Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.h
35268 views
1
//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the interfaces that PPC uses to lower LLVM code into a
10
// selection DAG.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15
#define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16
17
#include "PPCInstrInfo.h"
18
#include "llvm/CodeGen/CallingConvLower.h"
19
#include "llvm/CodeGen/MachineFunction.h"
20
#include "llvm/CodeGen/MachineMemOperand.h"
21
#include "llvm/CodeGen/SelectionDAG.h"
22
#include "llvm/CodeGen/SelectionDAGNodes.h"
23
#include "llvm/CodeGen/TargetLowering.h"
24
#include "llvm/CodeGen/ValueTypes.h"
25
#include "llvm/CodeGenTypes/MachineValueType.h"
26
#include "llvm/IR/Attributes.h"
27
#include "llvm/IR/CallingConv.h"
28
#include "llvm/IR/Function.h"
29
#include "llvm/IR/InlineAsm.h"
30
#include "llvm/IR/Metadata.h"
31
#include "llvm/IR/Type.h"
32
#include <optional>
33
#include <utility>
34
35
namespace llvm {
36
37
namespace PPCISD {
38
39
// When adding a NEW PPCISD node please add it to the correct position in
40
// the enum. The order of elements in this enum matters!
41
// Values that are added after this entry:
42
// STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
43
// are considered memory opcodes and are treated differently than entries
44
// that come before it. For example, ADD or MUL should be placed before
45
// the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
46
// after it.
47
enum NodeType : unsigned {
48
// Start the numbering where the builtin ops and target ops leave off.
49
FIRST_NUMBER = ISD::BUILTIN_OP_END,
50
51
/// FSEL - Traditional three-operand fsel node.
52
///
53
FSEL,
54
55
/// XSMAXC[DQ]P, XSMINC[DQ]P - C-type min/max instructions.
56
XSMAXC,
57
XSMINC,
58
59
/// FCFID - The FCFID instruction, taking an f64 operand and producing
60
/// and f64 value containing the FP representation of the integer that
61
/// was temporarily in the f64 operand.
62
FCFID,
63
64
/// Newer FCFID[US] integer-to-floating-point conversion instructions for
65
/// unsigned integers and single-precision outputs.
66
FCFIDU,
67
FCFIDS,
68
FCFIDUS,
69
70
/// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
71
/// operand, producing an f64 value containing the integer representation
72
/// of that FP value.
73
FCTIDZ,
74
FCTIWZ,
75
76
/// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
77
/// unsigned integers with round toward zero.
78
FCTIDUZ,
79
FCTIWUZ,
80
81
/// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
82
/// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
83
VEXTS,
84
85
/// Reciprocal estimate instructions (unary FP ops).
86
FRE,
87
FRSQRTE,
88
89
/// Test instruction for software square root.
90
FTSQRT,
91
92
/// Square root instruction.
93
FSQRT,
94
95
/// VPERM - The PPC VPERM Instruction.
96
///
97
VPERM,
98
99
/// XXSPLT - The PPC VSX splat instructions
100
///
101
XXSPLT,
102
103
/// XXSPLTI_SP_TO_DP - The PPC VSX splat instructions for immediates for
104
/// converting immediate single precision numbers to double precision
105
/// vector or scalar.
106
XXSPLTI_SP_TO_DP,
107
108
/// XXSPLTI32DX - The PPC XXSPLTI32DX instruction.
109
///
110
XXSPLTI32DX,
111
112
/// VECINSERT - The PPC vector insert instruction
113
///
114
VECINSERT,
115
116
/// VECSHL - The PPC vector shift left instruction
117
///
118
VECSHL,
119
120
/// XXPERMDI - The PPC XXPERMDI instruction
121
///
122
XXPERMDI,
123
XXPERM,
124
125
/// The CMPB instruction (takes two operands of i32 or i64).
126
CMPB,
127
128
/// Hi/Lo - These represent the high and low 16-bit parts of a global
129
/// address respectively. These nodes have two operands, the first of
130
/// which must be a TargetGlobalAddress, and the second of which must be a
131
/// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
132
/// though these are usually folded into other nodes.
133
Hi,
134
Lo,
135
136
/// The following two target-specific nodes are used for calls through
137
/// function pointers in the 64-bit SVR4 ABI.
138
139
/// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
140
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
141
/// compute an allocation on the stack.
142
DYNALLOC,
143
144
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
145
/// compute an offset from native SP to the address of the most recent
146
/// dynamic alloca.
147
DYNAREAOFFSET,
148
149
/// To avoid stack clash, allocation is performed by block and each block is
150
/// probed.
151
PROBED_ALLOCA,
152
153
/// The result of the mflr at function entry, used for PIC code.
154
GlobalBaseReg,
155
156
/// These nodes represent PPC shifts.
157
///
158
/// For scalar types, only the last `n + 1` bits of the shift amounts
159
/// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
160
/// for exact behaviors.
161
///
162
/// For vector types, only the last n bits are used. See vsld.
163
SRL,
164
SRA,
165
SHL,
166
167
/// FNMSUB - Negated multiply-subtract instruction.
168
FNMSUB,
169
170
/// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
171
/// word and shift left immediate.
172
EXTSWSLI,
173
174
/// The combination of sra[wd]i and addze used to implemented signed
175
/// integer division by a power of 2. The first operand is the dividend,
176
/// and the second is the constant shift amount (representing the
177
/// divisor).
178
SRA_ADDZE,
179
180
/// CALL - A direct function call.
181
/// CALL_NOP is a call with the special NOP which follows 64-bit
182
/// CALL_NOTOC the caller does not use the TOC.
183
/// SVR4 calls and 32-bit/64-bit AIX calls.
184
CALL,
185
CALL_NOP,
186
CALL_NOTOC,
187
188
/// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
189
/// MTCTR instruction.
190
MTCTR,
191
192
/// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
193
/// BCTRL instruction.
194
BCTRL,
195
196
/// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
197
/// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
198
/// and 64-bit AIX.
199
BCTRL_LOAD_TOC,
200
201
/// The variants that implicitly define rounding mode for calls with
202
/// strictfp semantics.
203
CALL_RM,
204
CALL_NOP_RM,
205
CALL_NOTOC_RM,
206
BCTRL_RM,
207
BCTRL_LOAD_TOC_RM,
208
209
/// Return with a glue operand, matched by 'blr'
210
RET_GLUE,
211
212
/// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
213
/// This copies the bits corresponding to the specified CRREG into the
214
/// resultant GPR. Bits corresponding to other CR regs are undefined.
215
MFOCRF,
216
217
/// Direct move from a VSX register to a GPR
218
MFVSR,
219
220
/// Direct move from a GPR to a VSX register (algebraic)
221
MTVSRA,
222
223
/// Direct move from a GPR to a VSX register (zero)
224
MTVSRZ,
225
226
/// Direct move of 2 consecutive GPR to a VSX register.
227
BUILD_FP128,
228
229
/// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
230
/// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
231
/// unsupported for this target.
232
/// Merge 2 GPRs to a single SPE register.
233
BUILD_SPE64,
234
235
/// Extract SPE register component, second argument is high or low.
236
EXTRACT_SPE,
237
238
/// Extract a subvector from signed integer vector and convert to FP.
239
/// It is primarily used to convert a (widened) illegal integer vector
240
/// type to a legal floating point vector type.
241
/// For example v2i32 -> widened to v4i32 -> v2f64
242
SINT_VEC_TO_FP,
243
244
/// Extract a subvector from unsigned integer vector and convert to FP.
245
/// As with SINT_VEC_TO_FP, used for converting illegal types.
246
UINT_VEC_TO_FP,
247
248
/// PowerPC instructions that have SCALAR_TO_VECTOR semantics tend to
249
/// place the value into the least significant element of the most
250
/// significant doubleword in the vector. This is not element zero for
251
/// anything smaller than a doubleword on either endianness. This node has
252
/// the same semantics as SCALAR_TO_VECTOR except that the value remains in
253
/// the aforementioned location in the vector register.
254
SCALAR_TO_VECTOR_PERMUTED,
255
256
// FIXME: Remove these once the ANDI glue bug is fixed:
257
/// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
258
/// eq or gt bit of CR0 after executing andi. x, 1. This is used to
259
/// implement truncation of i32 or i64 to i1.
260
ANDI_rec_1_EQ_BIT,
261
ANDI_rec_1_GT_BIT,
262
263
// READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
264
// target (returns (Lo, Hi)). It takes a chain operand.
265
READ_TIME_BASE,
266
267
// EH_SJLJ_SETJMP - SjLj exception handling setjmp.
268
EH_SJLJ_SETJMP,
269
270
// EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
271
EH_SJLJ_LONGJMP,
272
273
/// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
274
/// instructions. For lack of better number, we use the opcode number
275
/// encoding for the OPC field to identify the compare. For example, 838
276
/// is VCMPGTSH.
277
VCMP,
278
279
/// RESVEC, OUTFLAG = VCMP_rec(LHS, RHS, OPC) - Represents one of the
280
/// altivec VCMP*_rec instructions. For lack of better number, we use the
281
/// opcode number encoding for the OPC field to identify the compare. For
282
/// example, 838 is VCMPGTSH.
283
VCMP_rec,
284
285
/// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
286
/// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
287
/// condition register to branch on, OPC is the branch opcode to use (e.g.
288
/// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
289
/// an optional input flag argument.
290
COND_BRANCH,
291
292
/// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
293
/// loops.
294
BDNZ,
295
BDZ,
296
297
/// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
298
/// towards zero. Used only as part of the long double-to-int
299
/// conversion sequence.
300
FADDRTZ,
301
302
/// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
303
MFFS,
304
305
/// TC_RETURN - A tail call return.
306
/// operand #0 chain
307
/// operand #1 callee (register or absolute)
308
/// operand #2 stack adjustment
309
/// operand #3 optional in flag
310
TC_RETURN,
311
312
/// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
313
CR6SET,
314
CR6UNSET,
315
316
/// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
317
/// for non-position independent code on PPC32.
318
PPC32_GOT,
319
320
/// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
321
/// local dynamic TLS and position indendepent code on PPC32.
322
PPC32_PICGOT,
323
324
/// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
325
/// TLS model, produces an ADDIS8 instruction that adds the GOT
326
/// base to sym\@got\@tprel\@ha.
327
ADDIS_GOT_TPREL_HA,
328
329
/// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
330
/// TLS model, produces a LD instruction with base register G8RReg
331
/// and offset sym\@got\@tprel\@l. This completes the addition that
332
/// finds the offset of "sym" relative to the thread pointer.
333
LD_GOT_TPREL_L,
334
335
/// G8RC = ADD_TLS G8RReg, Symbol - Can be used by the initial-exec
336
/// and local-exec TLS models, produces an ADD instruction that adds
337
/// the contents of G8RReg to the thread pointer. Symbol contains a
338
/// relocation sym\@tls which is to be replaced by the thread pointer
339
/// and identifies to the linker that the instruction is part of a
340
/// TLS sequence.
341
ADD_TLS,
342
343
/// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
344
/// model, produces an ADDIS8 instruction that adds the GOT base
345
/// register to sym\@got\@tlsgd\@ha.
346
ADDIS_TLSGD_HA,
347
348
/// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
349
/// model, produces an ADDI8 instruction that adds G8RReg to
350
/// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
351
/// ADDIS_TLSGD_L_ADDR until after register assignment.
352
ADDI_TLSGD_L,
353
354
/// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
355
/// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
356
/// ADDIS_TLSGD_L_ADDR until after register assignment.
357
GET_TLS_ADDR,
358
359
/// %x3 = GET_TPOINTER - Used for the local- and initial-exec TLS model on
360
/// 32-bit AIX, produces a call to .__get_tpointer to retrieve the thread
361
/// pointer. At the end of the call, the thread pointer is found in R3.
362
GET_TPOINTER,
363
364
/// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
365
/// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
366
/// register assignment.
367
ADDI_TLSGD_L_ADDR,
368
369
/// GPRC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
370
/// G8RC = TLSGD_AIX, TOC_ENTRY, TOC_ENTRY
371
/// Op that combines two register copies of TOC entries
372
/// (region handle into R3 and variable offset into R4) followed by a
373
/// GET_TLS_ADDR node which will be expanded to a call to .__tls_get_addr.
374
/// This node is used in 64-bit mode as well (in which case the result is
375
/// G8RC and inputs are X3/X4).
376
TLSGD_AIX,
377
378
/// %x3 = GET_TLS_MOD_AIX _$TLSML - For the AIX local-dynamic TLS model,
379
/// produces a call to .__tls_get_mod(_$TLSML\@ml).
380
GET_TLS_MOD_AIX,
381
382
/// [GP|G8]RC = TLSLD_AIX, TOC_ENTRY(module handle)
383
/// Op that requires a single input of the module handle TOC entry in R3,
384
/// and generates a GET_TLS_MOD_AIX node which will be expanded into a call
385
/// to .__tls_get_mod. This node is used in both 32-bit and 64-bit modes.
386
/// The only difference is the register class.
387
TLSLD_AIX,
388
389
/// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
390
/// model, produces an ADDIS8 instruction that adds the GOT base
391
/// register to sym\@got\@tlsld\@ha.
392
ADDIS_TLSLD_HA,
393
394
/// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
395
/// model, produces an ADDI8 instruction that adds G8RReg to
396
/// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
397
/// ADDIS_TLSLD_L_ADDR until after register assignment.
398
ADDI_TLSLD_L,
399
400
/// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
401
/// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
402
/// ADDIS_TLSLD_L_ADDR until after register assignment.
403
GET_TLSLD_ADDR,
404
405
/// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
406
/// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
407
/// following register assignment.
408
ADDI_TLSLD_L_ADDR,
409
410
/// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
411
/// model, produces an ADDIS8 instruction that adds X3 to
412
/// sym\@dtprel\@ha.
413
ADDIS_DTPREL_HA,
414
415
/// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
416
/// model, produces an ADDI8 instruction that adds G8RReg to
417
/// sym\@got\@dtprel\@l.
418
ADDI_DTPREL_L,
419
420
/// G8RC = PADDI_DTPREL %x3, Symbol - For the pc-rel based local-dynamic TLS
421
/// model, produces a PADDI8 instruction that adds X3 to sym\@dtprel.
422
PADDI_DTPREL,
423
424
/// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
425
/// during instruction selection to optimize a BUILD_VECTOR into
426
/// operations on splats. This is necessary to avoid losing these
427
/// optimizations due to constant folding.
428
VADD_SPLAT,
429
430
/// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
431
/// operand identifies the operating system entry point.
432
SC,
433
434
/// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
435
CLRBHRB,
436
437
/// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
438
/// history rolling buffer entry.
439
MFBHRBE,
440
441
/// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
442
RFEBB,
443
444
/// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
445
/// endian. Maps to an xxswapd instruction that corrects an lxvd2x
446
/// or stxvd2x instruction. The chain is necessary because the
447
/// sequence replaces a load and needs to provide the same number
448
/// of outputs.
449
XXSWAPD,
450
451
/// An SDNode for swaps that are not associated with any loads/stores
452
/// and thereby have no chain.
453
SWAP_NO_CHAIN,
454
455
/// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
456
/// lower (IDX=1) half of v4f32 to v2f64.
457
FP_EXTEND_HALF,
458
459
/// MAT_PCREL_ADDR = Materialize a PC Relative address. This can be done
460
/// either through an add like PADDI or through a PC Relative load like
461
/// PLD.
462
MAT_PCREL_ADDR,
463
464
/// TLS_DYNAMIC_MAT_PCREL_ADDR = Materialize a PC Relative address for
465
/// TLS global address when using dynamic access models. This can be done
466
/// through an add like PADDI.
467
TLS_DYNAMIC_MAT_PCREL_ADDR,
468
469
/// TLS_LOCAL_EXEC_MAT_ADDR = Materialize an address for TLS global address
470
/// when using local exec access models, and when prefixed instructions are
471
/// available. This is used with ADD_TLS to produce an add like PADDI.
472
TLS_LOCAL_EXEC_MAT_ADDR,
473
474
/// ACC_BUILD = Build an accumulator register from 4 VSX registers.
475
ACC_BUILD,
476
477
/// PAIR_BUILD = Build a vector pair register from 2 VSX registers.
478
PAIR_BUILD,
479
480
/// EXTRACT_VSX_REG = Extract one of the underlying vsx registers of
481
/// an accumulator or pair register. This node is needed because
482
/// EXTRACT_SUBVECTOR expects the input and output vectors to have the same
483
/// element type.
484
EXTRACT_VSX_REG,
485
486
/// XXMFACC = This corresponds to the xxmfacc instruction.
487
XXMFACC,
488
489
// Constrained conversion from floating point to int
490
STRICT_FCTIDZ = ISD::FIRST_TARGET_STRICTFP_OPCODE,
491
STRICT_FCTIWZ,
492
STRICT_FCTIDUZ,
493
STRICT_FCTIWUZ,
494
495
/// Constrained integer-to-floating-point conversion instructions.
496
STRICT_FCFID,
497
STRICT_FCFIDU,
498
STRICT_FCFIDS,
499
STRICT_FCFIDUS,
500
501
/// Constrained floating point add in round-to-zero mode.
502
STRICT_FADDRTZ,
503
504
// NOTE: The nodes below may require PC-Rel specific patterns if the
505
// address could be PC-Relative. When adding new nodes below, consider
506
// whether or not the address can be PC-Relative and add the corresponding
507
// PC-relative patterns and tests.
508
509
/// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
510
/// byte-swapping store instruction. It byte-swaps the low "Type" bits of
511
/// the GPRC input, then stores it through Ptr. Type can be either i16 or
512
/// i32.
513
STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
514
515
/// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
516
/// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
517
/// then puts it in the bottom bits of the GPRC. TYPE can be either i16
518
/// or i32.
519
LBRX,
520
521
/// STFIWX - The STFIWX instruction. The first operand is an input token
522
/// chain, then an f64 value to store, then an address to store it to.
523
STFIWX,
524
525
/// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
526
/// load which sign-extends from a 32-bit integer value into the
527
/// destination 64-bit register.
528
LFIWAX,
529
530
/// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
531
/// load which zero-extends from a 32-bit integer value into the
532
/// destination 64-bit register.
533
LFIWZX,
534
535
/// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
536
/// integer smaller than 64 bits into a VSR. The integer is zero-extended.
537
/// This can be used for converting loaded integers to floating point.
538
LXSIZX,
539
540
/// STXSIX - The STXSI[bh]X instruction. The first operand is an input
541
/// chain, then an f64 value to store, then an address to store it to,
542
/// followed by a byte-width for the store.
543
STXSIX,
544
545
/// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
546
/// Maps directly to an lxvd2x instruction that will be followed by
547
/// an xxswapd.
548
LXVD2X,
549
550
/// LXVRZX - Load VSX Vector Rightmost and Zero Extend
551
/// This node represents v1i128 BUILD_VECTOR of a zero extending load
552
/// instruction from <byte, halfword, word, or doubleword> to i128.
553
/// Allows utilization of the Load VSX Vector Rightmost Instructions.
554
LXVRZX,
555
556
/// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
557
/// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
558
/// the vector type to load vector in big-endian element order.
559
LOAD_VEC_BE,
560
561
/// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
562
/// v2f32 value into the lower half of a VSR register.
563
LD_VSX_LH,
564
565
/// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
566
/// instructions such as LXVDSX, LXVWSX.
567
LD_SPLAT,
568
569
/// VSRC, CHAIN = ZEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
570
/// that zero-extends.
571
ZEXT_LD_SPLAT,
572
573
/// VSRC, CHAIN = SEXT_LD_SPLAT, CHAIN, Ptr - a splatting load memory
574
/// that sign-extends.
575
SEXT_LD_SPLAT,
576
577
/// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
578
/// Maps directly to an stxvd2x instruction that will be preceded by
579
/// an xxswapd.
580
STXVD2X,
581
582
/// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
583
/// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
584
/// the vector type to store vector in big-endian element order.
585
STORE_VEC_BE,
586
587
/// Store scalar integers from VSR.
588
ST_VSR_SCAL_INT,
589
590
/// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
591
/// except they ensure that the compare input is zero-extended for
592
/// sub-word versions because the atomic loads zero-extend.
593
ATOMIC_CMP_SWAP_8,
594
ATOMIC_CMP_SWAP_16,
595
596
/// CHAIN,Glue = STORE_COND CHAIN, GPR, Ptr
597
/// The store conditional instruction ST[BHWD]ARX that produces a glue
598
/// result to attach it to a conditional branch.
599
STORE_COND,
600
601
/// GPRC = TOC_ENTRY GA, TOC
602
/// Loads the entry for GA from the TOC, where the TOC base is given by
603
/// the last operand.
604
TOC_ENTRY
605
};
606
607
} // end namespace PPCISD
608
609
/// Define some predicates that are used for node matching.
610
namespace PPC {
611
612
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
613
/// VPKUHUM instruction.
614
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
615
SelectionDAG &DAG);
616
617
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
618
/// VPKUWUM instruction.
619
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
620
SelectionDAG &DAG);
621
622
/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
623
/// VPKUDUM instruction.
624
bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
625
SelectionDAG &DAG);
626
627
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
628
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
629
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
630
unsigned ShuffleKind, SelectionDAG &DAG);
631
632
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
633
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
634
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
635
unsigned ShuffleKind, SelectionDAG &DAG);
636
637
/// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
638
/// a VMRGEW or VMRGOW instruction
639
bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
640
unsigned ShuffleKind, SelectionDAG &DAG);
641
/// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
642
/// for a XXSLDWI instruction.
643
bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
644
bool &Swap, bool IsLE);
645
646
/// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
647
/// for a XXBRH instruction.
648
bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
649
650
/// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
651
/// for a XXBRW instruction.
652
bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
653
654
/// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
655
/// for a XXBRD instruction.
656
bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
657
658
/// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
659
/// for a XXBRQ instruction.
660
bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
661
662
/// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
663
/// for a XXPERMDI instruction.
664
bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
665
bool &Swap, bool IsLE);
666
667
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
668
/// shift amount, otherwise return -1.
669
int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
670
SelectionDAG &DAG);
671
672
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
673
/// specifies a splat of a single element that is suitable for input to
674
/// VSPLTB/VSPLTH/VSPLTW.
675
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
676
677
/// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
678
/// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
679
/// shuffle of v4f32/v4i32 vectors that just inserts one element from one
680
/// vector into the other. This function will also set a couple of
681
/// output parameters for how much the source vector needs to be shifted and
682
/// what byte number needs to be specified for the instruction to put the
683
/// element in the desired location of the target vector.
684
bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
685
unsigned &InsertAtByte, bool &Swap, bool IsLE);
686
687
/// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
688
/// appropriate for PPC mnemonics (which have a big endian bias - namely
689
/// elements are counted from the left of the vector register).
690
unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
691
SelectionDAG &DAG);
692
693
/// get_VSPLTI_elt - If this is a build_vector of constants which can be
694
/// formed by using a vspltis[bhw] instruction of the specified element
695
/// size, return the constant being splatted. The ByteSize field indicates
696
/// the number of bytes of each element [124] -> [bhw].
697
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
698
699
// Flags for computing the optimal addressing mode for loads and stores.
700
enum MemOpFlags {
701
MOF_None = 0,
702
703
// Extension mode for integer loads.
704
MOF_SExt = 1,
705
MOF_ZExt = 1 << 1,
706
MOF_NoExt = 1 << 2,
707
708
// Address computation flags.
709
MOF_NotAddNorCst = 1 << 5, // Not const. or sum of ptr and scalar.
710
MOF_RPlusSImm16 = 1 << 6, // Reg plus signed 16-bit constant.
711
MOF_RPlusLo = 1 << 7, // Reg plus signed 16-bit relocation
712
MOF_RPlusSImm16Mult4 = 1 << 8, // Reg plus 16-bit signed multiple of 4.
713
MOF_RPlusSImm16Mult16 = 1 << 9, // Reg plus 16-bit signed multiple of 16.
714
MOF_RPlusSImm34 = 1 << 10, // Reg plus 34-bit signed constant.
715
MOF_RPlusR = 1 << 11, // Sum of two variables.
716
MOF_PCRel = 1 << 12, // PC-Relative relocation.
717
MOF_AddrIsSImm32 = 1 << 13, // A simple 32-bit constant.
718
719
// The in-memory type.
720
MOF_SubWordInt = 1 << 15,
721
MOF_WordInt = 1 << 16,
722
MOF_DoubleWordInt = 1 << 17,
723
MOF_ScalarFloat = 1 << 18, // Scalar single or double precision.
724
MOF_Vector = 1 << 19, // Vector types and quad precision scalars.
725
MOF_Vector256 = 1 << 20,
726
727
// Subtarget features.
728
MOF_SubtargetBeforeP9 = 1 << 22,
729
MOF_SubtargetP9 = 1 << 23,
730
MOF_SubtargetP10 = 1 << 24,
731
MOF_SubtargetSPE = 1 << 25
732
};
733
734
// The addressing modes for loads and stores.
735
enum AddrMode {
736
AM_None,
737
AM_DForm,
738
AM_DSForm,
739
AM_DQForm,
740
AM_PrefixDForm,
741
AM_XForm,
742
AM_PCRel
743
};
744
} // end namespace PPC
745
746
class PPCTargetLowering : public TargetLowering {
747
const PPCSubtarget &Subtarget;
748
749
public:
750
explicit PPCTargetLowering(const PPCTargetMachine &TM,
751
const PPCSubtarget &STI);
752
753
/// getTargetNodeName() - This method returns the name of a target specific
754
/// DAG node.
755
const char *getTargetNodeName(unsigned Opcode) const override;
756
757
bool isSelectSupported(SelectSupportKind Kind) const override {
758
// PowerPC does not support scalar condition selects on vectors.
759
return (Kind != SelectSupportKind::ScalarCondVectorVal);
760
}
761
762
/// getPreferredVectorAction - The code we generate when vector types are
763
/// legalized by promoting the integer element type is often much worse
764
/// than code we generate if we widen the type for applicable vector types.
765
/// The issue with promoting is that the vector is scalaraized, individual
766
/// elements promoted and then the vector is rebuilt. So say we load a pair
767
/// of v4i8's and shuffle them. This will turn into a mess of 8 extending
768
/// loads, moves back into VSR's (or memory ops if we don't have moves) and
769
/// then the VPERM for the shuffle. All in all a very slow sequence.
770
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
771
const override {
772
// Default handling for scalable and single-element vectors.
773
if (VT.isScalableVector() || VT.getVectorNumElements() == 1)
774
return TargetLoweringBase::getPreferredVectorAction(VT);
775
776
// Split and promote vNi1 vectors so we don't produce v256i1/v512i1
777
// types as those are only for MMA instructions.
778
if (VT.getScalarSizeInBits() == 1 && VT.getSizeInBits() > 16)
779
return TypeSplitVector;
780
if (VT.getScalarSizeInBits() == 1)
781
return TypePromoteInteger;
782
783
// Widen vectors that have reasonably sized elements.
784
if (VT.getScalarSizeInBits() % 8 == 0)
785
return TypeWidenVector;
786
return TargetLoweringBase::getPreferredVectorAction(VT);
787
}
788
789
bool useSoftFloat() const override;
790
791
bool hasSPE() const;
792
793
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
794
return MVT::i32;
795
}
796
797
bool isCheapToSpeculateCttz(Type *Ty) const override {
798
return true;
799
}
800
801
bool isCheapToSpeculateCtlz(Type *Ty) const override {
802
return true;
803
}
804
805
bool
806
shallExtractConstSplatVectorElementToStore(Type *VectorTy,
807
unsigned ElemSizeInBits,
808
unsigned &Index) const override;
809
810
bool isCtlzFast() const override {
811
return true;
812
}
813
814
bool isEqualityCmpFoldedWithSignedCmp() const override {
815
return false;
816
}
817
818
bool hasAndNotCompare(SDValue) const override {
819
return true;
820
}
821
822
bool preferIncOfAddToSubOfNot(EVT VT) const override;
823
824
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
825
return VT.isScalarInteger();
826
}
827
828
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps,
829
bool OptForSize, NegatibleCost &Cost,
830
unsigned Depth = 0) const override;
831
832
/// getSetCCResultType - Return the ISD::SETCC ValueType
833
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
834
EVT VT) const override;
835
836
/// Return true if target always benefits from combining into FMA for a
837
/// given value type. This must typically return false on targets where FMA
838
/// takes more cycles to execute than FADD.
839
bool enableAggressiveFMAFusion(EVT VT) const override;
840
841
/// getPreIndexedAddressParts - returns true by value, base pointer and
842
/// offset pointer and addressing mode by reference if the node's address
843
/// can be legally represented as pre-indexed load / store address.
844
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
845
SDValue &Offset,
846
ISD::MemIndexedMode &AM,
847
SelectionDAG &DAG) const override;
848
849
/// SelectAddressEVXRegReg - Given the specified addressed, check to see if
850
/// it can be more efficiently represented as [r+imm].
851
bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index,
852
SelectionDAG &DAG) const;
853
854
/// SelectAddressRegReg - Given the specified addressed, check to see if it
855
/// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
856
/// is non-zero, only accept displacement which is not suitable for [r+imm].
857
/// Returns false if it can be represented by [r+imm], which are preferred.
858
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
859
SelectionDAG &DAG,
860
MaybeAlign EncodingAlignment = std::nullopt) const;
861
862
/// SelectAddressRegImm - Returns true if the address N can be represented
863
/// by a base register plus a signed 16-bit displacement [r+imm], and if it
864
/// is not better represented as reg+reg. If \p EncodingAlignment is
865
/// non-zero, only accept displacements suitable for instruction encoding
866
/// requirement, i.e. multiples of 4 for DS form.
867
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
868
SelectionDAG &DAG,
869
MaybeAlign EncodingAlignment) const;
870
bool SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base,
871
SelectionDAG &DAG) const;
872
873
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
874
/// represented as an indexed [r+r] operation.
875
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
876
SelectionDAG &DAG) const;
877
878
/// SelectAddressPCRel - Represent the specified address as pc relative to
879
/// be represented as [pc+imm]
880
bool SelectAddressPCRel(SDValue N, SDValue &Base) const;
881
882
Sched::Preference getSchedulingPreference(SDNode *N) const override;
883
884
/// LowerOperation - Provide custom lowering hooks for some operations.
885
///
886
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
887
888
/// ReplaceNodeResults - Replace the results of node with an illegal result
889
/// type with new values built out of custom code.
890
///
891
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
892
SelectionDAG &DAG) const override;
893
894
SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
895
SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
896
897
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
898
899
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
900
SmallVectorImpl<SDNode *> &Created) const override;
901
902
Register getRegisterByName(const char* RegName, LLT VT,
903
const MachineFunction &MF) const override;
904
905
void computeKnownBitsForTargetNode(const SDValue Op,
906
KnownBits &Known,
907
const APInt &DemandedElts,
908
const SelectionDAG &DAG,
909
unsigned Depth = 0) const override;
910
911
Align getPrefLoopAlignment(MachineLoop *ML) const override;
912
913
bool shouldInsertFencesForAtomic(const Instruction *I) const override {
914
return true;
915
}
916
917
Instruction *emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst,
918
AtomicOrdering Ord) const override;
919
Instruction *emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst,
920
AtomicOrdering Ord) const override;
921
922
bool shouldInlineQuadwordAtomics() const;
923
924
TargetLowering::AtomicExpansionKind
925
shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
926
927
TargetLowering::AtomicExpansionKind
928
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;
929
930
Value *emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder,
931
AtomicRMWInst *AI, Value *AlignedAddr,
932
Value *Incr, Value *Mask,
933
Value *ShiftAmt,
934
AtomicOrdering Ord) const override;
935
Value *emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder,
936
AtomicCmpXchgInst *CI,
937
Value *AlignedAddr, Value *CmpVal,
938
Value *NewVal, Value *Mask,
939
AtomicOrdering Ord) const override;
940
941
MachineBasicBlock *
942
EmitInstrWithCustomInserter(MachineInstr &MI,
943
MachineBasicBlock *MBB) const override;
944
MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
945
MachineBasicBlock *MBB,
946
unsigned AtomicSize,
947
unsigned BinOpcode,
948
unsigned CmpOpcode = 0,
949
unsigned CmpPred = 0) const;
950
MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
951
MachineBasicBlock *MBB,
952
bool is8bit,
953
unsigned Opcode,
954
unsigned CmpOpcode = 0,
955
unsigned CmpPred = 0) const;
956
957
MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
958
MachineBasicBlock *MBB) const;
959
960
MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
961
MachineBasicBlock *MBB) const;
962
963
MachineBasicBlock *emitProbedAlloca(MachineInstr &MI,
964
MachineBasicBlock *MBB) const;
965
966
bool hasInlineStackProbe(const MachineFunction &MF) const override;
967
968
unsigned getStackProbeSize(const MachineFunction &MF) const;
969
970
ConstraintType getConstraintType(StringRef Constraint) const override;
971
972
/// Examine constraint string and operand type and determine a weight value.
973
/// The operand object must already have been set up with the operand type.
974
ConstraintWeight getSingleConstraintMatchWeight(
975
AsmOperandInfo &info, const char *constraint) const override;
976
977
std::pair<unsigned, const TargetRegisterClass *>
978
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
979
StringRef Constraint, MVT VT) const override;
980
981
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
982
/// function arguments in the caller parameter area. This is the actual
983
/// alignment, not its logarithm.
984
uint64_t getByValTypeAlignment(Type *Ty,
985
const DataLayout &DL) const override;
986
987
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
988
/// vector. If it is invalid, don't add anything to Ops.
989
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
990
std::vector<SDValue> &Ops,
991
SelectionDAG &DAG) const override;
992
993
InlineAsm::ConstraintCode
994
getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
995
if (ConstraintCode == "es")
996
return InlineAsm::ConstraintCode::es;
997
else if (ConstraintCode == "Q")
998
return InlineAsm::ConstraintCode::Q;
999
else if (ConstraintCode == "Z")
1000
return InlineAsm::ConstraintCode::Z;
1001
else if (ConstraintCode == "Zy")
1002
return InlineAsm::ConstraintCode::Zy;
1003
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1004
}
1005
1006
void CollectTargetIntrinsicOperands(const CallInst &I,
1007
SmallVectorImpl<SDValue> &Ops,
1008
SelectionDAG &DAG) const override;
1009
1010
/// isLegalAddressingMode - Return true if the addressing mode represented
1011
/// by AM is legal for this target, for a load/store of the specified type.
1012
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
1013
Type *Ty, unsigned AS,
1014
Instruction *I = nullptr) const override;
1015
1016
/// isLegalICmpImmediate - Return true if the specified immediate is legal
1017
/// icmp immediate, that is the target has icmp instructions which can
1018
/// compare a register against the immediate without having to materialize
1019
/// the immediate into a register.
1020
bool isLegalICmpImmediate(int64_t Imm) const override;
1021
1022
/// isLegalAddImmediate - Return true if the specified immediate is legal
1023
/// add immediate, that is the target has add instructions which can
1024
/// add a register and the immediate without having to materialize
1025
/// the immediate into a register.
1026
bool isLegalAddImmediate(int64_t Imm) const override;
1027
1028
/// isTruncateFree - Return true if it's free to truncate a value of
1029
/// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
1030
/// register X1 to i32 by referencing its sub-register R1.
1031
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
1032
bool isTruncateFree(EVT VT1, EVT VT2) const override;
1033
1034
bool isZExtFree(SDValue Val, EVT VT2) const override;
1035
1036
bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
1037
1038
/// Returns true if it is beneficial to convert a load of a constant
1039
/// to just the constant itself.
1040
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
1041
Type *Ty) const override;
1042
1043
bool convertSelectOfConstantsToMath(EVT VT) const override {
1044
return true;
1045
}
1046
1047
bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1048
SDValue C) const override;
1049
1050
bool isDesirableToTransformToIntegerOp(unsigned Opc,
1051
EVT VT) const override {
1052
// Only handle float load/store pair because float(fpr) load/store
1053
// instruction has more cycles than integer(gpr) load/store in PPC.
1054
if (Opc != ISD::LOAD && Opc != ISD::STORE)
1055
return false;
1056
if (VT != MVT::f32 && VT != MVT::f64)
1057
return false;
1058
1059
return true;
1060
}
1061
1062
// Returns true if the address of the global is stored in TOC entry.
1063
bool isAccessedAsGotIndirect(SDValue N) const;
1064
1065
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
1066
1067
bool getTgtMemIntrinsic(IntrinsicInfo &Info,
1068
const CallInst &I,
1069
MachineFunction &MF,
1070
unsigned Intrinsic) const override;
1071
1072
/// It returns EVT::Other if the type should be determined using generic
1073
/// target-independent logic.
1074
EVT getOptimalMemOpType(const MemOp &Op,
1075
const AttributeList &FuncAttributes) const override;
1076
1077
/// Is unaligned memory access allowed for the given type, and is it fast
1078
/// relative to software emulation.
1079
bool allowsMisalignedMemoryAccesses(
1080
EVT VT, unsigned AddrSpace, Align Alignment = Align(1),
1081
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
1082
unsigned *Fast = nullptr) const override;
1083
1084
/// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
1085
/// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
1086
/// expanded to FMAs when this method returns true, otherwise fmuladd is
1087
/// expanded to fmul + fadd.
1088
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
1089
EVT VT) const override;
1090
1091
bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;
1092
1093
/// isProfitableToHoist - Check if it is profitable to hoist instruction
1094
/// \p I to its dominator block.
1095
/// For example, it is not profitable if \p I and it's only user can form a
1096
/// FMA instruction, because Powerpc prefers FMADD.
1097
bool isProfitableToHoist(Instruction *I) const override;
1098
1099
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
1100
1101
// Should we expand the build vector with shuffles?
1102
bool
1103
shouldExpandBuildVectorWithShuffles(EVT VT,
1104
unsigned DefinedValues) const override;
1105
1106
// Keep the zero-extensions for arguments to libcalls.
1107
bool shouldKeepZExtForFP16Conv() const override { return true; }
1108
1109
/// createFastISel - This method returns a target-specific FastISel object,
1110
/// or null if the target does not support "fast" instruction selection.
1111
FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1112
const TargetLibraryInfo *LibInfo) const override;
1113
1114
/// Returns true if an argument of type Ty needs to be passed in a
1115
/// contiguous block of registers in calling convention CallConv.
1116
bool functionArgumentNeedsConsecutiveRegisters(
1117
Type *Ty, CallingConv::ID CallConv, bool isVarArg,
1118
const DataLayout &DL) const override {
1119
// We support any array type as "consecutive" block in the parameter
1120
// save area. The element type defines the alignment requirement and
1121
// whether the argument should go in GPRs, FPRs, or VRs if available.
1122
//
1123
// Note that clang uses this capability both to implement the ELFv2
1124
// homogeneous float/vector aggregate ABI, and to avoid having to use
1125
// "byval" when passing aggregates that might fully fit in registers.
1126
return Ty->isArrayTy();
1127
}
1128
1129
/// If a physical register, this returns the register that receives the
1130
/// exception address on entry to an EH pad.
1131
Register
1132
getExceptionPointerRegister(const Constant *PersonalityFn) const override;
1133
1134
/// If a physical register, this returns the register that receives the
1135
/// exception typeid on entry to a landing pad.
1136
Register
1137
getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
1138
1139
/// Override to support customized stack guard loading.
1140
bool useLoadStackGuardNode() const override;
1141
void insertSSPDeclarations(Module &M) const override;
1142
Value *getSDagStackGuard(const Module &M) const override;
1143
1144
bool isFPImmLegal(const APFloat &Imm, EVT VT,
1145
bool ForCodeSize) const override;
1146
1147
unsigned getJumpTableEncoding() const override;
1148
bool isJumpTableRelative() const override;
1149
SDValue getPICJumpTableRelocBase(SDValue Table,
1150
SelectionDAG &DAG) const override;
1151
const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1152
unsigned JTI,
1153
MCContext &Ctx) const override;
1154
1155
/// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
1156
/// compute the address flags of the node, get the optimal address mode
1157
/// based on the flags, and set the Base and Disp based on the address mode.
1158
PPC::AddrMode SelectOptimalAddrMode(const SDNode *Parent, SDValue N,
1159
SDValue &Disp, SDValue &Base,
1160
SelectionDAG &DAG,
1161
MaybeAlign Align) const;
1162
/// SelectForceXFormMode - Given the specified address, force it to be
1163
/// represented as an indexed [r+r] operation (an XForm instruction).
1164
PPC::AddrMode SelectForceXFormMode(SDValue N, SDValue &Disp, SDValue &Base,
1165
SelectionDAG &DAG) const;
1166
1167
bool splitValueIntoRegisterParts(
1168
SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1169
unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC)
1170
const override;
1171
/// Structure that collects some common arguments that get passed around
1172
/// between the functions for call lowering.
1173
struct CallFlags {
1174
const CallingConv::ID CallConv;
1175
const bool IsTailCall : 1;
1176
const bool IsVarArg : 1;
1177
const bool IsPatchPoint : 1;
1178
const bool IsIndirect : 1;
1179
const bool HasNest : 1;
1180
const bool NoMerge : 1;
1181
1182
CallFlags(CallingConv::ID CC, bool IsTailCall, bool IsVarArg,
1183
bool IsPatchPoint, bool IsIndirect, bool HasNest, bool NoMerge)
1184
: CallConv(CC), IsTailCall(IsTailCall), IsVarArg(IsVarArg),
1185
IsPatchPoint(IsPatchPoint), IsIndirect(IsIndirect),
1186
HasNest(HasNest), NoMerge(NoMerge) {}
1187
};
1188
1189
CCAssignFn *ccAssignFnForCall(CallingConv::ID CC, bool Return,
1190
bool IsVarArg) const;
1191
bool supportsTailCallFor(const CallBase *CB) const;
1192
1193
private:
1194
struct ReuseLoadInfo {
1195
SDValue Ptr;
1196
SDValue Chain;
1197
SDValue ResChain;
1198
MachinePointerInfo MPI;
1199
bool IsDereferenceable = false;
1200
bool IsInvariant = false;
1201
Align Alignment;
1202
AAMDNodes AAInfo;
1203
const MDNode *Ranges = nullptr;
1204
1205
ReuseLoadInfo() = default;
1206
1207
MachineMemOperand::Flags MMOFlags() const {
1208
MachineMemOperand::Flags F = MachineMemOperand::MONone;
1209
if (IsDereferenceable)
1210
F |= MachineMemOperand::MODereferenceable;
1211
if (IsInvariant)
1212
F |= MachineMemOperand::MOInvariant;
1213
return F;
1214
}
1215
};
1216
1217
// Map that relates a set of common address flags to PPC addressing modes.
1218
std::map<PPC::AddrMode, SmallVector<unsigned, 16>> AddrModesMap;
1219
void initializeAddrModeMap();
1220
1221
bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
1222
SelectionDAG &DAG,
1223
ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
1224
void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
1225
SelectionDAG &DAG) const;
1226
1227
void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
1228
SelectionDAG &DAG, const SDLoc &dl) const;
1229
SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
1230
const SDLoc &dl) const;
1231
1232
bool directMoveIsProfitable(const SDValue &Op) const;
1233
SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
1234
const SDLoc &dl) const;
1235
1236
SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
1237
const SDLoc &dl) const;
1238
1239
SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;
1240
1241
SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
1242
SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
1243
1244
bool IsEligibleForTailCallOptimization(
1245
const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1246
CallingConv::ID CallerCC, bool isVarArg,
1247
const SmallVectorImpl<ISD::InputArg> &Ins) const;
1248
1249
bool IsEligibleForTailCallOptimization_64SVR4(
1250
const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1251
CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg,
1252
const SmallVectorImpl<ISD::OutputArg> &Outs,
1253
const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc,
1254
bool isCalleeExternalSymbol) const;
1255
1256
bool isEligibleForTCO(const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
1257
CallingConv::ID CallerCC, const CallBase *CB,
1258
bool isVarArg,
1259
const SmallVectorImpl<ISD::OutputArg> &Outs,
1260
const SmallVectorImpl<ISD::InputArg> &Ins,
1261
const Function *CallerFunc,
1262
bool isCalleeExternalSymbol) const;
1263
1264
SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
1265
SDValue Chain, SDValue &LROpOut,
1266
SDValue &FPOpOut,
1267
const SDLoc &dl) const;
1268
1269
SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;
1270
1271
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1272
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1273
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1274
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1275
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1276
SDValue LowerGlobalTLSAddressAIX(SDValue Op, SelectionDAG &DAG) const;
1277
SDValue LowerGlobalTLSAddressLinux(SDValue Op, SelectionDAG &DAG) const;
1278
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1279
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1280
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1281
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1282
SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1283
SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
1284
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1285
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1286
SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
1287
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
1288
SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1289
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1290
SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
1291
SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
1292
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
1293
SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1294
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
1295
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1296
const SDLoc &dl) const;
1297
SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1298
SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
1299
SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1300
SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1301
SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
1302
SDValue LowerFunnelShift(SDValue Op, SelectionDAG &DAG) const;
1303
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1304
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
1305
SDValue LowerVPERM(SDValue Op, SelectionDAG &DAG, ArrayRef<int> PermMask,
1306
EVT VT, SDValue V1, SDValue V2) const;
1307
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1308
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1309
SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
1310
SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
1311
SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
1312
SDValue LowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const;
1313
SDValue lowerToLibCall(const char *LibCallName, SDValue Op,
1314
SelectionDAG &DAG) const;
1315
SDValue lowerLibCallBasedOnType(const char *LibCallFloatName,
1316
const char *LibCallDoubleName, SDValue Op,
1317
SelectionDAG &DAG) const;
1318
bool isLowringToMASSFiniteSafe(SDValue Op) const;
1319
bool isLowringToMASSSafe(SDValue Op) const;
1320
bool isScalarMASSConversionEnabled() const;
1321
SDValue lowerLibCallBase(const char *LibCallDoubleName,
1322
const char *LibCallFloatName,
1323
const char *LibCallDoubleNameFinite,
1324
const char *LibCallFloatNameFinite, SDValue Op,
1325
SelectionDAG &DAG) const;
1326
SDValue lowerPow(SDValue Op, SelectionDAG &DAG) const;
1327
SDValue lowerSin(SDValue Op, SelectionDAG &DAG) const;
1328
SDValue lowerCos(SDValue Op, SelectionDAG &DAG) const;
1329
SDValue lowerLog(SDValue Op, SelectionDAG &DAG) const;
1330
SDValue lowerLog10(SDValue Op, SelectionDAG &DAG) const;
1331
SDValue lowerExp(SDValue Op, SelectionDAG &DAG) const;
1332
SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) const;
1333
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1334
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
1335
SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1336
SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
1337
SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;
1338
1339
SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
1340
SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
1341
1342
SDValue LowerCallResult(SDValue Chain, SDValue InGlue,
1343
CallingConv::ID CallConv, bool isVarArg,
1344
const SmallVectorImpl<ISD::InputArg> &Ins,
1345
const SDLoc &dl, SelectionDAG &DAG,
1346
SmallVectorImpl<SDValue> &InVals) const;
1347
1348
SDValue FinishCall(CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
1349
SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
1350
SDValue InGlue, SDValue Chain, SDValue CallSeqStart,
1351
SDValue &Callee, int SPDiff, unsigned NumBytes,
1352
const SmallVectorImpl<ISD::InputArg> &Ins,
1353
SmallVectorImpl<SDValue> &InVals,
1354
const CallBase *CB) const;
1355
1356
SDValue
1357
LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1358
const SmallVectorImpl<ISD::InputArg> &Ins,
1359
const SDLoc &dl, SelectionDAG &DAG,
1360
SmallVectorImpl<SDValue> &InVals) const override;
1361
1362
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1363
SmallVectorImpl<SDValue> &InVals) const override;
1364
1365
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1366
bool isVarArg,
1367
const SmallVectorImpl<ISD::OutputArg> &Outs,
1368
LLVMContext &Context) const override;
1369
1370
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1371
const SmallVectorImpl<ISD::OutputArg> &Outs,
1372
const SmallVectorImpl<SDValue> &OutVals,
1373
const SDLoc &dl, SelectionDAG &DAG) const override;
1374
1375
SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1376
SelectionDAG &DAG, SDValue ArgVal,
1377
const SDLoc &dl) const;
1378
1379
SDValue LowerFormalArguments_AIX(
1380
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1381
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1382
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1383
SDValue LowerFormalArguments_64SVR4(
1384
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1385
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1386
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1387
SDValue LowerFormalArguments_32SVR4(
1388
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1389
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1390
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1391
1392
SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1393
SDValue CallSeqStart,
1394
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1395
const SDLoc &dl) const;
1396
1397
SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1398
const SmallVectorImpl<ISD::OutputArg> &Outs,
1399
const SmallVectorImpl<SDValue> &OutVals,
1400
const SmallVectorImpl<ISD::InputArg> &Ins,
1401
const SDLoc &dl, SelectionDAG &DAG,
1402
SmallVectorImpl<SDValue> &InVals,
1403
const CallBase *CB) const;
1404
SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallFlags CFlags,
1405
const SmallVectorImpl<ISD::OutputArg> &Outs,
1406
const SmallVectorImpl<SDValue> &OutVals,
1407
const SmallVectorImpl<ISD::InputArg> &Ins,
1408
const SDLoc &dl, SelectionDAG &DAG,
1409
SmallVectorImpl<SDValue> &InVals,
1410
const CallBase *CB) const;
1411
SDValue LowerCall_AIX(SDValue Chain, SDValue Callee, CallFlags CFlags,
1412
const SmallVectorImpl<ISD::OutputArg> &Outs,
1413
const SmallVectorImpl<SDValue> &OutVals,
1414
const SmallVectorImpl<ISD::InputArg> &Ins,
1415
const SDLoc &dl, SelectionDAG &DAG,
1416
SmallVectorImpl<SDValue> &InVals,
1417
const CallBase *CB) const;
1418
1419
SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1420
SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1421
SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1422
1423
SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1424
SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1425
SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1426
SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1427
SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1428
SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1429
SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1430
SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1431
SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
1432
SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
1433
SDValue combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const;
1434
SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
1435
SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
1436
SDValue combineVectorShuffle(ShuffleVectorSDNode *SVN,
1437
SelectionDAG &DAG) const;
1438
SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
1439
DAGCombinerInfo &DCI) const;
1440
1441
/// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1442
/// SETCC with integer subtraction when (1) there is a legal way of doing it
1443
/// (2) keeping the result of comparison in GPR has performance benefit.
1444
SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1445
1446
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1447
int &RefinementSteps, bool &UseOneConstNR,
1448
bool Reciprocal) const override;
1449
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1450
int &RefinementSteps) const override;
1451
SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
1452
const DenormalMode &Mode) const override;
1453
SDValue getSqrtResultForDenormInput(SDValue Operand,
1454
SelectionDAG &DAG) const override;
1455
unsigned combineRepeatedFPDivisors() const override;
1456
1457
SDValue
1458
combineElementTruncationToVectorTruncation(SDNode *N,
1459
DAGCombinerInfo &DCI) const;
1460
1461
/// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1462
/// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1463
/// essentially any shuffle of v8i16 vectors that just inserts one element
1464
/// from one vector into the other.
1465
SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1466
1467
/// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1468
/// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1469
/// essentially v16i8 vector version of VINSERTH.
1470
SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1471
1472
/// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
1473
/// handled by the XXSPLTI32DX instruction introduced in ISA 3.1.
1474
SDValue lowerToXXSPLTI32DX(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1475
1476
// Return whether the call instruction can potentially be optimized to a
1477
// tail call. This will cause the optimizers to attempt to move, or
1478
// duplicate return instructions to help enable tail call optimizations.
1479
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1480
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1481
1482
/// getAddrModeForFlags - Based on the set of address flags, select the most
1483
/// optimal instruction format to match by.
1484
PPC::AddrMode getAddrModeForFlags(unsigned Flags) const;
1485
1486
/// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
1487
/// the address flags of the load/store instruction that is to be matched.
1488
/// The address flags are stored in a map, which is then searched
1489
/// through to determine the optimal load/store instruction format.
1490
unsigned computeMOFlags(const SDNode *Parent, SDValue N,
1491
SelectionDAG &DAG) const;
1492
}; // end class PPCTargetLowering
1493
1494
namespace PPC {
1495
1496
FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1497
const TargetLibraryInfo *LibInfo);
1498
1499
} // end namespace PPC
1500
1501
bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1502
bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1503
bool isIntS34Immediate(SDNode *N, int64_t &Imm);
1504
bool isIntS34Immediate(SDValue Op, int64_t &Imm);
1505
1506
bool convertToNonDenormSingle(APInt &ArgAPInt);
1507
bool convertToNonDenormSingle(APFloat &ArgAPFloat);
1508
bool checkConvertToNonDenormSingle(APFloat &ArgAPFloat);
1509
1510
} // end namespace llvm
1511
1512
#endif // LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
1513
1514