Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.h
35294 views
1
//===-- PPCMCTargetDesc.h - PowerPC Target Descriptions ---------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file provides PowerPC specific target descriptions.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCTARGETDESC_H
14
#define LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCTARGETDESC_H
15
16
// GCC #defines PPC on Linux but we use it as our namespace name
17
#undef PPC
18
19
#include "llvm/MC/MCRegisterInfo.h"
20
#include "llvm/Support/MathExtras.h"
21
#include <cstdint>
22
#include <memory>
23
24
namespace llvm {
25
26
class MCAsmBackend;
27
class MCCodeEmitter;
28
class MCContext;
29
class MCInstrDesc;
30
class MCInstrInfo;
31
class MCObjectTargetWriter;
32
class MCRegisterInfo;
33
class MCSubtargetInfo;
34
class MCTargetOptions;
35
class Target;
36
37
namespace PPC {
38
/// stripRegisterPrefix - This method strips the character prefix from a
39
/// register name so that only the number is left. Used by for linux asm.
40
const char *stripRegisterPrefix(const char *RegName);
41
42
/// getRegNumForOperand - some operands use different numbering schemes
43
/// for the same registers. For example, a VSX instruction may have any of
44
/// vs0-vs63 allocated whereas an Altivec instruction could only have
45
/// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
46
/// register number needed for the opcode/operand number combination.
47
/// The operand number argument will be useful when we need to extend this
48
/// to instructions that use both Altivec and VSX numbering (for different
49
/// operands).
50
unsigned getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
51
unsigned OpNo);
52
53
} // namespace PPC
54
55
MCCodeEmitter *createPPCMCCodeEmitter(const MCInstrInfo &MCII,
56
MCContext &Ctx);
57
58
MCAsmBackend *createPPCAsmBackend(const Target &T, const MCSubtargetInfo &STI,
59
const MCRegisterInfo &MRI,
60
const MCTargetOptions &Options);
61
62
/// Construct an PPC ELF object writer.
63
std::unique_ptr<MCObjectTargetWriter> createPPCELFObjectWriter(bool Is64Bit,
64
uint8_t OSABI);
65
/// Construct a PPC Mach-O object writer.
66
std::unique_ptr<MCObjectTargetWriter>
67
createPPCMachObjectWriter(bool Is64Bit, uint32_t CPUType, uint32_t CPUSubtype);
68
69
/// Construct a PPC XCOFF object writer.
70
std::unique_ptr<MCObjectTargetWriter> createPPCXCOFFObjectWriter(bool Is64Bit);
71
72
/// Returns true iff Val consists of one contiguous run of 1s with any number of
73
/// 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
74
/// 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is not,
75
/// since all 1s are not contiguous.
76
static inline bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
77
if (!Val)
78
return false;
79
80
if (isShiftedMask_32(Val)) {
81
// look for the first non-zero bit
82
MB = llvm::countl_zero(Val);
83
// look for the first zero bit after the run of ones
84
ME = llvm::countl_zero((Val - 1) ^ Val);
85
return true;
86
} else {
87
Val = ~Val; // invert mask
88
if (isShiftedMask_32(Val)) {
89
// effectively look for the first zero bit
90
ME = llvm::countl_zero(Val) - 1;
91
// effectively look for the first one bit after the run of zeros
92
MB = llvm::countl_zero((Val - 1) ^ Val) + 1;
93
return true;
94
}
95
}
96
// no run present
97
return false;
98
}
99
100
static inline bool isRunOfOnes64(uint64_t Val, unsigned &MB, unsigned &ME) {
101
if (!Val)
102
return false;
103
104
if (isShiftedMask_64(Val)) {
105
// look for the first non-zero bit
106
MB = llvm::countl_zero(Val);
107
// look for the first zero bit after the run of ones
108
ME = llvm::countl_zero((Val - 1) ^ Val);
109
return true;
110
} else {
111
Val = ~Val; // invert mask
112
if (isShiftedMask_64(Val)) {
113
// effectively look for the first zero bit
114
ME = llvm::countl_zero(Val) - 1;
115
// effectively look for the first one bit after the run of zeros
116
MB = llvm::countl_zero((Val - 1) ^ Val) + 1;
117
return true;
118
}
119
}
120
// no run present
121
return false;
122
}
123
124
/// PPCII - This namespace holds all of the PowerPC target-specific
125
/// per-instruction flags. These must match the corresponding definitions in
126
/// PPC.td and PPCInstrFormats.td.
127
namespace PPCII {
128
enum {
129
// PPC970 Instruction Flags. These flags describe the characteristics of the
130
// PowerPC 970 (aka G5) dispatch groups and how they are formed out of
131
// raw machine instructions.
132
133
/// PPC970_First - This instruction starts a new dispatch group, so it will
134
/// always be the first one in the group.
135
PPC970_First = 0x1,
136
137
/// PPC970_Single - This instruction starts a new dispatch group and
138
/// terminates it, so it will be the sole instruction in the group.
139
PPC970_Single = 0x2,
140
141
/// PPC970_Cracked - This instruction is cracked into two pieces, requiring
142
/// two dispatch pipes to be available to issue.
143
PPC970_Cracked = 0x4,
144
145
/// PPC970_Mask/Shift - This is a bitmask that selects the pipeline type that
146
/// an instruction is issued to.
147
PPC970_Shift = 3,
148
PPC970_Mask = 0x07 << PPC970_Shift
149
};
150
enum PPC970_Unit {
151
/// These are the various PPC970 execution unit pipelines. Each instruction
152
/// is one of these.
153
PPC970_Pseudo = 0 << PPC970_Shift, // Pseudo instruction
154
PPC970_FXU = 1 << PPC970_Shift, // Fixed Point (aka Integer/ALU) Unit
155
PPC970_LSU = 2 << PPC970_Shift, // Load Store Unit
156
PPC970_FPU = 3 << PPC970_Shift, // Floating Point Unit
157
PPC970_CRU = 4 << PPC970_Shift, // Control Register Unit
158
PPC970_VALU = 5 << PPC970_Shift, // Vector ALU
159
PPC970_VPERM = 6 << PPC970_Shift, // Vector Permute Unit
160
PPC970_BRU = 7 << PPC970_Shift // Branch Unit
161
};
162
163
enum {
164
/// Shift count to bypass PPC970 flags
165
NewDef_Shift = 6,
166
167
/// This instruction is an X-Form memory operation.
168
XFormMemOp = 0x1 << NewDef_Shift,
169
/// This instruction is prefixed.
170
Prefixed = 0x1 << (NewDef_Shift + 1),
171
/// This instruction produced a sign extended result.
172
SExt32To64 = 0x1 << (NewDef_Shift + 2),
173
/// This instruction produced a zero extended result.
174
ZExt32To64 = 0x1 << (NewDef_Shift + 3)
175
};
176
} // end namespace PPCII
177
178
} // end namespace llvm
179
180
// Defines symbolic names for PowerPC registers. This defines a mapping from
181
// register name to register number.
182
//
183
#define GET_REGINFO_ENUM
184
#include "PPCGenRegisterInfo.inc"
185
186
// Defines symbolic names for the PowerPC instructions.
187
//
188
#define GET_INSTRINFO_ENUM
189
#define GET_INSTRINFO_SCHED_ENUM
190
#define GET_INSTRINFO_MC_HELPER_DECLS
191
#include "PPCGenInstrInfo.inc"
192
193
#define GET_SUBTARGETINFO_ENUM
194
#include "PPCGenSubtargetInfo.inc"
195
196
#define PPC_REGS0_7(X) \
197
{ \
198
X##0, X##1, X##2, X##3, X##4, X##5, X##6, X##7 \
199
}
200
201
#define PPC_REGS0_31(X) \
202
{ \
203
X##0, X##1, X##2, X##3, X##4, X##5, X##6, X##7, X##8, X##9, X##10, X##11, \
204
X##12, X##13, X##14, X##15, X##16, X##17, X##18, X##19, X##20, X##21, \
205
X##22, X##23, X##24, X##25, X##26, X##27, X##28, X##29, X##30, X##31 \
206
}
207
208
#define PPC_REGS_EVEN0_30(X) \
209
{ \
210
X##0, X##2, X##4, X##6, X##8, X##10, X##12, X##14, X##16, X##18, X##20, \
211
X##22, X##24, X##26, X##28, X##30 \
212
}
213
214
#define PPC_REGS0_63(X) \
215
{ \
216
X##0, X##1, X##2, X##3, X##4, X##5, X##6, X##7, X##8, X##9, X##10, X##11, \
217
X##12, X##13, X##14, X##15, X##16, X##17, X##18, X##19, X##20, X##21, \
218
X##22, X##23, X##24, X##25, X##26, X##27, X##28, X##29, X##30, X##31, \
219
X##32, X##33, X##34, X##35, X##36, X##37, X##38, X##39, X##40, X##41, \
220
X##42, X##43, X##44, X##45, X##46, X##47, X##48, X##49, X##50, X##51, \
221
X##52, X##53, X##54, X##55, X##56, X##57, X##58, X##59, X##60, X##61, \
222
X##62, X##63 \
223
}
224
225
#define PPC_REGS_NO0_31(Z, X) \
226
{ \
227
Z, X##1, X##2, X##3, X##4, X##5, X##6, X##7, X##8, X##9, X##10, X##11, \
228
X##12, X##13, X##14, X##15, X##16, X##17, X##18, X##19, X##20, X##21, \
229
X##22, X##23, X##24, X##25, X##26, X##27, X##28, X##29, X##30, X##31 \
230
}
231
232
#define PPC_REGS_LO_HI(LO, HI) \
233
{ \
234
LO##0, LO##1, LO##2, LO##3, LO##4, LO##5, LO##6, LO##7, LO##8, LO##9, \
235
LO##10, LO##11, LO##12, LO##13, LO##14, LO##15, LO##16, LO##17, \
236
LO##18, LO##19, LO##20, LO##21, LO##22, LO##23, LO##24, LO##25, \
237
LO##26, LO##27, LO##28, LO##29, LO##30, LO##31, HI##0, HI##1, HI##2, \
238
HI##3, HI##4, HI##5, HI##6, HI##7, HI##8, HI##9, HI##10, HI##11, \
239
HI##12, HI##13, HI##14, HI##15, HI##16, HI##17, HI##18, HI##19, \
240
HI##20, HI##21, HI##22, HI##23, HI##24, HI##25, HI##26, HI##27, \
241
HI##28, HI##29, HI##30, HI##31 \
242
}
243
244
#define PPC_REGS0_7(X) \
245
{ \
246
X##0, X##1, X##2, X##3, X##4, X##5, X##6, X##7 \
247
}
248
249
#define PPC_REGS0_3(X) \
250
{ \
251
X##0, X##1, X##2, X##3 \
252
}
253
254
using llvm::MCPhysReg;
255
256
#define DEFINE_PPC_REGCLASSES \
257
static const MCPhysReg RRegs[32] = PPC_REGS0_31(PPC::R); \
258
static const MCPhysReg XRegs[32] = PPC_REGS0_31(PPC::X); \
259
static const MCPhysReg FRegs[32] = PPC_REGS0_31(PPC::F); \
260
static const MCPhysReg FpRegs[16] = PPC_REGS_EVEN0_30(PPC::Fpair); \
261
static const MCPhysReg VSRpRegs[32] = PPC_REGS0_31(PPC::VSRp); \
262
static const MCPhysReg SPERegs[32] = PPC_REGS0_31(PPC::S); \
263
static const MCPhysReg VFRegs[32] = PPC_REGS0_31(PPC::VF); \
264
static const MCPhysReg VRegs[32] = PPC_REGS0_31(PPC::V); \
265
static const MCPhysReg RRegsNoR0[32] = PPC_REGS_NO0_31(PPC::ZERO, PPC::R); \
266
static const MCPhysReg XRegsNoX0[32] = PPC_REGS_NO0_31(PPC::ZERO8, PPC::X); \
267
static const MCPhysReg VSRegs[64] = PPC_REGS_LO_HI(PPC::VSL, PPC::V); \
268
static const MCPhysReg VSFRegs[64] = PPC_REGS_LO_HI(PPC::F, PPC::VF); \
269
static const MCPhysReg VSSRegs[64] = PPC_REGS_LO_HI(PPC::F, PPC::VF); \
270
static const MCPhysReg CRBITRegs[32] = { \
271
PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN, PPC::CR1LT, PPC::CR1GT, \
272
PPC::CR1EQ, PPC::CR1UN, PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, \
273
PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, PPC::CR4LT, PPC::CR4GT, \
274
PPC::CR4EQ, PPC::CR4UN, PPC::CR5LT, PPC::CR5GT, PPC::CR5EQ, PPC::CR5UN, \
275
PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN, PPC::CR7LT, PPC::CR7GT, \
276
PPC::CR7EQ, PPC::CR7UN}; \
277
static const MCPhysReg CRRegs[8] = PPC_REGS0_7(PPC::CR); \
278
static const MCPhysReg ACCRegs[8] = PPC_REGS0_7(PPC::ACC); \
279
static const MCPhysReg WACCRegs[8] = PPC_REGS0_7(PPC::WACC); \
280
static const MCPhysReg WACC_HIRegs[8] = PPC_REGS0_7(PPC::WACC_HI); \
281
static const MCPhysReg DMRROWpRegs[32] = PPC_REGS0_31(PPC::DMRROWp); \
282
static const MCPhysReg DMRROWRegs[64] = PPC_REGS0_63(PPC::DMRROW); \
283
static const MCPhysReg DMRRegs[8] = PPC_REGS0_7(PPC::DMR); \
284
static const MCPhysReg DMRpRegs[4] = PPC_REGS0_3(PPC::DMRp);
285
286
namespace llvm {
287
namespace PPC {
288
static inline bool isVFRegister(unsigned Reg) {
289
return Reg >= PPC::VF0 && Reg <= PPC::VF31;
290
}
291
292
static inline bool isVRRegister(unsigned Reg) {
293
return Reg >= PPC::V0 && Reg <= PPC::V31;
294
}
295
} // namespace PPC
296
} // namespace llvm
297
298
#endif // LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCTARGETDESC_H
299
300