Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/NVPTX/NVPTXTargetTransformInfo.cpp
35271 views
1
//===-- NVPTXTargetTransformInfo.cpp - NVPTX specific TTI -----------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "NVPTXTargetTransformInfo.h"
10
#include "NVPTXUtilities.h"
11
#include "llvm/Analysis/LoopInfo.h"
12
#include "llvm/Analysis/TargetTransformInfo.h"
13
#include "llvm/Analysis/ValueTracking.h"
14
#include "llvm/CodeGen/BasicTTIImpl.h"
15
#include "llvm/CodeGen/CostTable.h"
16
#include "llvm/CodeGen/TargetLowering.h"
17
#include "llvm/IR/IntrinsicsNVPTX.h"
18
#include "llvm/Support/Debug.h"
19
#include <optional>
20
using namespace llvm;
21
22
#define DEBUG_TYPE "NVPTXtti"
23
24
// Whether the given intrinsic reads threadIdx.x/y/z.
25
static bool readsThreadIndex(const IntrinsicInst *II) {
26
switch (II->getIntrinsicID()) {
27
default: return false;
28
case Intrinsic::nvvm_read_ptx_sreg_tid_x:
29
case Intrinsic::nvvm_read_ptx_sreg_tid_y:
30
case Intrinsic::nvvm_read_ptx_sreg_tid_z:
31
return true;
32
}
33
}
34
35
static bool readsLaneId(const IntrinsicInst *II) {
36
return II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_laneid;
37
}
38
39
// Whether the given intrinsic is an atomic instruction in PTX.
40
static bool isNVVMAtomic(const IntrinsicInst *II) {
41
switch (II->getIntrinsicID()) {
42
default: return false;
43
case Intrinsic::nvvm_atomic_load_inc_32:
44
case Intrinsic::nvvm_atomic_load_dec_32:
45
46
case Intrinsic::nvvm_atomic_add_gen_f_cta:
47
case Intrinsic::nvvm_atomic_add_gen_f_sys:
48
case Intrinsic::nvvm_atomic_add_gen_i_cta:
49
case Intrinsic::nvvm_atomic_add_gen_i_sys:
50
case Intrinsic::nvvm_atomic_and_gen_i_cta:
51
case Intrinsic::nvvm_atomic_and_gen_i_sys:
52
case Intrinsic::nvvm_atomic_cas_gen_i_cta:
53
case Intrinsic::nvvm_atomic_cas_gen_i_sys:
54
case Intrinsic::nvvm_atomic_dec_gen_i_cta:
55
case Intrinsic::nvvm_atomic_dec_gen_i_sys:
56
case Intrinsic::nvvm_atomic_inc_gen_i_cta:
57
case Intrinsic::nvvm_atomic_inc_gen_i_sys:
58
case Intrinsic::nvvm_atomic_max_gen_i_cta:
59
case Intrinsic::nvvm_atomic_max_gen_i_sys:
60
case Intrinsic::nvvm_atomic_min_gen_i_cta:
61
case Intrinsic::nvvm_atomic_min_gen_i_sys:
62
case Intrinsic::nvvm_atomic_or_gen_i_cta:
63
case Intrinsic::nvvm_atomic_or_gen_i_sys:
64
case Intrinsic::nvvm_atomic_exch_gen_i_cta:
65
case Intrinsic::nvvm_atomic_exch_gen_i_sys:
66
case Intrinsic::nvvm_atomic_xor_gen_i_cta:
67
case Intrinsic::nvvm_atomic_xor_gen_i_sys:
68
return true;
69
}
70
}
71
72
bool NVPTXTTIImpl::isSourceOfDivergence(const Value *V) {
73
// Without inter-procedural analysis, we conservatively assume that arguments
74
// to __device__ functions are divergent.
75
if (const Argument *Arg = dyn_cast<Argument>(V))
76
return !isKernelFunction(*Arg->getParent());
77
78
if (const Instruction *I = dyn_cast<Instruction>(V)) {
79
// Without pointer analysis, we conservatively assume values loaded from
80
// generic or local address space are divergent.
81
if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
82
unsigned AS = LI->getPointerAddressSpace();
83
return AS == ADDRESS_SPACE_GENERIC || AS == ADDRESS_SPACE_LOCAL;
84
}
85
// Atomic instructions may cause divergence. Atomic instructions are
86
// executed sequentially across all threads in a warp. Therefore, an earlier
87
// executed thread may see different memory inputs than a later executed
88
// thread. For example, suppose *a = 0 initially.
89
//
90
// atom.global.add.s32 d, [a], 1
91
//
92
// returns 0 for the first thread that enters the critical region, and 1 for
93
// the second thread.
94
if (I->isAtomic())
95
return true;
96
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
97
// Instructions that read threadIdx are obviously divergent.
98
if (readsThreadIndex(II) || readsLaneId(II))
99
return true;
100
// Handle the NVPTX atomic intrinsics that cannot be represented as an
101
// atomic IR instruction.
102
if (isNVVMAtomic(II))
103
return true;
104
}
105
// Conservatively consider the return value of function calls as divergent.
106
// We could analyze callees with bodies more precisely using
107
// inter-procedural analysis.
108
if (isa<CallInst>(I))
109
return true;
110
}
111
112
return false;
113
}
114
115
// Convert NVVM intrinsics to target-generic LLVM code where possible.
116
static Instruction *simplifyNvvmIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
117
// Each NVVM intrinsic we can simplify can be replaced with one of:
118
//
119
// * an LLVM intrinsic,
120
// * an LLVM cast operation,
121
// * an LLVM binary operation, or
122
// * ad-hoc LLVM IR for the particular operation.
123
124
// Some transformations are only valid when the module's
125
// flush-denormals-to-zero (ftz) setting is true/false, whereas other
126
// transformations are valid regardless of the module's ftz setting.
127
enum FtzRequirementTy {
128
FTZ_Any, // Any ftz setting is ok.
129
FTZ_MustBeOn, // Transformation is valid only if ftz is on.
130
FTZ_MustBeOff, // Transformation is valid only if ftz is off.
131
};
132
// Classes of NVVM intrinsics that can't be replaced one-to-one with a
133
// target-generic intrinsic, cast op, or binary op but that we can nonetheless
134
// simplify.
135
enum SpecialCase {
136
SPC_Reciprocal,
137
};
138
139
// SimplifyAction is a poor-man's variant (plus an additional flag) that
140
// represents how to replace an NVVM intrinsic with target-generic LLVM IR.
141
struct SimplifyAction {
142
// Invariant: At most one of these Optionals has a value.
143
std::optional<Intrinsic::ID> IID;
144
std::optional<Instruction::CastOps> CastOp;
145
std::optional<Instruction::BinaryOps> BinaryOp;
146
std::optional<SpecialCase> Special;
147
148
FtzRequirementTy FtzRequirement = FTZ_Any;
149
// Denormal handling is guarded by different attributes depending on the
150
// type (denormal-fp-math vs denormal-fp-math-f32), take note of halfs.
151
bool IsHalfTy = false;
152
153
SimplifyAction() = default;
154
155
SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq,
156
bool IsHalfTy = false)
157
: IID(IID), FtzRequirement(FtzReq), IsHalfTy(IsHalfTy) {}
158
159
// Cast operations don't have anything to do with FTZ, so we skip that
160
// argument.
161
SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
162
163
SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
164
: BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
165
166
SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
167
: Special(Special), FtzRequirement(FtzReq) {}
168
};
169
170
// Try to generate a SimplifyAction describing how to replace our
171
// IntrinsicInstr with target-generic LLVM IR.
172
const SimplifyAction Action = [II]() -> SimplifyAction {
173
switch (II->getIntrinsicID()) {
174
// NVVM intrinsics that map directly to LLVM intrinsics.
175
case Intrinsic::nvvm_ceil_d:
176
return {Intrinsic::ceil, FTZ_Any};
177
case Intrinsic::nvvm_ceil_f:
178
return {Intrinsic::ceil, FTZ_MustBeOff};
179
case Intrinsic::nvvm_ceil_ftz_f:
180
return {Intrinsic::ceil, FTZ_MustBeOn};
181
case Intrinsic::nvvm_fabs_d:
182
return {Intrinsic::fabs, FTZ_Any};
183
case Intrinsic::nvvm_floor_d:
184
return {Intrinsic::floor, FTZ_Any};
185
case Intrinsic::nvvm_floor_f:
186
return {Intrinsic::floor, FTZ_MustBeOff};
187
case Intrinsic::nvvm_floor_ftz_f:
188
return {Intrinsic::floor, FTZ_MustBeOn};
189
case Intrinsic::nvvm_fma_rn_d:
190
return {Intrinsic::fma, FTZ_Any};
191
case Intrinsic::nvvm_fma_rn_f:
192
return {Intrinsic::fma, FTZ_MustBeOff};
193
case Intrinsic::nvvm_fma_rn_ftz_f:
194
return {Intrinsic::fma, FTZ_MustBeOn};
195
case Intrinsic::nvvm_fma_rn_f16:
196
return {Intrinsic::fma, FTZ_MustBeOff, true};
197
case Intrinsic::nvvm_fma_rn_ftz_f16:
198
return {Intrinsic::fma, FTZ_MustBeOn, true};
199
case Intrinsic::nvvm_fma_rn_f16x2:
200
return {Intrinsic::fma, FTZ_MustBeOff, true};
201
case Intrinsic::nvvm_fma_rn_ftz_f16x2:
202
return {Intrinsic::fma, FTZ_MustBeOn, true};
203
case Intrinsic::nvvm_fma_rn_bf16:
204
return {Intrinsic::fma, FTZ_MustBeOff, true};
205
case Intrinsic::nvvm_fma_rn_ftz_bf16:
206
return {Intrinsic::fma, FTZ_MustBeOn, true};
207
case Intrinsic::nvvm_fma_rn_bf16x2:
208
return {Intrinsic::fma, FTZ_MustBeOff, true};
209
case Intrinsic::nvvm_fma_rn_ftz_bf16x2:
210
return {Intrinsic::fma, FTZ_MustBeOn, true};
211
case Intrinsic::nvvm_fmax_d:
212
return {Intrinsic::maxnum, FTZ_Any};
213
case Intrinsic::nvvm_fmax_f:
214
return {Intrinsic::maxnum, FTZ_MustBeOff};
215
case Intrinsic::nvvm_fmax_ftz_f:
216
return {Intrinsic::maxnum, FTZ_MustBeOn};
217
case Intrinsic::nvvm_fmax_nan_f:
218
return {Intrinsic::maximum, FTZ_MustBeOff};
219
case Intrinsic::nvvm_fmax_ftz_nan_f:
220
return {Intrinsic::maximum, FTZ_MustBeOn};
221
case Intrinsic::nvvm_fmax_f16:
222
return {Intrinsic::maxnum, FTZ_MustBeOff, true};
223
case Intrinsic::nvvm_fmax_ftz_f16:
224
return {Intrinsic::maxnum, FTZ_MustBeOn, true};
225
case Intrinsic::nvvm_fmax_f16x2:
226
return {Intrinsic::maxnum, FTZ_MustBeOff, true};
227
case Intrinsic::nvvm_fmax_ftz_f16x2:
228
return {Intrinsic::maxnum, FTZ_MustBeOn, true};
229
case Intrinsic::nvvm_fmax_nan_f16:
230
return {Intrinsic::maximum, FTZ_MustBeOff, true};
231
case Intrinsic::nvvm_fmax_ftz_nan_f16:
232
return {Intrinsic::maximum, FTZ_MustBeOn, true};
233
case Intrinsic::nvvm_fmax_nan_f16x2:
234
return {Intrinsic::maximum, FTZ_MustBeOff, true};
235
case Intrinsic::nvvm_fmax_ftz_nan_f16x2:
236
return {Intrinsic::maximum, FTZ_MustBeOn, true};
237
case Intrinsic::nvvm_fmin_d:
238
return {Intrinsic::minnum, FTZ_Any};
239
case Intrinsic::nvvm_fmin_f:
240
return {Intrinsic::minnum, FTZ_MustBeOff};
241
case Intrinsic::nvvm_fmin_ftz_f:
242
return {Intrinsic::minnum, FTZ_MustBeOn};
243
case Intrinsic::nvvm_fmin_nan_f:
244
return {Intrinsic::minimum, FTZ_MustBeOff};
245
case Intrinsic::nvvm_fmin_ftz_nan_f:
246
return {Intrinsic::minimum, FTZ_MustBeOn};
247
case Intrinsic::nvvm_fmin_f16:
248
return {Intrinsic::minnum, FTZ_MustBeOff, true};
249
case Intrinsic::nvvm_fmin_ftz_f16:
250
return {Intrinsic::minnum, FTZ_MustBeOn, true};
251
case Intrinsic::nvvm_fmin_f16x2:
252
return {Intrinsic::minnum, FTZ_MustBeOff, true};
253
case Intrinsic::nvvm_fmin_ftz_f16x2:
254
return {Intrinsic::minnum, FTZ_MustBeOn, true};
255
case Intrinsic::nvvm_fmin_nan_f16:
256
return {Intrinsic::minimum, FTZ_MustBeOff, true};
257
case Intrinsic::nvvm_fmin_ftz_nan_f16:
258
return {Intrinsic::minimum, FTZ_MustBeOn, true};
259
case Intrinsic::nvvm_fmin_nan_f16x2:
260
return {Intrinsic::minimum, FTZ_MustBeOff, true};
261
case Intrinsic::nvvm_fmin_ftz_nan_f16x2:
262
return {Intrinsic::minimum, FTZ_MustBeOn, true};
263
case Intrinsic::nvvm_sqrt_rn_d:
264
return {Intrinsic::sqrt, FTZ_Any};
265
case Intrinsic::nvvm_sqrt_f:
266
// nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
267
// ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
268
// the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
269
// the versions with explicit ftz-ness.
270
return {Intrinsic::sqrt, FTZ_Any};
271
case Intrinsic::nvvm_trunc_d:
272
return {Intrinsic::trunc, FTZ_Any};
273
case Intrinsic::nvvm_trunc_f:
274
return {Intrinsic::trunc, FTZ_MustBeOff};
275
case Intrinsic::nvvm_trunc_ftz_f:
276
return {Intrinsic::trunc, FTZ_MustBeOn};
277
278
// NVVM intrinsics that map to LLVM cast operations.
279
//
280
// Note that llvm's target-generic conversion operators correspond to the rz
281
// (round to zero) versions of the nvvm conversion intrinsics, even though
282
// most everything else here uses the rn (round to nearest even) nvvm ops.
283
case Intrinsic::nvvm_d2i_rz:
284
case Intrinsic::nvvm_f2i_rz:
285
case Intrinsic::nvvm_d2ll_rz:
286
case Intrinsic::nvvm_f2ll_rz:
287
return {Instruction::FPToSI};
288
case Intrinsic::nvvm_d2ui_rz:
289
case Intrinsic::nvvm_f2ui_rz:
290
case Intrinsic::nvvm_d2ull_rz:
291
case Intrinsic::nvvm_f2ull_rz:
292
return {Instruction::FPToUI};
293
case Intrinsic::nvvm_i2d_rz:
294
case Intrinsic::nvvm_i2f_rz:
295
case Intrinsic::nvvm_ll2d_rz:
296
case Intrinsic::nvvm_ll2f_rz:
297
return {Instruction::SIToFP};
298
case Intrinsic::nvvm_ui2d_rz:
299
case Intrinsic::nvvm_ui2f_rz:
300
case Intrinsic::nvvm_ull2d_rz:
301
case Intrinsic::nvvm_ull2f_rz:
302
return {Instruction::UIToFP};
303
304
// NVVM intrinsics that map to LLVM binary ops.
305
case Intrinsic::nvvm_div_rn_d:
306
return {Instruction::FDiv, FTZ_Any};
307
308
// The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
309
// need special handling.
310
//
311
// We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
312
// as well.
313
case Intrinsic::nvvm_rcp_rn_d:
314
return {SPC_Reciprocal, FTZ_Any};
315
316
// We do not currently simplify intrinsics that give an approximate
317
// answer. These include:
318
//
319
// - nvvm_cos_approx_{f,ftz_f}
320
// - nvvm_ex2_approx_{d,f,ftz_f}
321
// - nvvm_lg2_approx_{d,f,ftz_f}
322
// - nvvm_sin_approx_{f,ftz_f}
323
// - nvvm_sqrt_approx_{f,ftz_f}
324
// - nvvm_rsqrt_approx_{d,f,ftz_f}
325
// - nvvm_div_approx_{ftz_d,ftz_f,f}
326
// - nvvm_rcp_approx_ftz_d
327
//
328
// Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
329
// means that fastmath is enabled in the intrinsic. Unfortunately only
330
// binary operators (currently) have a fastmath bit in SelectionDAG, so
331
// this information gets lost and we can't select on it.
332
//
333
// TODO: div and rcp are lowered to a binary op, so these we could in
334
// theory lower them to "fast fdiv".
335
336
default:
337
return {};
338
}
339
}();
340
341
// If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
342
// can bail out now. (Notice that in the case that IID is not an NVVM
343
// intrinsic, we don't have to look up any module metadata, as
344
// FtzRequirementTy will be FTZ_Any.)
345
if (Action.FtzRequirement != FTZ_Any) {
346
// FIXME: Broken for f64
347
DenormalMode Mode = II->getFunction()->getDenormalMode(
348
Action.IsHalfTy ? APFloat::IEEEhalf() : APFloat::IEEEsingle());
349
bool FtzEnabled = Mode.Output == DenormalMode::PreserveSign;
350
351
if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
352
return nullptr;
353
}
354
355
// Simplify to target-generic intrinsic.
356
if (Action.IID) {
357
SmallVector<Value *, 4> Args(II->args());
358
// All the target-generic intrinsics currently of interest to us have one
359
// type argument, equal to that of the nvvm intrinsic's argument.
360
Type *Tys[] = {II->getArgOperand(0)->getType()};
361
return CallInst::Create(
362
Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
363
}
364
365
// Simplify to target-generic binary op.
366
if (Action.BinaryOp)
367
return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
368
II->getArgOperand(1), II->getName());
369
370
// Simplify to target-generic cast op.
371
if (Action.CastOp)
372
return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
373
II->getName());
374
375
// All that's left are the special cases.
376
if (!Action.Special)
377
return nullptr;
378
379
switch (*Action.Special) {
380
case SPC_Reciprocal:
381
// Simplify reciprocal.
382
return BinaryOperator::Create(
383
Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
384
II->getArgOperand(0), II->getName());
385
}
386
llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
387
}
388
389
std::optional<Instruction *>
390
NVPTXTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
391
if (Instruction *I = simplifyNvvmIntrinsic(&II, IC)) {
392
return I;
393
}
394
return std::nullopt;
395
}
396
397
InstructionCost NVPTXTTIImpl::getArithmeticInstrCost(
398
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
399
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
400
ArrayRef<const Value *> Args,
401
const Instruction *CxtI) {
402
// Legalize the type.
403
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
404
405
int ISD = TLI->InstructionOpcodeToISD(Opcode);
406
407
switch (ISD) {
408
default:
409
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
410
Op2Info);
411
case ISD::ADD:
412
case ISD::MUL:
413
case ISD::XOR:
414
case ISD::OR:
415
case ISD::AND:
416
// The machine code (SASS) simulates an i64 with two i32. Therefore, we
417
// estimate that arithmetic operations on i64 are twice as expensive as
418
// those on types that can fit into one machine register.
419
if (LT.second.SimpleTy == MVT::i64)
420
return 2 * LT.first;
421
// Delegate other cases to the basic TTI.
422
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
423
Op2Info);
424
}
425
}
426
427
void NVPTXTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
428
TTI::UnrollingPreferences &UP,
429
OptimizationRemarkEmitter *ORE) {
430
BaseT::getUnrollingPreferences(L, SE, UP, ORE);
431
432
// Enable partial unrolling and runtime unrolling, but reduce the
433
// threshold. This partially unrolls small loops which are often
434
// unrolled by the PTX to SASS compiler and unrolling earlier can be
435
// beneficial.
436
UP.Partial = UP.Runtime = true;
437
UP.PartialThreshold = UP.Threshold / 4;
438
}
439
440
void NVPTXTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
441
TTI::PeelingPreferences &PP) {
442
BaseT::getPeelingPreferences(L, SE, PP);
443
}
444
445