Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp
35269 views
1
//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains a printer that converts from our internal representation
10
// of machine-dependent LLVM code to PowerPC assembly language. This printer is
11
// the output mechanism used by `llc'.
12
//
13
// Documentation at http://developer.apple.com/documentation/DeveloperTools/
14
// Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
15
//
16
//===----------------------------------------------------------------------===//
17
18
#include "MCTargetDesc/PPCInstPrinter.h"
19
#include "MCTargetDesc/PPCMCExpr.h"
20
#include "MCTargetDesc/PPCMCTargetDesc.h"
21
#include "MCTargetDesc/PPCPredicates.h"
22
#include "PPC.h"
23
#include "PPCInstrInfo.h"
24
#include "PPCMachineFunctionInfo.h"
25
#include "PPCSubtarget.h"
26
#include "PPCTargetMachine.h"
27
#include "PPCTargetStreamer.h"
28
#include "TargetInfo/PowerPCTargetInfo.h"
29
#include "llvm/ADT/MapVector.h"
30
#include "llvm/ADT/SetVector.h"
31
#include "llvm/ADT/Statistic.h"
32
#include "llvm/ADT/StringExtras.h"
33
#include "llvm/ADT/StringRef.h"
34
#include "llvm/ADT/Twine.h"
35
#include "llvm/BinaryFormat/ELF.h"
36
#include "llvm/CodeGen/AsmPrinter.h"
37
#include "llvm/CodeGen/MachineBasicBlock.h"
38
#include "llvm/CodeGen/MachineFrameInfo.h"
39
#include "llvm/CodeGen/MachineFunction.h"
40
#include "llvm/CodeGen/MachineInstr.h"
41
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
42
#include "llvm/CodeGen/MachineOperand.h"
43
#include "llvm/CodeGen/MachineRegisterInfo.h"
44
#include "llvm/CodeGen/StackMaps.h"
45
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
46
#include "llvm/IR/DataLayout.h"
47
#include "llvm/IR/GlobalValue.h"
48
#include "llvm/IR/GlobalVariable.h"
49
#include "llvm/IR/Module.h"
50
#include "llvm/MC/MCAsmInfo.h"
51
#include "llvm/MC/MCContext.h"
52
#include "llvm/MC/MCDirectives.h"
53
#include "llvm/MC/MCExpr.h"
54
#include "llvm/MC/MCInst.h"
55
#include "llvm/MC/MCInstBuilder.h"
56
#include "llvm/MC/MCSectionELF.h"
57
#include "llvm/MC/MCSectionXCOFF.h"
58
#include "llvm/MC/MCStreamer.h"
59
#include "llvm/MC/MCSymbol.h"
60
#include "llvm/MC/MCSymbolELF.h"
61
#include "llvm/MC/MCSymbolXCOFF.h"
62
#include "llvm/MC/SectionKind.h"
63
#include "llvm/MC/TargetRegistry.h"
64
#include "llvm/Support/Casting.h"
65
#include "llvm/Support/CodeGen.h"
66
#include "llvm/Support/Debug.h"
67
#include "llvm/Support/Error.h"
68
#include "llvm/Support/ErrorHandling.h"
69
#include "llvm/Support/MathExtras.h"
70
#include "llvm/Support/Process.h"
71
#include "llvm/Support/Threading.h"
72
#include "llvm/Support/raw_ostream.h"
73
#include "llvm/Target/TargetMachine.h"
74
#include "llvm/TargetParser/Triple.h"
75
#include "llvm/Transforms/Utils/ModuleUtils.h"
76
#include <algorithm>
77
#include <cassert>
78
#include <cstdint>
79
#include <memory>
80
#include <new>
81
82
using namespace llvm;
83
using namespace llvm::XCOFF;
84
85
#define DEBUG_TYPE "asmprinter"
86
87
STATISTIC(NumTOCEntries, "Number of Total TOC Entries Emitted.");
88
STATISTIC(NumTOCConstPool, "Number of Constant Pool TOC Entries.");
89
STATISTIC(NumTOCGlobalInternal,
90
"Number of Internal Linkage Global TOC Entries.");
91
STATISTIC(NumTOCGlobalExternal,
92
"Number of External Linkage Global TOC Entries.");
93
STATISTIC(NumTOCJumpTable, "Number of Jump Table TOC Entries.");
94
STATISTIC(NumTOCThreadLocal, "Number of Thread Local TOC Entries.");
95
STATISTIC(NumTOCBlockAddress, "Number of Block Address TOC Entries.");
96
STATISTIC(NumTOCEHBlock, "Number of EH Block TOC Entries.");
97
98
static cl::opt<bool> EnableSSPCanaryBitInTB(
99
"aix-ssp-tb-bit", cl::init(false),
100
cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden);
101
102
// Specialize DenseMapInfo to allow
103
// std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap.
104
// This specialization is needed here because that type is used as keys in the
105
// map representing TOC entries.
106
namespace llvm {
107
template <>
108
struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> {
109
using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>;
110
111
static inline TOCKey getEmptyKey() {
112
return {nullptr, MCSymbolRefExpr::VariantKind::VK_None};
113
}
114
static inline TOCKey getTombstoneKey() {
115
return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid};
116
}
117
static unsigned getHashValue(const TOCKey &PairVal) {
118
return detail::combineHashValue(
119
DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first),
120
DenseMapInfo<int>::getHashValue(PairVal.second));
121
}
122
static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; }
123
};
124
} // end namespace llvm
125
126
namespace {
127
128
enum {
129
// GNU attribute tags for PowerPC ABI
130
Tag_GNU_Power_ABI_FP = 4,
131
Tag_GNU_Power_ABI_Vector = 8,
132
Tag_GNU_Power_ABI_Struct_Return = 12,
133
134
// GNU attribute values for PowerPC float ABI, as combination of two parts
135
Val_GNU_Power_ABI_NoFloat = 0b00,
136
Val_GNU_Power_ABI_HardFloat_DP = 0b01,
137
Val_GNU_Power_ABI_SoftFloat_DP = 0b10,
138
Val_GNU_Power_ABI_HardFloat_SP = 0b11,
139
140
Val_GNU_Power_ABI_LDBL_IBM128 = 0b0100,
141
Val_GNU_Power_ABI_LDBL_64 = 0b1000,
142
Val_GNU_Power_ABI_LDBL_IEEE128 = 0b1100,
143
};
144
145
class PPCAsmPrinter : public AsmPrinter {
146
protected:
147
// For TLS on AIX, we need to be able to identify TOC entries of specific
148
// VariantKind so we can add the right relocations when we generate the
149
// entries. So each entry is represented by a pair of MCSymbol and
150
// VariantKind. For example, we need to be able to identify the following
151
// entry as a TLSGD entry so we can add the @m relocation:
152
// .tc .i[TC],i[TL]@m
153
// By default, VK_None is used for the VariantKind.
154
MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>,
155
MCSymbol *>
156
TOC;
157
const PPCSubtarget *Subtarget = nullptr;
158
159
// Keep track of the number of TLS variables and their corresponding
160
// addresses, which is then used for the assembly printing of
161
// non-TOC-based local-exec variables.
162
MapVector<const GlobalValue *, uint64_t> TLSVarsToAddressMapping;
163
164
public:
165
explicit PPCAsmPrinter(TargetMachine &TM,
166
std::unique_ptr<MCStreamer> Streamer)
167
: AsmPrinter(TM, std::move(Streamer)) {}
168
169
StringRef getPassName() const override { return "PowerPC Assembly Printer"; }
170
171
enum TOCEntryType {
172
TOCType_ConstantPool,
173
TOCType_GlobalExternal,
174
TOCType_GlobalInternal,
175
TOCType_JumpTable,
176
TOCType_ThreadLocal,
177
TOCType_BlockAddress,
178
TOCType_EHBlock
179
};
180
181
MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym, TOCEntryType Type,
182
MCSymbolRefExpr::VariantKind Kind =
183
MCSymbolRefExpr::VariantKind::VK_None);
184
185
bool doInitialization(Module &M) override {
186
if (!TOC.empty())
187
TOC.clear();
188
return AsmPrinter::doInitialization(M);
189
}
190
191
void emitInstruction(const MachineInstr *MI) override;
192
193
/// This function is for PrintAsmOperand and PrintAsmMemoryOperand,
194
/// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only.
195
/// The \p MI would be INLINEASM ONLY.
196
void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
197
198
void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override;
199
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
200
const char *ExtraCode, raw_ostream &O) override;
201
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
202
const char *ExtraCode, raw_ostream &O) override;
203
204
void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI);
205
void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI);
206
void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK);
207
void EmitAIXTlsCallHelper(const MachineInstr *MI);
208
const MCExpr *getAdjustedFasterLocalExpr(const MachineOperand &MO,
209
int64_t Offset);
210
bool runOnMachineFunction(MachineFunction &MF) override {
211
Subtarget = &MF.getSubtarget<PPCSubtarget>();
212
bool Changed = AsmPrinter::runOnMachineFunction(MF);
213
emitXRayTable();
214
return Changed;
215
}
216
};
217
218
/// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
219
class PPCLinuxAsmPrinter : public PPCAsmPrinter {
220
public:
221
explicit PPCLinuxAsmPrinter(TargetMachine &TM,
222
std::unique_ptr<MCStreamer> Streamer)
223
: PPCAsmPrinter(TM, std::move(Streamer)) {}
224
225
StringRef getPassName() const override {
226
return "Linux PPC Assembly Printer";
227
}
228
229
void emitGNUAttributes(Module &M);
230
231
void emitStartOfAsmFile(Module &M) override;
232
void emitEndOfAsmFile(Module &) override;
233
234
void emitFunctionEntryLabel() override;
235
236
void emitFunctionBodyStart() override;
237
void emitFunctionBodyEnd() override;
238
void emitInstruction(const MachineInstr *MI) override;
239
};
240
241
class PPCAIXAsmPrinter : public PPCAsmPrinter {
242
private:
243
/// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern
244
/// linkage for them in AIX.
245
SmallSetVector<MCSymbol *, 8> ExtSymSDNodeSymbols;
246
247
/// A format indicator and unique trailing identifier to form part of the
248
/// sinit/sterm function names.
249
std::string FormatIndicatorAndUniqueModId;
250
251
// Record a list of GlobalAlias associated with a GlobalObject.
252
// This is used for AIX's extra-label-at-definition aliasing strategy.
253
DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>>
254
GOAliasMap;
255
256
uint16_t getNumberOfVRSaved();
257
void emitTracebackTable();
258
259
SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars;
260
261
void emitGlobalVariableHelper(const GlobalVariable *);
262
263
// Get the offset of an alias based on its AliaseeObject.
264
uint64_t getAliasOffset(const Constant *C);
265
266
public:
267
PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer)
268
: PPCAsmPrinter(TM, std::move(Streamer)) {
269
if (MAI->isLittleEndian())
270
report_fatal_error(
271
"cannot create AIX PPC Assembly Printer for a little-endian target");
272
}
273
274
StringRef getPassName() const override { return "AIX PPC Assembly Printer"; }
275
276
bool doInitialization(Module &M) override;
277
278
void emitXXStructorList(const DataLayout &DL, const Constant *List,
279
bool IsCtor) override;
280
281
void SetupMachineFunction(MachineFunction &MF) override;
282
283
void emitGlobalVariable(const GlobalVariable *GV) override;
284
285
void emitFunctionDescriptor() override;
286
287
void emitFunctionEntryLabel() override;
288
289
void emitFunctionBodyEnd() override;
290
291
void emitPGORefs(Module &M);
292
293
void emitEndOfAsmFile(Module &) override;
294
295
void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override;
296
297
void emitInstruction(const MachineInstr *MI) override;
298
299
bool doFinalization(Module &M) override;
300
301
void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override;
302
303
void emitModuleCommandLines(Module &M) override;
304
};
305
306
} // end anonymous namespace
307
308
void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
309
raw_ostream &O) {
310
// Computing the address of a global symbol, not calling it.
311
const GlobalValue *GV = MO.getGlobal();
312
getSymbol(GV)->print(O, MAI);
313
printOffset(MO.getOffset(), O);
314
}
315
316
void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
317
raw_ostream &O) {
318
const DataLayout &DL = getDataLayout();
319
const MachineOperand &MO = MI->getOperand(OpNo);
320
321
switch (MO.getType()) {
322
case MachineOperand::MO_Register: {
323
// The MI is INLINEASM ONLY and UseVSXReg is always false.
324
const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg());
325
326
// Linux assembler (Others?) does not take register mnemonics.
327
// FIXME - What about special registers used in mfspr/mtspr?
328
O << PPC::stripRegisterPrefix(RegName);
329
return;
330
}
331
case MachineOperand::MO_Immediate:
332
O << MO.getImm();
333
return;
334
335
case MachineOperand::MO_MachineBasicBlock:
336
MO.getMBB()->getSymbol()->print(O, MAI);
337
return;
338
case MachineOperand::MO_ConstantPoolIndex:
339
O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
340
<< MO.getIndex();
341
return;
342
case MachineOperand::MO_BlockAddress:
343
GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI);
344
return;
345
case MachineOperand::MO_GlobalAddress: {
346
PrintSymbolOperand(MO, O);
347
return;
348
}
349
350
default:
351
O << "<unknown operand type: " << (unsigned)MO.getType() << ">";
352
return;
353
}
354
}
355
356
/// PrintAsmOperand - Print out an operand for an inline asm expression.
357
///
358
bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
359
const char *ExtraCode, raw_ostream &O) {
360
// Does this asm operand have a single letter operand modifier?
361
if (ExtraCode && ExtraCode[0]) {
362
if (ExtraCode[1] != 0) return true; // Unknown modifier.
363
364
switch (ExtraCode[0]) {
365
default:
366
// See if this is a generic print operand
367
return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
368
case 'L': // Write second word of DImode reference.
369
// Verify that this operand has two consecutive registers.
370
if (!MI->getOperand(OpNo).isReg() ||
371
OpNo+1 == MI->getNumOperands() ||
372
!MI->getOperand(OpNo+1).isReg())
373
return true;
374
++OpNo; // Return the high-part.
375
break;
376
case 'I':
377
// Write 'i' if an integer constant, otherwise nothing. Used to print
378
// addi vs add, etc.
379
if (MI->getOperand(OpNo).isImm())
380
O << "i";
381
return false;
382
case 'x':
383
if(!MI->getOperand(OpNo).isReg())
384
return true;
385
// This operand uses VSX numbering.
386
// If the operand is a VMX register, convert it to a VSX register.
387
Register Reg = MI->getOperand(OpNo).getReg();
388
if (PPC::isVRRegister(Reg))
389
Reg = PPC::VSX32 + (Reg - PPC::V0);
390
else if (PPC::isVFRegister(Reg))
391
Reg = PPC::VSX32 + (Reg - PPC::VF0);
392
const char *RegName;
393
RegName = PPCInstPrinter::getRegisterName(Reg);
394
RegName = PPC::stripRegisterPrefix(RegName);
395
O << RegName;
396
return false;
397
}
398
}
399
400
printOperand(MI, OpNo, O);
401
return false;
402
}
403
404
// At the moment, all inline asm memory operands are a single register.
405
// In any case, the output of this routine should always be just one
406
// assembler operand.
407
bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
408
const char *ExtraCode,
409
raw_ostream &O) {
410
if (ExtraCode && ExtraCode[0]) {
411
if (ExtraCode[1] != 0) return true; // Unknown modifier.
412
413
switch (ExtraCode[0]) {
414
default: return true; // Unknown modifier.
415
case 'L': // A memory reference to the upper word of a double word op.
416
O << getDataLayout().getPointerSize() << "(";
417
printOperand(MI, OpNo, O);
418
O << ")";
419
return false;
420
case 'y': // A memory reference for an X-form instruction
421
O << "0, ";
422
printOperand(MI, OpNo, O);
423
return false;
424
case 'I':
425
// Write 'i' if an integer constant, otherwise nothing. Used to print
426
// addi vs add, etc.
427
if (MI->getOperand(OpNo).isImm())
428
O << "i";
429
return false;
430
case 'U': // Print 'u' for update form.
431
case 'X': // Print 'x' for indexed form.
432
// FIXME: Currently for PowerPC memory operands are always loaded
433
// into a register, so we never get an update or indexed form.
434
// This is bad even for offset forms, since even if we know we
435
// have a value in -16(r1), we will generate a load into r<n>
436
// and then load from 0(r<n>). Until that issue is fixed,
437
// tolerate 'U' and 'X' but don't output anything.
438
assert(MI->getOperand(OpNo).isReg());
439
return false;
440
}
441
}
442
443
assert(MI->getOperand(OpNo).isReg());
444
O << "0(";
445
printOperand(MI, OpNo, O);
446
O << ")";
447
return false;
448
}
449
450
static void collectTOCStats(PPCAsmPrinter::TOCEntryType Type) {
451
++NumTOCEntries;
452
switch (Type) {
453
case PPCAsmPrinter::TOCType_ConstantPool:
454
++NumTOCConstPool;
455
break;
456
case PPCAsmPrinter::TOCType_GlobalInternal:
457
++NumTOCGlobalInternal;
458
break;
459
case PPCAsmPrinter::TOCType_GlobalExternal:
460
++NumTOCGlobalExternal;
461
break;
462
case PPCAsmPrinter::TOCType_JumpTable:
463
++NumTOCJumpTable;
464
break;
465
case PPCAsmPrinter::TOCType_ThreadLocal:
466
++NumTOCThreadLocal;
467
break;
468
case PPCAsmPrinter::TOCType_BlockAddress:
469
++NumTOCBlockAddress;
470
break;
471
case PPCAsmPrinter::TOCType_EHBlock:
472
++NumTOCEHBlock;
473
break;
474
}
475
}
476
477
static CodeModel::Model getCodeModel(const PPCSubtarget &S,
478
const TargetMachine &TM,
479
const MachineOperand &MO) {
480
CodeModel::Model ModuleModel = TM.getCodeModel();
481
482
// If the operand is not a global address then there is no
483
// global variable to carry an attribute.
484
if (!(MO.getType() == MachineOperand::MO_GlobalAddress))
485
return ModuleModel;
486
487
const GlobalValue *GV = MO.getGlobal();
488
assert(GV && "expected global for MO_GlobalAddress");
489
490
return S.getCodeModel(TM, GV);
491
}
492
493
static void setOptionalCodeModel(MCSymbolXCOFF *XSym, CodeModel::Model CM) {
494
switch (CM) {
495
case CodeModel::Large:
496
XSym->setPerSymbolCodeModel(MCSymbolXCOFF::CM_Large);
497
return;
498
case CodeModel::Small:
499
XSym->setPerSymbolCodeModel(MCSymbolXCOFF::CM_Small);
500
return;
501
default:
502
report_fatal_error("Invalid code model for AIX");
503
}
504
}
505
506
/// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
507
/// exists for it. If not, create one. Then return a symbol that references
508
/// the TOC entry.
509
MCSymbol *
510
PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym, TOCEntryType Type,
511
MCSymbolRefExpr::VariantKind Kind) {
512
// If this is a new TOC entry add statistics about it.
513
if (!TOC.contains({Sym, Kind}))
514
collectTOCStats(Type);
515
516
MCSymbol *&TOCEntry = TOC[{Sym, Kind}];
517
if (!TOCEntry)
518
TOCEntry = createTempSymbol("C");
519
return TOCEntry;
520
}
521
522
void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) {
523
unsigned NumNOPBytes = MI.getOperand(1).getImm();
524
525
auto &Ctx = OutStreamer->getContext();
526
MCSymbol *MILabel = Ctx.createTempSymbol();
527
OutStreamer->emitLabel(MILabel);
528
529
SM.recordStackMap(*MILabel, MI);
530
assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
531
532
// Scan ahead to trim the shadow.
533
const MachineBasicBlock &MBB = *MI.getParent();
534
MachineBasicBlock::const_iterator MII(MI);
535
++MII;
536
while (NumNOPBytes > 0) {
537
if (MII == MBB.end() || MII->isCall() ||
538
MII->getOpcode() == PPC::DBG_VALUE ||
539
MII->getOpcode() == TargetOpcode::PATCHPOINT ||
540
MII->getOpcode() == TargetOpcode::STACKMAP)
541
break;
542
++MII;
543
NumNOPBytes -= 4;
544
}
545
546
// Emit nops.
547
for (unsigned i = 0; i < NumNOPBytes; i += 4)
548
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
549
}
550
551
// Lower a patchpoint of the form:
552
// [<def>], <id>, <numBytes>, <target>, <numArgs>
553
void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
554
auto &Ctx = OutStreamer->getContext();
555
MCSymbol *MILabel = Ctx.createTempSymbol();
556
OutStreamer->emitLabel(MILabel);
557
558
SM.recordPatchPoint(*MILabel, MI);
559
PatchPointOpers Opers(&MI);
560
561
unsigned EncodedBytes = 0;
562
const MachineOperand &CalleeMO = Opers.getCallTarget();
563
564
if (CalleeMO.isImm()) {
565
int64_t CallTarget = CalleeMO.getImm();
566
if (CallTarget) {
567
assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
568
"High 16 bits of call target should be zero.");
569
Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
570
EncodedBytes = 0;
571
// Materialize the jump address:
572
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8)
573
.addReg(ScratchReg)
574
.addImm((CallTarget >> 32) & 0xFFFF));
575
++EncodedBytes;
576
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC)
577
.addReg(ScratchReg)
578
.addReg(ScratchReg)
579
.addImm(32).addImm(16));
580
++EncodedBytes;
581
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8)
582
.addReg(ScratchReg)
583
.addReg(ScratchReg)
584
.addImm((CallTarget >> 16) & 0xFFFF));
585
++EncodedBytes;
586
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8)
587
.addReg(ScratchReg)
588
.addReg(ScratchReg)
589
.addImm(CallTarget & 0xFFFF));
590
591
// Save the current TOC pointer before the remote call.
592
int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset();
593
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD)
594
.addReg(PPC::X2)
595
.addImm(TOCSaveOffset)
596
.addReg(PPC::X1));
597
++EncodedBytes;
598
599
// If we're on ELFv1, then we need to load the actual function pointer
600
// from the function descriptor.
601
if (!Subtarget->isELFv2ABI()) {
602
// Load the new TOC pointer and the function address, but not r11
603
// (needing this is rare, and loading it here would prevent passing it
604
// via a 'nest' parameter.
605
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
606
.addReg(PPC::X2)
607
.addImm(8)
608
.addReg(ScratchReg));
609
++EncodedBytes;
610
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
611
.addReg(ScratchReg)
612
.addImm(0)
613
.addReg(ScratchReg));
614
++EncodedBytes;
615
}
616
617
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8)
618
.addReg(ScratchReg));
619
++EncodedBytes;
620
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8));
621
++EncodedBytes;
622
623
// Restore the TOC pointer after the call.
624
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
625
.addReg(PPC::X2)
626
.addImm(TOCSaveOffset)
627
.addReg(PPC::X1));
628
++EncodedBytes;
629
}
630
} else if (CalleeMO.isGlobal()) {
631
const GlobalValue *GValue = CalleeMO.getGlobal();
632
MCSymbol *MOSymbol = getSymbol(GValue);
633
const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext);
634
635
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP)
636
.addExpr(SymVar));
637
EncodedBytes += 2;
638
}
639
640
// Each instruction is 4 bytes.
641
EncodedBytes *= 4;
642
643
// Emit padding.
644
unsigned NumBytes = Opers.getNumPatchBytes();
645
assert(NumBytes >= EncodedBytes &&
646
"Patchpoint can't request size less than the length of a call.");
647
assert((NumBytes - EncodedBytes) % 4 == 0 &&
648
"Invalid number of NOP bytes requested!");
649
for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
650
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
651
}
652
653
/// This helper function creates the TlsGetAddr/TlsGetMod MCSymbol for AIX. We
654
/// will create the csect and use the qual-name symbol instead of creating just
655
/// the external symbol.
656
static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx, unsigned MIOpc) {
657
StringRef SymName;
658
switch (MIOpc) {
659
default:
660
SymName = ".__tls_get_addr";
661
break;
662
case PPC::GETtlsTpointer32AIX:
663
SymName = ".__get_tpointer";
664
break;
665
case PPC::GETtlsMOD32AIX:
666
case PPC::GETtlsMOD64AIX:
667
SymName = ".__tls_get_mod";
668
break;
669
}
670
return Ctx
671
.getXCOFFSection(SymName, SectionKind::getText(),
672
XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER))
673
->getQualNameSymbol();
674
}
675
676
void PPCAsmPrinter::EmitAIXTlsCallHelper(const MachineInstr *MI) {
677
assert(Subtarget->isAIXABI() &&
678
"Only expecting to emit calls to get the thread pointer on AIX!");
679
680
MCSymbol *TlsCall = createMCSymbolForTlsGetAddr(OutContext, MI->getOpcode());
681
const MCExpr *TlsRef =
682
MCSymbolRefExpr::create(TlsCall, MCSymbolRefExpr::VK_None, OutContext);
683
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef));
684
}
685
686
/// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a
687
/// call to __tls_get_addr to the current output stream.
688
void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI,
689
MCSymbolRefExpr::VariantKind VK) {
690
MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
691
unsigned Opcode = PPC::BL8_NOP_TLS;
692
693
assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI");
694
if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
695
MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) {
696
Kind = MCSymbolRefExpr::VK_PPC_NOTOC;
697
Opcode = PPC::BL8_NOTOC_TLS;
698
}
699
const Module *M = MF->getFunction().getParent();
700
701
assert(MI->getOperand(0).isReg() &&
702
((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) ||
703
(!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) &&
704
"GETtls[ld]ADDR[32] must define GPR3");
705
assert(MI->getOperand(1).isReg() &&
706
((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) ||
707
(!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) &&
708
"GETtls[ld]ADDR[32] must read GPR3");
709
710
if (Subtarget->isAIXABI()) {
711
// For TLSGD, the variable offset should already be in R4 and the region
712
// handle should already be in R3. We generate an absolute branch to
713
// .__tls_get_addr. For TLSLD, the module handle should already be in R3.
714
// We generate an absolute branch to .__tls_get_mod.
715
Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4;
716
(void)VarOffsetReg;
717
assert((MI->getOpcode() == PPC::GETtlsMOD32AIX ||
718
MI->getOpcode() == PPC::GETtlsMOD64AIX ||
719
(MI->getOperand(2).isReg() &&
720
MI->getOperand(2).getReg() == VarOffsetReg)) &&
721
"GETtls[ld]ADDR[32] must read GPR4");
722
EmitAIXTlsCallHelper(MI);
723
return;
724
}
725
726
MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr");
727
728
if (Subtarget->is32BitELFABI() && isPositionIndependent())
729
Kind = MCSymbolRefExpr::VK_PLT;
730
731
const MCExpr *TlsRef =
732
MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext);
733
734
// Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI.
735
if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() &&
736
M->getPICLevel() == PICLevel::BigPIC)
737
TlsRef = MCBinaryExpr::createAdd(
738
TlsRef, MCConstantExpr::create(32768, OutContext), OutContext);
739
const MachineOperand &MO = MI->getOperand(2);
740
const GlobalValue *GValue = MO.getGlobal();
741
MCSymbol *MOSymbol = getSymbol(GValue);
742
const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
743
EmitToStreamer(*OutStreamer,
744
MCInstBuilder(Subtarget->isPPC64() ? Opcode
745
: (unsigned)PPC::BL_TLS)
746
.addExpr(TlsRef)
747
.addExpr(SymVar));
748
}
749
750
/// Map a machine operand for a TOC pseudo-machine instruction to its
751
/// corresponding MCSymbol.
752
static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO,
753
AsmPrinter &AP) {
754
switch (MO.getType()) {
755
case MachineOperand::MO_GlobalAddress:
756
return AP.getSymbol(MO.getGlobal());
757
case MachineOperand::MO_ConstantPoolIndex:
758
return AP.GetCPISymbol(MO.getIndex());
759
case MachineOperand::MO_JumpTableIndex:
760
return AP.GetJTISymbol(MO.getIndex());
761
case MachineOperand::MO_BlockAddress:
762
return AP.GetBlockAddressSymbol(MO.getBlockAddress());
763
default:
764
llvm_unreachable("Unexpected operand type to get symbol.");
765
}
766
}
767
768
static PPCAsmPrinter::TOCEntryType
769
getTOCEntryTypeForMO(const MachineOperand &MO) {
770
// Use the target flags to determine if this MO is Thread Local.
771
// If we don't do this it comes out as Global.
772
if (PPCInstrInfo::hasTLSFlag(MO.getTargetFlags()))
773
return PPCAsmPrinter::TOCType_ThreadLocal;
774
775
switch (MO.getType()) {
776
case MachineOperand::MO_GlobalAddress: {
777
const GlobalValue *GlobalV = MO.getGlobal();
778
GlobalValue::LinkageTypes Linkage = GlobalV->getLinkage();
779
if (Linkage == GlobalValue::ExternalLinkage ||
780
Linkage == GlobalValue::AvailableExternallyLinkage ||
781
Linkage == GlobalValue::ExternalWeakLinkage)
782
return PPCAsmPrinter::TOCType_GlobalExternal;
783
784
return PPCAsmPrinter::TOCType_GlobalInternal;
785
}
786
case MachineOperand::MO_ConstantPoolIndex:
787
return PPCAsmPrinter::TOCType_ConstantPool;
788
case MachineOperand::MO_JumpTableIndex:
789
return PPCAsmPrinter::TOCType_JumpTable;
790
case MachineOperand::MO_BlockAddress:
791
return PPCAsmPrinter::TOCType_BlockAddress;
792
default:
793
llvm_unreachable("Unexpected operand type to get TOC type.");
794
}
795
}
796
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
797
/// the current output stream.
798
///
799
void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) {
800
PPC_MC::verifyInstructionPredicates(MI->getOpcode(),
801
getSubtargetInfo().getFeatureBits());
802
803
MCInst TmpInst;
804
const bool IsPPC64 = Subtarget->isPPC64();
805
const bool IsAIX = Subtarget->isAIXABI();
806
const bool HasAIXSmallLocalTLS = Subtarget->hasAIXSmallLocalExecTLS() ||
807
Subtarget->hasAIXSmallLocalDynamicTLS();
808
const Module *M = MF->getFunction().getParent();
809
PICLevel::Level PL = M->getPICLevel();
810
811
#ifndef NDEBUG
812
// Validate that SPE and FPU are mutually exclusive in codegen
813
if (!MI->isInlineAsm()) {
814
for (const MachineOperand &MO: MI->operands()) {
815
if (MO.isReg()) {
816
Register Reg = MO.getReg();
817
if (Subtarget->hasSPE()) {
818
if (PPC::F4RCRegClass.contains(Reg) ||
819
PPC::F8RCRegClass.contains(Reg) ||
820
PPC::VFRCRegClass.contains(Reg) ||
821
PPC::VRRCRegClass.contains(Reg) ||
822
PPC::VSFRCRegClass.contains(Reg) ||
823
PPC::VSSRCRegClass.contains(Reg)
824
)
825
llvm_unreachable("SPE targets cannot have FPRegs!");
826
} else {
827
if (PPC::SPERCRegClass.contains(Reg))
828
llvm_unreachable("SPE register found in FPU-targeted code!");
829
}
830
}
831
}
832
}
833
#endif
834
835
auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr,
836
ptrdiff_t OriginalOffset) {
837
// Apply an offset to the TOC-based expression such that the adjusted
838
// notional offset from the TOC base (to be encoded into the instruction's D
839
// or DS field) is the signed 16-bit truncation of the original notional
840
// offset from the TOC base.
841
// This is consistent with the treatment used both by XL C/C++ and
842
// by AIX ld -r.
843
ptrdiff_t Adjustment =
844
OriginalOffset - llvm::SignExtend32<16>(OriginalOffset);
845
return MCBinaryExpr::createAdd(
846
Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext);
847
};
848
849
auto getTOCEntryLoadingExprForXCOFF =
850
[IsPPC64, getTOCRelocAdjustedExprForXCOFF,
851
this](const MCSymbol *MOSymbol, const MCExpr *Expr,
852
MCSymbolRefExpr::VariantKind VK =
853
MCSymbolRefExpr::VariantKind::VK_None) -> const MCExpr * {
854
const unsigned EntryByteSize = IsPPC64 ? 8 : 4;
855
const auto TOCEntryIter = TOC.find({MOSymbol, VK});
856
assert(TOCEntryIter != TOC.end() &&
857
"Could not find the TOC entry for this symbol.");
858
const ptrdiff_t EntryDistanceFromTOCBase =
859
(TOCEntryIter - TOC.begin()) * EntryByteSize;
860
constexpr int16_t PositiveTOCRange = INT16_MAX;
861
862
if (EntryDistanceFromTOCBase > PositiveTOCRange)
863
return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase);
864
865
return Expr;
866
};
867
auto GetVKForMO = [&](const MachineOperand &MO) {
868
// For TLS initial-exec and local-exec accesses on AIX, we have one TOC
869
// entry for the symbol (with the variable offset), which is differentiated
870
// by MO_TPREL_FLAG.
871
unsigned Flag = MO.getTargetFlags();
872
if (Flag == PPCII::MO_TPREL_FLAG ||
873
Flag == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
874
Flag == PPCII::MO_TPREL_PCREL_FLAG) {
875
assert(MO.isGlobal() && "Only expecting a global MachineOperand here!\n");
876
TLSModel::Model Model = TM.getTLSModel(MO.getGlobal());
877
if (Model == TLSModel::LocalExec)
878
return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSLE;
879
if (Model == TLSModel::InitialExec)
880
return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSIE;
881
// On AIX, TLS model opt may have turned local-dynamic accesses into
882
// initial-exec accesses.
883
PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
884
if (Model == TLSModel::LocalDynamic &&
885
FuncInfo->isAIXFuncUseTLSIEForLD()) {
886
LLVM_DEBUG(
887
dbgs() << "Current function uses IE access for default LD vars.\n");
888
return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSIE;
889
}
890
llvm_unreachable("Only expecting local-exec or initial-exec accesses!");
891
}
892
// For GD TLS access on AIX, we have two TOC entries for the symbol (one for
893
// the variable offset and the other for the region handle). They are
894
// differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG.
895
if (Flag == PPCII::MO_TLSGDM_FLAG)
896
return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM;
897
if (Flag == PPCII::MO_TLSGD_FLAG || Flag == PPCII::MO_GOT_TLSGD_PCREL_FLAG)
898
return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD;
899
// For local-dynamic TLS access on AIX, we have one TOC entry for the symbol
900
// (the variable offset) and one shared TOC entry for the module handle.
901
// They are differentiated by MO_TLSLD_FLAG and MO_TLSLDM_FLAG.
902
if (Flag == PPCII::MO_TLSLD_FLAG && IsAIX)
903
return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSLD;
904
if (Flag == PPCII::MO_TLSLDM_FLAG && IsAIX)
905
return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSML;
906
return MCSymbolRefExpr::VariantKind::VK_None;
907
};
908
909
// Lower multi-instruction pseudo operations.
910
switch (MI->getOpcode()) {
911
default: break;
912
case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
913
assert(!Subtarget->isAIXABI() &&
914
"AIX does not support patchable function entry!");
915
// PATCHABLE_FUNCTION_ENTER on little endian is for XRAY support which is
916
// handled in PPCLinuxAsmPrinter.
917
if (MAI->isLittleEndian())
918
return;
919
const Function &F = MF->getFunction();
920
unsigned Num = 0;
921
(void)F.getFnAttribute("patchable-function-entry")
922
.getValueAsString()
923
.getAsInteger(10, Num);
924
if (!Num)
925
return;
926
emitNops(Num);
927
return;
928
}
929
case TargetOpcode::DBG_VALUE:
930
llvm_unreachable("Should be handled target independently");
931
case TargetOpcode::STACKMAP:
932
return LowerSTACKMAP(SM, *MI);
933
case TargetOpcode::PATCHPOINT:
934
return LowerPATCHPOINT(SM, *MI);
935
936
case PPC::MoveGOTtoLR: {
937
// Transform %lr = MoveGOTtoLR
938
// Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
939
// _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding
940
// _GLOBAL_OFFSET_TABLE_) has exactly one instruction:
941
// blrl
942
// This will return the pointer to _GLOBAL_OFFSET_TABLE_@local
943
MCSymbol *GOTSymbol =
944
OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
945
const MCExpr *OffsExpr =
946
MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol,
947
MCSymbolRefExpr::VK_PPC_LOCAL,
948
OutContext),
949
MCConstantExpr::create(4, OutContext),
950
OutContext);
951
952
// Emit the 'bl'.
953
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr));
954
return;
955
}
956
case PPC::MovePCtoLR:
957
case PPC::MovePCtoLR8: {
958
// Transform %lr = MovePCtoLR
959
// Into this, where the label is the PIC base:
960
// bl L1$pb
961
// L1$pb:
962
MCSymbol *PICBase = MF->getPICBaseSymbol();
963
964
// Emit the 'bl'.
965
EmitToStreamer(*OutStreamer,
966
MCInstBuilder(PPC::BL)
967
// FIXME: We would like an efficient form for this, so we
968
// don't have to do a lot of extra uniquing.
969
.addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
970
971
// Emit the label.
972
OutStreamer->emitLabel(PICBase);
973
return;
974
}
975
case PPC::UpdateGBR: {
976
// Transform %rd = UpdateGBR(%rt, %ri)
977
// Into: lwz %rt, .L0$poff - .L0$pb(%ri)
978
// add %rd, %rt, %ri
979
// or into (if secure plt mode is on):
980
// addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha
981
// addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l
982
// Get the offset from the GOT Base Register to the GOT
983
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
984
if (Subtarget->isSecurePlt() && isPositionIndependent() ) {
985
unsigned PICR = TmpInst.getOperand(0).getReg();
986
MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol(
987
M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_"
988
: ".LTOC");
989
const MCExpr *PB =
990
MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
991
992
const MCExpr *DeltaExpr = MCBinaryExpr::createSub(
993
MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext);
994
995
const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext);
996
EmitToStreamer(
997
*OutStreamer,
998
MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi));
999
1000
const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext);
1001
EmitToStreamer(
1002
*OutStreamer,
1003
MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo));
1004
return;
1005
} else {
1006
MCSymbol *PICOffset =
1007
MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF);
1008
TmpInst.setOpcode(PPC::LWZ);
1009
const MCExpr *Exp =
1010
MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
1011
const MCExpr *PB =
1012
MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
1013
MCSymbolRefExpr::VK_None,
1014
OutContext);
1015
const MCOperand TR = TmpInst.getOperand(1);
1016
const MCOperand PICR = TmpInst.getOperand(0);
1017
1018
// Step 1: lwz %rt, .L$poff - .L$pb(%ri)
1019
TmpInst.getOperand(1) =
1020
MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
1021
TmpInst.getOperand(0) = TR;
1022
TmpInst.getOperand(2) = PICR;
1023
EmitToStreamer(*OutStreamer, TmpInst);
1024
1025
TmpInst.setOpcode(PPC::ADD4);
1026
TmpInst.getOperand(0) = PICR;
1027
TmpInst.getOperand(1) = TR;
1028
TmpInst.getOperand(2) = PICR;
1029
EmitToStreamer(*OutStreamer, TmpInst);
1030
return;
1031
}
1032
}
1033
case PPC::LWZtoc: {
1034
// Transform %rN = LWZtoc @op1, %r2
1035
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1036
1037
// Change the opcode to LWZ.
1038
TmpInst.setOpcode(PPC::LWZ);
1039
1040
const MachineOperand &MO = MI->getOperand(1);
1041
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1042
"Invalid operand for LWZtoc.");
1043
1044
// Map the operand to its corresponding MCSymbol.
1045
const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1046
1047
// Create a reference to the GOT entry for the symbol. The GOT entry will be
1048
// synthesized later.
1049
if (PL == PICLevel::SmallPIC && !IsAIX) {
1050
const MCExpr *Exp =
1051
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT,
1052
OutContext);
1053
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1054
EmitToStreamer(*OutStreamer, TmpInst);
1055
return;
1056
}
1057
1058
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1059
1060
// Otherwise, use the TOC. 'TOCEntry' is a label used to reference the
1061
// storage allocated in the TOC which contains the address of
1062
// 'MOSymbol'. Said TOC entry will be synthesized later.
1063
MCSymbol *TOCEntry =
1064
lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1065
const MCExpr *Exp =
1066
MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext);
1067
1068
// AIX uses the label directly as the lwz displacement operand for
1069
// references into the toc section. The displacement value will be generated
1070
// relative to the toc-base.
1071
if (IsAIX) {
1072
assert(
1073
getCodeModel(*Subtarget, TM, MO) == CodeModel::Small &&
1074
"This pseudo should only be selected for 32-bit small code model.");
1075
Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK);
1076
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1077
1078
// Print MO for better readability
1079
if (isVerbose())
1080
OutStreamer->getCommentOS() << MO << '\n';
1081
EmitToStreamer(*OutStreamer, TmpInst);
1082
return;
1083
}
1084
1085
// Create an explicit subtract expression between the local symbol and
1086
// '.LTOC' to manifest the toc-relative offset.
1087
const MCExpr *PB = MCSymbolRefExpr::create(
1088
OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext);
1089
Exp = MCBinaryExpr::createSub(Exp, PB, OutContext);
1090
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1091
EmitToStreamer(*OutStreamer, TmpInst);
1092
return;
1093
}
1094
case PPC::ADDItoc:
1095
case PPC::ADDItoc8: {
1096
assert(IsAIX && TM.getCodeModel() == CodeModel::Small &&
1097
"PseudoOp only valid for small code model AIX");
1098
1099
// Transform %rN = ADDItoc/8 %r2, @op1.
1100
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1101
1102
// Change the opcode to load address.
1103
TmpInst.setOpcode((!IsPPC64) ? (PPC::LA) : (PPC::LA8));
1104
1105
const MachineOperand &MO = MI->getOperand(2);
1106
assert(MO.isGlobal() && "Invalid operand for ADDItoc[8].");
1107
1108
// Map the operand to its corresponding MCSymbol.
1109
const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1110
1111
const MCExpr *Exp =
1112
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_None, OutContext);
1113
1114
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1115
EmitToStreamer(*OutStreamer, TmpInst);
1116
return;
1117
}
1118
case PPC::LDtocJTI:
1119
case PPC::LDtocCPT:
1120
case PPC::LDtocBA:
1121
case PPC::LDtoc: {
1122
// Transform %x3 = LDtoc @min1, %x2
1123
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1124
1125
// Change the opcode to LD.
1126
TmpInst.setOpcode(PPC::LD);
1127
1128
const MachineOperand &MO = MI->getOperand(1);
1129
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1130
"Invalid operand!");
1131
1132
// Map the operand to its corresponding MCSymbol.
1133
const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1134
1135
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1136
1137
// Map the machine operand to its corresponding MCSymbol, then map the
1138
// global address operand to be a reference to the TOC entry we will
1139
// synthesize later.
1140
MCSymbol *TOCEntry =
1141
lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1142
1143
MCSymbolRefExpr::VariantKind VKExpr =
1144
IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC;
1145
const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, VKExpr, OutContext);
1146
TmpInst.getOperand(1) = MCOperand::createExpr(
1147
IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp);
1148
1149
// Print MO for better readability
1150
if (isVerbose() && IsAIX)
1151
OutStreamer->getCommentOS() << MO << '\n';
1152
EmitToStreamer(*OutStreamer, TmpInst);
1153
return;
1154
}
1155
case PPC::ADDIStocHA: {
1156
const MachineOperand &MO = MI->getOperand(2);
1157
1158
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1159
"Invalid operand for ADDIStocHA.");
1160
assert((IsAIX && !IsPPC64 &&
1161
getCodeModel(*Subtarget, TM, MO) == CodeModel::Large) &&
1162
"This pseudo should only be selected for 32-bit large code model on"
1163
" AIX.");
1164
1165
// Transform %rd = ADDIStocHA %rA, @sym(%r2)
1166
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1167
1168
// Change the opcode to ADDIS.
1169
TmpInst.setOpcode(PPC::ADDIS);
1170
1171
// Map the machine operand to its corresponding MCSymbol.
1172
MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1173
1174
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1175
1176
// Map the global address operand to be a reference to the TOC entry we
1177
// will synthesize later. 'TOCEntry' is a label used to reference the
1178
// storage allocated in the TOC which contains the address of 'MOSymbol'.
1179
// If the symbol does not have the toc-data attribute, then we create the
1180
// TOC entry on AIX. If the toc-data attribute is used, the TOC entry
1181
// contains the data rather than the address of the MOSymbol.
1182
if (![](const MachineOperand &MO) {
1183
if (!MO.isGlobal())
1184
return false;
1185
1186
const GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal());
1187
if (!GV)
1188
return false;
1189
return GV->hasAttribute("toc-data");
1190
}(MO)) {
1191
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1192
}
1193
1194
const MCExpr *Exp = MCSymbolRefExpr::create(
1195
MOSymbol, MCSymbolRefExpr::VK_PPC_U, OutContext);
1196
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1197
EmitToStreamer(*OutStreamer, TmpInst);
1198
return;
1199
}
1200
case PPC::LWZtocL: {
1201
const MachineOperand &MO = MI->getOperand(1);
1202
1203
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1204
"Invalid operand for LWZtocL.");
1205
assert(IsAIX && !IsPPC64 &&
1206
getCodeModel(*Subtarget, TM, MO) == CodeModel::Large &&
1207
"This pseudo should only be selected for 32-bit large code model on"
1208
" AIX.");
1209
1210
// Transform %rd = LWZtocL @sym, %rs.
1211
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1212
1213
// Change the opcode to lwz.
1214
TmpInst.setOpcode(PPC::LWZ);
1215
1216
// Map the machine operand to its corresponding MCSymbol.
1217
MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1218
1219
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1220
1221
// Always use TOC on AIX. Map the global address operand to be a reference
1222
// to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
1223
// reference the storage allocated in the TOC which contains the address of
1224
// 'MOSymbol'.
1225
MCSymbol *TOCEntry =
1226
lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1227
const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry,
1228
MCSymbolRefExpr::VK_PPC_L,
1229
OutContext);
1230
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1231
EmitToStreamer(*OutStreamer, TmpInst);
1232
return;
1233
}
1234
case PPC::ADDIStocHA8: {
1235
// Transform %xd = ADDIStocHA8 %x2, @sym
1236
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1237
1238
// Change the opcode to ADDIS8. If the global address is the address of
1239
// an external symbol, is a jump table address, is a block address, or is a
1240
// constant pool index with large code model enabled, then generate a TOC
1241
// entry and reference that. Otherwise, reference the symbol directly.
1242
TmpInst.setOpcode(PPC::ADDIS8);
1243
1244
const MachineOperand &MO = MI->getOperand(2);
1245
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1246
"Invalid operand for ADDIStocHA8!");
1247
1248
const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1249
1250
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1251
1252
const bool GlobalToc =
1253
MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal());
1254
1255
const CodeModel::Model CM =
1256
IsAIX ? getCodeModel(*Subtarget, TM, MO) : TM.getCodeModel();
1257
1258
if (GlobalToc || MO.isJTI() || MO.isBlockAddress() ||
1259
(MO.isCPI() && CM == CodeModel::Large))
1260
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1261
1262
VK = IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA;
1263
1264
const MCExpr *Exp =
1265
MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1266
1267
if (!MO.isJTI() && MO.getOffset())
1268
Exp = MCBinaryExpr::createAdd(Exp,
1269
MCConstantExpr::create(MO.getOffset(),
1270
OutContext),
1271
OutContext);
1272
1273
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1274
EmitToStreamer(*OutStreamer, TmpInst);
1275
return;
1276
}
1277
case PPC::LDtocL: {
1278
// Transform %xd = LDtocL @sym, %xs
1279
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1280
1281
// Change the opcode to LD. If the global address is the address of
1282
// an external symbol, is a jump table address, is a block address, or is
1283
// a constant pool index with large code model enabled, then generate a
1284
// TOC entry and reference that. Otherwise, reference the symbol directly.
1285
TmpInst.setOpcode(PPC::LD);
1286
1287
const MachineOperand &MO = MI->getOperand(1);
1288
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
1289
MO.isBlockAddress()) &&
1290
"Invalid operand for LDtocL!");
1291
1292
LLVM_DEBUG(assert(
1293
(!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1294
"LDtocL used on symbol that could be accessed directly is "
1295
"invalid. Must match ADDIStocHA8."));
1296
1297
const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1298
1299
MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1300
CodeModel::Model CM =
1301
IsAIX ? getCodeModel(*Subtarget, TM, MO) : TM.getCodeModel();
1302
if (!MO.isCPI() || CM == CodeModel::Large)
1303
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1304
1305
VK = IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO;
1306
const MCExpr *Exp =
1307
MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1308
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1309
EmitToStreamer(*OutStreamer, TmpInst);
1310
return;
1311
}
1312
case PPC::ADDItocL:
1313
case PPC::ADDItocL8: {
1314
// Transform %xd = ADDItocL %xs, @sym
1315
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1316
1317
unsigned Op = MI->getOpcode();
1318
1319
// Change the opcode to load address for toc-data.
1320
// ADDItocL is only used for 32-bit toc-data on AIX and will always use LA.
1321
TmpInst.setOpcode(Op == PPC::ADDItocL8 ? (IsAIX ? PPC::LA8 : PPC::ADDI8)
1322
: PPC::LA);
1323
1324
const MachineOperand &MO = MI->getOperand(2);
1325
assert((Op == PPC::ADDItocL8)
1326
? (MO.isGlobal() || MO.isCPI())
1327
: MO.isGlobal() && "Invalid operand for ADDItocL8.");
1328
assert(!(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1329
"Interposable definitions must use indirect accesses.");
1330
1331
// Map the operand to its corresponding MCSymbol.
1332
const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1333
1334
const MCExpr *Exp = MCSymbolRefExpr::create(
1335
MOSymbol,
1336
IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO,
1337
OutContext);
1338
1339
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1340
EmitToStreamer(*OutStreamer, TmpInst);
1341
return;
1342
}
1343
case PPC::ADDISgotTprelHA: {
1344
// Transform: %xd = ADDISgotTprelHA %x2, @sym
1345
// Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1346
assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1347
const MachineOperand &MO = MI->getOperand(2);
1348
const GlobalValue *GValue = MO.getGlobal();
1349
MCSymbol *MOSymbol = getSymbol(GValue);
1350
const MCExpr *SymGotTprel =
1351
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
1352
OutContext);
1353
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1354
.addReg(MI->getOperand(0).getReg())
1355
.addReg(MI->getOperand(1).getReg())
1356
.addExpr(SymGotTprel));
1357
return;
1358
}
1359
case PPC::LDgotTprelL:
1360
case PPC::LDgotTprelL32: {
1361
// Transform %xd = LDgotTprelL @sym, %xs
1362
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1363
1364
// Change the opcode to LD.
1365
TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ);
1366
const MachineOperand &MO = MI->getOperand(1);
1367
const GlobalValue *GValue = MO.getGlobal();
1368
MCSymbol *MOSymbol = getSymbol(GValue);
1369
const MCExpr *Exp = MCSymbolRefExpr::create(
1370
MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO
1371
: MCSymbolRefExpr::VK_PPC_GOT_TPREL,
1372
OutContext);
1373
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1374
EmitToStreamer(*OutStreamer, TmpInst);
1375
return;
1376
}
1377
1378
case PPC::PPC32PICGOT: {
1379
MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1380
MCSymbol *GOTRef = OutContext.createTempSymbol();
1381
MCSymbol *NextInstr = OutContext.createTempSymbol();
1382
1383
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL)
1384
// FIXME: We would like an efficient form for this, so we don't have to do
1385
// a lot of extra uniquing.
1386
.addExpr(MCSymbolRefExpr::create(NextInstr, OutContext)));
1387
const MCExpr *OffsExpr =
1388
MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext),
1389
MCSymbolRefExpr::create(GOTRef, OutContext),
1390
OutContext);
1391
OutStreamer->emitLabel(GOTRef);
1392
OutStreamer->emitValue(OffsExpr, 4);
1393
OutStreamer->emitLabel(NextInstr);
1394
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR)
1395
.addReg(MI->getOperand(0).getReg()));
1396
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ)
1397
.addReg(MI->getOperand(1).getReg())
1398
.addImm(0)
1399
.addReg(MI->getOperand(0).getReg()));
1400
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4)
1401
.addReg(MI->getOperand(0).getReg())
1402
.addReg(MI->getOperand(1).getReg())
1403
.addReg(MI->getOperand(0).getReg()));
1404
return;
1405
}
1406
case PPC::PPC32GOT: {
1407
MCSymbol *GOTSymbol =
1408
OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1409
const MCExpr *SymGotTlsL = MCSymbolRefExpr::create(
1410
GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext);
1411
const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create(
1412
GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext);
1413
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI)
1414
.addReg(MI->getOperand(0).getReg())
1415
.addExpr(SymGotTlsL));
1416
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
1417
.addReg(MI->getOperand(0).getReg())
1418
.addReg(MI->getOperand(0).getReg())
1419
.addExpr(SymGotTlsHA));
1420
return;
1421
}
1422
case PPC::ADDIStlsgdHA: {
1423
// Transform: %xd = ADDIStlsgdHA %x2, @sym
1424
// Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1425
assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1426
const MachineOperand &MO = MI->getOperand(2);
1427
const GlobalValue *GValue = MO.getGlobal();
1428
MCSymbol *MOSymbol = getSymbol(GValue);
1429
const MCExpr *SymGotTlsGD =
1430
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
1431
OutContext);
1432
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1433
.addReg(MI->getOperand(0).getReg())
1434
.addReg(MI->getOperand(1).getReg())
1435
.addExpr(SymGotTlsGD));
1436
return;
1437
}
1438
case PPC::ADDItlsgdL:
1439
// Transform: %xd = ADDItlsgdL %xs, @sym
1440
// Into: %xd = ADDI8 %xs, sym@got@tlsgd@l
1441
case PPC::ADDItlsgdL32: {
1442
// Transform: %rd = ADDItlsgdL32 %rs, @sym
1443
// Into: %rd = ADDI %rs, sym@got@tlsgd
1444
const MachineOperand &MO = MI->getOperand(2);
1445
const GlobalValue *GValue = MO.getGlobal();
1446
MCSymbol *MOSymbol = getSymbol(GValue);
1447
const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create(
1448
MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO
1449
: MCSymbolRefExpr::VK_PPC_GOT_TLSGD,
1450
OutContext);
1451
EmitToStreamer(*OutStreamer,
1452
MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1453
.addReg(MI->getOperand(0).getReg())
1454
.addReg(MI->getOperand(1).getReg())
1455
.addExpr(SymGotTlsGD));
1456
return;
1457
}
1458
case PPC::GETtlsMOD32AIX:
1459
case PPC::GETtlsMOD64AIX:
1460
// Transform: %r3 = GETtlsMODNNAIX %r3 (for NN == 32/64).
1461
// Into: BLA .__tls_get_mod()
1462
// Input parameter is a module handle (_$TLSML[TC]@ml) for all variables.
1463
case PPC::GETtlsADDR:
1464
// Transform: %x3 = GETtlsADDR %x3, @sym
1465
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd)
1466
case PPC::GETtlsADDRPCREL:
1467
case PPC::GETtlsADDR32AIX:
1468
case PPC::GETtlsADDR64AIX:
1469
// Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64).
1470
// Into: BLA .__tls_get_addr()
1471
// Unlike on Linux, there is no symbol or relocation needed for this call.
1472
case PPC::GETtlsADDR32: {
1473
// Transform: %r3 = GETtlsADDR32 %r3, @sym
1474
// Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT
1475
EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD);
1476
return;
1477
}
1478
case PPC::GETtlsTpointer32AIX: {
1479
// Transform: %r3 = GETtlsTpointer32AIX
1480
// Into: BLA .__get_tpointer()
1481
EmitAIXTlsCallHelper(MI);
1482
return;
1483
}
1484
case PPC::ADDIStlsldHA: {
1485
// Transform: %xd = ADDIStlsldHA %x2, @sym
1486
// Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha
1487
assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1488
const MachineOperand &MO = MI->getOperand(2);
1489
const GlobalValue *GValue = MO.getGlobal();
1490
MCSymbol *MOSymbol = getSymbol(GValue);
1491
const MCExpr *SymGotTlsLD =
1492
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
1493
OutContext);
1494
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1495
.addReg(MI->getOperand(0).getReg())
1496
.addReg(MI->getOperand(1).getReg())
1497
.addExpr(SymGotTlsLD));
1498
return;
1499
}
1500
case PPC::ADDItlsldL:
1501
// Transform: %xd = ADDItlsldL %xs, @sym
1502
// Into: %xd = ADDI8 %xs, sym@got@tlsld@l
1503
case PPC::ADDItlsldL32: {
1504
// Transform: %rd = ADDItlsldL32 %rs, @sym
1505
// Into: %rd = ADDI %rs, sym@got@tlsld
1506
const MachineOperand &MO = MI->getOperand(2);
1507
const GlobalValue *GValue = MO.getGlobal();
1508
MCSymbol *MOSymbol = getSymbol(GValue);
1509
const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create(
1510
MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO
1511
: MCSymbolRefExpr::VK_PPC_GOT_TLSLD,
1512
OutContext);
1513
EmitToStreamer(*OutStreamer,
1514
MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1515
.addReg(MI->getOperand(0).getReg())
1516
.addReg(MI->getOperand(1).getReg())
1517
.addExpr(SymGotTlsLD));
1518
return;
1519
}
1520
case PPC::GETtlsldADDR:
1521
// Transform: %x3 = GETtlsldADDR %x3, @sym
1522
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld)
1523
case PPC::GETtlsldADDRPCREL:
1524
case PPC::GETtlsldADDR32: {
1525
// Transform: %r3 = GETtlsldADDR32 %r3, @sym
1526
// Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT
1527
EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD);
1528
return;
1529
}
1530
case PPC::ADDISdtprelHA:
1531
// Transform: %xd = ADDISdtprelHA %xs, @sym
1532
// Into: %xd = ADDIS8 %xs, sym@dtprel@ha
1533
case PPC::ADDISdtprelHA32: {
1534
// Transform: %rd = ADDISdtprelHA32 %rs, @sym
1535
// Into: %rd = ADDIS %rs, sym@dtprel@ha
1536
const MachineOperand &MO = MI->getOperand(2);
1537
const GlobalValue *GValue = MO.getGlobal();
1538
MCSymbol *MOSymbol = getSymbol(GValue);
1539
const MCExpr *SymDtprel =
1540
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
1541
OutContext);
1542
EmitToStreamer(
1543
*OutStreamer,
1544
MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS)
1545
.addReg(MI->getOperand(0).getReg())
1546
.addReg(MI->getOperand(1).getReg())
1547
.addExpr(SymDtprel));
1548
return;
1549
}
1550
case PPC::PADDIdtprel: {
1551
// Transform: %rd = PADDIdtprel %rs, @sym
1552
// Into: %rd = PADDI8 %rs, sym@dtprel
1553
const MachineOperand &MO = MI->getOperand(2);
1554
const GlobalValue *GValue = MO.getGlobal();
1555
MCSymbol *MOSymbol = getSymbol(GValue);
1556
const MCExpr *SymDtprel = MCSymbolRefExpr::create(
1557
MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext);
1558
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8)
1559
.addReg(MI->getOperand(0).getReg())
1560
.addReg(MI->getOperand(1).getReg())
1561
.addExpr(SymDtprel));
1562
return;
1563
}
1564
1565
case PPC::ADDIdtprelL:
1566
// Transform: %xd = ADDIdtprelL %xs, @sym
1567
// Into: %xd = ADDI8 %xs, sym@dtprel@l
1568
case PPC::ADDIdtprelL32: {
1569
// Transform: %rd = ADDIdtprelL32 %rs, @sym
1570
// Into: %rd = ADDI %rs, sym@dtprel@l
1571
const MachineOperand &MO = MI->getOperand(2);
1572
const GlobalValue *GValue = MO.getGlobal();
1573
MCSymbol *MOSymbol = getSymbol(GValue);
1574
const MCExpr *SymDtprel =
1575
MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
1576
OutContext);
1577
EmitToStreamer(*OutStreamer,
1578
MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1579
.addReg(MI->getOperand(0).getReg())
1580
.addReg(MI->getOperand(1).getReg())
1581
.addExpr(SymDtprel));
1582
return;
1583
}
1584
case PPC::MFOCRF:
1585
case PPC::MFOCRF8:
1586
if (!Subtarget->hasMFOCRF()) {
1587
// Transform: %r3 = MFOCRF %cr7
1588
// Into: %r3 = MFCR ;; cr7
1589
unsigned NewOpcode =
1590
MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
1591
OutStreamer->AddComment(PPCInstPrinter::
1592
getRegisterName(MI->getOperand(1).getReg()));
1593
EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1594
.addReg(MI->getOperand(0).getReg()));
1595
return;
1596
}
1597
break;
1598
case PPC::MTOCRF:
1599
case PPC::MTOCRF8:
1600
if (!Subtarget->hasMFOCRF()) {
1601
// Transform: %cr7 = MTOCRF %r3
1602
// Into: MTCRF mask, %r3 ;; cr7
1603
unsigned NewOpcode =
1604
MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
1605
unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
1606
->getEncodingValue(MI->getOperand(0).getReg());
1607
OutStreamer->AddComment(PPCInstPrinter::
1608
getRegisterName(MI->getOperand(0).getReg()));
1609
EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1610
.addImm(Mask)
1611
.addReg(MI->getOperand(1).getReg()));
1612
return;
1613
}
1614
break;
1615
case PPC::LD:
1616
case PPC::STD:
1617
case PPC::LWA_32:
1618
case PPC::LWA: {
1619
// Verify alignment is legal, so we don't create relocations
1620
// that can't be supported.
1621
unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
1622
// For non-TOC-based local-exec TLS accesses with non-zero offsets, the
1623
// machine operand (which is a TargetGlobalTLSAddress) is expected to be
1624
// the same operand for both loads and stores.
1625
for (const MachineOperand &TempMO : MI->operands()) {
1626
if (((TempMO.getTargetFlags() == PPCII::MO_TPREL_FLAG ||
1627
TempMO.getTargetFlags() == PPCII::MO_TLSLD_FLAG)) &&
1628
TempMO.getOperandNo() == 1)
1629
OpNum = 1;
1630
}
1631
const MachineOperand &MO = MI->getOperand(OpNum);
1632
if (MO.isGlobal()) {
1633
const DataLayout &DL = MO.getGlobal()->getDataLayout();
1634
if (MO.getGlobal()->getPointerAlignment(DL) < 4)
1635
llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
1636
}
1637
// As these load/stores share common code with the following load/stores,
1638
// fall through to the subsequent cases in order to either process the
1639
// non-TOC-based local-exec sequence or to process the instruction normally.
1640
[[fallthrough]];
1641
}
1642
case PPC::LBZ:
1643
case PPC::LBZ8:
1644
case PPC::LHA:
1645
case PPC::LHA8:
1646
case PPC::LHZ:
1647
case PPC::LHZ8:
1648
case PPC::LWZ:
1649
case PPC::LWZ8:
1650
case PPC::STB:
1651
case PPC::STB8:
1652
case PPC::STH:
1653
case PPC::STH8:
1654
case PPC::STW:
1655
case PPC::STW8:
1656
case PPC::LFS:
1657
case PPC::STFS:
1658
case PPC::LFD:
1659
case PPC::STFD:
1660
case PPC::ADDI8: {
1661
// A faster non-TOC-based local-[exec|dynamic] sequence is represented by
1662
// `addi` or a load/store instruction (that directly loads or stores off of
1663
// the thread pointer) with an immediate operand having the
1664
// [MO_TPREL_FLAG|MO_TLSLD_FLAG]. Such instructions do not otherwise arise.
1665
if (!HasAIXSmallLocalTLS)
1666
break;
1667
bool IsMIADDI8 = MI->getOpcode() == PPC::ADDI8;
1668
unsigned OpNum = IsMIADDI8 ? 2 : 1;
1669
const MachineOperand &MO = MI->getOperand(OpNum);
1670
unsigned Flag = MO.getTargetFlags();
1671
if (Flag == PPCII::MO_TPREL_FLAG ||
1672
Flag == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
1673
Flag == PPCII::MO_TPREL_PCREL_FLAG || Flag == PPCII::MO_TLSLD_FLAG) {
1674
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1675
1676
const MCExpr *Expr = getAdjustedFasterLocalExpr(MO, MO.getOffset());
1677
if (Expr)
1678
TmpInst.getOperand(OpNum) = MCOperand::createExpr(Expr);
1679
1680
// Change the opcode to load address if the original opcode is an `addi`.
1681
if (IsMIADDI8)
1682
TmpInst.setOpcode(PPC::LA8);
1683
1684
EmitToStreamer(*OutStreamer, TmpInst);
1685
return;
1686
}
1687
// Now process the instruction normally.
1688
break;
1689
}
1690
case PPC::PseudoEIEIO: {
1691
EmitToStreamer(
1692
*OutStreamer,
1693
MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1694
EmitToStreamer(
1695
*OutStreamer,
1696
MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1697
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO));
1698
return;
1699
}
1700
}
1701
1702
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1703
EmitToStreamer(*OutStreamer, TmpInst);
1704
}
1705
1706
// For non-TOC-based local-[exec|dynamic] variables that have a non-zero offset,
1707
// we need to create a new MCExpr that adds the non-zero offset to the address
1708
// of the local-[exec|dynamic] variable that will be used in either an addi,
1709
// load or store. However, the final displacement for these instructions must be
1710
// between [-32768, 32768), so if the TLS address + its non-zero offset is
1711
// greater than 32KB, a new MCExpr is produced to accommodate this situation.
1712
const MCExpr *
1713
PPCAsmPrinter::getAdjustedFasterLocalExpr(const MachineOperand &MO,
1714
int64_t Offset) {
1715
// Non-zero offsets (for loads, stores or `addi`) require additional handling.
1716
// When the offset is zero, there is no need to create an adjusted MCExpr.
1717
if (!Offset)
1718
return nullptr;
1719
1720
assert(MO.isGlobal() && "Only expecting a global MachineOperand here!");
1721
const GlobalValue *GValue = MO.getGlobal();
1722
TLSModel::Model Model = TM.getTLSModel(GValue);
1723
assert((Model == TLSModel::LocalExec || Model == TLSModel::LocalDynamic) &&
1724
"Only local-[exec|dynamic] accesses are handled!");
1725
1726
bool IsGlobalADeclaration = GValue->isDeclarationForLinker();
1727
// Find the GlobalVariable that corresponds to the particular TLS variable
1728
// in the TLS variable-to-address mapping. All TLS variables should exist
1729
// within this map, with the exception of TLS variables marked as extern.
1730
const auto TLSVarsMapEntryIter = TLSVarsToAddressMapping.find(GValue);
1731
if (TLSVarsMapEntryIter == TLSVarsToAddressMapping.end())
1732
assert(IsGlobalADeclaration &&
1733
"Only expecting to find extern TLS variables not present in the TLS "
1734
"variable-to-address map!");
1735
1736
unsigned TLSVarAddress =
1737
IsGlobalADeclaration ? 0 : TLSVarsMapEntryIter->second;
1738
ptrdiff_t FinalAddress = (TLSVarAddress + Offset);
1739
// If the address of the TLS variable + the offset is less than 32KB,
1740
// or if the TLS variable is extern, we simply produce an MCExpr to add the
1741
// non-zero offset to the TLS variable address.
1742
// For when TLS variables are extern, this is safe to do because we can
1743
// assume that the address of extern TLS variables are zero.
1744
const MCExpr *Expr = MCSymbolRefExpr::create(
1745
getSymbol(GValue),
1746
Model == TLSModel::LocalExec ? MCSymbolRefExpr::VK_PPC_AIX_TLSLE
1747
: MCSymbolRefExpr::VK_PPC_AIX_TLSLD,
1748
OutContext);
1749
Expr = MCBinaryExpr::createAdd(
1750
Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1751
if (FinalAddress >= 32768) {
1752
// Handle the written offset for cases where:
1753
// TLS variable address + Offset > 32KB.
1754
1755
// The assembly that is printed will look like:
1756
// TLSVar@le + Offset - Delta
1757
// where Delta is a multiple of 64KB: ((FinalAddress + 32768) & ~0xFFFF).
1758
ptrdiff_t Delta = ((FinalAddress + 32768) & ~0xFFFF);
1759
// Check that the total instruction displacement fits within [-32768,32768).
1760
[[maybe_unused]] ptrdiff_t InstDisp = TLSVarAddress + Offset - Delta;
1761
assert(
1762
((InstDisp < 32768) && (InstDisp >= -32768)) &&
1763
"Expecting the instruction displacement for local-[exec|dynamic] TLS "
1764
"variables to be between [-32768, 32768)!");
1765
Expr = MCBinaryExpr::createAdd(
1766
Expr, MCConstantExpr::create(-Delta, OutContext), OutContext);
1767
}
1768
1769
return Expr;
1770
}
1771
1772
void PPCLinuxAsmPrinter::emitGNUAttributes(Module &M) {
1773
// Emit float ABI into GNU attribute
1774
Metadata *MD = M.getModuleFlag("float-abi");
1775
MDString *FloatABI = dyn_cast_or_null<MDString>(MD);
1776
if (!FloatABI)
1777
return;
1778
StringRef flt = FloatABI->getString();
1779
// TODO: Support emitting soft-fp and hard double/single attributes.
1780
if (flt == "doubledouble")
1781
OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1782
Val_GNU_Power_ABI_HardFloat_DP |
1783
Val_GNU_Power_ABI_LDBL_IBM128);
1784
else if (flt == "ieeequad")
1785
OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1786
Val_GNU_Power_ABI_HardFloat_DP |
1787
Val_GNU_Power_ABI_LDBL_IEEE128);
1788
else if (flt == "ieeedouble")
1789
OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1790
Val_GNU_Power_ABI_HardFloat_DP |
1791
Val_GNU_Power_ABI_LDBL_64);
1792
}
1793
1794
void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) {
1795
if (!Subtarget->isPPC64())
1796
return PPCAsmPrinter::emitInstruction(MI);
1797
1798
switch (MI->getOpcode()) {
1799
default:
1800
break;
1801
case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
1802
// .begin:
1803
// b .end # lis 0, FuncId[16..32]
1804
// nop # li 0, FuncId[0..15]
1805
// std 0, -8(1)
1806
// mflr 0
1807
// bl __xray_FunctionEntry
1808
// mtlr 0
1809
// .end:
1810
//
1811
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1812
// of instructions change.
1813
// XRAY is only supported on PPC Linux little endian.
1814
if (!MAI->isLittleEndian())
1815
break;
1816
MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1817
MCSymbol *EndOfSled = OutContext.createTempSymbol();
1818
OutStreamer->emitLabel(BeginOfSled);
1819
EmitToStreamer(*OutStreamer,
1820
MCInstBuilder(PPC::B).addExpr(
1821
MCSymbolRefExpr::create(EndOfSled, OutContext)));
1822
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1823
EmitToStreamer(
1824
*OutStreamer,
1825
MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1826
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1827
EmitToStreamer(*OutStreamer,
1828
MCInstBuilder(PPC::BL8_NOP)
1829
.addExpr(MCSymbolRefExpr::create(
1830
OutContext.getOrCreateSymbol("__xray_FunctionEntry"),
1831
OutContext)));
1832
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1833
OutStreamer->emitLabel(EndOfSled);
1834
recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2);
1835
break;
1836
}
1837
case TargetOpcode::PATCHABLE_RET: {
1838
unsigned RetOpcode = MI->getOperand(0).getImm();
1839
MCInst RetInst;
1840
RetInst.setOpcode(RetOpcode);
1841
for (const auto &MO : llvm::drop_begin(MI->operands())) {
1842
MCOperand MCOp;
1843
if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this))
1844
RetInst.addOperand(MCOp);
1845
}
1846
1847
bool IsConditional;
1848
if (RetOpcode == PPC::BCCLR) {
1849
IsConditional = true;
1850
} else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 ||
1851
RetOpcode == PPC::TCRETURNai8) {
1852
break;
1853
} else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) {
1854
IsConditional = false;
1855
} else {
1856
EmitToStreamer(*OutStreamer, RetInst);
1857
return;
1858
}
1859
1860
MCSymbol *FallthroughLabel;
1861
if (IsConditional) {
1862
// Before:
1863
// bgtlr cr0
1864
//
1865
// After:
1866
// ble cr0, .end
1867
// .p2align 3
1868
// .begin:
1869
// blr # lis 0, FuncId[16..32]
1870
// nop # li 0, FuncId[0..15]
1871
// std 0, -8(1)
1872
// mflr 0
1873
// bl __xray_FunctionExit
1874
// mtlr 0
1875
// blr
1876
// .end:
1877
//
1878
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1879
// of instructions change.
1880
FallthroughLabel = OutContext.createTempSymbol();
1881
EmitToStreamer(
1882
*OutStreamer,
1883
MCInstBuilder(PPC::BCC)
1884
.addImm(PPC::InvertPredicate(
1885
static_cast<PPC::Predicate>(MI->getOperand(1).getImm())))
1886
.addReg(MI->getOperand(2).getReg())
1887
.addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext)));
1888
RetInst = MCInst();
1889
RetInst.setOpcode(PPC::BLR8);
1890
}
1891
// .p2align 3
1892
// .begin:
1893
// b(lr)? # lis 0, FuncId[16..32]
1894
// nop # li 0, FuncId[0..15]
1895
// std 0, -8(1)
1896
// mflr 0
1897
// bl __xray_FunctionExit
1898
// mtlr 0
1899
// b(lr)?
1900
//
1901
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1902
// of instructions change.
1903
OutStreamer->emitCodeAlignment(Align(8), &getSubtargetInfo());
1904
MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1905
OutStreamer->emitLabel(BeginOfSled);
1906
EmitToStreamer(*OutStreamer, RetInst);
1907
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1908
EmitToStreamer(
1909
*OutStreamer,
1910
MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1911
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1912
EmitToStreamer(*OutStreamer,
1913
MCInstBuilder(PPC::BL8_NOP)
1914
.addExpr(MCSymbolRefExpr::create(
1915
OutContext.getOrCreateSymbol("__xray_FunctionExit"),
1916
OutContext)));
1917
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1918
EmitToStreamer(*OutStreamer, RetInst);
1919
if (IsConditional)
1920
OutStreamer->emitLabel(FallthroughLabel);
1921
recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2);
1922
return;
1923
}
1924
case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
1925
llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted");
1926
case TargetOpcode::PATCHABLE_TAIL_CALL:
1927
// TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a
1928
// normal function exit from a tail exit.
1929
llvm_unreachable("Tail call is handled in the normal case. See comments "
1930
"around this assert.");
1931
}
1932
return PPCAsmPrinter::emitInstruction(MI);
1933
}
1934
1935
void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) {
1936
if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) {
1937
PPCTargetStreamer *TS =
1938
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1939
TS->emitAbiVersion(2);
1940
}
1941
1942
if (static_cast<const PPCTargetMachine &>(TM).isPPC64() ||
1943
!isPositionIndependent())
1944
return AsmPrinter::emitStartOfAsmFile(M);
1945
1946
if (M.getPICLevel() == PICLevel::SmallPIC)
1947
return AsmPrinter::emitStartOfAsmFile(M);
1948
1949
OutStreamer->switchSection(OutContext.getELFSection(
1950
".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC));
1951
1952
MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC"));
1953
MCSymbol *CurrentPos = OutContext.createTempSymbol();
1954
1955
OutStreamer->emitLabel(CurrentPos);
1956
1957
// The GOT pointer points to the middle of the GOT, in order to reference the
1958
// entire 64kB range. 0x8000 is the midpoint.
1959
const MCExpr *tocExpr =
1960
MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext),
1961
MCConstantExpr::create(0x8000, OutContext),
1962
OutContext);
1963
1964
OutStreamer->emitAssignment(TOCSym, tocExpr);
1965
1966
OutStreamer->switchSection(getObjFileLowering().getTextSection());
1967
}
1968
1969
void PPCLinuxAsmPrinter::emitFunctionEntryLabel() {
1970
// linux/ppc32 - Normal entry label.
1971
if (!Subtarget->isPPC64() &&
1972
(!isPositionIndependent() ||
1973
MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC))
1974
return AsmPrinter::emitFunctionEntryLabel();
1975
1976
if (!Subtarget->isPPC64()) {
1977
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1978
if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) {
1979
MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF);
1980
MCSymbol *PICBase = MF->getPICBaseSymbol();
1981
OutStreamer->emitLabel(RelocSymbol);
1982
1983
const MCExpr *OffsExpr =
1984
MCBinaryExpr::createSub(
1985
MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
1986
OutContext),
1987
MCSymbolRefExpr::create(PICBase, OutContext),
1988
OutContext);
1989
OutStreamer->emitValue(OffsExpr, 4);
1990
OutStreamer->emitLabel(CurrentFnSym);
1991
return;
1992
} else
1993
return AsmPrinter::emitFunctionEntryLabel();
1994
}
1995
1996
// ELFv2 ABI - Normal entry label.
1997
if (Subtarget->isELFv2ABI()) {
1998
// In the Large code model, we allow arbitrary displacements between
1999
// the text section and its associated TOC section. We place the
2000
// full 8-byte offset to the TOC in memory immediately preceding
2001
// the function global entry point.
2002
if (TM.getCodeModel() == CodeModel::Large
2003
&& !MF->getRegInfo().use_empty(PPC::X2)) {
2004
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
2005
2006
MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
2007
MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF);
2008
const MCExpr *TOCDeltaExpr =
2009
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
2010
MCSymbolRefExpr::create(GlobalEPSymbol,
2011
OutContext),
2012
OutContext);
2013
2014
OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF));
2015
OutStreamer->emitValue(TOCDeltaExpr, 8);
2016
}
2017
return AsmPrinter::emitFunctionEntryLabel();
2018
}
2019
2020
// Emit an official procedure descriptor.
2021
MCSectionSubPair Current = OutStreamer->getCurrentSection();
2022
MCSectionELF *Section = OutStreamer->getContext().getELFSection(
2023
".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
2024
OutStreamer->switchSection(Section);
2025
OutStreamer->emitLabel(CurrentFnSym);
2026
OutStreamer->emitValueToAlignment(Align(8));
2027
MCSymbol *Symbol1 = CurrentFnSymForSize;
2028
// Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
2029
// entry point.
2030
OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext),
2031
8 /*size*/);
2032
MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC."));
2033
// Generates a R_PPC64_TOC relocation for TOC base insertion.
2034
OutStreamer->emitValue(
2035
MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext),
2036
8/*size*/);
2037
// Emit a null environment pointer.
2038
OutStreamer->emitIntValue(0, 8 /* size */);
2039
OutStreamer->switchSection(Current.first, Current.second);
2040
}
2041
2042
void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) {
2043
const DataLayout &DL = getDataLayout();
2044
2045
bool isPPC64 = DL.getPointerSizeInBits() == 64;
2046
2047
PPCTargetStreamer *TS =
2048
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2049
2050
// If we are using any values provided by Glibc at fixed addresses,
2051
// we need to ensure that the Glibc used at link time actually provides
2052
// those values. All versions of Glibc that do will define the symbol
2053
// named "__parse_hwcap_and_convert_at_platform".
2054
if (static_cast<const PPCTargetMachine &>(TM).hasGlibcHWCAPAccess())
2055
OutStreamer->emitSymbolValue(
2056
GetExternalSymbolSymbol("__parse_hwcap_and_convert_at_platform"),
2057
MAI->getCodePointerSize());
2058
emitGNUAttributes(M);
2059
2060
if (!TOC.empty()) {
2061
const char *Name = isPPC64 ? ".toc" : ".got2";
2062
MCSectionELF *Section = OutContext.getELFSection(
2063
Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
2064
OutStreamer->switchSection(Section);
2065
if (!isPPC64)
2066
OutStreamer->emitValueToAlignment(Align(4));
2067
2068
for (const auto &TOCMapPair : TOC) {
2069
const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first;
2070
MCSymbol *const TOCEntryLabel = TOCMapPair.second;
2071
2072
OutStreamer->emitLabel(TOCEntryLabel);
2073
if (isPPC64)
2074
TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second);
2075
else
2076
OutStreamer->emitSymbolValue(TOCEntryTarget, 4);
2077
}
2078
}
2079
2080
PPCAsmPrinter::emitEndOfAsmFile(M);
2081
}
2082
2083
/// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2.
2084
void PPCLinuxAsmPrinter::emitFunctionBodyStart() {
2085
// In the ELFv2 ABI, in functions that use the TOC register, we need to
2086
// provide two entry points. The ABI guarantees that when calling the
2087
// local entry point, r2 is set up by the caller to contain the TOC base
2088
// for this function, and when calling the global entry point, r12 is set
2089
// up by the caller to hold the address of the global entry point. We
2090
// thus emit a prefix sequence along the following lines:
2091
//
2092
// func:
2093
// .Lfunc_gepNN:
2094
// # global entry point
2095
// addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha
2096
// addi r2,r2,(.TOC.-.Lfunc_gepNN)@l
2097
// .Lfunc_lepNN:
2098
// .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
2099
// # local entry point, followed by function body
2100
//
2101
// For the Large code model, we create
2102
//
2103
// .Lfunc_tocNN:
2104
// .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel
2105
// func:
2106
// .Lfunc_gepNN:
2107
// # global entry point
2108
// ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12)
2109
// add r2,r2,r12
2110
// .Lfunc_lepNN:
2111
// .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
2112
// # local entry point, followed by function body
2113
//
2114
// This ensures we have r2 set up correctly while executing the function
2115
// body, no matter which entry point is called.
2116
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
2117
const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) ||
2118
!MF->getRegInfo().use_empty(PPC::R2);
2119
const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() &&
2120
UsesX2OrR2 && PPCFI->usesTOCBasePtr();
2121
const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() &&
2122
Subtarget->isELFv2ABI() && UsesX2OrR2;
2123
2124
// Only do all that if the function uses R2 as the TOC pointer
2125
// in the first place. We don't need the global entry point if the
2126
// function uses R2 as an allocatable register.
2127
if (NonPCrelGEPRequired || PCrelGEPRequired) {
2128
// Note: The logic here must be synchronized with the code in the
2129
// branch-selection pass which sets the offset of the first block in the
2130
// function. This matters because it affects the alignment.
2131
MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF);
2132
OutStreamer->emitLabel(GlobalEntryLabel);
2133
const MCSymbolRefExpr *GlobalEntryLabelExp =
2134
MCSymbolRefExpr::create(GlobalEntryLabel, OutContext);
2135
2136
if (TM.getCodeModel() != CodeModel::Large) {
2137
MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
2138
const MCExpr *TOCDeltaExpr =
2139
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
2140
GlobalEntryLabelExp, OutContext);
2141
2142
const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext);
2143
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
2144
.addReg(PPC::X2)
2145
.addReg(PPC::X12)
2146
.addExpr(TOCDeltaHi));
2147
2148
const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext);
2149
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
2150
.addReg(PPC::X2)
2151
.addReg(PPC::X2)
2152
.addExpr(TOCDeltaLo));
2153
} else {
2154
MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF);
2155
const MCExpr *TOCOffsetDeltaExpr =
2156
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext),
2157
GlobalEntryLabelExp, OutContext);
2158
2159
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
2160
.addReg(PPC::X2)
2161
.addExpr(TOCOffsetDeltaExpr)
2162
.addReg(PPC::X12));
2163
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8)
2164
.addReg(PPC::X2)
2165
.addReg(PPC::X2)
2166
.addReg(PPC::X12));
2167
}
2168
2169
MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF);
2170
OutStreamer->emitLabel(LocalEntryLabel);
2171
const MCSymbolRefExpr *LocalEntryLabelExp =
2172
MCSymbolRefExpr::create(LocalEntryLabel, OutContext);
2173
const MCExpr *LocalOffsetExp =
2174
MCBinaryExpr::createSub(LocalEntryLabelExp,
2175
GlobalEntryLabelExp, OutContext);
2176
2177
PPCTargetStreamer *TS =
2178
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2179
TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp);
2180
} else if (Subtarget->isUsingPCRelativeCalls()) {
2181
// When generating the entry point for a function we have a few scenarios
2182
// based on whether or not that function uses R2 and whether or not that
2183
// function makes calls (or is a leaf function).
2184
// 1) A leaf function that does not use R2 (or treats it as callee-saved
2185
// and preserves it). In this case st_other=0 and both
2186
// the local and global entry points for the function are the same.
2187
// No special entry point code is required.
2188
// 2) A function uses the TOC pointer R2. This function may or may not have
2189
// calls. In this case st_other=[2,6] and the global and local entry
2190
// points are different. Code to correctly setup the TOC pointer in R2
2191
// is put between the global and local entry points. This case is
2192
// covered by the if statatement above.
2193
// 3) A function does not use the TOC pointer R2 but does have calls.
2194
// In this case st_other=1 since we do not know whether or not any
2195
// of the callees clobber R2. This case is dealt with in this else if
2196
// block. Tail calls are considered calls and the st_other should also
2197
// be set to 1 in that case as well.
2198
// 4) The function does not use the TOC pointer but R2 is used inside
2199
// the function. In this case st_other=1 once again.
2200
// 5) This function uses inline asm. We mark R2 as reserved if the function
2201
// has inline asm as we have to assume that it may be used.
2202
if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() ||
2203
MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) {
2204
PPCTargetStreamer *TS =
2205
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2206
TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym),
2207
MCConstantExpr::create(1, OutContext));
2208
}
2209
}
2210
}
2211
2212
/// EmitFunctionBodyEnd - Print the traceback table before the .size
2213
/// directive.
2214
///
2215
void PPCLinuxAsmPrinter::emitFunctionBodyEnd() {
2216
// Only the 64-bit target requires a traceback table. For now,
2217
// we only emit the word of zeroes that GDB requires to find
2218
// the end of the function, and zeroes for the eight-byte
2219
// mandatory fields.
2220
// FIXME: We should fill in the eight-byte mandatory fields as described in
2221
// the PPC64 ELF ABI (this is a low-priority item because GDB does not
2222
// currently make use of these fields).
2223
if (Subtarget->isPPC64()) {
2224
OutStreamer->emitIntValue(0, 4/*size*/);
2225
OutStreamer->emitIntValue(0, 8/*size*/);
2226
}
2227
}
2228
2229
void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV,
2230
MCSymbol *GVSym) const {
2231
2232
assert(MAI->hasVisibilityOnlyWithLinkage() &&
2233
"AIX's linkage directives take a visibility setting.");
2234
2235
MCSymbolAttr LinkageAttr = MCSA_Invalid;
2236
switch (GV->getLinkage()) {
2237
case GlobalValue::ExternalLinkage:
2238
LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global;
2239
break;
2240
case GlobalValue::LinkOnceAnyLinkage:
2241
case GlobalValue::LinkOnceODRLinkage:
2242
case GlobalValue::WeakAnyLinkage:
2243
case GlobalValue::WeakODRLinkage:
2244
case GlobalValue::ExternalWeakLinkage:
2245
LinkageAttr = MCSA_Weak;
2246
break;
2247
case GlobalValue::AvailableExternallyLinkage:
2248
LinkageAttr = MCSA_Extern;
2249
break;
2250
case GlobalValue::PrivateLinkage:
2251
return;
2252
case GlobalValue::InternalLinkage:
2253
assert(GV->getVisibility() == GlobalValue::DefaultVisibility &&
2254
"InternalLinkage should not have other visibility setting.");
2255
LinkageAttr = MCSA_LGlobal;
2256
break;
2257
case GlobalValue::AppendingLinkage:
2258
llvm_unreachable("Should never emit this");
2259
case GlobalValue::CommonLinkage:
2260
llvm_unreachable("CommonLinkage of XCOFF should not come to this path");
2261
}
2262
2263
assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid.");
2264
2265
MCSymbolAttr VisibilityAttr = MCSA_Invalid;
2266
if (!TM.getIgnoreXCOFFVisibility()) {
2267
if (GV->hasDLLExportStorageClass() && !GV->hasDefaultVisibility())
2268
report_fatal_error(
2269
"Cannot not be both dllexport and non-default visibility");
2270
switch (GV->getVisibility()) {
2271
2272
// TODO: "internal" Visibility needs to go here.
2273
case GlobalValue::DefaultVisibility:
2274
if (GV->hasDLLExportStorageClass())
2275
VisibilityAttr = MAI->getExportedVisibilityAttr();
2276
break;
2277
case GlobalValue::HiddenVisibility:
2278
VisibilityAttr = MAI->getHiddenVisibilityAttr();
2279
break;
2280
case GlobalValue::ProtectedVisibility:
2281
VisibilityAttr = MAI->getProtectedVisibilityAttr();
2282
break;
2283
}
2284
}
2285
2286
// Do not emit the _$TLSML symbol.
2287
if (GV->getThreadLocalMode() == GlobalVariable::LocalDynamicTLSModel &&
2288
GV->hasName() && GV->getName() == "_$TLSML")
2289
return;
2290
2291
OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr,
2292
VisibilityAttr);
2293
}
2294
2295
void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) {
2296
// Setup CurrentFnDescSym and its containing csect.
2297
MCSectionXCOFF *FnDescSec =
2298
cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor(
2299
&MF.getFunction(), TM));
2300
FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4));
2301
2302
CurrentFnDescSym = FnDescSec->getQualNameSymbol();
2303
2304
return AsmPrinter::SetupMachineFunction(MF);
2305
}
2306
2307
uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() {
2308
// Calculate the number of VRs be saved.
2309
// Vector registers 20 through 31 are marked as reserved and cannot be used
2310
// in the default ABI.
2311
const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
2312
if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
2313
TM.getAIXExtendedAltivecABI()) {
2314
const MachineRegisterInfo &MRI = MF->getRegInfo();
2315
for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg)
2316
if (MRI.isPhysRegModified(Reg))
2317
// Number of VRs saved.
2318
return PPC::V31 - Reg + 1;
2319
}
2320
return 0;
2321
}
2322
2323
void PPCAIXAsmPrinter::emitFunctionBodyEnd() {
2324
2325
if (!TM.getXCOFFTracebackTable())
2326
return;
2327
2328
emitTracebackTable();
2329
2330
// If ShouldEmitEHBlock returns true, then the eh info table
2331
// will be emitted via `AIXException::endFunction`. Otherwise, we
2332
// need to emit a dumy eh info table when VRs are saved. We could not
2333
// consolidate these two places into one because there is no easy way
2334
// to access register information in `AIXException` class.
2335
if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) &&
2336
(getNumberOfVRSaved() > 0)) {
2337
// Emit dummy EH Info Table.
2338
OutStreamer->switchSection(getObjFileLowering().getCompactUnwindSection());
2339
MCSymbol *EHInfoLabel =
2340
TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
2341
OutStreamer->emitLabel(EHInfoLabel);
2342
2343
// Version number.
2344
OutStreamer->emitInt32(0);
2345
2346
const DataLayout &DL = MMI->getModule()->getDataLayout();
2347
const unsigned PointerSize = DL.getPointerSize();
2348
// Add necessary paddings in 64 bit mode.
2349
OutStreamer->emitValueToAlignment(Align(PointerSize));
2350
2351
OutStreamer->emitIntValue(0, PointerSize);
2352
OutStreamer->emitIntValue(0, PointerSize);
2353
OutStreamer->switchSection(MF->getSection());
2354
}
2355
}
2356
2357
void PPCAIXAsmPrinter::emitTracebackTable() {
2358
2359
// Create a symbol for the end of function.
2360
MCSymbol *FuncEnd = createTempSymbol(MF->getName());
2361
OutStreamer->emitLabel(FuncEnd);
2362
2363
OutStreamer->AddComment("Traceback table begin");
2364
// Begin with a fullword of zero.
2365
OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/);
2366
2367
SmallString<128> CommentString;
2368
raw_svector_ostream CommentOS(CommentString);
2369
2370
auto EmitComment = [&]() {
2371
OutStreamer->AddComment(CommentOS.str());
2372
CommentString.clear();
2373
};
2374
2375
auto EmitCommentAndValue = [&](uint64_t Value, int Size) {
2376
EmitComment();
2377
OutStreamer->emitIntValueInHexWithPadding(Value, Size);
2378
};
2379
2380
unsigned int Version = 0;
2381
CommentOS << "Version = " << Version;
2382
EmitCommentAndValue(Version, 1);
2383
2384
// There is a lack of information in the IR to assist with determining the
2385
// source language. AIX exception handling mechanism would only search for
2386
// personality routine and LSDA area when such language supports exception
2387
// handling. So to be conservatively correct and allow runtime to do its job,
2388
// we need to set it to C++ for now.
2389
TracebackTable::LanguageID LanguageIdentifier =
2390
TracebackTable::CPlusPlus; // C++
2391
2392
CommentOS << "Language = "
2393
<< getNameForTracebackTableLanguageId(LanguageIdentifier);
2394
EmitCommentAndValue(LanguageIdentifier, 1);
2395
2396
// This is only populated for the third and fourth bytes.
2397
uint32_t FirstHalfOfMandatoryField = 0;
2398
2399
// Emit the 3rd byte of the mandatory field.
2400
2401
// We always set traceback offset bit to true.
2402
FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask;
2403
2404
const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2405
const MachineRegisterInfo &MRI = MF->getRegInfo();
2406
2407
// Check the function uses floating-point processor instructions or not
2408
for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) {
2409
if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
2410
FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask;
2411
break;
2412
}
2413
}
2414
2415
#define GENBOOLCOMMENT(Prefix, V, Field) \
2416
CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \
2417
<< #Field
2418
2419
#define GENVALUECOMMENT(PrefixAndName, V, Field) \
2420
CommentOS << (PrefixAndName) << " = " \
2421
<< static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \
2422
(TracebackTable::Field##Shift))
2423
2424
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage);
2425
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue);
2426
EmitComment();
2427
2428
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset);
2429
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure);
2430
EmitComment();
2431
2432
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage);
2433
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless);
2434
EmitComment();
2435
2436
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent);
2437
EmitComment();
2438
GENBOOLCOMMENT("", FirstHalfOfMandatoryField,
2439
IsFloatingPointOperationLogOrAbortEnabled);
2440
EmitComment();
2441
2442
OutStreamer->emitIntValueInHexWithPadding(
2443
(FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2444
2445
// Set the 4th byte of the mandatory field.
2446
FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask;
2447
2448
const PPCRegisterInfo *RegInfo =
2449
static_cast<const PPCRegisterInfo *>(Subtarget->getRegisterInfo());
2450
Register FrameReg = RegInfo->getFrameRegister(*MF);
2451
if (FrameReg == (Subtarget->isPPC64() ? PPC::X31 : PPC::R31))
2452
FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask;
2453
2454
const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
2455
if (!MustSaveCRs.empty())
2456
FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask;
2457
2458
if (FI->mustSaveLR())
2459
FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask;
2460
2461
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler);
2462
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent);
2463
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed);
2464
EmitComment();
2465
GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField,
2466
OnConditionDirective);
2467
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved);
2468
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved);
2469
EmitComment();
2470
OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff),
2471
1);
2472
2473
// Set the 5th byte of mandatory field.
2474
uint32_t SecondHalfOfMandatoryField = 0;
2475
2476
SecondHalfOfMandatoryField |= MF->getFrameInfo().getStackSize()
2477
? TracebackTable::IsBackChainStoredMask
2478
: 0;
2479
2480
uint32_t FPRSaved = 0;
2481
for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) {
2482
if (MRI.isPhysRegModified(Reg)) {
2483
FPRSaved = PPC::F31 - Reg + 1;
2484
break;
2485
}
2486
}
2487
SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) &
2488
TracebackTable::FPRSavedMask;
2489
GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored);
2490
GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup);
2491
GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved);
2492
EmitComment();
2493
OutStreamer->emitIntValueInHexWithPadding(
2494
(SecondHalfOfMandatoryField & 0xff000000) >> 24, 1);
2495
2496
// Set the 6th byte of mandatory field.
2497
2498
// Check whether has Vector Instruction,We only treat instructions uses vector
2499
// register as vector instructions.
2500
bool HasVectorInst = false;
2501
for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg)
2502
if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
2503
// Has VMX instruction.
2504
HasVectorInst = true;
2505
break;
2506
}
2507
2508
if (FI->hasVectorParms() || HasVectorInst)
2509
SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask;
2510
2511
uint16_t NumOfVRSaved = getNumberOfVRSaved();
2512
bool ShouldEmitEHBlock =
2513
TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0;
2514
2515
if (ShouldEmitEHBlock)
2516
SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask;
2517
2518
uint32_t GPRSaved = 0;
2519
2520
// X13 is reserved under 64-bit environment.
2521
unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13;
2522
unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31;
2523
2524
for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) {
2525
if (MRI.isPhysRegModified(Reg)) {
2526
GPRSaved = GPREnd - Reg + 1;
2527
break;
2528
}
2529
}
2530
2531
SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) &
2532
TracebackTable::GPRSavedMask;
2533
2534
GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable);
2535
GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo);
2536
GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved);
2537
EmitComment();
2538
OutStreamer->emitIntValueInHexWithPadding(
2539
(SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1);
2540
2541
// Set the 7th byte of mandatory field.
2542
uint32_t NumberOfFixedParms = FI->getFixedParmsNum();
2543
SecondHalfOfMandatoryField |=
2544
(NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) &
2545
TracebackTable::NumberOfFixedParmsMask;
2546
GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField,
2547
NumberOfFixedParms);
2548
EmitComment();
2549
OutStreamer->emitIntValueInHexWithPadding(
2550
(SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2551
2552
// Set the 8th byte of mandatory field.
2553
2554
// Always set parameter on stack.
2555
SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask;
2556
2557
uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum();
2558
SecondHalfOfMandatoryField |=
2559
(NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) &
2560
TracebackTable::NumberOfFloatingPointParmsMask;
2561
2562
GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField,
2563
NumberOfFloatingPointParms);
2564
GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack);
2565
EmitComment();
2566
OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff,
2567
1);
2568
2569
// Generate the optional fields of traceback table.
2570
2571
// Parameter type.
2572
if (NumberOfFixedParms || NumberOfFPParms) {
2573
uint32_t ParmsTypeValue = FI->getParmsType();
2574
2575
Expected<SmallString<32>> ParmsType =
2576
FI->hasVectorParms()
2577
? XCOFF::parseParmsTypeWithVecInfo(
2578
ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms,
2579
FI->getVectorParmsNum())
2580
: XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms,
2581
NumberOfFPParms);
2582
2583
assert(ParmsType && toString(ParmsType.takeError()).c_str());
2584
if (ParmsType) {
2585
CommentOS << "Parameter type = " << ParmsType.get();
2586
EmitComment();
2587
}
2588
OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue,
2589
sizeof(ParmsTypeValue));
2590
}
2591
// Traceback table offset.
2592
OutStreamer->AddComment("Function size");
2593
if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) {
2594
MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol(
2595
&(MF->getFunction()), TM);
2596
OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4);
2597
}
2598
2599
// Since we unset the Int_Handler.
2600
if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask)
2601
report_fatal_error("Hand_Mask not implement yet");
2602
2603
if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask)
2604
report_fatal_error("Ctl_Info not implement yet");
2605
2606
if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) {
2607
StringRef Name = MF->getName().substr(0, INT16_MAX);
2608
int16_t NameLength = Name.size();
2609
CommentOS << "Function name len = "
2610
<< static_cast<unsigned int>(NameLength);
2611
EmitCommentAndValue(NameLength, 2);
2612
OutStreamer->AddComment("Function Name");
2613
OutStreamer->emitBytes(Name);
2614
}
2615
2616
if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) {
2617
uint8_t AllocReg = XCOFF::AllocRegNo;
2618
OutStreamer->AddComment("AllocaUsed");
2619
OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg));
2620
}
2621
2622
if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) {
2623
uint16_t VRData = 0;
2624
if (NumOfVRSaved) {
2625
// Number of VRs saved.
2626
VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) &
2627
TracebackTable::NumberOfVRSavedMask;
2628
// This bit is supposed to set only when the special register
2629
// VRSAVE is saved on stack.
2630
// However, IBM XL compiler sets the bit when any vector registers
2631
// are saved on the stack. We will follow XL's behavior on AIX
2632
// so that we don't get surprise behavior change for C code.
2633
VRData |= TracebackTable::IsVRSavedOnStackMask;
2634
}
2635
2636
// Set has_varargs.
2637
if (FI->getVarArgsFrameIndex())
2638
VRData |= TracebackTable::HasVarArgsMask;
2639
2640
// Vector parameters number.
2641
unsigned VectorParmsNum = FI->getVectorParmsNum();
2642
VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) &
2643
TracebackTable::NumberOfVectorParmsMask;
2644
2645
if (HasVectorInst)
2646
VRData |= TracebackTable::HasVMXInstructionMask;
2647
2648
GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved);
2649
GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack);
2650
GENBOOLCOMMENT(", ", VRData, HasVarArgs);
2651
EmitComment();
2652
OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1);
2653
2654
GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms);
2655
GENBOOLCOMMENT(", ", VRData, HasVMXInstruction);
2656
EmitComment();
2657
OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1);
2658
2659
uint32_t VecParmTypeValue = FI->getVecExtParmsType();
2660
2661
Expected<SmallString<32>> VecParmsType =
2662
XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum);
2663
assert(VecParmsType && toString(VecParmsType.takeError()).c_str());
2664
if (VecParmsType) {
2665
CommentOS << "Vector Parameter type = " << VecParmsType.get();
2666
EmitComment();
2667
}
2668
OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue,
2669
sizeof(VecParmTypeValue));
2670
// Padding 2 bytes.
2671
CommentOS << "Padding";
2672
EmitCommentAndValue(0, 2);
2673
}
2674
2675
uint8_t ExtensionTableFlag = 0;
2676
if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) {
2677
if (ShouldEmitEHBlock)
2678
ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO;
2679
if (EnableSSPCanaryBitInTB &&
2680
TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF))
2681
ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY;
2682
2683
CommentOS << "ExtensionTableFlag = "
2684
<< getExtendedTBTableFlagString(ExtensionTableFlag);
2685
EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag));
2686
}
2687
2688
if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) {
2689
auto &Ctx = OutStreamer->getContext();
2690
MCSymbol *EHInfoSym =
2691
TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
2692
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym, TOCType_EHBlock);
2693
const MCSymbol *TOCBaseSym =
2694
cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2695
->getQualNameSymbol();
2696
const MCExpr *Exp =
2697
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
2698
MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
2699
2700
const DataLayout &DL = getDataLayout();
2701
OutStreamer->emitValueToAlignment(Align(4));
2702
OutStreamer->AddComment("EHInfo Table");
2703
OutStreamer->emitValue(Exp, DL.getPointerSize());
2704
}
2705
#undef GENBOOLCOMMENT
2706
#undef GENVALUECOMMENT
2707
}
2708
2709
static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) {
2710
return GV->hasAppendingLinkage() &&
2711
StringSwitch<bool>(GV->getName())
2712
// TODO: Linker could still eliminate the GV if we just skip
2713
// handling llvm.used array. Skipping them for now until we or the
2714
// AIX OS team come up with a good solution.
2715
.Case("llvm.used", true)
2716
// It's correct to just skip llvm.compiler.used array here.
2717
.Case("llvm.compiler.used", true)
2718
.Default(false);
2719
}
2720
2721
static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) {
2722
return StringSwitch<bool>(GV->getName())
2723
.Cases("llvm.global_ctors", "llvm.global_dtors", true)
2724
.Default(false);
2725
}
2726
2727
uint64_t PPCAIXAsmPrinter::getAliasOffset(const Constant *C) {
2728
if (auto *GA = dyn_cast<GlobalAlias>(C))
2729
return getAliasOffset(GA->getAliasee());
2730
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2731
const MCExpr *LowC = lowerConstant(CE);
2732
const MCBinaryExpr *CBE = dyn_cast<MCBinaryExpr>(LowC);
2733
if (!CBE)
2734
return 0;
2735
if (CBE->getOpcode() != MCBinaryExpr::Add)
2736
report_fatal_error("Only adding an offset is supported now.");
2737
auto *RHS = dyn_cast<MCConstantExpr>(CBE->getRHS());
2738
if (!RHS)
2739
report_fatal_error("Unable to get the offset of alias.");
2740
return RHS->getValue();
2741
}
2742
return 0;
2743
}
2744
2745
static void tocDataChecks(unsigned PointerSize, const GlobalVariable *GV) {
2746
// TODO: These asserts should be updated as more support for the toc data
2747
// transformation is added (struct support, etc.).
2748
assert(
2749
PointerSize >= GV->getAlign().valueOrOne().value() &&
2750
"GlobalVariables with an alignment requirement stricter than TOC entry "
2751
"size not supported by the toc data transformation.");
2752
2753
Type *GVType = GV->getValueType();
2754
assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
2755
"supported by the toc data transformation.");
2756
if (GV->getDataLayout().getTypeSizeInBits(GVType) >
2757
PointerSize * 8)
2758
report_fatal_error(
2759
"A GlobalVariable with size larger than a TOC entry is not currently "
2760
"supported by the toc data transformation.");
2761
if (GV->hasPrivateLinkage())
2762
report_fatal_error("A GlobalVariable with private linkage is not "
2763
"currently supported by the toc data transformation.");
2764
}
2765
2766
void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
2767
// Special LLVM global arrays have been handled at the initialization.
2768
if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV))
2769
return;
2770
2771
// If the Global Variable has the toc-data attribute, it needs to be emitted
2772
// when we emit the .toc section.
2773
if (GV->hasAttribute("toc-data")) {
2774
unsigned PointerSize = GV->getDataLayout().getPointerSize();
2775
tocDataChecks(PointerSize, GV);
2776
TOCDataGlobalVars.push_back(GV);
2777
return;
2778
}
2779
2780
emitGlobalVariableHelper(GV);
2781
}
2782
2783
void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) {
2784
assert(!GV->getName().starts_with("llvm.") &&
2785
"Unhandled intrinsic global variable.");
2786
2787
if (GV->hasComdat())
2788
report_fatal_error("COMDAT not yet supported by AIX.");
2789
2790
MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV));
2791
2792
if (GV->isDeclarationForLinker()) {
2793
emitLinkage(GV, GVSym);
2794
return;
2795
}
2796
2797
SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM);
2798
if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() &&
2799
!GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS.
2800
report_fatal_error("Encountered a global variable kind that is "
2801
"not supported yet.");
2802
2803
// Print GV in verbose mode
2804
if (isVerbose()) {
2805
if (GV->hasInitializer()) {
2806
GV->printAsOperand(OutStreamer->getCommentOS(),
2807
/*PrintType=*/false, GV->getParent());
2808
OutStreamer->getCommentOS() << '\n';
2809
}
2810
}
2811
2812
MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
2813
getObjFileLowering().SectionForGlobal(GV, GVKind, TM));
2814
2815
// Switch to the containing csect.
2816
OutStreamer->switchSection(Csect);
2817
2818
const DataLayout &DL = GV->getDataLayout();
2819
2820
// Handle common and zero-initialized local symbols.
2821
if (GV->hasCommonLinkage() || GVKind.isBSSLocal() ||
2822
GVKind.isThreadBSSLocal()) {
2823
Align Alignment = GV->getAlign().value_or(DL.getPreferredAlign(GV));
2824
uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
2825
GVSym->setStorageClass(
2826
TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV));
2827
2828
if (GVKind.isBSSLocal() && Csect->getMappingClass() == XCOFF::XMC_TD) {
2829
OutStreamer->emitZeros(Size);
2830
} else if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal()) {
2831
assert(Csect->getMappingClass() != XCOFF::XMC_TD &&
2832
"BSS local toc-data already handled and TLS variables "
2833
"incompatible with XMC_TD");
2834
OutStreamer->emitXCOFFLocalCommonSymbol(
2835
OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size,
2836
GVSym, Alignment);
2837
} else {
2838
OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
2839
}
2840
return;
2841
}
2842
2843
MCSymbol *EmittedInitSym = GVSym;
2844
2845
// Emit linkage for the global variable and its aliases.
2846
emitLinkage(GV, EmittedInitSym);
2847
for (const GlobalAlias *GA : GOAliasMap[GV])
2848
emitLinkage(GA, getSymbol(GA));
2849
2850
emitAlignment(getGVAlignment(GV, DL), GV);
2851
2852
// When -fdata-sections is enabled, every GlobalVariable will
2853
// be put into its own csect; therefore, label is not necessary here.
2854
if (!TM.getDataSections() || GV->hasSection()) {
2855
if (Csect->getMappingClass() != XCOFF::XMC_TD)
2856
OutStreamer->emitLabel(EmittedInitSym);
2857
}
2858
2859
// No alias to emit.
2860
if (!GOAliasMap[GV].size()) {
2861
emitGlobalConstant(GV->getDataLayout(), GV->getInitializer());
2862
return;
2863
}
2864
2865
// Aliases with the same offset should be aligned. Record the list of aliases
2866
// associated with the offset.
2867
AliasMapTy AliasList;
2868
for (const GlobalAlias *GA : GOAliasMap[GV])
2869
AliasList[getAliasOffset(GA->getAliasee())].push_back(GA);
2870
2871
// Emit alias label and element value for global variable.
2872
emitGlobalConstant(GV->getDataLayout(), GV->getInitializer(),
2873
&AliasList);
2874
}
2875
2876
void PPCAIXAsmPrinter::emitFunctionDescriptor() {
2877
const DataLayout &DL = getDataLayout();
2878
const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4;
2879
2880
MCSectionSubPair Current = OutStreamer->getCurrentSection();
2881
// Emit function descriptor.
2882
OutStreamer->switchSection(
2883
cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect());
2884
2885
// Emit aliasing label for function descriptor csect.
2886
for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
2887
OutStreamer->emitLabel(getSymbol(Alias));
2888
2889
// Emit function entry point address.
2890
OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext),
2891
PointerSize);
2892
// Emit TOC base address.
2893
const MCSymbol *TOCBaseSym =
2894
cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2895
->getQualNameSymbol();
2896
OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext),
2897
PointerSize);
2898
// Emit a null environment pointer.
2899
OutStreamer->emitIntValue(0, PointerSize);
2900
2901
OutStreamer->switchSection(Current.first, Current.second);
2902
}
2903
2904
void PPCAIXAsmPrinter::emitFunctionEntryLabel() {
2905
// For functions without user defined section, it's not necessary to emit the
2906
// label when we have individual function in its own csect.
2907
if (!TM.getFunctionSections() || MF->getFunction().hasSection())
2908
PPCAsmPrinter::emitFunctionEntryLabel();
2909
2910
// Emit aliasing label for function entry point label.
2911
for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
2912
OutStreamer->emitLabel(
2913
getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM));
2914
}
2915
2916
void PPCAIXAsmPrinter::emitPGORefs(Module &M) {
2917
if (!OutContext.hasXCOFFSection(
2918
"__llvm_prf_cnts",
2919
XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)))
2920
return;
2921
2922
// When inside a csect `foo`, a .ref directive referring to a csect `bar`
2923
// translates into a relocation entry from `foo` to` bar`. The referring
2924
// csect, `foo`, is identified by its address. If multiple csects have the
2925
// same address (because one or more of them are zero-length), the referring
2926
// csect cannot be determined. Hence, we don't generate the .ref directives
2927
// if `__llvm_prf_cnts` is an empty section.
2928
bool HasNonZeroLengthPrfCntsSection = false;
2929
const DataLayout &DL = M.getDataLayout();
2930
for (GlobalVariable &GV : M.globals())
2931
if (GV.hasSection() && GV.getSection() == "__llvm_prf_cnts" &&
2932
DL.getTypeAllocSize(GV.getValueType()) > 0) {
2933
HasNonZeroLengthPrfCntsSection = true;
2934
break;
2935
}
2936
2937
if (HasNonZeroLengthPrfCntsSection) {
2938
MCSection *CntsSection = OutContext.getXCOFFSection(
2939
"__llvm_prf_cnts", SectionKind::getData(),
2940
XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD),
2941
/*MultiSymbolsAllowed*/ true);
2942
2943
OutStreamer->switchSection(CntsSection);
2944
if (OutContext.hasXCOFFSection(
2945
"__llvm_prf_data",
2946
XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) {
2947
MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_data[RW]");
2948
OutStreamer->emitXCOFFRefDirective(S);
2949
}
2950
if (OutContext.hasXCOFFSection(
2951
"__llvm_prf_names",
2952
XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD))) {
2953
MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_names[RO]");
2954
OutStreamer->emitXCOFFRefDirective(S);
2955
}
2956
if (OutContext.hasXCOFFSection(
2957
"__llvm_prf_vnds",
2958
XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) {
2959
MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_vnds[RW]");
2960
OutStreamer->emitXCOFFRefDirective(S);
2961
}
2962
}
2963
}
2964
2965
void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) {
2966
// If there are no functions and there are no toc-data definitions in this
2967
// module, we will never need to reference the TOC base.
2968
if (M.empty() && TOCDataGlobalVars.empty())
2969
return;
2970
2971
emitPGORefs(M);
2972
2973
// Switch to section to emit TOC base.
2974
OutStreamer->switchSection(getObjFileLowering().getTOCBaseSection());
2975
2976
PPCTargetStreamer *TS =
2977
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2978
2979
for (auto &I : TOC) {
2980
MCSectionXCOFF *TCEntry;
2981
// Setup the csect for the current TC entry. If the variant kind is
2982
// VK_PPC_AIX_TLSGDM the entry represents the region handle, we create a
2983
// new symbol to prefix the name with a dot.
2984
// If TLS model opt is turned on, create a new symbol to prefix the name
2985
// with a dot.
2986
if (I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM ||
2987
(Subtarget->hasAIXShLibTLSModelOpt() &&
2988
I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSLD)) {
2989
SmallString<128> Name;
2990
StringRef Prefix = ".";
2991
Name += Prefix;
2992
Name += cast<MCSymbolXCOFF>(I.first.first)->getSymbolTableName();
2993
MCSymbol *S = OutContext.getOrCreateSymbol(Name);
2994
TCEntry = cast<MCSectionXCOFF>(
2995
getObjFileLowering().getSectionForTOCEntry(S, TM));
2996
} else {
2997
TCEntry = cast<MCSectionXCOFF>(
2998
getObjFileLowering().getSectionForTOCEntry(I.first.first, TM));
2999
}
3000
OutStreamer->switchSection(TCEntry);
3001
3002
OutStreamer->emitLabel(I.second);
3003
TS->emitTCEntry(*I.first.first, I.first.second);
3004
}
3005
3006
// Traverse the list of global variables twice, emitting all of the
3007
// non-common global variables before the common ones, as emitting a
3008
// .comm directive changes the scope from .toc to the common symbol.
3009
for (const auto *GV : TOCDataGlobalVars) {
3010
if (!GV->hasCommonLinkage())
3011
emitGlobalVariableHelper(GV);
3012
}
3013
for (const auto *GV : TOCDataGlobalVars) {
3014
if (GV->hasCommonLinkage())
3015
emitGlobalVariableHelper(GV);
3016
}
3017
}
3018
3019
bool PPCAIXAsmPrinter::doInitialization(Module &M) {
3020
const bool Result = PPCAsmPrinter::doInitialization(M);
3021
3022
auto setCsectAlignment = [this](const GlobalObject *GO) {
3023
// Declarations have 0 alignment which is set by default.
3024
if (GO->isDeclarationForLinker())
3025
return;
3026
3027
SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM);
3028
MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
3029
getObjFileLowering().SectionForGlobal(GO, GOKind, TM));
3030
3031
Align GOAlign = getGVAlignment(GO, GO->getDataLayout());
3032
Csect->ensureMinAlignment(GOAlign);
3033
};
3034
3035
// For all TLS variables, calculate their corresponding addresses and store
3036
// them into TLSVarsToAddressMapping, which will be used to determine whether
3037
// or not local-exec TLS variables require special assembly printing.
3038
uint64_t TLSVarAddress = 0;
3039
auto DL = M.getDataLayout();
3040
for (const auto &G : M.globals()) {
3041
if (G.isThreadLocal() && !G.isDeclaration()) {
3042
TLSVarAddress = alignTo(TLSVarAddress, getGVAlignment(&G, DL));
3043
TLSVarsToAddressMapping[&G] = TLSVarAddress;
3044
TLSVarAddress += DL.getTypeAllocSize(G.getValueType());
3045
}
3046
}
3047
3048
// We need to know, up front, the alignment of csects for the assembly path,
3049
// because once a .csect directive gets emitted, we could not change the
3050
// alignment value on it.
3051
for (const auto &G : M.globals()) {
3052
if (isSpecialLLVMGlobalArrayToSkip(&G))
3053
continue;
3054
3055
if (isSpecialLLVMGlobalArrayForStaticInit(&G)) {
3056
// Generate a format indicator and a unique module id to be a part of
3057
// the sinit and sterm function names.
3058
if (FormatIndicatorAndUniqueModId.empty()) {
3059
std::string UniqueModuleId = getUniqueModuleId(&M);
3060
if (UniqueModuleId != "")
3061
// TODO: Use source file full path to generate the unique module id
3062
// and add a format indicator as a part of function name in case we
3063
// will support more than one format.
3064
FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1);
3065
else {
3066
// Use threadId, Pid, and current time as the unique module id when we
3067
// cannot generate one based on a module's strong external symbols.
3068
auto CurTime =
3069
std::chrono::duration_cast<std::chrono::nanoseconds>(
3070
std::chrono::steady_clock::now().time_since_epoch())
3071
.count();
3072
FormatIndicatorAndUniqueModId =
3073
"clangPidTidTime_" + llvm::itostr(sys::Process::getProcessId()) +
3074
"_" + llvm::itostr(llvm::get_threadid()) + "_" +
3075
llvm::itostr(CurTime);
3076
}
3077
}
3078
3079
emitSpecialLLVMGlobal(&G);
3080
continue;
3081
}
3082
3083
setCsectAlignment(&G);
3084
std::optional<CodeModel::Model> OptionalCodeModel = G.getCodeModel();
3085
if (OptionalCodeModel)
3086
setOptionalCodeModel(cast<MCSymbolXCOFF>(getSymbol(&G)),
3087
*OptionalCodeModel);
3088
}
3089
3090
for (const auto &F : M)
3091
setCsectAlignment(&F);
3092
3093
// Construct an aliasing list for each GlobalObject.
3094
for (const auto &Alias : M.aliases()) {
3095
const GlobalObject *Aliasee = Alias.getAliaseeObject();
3096
if (!Aliasee)
3097
report_fatal_error(
3098
"alias without a base object is not yet supported on AIX");
3099
3100
if (Aliasee->hasCommonLinkage()) {
3101
report_fatal_error("Aliases to common variables are not allowed on AIX:"
3102
"\n\tAlias attribute for " +
3103
Alias.getGlobalIdentifier() +
3104
" is invalid because " + Aliasee->getName() +
3105
" is common.",
3106
false);
3107
}
3108
3109
const GlobalVariable *GVar =
3110
dyn_cast_or_null<GlobalVariable>(Alias.getAliaseeObject());
3111
if (GVar) {
3112
std::optional<CodeModel::Model> OptionalCodeModel = GVar->getCodeModel();
3113
if (OptionalCodeModel)
3114
setOptionalCodeModel(cast<MCSymbolXCOFF>(getSymbol(&Alias)),
3115
*OptionalCodeModel);
3116
}
3117
3118
GOAliasMap[Aliasee].push_back(&Alias);
3119
}
3120
3121
return Result;
3122
}
3123
3124
void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) {
3125
switch (MI->getOpcode()) {
3126
default:
3127
break;
3128
case PPC::TW:
3129
case PPC::TWI:
3130
case PPC::TD:
3131
case PPC::TDI: {
3132
if (MI->getNumOperands() < 5)
3133
break;
3134
const MachineOperand &LangMO = MI->getOperand(3);
3135
const MachineOperand &ReasonMO = MI->getOperand(4);
3136
if (!LangMO.isImm() || !ReasonMO.isImm())
3137
break;
3138
MCSymbol *TempSym = OutContext.createNamedTempSymbol();
3139
OutStreamer->emitLabel(TempSym);
3140
OutStreamer->emitXCOFFExceptDirective(CurrentFnSym, TempSym,
3141
LangMO.getImm(), ReasonMO.getImm(),
3142
Subtarget->isPPC64() ? MI->getMF()->getInstructionCount() * 8 :
3143
MI->getMF()->getInstructionCount() * 4,
3144
MMI->hasDebugInfo());
3145
break;
3146
}
3147
case PPC::GETtlsMOD32AIX:
3148
case PPC::GETtlsMOD64AIX:
3149
case PPC::GETtlsTpointer32AIX:
3150
case PPC::GETtlsADDR64AIX:
3151
case PPC::GETtlsADDR32AIX: {
3152
// A reference to .__tls_get_mod/.__tls_get_addr/.__get_tpointer is unknown
3153
// to the assembler so we need to emit an external symbol reference.
3154
MCSymbol *TlsGetAddr =
3155
createMCSymbolForTlsGetAddr(OutContext, MI->getOpcode());
3156
ExtSymSDNodeSymbols.insert(TlsGetAddr);
3157
break;
3158
}
3159
case PPC::BL8:
3160
case PPC::BL:
3161
case PPC::BL8_NOP:
3162
case PPC::BL_NOP: {
3163
const MachineOperand &MO = MI->getOperand(0);
3164
if (MO.isSymbol()) {
3165
MCSymbolXCOFF *S =
3166
cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName()));
3167
ExtSymSDNodeSymbols.insert(S);
3168
}
3169
} break;
3170
case PPC::BL_TLS:
3171
case PPC::BL8_TLS:
3172
case PPC::BL8_TLS_:
3173
case PPC::BL8_NOP_TLS:
3174
report_fatal_error("TLS call not yet implemented");
3175
case PPC::TAILB:
3176
case PPC::TAILB8:
3177
case PPC::TAILBA:
3178
case PPC::TAILBA8:
3179
case PPC::TAILBCTR:
3180
case PPC::TAILBCTR8:
3181
if (MI->getOperand(0).isSymbol())
3182
report_fatal_error("Tail call for extern symbol not yet supported.");
3183
break;
3184
case PPC::DST:
3185
case PPC::DST64:
3186
case PPC::DSTT:
3187
case PPC::DSTT64:
3188
case PPC::DSTST:
3189
case PPC::DSTST64:
3190
case PPC::DSTSTT:
3191
case PPC::DSTSTT64:
3192
EmitToStreamer(
3193
*OutStreamer,
3194
MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0));
3195
return;
3196
}
3197
return PPCAsmPrinter::emitInstruction(MI);
3198
}
3199
3200
bool PPCAIXAsmPrinter::doFinalization(Module &M) {
3201
// Do streamer related finalization for DWARF.
3202
if (!MAI->usesDwarfFileAndLocDirectives() && MMI->hasDebugInfo())
3203
OutStreamer->doFinalizationAtSectionEnd(
3204
OutStreamer->getContext().getObjectFileInfo()->getTextSection());
3205
3206
for (MCSymbol *Sym : ExtSymSDNodeSymbols)
3207
OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern);
3208
return PPCAsmPrinter::doFinalization(M);
3209
}
3210
3211
static unsigned mapToSinitPriority(int P) {
3212
if (P < 0 || P > 65535)
3213
report_fatal_error("invalid init priority");
3214
3215
if (P <= 20)
3216
return P;
3217
3218
if (P < 81)
3219
return 20 + (P - 20) * 16;
3220
3221
if (P <= 1124)
3222
return 1004 + (P - 81);
3223
3224
if (P < 64512)
3225
return 2047 + (P - 1124) * 33878;
3226
3227
return 2147482625u + (P - 64512);
3228
}
3229
3230
static std::string convertToSinitPriority(int Priority) {
3231
// This helper function converts clang init priority to values used in sinit
3232
// and sterm functions.
3233
//
3234
// The conversion strategies are:
3235
// We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm
3236
// reserved priority range [0, 1023] by
3237
// - directly mapping the first 21 and the last 20 elements of the ranges
3238
// - linear interpolating the intermediate values with a step size of 16.
3239
//
3240
// We map the non reserved clang/gnu priority range of [101, 65535] into the
3241
// sinit/sterm priority range [1024, 2147483648] by:
3242
// - directly mapping the first and the last 1024 elements of the ranges
3243
// - linear interpolating the intermediate values with a step size of 33878.
3244
unsigned int P = mapToSinitPriority(Priority);
3245
3246
std::string PrioritySuffix;
3247
llvm::raw_string_ostream os(PrioritySuffix);
3248
os << llvm::format_hex_no_prefix(P, 8);
3249
os.flush();
3250
return PrioritySuffix;
3251
}
3252
3253
void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL,
3254
const Constant *List, bool IsCtor) {
3255
SmallVector<Structor, 8> Structors;
3256
preprocessXXStructorList(DL, List, Structors);
3257
if (Structors.empty())
3258
return;
3259
3260
unsigned Index = 0;
3261
for (Structor &S : Structors) {
3262
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func))
3263
S.Func = CE->getOperand(0);
3264
3265
llvm::GlobalAlias::create(
3266
GlobalValue::ExternalLinkage,
3267
(IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) +
3268
llvm::Twine(convertToSinitPriority(S.Priority)) +
3269
llvm::Twine("_", FormatIndicatorAndUniqueModId) +
3270
llvm::Twine("_", llvm::utostr(Index++)),
3271
cast<Function>(S.Func));
3272
}
3273
}
3274
3275
void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV,
3276
unsigned Encoding) {
3277
if (GV) {
3278
TOCEntryType GlobalType = TOCType_GlobalInternal;
3279
GlobalValue::LinkageTypes Linkage = GV->getLinkage();
3280
if (Linkage == GlobalValue::ExternalLinkage ||
3281
Linkage == GlobalValue::AvailableExternallyLinkage ||
3282
Linkage == GlobalValue::ExternalWeakLinkage)
3283
GlobalType = TOCType_GlobalExternal;
3284
MCSymbol *TypeInfoSym = TM.getSymbol(GV);
3285
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym, GlobalType);
3286
const MCSymbol *TOCBaseSym =
3287
cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
3288
->getQualNameSymbol();
3289
auto &Ctx = OutStreamer->getContext();
3290
const MCExpr *Exp =
3291
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
3292
MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
3293
OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding));
3294
} else
3295
OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding));
3296
}
3297
3298
// Return a pass that prints the PPC assembly code for a MachineFunction to the
3299
// given output stream.
3300
static AsmPrinter *
3301
createPPCAsmPrinterPass(TargetMachine &tm,
3302
std::unique_ptr<MCStreamer> &&Streamer) {
3303
if (tm.getTargetTriple().isOSAIX())
3304
return new PPCAIXAsmPrinter(tm, std::move(Streamer));
3305
3306
return new PPCLinuxAsmPrinter(tm, std::move(Streamer));
3307
}
3308
3309
void PPCAIXAsmPrinter::emitModuleCommandLines(Module &M) {
3310
const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
3311
if (!NMD || !NMD->getNumOperands())
3312
return;
3313
3314
std::string S;
3315
raw_string_ostream RSOS(S);
3316
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3317
const MDNode *N = NMD->getOperand(i);
3318
assert(N->getNumOperands() == 1 &&
3319
"llvm.commandline metadata entry can have only one operand");
3320
const MDString *MDS = cast<MDString>(N->getOperand(0));
3321
// Add "@(#)" to support retrieving the command line information with the
3322
// AIX "what" command
3323
RSOS << "@(#)opt " << MDS->getString() << "\n";
3324
RSOS.write('\0');
3325
}
3326
OutStreamer->emitXCOFFCInfoSym(".GCC.command.line", RSOS.str());
3327
}
3328
3329
// Force static initialization.
3330
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() {
3331
TargetRegistry::RegisterAsmPrinter(getThePPC32Target(),
3332
createPPCAsmPrinterPass);
3333
TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(),
3334
createPPCAsmPrinterPass);
3335
TargetRegistry::RegisterAsmPrinter(getThePPC64Target(),
3336
createPPCAsmPrinterPass);
3337
TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(),
3338
createPPCAsmPrinterPass);
3339
}
3340
3341