT> &Args) {
459
static const MCPhysReg CRegList[] = {
460
MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
461
};
462
static const unsigned CNbRegs = std::size(CRegList);
463
static const MCPhysReg BuiltinRegList[] = {
464
MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
465
MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
466
};
467
static const unsigned BuiltinNbRegs = std::size(BuiltinRegList);
468
469
ArrayRef<MCPhysReg> RegList;
470
unsigned NbRegs;
471
472
bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN);
473
if (Builtin) {
474
RegList = BuiltinRegList;
475
NbRegs = BuiltinNbRegs;
476
} else {
477
RegList = CRegList;
478
NbRegs = CNbRegs;
479
}
480
481
if (State.isVarArg()) {
482
AnalyzeVarArgs(State, Args);
483
return;
484
}
485
486
SmallVector<unsigned, 4> ArgsParts;
487
ParseFunctionArgs(Args, ArgsParts);
488
489
if (Builtin) {
490
assert(ArgsParts.size() == 2 &&
491
"Builtin calling convention requires two arguments");
492
}
493
494
unsigned RegsLeft = NbRegs;
495
bool UsedStack = false;
496
unsigned ValNo = 0;
497
498
for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
499
MVT ArgVT = Args[ValNo].VT;
500
ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
501
MVT LocVT = ArgVT;
502
CCValAssign::LocInfo LocInfo = CCValAssign::Full;
503
504
// Promote i8 to i16
505
if (LocVT == MVT::i8) {
506
LocVT = MVT::i16;
507
if (ArgFlags.isSExt())
508
LocInfo = CCValAssign::SExt;
509
else if (ArgFlags.isZExt())
510
LocInfo = CCValAssign::ZExt;
511
else
512
LocInfo = CCValAssign::AExt;
513
}
514
515
// Handle byval arguments
516
if (ArgFlags.isByVal()) {
517
State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, Align(2), ArgFlags);
518
continue;
519
}
520
521
unsigned Parts = ArgsParts[i];
522
523
if (Builtin) {
524
assert(Parts == 4 &&
525
"Builtin calling convention requires 64-bit arguments");
526
}
527
528
if (!UsedStack && Parts == 2 && RegsLeft == 1) {
529
// Special case for 32-bit register split, see EABI section 3.3.3
530
unsigned Reg = State.AllocateReg(RegList);
531
State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
532
RegsLeft -= 1;
533
534
UsedStack = true;
535
CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
536
} else if (Parts <= RegsLeft) {
537
for (unsigned j = 0; j < Parts; j++) {
538
unsigned Reg = State.AllocateReg(RegList);
539
State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
540
RegsLeft--;
541
}
542
} else {
543
UsedStack = true;
544
for (unsigned j = 0; j < Parts; j++)
545
CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
546
}
547
}
548
}
549
550
static void AnalyzeRetResult(CCState &State,
551
const SmallVectorImpl<ISD::InputArg> &Ins) {
552
State.AnalyzeCallResult(Ins, RetCC_MSP430);
553
}
554
555
static void AnalyzeRetResult(CCState &State,
556
const SmallVectorImpl<ISD::OutputArg> &Outs) {
557
State.AnalyzeReturn(Outs, RetCC_MSP430);
558
}
559
560
template<typename ArgT>
561
static void AnalyzeReturnValues(CCState &State,
562
SmallVectorImpl<CCValAssign> &RVLocs,
563
const SmallVectorImpl<ArgT> &Args) {
564
AnalyzeRetResult(State, Args);
565
}
566
567
SDValue MSP430TargetLowering::LowerFormalArguments(
568
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
569
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
570
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
571
572
switch (CallConv) {
573
default:
574
report_fatal_error("Unsupported calling convention");
575
case CallingConv::C:
576
case CallingConv::Fast:
577
return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
578
case CallingConv::MSP430_INTR:
579
if (Ins.empty())
580
return Chain;
581
report_fatal_error("ISRs cannot have arguments");
582
}
583
}
584
585
SDValue
586
MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
587
SmallVectorImpl<SDValue> &InVals) const {
588
SelectionDAG &DAG = CLI.DAG;
589
SDLoc &dl = CLI.DL;
590
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
591
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
592
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
593
SDValue Chain = CLI.Chain;
594
SDValue Callee = CLI.Callee;
595
bool &isTailCall = CLI.IsTailCall;
596
CallingConv::ID CallConv = CLI.CallConv;
597
bool isVarArg = CLI.IsVarArg;
598
599
// MSP430 target does not yet support tail call optimization.
600
isTailCall = false;
601
602
switch (CallConv) {
603
default:
604
report_fatal_error("Unsupported calling convention");
605
case CallingConv::MSP430_BUILTIN:
606
case CallingConv::Fast:
607
case CallingConv::C:
608
return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
609
Outs, OutVals, Ins, dl, DAG, InVals);
610
case CallingConv::MSP430_INTR:
611
report_fatal_error("ISRs cannot be called directly");
612
}
613
}
614
615
/// LowerCCCArguments - transform physical registers into virtual registers and
616
/// generate load operations for arguments places on the stack.
617
// FIXME: struct return stuff
618
SDValue MSP430TargetLowering::LowerCCCArguments(
619
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
620
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
621
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
622
MachineFunction &MF = DAG.getMachineFunction();
623
MachineFrameInfo &MFI = MF.getFrameInfo();
624
MachineRegisterInfo &RegInfo = MF.getRegInfo();
625
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
626
627
// Assign locations to all of the incoming arguments.
628
SmallVector<CCValAssign, 16> ArgLocs;
629
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
630
*DAG.getContext());
631
AnalyzeArguments(CCInfo, ArgLocs, Ins);
632
633
// Create frame index for the start of the first vararg value
634
if (isVarArg) {
635
unsigned Offset = CCInfo.getStackSize();
636
FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true));
637
}
638
639
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
640
CCValAssign &VA = ArgLocs[i];
641
if (VA.isRegLoc()) {
642
// Arguments passed in registers
643
EVT RegVT = VA.getLocVT();
644
switch (RegVT.getSimpleVT().SimpleTy) {
645
default:
646
{
647
#ifndef NDEBUG
648
errs() << "LowerFormalArguments Unhandled argument type: "
649
<< RegVT << "\n";
650
#endif
651
llvm_unreachable(nullptr);
652
}
653
case MVT::i16:
654
Register VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
655
RegInfo.addLiveIn(VA.getLocReg(), VReg);
656
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
657
658
// If this is an 8-bit value, it is really passed promoted to 16
659
// bits. Insert an assert[sz]ext to capture this, then truncate to the
660
// right size.
661
if (VA.getLocInfo() == CCValAssign::SExt)
662
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
663
DAG.getValueType(VA.getValVT()));
664
else if (VA.getLocInfo() == CCValAssign::ZExt)
665
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
666
DAG.getValueType(VA.getValVT()));
667
668
if (VA.getLocInfo() != CCValAssign::Full)
669
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
670
671
InVals.push_back(ArgValue);
672
}
673
} else {
674
// Only arguments passed on the stack should make it here.
675
assert(VA.isMemLoc());
676
677
SDValue InVal;
678
ISD::ArgFlagsTy Flags = Ins[i].Flags;
679
680
if (Flags.isByVal()) {
681
MVT PtrVT = VA.getLocVT();
682
int FI = MFI.CreateFixedObject(Flags.getByValSize(),
683
VA.getLocMemOffset(), true);
684
InVal = DAG.getFrameIndex(FI, PtrVT);
685
} else {
686
// Load the argument to a virtual register
687
unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
688
if (ObjSize > 2) {
689
errs() << "LowerFormalArguments Unhandled argument type: "
690
<< VA.getLocVT() << "\n";
691
}
692
// Create the frame index object for this incoming parameter...
693
int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
694
695
// Create the SelectionDAG nodes corresponding to a load
696
//from this parameter
697
SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
698
InVal = DAG.getLoad(
699
VA.getLocVT(), dl, Chain, FIN,
700
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
701
}
702
703
InVals.push_back(InVal);
704
}
705
}
706
707
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
708
if (Ins[i].Flags.isSRet()) {
709
Register Reg = FuncInfo->getSRetReturnReg();
710
if (!Reg) {
711
Reg = MF.getRegInfo().createVirtualRegister(
712
getRegClassFor(MVT::i16));
713
FuncInfo->setSRetReturnReg(Reg);
714
}
715
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
716
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
717
}
718
}
719
720
return Chain;
721
}
722
723
bool
724
MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
725
MachineFunction &MF,
726
bool IsVarArg,
727
const SmallVectorImpl<ISD::OutputArg> &Outs,
728
LLVMContext &Context) const {
729
SmallVector<CCValAssign, 16> RVLocs;
730
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
731
return CCInfo.CheckReturn(Outs, RetCC_MSP430);
732
}
733
734
SDValue
735
MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
736
bool isVarArg,
737
const SmallVectorImpl<ISD::OutputArg> &Outs,
738
const SmallVectorImpl<SDValue> &OutVals,
739
const SDLoc &dl, SelectionDAG &DAG) const {
740
741
MachineFunction &MF = DAG.getMachineFunction();
742
743
// CCValAssign - represent the assignment of the return value to a location
744
SmallVector<CCValAssign, 16> RVLocs;
745
746
// ISRs cannot return any value.
747
if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
748
report_fatal_error("ISRs cannot return any value");
749
750
// CCState - Info about the registers and stack slot.
751
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
752
*DAG.getContext());
753
754
// Analize return values.
755
AnalyzeReturnValues(CCInfo, RVLocs, Outs);
756
757
SDValue Glue;
758
SmallVector<SDValue, 4> RetOps(1, Chain);
759
760
// Copy the result values into the output registers.
761
for (unsigned i = 0; i != RVLocs.size(); ++i) {
762
CCValAssign &VA = RVLocs[i];
763
assert(VA.isRegLoc() && "Can only return in registers!");
764
765
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
766
OutVals[i], Glue);
767
768
// Guarantee that all emitted copies are stuck together,
769
// avoiding something bad.
770
Glue = Chain.getValue(1);
771
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
772
}
773
774
if (MF.getFunction().hasStructRetAttr()) {
775
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
776
Register Reg = FuncInfo->getSRetReturnReg();
777
778
if (!Reg)
779
llvm_unreachable("sret virtual register not created in entry block");
780
781
MVT PtrVT = getFrameIndexTy(DAG.getDataLayout());
782
SDValue Val =
783
DAG.getCopyFromReg(Chain, dl, Reg, PtrVT);
784
unsigned R12 = MSP430::R12;
785
786
Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Glue);
787
Glue = Chain.getValue(1);
788
RetOps.push_back(DAG.getRegister(R12, PtrVT));
789
}
790
791
unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
792
MSP430ISD::RETI_GLUE : MSP430ISD::RET_GLUE);
793
794
RetOps[0] = Chain; // Update chain.
795
796
// Add the glue if we have it.
797
if (Glue.getNode())
798
RetOps.push_back(Glue);
799
800
return DAG.getNode(Opc, dl, MVT::Other, RetOps);
801
}
802
803
/// LowerCCCCallTo - functions arguments are copied from virtual regs to
804
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
805
SDValue MSP430TargetLowering::LowerCCCCallTo(
806
SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
807
bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
808
const SmallVectorImpl<SDValue> &OutVals,
809
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
810
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
811
// Analyze operands of the call, assigning locations to each operand.
812
SmallVector<CCValAssign, 16> ArgLocs;
813
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
814
*DAG.getContext());
815
AnalyzeArguments(CCInfo, ArgLocs, Outs);
816
817
// Get a count of how many bytes are to be pushed on the stack.
818
unsigned NumBytes = CCInfo.getStackSize();
819
MVT PtrVT = getFrameIndexTy(DAG.getDataLayout());
820
821
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
822
823
SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
824
SmallVector<SDValue, 12> MemOpChains;
825
SDValue StackPtr;
826
827
// Walk the register/memloc assignments, inserting copies/loads.
828
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
829
CCValAssign &VA = ArgLocs[i];
830
831
SDValue Arg = OutVals[i];
832
833
// Promote the value if needed.
834
switch (VA.getLocInfo()) {
835
default: llvm_unreachable("Unknown loc info!");
836
case CCValAssign::Full: break;
837
case CCValAssign::SExt:
838
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
839
break;
840
case CCValAssign::ZExt:
841
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
842
break;
843
case CCValAssign::AExt:
844
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
845
break;
846
}
847
848
// Arguments that can be passed on register must be kept at RegsToPass
849
// vector
850
if (VA.isRegLoc()) {
851
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
852
} else {
853
assert(VA.isMemLoc());
854
855
if (!StackPtr.getNode())
856
StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
857
858
SDValue PtrOff =
859
DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
860
DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
861
862
SDValue MemOp;
863
ISD::ArgFlagsTy Flags = Outs[i].Flags;
864
865
if (Flags.isByVal()) {
866
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
867
MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
868
Flags.getNonZeroByValAlign(),
869
/*isVolatile*/ false,
870
/*AlwaysInline=*/true,
871
/*CI=*/nullptr, std::nullopt,
872
MachinePointerInfo(), MachinePointerInfo());
873
} else {
874
MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
875
}
876
877
MemOpChains.push_back(MemOp);
878
}
879
}
880
881
// Transform all store nodes into one single node because all store nodes are
882
// independent of each other.
883
if (!MemOpChains.empty())
884
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
885
886
// Build a sequence of copy-to-reg nodes chained together with token chain and
887
// flag operands which copy the outgoing args into registers. The InGlue in
888
// necessary since all emitted instructions must be stuck together.
889
SDValue InGlue;
890
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
891
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
892
RegsToPass[i].second, InGlue);
893
InGlue = Chain.getValue(1);
894
}
895
896
// If the callee is a GlobalAddress node (quite common, every direct call is)
897
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
898
// Likewise ExternalSymbol -> TargetExternalSymbol.
899
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
900
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
901
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
902
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
903
904
// Returns a chain & a flag for retval copy to use.
905
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
906
SmallVector<SDValue, 8> Ops;
907
Ops.push_back(Chain);
908
Ops.push_back(Callee);
909
910
// Add argument registers to the end of the list so that they are
911
// known live into the call.
912
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
913
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
914
RegsToPass[i].second.getValueType()));
915
916
if (InGlue.getNode())
917
Ops.push_back(InGlue);
918
919
Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
920
InGlue = Chain.getValue(1);
921
922
// Create the CALLSEQ_END node.
923
Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, dl);
924
InGlue = Chain.getValue(1);
925
926
// Handle result values, copying them out of physregs into vregs that we
927
// return.
928
return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl,
929
DAG, InVals);
930
}
931
932
/// LowerCallResult - Lower the result values of a call into the
933
/// appropriate copies out of appropriate physical registers.
934
///
935
SDValue MSP430TargetLowering::LowerCallResult(
936
SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
937
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
938
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
939
940
// Assign locations to each value returned by this call.
941
SmallVector<CCValAssign, 16> RVLocs;
942
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
943
*DAG.getContext());
944
945
AnalyzeReturnValues(CCInfo, RVLocs, Ins);
946
947
// Copy all of the result registers out of their specified physreg.
948
for (unsigned i = 0; i != RVLocs.size(); ++i) {
949
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
950
RVLocs[i].getValVT(), InGlue).getValue(1);
951
InGlue = Chain.getValue(2);
952
InVals.push_back(Chain.getValue(0));
953
}
954
955
return Chain;
956
}
957
958
SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
959
SelectionDAG &DAG) const {
960
unsigned Opc = Op.getOpcode();
961
SDNode* N = Op.getNode();
962
EVT VT = Op.getValueType();
963
SDLoc dl(N);
964
965
// Expand non-constant shifts to loops:
966
if (!isa<ConstantSDNode>(N->getOperand(1)))
967
return Op;
968
969
uint64_t ShiftAmount = N->getConstantOperandVal(1);
970
971
// Expand the stuff into sequence of shifts.
972
SDValue Victim = N->getOperand(0);
973
974
if (ShiftAmount >= 8) {
975
assert(VT == MVT::i16 && "Can not shift i8 by 8 and more");
976
switch(Opc) {
977
default:
978
llvm_unreachable("Unknown shift");
979
case ISD::SHL:
980
// foo << (8 + N) => swpb(zext(foo)) << N
981
Victim = DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
982
Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
983
break;
984
case ISD::SRA:
985
case ISD::SRL:
986
// foo >> (8 + N) => sxt(swpb(foo)) >> N
987
Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
988
Victim = (Opc == ISD::SRA)
989
? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Victim,
990
DAG.getValueType(MVT::i8))
991
: DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
992
break;
993
}
994
ShiftAmount -= 8;
995
}
996
997
if (Opc == ISD::SRL && ShiftAmount) {
998
// Emit a special goodness here:
999
// srl A, 1 => clrc; rrc A
1000
Victim = DAG.getNode(MSP430ISD::RRCL, dl, VT, Victim);
1001
ShiftAmount -= 1;
1002
}
1003
1004
while (ShiftAmount--)
1005
Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
1006
dl, VT, Victim);
1007
1008
return Victim;
1009
}
1010
1011
SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
1012
SelectionDAG &DAG) const {
1013
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1014
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1015
EVT PtrVT = Op.getValueType();
1016
1017
// Create the TargetGlobalAddress node, folding in the constant offset.
1018
SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
1019
return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
1020
}
1021
1022
SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
1023
SelectionDAG &DAG) const {
1024
SDLoc dl(Op);
1025
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
1026
EVT PtrVT = Op.getValueType();
1027
SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
1028
1029
return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1030
}
1031
1032
SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
1033
SelectionDAG &DAG) const {
1034
SDLoc dl(Op);
1035
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1036
EVT PtrVT = Op.getValueType();
1037
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
1038
1039
return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
1040
}
1041
1042
static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
1043
ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) {
1044
// FIXME: Handle bittests someday
1045
assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
1046
1047
// FIXME: Handle jump negative someday
1048
MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
1049
switch (CC) {
1050
default: llvm_unreachable("Invalid integer condition!");
1051
case ISD::SETEQ:
1052
TCC = MSP430CC::COND_E; // aka COND_Z
1053
// Minor optimization: if LHS is a constant, swap operands, then the
1054
// constant can be folded into comparison.
1055
if (LHS.getOpcode() == ISD::Constant)
1056
std::swap(LHS, RHS);
1057
break;
1058
case ISD::SETNE:
1059
TCC = MSP430CC::COND_NE; // aka COND_NZ
1060
// Minor optimization: if LHS is a constant, swap operands, then the
1061
// constant can be folded into comparison.
1062
if (LHS.getOpcode() == ISD::Constant)
1063
std::swap(LHS, RHS);
1064
break;
1065
case ISD::SETULE:
1066
std::swap(LHS, RHS);
1067
[[fallthrough]];
1068
case ISD::SETUGE:
1069
// Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
1070
// fold constant into instruction.
1071
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1072
LHS = RHS;
1073
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1074
TCC = MSP430CC::COND_LO;
1075
break;
1076
}
1077
TCC = MSP430CC::COND_HS; // aka COND_C
1078
break;
1079
case ISD::SETUGT:
1080
std::swap(LHS, RHS);
1081
[[fallthrough]];
1082
case ISD::SETULT:
1083
// Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
1084
// fold constant into instruction.
1085
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1086
LHS = RHS;
1087
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1088
TCC = MSP430CC::COND_HS;
1089
break;
1090
}
1091
TCC = MSP430CC::COND_LO; // aka COND_NC
1092
break;
1093
case ISD::SETLE:
1094
std::swap(LHS, RHS);
1095
[[fallthrough]];
1096
case ISD::SETGE:
1097
// Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
1098
// fold constant into instruction.
1099
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1100
LHS = RHS;
1101
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1102
TCC = MSP430CC::COND_L;
1103
break;
1104
}
1105
TCC = MSP430CC::COND_GE;
1106
break;
1107
case ISD::SETGT:
1108
std::swap(LHS, RHS);
1109
[[fallthrough]];
1110
case ISD::SETLT:
1111
// Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
1112
// fold constant into instruction.
1113
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
1114
LHS = RHS;
1115
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
1116
TCC = MSP430CC::COND_GE;
1117
break;
1118
}
1119
TCC = MSP430CC::COND_L;
1120
break;
1121
}
1122
1123
TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
1124
return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
1125
}
1126
1127
1128
SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1129
SDValue Chain = Op.getOperand(0);
1130
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1131
SDValue LHS = Op.getOperand(2);
1132
SDValue RHS = Op.getOperand(3);
1133
SDValue Dest = Op.getOperand(4);
1134
SDLoc dl (Op);
1135
1136
SDValue TargetCC;
1137
SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1138
1139
return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
1140
Chain, Dest, TargetCC, Flag);
1141
}
1142
1143
SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1144
SDValue LHS = Op.getOperand(0);
1145
SDValue RHS = Op.getOperand(1);
1146
SDLoc dl (Op);
1147
1148
// If we are doing an AND and testing against zero, then the CMP
1149
// will not be generated. The AND (or BIT) will generate the condition codes,
1150
// but they are different from CMP.
1151
// FIXME: since we're doing a post-processing, use a pseudoinstr here, so
1152
// lowering & isel wouldn't diverge.
1153
bool andCC = isNullConstant(RHS) && LHS.hasOneUse() &&
1154
(LHS.getOpcode() == ISD::AND ||
1155
(LHS.getOpcode() == ISD::TRUNCATE &&
1156
LHS.getOperand(0).getOpcode() == ISD::AND));
1157
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1158
SDValue TargetCC;
1159
SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1160
1161
// Get the condition codes directly from the status register, if its easy.
1162
// Otherwise a branch will be generated. Note that the AND and BIT
1163
// instructions generate different flags than CMP, the carry bit can be used
1164
// for NE/EQ.
1165
bool Invert = false;
1166
bool Shift = false;
1167
bool Convert = true;
1168
switch (TargetCC->getAsZExtVal()) {
1169
default:
1170
Convert = false;
1171
break;
1172
case MSP430CC::COND_HS:
1173
// Res = SR & 1, no processing is required
1174
break;
1175
case MSP430CC::COND_LO:
1176
// Res = ~(SR & 1)
1177
Invert = true;
1178
break;
1179
case MSP430CC::COND_NE:
1180
if (andCC) {
1181
// C = ~Z, thus Res = SR & 1, no processing is required
1182
} else {
1183
// Res = ~((SR >> 1) & 1)
1184
Shift = true;
1185
Invert = true;
1186
}
1187
break;
1188
case MSP430CC::COND_E:
1189
Shift = true;
1190
// C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
1191
// Res = (SR >> 1) & 1 is 1 word shorter.
1192
break;
1193
}
1194
EVT VT = Op.getValueType();
1195
SDValue One = DAG.getConstant(1, dl, VT);
1196
if (Convert) {
1197
SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
1198
MVT::i16, Flag);
1199
if (Shift)
1200
// FIXME: somewhere this is turned into a SRL, lower it MSP specific?
1201
SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
1202
SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
1203
if (Invert)
1204
SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
1205
return SR;
1206
} else {
1207
SDValue Zero = DAG.getConstant(0, dl, VT);
1208
SDValue Ops[] = {One, Zero, TargetCC, Flag};
1209
return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops);
1210
}
1211
}
1212
1213
SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
1214
SelectionDAG &DAG) const {
1215
SDValue LHS = Op.getOperand(0);
1216
SDValue RHS = Op.getOperand(1);
1217
SDValue TrueV = Op.getOperand(2);
1218
SDValue FalseV = Op.getOperand(3);
1219
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1220
SDLoc dl (Op);
1221
1222
SDValue TargetCC;
1223
SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
1224
1225
SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
1226
1227
return DAG.getNode(MSP430ISD::SELECT_CC, dl, Op.getValueType(), Ops);
1228
}
1229
1230
SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
1231
SelectionDAG &DAG) const {
1232
SDValue Val = Op.getOperand(0);
1233
EVT VT = Op.getValueType();
1234
SDLoc dl(Op);
1235
1236
assert(VT == MVT::i16 && "Only support i16 for now!");
1237
1238
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
1239
DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
1240
DAG.getValueType(Val.getValueType()));
1241
}
1242
1243
SDValue
1244
MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
1245
MachineFunction &MF = DAG.getMachineFunction();
1246
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1247
int ReturnAddrIndex = FuncInfo->getRAIndex();
1248
MVT PtrVT = getFrameIndexTy(MF.getDataLayout());
1249
1250
if (ReturnAddrIndex == 0) {
1251
// Set up a frame object for the return address.
1252
uint64_t SlotSize = PtrVT.getStoreSize();
1253
ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize,
1254
true);
1255
FuncInfo->setRAIndex(ReturnAddrIndex);
1256
}
1257
1258
return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
1259
}
1260
1261
SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
1262
SelectionDAG &DAG) const {
1263
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1264
MFI.setReturnAddressIsTaken(true);
1265
1266
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1267
return SDValue();
1268
1269
unsigned Depth = Op.getConstantOperandVal(0);
1270
SDLoc dl(Op);
1271
EVT PtrVT = Op.getValueType();
1272
1273
if (Depth > 0) {
1274
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1275
SDValue Offset =
1276
DAG.getConstant(PtrVT.getStoreSize(), dl, MVT::i16);
1277
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1278
DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
1279
MachinePointerInfo());
1280
}
1281
1282
// Just load the return address.
1283
SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
1284
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
1285
MachinePointerInfo());
1286
}
1287
1288
SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
1289
SelectionDAG &DAG) const {
1290
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1291
MFI.setFrameAddressIsTaken(true);
1292
1293
EVT VT = Op.getValueType();
1294
SDLoc dl(Op); // FIXME probably not meaningful
1295
unsigned Depth = Op.getConstantOperandVal(0);
1296
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1297
MSP430::R4, VT);
1298
while (Depth--)
1299
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1300
MachinePointerInfo());
1301
return FrameAddr;
1302
}
1303
1304
SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
1305
SelectionDAG &DAG) const {
1306
MachineFunction &MF = DAG.getMachineFunction();
1307
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
1308
1309
SDValue Ptr = Op.getOperand(1);
1310
EVT PtrVT = Ptr.getValueType();
1311
1312
// Frame index of first vararg argument
1313
SDValue FrameIndex =
1314
DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1315
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1316
1317
// Create a store of the frame index to the location operand
1318
return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Ptr,
1319
MachinePointerInfo(SV));
1320
}
1321
1322
SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
1323
SelectionDAG &DAG) const {
1324
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1325
EVT PtrVT = Op.getValueType();
1326
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1327
return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
1328
}
1329
1330
/// getPostIndexedAddressParts - returns true by value, base pointer and
1331
/// offset pointer and addressing mode by reference if this node can be
1332
/// combined with a load / store to form a post-indexed load / store.
1333
bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
1334
SDValue &Base,
1335
SDValue &Offset,
1336
ISD::MemIndexedMode &AM,
1337
SelectionDAG &DAG) const {
1338
1339
LoadSDNode *LD = cast<LoadSDNode>(N);
1340
if (LD->getExtensionType() != ISD::NON_EXTLOAD)
1341
return false;
1342
1343
EVT VT = LD->getMemoryVT();
1344
if (VT != MVT::i8 && VT != MVT::i16)
1345
return false;
1346
1347
if (Op->getOpcode() != ISD::ADD)
1348
return false;
1349
1350
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
1351
uint64_t RHSC = RHS->getZExtValue();
1352
if ((VT == MVT::i16 && RHSC != 2) ||
1353
(VT == MVT::i8 && RHSC != 1))
1354
return false;
1355
1356
Base = Op->getOperand(0);
1357
Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
1358
AM = ISD::POST_INC;
1359
return true;
1360
}
1361
1362
return false;
1363
}
1364
1365
1366
const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
1367
switch ((MSP430ISD::NodeType)Opcode) {
1368
case MSP430ISD::FIRST_NUMBER: break;
1369
case MSP430ISD::RET_GLUE: return "MSP430ISD::RET_GLUE";
1370
case MSP430ISD::RETI_GLUE: return "MSP430ISD::RETI_GLUE";
1371
case MSP430ISD::RRA: return "MSP430ISD::RRA";
1372
case MSP430ISD::RLA: return "MSP430ISD::RLA";
1373
case MSP430ISD::RRC: return "MSP430ISD::RRC";
1374
case MSP430ISD::RRCL: return "MSP430ISD::RRCL";
1375
case MSP430ISD::CALL: return "MSP430ISD::CALL";
1376
case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper";
1377
case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC";
1378
case MSP430ISD::CMP: return "MSP430ISD::CMP";
1379
case MSP430ISD::SETCC: return "MSP430ISD::SETCC";
1380
case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC";
1381
case MSP430ISD::DADD: return "MSP430ISD::DADD";
1382
}
1383
return nullptr;
1384
}
1385
1386
bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
1387
Type *Ty2) const {
1388
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1389
return false;
1390
1391
return (Ty1->getPrimitiveSizeInBits().getFixedValue() >
1392
Ty2->getPrimitiveSizeInBits().getFixedValue());
1393
}
1394
1395
bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1396
if (!VT1.isInteger() || !VT2.isInteger())
1397
return false;
1398
1399
return (VT1.getFixedSizeInBits() > VT2.getFixedSizeInBits());
1400
}
1401
1402
bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
1403
// MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1404
return false && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
1405
}
1406
1407
bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
1408
// MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
1409
return false && VT1 == MVT::i8 && VT2 == MVT::i16;
1410
}
1411
1412
//===----------------------------------------------------------------------===//
1413
// Other Lowering Code
1414
//===----------------------------------------------------------------------===//
1415
1416
MachineBasicBlock *
1417
MSP430TargetLowering::EmitShiftInstr(MachineInstr &MI,
1418
MachineBasicBlock *BB) const {
1419
MachineFunction *F = BB->getParent();
1420
MachineRegisterInfo &RI = F->getRegInfo();
1421
DebugLoc dl = MI.getDebugLoc();
1422
const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
1423
1424
unsigned Opc;
1425
bool ClearCarry = false;
1426
const TargetRegisterClass * RC;
1427
switch (MI.getOpcode()) {
1428
default: llvm_unreachable("Invalid shift opcode!");
1429
case MSP430::Shl8:
1430
Opc = MSP430::ADD8rr;
1431
RC = &MSP430::GR8RegClass;
1432
break;
1433
case MSP430::Shl16:
1434
Opc = MSP430::ADD16rr;
1435
RC = &MSP430::GR16RegClass;
1436
break;
1437
case MSP430::Sra8:
1438
Opc = MSP430::RRA8r;
1439
RC = &MSP430::GR8RegClass;
1440
break;
1441
case MSP430::Sra16:
1442
Opc = MSP430::RRA16r;
1443
RC = &MSP430::GR16RegClass;
1444
break;
1445
case MSP430::Srl8:
1446
ClearCarry = true;
1447
Opc = MSP430::RRC8r;
1448
RC = &MSP430::GR8RegClass;
1449
break;
1450
case MSP430::Srl16:
1451
ClearCarry = true;
1452
Opc = MSP430::RRC16r;
1453
RC = &MSP430::GR16RegClass;
1454
break;
1455
case MSP430::Rrcl8:
1456
case MSP430::Rrcl16: {
1457
BuildMI(*BB, MI, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1458
.addReg(MSP430::SR).addImm(1);
1459
Register SrcReg = MI.getOperand(1).getReg();
1460
Register DstReg = MI.getOperand(0).getReg();
1461
unsigned RrcOpc = MI.getOpcode() == MSP430::Rrcl16
1462
? MSP430::RRC16r : MSP430::RRC8r;
1463
BuildMI(*BB, MI, dl, TII.get(RrcOpc), DstReg)
1464
.addReg(SrcReg);
1465
MI.eraseFromParent(); // The pseudo instruction is gone now.
1466
return BB;
1467
}
1468
}
1469
1470
const BasicBlock *LLVM_BB = BB->getBasicBlock();
1471
MachineFunction::iterator I = ++BB->getIterator();
1472
1473
// Create loop block
1474
MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1475
MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1476
1477
F->insert(I, LoopBB);
1478
F->insert(I, RemBB);
1479
1480
// Update machine-CFG edges by transferring all successors of the current
1481
// block to the block containing instructions after shift.
1482
RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1483
BB->end());
1484
RemBB->transferSuccessorsAndUpdatePHIs(BB);
1485
1486
// Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
1487
BB->addSuccessor(LoopBB);
1488
BB->addSuccessor(RemBB);
1489
LoopBB->addSuccessor(RemBB);
1490
LoopBB->addSuccessor(LoopBB);
1491
1492
Register ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
1493
Register ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
1494
Register ShiftReg = RI.createVirtualRegister(RC);
1495
Register ShiftReg2 = RI.createVirtualRegister(RC);
1496
Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1497
Register SrcReg = MI.getOperand(1).getReg();
1498
Register DstReg = MI.getOperand(0).getReg();
1499
1500
// BB:
1501
// cmp 0, N
1502
// je RemBB
1503
BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
1504
.addReg(ShiftAmtSrcReg).addImm(0);
1505
BuildMI(BB, dl, TII.get(MSP430::JCC))
1506
.addMBB(RemBB)
1507
.addImm(MSP430CC::COND_E);
1508
1509
// LoopBB:
1510
// ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1511
// ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1512
// ShiftReg2 = shift ShiftReg
1513
// ShiftAmt2 = ShiftAmt - 1;
1514
BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
1515
.addReg(SrcReg).addMBB(BB)
1516
.addReg(ShiftReg2).addMBB(LoopBB);
1517
BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
1518
.addReg(ShiftAmtSrcReg).addMBB(BB)
1519
.addReg(ShiftAmtReg2).addMBB(LoopBB);
1520
if (ClearCarry)
1521
BuildMI(LoopBB, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
1522
.addReg(MSP430::SR).addImm(1);
1523
if (Opc == MSP430::ADD8rr || Opc == MSP430::ADD16rr)
1524
BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1525
.addReg(ShiftReg)
1526
.addReg(ShiftReg);
1527
else
1528
BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
1529
.addReg(ShiftReg);
1530
BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
1531
.addReg(ShiftAmtReg).addImm(1);
1532
BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
1533
.addMBB(LoopBB)
1534
.addImm(MSP430CC::COND_NE);
1535
1536
// RemBB:
1537
// DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1538
BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
1539
.addReg(SrcReg).addMBB(BB)
1540
.addReg(ShiftReg2).addMBB(LoopBB);
1541
1542
MI.eraseFromParent(); // The pseudo instruction is gone now.
1543
return RemBB;
1544
}
1545
1546
MachineBasicBlock *
1547
MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1548
MachineBasicBlock *BB) const {
1549
unsigned Opc = MI.getOpcode();
1550
1551
if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
1552
Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
1553
Opc == MSP430::Srl8 || Opc == MSP430::Srl16 ||
1554
Opc == MSP430::Rrcl8 || Opc == MSP430::Rrcl16)
1555
return EmitShiftInstr(MI, BB);
1556
1557
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1558
DebugLoc dl = MI.getDebugLoc();
1559
1560
assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
1561
"Unexpected instr type to insert");
1562
1563
// To "insert" a SELECT instruction, we actually have to insert the diamond
1564
// control-flow pattern. The incoming instruction knows the destination vreg
1565
// to set, the condition code register to branch on, the true/false values to
1566
// select between, and a branch opcode to use.
1567
const BasicBlock *LLVM_BB = BB->getBasicBlock();
1568
MachineFunction::iterator I = ++BB->getIterator();
1569
1570
// thisMBB:
1571
// ...
1572
// TrueVal = ...
1573
// cmpTY ccX, r1, r2
1574
// jCC copy1MBB
1575
// fallthrough --> copy0MBB
1576
MachineBasicBlock *thisMBB = BB;
1577
MachineFunction *F = BB->getParent();
1578
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1579
MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
1580
F->insert(I, copy0MBB);
1581
F->insert(I, copy1MBB);
1582
// Update machine-CFG edges by transferring all successors of the current
1583
// block to the new block which will contain the Phi node for the select.
1584
copy1MBB->splice(copy1MBB->begin(), BB,
1585
std::next(MachineBasicBlock::iterator(MI)), BB->end());
1586
copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
1587
// Next, add the true and fallthrough blocks as its successors.
1588
BB->addSuccessor(copy0MBB);
1589
BB->addSuccessor(copy1MBB);
1590
1591
BuildMI(BB, dl, TII.get(MSP430::JCC))
1592
.addMBB(copy1MBB)
1593
.addImm(MI.getOperand(3).getImm());
1594
1595
// copy0MBB:
1596
// %FalseValue = ...
1597
// # fallthrough to copy1MBB
1598
BB = copy0MBB;
1599
1600
// Update machine-CFG edges
1601
BB->addSuccessor(copy1MBB);
1602
1603
// copy1MBB:
1604
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1605
// ...
1606
BB = copy1MBB;
1607
BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg())
1608
.addReg(MI.getOperand(2).getReg())
1609
.addMBB(copy0MBB)
1610
.addReg(MI.getOperand(1).getReg())
1611
.addMBB(thisMBB);
1612
1613
MI.eraseFromParent(); // The pseudo instruction is gone now.
1614
return BB;
1615
}
1616
1617