Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
35269 views
1
//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the PowerPC implementation of the TargetInstrInfo class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "PPCInstrInfo.h"
14
#include "MCTargetDesc/PPCPredicates.h"
15
#include "PPC.h"
16
#include "PPCHazardRecognizers.h"
17
#include "PPCInstrBuilder.h"
18
#include "PPCMachineFunctionInfo.h"
19
#include "PPCTargetMachine.h"
20
#include "llvm/ADT/STLExtras.h"
21
#include "llvm/ADT/Statistic.h"
22
#include "llvm/Analysis/AliasAnalysis.h"
23
#include "llvm/CodeGen/LiveIntervals.h"
24
#include "llvm/CodeGen/LivePhysRegs.h"
25
#include "llvm/CodeGen/MachineCombinerPattern.h"
26
#include "llvm/CodeGen/MachineConstantPool.h"
27
#include "llvm/CodeGen/MachineFrameInfo.h"
28
#include "llvm/CodeGen/MachineFunctionPass.h"
29
#include "llvm/CodeGen/MachineInstrBuilder.h"
30
#include "llvm/CodeGen/MachineMemOperand.h"
31
#include "llvm/CodeGen/MachineRegisterInfo.h"
32
#include "llvm/CodeGen/PseudoSourceValue.h"
33
#include "llvm/CodeGen/RegisterClassInfo.h"
34
#include "llvm/CodeGen/RegisterPressure.h"
35
#include "llvm/CodeGen/ScheduleDAG.h"
36
#include "llvm/CodeGen/SlotIndexes.h"
37
#include "llvm/CodeGen/StackMaps.h"
38
#include "llvm/MC/MCAsmInfo.h"
39
#include "llvm/MC/MCInst.h"
40
#include "llvm/MC/TargetRegistry.h"
41
#include "llvm/Support/CommandLine.h"
42
#include "llvm/Support/Debug.h"
43
#include "llvm/Support/ErrorHandling.h"
44
#include "llvm/Support/raw_ostream.h"
45
46
using namespace llvm;
47
48
#define DEBUG_TYPE "ppc-instr-info"
49
50
#define GET_INSTRMAP_INFO
51
#define GET_INSTRINFO_CTOR_DTOR
52
#include "PPCGenInstrInfo.inc"
53
54
STATISTIC(NumStoreSPILLVSRRCAsVec,
55
"Number of spillvsrrc spilled to stack as vec");
56
STATISTIC(NumStoreSPILLVSRRCAsGpr,
57
"Number of spillvsrrc spilled to stack as gpr");
58
STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
59
STATISTIC(CmpIselsConverted,
60
"Number of ISELs that depend on comparison of constants converted");
61
STATISTIC(MissedConvertibleImmediateInstrs,
62
"Number of compare-immediate instructions fed by constants");
63
STATISTIC(NumRcRotatesConvertedToRcAnd,
64
"Number of record-form rotates converted to record-form andi");
65
66
static cl::
67
opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
68
cl::desc("Disable analysis for CTR loops"));
69
70
static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
71
cl::desc("Disable compare instruction optimization"), cl::Hidden);
72
73
static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
74
cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
75
cl::Hidden);
76
77
static cl::opt<bool>
78
UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
79
cl::desc("Use the old (incorrect) instruction latency calculation"));
80
81
static cl::opt<float>
82
FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
83
cl::desc("register pressure factor for the transformations."));
84
85
static cl::opt<bool> EnableFMARegPressureReduction(
86
"ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
87
cl::desc("enable register pressure reduce in machine combiner pass."));
88
89
// Pin the vtable to this file.
90
void PPCInstrInfo::anchor() {}
91
92
PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
93
: PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
94
/* CatchRetOpcode */ -1,
95
STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
96
Subtarget(STI), RI(STI.getTargetMachine()) {}
97
98
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
99
/// this target when scheduling the DAG.
100
ScheduleHazardRecognizer *
101
PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
102
const ScheduleDAG *DAG) const {
103
unsigned Directive =
104
static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
105
if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
106
Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
107
const InstrItineraryData *II =
108
static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
109
return new ScoreboardHazardRecognizer(II, DAG);
110
}
111
112
return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
113
}
114
115
/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
116
/// to use for this target when scheduling the DAG.
117
ScheduleHazardRecognizer *
118
PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
119
const ScheduleDAG *DAG) const {
120
unsigned Directive =
121
DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
122
123
// FIXME: Leaving this as-is until we have POWER9 scheduling info
124
if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
125
return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
126
127
// Most subtargets use a PPC970 recognizer.
128
if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
129
Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
130
assert(DAG->TII && "No InstrInfo?");
131
132
return new PPCHazardRecognizer970(*DAG);
133
}
134
135
return new ScoreboardHazardRecognizer(II, DAG);
136
}
137
138
unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
139
const MachineInstr &MI,
140
unsigned *PredCost) const {
141
if (!ItinData || UseOldLatencyCalc)
142
return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
143
144
// The default implementation of getInstrLatency calls getStageLatency, but
145
// getStageLatency does not do the right thing for us. While we have
146
// itinerary, most cores are fully pipelined, and so the itineraries only
147
// express the first part of the pipeline, not every stage. Instead, we need
148
// to use the listed output operand cycle number (using operand 0 here, which
149
// is an output).
150
151
unsigned Latency = 1;
152
unsigned DefClass = MI.getDesc().getSchedClass();
153
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
154
const MachineOperand &MO = MI.getOperand(i);
155
if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
156
continue;
157
158
std::optional<unsigned> Cycle = ItinData->getOperandCycle(DefClass, i);
159
if (!Cycle)
160
continue;
161
162
Latency = std::max(Latency, *Cycle);
163
}
164
165
return Latency;
166
}
167
168
std::optional<unsigned> PPCInstrInfo::getOperandLatency(
169
const InstrItineraryData *ItinData, const MachineInstr &DefMI,
170
unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
171
std::optional<unsigned> Latency = PPCGenInstrInfo::getOperandLatency(
172
ItinData, DefMI, DefIdx, UseMI, UseIdx);
173
174
if (!DefMI.getParent())
175
return Latency;
176
177
const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
178
Register Reg = DefMO.getReg();
179
180
bool IsRegCR;
181
if (Reg.isVirtual()) {
182
const MachineRegisterInfo *MRI =
183
&DefMI.getParent()->getParent()->getRegInfo();
184
IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
185
MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
186
} else {
187
IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
188
PPC::CRBITRCRegClass.contains(Reg);
189
}
190
191
if (UseMI.isBranch() && IsRegCR) {
192
if (!Latency)
193
Latency = getInstrLatency(ItinData, DefMI);
194
195
// On some cores, there is an additional delay between writing to a condition
196
// register, and using it from a branch.
197
unsigned Directive = Subtarget.getCPUDirective();
198
switch (Directive) {
199
default: break;
200
case PPC::DIR_7400:
201
case PPC::DIR_750:
202
case PPC::DIR_970:
203
case PPC::DIR_E5500:
204
case PPC::DIR_PWR4:
205
case PPC::DIR_PWR5:
206
case PPC::DIR_PWR5X:
207
case PPC::DIR_PWR6:
208
case PPC::DIR_PWR6X:
209
case PPC::DIR_PWR7:
210
case PPC::DIR_PWR8:
211
// FIXME: Is this needed for POWER9?
212
Latency = *Latency + 2;
213
break;
214
}
215
}
216
217
return Latency;
218
}
219
220
void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
221
uint32_t Flags) const {
222
MI.setFlags(Flags);
223
MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
224
MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
225
MI.clearFlag(MachineInstr::MIFlag::IsExact);
226
}
227
228
// This function does not list all associative and commutative operations, but
229
// only those worth feeding through the machine combiner in an attempt to
230
// reduce the critical path. Mostly, this means floating-point operations,
231
// because they have high latencies(>=5) (compared to other operations, such as
232
// and/or, which are also associative and commutative, but have low latencies).
233
bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
234
bool Invert) const {
235
if (Invert)
236
return false;
237
switch (Inst.getOpcode()) {
238
// Floating point:
239
// FP Add:
240
case PPC::FADD:
241
case PPC::FADDS:
242
// FP Multiply:
243
case PPC::FMUL:
244
case PPC::FMULS:
245
// Altivec Add:
246
case PPC::VADDFP:
247
// VSX Add:
248
case PPC::XSADDDP:
249
case PPC::XVADDDP:
250
case PPC::XVADDSP:
251
case PPC::XSADDSP:
252
// VSX Multiply:
253
case PPC::XSMULDP:
254
case PPC::XVMULDP:
255
case PPC::XVMULSP:
256
case PPC::XSMULSP:
257
return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
258
Inst.getFlag(MachineInstr::MIFlag::FmNsz);
259
// Fixed point:
260
// Multiply:
261
case PPC::MULHD:
262
case PPC::MULLD:
263
case PPC::MULHW:
264
case PPC::MULLW:
265
return true;
266
default:
267
return false;
268
}
269
}
270
271
#define InfoArrayIdxFMAInst 0
272
#define InfoArrayIdxFAddInst 1
273
#define InfoArrayIdxFMULInst 2
274
#define InfoArrayIdxAddOpIdx 3
275
#define InfoArrayIdxMULOpIdx 4
276
#define InfoArrayIdxFSubInst 5
277
// Array keeps info for FMA instructions:
278
// Index 0(InfoArrayIdxFMAInst): FMA instruction;
279
// Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
280
// Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
281
// Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
282
// Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
283
// second MUL operand index is plus 1;
284
// Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
285
static const uint16_t FMAOpIdxInfo[][6] = {
286
// FIXME: Add more FMA instructions like XSNMADDADP and so on.
287
{PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
288
{PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
289
{PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
290
{PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
291
{PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
292
{PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
293
294
// Check if an opcode is a FMA instruction. If it is, return the index in array
295
// FMAOpIdxInfo. Otherwise, return -1.
296
int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
297
for (unsigned I = 0; I < std::size(FMAOpIdxInfo); I++)
298
if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
299
return I;
300
return -1;
301
}
302
303
// On PowerPC target, we have two kinds of patterns related to FMA:
304
// 1: Improve ILP.
305
// Try to reassociate FMA chains like below:
306
//
307
// Pattern 1:
308
// A = FADD X, Y (Leaf)
309
// B = FMA A, M21, M22 (Prev)
310
// C = FMA B, M31, M32 (Root)
311
// -->
312
// A = FMA X, M21, M22
313
// B = FMA Y, M31, M32
314
// C = FADD A, B
315
//
316
// Pattern 2:
317
// A = FMA X, M11, M12 (Leaf)
318
// B = FMA A, M21, M22 (Prev)
319
// C = FMA B, M31, M32 (Root)
320
// -->
321
// A = FMUL M11, M12
322
// B = FMA X, M21, M22
323
// D = FMA A, M31, M32
324
// C = FADD B, D
325
//
326
// breaking the dependency between A and B, allowing FMA to be executed in
327
// parallel (or back-to-back in a pipeline) instead of depending on each other.
328
//
329
// 2: Reduce register pressure.
330
// Try to reassociate FMA with FSUB and a constant like below:
331
// C is a floating point const.
332
//
333
// Pattern 1:
334
// A = FSUB X, Y (Leaf)
335
// D = FMA B, C, A (Root)
336
// -->
337
// A = FMA B, Y, -C
338
// D = FMA A, X, C
339
//
340
// Pattern 2:
341
// A = FSUB X, Y (Leaf)
342
// D = FMA B, A, C (Root)
343
// -->
344
// A = FMA B, Y, -C
345
// D = FMA A, X, C
346
//
347
// Before the transformation, A must be assigned with different hardware
348
// register with D. After the transformation, A and D must be assigned with
349
// same hardware register due to TIE attribute of FMA instructions.
350
//
351
bool PPCInstrInfo::getFMAPatterns(MachineInstr &Root,
352
SmallVectorImpl<unsigned> &Patterns,
353
bool DoRegPressureReduce) const {
354
MachineBasicBlock *MBB = Root.getParent();
355
const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
356
const TargetRegisterInfo *TRI = &getRegisterInfo();
357
358
auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
359
for (const auto &MO : Instr.explicit_operands())
360
if (!(MO.isReg() && MO.getReg().isVirtual()))
361
return false;
362
return true;
363
};
364
365
auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
366
unsigned OpType) {
367
if (Instr.getOpcode() !=
368
FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
369
return false;
370
371
// Instruction can be reassociated.
372
// fast math flags may prohibit reassociation.
373
if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
374
Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
375
return false;
376
377
// Instruction operands are virtual registers for reassociation.
378
if (!IsAllOpsVirtualReg(Instr))
379
return false;
380
381
// For register pressure reassociation, the FSub must have only one use as
382
// we want to delete the sub to save its def.
383
if (OpType == InfoArrayIdxFSubInst &&
384
!MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
385
return false;
386
387
return true;
388
};
389
390
auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
391
int16_t &MulOpIdx, bool IsLeaf) {
392
int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
393
if (Idx < 0)
394
return false;
395
396
// Instruction can be reassociated.
397
// fast math flags may prohibit reassociation.
398
if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
399
Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
400
return false;
401
402
// Instruction operands are virtual registers for reassociation.
403
if (!IsAllOpsVirtualReg(Instr))
404
return false;
405
406
MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
407
if (IsLeaf)
408
return true;
409
410
AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
411
412
const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
413
MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
414
// If 'add' operand's def is not in current block, don't do ILP related opt.
415
if (!MIAdd || MIAdd->getParent() != MBB)
416
return false;
417
418
// If this is not Leaf FMA Instr, its 'add' operand should only have one use
419
// as this fma will be changed later.
420
return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
421
};
422
423
int16_t AddOpIdx = -1;
424
int16_t MulOpIdx = -1;
425
426
bool IsUsedOnceL = false;
427
bool IsUsedOnceR = false;
428
MachineInstr *MULInstrL = nullptr;
429
MachineInstr *MULInstrR = nullptr;
430
431
auto IsRPReductionCandidate = [&]() {
432
// Currently, we only support float and double.
433
// FIXME: add support for other types.
434
unsigned Opcode = Root.getOpcode();
435
if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
436
return false;
437
438
// Root must be a valid FMA like instruction.
439
// Treat it as leaf as we don't care its add operand.
440
if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
441
assert((MulOpIdx >= 0) && "mul operand index not right!");
442
Register MULRegL = TRI->lookThruSingleUseCopyChain(
443
Root.getOperand(MulOpIdx).getReg(), MRI);
444
Register MULRegR = TRI->lookThruSingleUseCopyChain(
445
Root.getOperand(MulOpIdx + 1).getReg(), MRI);
446
if (!MULRegL && !MULRegR)
447
return false;
448
449
if (MULRegL && !MULRegR) {
450
MULRegR =
451
TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
452
IsUsedOnceL = true;
453
} else if (!MULRegL && MULRegR) {
454
MULRegL =
455
TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
456
IsUsedOnceR = true;
457
} else {
458
IsUsedOnceL = true;
459
IsUsedOnceR = true;
460
}
461
462
if (!MULRegL.isVirtual() || !MULRegR.isVirtual())
463
return false;
464
465
MULInstrL = MRI->getVRegDef(MULRegL);
466
MULInstrR = MRI->getVRegDef(MULRegR);
467
return true;
468
}
469
return false;
470
};
471
472
// Register pressure fma reassociation patterns.
473
if (DoRegPressureReduce && IsRPReductionCandidate()) {
474
assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
475
// Register pressure pattern 1
476
if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
477
IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
478
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
479
Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_BCA);
480
return true;
481
}
482
483
// Register pressure pattern 2
484
if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
485
IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
486
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
487
Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_BAC);
488
return true;
489
}
490
}
491
492
// ILP fma reassociation patterns.
493
// Root must be a valid FMA like instruction.
494
AddOpIdx = -1;
495
if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
496
return false;
497
498
assert((AddOpIdx >= 0) && "add operand index not right!");
499
500
Register RegB = Root.getOperand(AddOpIdx).getReg();
501
MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
502
503
// Prev must be a valid FMA like instruction.
504
AddOpIdx = -1;
505
if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
506
return false;
507
508
assert((AddOpIdx >= 0) && "add operand index not right!");
509
510
Register RegA = Prev->getOperand(AddOpIdx).getReg();
511
MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
512
AddOpIdx = -1;
513
if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
514
Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM);
515
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
516
return true;
517
}
518
if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
519
Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM);
520
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
521
return true;
522
}
523
return false;
524
}
525
526
void PPCInstrInfo::finalizeInsInstrs(
527
MachineInstr &Root, unsigned &Pattern,
528
SmallVectorImpl<MachineInstr *> &InsInstrs) const {
529
assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
530
531
MachineFunction *MF = Root.getMF();
532
MachineRegisterInfo *MRI = &MF->getRegInfo();
533
const TargetRegisterInfo *TRI = &getRegisterInfo();
534
MachineConstantPool *MCP = MF->getConstantPool();
535
536
int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
537
if (Idx < 0)
538
return;
539
540
uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
541
542
// For now we only need to fix up placeholder for register pressure reduce
543
// patterns.
544
Register ConstReg = 0;
545
switch (Pattern) {
546
case PPCMachineCombinerPattern::REASSOC_XY_BCA:
547
ConstReg =
548
TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
549
break;
550
case PPCMachineCombinerPattern::REASSOC_XY_BAC:
551
ConstReg =
552
TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
553
break;
554
default:
555
// Not register pressure reduce patterns.
556
return;
557
}
558
559
MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
560
// Get const value from const pool.
561
const Constant *C = getConstantFromConstantPool(ConstDefInstr);
562
assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
563
564
// Get negative fp const.
565
APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
566
F1.changeSign();
567
Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
568
Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
569
570
// Put negative fp const into constant pool.
571
unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
572
573
MachineOperand *Placeholder = nullptr;
574
// Record the placeholder PPC::ZERO8 we add in reassociateFMA.
575
for (auto *Inst : InsInstrs) {
576
for (MachineOperand &Operand : Inst->explicit_operands()) {
577
assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
578
if (Operand.getReg() == PPC::ZERO8) {
579
Placeholder = &Operand;
580
break;
581
}
582
}
583
}
584
585
assert(Placeholder && "Placeholder does not exist!");
586
587
// Generate instructions to load the const fp from constant pool.
588
// We only support PPC64 and medium code model.
589
Register LoadNewConst =
590
generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
591
592
// Fill the placeholder with the new load from constant pool.
593
Placeholder->setReg(LoadNewConst);
594
}
595
596
bool PPCInstrInfo::shouldReduceRegisterPressure(
597
const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const {
598
599
if (!EnableFMARegPressureReduction)
600
return false;
601
602
// Currently, we only enable register pressure reducing in machine combiner
603
// for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
604
// support.
605
//
606
// So we need following instructions to access a TOC entry:
607
//
608
// %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
609
// %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
610
// killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
611
//
612
// FIXME: add more supported targets, like Small and Large code model, PPC32,
613
// AIX.
614
if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
615
Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
616
return false;
617
618
const TargetRegisterInfo *TRI = &getRegisterInfo();
619
const MachineFunction *MF = MBB->getParent();
620
const MachineRegisterInfo *MRI = &MF->getRegInfo();
621
622
auto GetMBBPressure =
623
[&](const MachineBasicBlock *MBB) -> std::vector<unsigned> {
624
RegionPressure Pressure;
625
RegPressureTracker RPTracker(Pressure);
626
627
// Initialize the register pressure tracker.
628
RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
629
/*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
630
631
for (const auto &MI : reverse(*MBB)) {
632
if (MI.isDebugValue() || MI.isDebugLabel())
633
continue;
634
RegisterOperands RegOpers;
635
RegOpers.collect(MI, *TRI, *MRI, false, false);
636
RPTracker.recedeSkipDebugValues();
637
assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
638
RPTracker.recede(RegOpers);
639
}
640
641
// Close the RPTracker to finalize live ins.
642
RPTracker.closeRegion();
643
644
return RPTracker.getPressure().MaxSetPressure;
645
};
646
647
// For now we only care about float and double type fma.
648
unsigned VSSRCLimit = TRI->getRegPressureSetLimit(
649
*MBB->getParent(), PPC::RegisterPressureSets::VSSRC);
650
651
// Only reduce register pressure when pressure is high.
652
return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
653
(float)VSSRCLimit * FMARPFactor;
654
}
655
656
bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
657
// I has only one memory operand which is load from constant pool.
658
if (!I->hasOneMemOperand())
659
return false;
660
661
MachineMemOperand *Op = I->memoperands()[0];
662
return Op->isLoad() && Op->getPseudoValue() &&
663
Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
664
}
665
666
Register PPCInstrInfo::generateLoadForNewConst(
667
unsigned Idx, MachineInstr *MI, Type *Ty,
668
SmallVectorImpl<MachineInstr *> &InsInstrs) const {
669
// Now we only support PPC64, Medium code model and P9 with vector.
670
// We have immutable pattern to access const pool. See function
671
// shouldReduceRegisterPressure.
672
assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
673
Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
674
"Target not supported!\n");
675
676
MachineFunction *MF = MI->getMF();
677
MachineRegisterInfo *MRI = &MF->getRegInfo();
678
679
// Generate ADDIStocHA8
680
Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
681
MachineInstrBuilder TOCOffset =
682
BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
683
.addReg(PPC::X2)
684
.addConstantPoolIndex(Idx);
685
686
assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
687
"Only float and double are supported!");
688
689
unsigned LoadOpcode;
690
// Should be float type or double type.
691
if (Ty->isFloatTy())
692
LoadOpcode = PPC::DFLOADf32;
693
else
694
LoadOpcode = PPC::DFLOADf64;
695
696
const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
697
Register VReg2 = MRI->createVirtualRegister(RC);
698
MachineMemOperand *MMO = MF->getMachineMemOperand(
699
MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
700
Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
701
702
// Generate Load from constant pool.
703
MachineInstrBuilder Load =
704
BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
705
.addConstantPoolIndex(Idx)
706
.addReg(VReg1, getKillRegState(true))
707
.addMemOperand(MMO);
708
709
Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
710
711
// Insert the toc load instructions into InsInstrs.
712
InsInstrs.insert(InsInstrs.begin(), Load);
713
InsInstrs.insert(InsInstrs.begin(), TOCOffset);
714
return VReg2;
715
}
716
717
// This function returns the const value in constant pool if the \p I is a load
718
// from constant pool.
719
const Constant *
720
PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
721
MachineFunction *MF = I->getMF();
722
MachineRegisterInfo *MRI = &MF->getRegInfo();
723
MachineConstantPool *MCP = MF->getConstantPool();
724
assert(I->mayLoad() && "Should be a load instruction.\n");
725
for (auto MO : I->uses()) {
726
if (!MO.isReg())
727
continue;
728
Register Reg = MO.getReg();
729
if (Reg == 0 || !Reg.isVirtual())
730
continue;
731
// Find the toc address.
732
MachineInstr *DefMI = MRI->getVRegDef(Reg);
733
for (auto MO2 : DefMI->uses())
734
if (MO2.isCPI())
735
return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
736
}
737
return nullptr;
738
}
739
740
CombinerObjective PPCInstrInfo::getCombinerObjective(unsigned Pattern) const {
741
switch (Pattern) {
742
case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM:
743
case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM:
744
return CombinerObjective::MustReduceDepth;
745
case PPCMachineCombinerPattern::REASSOC_XY_BCA:
746
case PPCMachineCombinerPattern::REASSOC_XY_BAC:
747
return CombinerObjective::MustReduceRegisterPressure;
748
default:
749
return TargetInstrInfo::getCombinerObjective(Pattern);
750
}
751
}
752
753
bool PPCInstrInfo::getMachineCombinerPatterns(
754
MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
755
bool DoRegPressureReduce) const {
756
// Using the machine combiner in this way is potentially expensive, so
757
// restrict to when aggressive optimizations are desired.
758
if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOptLevel::Aggressive)
759
return false;
760
761
if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
762
return true;
763
764
return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
765
DoRegPressureReduce);
766
}
767
768
void PPCInstrInfo::genAlternativeCodeSequence(
769
MachineInstr &Root, unsigned Pattern,
770
SmallVectorImpl<MachineInstr *> &InsInstrs,
771
SmallVectorImpl<MachineInstr *> &DelInstrs,
772
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
773
switch (Pattern) {
774
case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM:
775
case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM:
776
case PPCMachineCombinerPattern::REASSOC_XY_BCA:
777
case PPCMachineCombinerPattern::REASSOC_XY_BAC:
778
reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
779
break;
780
default:
781
// Reassociate default patterns.
782
TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
783
DelInstrs, InstrIdxForVirtReg);
784
break;
785
}
786
}
787
788
void PPCInstrInfo::reassociateFMA(
789
MachineInstr &Root, unsigned Pattern,
790
SmallVectorImpl<MachineInstr *> &InsInstrs,
791
SmallVectorImpl<MachineInstr *> &DelInstrs,
792
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
793
MachineFunction *MF = Root.getMF();
794
MachineRegisterInfo &MRI = MF->getRegInfo();
795
const TargetRegisterInfo *TRI = &getRegisterInfo();
796
MachineOperand &OpC = Root.getOperand(0);
797
Register RegC = OpC.getReg();
798
const TargetRegisterClass *RC = MRI.getRegClass(RegC);
799
MRI.constrainRegClass(RegC, RC);
800
801
unsigned FmaOp = Root.getOpcode();
802
int16_t Idx = getFMAOpIdxInfo(FmaOp);
803
assert(Idx >= 0 && "Root must be a FMA instruction");
804
805
bool IsILPReassociate =
806
(Pattern == PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
807
(Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM);
808
809
uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
810
uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
811
812
MachineInstr *Prev = nullptr;
813
MachineInstr *Leaf = nullptr;
814
switch (Pattern) {
815
default:
816
llvm_unreachable("not recognized pattern!");
817
case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM:
818
case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM:
819
Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
820
Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
821
break;
822
case PPCMachineCombinerPattern::REASSOC_XY_BAC: {
823
Register MULReg =
824
TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
825
Leaf = MRI.getVRegDef(MULReg);
826
break;
827
}
828
case PPCMachineCombinerPattern::REASSOC_XY_BCA: {
829
Register MULReg = TRI->lookThruCopyLike(
830
Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
831
Leaf = MRI.getVRegDef(MULReg);
832
break;
833
}
834
}
835
836
uint32_t IntersectedFlags = 0;
837
if (IsILPReassociate)
838
IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
839
else
840
IntersectedFlags = Root.getFlags() & Leaf->getFlags();
841
842
auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
843
bool &KillFlag) {
844
Reg = Operand.getReg();
845
MRI.constrainRegClass(Reg, RC);
846
KillFlag = Operand.isKill();
847
};
848
849
auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
850
Register &MulOp2, Register &AddOp,
851
bool &MulOp1KillFlag, bool &MulOp2KillFlag,
852
bool &AddOpKillFlag) {
853
GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
854
GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
855
GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
856
};
857
858
Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
859
RegA21, RegB;
860
bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
861
KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
862
KillA11 = false, KillA21 = false, KillB = false;
863
864
GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
865
866
if (IsILPReassociate)
867
GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
868
869
if (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
870
GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
871
GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
872
} else if (Pattern == PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM) {
873
GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
874
GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
875
} else {
876
// Get FSUB instruction info.
877
GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
878
GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
879
}
880
881
// Create new virtual registers for the new results instead of
882
// recycling legacy ones because the MachineCombiner's computation of the
883
// critical path requires a new register definition rather than an existing
884
// one.
885
// For register pressure reassociation, we only need create one virtual
886
// register for the new fma.
887
Register NewVRA = MRI.createVirtualRegister(RC);
888
InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
889
890
Register NewVRB = 0;
891
if (IsILPReassociate) {
892
NewVRB = MRI.createVirtualRegister(RC);
893
InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
894
}
895
896
Register NewVRD = 0;
897
if (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
898
NewVRD = MRI.createVirtualRegister(RC);
899
InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
900
}
901
902
auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
903
Register RegMul1, bool KillRegMul1,
904
Register RegMul2, bool KillRegMul2) {
905
MI->getOperand(AddOpIdx).setReg(RegAdd);
906
MI->getOperand(AddOpIdx).setIsKill(KillAdd);
907
MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
908
MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
909
MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
910
MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
911
};
912
913
MachineInstrBuilder NewARegPressure, NewCRegPressure;
914
switch (Pattern) {
915
default:
916
llvm_unreachable("not recognized pattern!");
917
case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM: {
918
// Create new instructions for insertion.
919
MachineInstrBuilder MINewB =
920
BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
921
.addReg(RegX, getKillRegState(KillX))
922
.addReg(RegM21, getKillRegState(KillM21))
923
.addReg(RegM22, getKillRegState(KillM22));
924
MachineInstrBuilder MINewA =
925
BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
926
.addReg(RegY, getKillRegState(KillY))
927
.addReg(RegM31, getKillRegState(KillM31))
928
.addReg(RegM32, getKillRegState(KillM32));
929
// If AddOpIdx is not 1, adjust the order.
930
if (AddOpIdx != 1) {
931
AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
932
AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
933
}
934
935
MachineInstrBuilder MINewC =
936
BuildMI(*MF, Root.getDebugLoc(),
937
get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
938
.addReg(NewVRB, getKillRegState(true))
939
.addReg(NewVRA, getKillRegState(true));
940
941
// Update flags for newly created instructions.
942
setSpecialOperandAttr(*MINewA, IntersectedFlags);
943
setSpecialOperandAttr(*MINewB, IntersectedFlags);
944
setSpecialOperandAttr(*MINewC, IntersectedFlags);
945
946
// Record new instructions for insertion.
947
InsInstrs.push_back(MINewA);
948
InsInstrs.push_back(MINewB);
949
InsInstrs.push_back(MINewC);
950
break;
951
}
952
case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
953
assert(NewVRD && "new FMA register not created!");
954
// Create new instructions for insertion.
955
MachineInstrBuilder MINewA =
956
BuildMI(*MF, Leaf->getDebugLoc(),
957
get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
958
.addReg(RegM11, getKillRegState(KillM11))
959
.addReg(RegM12, getKillRegState(KillM12));
960
MachineInstrBuilder MINewB =
961
BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
962
.addReg(RegX, getKillRegState(KillX))
963
.addReg(RegM21, getKillRegState(KillM21))
964
.addReg(RegM22, getKillRegState(KillM22));
965
MachineInstrBuilder MINewD =
966
BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
967
.addReg(NewVRA, getKillRegState(true))
968
.addReg(RegM31, getKillRegState(KillM31))
969
.addReg(RegM32, getKillRegState(KillM32));
970
// If AddOpIdx is not 1, adjust the order.
971
if (AddOpIdx != 1) {
972
AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
973
AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
974
KillM32);
975
}
976
977
MachineInstrBuilder MINewC =
978
BuildMI(*MF, Root.getDebugLoc(),
979
get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
980
.addReg(NewVRB, getKillRegState(true))
981
.addReg(NewVRD, getKillRegState(true));
982
983
// Update flags for newly created instructions.
984
setSpecialOperandAttr(*MINewA, IntersectedFlags);
985
setSpecialOperandAttr(*MINewB, IntersectedFlags);
986
setSpecialOperandAttr(*MINewD, IntersectedFlags);
987
setSpecialOperandAttr(*MINewC, IntersectedFlags);
988
989
// Record new instructions for insertion.
990
InsInstrs.push_back(MINewA);
991
InsInstrs.push_back(MINewB);
992
InsInstrs.push_back(MINewD);
993
InsInstrs.push_back(MINewC);
994
break;
995
}
996
case PPCMachineCombinerPattern::REASSOC_XY_BAC:
997
case PPCMachineCombinerPattern::REASSOC_XY_BCA: {
998
Register VarReg;
999
bool KillVarReg = false;
1000
if (Pattern == PPCMachineCombinerPattern::REASSOC_XY_BCA) {
1001
VarReg = RegM31;
1002
KillVarReg = KillM31;
1003
} else {
1004
VarReg = RegM32;
1005
KillVarReg = KillM32;
1006
}
1007
// We don't want to get negative const from memory pool too early, as the
1008
// created entry will not be deleted even if it has no users. Since all
1009
// operand of Leaf and Root are virtual register, we use zero register
1010
// here as a placeholder. When the InsInstrs is selected in
1011
// MachineCombiner, we call finalizeInsInstrs to replace the zero register
1012
// with a virtual register which is a load from constant pool.
1013
NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
1014
.addReg(RegB, getKillRegState(RegB))
1015
.addReg(RegY, getKillRegState(KillY))
1016
.addReg(PPC::ZERO8);
1017
NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
1018
.addReg(NewVRA, getKillRegState(true))
1019
.addReg(RegX, getKillRegState(KillX))
1020
.addReg(VarReg, getKillRegState(KillVarReg));
1021
// For now, we only support xsmaddadp/xsmaddasp, their add operand are
1022
// both at index 1, no need to adjust.
1023
// FIXME: when add more fma instructions support, like fma/fmas, adjust
1024
// the operand index here.
1025
break;
1026
}
1027
}
1028
1029
if (!IsILPReassociate) {
1030
setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
1031
setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
1032
1033
InsInstrs.push_back(NewARegPressure);
1034
InsInstrs.push_back(NewCRegPressure);
1035
}
1036
1037
assert(!InsInstrs.empty() &&
1038
"Insertion instructions set should not be empty!");
1039
1040
// Record old instructions for deletion.
1041
DelInstrs.push_back(Leaf);
1042
if (IsILPReassociate)
1043
DelInstrs.push_back(Prev);
1044
DelInstrs.push_back(&Root);
1045
}
1046
1047
// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
1048
bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1049
Register &SrcReg, Register &DstReg,
1050
unsigned &SubIdx) const {
1051
switch (MI.getOpcode()) {
1052
default: return false;
1053
case PPC::EXTSW:
1054
case PPC::EXTSW_32:
1055
case PPC::EXTSW_32_64:
1056
SrcReg = MI.getOperand(1).getReg();
1057
DstReg = MI.getOperand(0).getReg();
1058
SubIdx = PPC::sub_32;
1059
return true;
1060
}
1061
}
1062
1063
Register PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1064
int &FrameIndex) const {
1065
if (llvm::is_contained(getLoadOpcodesForSpillArray(), MI.getOpcode())) {
1066
// Check for the operands added by addFrameReference (the immediate is the
1067
// offset which defaults to 0).
1068
if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1069
MI.getOperand(2).isFI()) {
1070
FrameIndex = MI.getOperand(2).getIndex();
1071
return MI.getOperand(0).getReg();
1072
}
1073
}
1074
return 0;
1075
}
1076
1077
// For opcodes with the ReMaterializable flag set, this function is called to
1078
// verify the instruction is really rematable.
1079
bool PPCInstrInfo::isReallyTriviallyReMaterializable(
1080
const MachineInstr &MI) const {
1081
switch (MI.getOpcode()) {
1082
default:
1083
// Let base implementaion decide.
1084
break;
1085
case PPC::LI:
1086
case PPC::LI8:
1087
case PPC::PLI:
1088
case PPC::PLI8:
1089
case PPC::LIS:
1090
case PPC::LIS8:
1091
case PPC::ADDIStocHA:
1092
case PPC::ADDIStocHA8:
1093
case PPC::ADDItocL:
1094
case PPC::ADDItocL8:
1095
case PPC::LOAD_STACK_GUARD:
1096
case PPC::PPCLdFixedAddr:
1097
case PPC::XXLXORz:
1098
case PPC::XXLXORspz:
1099
case PPC::XXLXORdpz:
1100
case PPC::XXLEQVOnes:
1101
case PPC::XXSPLTI32DX:
1102
case PPC::XXSPLTIW:
1103
case PPC::XXSPLTIDP:
1104
case PPC::V_SET0B:
1105
case PPC::V_SET0H:
1106
case PPC::V_SET0:
1107
case PPC::V_SETALLONESB:
1108
case PPC::V_SETALLONESH:
1109
case PPC::V_SETALLONES:
1110
case PPC::CRSET:
1111
case PPC::CRUNSET:
1112
case PPC::XXSETACCZ:
1113
case PPC::XXSETACCZW:
1114
return true;
1115
}
1116
return TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
1117
}
1118
1119
Register PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1120
int &FrameIndex) const {
1121
if (llvm::is_contained(getStoreOpcodesForSpillArray(), MI.getOpcode())) {
1122
if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1123
MI.getOperand(2).isFI()) {
1124
FrameIndex = MI.getOperand(2).getIndex();
1125
return MI.getOperand(0).getReg();
1126
}
1127
}
1128
return 0;
1129
}
1130
1131
MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1132
unsigned OpIdx1,
1133
unsigned OpIdx2) const {
1134
MachineFunction &MF = *MI.getParent()->getParent();
1135
1136
// Normal instructions can be commuted the obvious way.
1137
if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
1138
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1139
// Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
1140
// 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
1141
// changing the relative order of the mask operands might change what happens
1142
// to the high-bits of the mask (and, thus, the result).
1143
1144
// Cannot commute if it has a non-zero rotate count.
1145
if (MI.getOperand(3).getImm() != 0)
1146
return nullptr;
1147
1148
// If we have a zero rotate count, we have:
1149
// M = mask(MB,ME)
1150
// Op0 = (Op1 & ~M) | (Op2 & M)
1151
// Change this to:
1152
// M = mask((ME+1)&31, (MB-1)&31)
1153
// Op0 = (Op2 & ~M) | (Op1 & M)
1154
1155
// Swap op1/op2
1156
assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
1157
"Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
1158
Register Reg0 = MI.getOperand(0).getReg();
1159
Register Reg1 = MI.getOperand(1).getReg();
1160
Register Reg2 = MI.getOperand(2).getReg();
1161
unsigned SubReg1 = MI.getOperand(1).getSubReg();
1162
unsigned SubReg2 = MI.getOperand(2).getSubReg();
1163
bool Reg1IsKill = MI.getOperand(1).isKill();
1164
bool Reg2IsKill = MI.getOperand(2).isKill();
1165
bool ChangeReg0 = false;
1166
// If machine instrs are no longer in two-address forms, update
1167
// destination register as well.
1168
if (Reg0 == Reg1) {
1169
// Must be two address instruction (i.e. op1 is tied to op0).
1170
assert(MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) == 0 &&
1171
"Expecting a two-address instruction!");
1172
assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
1173
Reg2IsKill = false;
1174
ChangeReg0 = true;
1175
}
1176
1177
// Masks.
1178
unsigned MB = MI.getOperand(4).getImm();
1179
unsigned ME = MI.getOperand(5).getImm();
1180
1181
// We can't commute a trivial mask (there is no way to represent an all-zero
1182
// mask).
1183
if (MB == 0 && ME == 31)
1184
return nullptr;
1185
1186
if (NewMI) {
1187
// Create a new instruction.
1188
Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
1189
bool Reg0IsDead = MI.getOperand(0).isDead();
1190
return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
1191
.addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
1192
.addReg(Reg2, getKillRegState(Reg2IsKill))
1193
.addReg(Reg1, getKillRegState(Reg1IsKill))
1194
.addImm((ME + 1) & 31)
1195
.addImm((MB - 1) & 31);
1196
}
1197
1198
if (ChangeReg0) {
1199
MI.getOperand(0).setReg(Reg2);
1200
MI.getOperand(0).setSubReg(SubReg2);
1201
}
1202
MI.getOperand(2).setReg(Reg1);
1203
MI.getOperand(1).setReg(Reg2);
1204
MI.getOperand(2).setSubReg(SubReg1);
1205
MI.getOperand(1).setSubReg(SubReg2);
1206
MI.getOperand(2).setIsKill(Reg1IsKill);
1207
MI.getOperand(1).setIsKill(Reg2IsKill);
1208
1209
// Swap the mask around.
1210
MI.getOperand(4).setImm((ME + 1) & 31);
1211
MI.getOperand(5).setImm((MB - 1) & 31);
1212
return &MI;
1213
}
1214
1215
bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1216
unsigned &SrcOpIdx1,
1217
unsigned &SrcOpIdx2) const {
1218
// For VSX A-Type FMA instructions, it is the first two operands that can be
1219
// commuted, however, because the non-encoded tied input operand is listed
1220
// first, the operands to swap are actually the second and third.
1221
1222
int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
1223
if (AltOpc == -1)
1224
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1225
1226
// The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
1227
// and SrcOpIdx2.
1228
return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
1229
}
1230
1231
void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
1232
MachineBasicBlock::iterator MI) const {
1233
// This function is used for scheduling, and the nop wanted here is the type
1234
// that terminates dispatch groups on the POWER cores.
1235
unsigned Directive = Subtarget.getCPUDirective();
1236
unsigned Opcode;
1237
switch (Directive) {
1238
default: Opcode = PPC::NOP; break;
1239
case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
1240
case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
1241
case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
1242
// FIXME: Update when POWER9 scheduling model is ready.
1243
case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
1244
}
1245
1246
DebugLoc DL;
1247
BuildMI(MBB, MI, DL, get(Opcode));
1248
}
1249
1250
/// Return the noop instruction to use for a noop.
1251
MCInst PPCInstrInfo::getNop() const {
1252
MCInst Nop;
1253
Nop.setOpcode(PPC::NOP);
1254
return Nop;
1255
}
1256
1257
// Branch analysis.
1258
// Note: If the condition register is set to CTR or CTR8 then this is a
1259
// BDNZ (imm == 1) or BDZ (imm == 0) branch.
1260
bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
1261
MachineBasicBlock *&TBB,
1262
MachineBasicBlock *&FBB,
1263
SmallVectorImpl<MachineOperand> &Cond,
1264
bool AllowModify) const {
1265
bool isPPC64 = Subtarget.isPPC64();
1266
1267
// If the block has no terminators, it just falls into the block after it.
1268
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1269
if (I == MBB.end())
1270
return false;
1271
1272
if (!isUnpredicatedTerminator(*I))
1273
return false;
1274
1275
if (AllowModify) {
1276
// If the BB ends with an unconditional branch to the fallthrough BB,
1277
// we eliminate the branch instruction.
1278
if (I->getOpcode() == PPC::B &&
1279
MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1280
I->eraseFromParent();
1281
1282
// We update iterator after deleting the last branch.
1283
I = MBB.getLastNonDebugInstr();
1284
if (I == MBB.end() || !isUnpredicatedTerminator(*I))
1285
return false;
1286
}
1287
}
1288
1289
// Get the last instruction in the block.
1290
MachineInstr &LastInst = *I;
1291
1292
// If there is only one terminator instruction, process it.
1293
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
1294
if (LastInst.getOpcode() == PPC::B) {
1295
if (!LastInst.getOperand(0).isMBB())
1296
return true;
1297
TBB = LastInst.getOperand(0).getMBB();
1298
return false;
1299
} else if (LastInst.getOpcode() == PPC::BCC) {
1300
if (!LastInst.getOperand(2).isMBB())
1301
return true;
1302
// Block ends with fall-through condbranch.
1303
TBB = LastInst.getOperand(2).getMBB();
1304
Cond.push_back(LastInst.getOperand(0));
1305
Cond.push_back(LastInst.getOperand(1));
1306
return false;
1307
} else if (LastInst.getOpcode() == PPC::BC) {
1308
if (!LastInst.getOperand(1).isMBB())
1309
return true;
1310
// Block ends with fall-through condbranch.
1311
TBB = LastInst.getOperand(1).getMBB();
1312
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1313
Cond.push_back(LastInst.getOperand(0));
1314
return false;
1315
} else if (LastInst.getOpcode() == PPC::BCn) {
1316
if (!LastInst.getOperand(1).isMBB())
1317
return true;
1318
// Block ends with fall-through condbranch.
1319
TBB = LastInst.getOperand(1).getMBB();
1320
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1321
Cond.push_back(LastInst.getOperand(0));
1322
return false;
1323
} else if (LastInst.getOpcode() == PPC::BDNZ8 ||
1324
LastInst.getOpcode() == PPC::BDNZ) {
1325
if (!LastInst.getOperand(0).isMBB())
1326
return true;
1327
if (DisableCTRLoopAnal)
1328
return true;
1329
TBB = LastInst.getOperand(0).getMBB();
1330
Cond.push_back(MachineOperand::CreateImm(1));
1331
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1332
true));
1333
return false;
1334
} else if (LastInst.getOpcode() == PPC::BDZ8 ||
1335
LastInst.getOpcode() == PPC::BDZ) {
1336
if (!LastInst.getOperand(0).isMBB())
1337
return true;
1338
if (DisableCTRLoopAnal)
1339
return true;
1340
TBB = LastInst.getOperand(0).getMBB();
1341
Cond.push_back(MachineOperand::CreateImm(0));
1342
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1343
true));
1344
return false;
1345
}
1346
1347
// Otherwise, don't know what this is.
1348
return true;
1349
}
1350
1351
// Get the instruction before it if it's a terminator.
1352
MachineInstr &SecondLastInst = *I;
1353
1354
// If there are three terminators, we don't know what sort of block this is.
1355
if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
1356
return true;
1357
1358
// If the block ends with PPC::B and PPC:BCC, handle it.
1359
if (SecondLastInst.getOpcode() == PPC::BCC &&
1360
LastInst.getOpcode() == PPC::B) {
1361
if (!SecondLastInst.getOperand(2).isMBB() ||
1362
!LastInst.getOperand(0).isMBB())
1363
return true;
1364
TBB = SecondLastInst.getOperand(2).getMBB();
1365
Cond.push_back(SecondLastInst.getOperand(0));
1366
Cond.push_back(SecondLastInst.getOperand(1));
1367
FBB = LastInst.getOperand(0).getMBB();
1368
return false;
1369
} else if (SecondLastInst.getOpcode() == PPC::BC &&
1370
LastInst.getOpcode() == PPC::B) {
1371
if (!SecondLastInst.getOperand(1).isMBB() ||
1372
!LastInst.getOperand(0).isMBB())
1373
return true;
1374
TBB = SecondLastInst.getOperand(1).getMBB();
1375
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1376
Cond.push_back(SecondLastInst.getOperand(0));
1377
FBB = LastInst.getOperand(0).getMBB();
1378
return false;
1379
} else if (SecondLastInst.getOpcode() == PPC::BCn &&
1380
LastInst.getOpcode() == PPC::B) {
1381
if (!SecondLastInst.getOperand(1).isMBB() ||
1382
!LastInst.getOperand(0).isMBB())
1383
return true;
1384
TBB = SecondLastInst.getOperand(1).getMBB();
1385
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1386
Cond.push_back(SecondLastInst.getOperand(0));
1387
FBB = LastInst.getOperand(0).getMBB();
1388
return false;
1389
} else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
1390
SecondLastInst.getOpcode() == PPC::BDNZ) &&
1391
LastInst.getOpcode() == PPC::B) {
1392
if (!SecondLastInst.getOperand(0).isMBB() ||
1393
!LastInst.getOperand(0).isMBB())
1394
return true;
1395
if (DisableCTRLoopAnal)
1396
return true;
1397
TBB = SecondLastInst.getOperand(0).getMBB();
1398
Cond.push_back(MachineOperand::CreateImm(1));
1399
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1400
true));
1401
FBB = LastInst.getOperand(0).getMBB();
1402
return false;
1403
} else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
1404
SecondLastInst.getOpcode() == PPC::BDZ) &&
1405
LastInst.getOpcode() == PPC::B) {
1406
if (!SecondLastInst.getOperand(0).isMBB() ||
1407
!LastInst.getOperand(0).isMBB())
1408
return true;
1409
if (DisableCTRLoopAnal)
1410
return true;
1411
TBB = SecondLastInst.getOperand(0).getMBB();
1412
Cond.push_back(MachineOperand::CreateImm(0));
1413
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1414
true));
1415
FBB = LastInst.getOperand(0).getMBB();
1416
return false;
1417
}
1418
1419
// If the block ends with two PPC:Bs, handle it. The second one is not
1420
// executed, so remove it.
1421
if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
1422
if (!SecondLastInst.getOperand(0).isMBB())
1423
return true;
1424
TBB = SecondLastInst.getOperand(0).getMBB();
1425
I = LastInst;
1426
if (AllowModify)
1427
I->eraseFromParent();
1428
return false;
1429
}
1430
1431
// Otherwise, can't handle this.
1432
return true;
1433
}
1434
1435
unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1436
int *BytesRemoved) const {
1437
assert(!BytesRemoved && "code size not handled");
1438
1439
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1440
if (I == MBB.end())
1441
return 0;
1442
1443
if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1444
I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1445
I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1446
I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
1447
return 0;
1448
1449
// Remove the branch.
1450
I->eraseFromParent();
1451
1452
I = MBB.end();
1453
1454
if (I == MBB.begin()) return 1;
1455
--I;
1456
if (I->getOpcode() != PPC::BCC &&
1457
I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1458
I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1459
I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
1460
return 1;
1461
1462
// Remove the branch.
1463
I->eraseFromParent();
1464
return 2;
1465
}
1466
1467
unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1468
MachineBasicBlock *TBB,
1469
MachineBasicBlock *FBB,
1470
ArrayRef<MachineOperand> Cond,
1471
const DebugLoc &DL,
1472
int *BytesAdded) const {
1473
// Shouldn't be a fall through.
1474
assert(TBB && "insertBranch must not be told to insert a fallthrough");
1475
assert((Cond.size() == 2 || Cond.size() == 0) &&
1476
"PPC branch conditions have two components!");
1477
assert(!BytesAdded && "code size not handled");
1478
1479
bool isPPC64 = Subtarget.isPPC64();
1480
1481
// One-way branch.
1482
if (!FBB) {
1483
if (Cond.empty()) // Unconditional branch
1484
BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1485
else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1486
BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1487
(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1488
(isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
1489
else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1490
BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1491
else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1492
BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1493
else // Conditional branch
1494
BuildMI(&MBB, DL, get(PPC::BCC))
1495
.addImm(Cond[0].getImm())
1496
.add(Cond[1])
1497
.addMBB(TBB);
1498
return 1;
1499
}
1500
1501
// Two-way Conditional Branch.
1502
if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1503
BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1504
(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1505
(isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
1506
else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1507
BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1508
else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1509
BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1510
else
1511
BuildMI(&MBB, DL, get(PPC::BCC))
1512
.addImm(Cond[0].getImm())
1513
.add(Cond[1])
1514
.addMBB(TBB);
1515
BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1516
return 2;
1517
}
1518
1519
// Select analysis.
1520
bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1521
ArrayRef<MachineOperand> Cond,
1522
Register DstReg, Register TrueReg,
1523
Register FalseReg, int &CondCycles,
1524
int &TrueCycles, int &FalseCycles) const {
1525
if (!Subtarget.hasISEL())
1526
return false;
1527
1528
if (Cond.size() != 2)
1529
return false;
1530
1531
// If this is really a bdnz-like condition, then it cannot be turned into a
1532
// select.
1533
if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1534
return false;
1535
1536
// If the conditional branch uses a physical register, then it cannot be
1537
// turned into a select.
1538
if (Cond[1].getReg().isPhysical())
1539
return false;
1540
1541
// Check register classes.
1542
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1543
const TargetRegisterClass *RC =
1544
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1545
if (!RC)
1546
return false;
1547
1548
// isel is for regular integer GPRs only.
1549
if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1550
!PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1551
!PPC::G8RCRegClass.hasSubClassEq(RC) &&
1552
!PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1553
return false;
1554
1555
// FIXME: These numbers are for the A2, how well they work for other cores is
1556
// an open question. On the A2, the isel instruction has a 2-cycle latency
1557
// but single-cycle throughput. These numbers are used in combination with
1558
// the MispredictPenalty setting from the active SchedMachineModel.
1559
CondCycles = 1;
1560
TrueCycles = 1;
1561
FalseCycles = 1;
1562
1563
return true;
1564
}
1565
1566
void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1567
MachineBasicBlock::iterator MI,
1568
const DebugLoc &dl, Register DestReg,
1569
ArrayRef<MachineOperand> Cond, Register TrueReg,
1570
Register FalseReg) const {
1571
assert(Cond.size() == 2 &&
1572
"PPC branch conditions have two components!");
1573
1574
// Get the register classes.
1575
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1576
const TargetRegisterClass *RC =
1577
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1578
assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1579
1580
bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1581
PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1582
assert((Is64Bit ||
1583
PPC::GPRCRegClass.hasSubClassEq(RC) ||
1584
PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1585
"isel is for regular integer GPRs only");
1586
1587
unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1588
auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1589
1590
unsigned SubIdx = 0;
1591
bool SwapOps = false;
1592
switch (SelectPred) {
1593
case PPC::PRED_EQ:
1594
case PPC::PRED_EQ_MINUS:
1595
case PPC::PRED_EQ_PLUS:
1596
SubIdx = PPC::sub_eq; SwapOps = false; break;
1597
case PPC::PRED_NE:
1598
case PPC::PRED_NE_MINUS:
1599
case PPC::PRED_NE_PLUS:
1600
SubIdx = PPC::sub_eq; SwapOps = true; break;
1601
case PPC::PRED_LT:
1602
case PPC::PRED_LT_MINUS:
1603
case PPC::PRED_LT_PLUS:
1604
SubIdx = PPC::sub_lt; SwapOps = false; break;
1605
case PPC::PRED_GE:
1606
case PPC::PRED_GE_MINUS:
1607
case PPC::PRED_GE_PLUS:
1608
SubIdx = PPC::sub_lt; SwapOps = true; break;
1609
case PPC::PRED_GT:
1610
case PPC::PRED_GT_MINUS:
1611
case PPC::PRED_GT_PLUS:
1612
SubIdx = PPC::sub_gt; SwapOps = false; break;
1613
case PPC::PRED_LE:
1614
case PPC::PRED_LE_MINUS:
1615
case PPC::PRED_LE_PLUS:
1616
SubIdx = PPC::sub_gt; SwapOps = true; break;
1617
case PPC::PRED_UN:
1618
case PPC::PRED_UN_MINUS:
1619
case PPC::PRED_UN_PLUS:
1620
SubIdx = PPC::sub_un; SwapOps = false; break;
1621
case PPC::PRED_NU:
1622
case PPC::PRED_NU_MINUS:
1623
case PPC::PRED_NU_PLUS:
1624
SubIdx = PPC::sub_un; SwapOps = true; break;
1625
case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
1626
case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1627
}
1628
1629
Register FirstReg = SwapOps ? FalseReg : TrueReg,
1630
SecondReg = SwapOps ? TrueReg : FalseReg;
1631
1632
// The first input register of isel cannot be r0. If it is a member
1633
// of a register class that can be r0, then copy it first (the
1634
// register allocator should eliminate the copy).
1635
if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1636
MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1637
const TargetRegisterClass *FirstRC =
1638
MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1639
&PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1640
Register OldFirstReg = FirstReg;
1641
FirstReg = MRI.createVirtualRegister(FirstRC);
1642
BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1643
.addReg(OldFirstReg);
1644
}
1645
1646
BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1647
.addReg(FirstReg).addReg(SecondReg)
1648
.addReg(Cond[1].getReg(), 0, SubIdx);
1649
}
1650
1651
static unsigned getCRBitValue(unsigned CRBit) {
1652
unsigned Ret = 4;
1653
if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1654
CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1655
CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1656
CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1657
Ret = 3;
1658
if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1659
CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1660
CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1661
CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1662
Ret = 2;
1663
if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1664
CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1665
CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1666
CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1667
Ret = 1;
1668
if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1669
CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1670
CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1671
CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1672
Ret = 0;
1673
1674
assert(Ret != 4 && "Invalid CR bit register");
1675
return Ret;
1676
}
1677
1678
void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1679
MachineBasicBlock::iterator I,
1680
const DebugLoc &DL, MCRegister DestReg,
1681
MCRegister SrcReg, bool KillSrc) const {
1682
// We can end up with self copies and similar things as a result of VSX copy
1683
// legalization. Promote them here.
1684
const TargetRegisterInfo *TRI = &getRegisterInfo();
1685
if (PPC::F8RCRegClass.contains(DestReg) &&
1686
PPC::VSRCRegClass.contains(SrcReg)) {
1687
MCRegister SuperReg =
1688
TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1689
1690
if (VSXSelfCopyCrash && SrcReg == SuperReg)
1691
llvm_unreachable("nop VSX copy");
1692
1693
DestReg = SuperReg;
1694
} else if (PPC::F8RCRegClass.contains(SrcReg) &&
1695
PPC::VSRCRegClass.contains(DestReg)) {
1696
MCRegister SuperReg =
1697
TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1698
1699
if (VSXSelfCopyCrash && DestReg == SuperReg)
1700
llvm_unreachable("nop VSX copy");
1701
1702
SrcReg = SuperReg;
1703
}
1704
1705
// Different class register copy
1706
if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1707
PPC::GPRCRegClass.contains(DestReg)) {
1708
MCRegister CRReg = getCRFromCRBit(SrcReg);
1709
BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1710
getKillRegState(KillSrc);
1711
// Rotate the CR bit in the CR fields to be the least significant bit and
1712
// then mask with 0x1 (MB = ME = 31).
1713
BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1714
.addReg(DestReg, RegState::Kill)
1715
.addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1716
.addImm(31)
1717
.addImm(31);
1718
return;
1719
} else if (PPC::CRRCRegClass.contains(SrcReg) &&
1720
(PPC::G8RCRegClass.contains(DestReg) ||
1721
PPC::GPRCRegClass.contains(DestReg))) {
1722
bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
1723
unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
1724
unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
1725
unsigned CRNum = TRI->getEncodingValue(SrcReg);
1726
BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
1727
getKillRegState(KillSrc);
1728
if (CRNum == 7)
1729
return;
1730
// Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1731
BuildMI(MBB, I, DL, get(ShCode), DestReg)
1732
.addReg(DestReg, RegState::Kill)
1733
.addImm(CRNum * 4 + 4)
1734
.addImm(28)
1735
.addImm(31);
1736
return;
1737
} else if (PPC::G8RCRegClass.contains(SrcReg) &&
1738
PPC::VSFRCRegClass.contains(DestReg)) {
1739
assert(Subtarget.hasDirectMove() &&
1740
"Subtarget doesn't support directmove, don't know how to copy.");
1741
BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1742
NumGPRtoVSRSpill++;
1743
getKillRegState(KillSrc);
1744
return;
1745
} else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1746
PPC::G8RCRegClass.contains(DestReg)) {
1747
assert(Subtarget.hasDirectMove() &&
1748
"Subtarget doesn't support directmove, don't know how to copy.");
1749
BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1750
getKillRegState(KillSrc);
1751
return;
1752
} else if (PPC::SPERCRegClass.contains(SrcReg) &&
1753
PPC::GPRCRegClass.contains(DestReg)) {
1754
BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1755
getKillRegState(KillSrc);
1756
return;
1757
} else if (PPC::GPRCRegClass.contains(SrcReg) &&
1758
PPC::SPERCRegClass.contains(DestReg)) {
1759
BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1760
getKillRegState(KillSrc);
1761
return;
1762
}
1763
1764
unsigned Opc;
1765
if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1766
Opc = PPC::OR;
1767
else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1768
Opc = PPC::OR8;
1769
else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1770
Opc = PPC::FMR;
1771
else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1772
Opc = PPC::MCRF;
1773
else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1774
Opc = PPC::VOR;
1775
else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1776
// There are two different ways this can be done:
1777
// 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1778
// issue in VSU pipeline 0.
1779
// 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1780
// can go to either pipeline.
1781
// We'll always use xxlor here, because in practically all cases where
1782
// copies are generated, they are close enough to some use that the
1783
// lower-latency form is preferable.
1784
Opc = PPC::XXLOR;
1785
else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1786
PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1787
Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1788
else if (Subtarget.pairedVectorMemops() &&
1789
PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
1790
if (SrcReg > PPC::VSRp15)
1791
SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
1792
else
1793
SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1794
if (DestReg > PPC::VSRp15)
1795
DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
1796
else
1797
DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
1798
BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
1799
addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1800
BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
1801
addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
1802
return;
1803
}
1804
else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1805
Opc = PPC::CROR;
1806
else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1807
Opc = PPC::EVOR;
1808
else if ((PPC::ACCRCRegClass.contains(DestReg) ||
1809
PPC::UACCRCRegClass.contains(DestReg)) &&
1810
(PPC::ACCRCRegClass.contains(SrcReg) ||
1811
PPC::UACCRCRegClass.contains(SrcReg))) {
1812
// If primed, de-prime the source register, copy the individual registers
1813
// and prime the destination if needed. The vector subregisters are
1814
// vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
1815
// source is primed, we need to re-prime it after the copy as well.
1816
PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
1817
bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
1818
bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1819
MCRegister VSLSrcReg =
1820
PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1821
MCRegister VSLDestReg =
1822
PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1823
if (SrcPrimed)
1824
BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1825
for (unsigned Idx = 0; Idx < 4; Idx++)
1826
BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
1827
.addReg(VSLSrcReg + Idx)
1828
.addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
1829
if (DestPrimed)
1830
BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
1831
if (SrcPrimed && !KillSrc)
1832
BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1833
return;
1834
} else if (PPC::G8pRCRegClass.contains(DestReg) &&
1835
PPC::G8pRCRegClass.contains(SrcReg)) {
1836
// TODO: Handle G8RC to G8pRC (and vice versa) copy.
1837
unsigned DestRegIdx = DestReg - PPC::G8p0;
1838
MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx;
1839
MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1;
1840
unsigned SrcRegIdx = SrcReg - PPC::G8p0;
1841
MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx;
1842
MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1;
1843
BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0)
1844
.addReg(SrcRegSub0)
1845
.addReg(SrcRegSub0, getKillRegState(KillSrc));
1846
BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1)
1847
.addReg(SrcRegSub1)
1848
.addReg(SrcRegSub1, getKillRegState(KillSrc));
1849
return;
1850
} else
1851
llvm_unreachable("Impossible reg-to-reg copy");
1852
1853
const MCInstrDesc &MCID = get(Opc);
1854
if (MCID.getNumOperands() == 3)
1855
BuildMI(MBB, I, DL, MCID, DestReg)
1856
.addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1857
else
1858
BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1859
}
1860
1861
unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
1862
int OpcodeIndex = 0;
1863
1864
if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1865
PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1866
OpcodeIndex = SOK_Int4Spill;
1867
} else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1868
PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1869
OpcodeIndex = SOK_Int8Spill;
1870
} else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1871
OpcodeIndex = SOK_Float8Spill;
1872
} else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1873
OpcodeIndex = SOK_Float4Spill;
1874
} else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1875
OpcodeIndex = SOK_SPESpill;
1876
} else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1877
OpcodeIndex = SOK_CRSpill;
1878
} else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1879
OpcodeIndex = SOK_CRBitSpill;
1880
} else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1881
OpcodeIndex = SOK_VRVectorSpill;
1882
} else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1883
OpcodeIndex = SOK_VSXVectorSpill;
1884
} else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1885
OpcodeIndex = SOK_VectorFloat8Spill;
1886
} else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1887
OpcodeIndex = SOK_VectorFloat4Spill;
1888
} else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1889
OpcodeIndex = SOK_SpillToVSR;
1890
} else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
1891
assert(Subtarget.pairedVectorMemops() &&
1892
"Register unexpected when paired memops are disabled.");
1893
OpcodeIndex = SOK_AccumulatorSpill;
1894
} else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
1895
assert(Subtarget.pairedVectorMemops() &&
1896
"Register unexpected when paired memops are disabled.");
1897
OpcodeIndex = SOK_UAccumulatorSpill;
1898
} else if (PPC::WACCRCRegClass.hasSubClassEq(RC)) {
1899
assert(Subtarget.pairedVectorMemops() &&
1900
"Register unexpected when paired memops are disabled.");
1901
OpcodeIndex = SOK_WAccumulatorSpill;
1902
} else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
1903
assert(Subtarget.pairedVectorMemops() &&
1904
"Register unexpected when paired memops are disabled.");
1905
OpcodeIndex = SOK_PairedVecSpill;
1906
} else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) {
1907
OpcodeIndex = SOK_PairedG8Spill;
1908
} else {
1909
llvm_unreachable("Unknown regclass!");
1910
}
1911
return OpcodeIndex;
1912
}
1913
1914
unsigned
1915
PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1916
ArrayRef<unsigned> OpcodesForSpill = getStoreOpcodesForSpillArray();
1917
return OpcodesForSpill[getSpillIndex(RC)];
1918
}
1919
1920
unsigned
1921
PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1922
ArrayRef<unsigned> OpcodesForSpill = getLoadOpcodesForSpillArray();
1923
return OpcodesForSpill[getSpillIndex(RC)];
1924
}
1925
1926
void PPCInstrInfo::StoreRegToStackSlot(
1927
MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1928
const TargetRegisterClass *RC,
1929
SmallVectorImpl<MachineInstr *> &NewMIs) const {
1930
unsigned Opcode = getStoreOpcodeForSpill(RC);
1931
DebugLoc DL;
1932
1933
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1934
FuncInfo->setHasSpills();
1935
1936
NewMIs.push_back(addFrameReference(
1937
BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1938
FrameIdx));
1939
1940
if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1941
PPC::CRBITRCRegClass.hasSubClassEq(RC))
1942
FuncInfo->setSpillsCR();
1943
1944
if (isXFormMemOp(Opcode))
1945
FuncInfo->setHasNonRISpills();
1946
}
1947
1948
void PPCInstrInfo::storeRegToStackSlotNoUpd(
1949
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1950
bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1951
const TargetRegisterInfo *TRI) const {
1952
MachineFunction &MF = *MBB.getParent();
1953
SmallVector<MachineInstr *, 4> NewMIs;
1954
1955
StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1956
1957
for (MachineInstr *NewMI : NewMIs)
1958
MBB.insert(MI, NewMI);
1959
1960
const MachineFrameInfo &MFI = MF.getFrameInfo();
1961
MachineMemOperand *MMO = MF.getMachineMemOperand(
1962
MachinePointerInfo::getFixedStack(MF, FrameIdx),
1963
MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1964
MFI.getObjectAlign(FrameIdx));
1965
NewMIs.back()->addMemOperand(MF, MMO);
1966
}
1967
1968
void PPCInstrInfo::storeRegToStackSlot(
1969
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
1970
bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1971
const TargetRegisterInfo *TRI, Register VReg) const {
1972
// We need to avoid a situation in which the value from a VRRC register is
1973
// spilled using an Altivec instruction and reloaded into a VSRC register
1974
// using a VSX instruction. The issue with this is that the VSX
1975
// load/store instructions swap the doublewords in the vector and the Altivec
1976
// ones don't. The register classes on the spill/reload may be different if
1977
// the register is defined using an Altivec instruction and is then used by a
1978
// VSX instruction.
1979
RC = updatedRC(RC);
1980
storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1981
}
1982
1983
void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1984
unsigned DestReg, int FrameIdx,
1985
const TargetRegisterClass *RC,
1986
SmallVectorImpl<MachineInstr *> &NewMIs)
1987
const {
1988
unsigned Opcode = getLoadOpcodeForSpill(RC);
1989
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1990
FrameIdx));
1991
}
1992
1993
void PPCInstrInfo::loadRegFromStackSlotNoUpd(
1994
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
1995
int FrameIdx, const TargetRegisterClass *RC,
1996
const TargetRegisterInfo *TRI) const {
1997
MachineFunction &MF = *MBB.getParent();
1998
SmallVector<MachineInstr*, 4> NewMIs;
1999
DebugLoc DL;
2000
if (MI != MBB.end()) DL = MI->getDebugLoc();
2001
2002
LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
2003
2004
for (MachineInstr *NewMI : NewMIs)
2005
MBB.insert(MI, NewMI);
2006
2007
const MachineFrameInfo &MFI = MF.getFrameInfo();
2008
MachineMemOperand *MMO = MF.getMachineMemOperand(
2009
MachinePointerInfo::getFixedStack(MF, FrameIdx),
2010
MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
2011
MFI.getObjectAlign(FrameIdx));
2012
NewMIs.back()->addMemOperand(MF, MMO);
2013
}
2014
2015
void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2016
MachineBasicBlock::iterator MI,
2017
Register DestReg, int FrameIdx,
2018
const TargetRegisterClass *RC,
2019
const TargetRegisterInfo *TRI,
2020
Register VReg) const {
2021
// We need to avoid a situation in which the value from a VRRC register is
2022
// spilled using an Altivec instruction and reloaded into a VSRC register
2023
// using a VSX instruction. The issue with this is that the VSX
2024
// load/store instructions swap the doublewords in the vector and the Altivec
2025
// ones don't. The register classes on the spill/reload may be different if
2026
// the register is defined using an Altivec instruction and is then used by a
2027
// VSX instruction.
2028
RC = updatedRC(RC);
2029
2030
loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
2031
}
2032
2033
bool PPCInstrInfo::
2034
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2035
assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
2036
if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
2037
Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
2038
else
2039
// Leave the CR# the same, but invert the condition.
2040
Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
2041
return false;
2042
}
2043
2044
// For some instructions, it is legal to fold ZERO into the RA register field.
2045
// This function performs that fold by replacing the operand with PPC::ZERO,
2046
// it does not consider whether the load immediate zero is no longer in use.
2047
bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2048
Register Reg) const {
2049
// A zero immediate should always be loaded with a single li.
2050
unsigned DefOpc = DefMI.getOpcode();
2051
if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
2052
return false;
2053
if (!DefMI.getOperand(1).isImm())
2054
return false;
2055
if (DefMI.getOperand(1).getImm() != 0)
2056
return false;
2057
2058
// Note that we cannot here invert the arguments of an isel in order to fold
2059
// a ZERO into what is presented as the second argument. All we have here
2060
// is the condition bit, and that might come from a CR-logical bit operation.
2061
2062
const MCInstrDesc &UseMCID = UseMI.getDesc();
2063
2064
// Only fold into real machine instructions.
2065
if (UseMCID.isPseudo())
2066
return false;
2067
2068
// We need to find which of the User's operands is to be folded, that will be
2069
// the operand that matches the given register ID.
2070
unsigned UseIdx;
2071
for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
2072
if (UseMI.getOperand(UseIdx).isReg() &&
2073
UseMI.getOperand(UseIdx).getReg() == Reg)
2074
break;
2075
2076
assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
2077
assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
2078
2079
const MCOperandInfo *UseInfo = &UseMCID.operands()[UseIdx];
2080
2081
// We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
2082
// register (which might also be specified as a pointer class kind).
2083
if (UseInfo->isLookupPtrRegClass()) {
2084
if (UseInfo->RegClass /* Kind */ != 1)
2085
return false;
2086
} else {
2087
if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
2088
UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
2089
return false;
2090
}
2091
2092
// Make sure this is not tied to an output register (or otherwise
2093
// constrained). This is true for ST?UX registers, for example, which
2094
// are tied to their output registers.
2095
if (UseInfo->Constraints != 0)
2096
return false;
2097
2098
MCRegister ZeroReg;
2099
if (UseInfo->isLookupPtrRegClass()) {
2100
bool isPPC64 = Subtarget.isPPC64();
2101
ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
2102
} else {
2103
ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
2104
PPC::ZERO8 : PPC::ZERO;
2105
}
2106
2107
LLVM_DEBUG(dbgs() << "Folded immediate zero for: ");
2108
LLVM_DEBUG(UseMI.dump());
2109
UseMI.getOperand(UseIdx).setReg(ZeroReg);
2110
LLVM_DEBUG(dbgs() << "Into: ");
2111
LLVM_DEBUG(UseMI.dump());
2112
return true;
2113
}
2114
2115
// Folds zero into instructions which have a load immediate zero as an operand
2116
// but also recognize zero as immediate zero. If the definition of the load
2117
// has no more users it is deleted.
2118
bool PPCInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2119
Register Reg, MachineRegisterInfo *MRI) const {
2120
bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
2121
if (MRI->use_nodbg_empty(Reg))
2122
DefMI.eraseFromParent();
2123
return Changed;
2124
}
2125
2126
static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
2127
for (MachineInstr &MI : MBB)
2128
if (MI.definesRegister(PPC::CTR, /*TRI=*/nullptr) ||
2129
MI.definesRegister(PPC::CTR8, /*TRI=*/nullptr))
2130
return true;
2131
return false;
2132
}
2133
2134
// We should make sure that, if we're going to predicate both sides of a
2135
// condition (a diamond), that both sides don't define the counter register. We
2136
// can predicate counter-decrement-based branches, but while that predicates
2137
// the branching, it does not predicate the counter decrement. If we tried to
2138
// merge the triangle into one predicated block, we'd decrement the counter
2139
// twice.
2140
bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
2141
unsigned NumT, unsigned ExtraT,
2142
MachineBasicBlock &FMBB,
2143
unsigned NumF, unsigned ExtraF,
2144
BranchProbability Probability) const {
2145
return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
2146
}
2147
2148
2149
bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
2150
// The predicated branches are identified by their type, not really by the
2151
// explicit presence of a predicate. Furthermore, some of them can be
2152
// predicated more than once. Because if conversion won't try to predicate
2153
// any instruction which already claims to be predicated (by returning true
2154
// here), always return false. In doing so, we let isPredicable() be the
2155
// final word on whether not the instruction can be (further) predicated.
2156
2157
return false;
2158
}
2159
2160
bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2161
const MachineBasicBlock *MBB,
2162
const MachineFunction &MF) const {
2163
switch (MI.getOpcode()) {
2164
default:
2165
break;
2166
// Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
2167
// across them, since some FP operations may change content of FPSCR.
2168
// TODO: Model FPSCR in PPC instruction definitions and remove the workaround
2169
case PPC::MFFS:
2170
case PPC::MTFSF:
2171
case PPC::FENCE:
2172
return true;
2173
}
2174
return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
2175
}
2176
2177
bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
2178
ArrayRef<MachineOperand> Pred) const {
2179
unsigned OpC = MI.getOpcode();
2180
if (OpC == PPC::BLR || OpC == PPC::BLR8) {
2181
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2182
bool isPPC64 = Subtarget.isPPC64();
2183
MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
2184
: (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
2185
// Need add Def and Use for CTR implicit operand.
2186
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2187
.addReg(Pred[1].getReg(), RegState::Implicit)
2188
.addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2189
} else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2190
MI.setDesc(get(PPC::BCLR));
2191
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2192
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2193
MI.setDesc(get(PPC::BCLRn));
2194
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2195
} else {
2196
MI.setDesc(get(PPC::BCCLR));
2197
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2198
.addImm(Pred[0].getImm())
2199
.add(Pred[1]);
2200
}
2201
2202
return true;
2203
} else if (OpC == PPC::B) {
2204
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2205
bool isPPC64 = Subtarget.isPPC64();
2206
MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2207
: (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
2208
// Need add Def and Use for CTR implicit operand.
2209
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2210
.addReg(Pred[1].getReg(), RegState::Implicit)
2211
.addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2212
} else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2213
MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2214
MI.removeOperand(0);
2215
2216
MI.setDesc(get(PPC::BC));
2217
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2218
.add(Pred[1])
2219
.addMBB(MBB);
2220
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2221
MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2222
MI.removeOperand(0);
2223
2224
MI.setDesc(get(PPC::BCn));
2225
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2226
.add(Pred[1])
2227
.addMBB(MBB);
2228
} else {
2229
MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2230
MI.removeOperand(0);
2231
2232
MI.setDesc(get(PPC::BCC));
2233
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2234
.addImm(Pred[0].getImm())
2235
.add(Pred[1])
2236
.addMBB(MBB);
2237
}
2238
2239
return true;
2240
} else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
2241
OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM ||
2242
OpC == PPC::BCTRL8_RM) {
2243
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
2244
llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
2245
2246
bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 ||
2247
OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM;
2248
bool isPPC64 = Subtarget.isPPC64();
2249
2250
if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2251
MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
2252
: (setLR ? PPC::BCCTRL : PPC::BCCTR)));
2253
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2254
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2255
MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
2256
: (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
2257
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2258
} else {
2259
MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
2260
: (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
2261
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2262
.addImm(Pred[0].getImm())
2263
.add(Pred[1]);
2264
}
2265
2266
// Need add Def and Use for LR implicit operand.
2267
if (setLR)
2268
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2269
.addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
2270
.addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
2271
if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM)
2272
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2273
.addReg(PPC::RM, RegState::ImplicitDefine);
2274
2275
return true;
2276
}
2277
2278
return false;
2279
}
2280
2281
bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
2282
ArrayRef<MachineOperand> Pred2) const {
2283
assert(Pred1.size() == 2 && "Invalid PPC first predicate");
2284
assert(Pred2.size() == 2 && "Invalid PPC second predicate");
2285
2286
if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
2287
return false;
2288
if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
2289
return false;
2290
2291
// P1 can only subsume P2 if they test the same condition register.
2292
if (Pred1[1].getReg() != Pred2[1].getReg())
2293
return false;
2294
2295
PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
2296
PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
2297
2298
if (P1 == P2)
2299
return true;
2300
2301
// Does P1 subsume P2, e.g. GE subsumes GT.
2302
if (P1 == PPC::PRED_LE &&
2303
(P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
2304
return true;
2305
if (P1 == PPC::PRED_GE &&
2306
(P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
2307
return true;
2308
2309
return false;
2310
}
2311
2312
bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
2313
std::vector<MachineOperand> &Pred,
2314
bool SkipDead) const {
2315
// Note: At the present time, the contents of Pred from this function is
2316
// unused by IfConversion. This implementation follows ARM by pushing the
2317
// CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
2318
// predicate, instructions defining CTR or CTR8 are also included as
2319
// predicate-defining instructions.
2320
2321
const TargetRegisterClass *RCs[] =
2322
{ &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
2323
&PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
2324
2325
bool Found = false;
2326
for (const MachineOperand &MO : MI.operands()) {
2327
for (unsigned c = 0; c < std::size(RCs) && !Found; ++c) {
2328
const TargetRegisterClass *RC = RCs[c];
2329
if (MO.isReg()) {
2330
if (MO.isDef() && RC->contains(MO.getReg())) {
2331
Pred.push_back(MO);
2332
Found = true;
2333
}
2334
} else if (MO.isRegMask()) {
2335
for (MCPhysReg R : *RC)
2336
if (MO.clobbersPhysReg(R)) {
2337
Pred.push_back(MO);
2338
Found = true;
2339
}
2340
}
2341
}
2342
}
2343
2344
return Found;
2345
}
2346
2347
bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2348
Register &SrcReg2, int64_t &Mask,
2349
int64_t &Value) const {
2350
unsigned Opc = MI.getOpcode();
2351
2352
switch (Opc) {
2353
default: return false;
2354
case PPC::CMPWI:
2355
case PPC::CMPLWI:
2356
case PPC::CMPDI:
2357
case PPC::CMPLDI:
2358
SrcReg = MI.getOperand(1).getReg();
2359
SrcReg2 = 0;
2360
Value = MI.getOperand(2).getImm();
2361
Mask = 0xFFFF;
2362
return true;
2363
case PPC::CMPW:
2364
case PPC::CMPLW:
2365
case PPC::CMPD:
2366
case PPC::CMPLD:
2367
case PPC::FCMPUS:
2368
case PPC::FCMPUD:
2369
SrcReg = MI.getOperand(1).getReg();
2370
SrcReg2 = MI.getOperand(2).getReg();
2371
Value = 0;
2372
Mask = 0;
2373
return true;
2374
}
2375
}
2376
2377
bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
2378
Register SrcReg2, int64_t Mask,
2379
int64_t Value,
2380
const MachineRegisterInfo *MRI) const {
2381
if (DisableCmpOpt)
2382
return false;
2383
2384
int OpC = CmpInstr.getOpcode();
2385
Register CRReg = CmpInstr.getOperand(0).getReg();
2386
2387
// FP record forms set CR1 based on the exception status bits, not a
2388
// comparison with zero.
2389
if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
2390
return false;
2391
2392
const TargetRegisterInfo *TRI = &getRegisterInfo();
2393
// The record forms set the condition register based on a signed comparison
2394
// with zero (so says the ISA manual). This is not as straightforward as it
2395
// seems, however, because this is always a 64-bit comparison on PPC64, even
2396
// for instructions that are 32-bit in nature (like slw for example).
2397
// So, on PPC32, for unsigned comparisons, we can use the record forms only
2398
// for equality checks (as those don't depend on the sign). On PPC64,
2399
// we are restricted to equality for unsigned 64-bit comparisons and for
2400
// signed 32-bit comparisons the applicability is more restricted.
2401
bool isPPC64 = Subtarget.isPPC64();
2402
bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
2403
bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
2404
bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
2405
2406
// Look through copies unless that gets us to a physical register.
2407
Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
2408
if (ActualSrc.isVirtual())
2409
SrcReg = ActualSrc;
2410
2411
// Get the unique definition of SrcReg.
2412
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2413
if (!MI) return false;
2414
2415
bool equalityOnly = false;
2416
bool noSub = false;
2417
if (isPPC64) {
2418
if (is32BitSignedCompare) {
2419
// We can perform this optimization only if SrcReg is sign-extending.
2420
if (isSignExtended(SrcReg, MRI))
2421
noSub = true;
2422
else
2423
return false;
2424
} else if (is32BitUnsignedCompare) {
2425
// We can perform this optimization, equality only, if SrcReg is
2426
// zero-extending.
2427
if (isZeroExtended(SrcReg, MRI)) {
2428
noSub = true;
2429
equalityOnly = true;
2430
} else
2431
return false;
2432
} else
2433
equalityOnly = is64BitUnsignedCompare;
2434
} else
2435
equalityOnly = is32BitUnsignedCompare;
2436
2437
if (equalityOnly) {
2438
// We need to check the uses of the condition register in order to reject
2439
// non-equality comparisons.
2440
for (MachineRegisterInfo::use_instr_iterator
2441
I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2442
I != IE; ++I) {
2443
MachineInstr *UseMI = &*I;
2444
if (UseMI->getOpcode() == PPC::BCC) {
2445
PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2446
unsigned PredCond = PPC::getPredicateCondition(Pred);
2447
// We ignore hint bits when checking for non-equality comparisons.
2448
if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
2449
return false;
2450
} else if (UseMI->getOpcode() == PPC::ISEL ||
2451
UseMI->getOpcode() == PPC::ISEL8) {
2452
unsigned SubIdx = UseMI->getOperand(3).getSubReg();
2453
if (SubIdx != PPC::sub_eq)
2454
return false;
2455
} else
2456
return false;
2457
}
2458
}
2459
2460
MachineBasicBlock::iterator I = CmpInstr;
2461
2462
// Scan forward to find the first use of the compare.
2463
for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
2464
++I) {
2465
bool FoundUse = false;
2466
for (MachineRegisterInfo::use_instr_iterator
2467
J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
2468
J != JE; ++J)
2469
if (&*J == &*I) {
2470
FoundUse = true;
2471
break;
2472
}
2473
2474
if (FoundUse)
2475
break;
2476
}
2477
2478
SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
2479
SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
2480
2481
// There are two possible candidates which can be changed to set CR[01].
2482
// One is MI, the other is a SUB instruction.
2483
// For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2484
MachineInstr *Sub = nullptr;
2485
if (SrcReg2 != 0)
2486
// MI is not a candidate for CMPrr.
2487
MI = nullptr;
2488
// FIXME: Conservatively refuse to convert an instruction which isn't in the
2489
// same BB as the comparison. This is to allow the check below to avoid calls
2490
// (and other explicit clobbers); instead we should really check for these
2491
// more explicitly (in at least a few predecessors).
2492
else if (MI->getParent() != CmpInstr.getParent())
2493
return false;
2494
else if (Value != 0) {
2495
// The record-form instructions set CR bit based on signed comparison
2496
// against 0. We try to convert a compare against 1 or -1 into a compare
2497
// against 0 to exploit record-form instructions. For example, we change
2498
// the condition "greater than -1" into "greater than or equal to 0"
2499
// and "less than 1" into "less than or equal to 0".
2500
2501
// Since we optimize comparison based on a specific branch condition,
2502
// we don't optimize if condition code is used by more than once.
2503
if (equalityOnly || !MRI->hasOneUse(CRReg))
2504
return false;
2505
2506
MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
2507
if (UseMI->getOpcode() != PPC::BCC)
2508
return false;
2509
2510
PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2511
unsigned PredCond = PPC::getPredicateCondition(Pred);
2512
unsigned PredHint = PPC::getPredicateHint(Pred);
2513
int16_t Immed = (int16_t)Value;
2514
2515
// When modifying the condition in the predicate, we propagate hint bits
2516
// from the original predicate to the new one.
2517
if (Immed == -1 && PredCond == PPC::PRED_GT)
2518
// We convert "greater than -1" into "greater than or equal to 0",
2519
// since we are assuming signed comparison by !equalityOnly
2520
Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
2521
else if (Immed == -1 && PredCond == PPC::PRED_LE)
2522
// We convert "less than or equal to -1" into "less than 0".
2523
Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2524
else if (Immed == 1 && PredCond == PPC::PRED_LT)
2525
// We convert "less than 1" into "less than or equal to 0".
2526
Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2527
else if (Immed == 1 && PredCond == PPC::PRED_GE)
2528
// We convert "greater than or equal to 1" into "greater than 0".
2529
Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2530
else
2531
return false;
2532
2533
// Convert the comparison and its user to a compare against zero with the
2534
// appropriate predicate on the branch. Zero comparison might provide
2535
// optimization opportunities post-RA (see optimization in
2536
// PPCPreEmitPeephole.cpp).
2537
UseMI->getOperand(0).setImm(Pred);
2538
CmpInstr.getOperand(2).setImm(0);
2539
}
2540
2541
// Search for Sub.
2542
--I;
2543
2544
// Get ready to iterate backward from CmpInstr.
2545
MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2546
2547
for (; I != E && !noSub; --I) {
2548
const MachineInstr &Instr = *I;
2549
unsigned IOpC = Instr.getOpcode();
2550
2551
if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2552
Instr.readsRegister(PPC::CR0, TRI)))
2553
// This instruction modifies or uses the record condition register after
2554
// the one we want to change. While we could do this transformation, it
2555
// would likely not be profitable. This transformation removes one
2556
// instruction, and so even forcing RA to generate one move probably
2557
// makes it unprofitable.
2558
return false;
2559
2560
// Check whether CmpInstr can be made redundant by the current instruction.
2561
if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2562
OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2563
(IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2564
((Instr.getOperand(1).getReg() == SrcReg &&
2565
Instr.getOperand(2).getReg() == SrcReg2) ||
2566
(Instr.getOperand(1).getReg() == SrcReg2 &&
2567
Instr.getOperand(2).getReg() == SrcReg))) {
2568
Sub = &*I;
2569
break;
2570
}
2571
2572
if (I == B)
2573
// The 'and' is below the comparison instruction.
2574
return false;
2575
}
2576
2577
// Return false if no candidates exist.
2578
if (!MI && !Sub)
2579
return false;
2580
2581
// The single candidate is called MI.
2582
if (!MI) MI = Sub;
2583
2584
int NewOpC = -1;
2585
int MIOpC = MI->getOpcode();
2586
if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2587
MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2588
NewOpC = MIOpC;
2589
else {
2590
NewOpC = PPC::getRecordFormOpcode(MIOpC);
2591
if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2592
NewOpC = MIOpC;
2593
}
2594
2595
// FIXME: On the non-embedded POWER architectures, only some of the record
2596
// forms are fast, and we should use only the fast ones.
2597
2598
// The defining instruction has a record form (or is already a record
2599
// form). It is possible, however, that we'll need to reverse the condition
2600
// code of the users.
2601
if (NewOpC == -1)
2602
return false;
2603
2604
// This transformation should not be performed if `nsw` is missing and is not
2605
// `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
2606
// CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
2607
// CRReg can reflect if compared values are equal, this optz is still valid.
2608
if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
2609
Sub && !Sub->getFlag(MachineInstr::NoSWrap))
2610
return false;
2611
2612
// If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2613
// needs to be updated to be based on SUB. Push the condition code
2614
// operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
2615
// condition code of these operands will be modified.
2616
// Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2617
// comparison against 0, which may modify predicate.
2618
bool ShouldSwap = false;
2619
if (Sub && Value == 0) {
2620
ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2621
Sub->getOperand(2).getReg() == SrcReg;
2622
2623
// The operands to subf are the opposite of sub, so only in the fixed-point
2624
// case, invert the order.
2625
ShouldSwap = !ShouldSwap;
2626
}
2627
2628
if (ShouldSwap)
2629
for (MachineRegisterInfo::use_instr_iterator
2630
I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2631
I != IE; ++I) {
2632
MachineInstr *UseMI = &*I;
2633
if (UseMI->getOpcode() == PPC::BCC) {
2634
PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2635
unsigned PredCond = PPC::getPredicateCondition(Pred);
2636
assert((!equalityOnly ||
2637
PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2638
"Invalid predicate for equality-only optimization");
2639
(void)PredCond; // To suppress warning in release build.
2640
PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2641
PPC::getSwappedPredicate(Pred)));
2642
} else if (UseMI->getOpcode() == PPC::ISEL ||
2643
UseMI->getOpcode() == PPC::ISEL8) {
2644
unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2645
assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2646
"Invalid CR bit for equality-only optimization");
2647
2648
if (NewSubReg == PPC::sub_lt)
2649
NewSubReg = PPC::sub_gt;
2650
else if (NewSubReg == PPC::sub_gt)
2651
NewSubReg = PPC::sub_lt;
2652
2653
SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2654
NewSubReg));
2655
} else // We need to abort on a user we don't understand.
2656
return false;
2657
}
2658
assert(!(Value != 0 && ShouldSwap) &&
2659
"Non-zero immediate support and ShouldSwap"
2660
"may conflict in updating predicate");
2661
2662
// Create a new virtual register to hold the value of the CR set by the
2663
// record-form instruction. If the instruction was not previously in
2664
// record form, then set the kill flag on the CR.
2665
CmpInstr.eraseFromParent();
2666
2667
MachineBasicBlock::iterator MII = MI;
2668
BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2669
get(TargetOpcode::COPY), CRReg)
2670
.addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2671
2672
// Even if CR0 register were dead before, it is alive now since the
2673
// instruction we just built uses it.
2674
MI->clearRegisterDeads(PPC::CR0);
2675
2676
if (MIOpC != NewOpC) {
2677
// We need to be careful here: we're replacing one instruction with
2678
// another, and we need to make sure that we get all of the right
2679
// implicit uses and defs. On the other hand, the caller may be holding
2680
// an iterator to this instruction, and so we can't delete it (this is
2681
// specifically the case if this is the instruction directly after the
2682
// compare).
2683
2684
// Rotates are expensive instructions. If we're emitting a record-form
2685
// rotate that can just be an andi/andis, we should just emit that.
2686
if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2687
Register GPRRes = MI->getOperand(0).getReg();
2688
int64_t SH = MI->getOperand(2).getImm();
2689
int64_t MB = MI->getOperand(3).getImm();
2690
int64_t ME = MI->getOperand(4).getImm();
2691
// We can only do this if both the start and end of the mask are in the
2692
// same halfword.
2693
bool MBInLoHWord = MB >= 16;
2694
bool MEInLoHWord = ME >= 16;
2695
uint64_t Mask = ~0LLU;
2696
2697
if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2698
Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2699
// The mask value needs to shift right 16 if we're emitting andis.
2700
Mask >>= MBInLoHWord ? 0 : 16;
2701
NewOpC = MIOpC == PPC::RLWINM
2702
? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2703
: (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2704
} else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2705
(ME - MB + 1 == SH) && (MB >= 16)) {
2706
// If we are rotating by the exact number of bits as are in the mask
2707
// and the mask is in the least significant bits of the register,
2708
// that's just an andis. (as long as the GPR result has no uses).
2709
Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2710
Mask >>= 16;
2711
NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2712
}
2713
// If we've set the mask, we can transform.
2714
if (Mask != ~0LLU) {
2715
MI->removeOperand(4);
2716
MI->removeOperand(3);
2717
MI->getOperand(2).setImm(Mask);
2718
NumRcRotatesConvertedToRcAnd++;
2719
}
2720
} else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2721
int64_t MB = MI->getOperand(3).getImm();
2722
if (MB >= 48) {
2723
uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2724
NewOpC = PPC::ANDI8_rec;
2725
MI->removeOperand(3);
2726
MI->getOperand(2).setImm(Mask);
2727
NumRcRotatesConvertedToRcAnd++;
2728
}
2729
}
2730
2731
const MCInstrDesc &NewDesc = get(NewOpC);
2732
MI->setDesc(NewDesc);
2733
2734
for (MCPhysReg ImpDef : NewDesc.implicit_defs()) {
2735
if (!MI->definesRegister(ImpDef, /*TRI=*/nullptr)) {
2736
MI->addOperand(*MI->getParent()->getParent(),
2737
MachineOperand::CreateReg(ImpDef, true, true));
2738
}
2739
}
2740
for (MCPhysReg ImpUse : NewDesc.implicit_uses()) {
2741
if (!MI->readsRegister(ImpUse, /*TRI=*/nullptr)) {
2742
MI->addOperand(*MI->getParent()->getParent(),
2743
MachineOperand::CreateReg(ImpUse, false, true));
2744
}
2745
}
2746
}
2747
assert(MI->definesRegister(PPC::CR0, /*TRI=*/nullptr) &&
2748
"Record-form instruction does not define cr0?");
2749
2750
// Modify the condition code of operands in OperandsToUpdate.
2751
// Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2752
// be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2753
for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2754
PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2755
2756
for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2757
SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2758
2759
return true;
2760
}
2761
2762
bool PPCInstrInfo::optimizeCmpPostRA(MachineInstr &CmpMI) const {
2763
MachineRegisterInfo *MRI = &CmpMI.getParent()->getParent()->getRegInfo();
2764
if (MRI->isSSA())
2765
return false;
2766
2767
Register SrcReg, SrcReg2;
2768
int64_t CmpMask, CmpValue;
2769
if (!analyzeCompare(CmpMI, SrcReg, SrcReg2, CmpMask, CmpValue))
2770
return false;
2771
2772
// Try to optimize the comparison against 0.
2773
if (CmpValue || !CmpMask || SrcReg2)
2774
return false;
2775
2776
// The record forms set the condition register based on a signed comparison
2777
// with zero (see comments in optimizeCompareInstr). Since we can't do the
2778
// equality checks in post-RA, we are more restricted on a unsigned
2779
// comparison.
2780
unsigned Opc = CmpMI.getOpcode();
2781
if (Opc == PPC::CMPLWI || Opc == PPC::CMPLDI)
2782
return false;
2783
2784
// The record forms are always based on a 64-bit comparison on PPC64
2785
// (similary, a 32-bit comparison on PPC32), while the CMPWI is a 32-bit
2786
// comparison. Since we can't do the equality checks in post-RA, we bail out
2787
// the case.
2788
if (Subtarget.isPPC64() && Opc == PPC::CMPWI)
2789
return false;
2790
2791
// CmpMI can't be deleted if it has implicit def.
2792
if (CmpMI.hasImplicitDef())
2793
return false;
2794
2795
bool SrcRegHasOtherUse = false;
2796
MachineInstr *SrcMI = getDefMIPostRA(SrcReg, CmpMI, SrcRegHasOtherUse);
2797
if (!SrcMI || !SrcMI->definesRegister(SrcReg, /*TRI=*/nullptr))
2798
return false;
2799
2800
MachineOperand RegMO = CmpMI.getOperand(0);
2801
Register CRReg = RegMO.getReg();
2802
if (CRReg != PPC::CR0)
2803
return false;
2804
2805
// Make sure there is no def/use of CRReg between SrcMI and CmpMI.
2806
bool SeenUseOfCRReg = false;
2807
bool IsCRRegKilled = false;
2808
if (!isRegElgibleForForwarding(RegMO, *SrcMI, CmpMI, false, IsCRRegKilled,
2809
SeenUseOfCRReg) ||
2810
SrcMI->definesRegister(CRReg, /*TRI=*/nullptr) || SeenUseOfCRReg)
2811
return false;
2812
2813
int SrcMIOpc = SrcMI->getOpcode();
2814
int NewOpC = PPC::getRecordFormOpcode(SrcMIOpc);
2815
if (NewOpC == -1)
2816
return false;
2817
2818
LLVM_DEBUG(dbgs() << "Replace Instr: ");
2819
LLVM_DEBUG(SrcMI->dump());
2820
2821
const MCInstrDesc &NewDesc = get(NewOpC);
2822
SrcMI->setDesc(NewDesc);
2823
MachineInstrBuilder(*SrcMI->getParent()->getParent(), SrcMI)
2824
.addReg(CRReg, RegState::ImplicitDefine);
2825
SrcMI->clearRegisterDeads(CRReg);
2826
2827
assert(SrcMI->definesRegister(PPC::CR0, /*TRI=*/nullptr) &&
2828
"Record-form instruction does not define cr0?");
2829
2830
LLVM_DEBUG(dbgs() << "with: ");
2831
LLVM_DEBUG(SrcMI->dump());
2832
LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
2833
LLVM_DEBUG(CmpMI.dump());
2834
return true;
2835
}
2836
2837
bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2838
const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2839
int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
2840
const TargetRegisterInfo *TRI) const {
2841
const MachineOperand *BaseOp;
2842
OffsetIsScalable = false;
2843
if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2844
return false;
2845
BaseOps.push_back(BaseOp);
2846
return true;
2847
}
2848
2849
static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2850
const TargetRegisterInfo *TRI) {
2851
// If this is a volatile load/store, don't mess with it.
2852
if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2853
return false;
2854
2855
if (LdSt.getOperand(2).isFI())
2856
return true;
2857
2858
assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2859
// Can't cluster if the instruction modifies the base register
2860
// or it is update form. e.g. ld r2,3(r2)
2861
if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2862
return false;
2863
2864
return true;
2865
}
2866
2867
// Only cluster instruction pair that have the same opcode, and they are
2868
// clusterable according to PowerPC specification.
2869
static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2870
const PPCSubtarget &Subtarget) {
2871
switch (FirstOpc) {
2872
default:
2873
return false;
2874
case PPC::STD:
2875
case PPC::STFD:
2876
case PPC::STXSD:
2877
case PPC::DFSTOREf64:
2878
return FirstOpc == SecondOpc;
2879
// PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2880
// 32bit and 64bit instruction selection. They are clusterable pair though
2881
// they are different opcode.
2882
case PPC::STW:
2883
case PPC::STW8:
2884
return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2885
}
2886
}
2887
2888
bool PPCInstrInfo::shouldClusterMemOps(
2889
ArrayRef<const MachineOperand *> BaseOps1, int64_t OpOffset1,
2890
bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2,
2891
int64_t OpOffset2, bool OffsetIsScalable2, unsigned ClusterSize,
2892
unsigned NumBytes) const {
2893
2894
assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2895
const MachineOperand &BaseOp1 = *BaseOps1.front();
2896
const MachineOperand &BaseOp2 = *BaseOps2.front();
2897
assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2898
"Only base registers and frame indices are supported.");
2899
2900
// ClusterSize means the number of memory operations that will have been
2901
// clustered if this hook returns true.
2902
// Don't cluster memory op if there are already two ops clustered at least.
2903
if (ClusterSize > 2)
2904
return false;
2905
2906
// Cluster the load/store only when they have the same base
2907
// register or FI.
2908
if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2909
(BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2910
(BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2911
return false;
2912
2913
// Check if the load/store are clusterable according to the PowerPC
2914
// specification.
2915
const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2916
const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2917
unsigned FirstOpc = FirstLdSt.getOpcode();
2918
unsigned SecondOpc = SecondLdSt.getOpcode();
2919
const TargetRegisterInfo *TRI = &getRegisterInfo();
2920
// Cluster the load/store only when they have the same opcode, and they are
2921
// clusterable opcode according to PowerPC specification.
2922
if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2923
return false;
2924
2925
// Can't cluster load/store that have ordered or volatile memory reference.
2926
if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2927
!isLdStSafeToCluster(SecondLdSt, TRI))
2928
return false;
2929
2930
int64_t Offset1 = 0, Offset2 = 0;
2931
LocationSize Width1 = 0, Width2 = 0;
2932
const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2933
if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2934
!getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2935
Width1 != Width2)
2936
return false;
2937
2938
assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2939
"getMemOperandWithOffsetWidth return incorrect base op");
2940
// The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2941
assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2942
return Offset1 + (int64_t)Width1.getValue() == Offset2;
2943
}
2944
2945
/// GetInstSize - Return the number of bytes of code the specified
2946
/// instruction may be. This returns the maximum number of bytes.
2947
///
2948
unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2949
unsigned Opcode = MI.getOpcode();
2950
2951
if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2952
const MachineFunction *MF = MI.getParent()->getParent();
2953
const char *AsmStr = MI.getOperand(0).getSymbolName();
2954
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2955
} else if (Opcode == TargetOpcode::STACKMAP) {
2956
StackMapOpers Opers(&MI);
2957
return Opers.getNumPatchBytes();
2958
} else if (Opcode == TargetOpcode::PATCHPOINT) {
2959
PatchPointOpers Opers(&MI);
2960
return Opers.getNumPatchBytes();
2961
} else {
2962
return get(Opcode).getSize();
2963
}
2964
}
2965
2966
std::pair<unsigned, unsigned>
2967
PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2968
// PPC always uses a direct mask.
2969
return std::make_pair(TF, 0u);
2970
}
2971
2972
ArrayRef<std::pair<unsigned, const char *>>
2973
PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2974
using namespace PPCII;
2975
static const std::pair<unsigned, const char *> TargetFlags[] = {
2976
{MO_PLT, "ppc-plt"},
2977
{MO_PIC_FLAG, "ppc-pic"},
2978
{MO_PCREL_FLAG, "ppc-pcrel"},
2979
{MO_GOT_FLAG, "ppc-got"},
2980
{MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
2981
{MO_TLSGD_FLAG, "ppc-tlsgd"},
2982
{MO_TPREL_FLAG, "ppc-tprel"},
2983
{MO_TLSLDM_FLAG, "ppc-tlsldm"},
2984
{MO_TLSLD_FLAG, "ppc-tlsld"},
2985
{MO_TLSGDM_FLAG, "ppc-tlsgdm"},
2986
{MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
2987
{MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
2988
{MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"},
2989
{MO_LO, "ppc-lo"},
2990
{MO_HA, "ppc-ha"},
2991
{MO_TPREL_LO, "ppc-tprel-lo"},
2992
{MO_TPREL_HA, "ppc-tprel-ha"},
2993
{MO_DTPREL_LO, "ppc-dtprel-lo"},
2994
{MO_TLSLD_LO, "ppc-tlsld-lo"},
2995
{MO_TOC_LO, "ppc-toc-lo"},
2996
{MO_TLS, "ppc-tls"},
2997
{MO_PIC_HA_FLAG, "ppc-ha-pic"},
2998
{MO_PIC_LO_FLAG, "ppc-lo-pic"},
2999
{MO_TPREL_PCREL_FLAG, "ppc-tprel-pcrel"},
3000
{MO_TLS_PCREL_FLAG, "ppc-tls-pcrel"},
3001
{MO_GOT_PCREL_FLAG, "ppc-got-pcrel"},
3002
};
3003
return ArrayRef(TargetFlags);
3004
}
3005
3006
// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
3007
// The VSX versions have the advantage of a full 64-register target whereas
3008
// the FP ones have the advantage of lower latency and higher throughput. So
3009
// what we are after is using the faster instructions in low register pressure
3010
// situations and using the larger register file in high register pressure
3011
// situations.
3012
bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
3013
unsigned UpperOpcode, LowerOpcode;
3014
switch (MI.getOpcode()) {
3015
case PPC::DFLOADf32:
3016
UpperOpcode = PPC::LXSSP;
3017
LowerOpcode = PPC::LFS;
3018
break;
3019
case PPC::DFLOADf64:
3020
UpperOpcode = PPC::LXSD;
3021
LowerOpcode = PPC::LFD;
3022
break;
3023
case PPC::DFSTOREf32:
3024
UpperOpcode = PPC::STXSSP;
3025
LowerOpcode = PPC::STFS;
3026
break;
3027
case PPC::DFSTOREf64:
3028
UpperOpcode = PPC::STXSD;
3029
LowerOpcode = PPC::STFD;
3030
break;
3031
case PPC::XFLOADf32:
3032
UpperOpcode = PPC::LXSSPX;
3033
LowerOpcode = PPC::LFSX;
3034
break;
3035
case PPC::XFLOADf64:
3036
UpperOpcode = PPC::LXSDX;
3037
LowerOpcode = PPC::LFDX;
3038
break;
3039
case PPC::XFSTOREf32:
3040
UpperOpcode = PPC::STXSSPX;
3041
LowerOpcode = PPC::STFSX;
3042
break;
3043
case PPC::XFSTOREf64:
3044
UpperOpcode = PPC::STXSDX;
3045
LowerOpcode = PPC::STFDX;
3046
break;
3047
case PPC::LIWAX:
3048
UpperOpcode = PPC::LXSIWAX;
3049
LowerOpcode = PPC::LFIWAX;
3050
break;
3051
case PPC::LIWZX:
3052
UpperOpcode = PPC::LXSIWZX;
3053
LowerOpcode = PPC::LFIWZX;
3054
break;
3055
case PPC::STIWX:
3056
UpperOpcode = PPC::STXSIWX;
3057
LowerOpcode = PPC::STFIWX;
3058
break;
3059
default:
3060
llvm_unreachable("Unknown Operation!");
3061
}
3062
3063
Register TargetReg = MI.getOperand(0).getReg();
3064
unsigned Opcode;
3065
if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
3066
(TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
3067
Opcode = LowerOpcode;
3068
else
3069
Opcode = UpperOpcode;
3070
MI.setDesc(get(Opcode));
3071
return true;
3072
}
3073
3074
static bool isAnImmediateOperand(const MachineOperand &MO) {
3075
return MO.isCPI() || MO.isGlobal() || MO.isImm();
3076
}
3077
3078
bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
3079
auto &MBB = *MI.getParent();
3080
auto DL = MI.getDebugLoc();
3081
3082
switch (MI.getOpcode()) {
3083
case PPC::BUILD_UACC: {
3084
MCRegister ACC = MI.getOperand(0).getReg();
3085
MCRegister UACC = MI.getOperand(1).getReg();
3086
if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
3087
MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
3088
MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
3089
// FIXME: This can easily be improved to look up to the top of the MBB
3090
// to see if the inputs are XXLOR's. If they are and SrcReg is killed,
3091
// we can just re-target any such XXLOR's to DstVSR + offset.
3092
for (int VecNo = 0; VecNo < 4; VecNo++)
3093
BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
3094
.addReg(SrcVSR + VecNo)
3095
.addReg(SrcVSR + VecNo);
3096
}
3097
// BUILD_UACC is expanded to 4 copies of the underlying vsx registers.
3098
// So after building the 4 copies, we can replace the BUILD_UACC instruction
3099
// with a NOP.
3100
[[fallthrough]];
3101
}
3102
case PPC::KILL_PAIR: {
3103
MI.setDesc(get(PPC::UNENCODED_NOP));
3104
MI.removeOperand(1);
3105
MI.removeOperand(0);
3106
return true;
3107
}
3108
case TargetOpcode::LOAD_STACK_GUARD: {
3109
assert(Subtarget.isTargetLinux() &&
3110
"Only Linux target is expected to contain LOAD_STACK_GUARD");
3111
const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
3112
const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3113
MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
3114
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3115
.addImm(Offset)
3116
.addReg(Reg);
3117
return true;
3118
}
3119
case PPC::PPCLdFixedAddr: {
3120
assert(Subtarget.getTargetTriple().isOSGlibc() &&
3121
"Only targets with Glibc expected to contain PPCLdFixedAddr");
3122
int64_t Offset = 0;
3123
const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3124
MI.setDesc(get(PPC::LWZ));
3125
uint64_t FAType = MI.getOperand(1).getImm();
3126
#undef PPC_LNX_FEATURE
3127
#undef PPC_CPU
3128
#define PPC_LNX_DEFINE_OFFSETS
3129
#include "llvm/TargetParser/PPCTargetParser.def"
3130
bool IsLE = Subtarget.isLittleEndian();
3131
bool Is64 = Subtarget.isPPC64();
3132
if (FAType == PPC_FAWORD_HWCAP) {
3133
if (IsLE)
3134
Offset = Is64 ? PPC_HWCAP_OFFSET_LE64 : PPC_HWCAP_OFFSET_LE32;
3135
else
3136
Offset = Is64 ? PPC_HWCAP_OFFSET_BE64 : PPC_HWCAP_OFFSET_BE32;
3137
} else if (FAType == PPC_FAWORD_HWCAP2) {
3138
if (IsLE)
3139
Offset = Is64 ? PPC_HWCAP2_OFFSET_LE64 : PPC_HWCAP2_OFFSET_LE32;
3140
else
3141
Offset = Is64 ? PPC_HWCAP2_OFFSET_BE64 : PPC_HWCAP2_OFFSET_BE32;
3142
} else if (FAType == PPC_FAWORD_CPUID) {
3143
if (IsLE)
3144
Offset = Is64 ? PPC_CPUID_OFFSET_LE64 : PPC_CPUID_OFFSET_LE32;
3145
else
3146
Offset = Is64 ? PPC_CPUID_OFFSET_BE64 : PPC_CPUID_OFFSET_BE32;
3147
}
3148
assert(Offset && "Do not know the offset for this fixed addr load");
3149
MI.removeOperand(1);
3150
Subtarget.getTargetMachine().setGlibcHWCAPAccess();
3151
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3152
.addImm(Offset)
3153
.addReg(Reg);
3154
return true;
3155
#define PPC_TGT_PARSER_UNDEF_MACROS
3156
#include "llvm/TargetParser/PPCTargetParser.def"
3157
#undef PPC_TGT_PARSER_UNDEF_MACROS
3158
}
3159
case PPC::DFLOADf32:
3160
case PPC::DFLOADf64:
3161
case PPC::DFSTOREf32:
3162
case PPC::DFSTOREf64: {
3163
assert(Subtarget.hasP9Vector() &&
3164
"Invalid D-Form Pseudo-ops on Pre-P9 target.");
3165
assert(MI.getOperand(2).isReg() &&
3166
isAnImmediateOperand(MI.getOperand(1)) &&
3167
"D-form op must have register and immediate operands");
3168
return expandVSXMemPseudo(MI);
3169
}
3170
case PPC::XFLOADf32:
3171
case PPC::XFSTOREf32:
3172
case PPC::LIWAX:
3173
case PPC::LIWZX:
3174
case PPC::STIWX: {
3175
assert(Subtarget.hasP8Vector() &&
3176
"Invalid X-Form Pseudo-ops on Pre-P8 target.");
3177
assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3178
"X-form op must have register and register operands");
3179
return expandVSXMemPseudo(MI);
3180
}
3181
case PPC::XFLOADf64:
3182
case PPC::XFSTOREf64: {
3183
assert(Subtarget.hasVSX() &&
3184
"Invalid X-Form Pseudo-ops on target that has no VSX.");
3185
assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3186
"X-form op must have register and register operands");
3187
return expandVSXMemPseudo(MI);
3188
}
3189
case PPC::SPILLTOVSR_LD: {
3190
Register TargetReg = MI.getOperand(0).getReg();
3191
if (PPC::VSFRCRegClass.contains(TargetReg)) {
3192
MI.setDesc(get(PPC::DFLOADf64));
3193
return expandPostRAPseudo(MI);
3194
}
3195
else
3196
MI.setDesc(get(PPC::LD));
3197
return true;
3198
}
3199
case PPC::SPILLTOVSR_ST: {
3200
Register SrcReg = MI.getOperand(0).getReg();
3201
if (PPC::VSFRCRegClass.contains(SrcReg)) {
3202
NumStoreSPILLVSRRCAsVec++;
3203
MI.setDesc(get(PPC::DFSTOREf64));
3204
return expandPostRAPseudo(MI);
3205
} else {
3206
NumStoreSPILLVSRRCAsGpr++;
3207
MI.setDesc(get(PPC::STD));
3208
}
3209
return true;
3210
}
3211
case PPC::SPILLTOVSR_LDX: {
3212
Register TargetReg = MI.getOperand(0).getReg();
3213
if (PPC::VSFRCRegClass.contains(TargetReg))
3214
MI.setDesc(get(PPC::LXSDX));
3215
else
3216
MI.setDesc(get(PPC::LDX));
3217
return true;
3218
}
3219
case PPC::SPILLTOVSR_STX: {
3220
Register SrcReg = MI.getOperand(0).getReg();
3221
if (PPC::VSFRCRegClass.contains(SrcReg)) {
3222
NumStoreSPILLVSRRCAsVec++;
3223
MI.setDesc(get(PPC::STXSDX));
3224
} else {
3225
NumStoreSPILLVSRRCAsGpr++;
3226
MI.setDesc(get(PPC::STDX));
3227
}
3228
return true;
3229
}
3230
3231
// FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass.
3232
case PPC::CFENCE:
3233
case PPC::CFENCE8: {
3234
auto Val = MI.getOperand(0).getReg();
3235
unsigned CmpOp = Subtarget.isPPC64() ? PPC::CMPD : PPC::CMPW;
3236
BuildMI(MBB, MI, DL, get(CmpOp), PPC::CR7).addReg(Val).addReg(Val);
3237
BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
3238
.addImm(PPC::PRED_NE_MINUS)
3239
.addReg(PPC::CR7)
3240
.addImm(1);
3241
MI.setDesc(get(PPC::ISYNC));
3242
MI.removeOperand(0);
3243
return true;
3244
}
3245
}
3246
return false;
3247
}
3248
3249
// Essentially a compile-time implementation of a compare->isel sequence.
3250
// It takes two constants to compare, along with the true/false registers
3251
// and the comparison type (as a subreg to a CR field) and returns one
3252
// of the true/false registers, depending on the comparison results.
3253
static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
3254
unsigned TrueReg, unsigned FalseReg,
3255
unsigned CRSubReg) {
3256
// Signed comparisons. The immediates are assumed to be sign-extended.
3257
if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
3258
switch (CRSubReg) {
3259
default: llvm_unreachable("Unknown integer comparison type.");
3260
case PPC::sub_lt:
3261
return Imm1 < Imm2 ? TrueReg : FalseReg;
3262
case PPC::sub_gt:
3263
return Imm1 > Imm2 ? TrueReg : FalseReg;
3264
case PPC::sub_eq:
3265
return Imm1 == Imm2 ? TrueReg : FalseReg;
3266
}
3267
}
3268
// Unsigned comparisons.
3269
else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
3270
switch (CRSubReg) {
3271
default: llvm_unreachable("Unknown integer comparison type.");
3272
case PPC::sub_lt:
3273
return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
3274
case PPC::sub_gt:
3275
return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
3276
case PPC::sub_eq:
3277
return Imm1 == Imm2 ? TrueReg : FalseReg;
3278
}
3279
}
3280
return PPC::NoRegister;
3281
}
3282
3283
void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
3284
unsigned OpNo,
3285
int64_t Imm) const {
3286
assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
3287
// Replace the REG with the Immediate.
3288
Register InUseReg = MI.getOperand(OpNo).getReg();
3289
MI.getOperand(OpNo).ChangeToImmediate(Imm);
3290
3291
// We need to make sure that the MI didn't have any implicit use
3292
// of this REG any more. We don't call MI.implicit_operands().empty() to
3293
// return early, since MI's MCID might be changed in calling context, as a
3294
// result its number of explicit operands may be changed, thus the begin of
3295
// implicit operand is changed.
3296
const TargetRegisterInfo *TRI = &getRegisterInfo();
3297
int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, TRI, false);
3298
if (UseOpIdx >= 0) {
3299
MachineOperand &MO = MI.getOperand(UseOpIdx);
3300
if (MO.isImplicit())
3301
// The operands must always be in the following order:
3302
// - explicit reg defs,
3303
// - other explicit operands (reg uses, immediates, etc.),
3304
// - implicit reg defs
3305
// - implicit reg uses
3306
// Therefore, removing the implicit operand won't change the explicit
3307
// operands layout.
3308
MI.removeOperand(UseOpIdx);
3309
}
3310
}
3311
3312
// Replace an instruction with one that materializes a constant (and sets
3313
// CR0 if the original instruction was a record-form instruction).
3314
void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
3315
const LoadImmediateInfo &LII) const {
3316
// Remove existing operands.
3317
int OperandToKeep = LII.SetCR ? 1 : 0;
3318
for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
3319
MI.removeOperand(i);
3320
3321
// Replace the instruction.
3322
if (LII.SetCR) {
3323
MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3324
// Set the immediate.
3325
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3326
.addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
3327
return;
3328
}
3329
else
3330
MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
3331
3332
// Set the immediate.
3333
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3334
.addImm(LII.Imm);
3335
}
3336
3337
MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
3338
bool &SeenIntermediateUse) const {
3339
assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
3340
"Should be called after register allocation.");
3341
const TargetRegisterInfo *TRI = &getRegisterInfo();
3342
MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
3343
It++;
3344
SeenIntermediateUse = false;
3345
for (; It != E; ++It) {
3346
if (It->modifiesRegister(Reg, TRI))
3347
return &*It;
3348
if (It->readsRegister(Reg, TRI))
3349
SeenIntermediateUse = true;
3350
}
3351
return nullptr;
3352
}
3353
3354
void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB,
3355
MachineBasicBlock::iterator MBBI,
3356
const DebugLoc &DL, Register Reg,
3357
int64_t Imm) const {
3358
assert(!MBB.getParent()->getRegInfo().isSSA() &&
3359
"Register should be in non-SSA form after RA");
3360
bool isPPC64 = Subtarget.isPPC64();
3361
// FIXME: Materialization here is not optimal.
3362
// For some special bit patterns we can use less instructions.
3363
// See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp.
3364
if (isInt<16>(Imm)) {
3365
BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LI8 : PPC::LI), Reg).addImm(Imm);
3366
} else if (isInt<32>(Imm)) {
3367
BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LIS8 : PPC::LIS), Reg)
3368
.addImm(Imm >> 16);
3369
if (Imm & 0xFFFF)
3370
BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::ORI8 : PPC::ORI), Reg)
3371
.addReg(Reg, RegState::Kill)
3372
.addImm(Imm & 0xFFFF);
3373
} else {
3374
assert(isPPC64 && "Materializing 64-bit immediate to single register is "
3375
"only supported in PPC64");
3376
BuildMI(MBB, MBBI, DL, get(PPC::LIS8), Reg).addImm(Imm >> 48);
3377
if ((Imm >> 32) & 0xFFFF)
3378
BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg)
3379
.addReg(Reg, RegState::Kill)
3380
.addImm((Imm >> 32) & 0xFFFF);
3381
BuildMI(MBB, MBBI, DL, get(PPC::RLDICR), Reg)
3382
.addReg(Reg, RegState::Kill)
3383
.addImm(32)
3384
.addImm(31);
3385
BuildMI(MBB, MBBI, DL, get(PPC::ORIS8), Reg)
3386
.addReg(Reg, RegState::Kill)
3387
.addImm((Imm >> 16) & 0xFFFF);
3388
if (Imm & 0xFFFF)
3389
BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg)
3390
.addReg(Reg, RegState::Kill)
3391
.addImm(Imm & 0xFFFF);
3392
}
3393
}
3394
3395
MachineInstr *PPCInstrInfo::getForwardingDefMI(
3396
MachineInstr &MI,
3397
unsigned &OpNoForForwarding,
3398
bool &SeenIntermediateUse) const {
3399
OpNoForForwarding = ~0U;
3400
MachineInstr *DefMI = nullptr;
3401
MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3402
const TargetRegisterInfo *TRI = &getRegisterInfo();
3403
// If we're in SSA, get the defs through the MRI. Otherwise, only look
3404
// within the basic block to see if the register is defined using an
3405
// LI/LI8/ADDI/ADDI8.
3406
if (MRI->isSSA()) {
3407
for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3408
if (!MI.getOperand(i).isReg())
3409
continue;
3410
Register Reg = MI.getOperand(i).getReg();
3411
if (!Reg.isVirtual())
3412
continue;
3413
Register TrueReg = TRI->lookThruCopyLike(Reg, MRI);
3414
if (TrueReg.isVirtual()) {
3415
MachineInstr *DefMIForTrueReg = MRI->getVRegDef(TrueReg);
3416
if (DefMIForTrueReg->getOpcode() == PPC::LI ||
3417
DefMIForTrueReg->getOpcode() == PPC::LI8 ||
3418
DefMIForTrueReg->getOpcode() == PPC::ADDI ||
3419
DefMIForTrueReg->getOpcode() == PPC::ADDI8) {
3420
OpNoForForwarding = i;
3421
DefMI = DefMIForTrueReg;
3422
// The ADDI and LI operand maybe exist in one instruction at same
3423
// time. we prefer to fold LI operand as LI only has one Imm operand
3424
// and is more possible to be converted. So if current DefMI is
3425
// ADDI/ADDI8, we continue to find possible LI/LI8.
3426
if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
3427
break;
3428
}
3429
}
3430
}
3431
} else {
3432
// Looking back through the definition for each operand could be expensive,
3433
// so exit early if this isn't an instruction that either has an immediate
3434
// form or is already an immediate form that we can handle.
3435
ImmInstrInfo III;
3436
unsigned Opc = MI.getOpcode();
3437
bool ConvertibleImmForm =
3438
Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
3439
Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
3440
Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
3441
Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
3442
Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
3443
Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
3444
Opc == PPC::RLWINM8_rec;
3445
bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
3446
? PPC::isVFRegister(MI.getOperand(0).getReg())
3447
: false;
3448
if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
3449
return nullptr;
3450
3451
// Don't convert or %X, %Y, %Y since that's just a register move.
3452
if ((Opc == PPC::OR || Opc == PPC::OR8) &&
3453
MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
3454
return nullptr;
3455
for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3456
MachineOperand &MO = MI.getOperand(i);
3457
SeenIntermediateUse = false;
3458
if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
3459
Register Reg = MI.getOperand(i).getReg();
3460
// If we see another use of this reg between the def and the MI,
3461
// we want to flag it so the def isn't deleted.
3462
MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
3463
if (DefMI) {
3464
// Is this register defined by some form of add-immediate (including
3465
// load-immediate) within this basic block?
3466
switch (DefMI->getOpcode()) {
3467
default:
3468
break;
3469
case PPC::LI:
3470
case PPC::LI8:
3471
case PPC::ADDItocL8:
3472
case PPC::ADDI:
3473
case PPC::ADDI8:
3474
OpNoForForwarding = i;
3475
return DefMI;
3476
}
3477
}
3478
}
3479
}
3480
}
3481
return OpNoForForwarding == ~0U ? nullptr : DefMI;
3482
}
3483
3484
unsigned PPCInstrInfo::getSpillTarget() const {
3485
// With P10, we may need to spill paired vector registers or accumulator
3486
// registers. MMA implies paired vectors, so we can just check that.
3487
bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
3488
// P11 uses the P10 target.
3489
return Subtarget.isISAFuture() ? 3 : IsP10Variant ?
3490
2 : Subtarget.hasP9Vector() ?
3491
1 : 0;
3492
}
3493
3494
ArrayRef<unsigned> PPCInstrInfo::getStoreOpcodesForSpillArray() const {
3495
return {StoreSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill};
3496
}
3497
3498
ArrayRef<unsigned> PPCInstrInfo::getLoadOpcodesForSpillArray() const {
3499
return {LoadSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill};
3500
}
3501
3502
// This opt tries to convert the following imm form to an index form to save an
3503
// add for stack variables.
3504
// Return false if no such pattern found.
3505
//
3506
// ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3507
// ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
3508
// Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed)
3509
//
3510
// can be converted to:
3511
//
3512
// new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
3513
// Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed)
3514
//
3515
// In order to eliminate ADD instr, make sure that:
3516
// 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
3517
// new ADDI instr and ADDI can only take int16 Imm.
3518
// 2: ToBeChangedReg must be killed in ADD instr and there is no other use
3519
// between ADDI and ADD instr since its original def in ADDI will be changed
3520
// in new ADDI instr. And also there should be no new def for it between
3521
// ADD and Imm instr as ToBeChangedReg will be used in Index instr.
3522
// 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
3523
// between ADD and Imm instr since ADD instr will be eliminated.
3524
// 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
3525
// moved to Index instr.
3526
bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
3527
MachineFunction *MF = MI.getParent()->getParent();
3528
MachineRegisterInfo *MRI = &MF->getRegInfo();
3529
bool PostRA = !MRI->isSSA();
3530
// Do this opt after PEI which is after RA. The reason is stack slot expansion
3531
// in PEI may expose such opportunities since in PEI, stack slot offsets to
3532
// frame base(OffsetAddi) are determined.
3533
if (!PostRA)
3534
return false;
3535
unsigned ToBeDeletedReg = 0;
3536
int64_t OffsetImm = 0;
3537
unsigned XFormOpcode = 0;
3538
ImmInstrInfo III;
3539
3540
// Check if Imm instr meets requirement.
3541
if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
3542
III))
3543
return false;
3544
3545
bool OtherIntermediateUse = false;
3546
MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
3547
3548
// Exit if there is other use between ADD and Imm instr or no def found.
3549
if (OtherIntermediateUse || !ADDMI)
3550
return false;
3551
3552
// Check if ADD instr meets requirement.
3553
if (!isADDInstrEligibleForFolding(*ADDMI))
3554
return false;
3555
3556
unsigned ScaleRegIdx = 0;
3557
int64_t OffsetAddi = 0;
3558
MachineInstr *ADDIMI = nullptr;
3559
3560
// Check if there is a valid ToBeChangedReg in ADDMI.
3561
// 1: It must be killed.
3562
// 2: Its definition must be a valid ADDIMI.
3563
// 3: It must satify int16 offset requirement.
3564
if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
3565
ScaleRegIdx = 2;
3566
else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
3567
ScaleRegIdx = 1;
3568
else
3569
return false;
3570
3571
assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
3572
Register ToBeChangedReg = ADDIMI->getOperand(0).getReg();
3573
Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
3574
auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
3575
MachineBasicBlock::iterator End) {
3576
for (auto It = ++Start; It != End; It++)
3577
if (It->modifiesRegister(Reg, &getRegisterInfo()))
3578
return true;
3579
return false;
3580
};
3581
3582
// We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
3583
// treated as special zero when ScaleReg is R0/X0 register.
3584
if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
3585
(ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
3586
return false;
3587
3588
// Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
3589
// and Imm Instr.
3590
if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
3591
return false;
3592
3593
// Now start to do the transformation.
3594
LLVM_DEBUG(dbgs() << "Replace instruction: "
3595
<< "\n");
3596
LLVM_DEBUG(ADDIMI->dump());
3597
LLVM_DEBUG(ADDMI->dump());
3598
LLVM_DEBUG(MI.dump());
3599
LLVM_DEBUG(dbgs() << "with: "
3600
<< "\n");
3601
3602
// Update ADDI instr.
3603
ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
3604
3605
// Update Imm instr.
3606
MI.setDesc(get(XFormOpcode));
3607
MI.getOperand(III.ImmOpNo)
3608
.ChangeToRegister(ScaleReg, false, false,
3609
ADDMI->getOperand(ScaleRegIdx).isKill());
3610
3611
MI.getOperand(III.OpNoForForwarding)
3612
.ChangeToRegister(ToBeChangedReg, false, false, true);
3613
3614
// Eliminate ADD instr.
3615
ADDMI->eraseFromParent();
3616
3617
LLVM_DEBUG(ADDIMI->dump());
3618
LLVM_DEBUG(MI.dump());
3619
3620
return true;
3621
}
3622
3623
bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
3624
int64_t &Imm) const {
3625
unsigned Opc = ADDIMI.getOpcode();
3626
3627
// Exit if the instruction is not ADDI.
3628
if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
3629
return false;
3630
3631
// The operand may not necessarily be an immediate - it could be a relocation.
3632
if (!ADDIMI.getOperand(2).isImm())
3633
return false;
3634
3635
Imm = ADDIMI.getOperand(2).getImm();
3636
3637
return true;
3638
}
3639
3640
bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3641
unsigned Opc = ADDMI.getOpcode();
3642
3643
// Exit if the instruction is not ADD.
3644
return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3645
}
3646
3647
bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3648
unsigned &ToBeDeletedReg,
3649
unsigned &XFormOpcode,
3650
int64_t &OffsetImm,
3651
ImmInstrInfo &III) const {
3652
// Only handle load/store.
3653
if (!MI.mayLoadOrStore())
3654
return false;
3655
3656
unsigned Opc = MI.getOpcode();
3657
3658
XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3659
3660
// Exit if instruction has no index form.
3661
if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3662
return false;
3663
3664
// TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3665
if (!instrHasImmForm(XFormOpcode,
3666
PPC::isVFRegister(MI.getOperand(0).getReg()), III, true))
3667
return false;
3668
3669
if (!III.IsSummingOperands)
3670
return false;
3671
3672
MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3673
MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3674
// Only support imm operands, not relocation slots or others.
3675
if (!ImmOperand.isImm())
3676
return false;
3677
3678
assert(RegOperand.isReg() && "Instruction format is not right");
3679
3680
// There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3681
if (!RegOperand.isKill())
3682
return false;
3683
3684
ToBeDeletedReg = RegOperand.getReg();
3685
OffsetImm = ImmOperand.getImm();
3686
3687
return true;
3688
}
3689
3690
bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3691
MachineInstr *&ADDIMI,
3692
int64_t &OffsetAddi,
3693
int64_t OffsetImm) const {
3694
assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3695
MachineOperand &MO = ADDMI->getOperand(Index);
3696
3697
if (!MO.isKill())
3698
return false;
3699
3700
bool OtherIntermediateUse = false;
3701
3702
ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3703
// Currently handle only one "add + Imminstr" pair case, exit if other
3704
// intermediate use for ToBeChangedReg found.
3705
// TODO: handle the cases where there are other "add + Imminstr" pairs
3706
// with same offset in Imminstr which is like:
3707
//
3708
// ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3709
// ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3710
// Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed)
3711
// ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3712
// Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed)
3713
//
3714
// can be converted to:
3715
//
3716
// new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3717
// (OffsetAddi + OffsetImm)
3718
// Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg
3719
// Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed)
3720
3721
if (OtherIntermediateUse || !ADDIMI)
3722
return false;
3723
// Check if ADDI instr meets requirement.
3724
if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3725
return false;
3726
3727
if (isInt<16>(OffsetAddi + OffsetImm))
3728
return true;
3729
return false;
3730
}
3731
3732
// If this instruction has an immediate form and one of its operands is a
3733
// result of a load-immediate or an add-immediate, convert it to
3734
// the immediate form if the constant is in range.
3735
bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3736
SmallSet<Register, 4> &RegsToUpdate,
3737
MachineInstr **KilledDef) const {
3738
MachineFunction *MF = MI.getParent()->getParent();
3739
MachineRegisterInfo *MRI = &MF->getRegInfo();
3740
bool PostRA = !MRI->isSSA();
3741
bool SeenIntermediateUse = true;
3742
unsigned ForwardingOperand = ~0U;
3743
MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3744
SeenIntermediateUse);
3745
if (!DefMI)
3746
return false;
3747
assert(ForwardingOperand < MI.getNumOperands() &&
3748
"The forwarding operand needs to be valid at this point");
3749
bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3750
bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3751
if (KilledDef && KillFwdDefMI)
3752
*KilledDef = DefMI;
3753
3754
// Conservatively add defs from DefMI and defs/uses from MI to the set of
3755
// registers that need their kill flags updated.
3756
for (const MachineOperand &MO : DefMI->operands())
3757
if (MO.isReg() && MO.isDef())
3758
RegsToUpdate.insert(MO.getReg());
3759
for (const MachineOperand &MO : MI.operands())
3760
if (MO.isReg())
3761
RegsToUpdate.insert(MO.getReg());
3762
3763
// If this is a imm instruction and its register operands is produced by ADDI,
3764
// put the imm into imm inst directly.
3765
if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3766
PPC::INSTRUCTION_LIST_END &&
3767
transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3768
return true;
3769
3770
ImmInstrInfo III;
3771
bool IsVFReg = MI.getOperand(0).isReg()
3772
? PPC::isVFRegister(MI.getOperand(0).getReg())
3773
: false;
3774
bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3775
// If this is a reg+reg instruction that has a reg+imm form,
3776
// and one of the operands is produced by an add-immediate,
3777
// try to convert it.
3778
if (HasImmForm &&
3779
transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3780
KillFwdDefMI))
3781
return true;
3782
3783
// If this is a reg+reg instruction that has a reg+imm form,
3784
// and one of the operands is produced by LI, convert it now.
3785
if (HasImmForm &&
3786
transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3787
return true;
3788
3789
// If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3790
// can be simpified to LI.
3791
if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3792
return true;
3793
3794
return false;
3795
}
3796
3797
bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
3798
MachineInstr **ToErase) const {
3799
MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3800
Register FoldingReg = MI.getOperand(1).getReg();
3801
if (!FoldingReg.isVirtual())
3802
return false;
3803
MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
3804
if (SrcMI->getOpcode() != PPC::RLWINM &&
3805
SrcMI->getOpcode() != PPC::RLWINM_rec &&
3806
SrcMI->getOpcode() != PPC::RLWINM8 &&
3807
SrcMI->getOpcode() != PPC::RLWINM8_rec)
3808
return false;
3809
assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
3810
MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
3811
SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
3812
"Invalid PPC::RLWINM Instruction!");
3813
uint64_t SHSrc = SrcMI->getOperand(2).getImm();
3814
uint64_t SHMI = MI.getOperand(2).getImm();
3815
uint64_t MBSrc = SrcMI->getOperand(3).getImm();
3816
uint64_t MBMI = MI.getOperand(3).getImm();
3817
uint64_t MESrc = SrcMI->getOperand(4).getImm();
3818
uint64_t MEMI = MI.getOperand(4).getImm();
3819
3820
assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
3821
"Invalid PPC::RLWINM Instruction!");
3822
// If MBMI is bigger than MEMI, we always can not get run of ones.
3823
// RotatedSrcMask non-wrap:
3824
// 0........31|32........63
3825
// RotatedSrcMask: B---E B---E
3826
// MaskMI: -----------|--E B------
3827
// Result: ----- --- (Bad candidate)
3828
//
3829
// RotatedSrcMask wrap:
3830
// 0........31|32........63
3831
// RotatedSrcMask: --E B----|--E B----
3832
// MaskMI: -----------|--E B------
3833
// Result: --- -----|--- ----- (Bad candidate)
3834
//
3835
// One special case is RotatedSrcMask is a full set mask.
3836
// RotatedSrcMask full:
3837
// 0........31|32........63
3838
// RotatedSrcMask: ------EB---|-------EB---
3839
// MaskMI: -----------|--E B------
3840
// Result: -----------|--- ------- (Good candidate)
3841
3842
// Mark special case.
3843
bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
3844
3845
// For other MBMI > MEMI cases, just return.
3846
if ((MBMI > MEMI) && !SrcMaskFull)
3847
return false;
3848
3849
// Handle MBMI <= MEMI cases.
3850
APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
3851
// In MI, we only need low 32 bits of SrcMI, just consider about low 32
3852
// bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
3853
// while in PowerPC ISA, lowerest bit is at index 63.
3854
APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
3855
3856
APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
3857
APInt FinalMask = RotatedSrcMask & MaskMI;
3858
uint32_t NewMB, NewME;
3859
bool Simplified = false;
3860
3861
// If final mask is 0, MI result should be 0 too.
3862
if (FinalMask.isZero()) {
3863
bool Is64Bit =
3864
(MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
3865
Simplified = true;
3866
LLVM_DEBUG(dbgs() << "Replace Instr: ");
3867
LLVM_DEBUG(MI.dump());
3868
3869
if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
3870
// Replace MI with "LI 0"
3871
MI.removeOperand(4);
3872
MI.removeOperand(3);
3873
MI.removeOperand(2);
3874
MI.getOperand(1).ChangeToImmediate(0);
3875
MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
3876
} else {
3877
// Replace MI with "ANDI_rec reg, 0"
3878
MI.removeOperand(4);
3879
MI.removeOperand(3);
3880
MI.getOperand(2).setImm(0);
3881
MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3882
MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3883
if (SrcMI->getOperand(1).isKill()) {
3884
MI.getOperand(1).setIsKill(true);
3885
SrcMI->getOperand(1).setIsKill(false);
3886
} else
3887
// About to replace MI.getOperand(1), clear its kill flag.
3888
MI.getOperand(1).setIsKill(false);
3889
}
3890
3891
LLVM_DEBUG(dbgs() << "With: ");
3892
LLVM_DEBUG(MI.dump());
3893
3894
} else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
3895
NewMB <= NewME) ||
3896
SrcMaskFull) {
3897
// Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
3898
// than NewME. Otherwise we get a 64 bit value after folding, but MI
3899
// return a 32 bit value.
3900
Simplified = true;
3901
LLVM_DEBUG(dbgs() << "Converting Instr: ");
3902
LLVM_DEBUG(MI.dump());
3903
3904
uint16_t NewSH = (SHSrc + SHMI) % 32;
3905
MI.getOperand(2).setImm(NewSH);
3906
// If SrcMI mask is full, no need to update MBMI and MEMI.
3907
if (!SrcMaskFull) {
3908
MI.getOperand(3).setImm(NewMB);
3909
MI.getOperand(4).setImm(NewME);
3910
}
3911
MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3912
if (SrcMI->getOperand(1).isKill()) {
3913
MI.getOperand(1).setIsKill(true);
3914
SrcMI->getOperand(1).setIsKill(false);
3915
} else
3916
// About to replace MI.getOperand(1), clear its kill flag.
3917
MI.getOperand(1).setIsKill(false);
3918
3919
LLVM_DEBUG(dbgs() << "To: ");
3920
LLVM_DEBUG(MI.dump());
3921
}
3922
if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
3923
!SrcMI->hasImplicitDef()) {
3924
// If FoldingReg has no non-debug use and it has no implicit def (it
3925
// is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
3926
// Otherwise keep it.
3927
*ToErase = SrcMI;
3928
LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
3929
LLVM_DEBUG(SrcMI->dump());
3930
}
3931
return Simplified;
3932
}
3933
3934
bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3935
ImmInstrInfo &III, bool PostRA) const {
3936
// The vast majority of the instructions would need their operand 2 replaced
3937
// with an immediate when switching to the reg+imm form. A marked exception
3938
// are the update form loads/stores for which a constant operand 2 would need
3939
// to turn into a displacement and move operand 1 to the operand 2 position.
3940
III.ImmOpNo = 2;
3941
III.OpNoForForwarding = 2;
3942
III.ImmWidth = 16;
3943
III.ImmMustBeMultipleOf = 1;
3944
III.TruncateImmTo = 0;
3945
III.IsSummingOperands = false;
3946
switch (Opc) {
3947
default: return false;
3948
case PPC::ADD4:
3949
case PPC::ADD8:
3950
III.SignedImm = true;
3951
III.ZeroIsSpecialOrig = 0;
3952
III.ZeroIsSpecialNew = 1;
3953
III.IsCommutative = true;
3954
III.IsSummingOperands = true;
3955
III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3956
break;
3957
case PPC::ADDC:
3958
case PPC::ADDC8:
3959
III.SignedImm = true;
3960
III.ZeroIsSpecialOrig = 0;
3961
III.ZeroIsSpecialNew = 0;
3962
III.IsCommutative = true;
3963
III.IsSummingOperands = true;
3964
III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3965
break;
3966
case PPC::ADDC_rec:
3967
III.SignedImm = true;
3968
III.ZeroIsSpecialOrig = 0;
3969
III.ZeroIsSpecialNew = 0;
3970
III.IsCommutative = true;
3971
III.IsSummingOperands = true;
3972
III.ImmOpcode = PPC::ADDIC_rec;
3973
break;
3974
case PPC::SUBFC:
3975
case PPC::SUBFC8:
3976
III.SignedImm = true;
3977
III.ZeroIsSpecialOrig = 0;
3978
III.ZeroIsSpecialNew = 0;
3979
III.IsCommutative = false;
3980
III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3981
break;
3982
case PPC::CMPW:
3983
case PPC::CMPD:
3984
III.SignedImm = true;
3985
III.ZeroIsSpecialOrig = 0;
3986
III.ZeroIsSpecialNew = 0;
3987
III.IsCommutative = false;
3988
III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3989
break;
3990
case PPC::CMPLW:
3991
case PPC::CMPLD:
3992
III.SignedImm = false;
3993
III.ZeroIsSpecialOrig = 0;
3994
III.ZeroIsSpecialNew = 0;
3995
III.IsCommutative = false;
3996
III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
3997
break;
3998
case PPC::AND_rec:
3999
case PPC::AND8_rec:
4000
case PPC::OR:
4001
case PPC::OR8:
4002
case PPC::XOR:
4003
case PPC::XOR8:
4004
III.SignedImm = false;
4005
III.ZeroIsSpecialOrig = 0;
4006
III.ZeroIsSpecialNew = 0;
4007
III.IsCommutative = true;
4008
switch(Opc) {
4009
default: llvm_unreachable("Unknown opcode");
4010
case PPC::AND_rec:
4011
III.ImmOpcode = PPC::ANDI_rec;
4012
break;
4013
case PPC::AND8_rec:
4014
III.ImmOpcode = PPC::ANDI8_rec;
4015
break;
4016
case PPC::OR: III.ImmOpcode = PPC::ORI; break;
4017
case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
4018
case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
4019
case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
4020
}
4021
break;
4022
case PPC::RLWNM:
4023
case PPC::RLWNM8:
4024
case PPC::RLWNM_rec:
4025
case PPC::RLWNM8_rec:
4026
case PPC::SLW:
4027
case PPC::SLW8:
4028
case PPC::SLW_rec:
4029
case PPC::SLW8_rec:
4030
case PPC::SRW:
4031
case PPC::SRW8:
4032
case PPC::SRW_rec:
4033
case PPC::SRW8_rec:
4034
case PPC::SRAW:
4035
case PPC::SRAW_rec:
4036
III.SignedImm = false;
4037
III.ZeroIsSpecialOrig = 0;
4038
III.ZeroIsSpecialNew = 0;
4039
III.IsCommutative = false;
4040
// This isn't actually true, but the instructions ignore any of the
4041
// upper bits, so any immediate loaded with an LI is acceptable.
4042
// This does not apply to shift right algebraic because a value
4043
// out of range will produce a -1/0.
4044
III.ImmWidth = 16;
4045
if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
4046
Opc == PPC::RLWNM8_rec)
4047
III.TruncateImmTo = 5;
4048
else
4049
III.TruncateImmTo = 6;
4050
switch(Opc) {
4051
default: llvm_unreachable("Unknown opcode");
4052
case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
4053
case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
4054
case PPC::RLWNM_rec:
4055
III.ImmOpcode = PPC::RLWINM_rec;
4056
break;
4057
case PPC::RLWNM8_rec:
4058
III.ImmOpcode = PPC::RLWINM8_rec;
4059
break;
4060
case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
4061
case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
4062
case PPC::SLW_rec:
4063
III.ImmOpcode = PPC::RLWINM_rec;
4064
break;
4065
case PPC::SLW8_rec:
4066
III.ImmOpcode = PPC::RLWINM8_rec;
4067
break;
4068
case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
4069
case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
4070
case PPC::SRW_rec:
4071
III.ImmOpcode = PPC::RLWINM_rec;
4072
break;
4073
case PPC::SRW8_rec:
4074
III.ImmOpcode = PPC::RLWINM8_rec;
4075
break;
4076
case PPC::SRAW:
4077
III.ImmWidth = 5;
4078
III.TruncateImmTo = 0;
4079
III.ImmOpcode = PPC::SRAWI;
4080
break;
4081
case PPC::SRAW_rec:
4082
III.ImmWidth = 5;
4083
III.TruncateImmTo = 0;
4084
III.ImmOpcode = PPC::SRAWI_rec;
4085
break;
4086
}
4087
break;
4088
case PPC::RLDCL:
4089
case PPC::RLDCL_rec:
4090
case PPC::RLDCR:
4091
case PPC::RLDCR_rec:
4092
case PPC::SLD:
4093
case PPC::SLD_rec:
4094
case PPC::SRD:
4095
case PPC::SRD_rec:
4096
case PPC::SRAD:
4097
case PPC::SRAD_rec:
4098
III.SignedImm = false;
4099
III.ZeroIsSpecialOrig = 0;
4100
III.ZeroIsSpecialNew = 0;
4101
III.IsCommutative = false;
4102
// This isn't actually true, but the instructions ignore any of the
4103
// upper bits, so any immediate loaded with an LI is acceptable.
4104
// This does not apply to shift right algebraic because a value
4105
// out of range will produce a -1/0.
4106
III.ImmWidth = 16;
4107
if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
4108
Opc == PPC::RLDCR_rec)
4109
III.TruncateImmTo = 6;
4110
else
4111
III.TruncateImmTo = 7;
4112
switch(Opc) {
4113
default: llvm_unreachable("Unknown opcode");
4114
case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
4115
case PPC::RLDCL_rec:
4116
III.ImmOpcode = PPC::RLDICL_rec;
4117
break;
4118
case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
4119
case PPC::RLDCR_rec:
4120
III.ImmOpcode = PPC::RLDICR_rec;
4121
break;
4122
case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
4123
case PPC::SLD_rec:
4124
III.ImmOpcode = PPC::RLDICR_rec;
4125
break;
4126
case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
4127
case PPC::SRD_rec:
4128
III.ImmOpcode = PPC::RLDICL_rec;
4129
break;
4130
case PPC::SRAD:
4131
III.ImmWidth = 6;
4132
III.TruncateImmTo = 0;
4133
III.ImmOpcode = PPC::SRADI;
4134
break;
4135
case PPC::SRAD_rec:
4136
III.ImmWidth = 6;
4137
III.TruncateImmTo = 0;
4138
III.ImmOpcode = PPC::SRADI_rec;
4139
break;
4140
}
4141
break;
4142
// Loads and stores:
4143
case PPC::LBZX:
4144
case PPC::LBZX8:
4145
case PPC::LHZX:
4146
case PPC::LHZX8:
4147
case PPC::LHAX:
4148
case PPC::LHAX8:
4149
case PPC::LWZX:
4150
case PPC::LWZX8:
4151
case PPC::LWAX:
4152
case PPC::LDX:
4153
case PPC::LFSX:
4154
case PPC::LFDX:
4155
case PPC::STBX:
4156
case PPC::STBX8:
4157
case PPC::STHX:
4158
case PPC::STHX8:
4159
case PPC::STWX:
4160
case PPC::STWX8:
4161
case PPC::STDX:
4162
case PPC::STFSX:
4163
case PPC::STFDX:
4164
III.SignedImm = true;
4165
III.ZeroIsSpecialOrig = 1;
4166
III.ZeroIsSpecialNew = 2;
4167
III.IsCommutative = true;
4168
III.IsSummingOperands = true;
4169
III.ImmOpNo = 1;
4170
III.OpNoForForwarding = 2;
4171
switch(Opc) {
4172
default: llvm_unreachable("Unknown opcode");
4173
case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
4174
case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
4175
case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
4176
case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
4177
case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
4178
case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
4179
case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
4180
case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
4181
case PPC::LWAX:
4182
III.ImmOpcode = PPC::LWA;
4183
III.ImmMustBeMultipleOf = 4;
4184
break;
4185
case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
4186
case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
4187
case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
4188
case PPC::STBX: III.ImmOpcode = PPC::STB; break;
4189
case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
4190
case PPC::STHX: III.ImmOpcode = PPC::STH; break;
4191
case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
4192
case PPC::STWX: III.ImmOpcode = PPC::STW; break;
4193
case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
4194
case PPC::STDX:
4195
III.ImmOpcode = PPC::STD;
4196
III.ImmMustBeMultipleOf = 4;
4197
break;
4198
case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
4199
case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
4200
}
4201
break;
4202
case PPC::LBZUX:
4203
case PPC::LBZUX8:
4204
case PPC::LHZUX:
4205
case PPC::LHZUX8:
4206
case PPC::LHAUX:
4207
case PPC::LHAUX8:
4208
case PPC::LWZUX:
4209
case PPC::LWZUX8:
4210
case PPC::LDUX:
4211
case PPC::LFSUX:
4212
case PPC::LFDUX:
4213
case PPC::STBUX:
4214
case PPC::STBUX8:
4215
case PPC::STHUX:
4216
case PPC::STHUX8:
4217
case PPC::STWUX:
4218
case PPC::STWUX8:
4219
case PPC::STDUX:
4220
case PPC::STFSUX:
4221
case PPC::STFDUX:
4222
III.SignedImm = true;
4223
III.ZeroIsSpecialOrig = 2;
4224
III.ZeroIsSpecialNew = 3;
4225
III.IsCommutative = false;
4226
III.IsSummingOperands = true;
4227
III.ImmOpNo = 2;
4228
III.OpNoForForwarding = 3;
4229
switch(Opc) {
4230
default: llvm_unreachable("Unknown opcode");
4231
case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
4232
case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
4233
case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
4234
case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
4235
case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
4236
case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
4237
case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
4238
case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
4239
case PPC::LDUX:
4240
III.ImmOpcode = PPC::LDU;
4241
III.ImmMustBeMultipleOf = 4;
4242
break;
4243
case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
4244
case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
4245
case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
4246
case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
4247
case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
4248
case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
4249
case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
4250
case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
4251
case PPC::STDUX:
4252
III.ImmOpcode = PPC::STDU;
4253
III.ImmMustBeMultipleOf = 4;
4254
break;
4255
case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
4256
case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
4257
}
4258
break;
4259
// Power9 and up only. For some of these, the X-Form version has access to all
4260
// 64 VSR's whereas the D-Form only has access to the VR's. We replace those
4261
// with pseudo-ops pre-ra and for post-ra, we check that the register loaded
4262
// into or stored from is one of the VR registers.
4263
case PPC::LXVX:
4264
case PPC::LXSSPX:
4265
case PPC::LXSDX:
4266
case PPC::STXVX:
4267
case PPC::STXSSPX:
4268
case PPC::STXSDX:
4269
case PPC::XFLOADf32:
4270
case PPC::XFLOADf64:
4271
case PPC::XFSTOREf32:
4272
case PPC::XFSTOREf64:
4273
if (!Subtarget.hasP9Vector())
4274
return false;
4275
III.SignedImm = true;
4276
III.ZeroIsSpecialOrig = 1;
4277
III.ZeroIsSpecialNew = 2;
4278
III.IsCommutative = true;
4279
III.IsSummingOperands = true;
4280
III.ImmOpNo = 1;
4281
III.OpNoForForwarding = 2;
4282
III.ImmMustBeMultipleOf = 4;
4283
switch(Opc) {
4284
default: llvm_unreachable("Unknown opcode");
4285
case PPC::LXVX:
4286
III.ImmOpcode = PPC::LXV;
4287
III.ImmMustBeMultipleOf = 16;
4288
break;
4289
case PPC::LXSSPX:
4290
if (PostRA) {
4291
if (IsVFReg)
4292
III.ImmOpcode = PPC::LXSSP;
4293
else {
4294
III.ImmOpcode = PPC::LFS;
4295
III.ImmMustBeMultipleOf = 1;
4296
}
4297
break;
4298
}
4299
[[fallthrough]];
4300
case PPC::XFLOADf32:
4301
III.ImmOpcode = PPC::DFLOADf32;
4302
break;
4303
case PPC::LXSDX:
4304
if (PostRA) {
4305
if (IsVFReg)
4306
III.ImmOpcode = PPC::LXSD;
4307
else {
4308
III.ImmOpcode = PPC::LFD;
4309
III.ImmMustBeMultipleOf = 1;
4310
}
4311
break;
4312
}
4313
[[fallthrough]];
4314
case PPC::XFLOADf64:
4315
III.ImmOpcode = PPC::DFLOADf64;
4316
break;
4317
case PPC::STXVX:
4318
III.ImmOpcode = PPC::STXV;
4319
III.ImmMustBeMultipleOf = 16;
4320
break;
4321
case PPC::STXSSPX:
4322
if (PostRA) {
4323
if (IsVFReg)
4324
III.ImmOpcode = PPC::STXSSP;
4325
else {
4326
III.ImmOpcode = PPC::STFS;
4327
III.ImmMustBeMultipleOf = 1;
4328
}
4329
break;
4330
}
4331
[[fallthrough]];
4332
case PPC::XFSTOREf32:
4333
III.ImmOpcode = PPC::DFSTOREf32;
4334
break;
4335
case PPC::STXSDX:
4336
if (PostRA) {
4337
if (IsVFReg)
4338
III.ImmOpcode = PPC::STXSD;
4339
else {
4340
III.ImmOpcode = PPC::STFD;
4341
III.ImmMustBeMultipleOf = 1;
4342
}
4343
break;
4344
}
4345
[[fallthrough]];
4346
case PPC::XFSTOREf64:
4347
III.ImmOpcode = PPC::DFSTOREf64;
4348
break;
4349
}
4350
break;
4351
}
4352
return true;
4353
}
4354
4355
// Utility function for swaping two arbitrary operands of an instruction.
4356
static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
4357
assert(Op1 != Op2 && "Cannot swap operand with itself.");
4358
4359
unsigned MaxOp = std::max(Op1, Op2);
4360
unsigned MinOp = std::min(Op1, Op2);
4361
MachineOperand MOp1 = MI.getOperand(MinOp);
4362
MachineOperand MOp2 = MI.getOperand(MaxOp);
4363
MI.removeOperand(std::max(Op1, Op2));
4364
MI.removeOperand(std::min(Op1, Op2));
4365
4366
// If the operands we are swapping are the two at the end (the common case)
4367
// we can just remove both and add them in the opposite order.
4368
if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
4369
MI.addOperand(MOp2);
4370
MI.addOperand(MOp1);
4371
} else {
4372
// Store all operands in a temporary vector, remove them and re-add in the
4373
// right order.
4374
SmallVector<MachineOperand, 2> MOps;
4375
unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
4376
for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
4377
MOps.push_back(MI.getOperand(i));
4378
MI.removeOperand(i);
4379
}
4380
// MOp2 needs to be added next.
4381
MI.addOperand(MOp2);
4382
// Now add the rest.
4383
for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
4384
if (i == MaxOp)
4385
MI.addOperand(MOp1);
4386
else {
4387
MI.addOperand(MOps.back());
4388
MOps.pop_back();
4389
}
4390
}
4391
}
4392
}
4393
4394
// Check if the 'MI' that has the index OpNoForForwarding
4395
// meets the requirement described in the ImmInstrInfo.
4396
bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
4397
const ImmInstrInfo &III,
4398
unsigned OpNoForForwarding
4399
) const {
4400
// As the algorithm of checking for PPC::ZERO/PPC::ZERO8
4401
// would not work pre-RA, we can only do the check post RA.
4402
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4403
if (MRI.isSSA())
4404
return false;
4405
4406
// Cannot do the transform if MI isn't summing the operands.
4407
if (!III.IsSummingOperands)
4408
return false;
4409
4410
// The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
4411
if (!III.ZeroIsSpecialOrig)
4412
return false;
4413
4414
// We cannot do the transform if the operand we are trying to replace
4415
// isn't the same as the operand the instruction allows.
4416
if (OpNoForForwarding != III.OpNoForForwarding)
4417
return false;
4418
4419
// Check if the instruction we are trying to transform really has
4420
// the special zero register as its operand.
4421
if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
4422
MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
4423
return false;
4424
4425
// This machine instruction is convertible if it is,
4426
// 1. summing the operands.
4427
// 2. one of the operands is special zero register.
4428
// 3. the operand we are trying to replace is allowed by the MI.
4429
return true;
4430
}
4431
4432
// Check if the DefMI is the add inst and set the ImmMO and RegMO
4433
// accordingly.
4434
bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
4435
const ImmInstrInfo &III,
4436
MachineOperand *&ImmMO,
4437
MachineOperand *&RegMO) const {
4438
unsigned Opc = DefMI.getOpcode();
4439
if (Opc != PPC::ADDItocL8 && Opc != PPC::ADDI && Opc != PPC::ADDI8)
4440
return false;
4441
4442
// Skip the optimization of transformTo[NewImm|Imm]FormFedByAdd for ADDItocL8
4443
// on AIX which is used for toc-data access. TODO: Follow up to see if it can
4444
// apply for AIX toc-data as well.
4445
if (Opc == PPC::ADDItocL8 && Subtarget.isAIX())
4446
return false;
4447
4448
assert(DefMI.getNumOperands() >= 3 &&
4449
"Add inst must have at least three operands");
4450
RegMO = &DefMI.getOperand(1);
4451
ImmMO = &DefMI.getOperand(2);
4452
4453
// Before RA, ADDI first operand could be a frame index.
4454
if (!RegMO->isReg())
4455
return false;
4456
4457
// This DefMI is elgible for forwarding if it is:
4458
// 1. add inst
4459
// 2. one of the operands is Imm/CPI/Global.
4460
return isAnImmediateOperand(*ImmMO);
4461
}
4462
4463
bool PPCInstrInfo::isRegElgibleForForwarding(
4464
const MachineOperand &RegMO, const MachineInstr &DefMI,
4465
const MachineInstr &MI, bool KillDefMI,
4466
bool &IsFwdFeederRegKilled, bool &SeenIntermediateUse) const {
4467
// x = addi y, imm
4468
// ...
4469
// z = lfdx 0, x -> z = lfd imm(y)
4470
// The Reg "y" can be forwarded to the MI(z) only when there is no DEF
4471
// of "y" between the DEF of "x" and "z".
4472
// The query is only valid post RA.
4473
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4474
if (MRI.isSSA())
4475
return false;
4476
4477
Register Reg = RegMO.getReg();
4478
4479
// Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
4480
MachineBasicBlock::const_reverse_iterator It = MI;
4481
MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
4482
It++;
4483
for (; It != E; ++It) {
4484
if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4485
return false;
4486
else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4487
IsFwdFeederRegKilled = true;
4488
if (It->readsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4489
SeenIntermediateUse = true;
4490
// Made it to DefMI without encountering a clobber.
4491
if ((&*It) == &DefMI)
4492
break;
4493
}
4494
assert((&*It) == &DefMI && "DefMI is missing");
4495
4496
// If DefMI also defines the register to be forwarded, we can only forward it
4497
// if DefMI is being erased.
4498
if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
4499
return KillDefMI;
4500
4501
return true;
4502
}
4503
4504
bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
4505
const MachineInstr &DefMI,
4506
const ImmInstrInfo &III,
4507
int64_t &Imm,
4508
int64_t BaseImm) const {
4509
assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
4510
if (DefMI.getOpcode() == PPC::ADDItocL8) {
4511
// The operand for ADDItocL8 is CPI, which isn't imm at compiling time,
4512
// However, we know that, it is 16-bit width, and has the alignment of 4.
4513
// Check if the instruction met the requirement.
4514
if (III.ImmMustBeMultipleOf > 4 ||
4515
III.TruncateImmTo || III.ImmWidth != 16)
4516
return false;
4517
4518
// Going from XForm to DForm loads means that the displacement needs to be
4519
// not just an immediate but also a multiple of 4, or 16 depending on the
4520
// load. A DForm load cannot be represented if it is a multiple of say 2.
4521
// XForm loads do not have this restriction.
4522
if (ImmMO.isGlobal()) {
4523
const DataLayout &DL = ImmMO.getGlobal()->getDataLayout();
4524
if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
4525
return false;
4526
}
4527
4528
return true;
4529
}
4530
4531
if (ImmMO.isImm()) {
4532
// It is Imm, we need to check if the Imm fit the range.
4533
// Sign-extend to 64-bits.
4534
// DefMI may be folded with another imm form instruction, the result Imm is
4535
// the sum of Imm of DefMI and BaseImm which is from imm form instruction.
4536
APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
4537
if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
4538
return false;
4539
if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
4540
return false;
4541
Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
4542
4543
if (Imm % III.ImmMustBeMultipleOf)
4544
return false;
4545
if (III.TruncateImmTo)
4546
Imm &= ((1 << III.TruncateImmTo) - 1);
4547
}
4548
else
4549
return false;
4550
4551
// This ImmMO is forwarded if it meets the requriement describle
4552
// in ImmInstrInfo
4553
return true;
4554
}
4555
4556
bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
4557
unsigned OpNoForForwarding,
4558
MachineInstr **KilledDef) const {
4559
if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4560
!DefMI.getOperand(1).isImm())
4561
return false;
4562
4563
MachineFunction *MF = MI.getParent()->getParent();
4564
MachineRegisterInfo *MRI = &MF->getRegInfo();
4565
bool PostRA = !MRI->isSSA();
4566
4567
int64_t Immediate = DefMI.getOperand(1).getImm();
4568
// Sign-extend to 64-bits.
4569
int64_t SExtImm = SignExtend64<16>(Immediate);
4570
4571
bool ReplaceWithLI = false;
4572
bool Is64BitLI = false;
4573
int64_t NewImm = 0;
4574
bool SetCR = false;
4575
unsigned Opc = MI.getOpcode();
4576
switch (Opc) {
4577
default:
4578
return false;
4579
4580
// FIXME: Any branches conditional on such a comparison can be made
4581
// unconditional. At this time, this happens too infrequently to be worth
4582
// the implementation effort, but if that ever changes, we could convert
4583
// such a pattern here.
4584
case PPC::CMPWI:
4585
case PPC::CMPLWI:
4586
case PPC::CMPDI:
4587
case PPC::CMPLDI: {
4588
// Doing this post-RA would require dataflow analysis to reliably find uses
4589
// of the CR register set by the compare.
4590
// No need to fixup killed/dead flag since this transformation is only valid
4591
// before RA.
4592
if (PostRA)
4593
return false;
4594
// If a compare-immediate is fed by an immediate and is itself an input of
4595
// an ISEL (the most common case) into a COPY of the correct register.
4596
bool Changed = false;
4597
Register DefReg = MI.getOperand(0).getReg();
4598
int64_t Comparand = MI.getOperand(2).getImm();
4599
int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
4600
? (Comparand | 0xFFFFFFFFFFFF0000)
4601
: Comparand;
4602
4603
for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
4604
unsigned UseOpc = CompareUseMI.getOpcode();
4605
if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
4606
continue;
4607
unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
4608
Register TrueReg = CompareUseMI.getOperand(1).getReg();
4609
Register FalseReg = CompareUseMI.getOperand(2).getReg();
4610
unsigned RegToCopy =
4611
selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
4612
if (RegToCopy == PPC::NoRegister)
4613
continue;
4614
// Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
4615
if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
4616
CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
4617
replaceInstrOperandWithImm(CompareUseMI, 1, 0);
4618
CompareUseMI.removeOperand(3);
4619
CompareUseMI.removeOperand(2);
4620
continue;
4621
}
4622
LLVM_DEBUG(
4623
dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
4624
LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
4625
LLVM_DEBUG(dbgs() << "Is converted to:\n");
4626
// Convert to copy and remove unneeded operands.
4627
CompareUseMI.setDesc(get(PPC::COPY));
4628
CompareUseMI.removeOperand(3);
4629
CompareUseMI.removeOperand(RegToCopy == TrueReg ? 2 : 1);
4630
CmpIselsConverted++;
4631
Changed = true;
4632
LLVM_DEBUG(CompareUseMI.dump());
4633
}
4634
if (Changed)
4635
return true;
4636
// This may end up incremented multiple times since this function is called
4637
// during a fixed-point transformation, but it is only meant to indicate the
4638
// presence of this opportunity.
4639
MissedConvertibleImmediateInstrs++;
4640
return false;
4641
}
4642
4643
// Immediate forms - may simply be convertable to an LI.
4644
case PPC::ADDI:
4645
case PPC::ADDI8: {
4646
// Does the sum fit in a 16-bit signed field?
4647
int64_t Addend = MI.getOperand(2).getImm();
4648
if (isInt<16>(Addend + SExtImm)) {
4649
ReplaceWithLI = true;
4650
Is64BitLI = Opc == PPC::ADDI8;
4651
NewImm = Addend + SExtImm;
4652
break;
4653
}
4654
return false;
4655
}
4656
case PPC::SUBFIC:
4657
case PPC::SUBFIC8: {
4658
// Only transform this if the CARRY implicit operand is dead.
4659
if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
4660
return false;
4661
int64_t Minuend = MI.getOperand(2).getImm();
4662
if (isInt<16>(Minuend - SExtImm)) {
4663
ReplaceWithLI = true;
4664
Is64BitLI = Opc == PPC::SUBFIC8;
4665
NewImm = Minuend - SExtImm;
4666
break;
4667
}
4668
return false;
4669
}
4670
case PPC::RLDICL:
4671
case PPC::RLDICL_rec:
4672
case PPC::RLDICL_32:
4673
case PPC::RLDICL_32_64: {
4674
// Use APInt's rotate function.
4675
int64_t SH = MI.getOperand(2).getImm();
4676
int64_t MB = MI.getOperand(3).getImm();
4677
APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
4678
SExtImm, true);
4679
InVal = InVal.rotl(SH);
4680
uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
4681
InVal &= Mask;
4682
// Can't replace negative values with an LI as that will sign-extend
4683
// and not clear the left bits. If we're setting the CR bit, we will use
4684
// ANDI_rec which won't sign extend, so that's safe.
4685
if (isUInt<15>(InVal.getSExtValue()) ||
4686
(Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
4687
ReplaceWithLI = true;
4688
Is64BitLI = Opc != PPC::RLDICL_32;
4689
NewImm = InVal.getSExtValue();
4690
SetCR = Opc == PPC::RLDICL_rec;
4691
break;
4692
}
4693
return false;
4694
}
4695
case PPC::RLWINM:
4696
case PPC::RLWINM8:
4697
case PPC::RLWINM_rec:
4698
case PPC::RLWINM8_rec: {
4699
int64_t SH = MI.getOperand(2).getImm();
4700
int64_t MB = MI.getOperand(3).getImm();
4701
int64_t ME = MI.getOperand(4).getImm();
4702
APInt InVal(32, SExtImm, true);
4703
InVal = InVal.rotl(SH);
4704
APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
4705
InVal &= Mask;
4706
// Can't replace negative values with an LI as that will sign-extend
4707
// and not clear the left bits. If we're setting the CR bit, we will use
4708
// ANDI_rec which won't sign extend, so that's safe.
4709
bool ValueFits = isUInt<15>(InVal.getSExtValue());
4710
ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
4711
isUInt<16>(InVal.getSExtValue()));
4712
if (ValueFits) {
4713
ReplaceWithLI = true;
4714
Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
4715
NewImm = InVal.getSExtValue();
4716
SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
4717
break;
4718
}
4719
return false;
4720
}
4721
case PPC::ORI:
4722
case PPC::ORI8:
4723
case PPC::XORI:
4724
case PPC::XORI8: {
4725
int64_t LogicalImm = MI.getOperand(2).getImm();
4726
int64_t Result = 0;
4727
if (Opc == PPC::ORI || Opc == PPC::ORI8)
4728
Result = LogicalImm | SExtImm;
4729
else
4730
Result = LogicalImm ^ SExtImm;
4731
if (isInt<16>(Result)) {
4732
ReplaceWithLI = true;
4733
Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
4734
NewImm = Result;
4735
break;
4736
}
4737
return false;
4738
}
4739
}
4740
4741
if (ReplaceWithLI) {
4742
// We need to be careful with CR-setting instructions we're replacing.
4743
if (SetCR) {
4744
// We don't know anything about uses when we're out of SSA, so only
4745
// replace if the new immediate will be reproduced.
4746
bool ImmChanged = (SExtImm & NewImm) != NewImm;
4747
if (PostRA && ImmChanged)
4748
return false;
4749
4750
if (!PostRA) {
4751
// If the defining load-immediate has no other uses, we can just replace
4752
// the immediate with the new immediate.
4753
if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
4754
DefMI.getOperand(1).setImm(NewImm);
4755
4756
// If we're not using the GPR result of the CR-setting instruction, we
4757
// just need to and with zero/non-zero depending on the new immediate.
4758
else if (MRI->use_empty(MI.getOperand(0).getReg())) {
4759
if (NewImm) {
4760
assert(Immediate && "Transformation converted zero to non-zero?");
4761
NewImm = Immediate;
4762
}
4763
} else if (ImmChanged)
4764
return false;
4765
}
4766
}
4767
4768
LLVM_DEBUG(dbgs() << "Replacing constant instruction:\n");
4769
LLVM_DEBUG(MI.dump());
4770
LLVM_DEBUG(dbgs() << "Fed by:\n");
4771
LLVM_DEBUG(DefMI.dump());
4772
LoadImmediateInfo LII;
4773
LII.Imm = NewImm;
4774
LII.Is64Bit = Is64BitLI;
4775
LII.SetCR = SetCR;
4776
// If we're setting the CR, the original load-immediate must be kept (as an
4777
// operand to ANDI_rec/ANDI8_rec).
4778
if (KilledDef && SetCR)
4779
*KilledDef = nullptr;
4780
replaceInstrWithLI(MI, LII);
4781
4782
if (PostRA)
4783
recomputeLivenessFlags(*MI.getParent());
4784
4785
LLVM_DEBUG(dbgs() << "With:\n");
4786
LLVM_DEBUG(MI.dump());
4787
return true;
4788
}
4789
return false;
4790
}
4791
4792
bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4793
MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4794
MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4795
bool PostRA = !MRI->isSSA();
4796
// FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4797
// for post-ra.
4798
if (PostRA)
4799
return false;
4800
4801
// Only handle load/store.
4802
if (!MI.mayLoadOrStore())
4803
return false;
4804
4805
unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4806
4807
assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4808
"MI must have x-form opcode");
4809
4810
// get Imm Form info.
4811
ImmInstrInfo III;
4812
bool IsVFReg = MI.getOperand(0).isReg()
4813
? PPC::isVFRegister(MI.getOperand(0).getReg())
4814
: false;
4815
4816
if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4817
return false;
4818
4819
if (!III.IsSummingOperands)
4820
return false;
4821
4822
if (OpNoForForwarding != III.OpNoForForwarding)
4823
return false;
4824
4825
MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4826
if (!ImmOperandMI.isImm())
4827
return false;
4828
4829
// Check DefMI.
4830
MachineOperand *ImmMO = nullptr;
4831
MachineOperand *RegMO = nullptr;
4832
if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4833
return false;
4834
assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4835
4836
// Check Imm.
4837
// Set ImmBase from imm instruction as base and get new Imm inside
4838
// isImmElgibleForForwarding.
4839
int64_t ImmBase = ImmOperandMI.getImm();
4840
int64_t Imm = 0;
4841
if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4842
return false;
4843
4844
// Do the transform
4845
LLVM_DEBUG(dbgs() << "Replacing existing reg+imm instruction:\n");
4846
LLVM_DEBUG(MI.dump());
4847
LLVM_DEBUG(dbgs() << "Fed by:\n");
4848
LLVM_DEBUG(DefMI.dump());
4849
4850
MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4851
MI.getOperand(III.ImmOpNo).setImm(Imm);
4852
4853
LLVM_DEBUG(dbgs() << "With:\n");
4854
LLVM_DEBUG(MI.dump());
4855
return true;
4856
}
4857
4858
// If an X-Form instruction is fed by an add-immediate and one of its operands
4859
// is the literal zero, attempt to forward the source of the add-immediate to
4860
// the corresponding D-Form instruction with the displacement coming from
4861
// the immediate being added.
4862
bool PPCInstrInfo::transformToImmFormFedByAdd(
4863
MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4864
MachineInstr &DefMI, bool KillDefMI) const {
4865
// RegMO ImmMO
4866
// | |
4867
// x = addi reg, imm <----- DefMI
4868
// y = op 0 , x <----- MI
4869
// |
4870
// OpNoForForwarding
4871
// Check if the MI meet the requirement described in the III.
4872
if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4873
return false;
4874
4875
// Check if the DefMI meet the requirement
4876
// described in the III. If yes, set the ImmMO and RegMO accordingly.
4877
MachineOperand *ImmMO = nullptr;
4878
MachineOperand *RegMO = nullptr;
4879
if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4880
return false;
4881
assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4882
4883
// As we get the Imm operand now, we need to check if the ImmMO meet
4884
// the requirement described in the III. If yes set the Imm.
4885
int64_t Imm = 0;
4886
if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4887
return false;
4888
4889
bool IsFwdFeederRegKilled = false;
4890
bool SeenIntermediateUse = false;
4891
// Check if the RegMO can be forwarded to MI.
4892
if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4893
IsFwdFeederRegKilled, SeenIntermediateUse))
4894
return false;
4895
4896
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4897
bool PostRA = !MRI.isSSA();
4898
4899
// We know that, the MI and DefMI both meet the pattern, and
4900
// the Imm also meet the requirement with the new Imm-form.
4901
// It is safe to do the transformation now.
4902
LLVM_DEBUG(dbgs() << "Replacing indexed instruction:\n");
4903
LLVM_DEBUG(MI.dump());
4904
LLVM_DEBUG(dbgs() << "Fed by:\n");
4905
LLVM_DEBUG(DefMI.dump());
4906
4907
// Update the base reg first.
4908
MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4909
false, false,
4910
RegMO->isKill());
4911
4912
// Then, update the imm.
4913
if (ImmMO->isImm()) {
4914
// If the ImmMO is Imm, change the operand that has ZERO to that Imm
4915
// directly.
4916
replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4917
}
4918
else {
4919
// Otherwise, it is Constant Pool Index(CPI) or Global,
4920
// which is relocation in fact. We need to replace the special zero
4921
// register with ImmMO.
4922
// Before that, we need to fixup the target flags for imm.
4923
// For some reason, we miss to set the flag for the ImmMO if it is CPI.
4924
if (DefMI.getOpcode() == PPC::ADDItocL8)
4925
ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4926
4927
// MI didn't have the interface such as MI.setOperand(i) though
4928
// it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4929
// ImmMO, we need to remove ZERO operand and all the operands behind it,
4930
// and, add the ImmMO, then, move back all the operands behind ZERO.
4931
SmallVector<MachineOperand, 2> MOps;
4932
for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4933
MOps.push_back(MI.getOperand(i));
4934
MI.removeOperand(i);
4935
}
4936
4937
// Remove the last MO in the list, which is ZERO operand in fact.
4938
MOps.pop_back();
4939
// Add the imm operand.
4940
MI.addOperand(*ImmMO);
4941
// Now add the rest back.
4942
for (auto &MO : MOps)
4943
MI.addOperand(MO);
4944
}
4945
4946
// Update the opcode.
4947
MI.setDesc(get(III.ImmOpcode));
4948
4949
if (PostRA)
4950
recomputeLivenessFlags(*MI.getParent());
4951
LLVM_DEBUG(dbgs() << "With:\n");
4952
LLVM_DEBUG(MI.dump());
4953
4954
return true;
4955
}
4956
4957
bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4958
const ImmInstrInfo &III,
4959
unsigned ConstantOpNo,
4960
MachineInstr &DefMI) const {
4961
// DefMI must be LI or LI8.
4962
if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4963
!DefMI.getOperand(1).isImm())
4964
return false;
4965
4966
// Get Imm operand and Sign-extend to 64-bits.
4967
int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4968
4969
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4970
bool PostRA = !MRI.isSSA();
4971
// Exit early if we can't convert this.
4972
if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4973
return false;
4974
if (Imm % III.ImmMustBeMultipleOf)
4975
return false;
4976
if (III.TruncateImmTo)
4977
Imm &= ((1 << III.TruncateImmTo) - 1);
4978
if (III.SignedImm) {
4979
APInt ActualValue(64, Imm, true);
4980
if (!ActualValue.isSignedIntN(III.ImmWidth))
4981
return false;
4982
} else {
4983
uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4984
if ((uint64_t)Imm > UnsignedMax)
4985
return false;
4986
}
4987
4988
// If we're post-RA, the instructions don't agree on whether register zero is
4989
// special, we can transform this as long as the register operand that will
4990
// end up in the location where zero is special isn't R0.
4991
if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4992
unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4993
III.ZeroIsSpecialNew + 1;
4994
Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
4995
Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
4996
// If R0 is in the operand where zero is special for the new instruction,
4997
// it is unsafe to transform if the constant operand isn't that operand.
4998
if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
4999
ConstantOpNo != III.ZeroIsSpecialNew)
5000
return false;
5001
if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
5002
ConstantOpNo != PosForOrigZero)
5003
return false;
5004
}
5005
5006
unsigned Opc = MI.getOpcode();
5007
bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
5008
Opc == PPC::SRW || Opc == PPC::SRW_rec ||
5009
Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
5010
Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
5011
bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
5012
Opc == PPC::SRD || Opc == PPC::SRD_rec;
5013
bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
5014
Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
5015
bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
5016
Opc == PPC::SRD_rec;
5017
5018
LLVM_DEBUG(dbgs() << "Replacing reg+reg instruction: ");
5019
LLVM_DEBUG(MI.dump());
5020
LLVM_DEBUG(dbgs() << "Fed by load-immediate: ");
5021
LLVM_DEBUG(DefMI.dump());
5022
MI.setDesc(get(III.ImmOpcode));
5023
if (ConstantOpNo == III.OpNoForForwarding) {
5024
// Converting shifts to immediate form is a bit tricky since they may do
5025
// one of three things:
5026
// 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
5027
// 2. If the shift amount is zero, the result is unchanged (save for maybe
5028
// setting CR0)
5029
// 3. If the shift amount is in [1, OpSize), it's just a shift
5030
if (SpecialShift32 || SpecialShift64) {
5031
LoadImmediateInfo LII;
5032
LII.Imm = 0;
5033
LII.SetCR = SetCR;
5034
LII.Is64Bit = SpecialShift64;
5035
uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
5036
if (Imm & (SpecialShift32 ? 0x20 : 0x40))
5037
replaceInstrWithLI(MI, LII);
5038
// Shifts by zero don't change the value. If we don't need to set CR0,
5039
// just convert this to a COPY. Can't do this post-RA since we've already
5040
// cleaned up the copies.
5041
else if (!SetCR && ShAmt == 0 && !PostRA) {
5042
MI.removeOperand(2);
5043
MI.setDesc(get(PPC::COPY));
5044
} else {
5045
// The 32 bit and 64 bit instructions are quite different.
5046
if (SpecialShift32) {
5047
// Left shifts use (N, 0, 31-N).
5048
// Right shifts use (32-N, N, 31) if 0 < N < 32.
5049
// use (0, 0, 31) if N == 0.
5050
uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
5051
uint64_t MB = RightShift ? ShAmt : 0;
5052
uint64_t ME = RightShift ? 31 : 31 - ShAmt;
5053
replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5054
MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
5055
.addImm(ME);
5056
} else {
5057
// Left shifts use (N, 63-N).
5058
// Right shifts use (64-N, N) if 0 < N < 64.
5059
// use (0, 0) if N == 0.
5060
uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
5061
uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
5062
replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5063
MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
5064
}
5065
}
5066
} else
5067
replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5068
}
5069
// Convert commutative instructions (switch the operands and convert the
5070
// desired one to an immediate.
5071
else if (III.IsCommutative) {
5072
replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5073
swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
5074
} else
5075
llvm_unreachable("Should have exited early!");
5076
5077
// For instructions for which the constant register replaces a different
5078
// operand than where the immediate goes, we need to swap them.
5079
if (III.OpNoForForwarding != III.ImmOpNo)
5080
swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
5081
5082
// If the special R0/X0 register index are different for original instruction
5083
// and new instruction, we need to fix up the register class in new
5084
// instruction.
5085
if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
5086
if (III.ZeroIsSpecialNew) {
5087
// If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
5088
// need to fix up register class.
5089
Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
5090
if (RegToModify.isVirtual()) {
5091
const TargetRegisterClass *NewRC =
5092
MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
5093
&PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
5094
MRI.setRegClass(RegToModify, NewRC);
5095
}
5096
}
5097
}
5098
5099
if (PostRA)
5100
recomputeLivenessFlags(*MI.getParent());
5101
5102
LLVM_DEBUG(dbgs() << "With: ");
5103
LLVM_DEBUG(MI.dump());
5104
LLVM_DEBUG(dbgs() << "\n");
5105
return true;
5106
}
5107
5108
const TargetRegisterClass *
5109
PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
5110
if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
5111
return &PPC::VSRCRegClass;
5112
return RC;
5113
}
5114
5115
int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
5116
return PPC::getRecordFormOpcode(Opcode);
5117
}
5118
5119
static bool isOpZeroOfSubwordPreincLoad(int Opcode) {
5120
return (Opcode == PPC::LBZU || Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 ||
5121
Opcode == PPC::LBZUX8 || Opcode == PPC::LHZU ||
5122
Opcode == PPC::LHZUX || Opcode == PPC::LHZU8 ||
5123
Opcode == PPC::LHZUX8);
5124
}
5125
5126
// This function checks for sign extension from 32 bits to 64 bits.
5127
static bool definedBySignExtendingOp(const unsigned Reg,
5128
const MachineRegisterInfo *MRI) {
5129
if (!Register::isVirtualRegister(Reg))
5130
return false;
5131
5132
MachineInstr *MI = MRI->getVRegDef(Reg);
5133
if (!MI)
5134
return false;
5135
5136
int Opcode = MI->getOpcode();
5137
const PPCInstrInfo *TII =
5138
MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo();
5139
if (TII->isSExt32To64(Opcode))
5140
return true;
5141
5142
// The first def of LBZU/LHZU is sign extended.
5143
if (isOpZeroOfSubwordPreincLoad(Opcode) && MI->getOperand(0).getReg() == Reg)
5144
return true;
5145
5146
// RLDICL generates sign-extended output if it clears at least
5147
// 33 bits from the left (MSB).
5148
if (Opcode == PPC::RLDICL && MI->getOperand(3).getImm() >= 33)
5149
return true;
5150
5151
// If at least one bit from left in a lower word is masked out,
5152
// all of 0 to 32-th bits of the output are cleared.
5153
// Hence the output is already sign extended.
5154
if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5155
Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
5156
MI->getOperand(3).getImm() > 0 &&
5157
MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
5158
return true;
5159
5160
// If the most significant bit of immediate in ANDIS is zero,
5161
// all of 0 to 32-th bits are cleared.
5162
if (Opcode == PPC::ANDIS_rec || Opcode == PPC::ANDIS8_rec) {
5163
uint16_t Imm = MI->getOperand(2).getImm();
5164
if ((Imm & 0x8000) == 0)
5165
return true;
5166
}
5167
5168
return false;
5169
}
5170
5171
// This function checks the machine instruction that defines the input register
5172
// Reg. If that machine instruction always outputs a value that has only zeros
5173
// in the higher 32 bits then this function will return true.
5174
static bool definedByZeroExtendingOp(const unsigned Reg,
5175
const MachineRegisterInfo *MRI) {
5176
if (!Register::isVirtualRegister(Reg))
5177
return false;
5178
5179
MachineInstr *MI = MRI->getVRegDef(Reg);
5180
if (!MI)
5181
return false;
5182
5183
int Opcode = MI->getOpcode();
5184
const PPCInstrInfo *TII =
5185
MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo();
5186
if (TII->isZExt32To64(Opcode))
5187
return true;
5188
5189
// The first def of LBZU/LHZU/LWZU are zero extended.
5190
if ((isOpZeroOfSubwordPreincLoad(Opcode) || Opcode == PPC::LWZU ||
5191
Opcode == PPC::LWZUX || Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8) &&
5192
MI->getOperand(0).getReg() == Reg)
5193
return true;
5194
5195
// The 16-bit immediate is sign-extended in li/lis.
5196
// If the most significant bit is zero, all higher bits are zero.
5197
if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
5198
Opcode == PPC::LIS || Opcode == PPC::LIS8) {
5199
int64_t Imm = MI->getOperand(1).getImm();
5200
if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
5201
return true;
5202
}
5203
5204
// We have some variations of rotate-and-mask instructions
5205
// that clear higher 32-bits.
5206
if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
5207
Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
5208
Opcode == PPC::RLDICL_32_64) &&
5209
MI->getOperand(3).getImm() >= 32)
5210
return true;
5211
5212
if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
5213
MI->getOperand(3).getImm() >= 32 &&
5214
MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
5215
return true;
5216
5217
if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5218
Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
5219
Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
5220
MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
5221
return true;
5222
5223
return false;
5224
}
5225
5226
// This function returns true if the input MachineInstr is a TOC save
5227
// instruction.
5228
bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
5229
if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
5230
return false;
5231
unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5232
unsigned StackOffset = MI.getOperand(1).getImm();
5233
Register StackReg = MI.getOperand(2).getReg();
5234
Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
5235
if (StackReg == SPReg && StackOffset == TOCSaveOffset)
5236
return true;
5237
5238
return false;
5239
}
5240
5241
// We limit the max depth to track incoming values of PHIs or binary ops
5242
// (e.g. AND) to avoid excessive cost.
5243
const unsigned MAX_BINOP_DEPTH = 1;
5244
// The isSignOrZeroExtended function is recursive. The parameter BinOpDepth
5245
// does not count all of the recursions. The parameter BinOpDepth is incremented
5246
// only when isSignOrZeroExtended calls itself more than once. This is done to
5247
// prevent expontential recursion. There is no parameter to track linear
5248
// recursion.
5249
std::pair<bool, bool>
5250
PPCInstrInfo::isSignOrZeroExtended(const unsigned Reg,
5251
const unsigned BinOpDepth,
5252
const MachineRegisterInfo *MRI) const {
5253
if (!Register::isVirtualRegister(Reg))
5254
return std::pair<bool, bool>(false, false);
5255
5256
MachineInstr *MI = MRI->getVRegDef(Reg);
5257
if (!MI)
5258
return std::pair<bool, bool>(false, false);
5259
5260
bool IsSExt = definedBySignExtendingOp(Reg, MRI);
5261
bool IsZExt = definedByZeroExtendingOp(Reg, MRI);
5262
5263
// If we know the instruction always returns sign- and zero-extended result,
5264
// return here.
5265
if (IsSExt && IsZExt)
5266
return std::pair<bool, bool>(IsSExt, IsZExt);
5267
5268
switch (MI->getOpcode()) {
5269
case PPC::COPY: {
5270
Register SrcReg = MI->getOperand(1).getReg();
5271
5272
// In both ELFv1 and v2 ABI, method parameters and the return value
5273
// are sign- or zero-extended.
5274
const MachineFunction *MF = MI->getMF();
5275
5276
if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
5277
// If this is a copy from another register, we recursively check source.
5278
auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5279
return std::pair<bool, bool>(SrcExt.first || IsSExt,
5280
SrcExt.second || IsZExt);
5281
}
5282
5283
// From here on everything is SVR4ABI
5284
const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
5285
// We check the ZExt/SExt flags for a method parameter.
5286
if (MI->getParent()->getBasicBlock() ==
5287
&MF->getFunction().getEntryBlock()) {
5288
Register VReg = MI->getOperand(0).getReg();
5289
if (MF->getRegInfo().isLiveIn(VReg)) {
5290
IsSExt |= FuncInfo->isLiveInSExt(VReg);
5291
IsZExt |= FuncInfo->isLiveInZExt(VReg);
5292
return std::pair<bool, bool>(IsSExt, IsZExt);
5293
}
5294
}
5295
5296
if (SrcReg != PPC::X3) {
5297
// If this is a copy from another register, we recursively check source.
5298
auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5299
return std::pair<bool, bool>(SrcExt.first || IsSExt,
5300
SrcExt.second || IsZExt);
5301
}
5302
5303
// For a method return value, we check the ZExt/SExt flags in attribute.
5304
// We assume the following code sequence for method call.
5305
// ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
5306
// BL8_NOP @func,...
5307
// ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
5308
// %5 = COPY %x3; G8RC:%5
5309
const MachineBasicBlock *MBB = MI->getParent();
5310
std::pair<bool, bool> IsExtendPair = std::pair<bool, bool>(IsSExt, IsZExt);
5311
MachineBasicBlock::const_instr_iterator II =
5312
MachineBasicBlock::const_instr_iterator(MI);
5313
if (II == MBB->instr_begin() || (--II)->getOpcode() != PPC::ADJCALLSTACKUP)
5314
return IsExtendPair;
5315
5316
const MachineInstr &CallMI = *(--II);
5317
if (!CallMI.isCall() || !CallMI.getOperand(0).isGlobal())
5318
return IsExtendPair;
5319
5320
const Function *CalleeFn =
5321
dyn_cast_if_present<Function>(CallMI.getOperand(0).getGlobal());
5322
if (!CalleeFn)
5323
return IsExtendPair;
5324
const IntegerType *IntTy = dyn_cast<IntegerType>(CalleeFn->getReturnType());
5325
if (IntTy && IntTy->getBitWidth() <= 32) {
5326
const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs();
5327
IsSExt |= Attrs.hasAttribute(Attribute::SExt);
5328
IsZExt |= Attrs.hasAttribute(Attribute::ZExt);
5329
return std::pair<bool, bool>(IsSExt, IsZExt);
5330
}
5331
5332
return IsExtendPair;
5333
}
5334
5335
// OR, XOR with 16-bit immediate does not change the upper 48 bits.
5336
// So, we track the operand register as we do for register copy.
5337
case PPC::ORI:
5338
case PPC::XORI:
5339
case PPC::ORI8:
5340
case PPC::XORI8: {
5341
Register SrcReg = MI->getOperand(1).getReg();
5342
auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5343
return std::pair<bool, bool>(SrcExt.first || IsSExt,
5344
SrcExt.second || IsZExt);
5345
}
5346
5347
// OR, XOR with shifted 16-bit immediate does not change the upper
5348
// 32 bits. So, we track the operand register for zero extension.
5349
// For sign extension when the MSB of the immediate is zero, we also
5350
// track the operand register since the upper 33 bits are unchanged.
5351
case PPC::ORIS:
5352
case PPC::XORIS:
5353
case PPC::ORIS8:
5354
case PPC::XORIS8: {
5355
Register SrcReg = MI->getOperand(1).getReg();
5356
auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5357
uint16_t Imm = MI->getOperand(2).getImm();
5358
if (Imm & 0x8000)
5359
return std::pair<bool, bool>(false, SrcExt.second || IsZExt);
5360
else
5361
return std::pair<bool, bool>(SrcExt.first || IsSExt,
5362
SrcExt.second || IsZExt);
5363
}
5364
5365
// If all incoming values are sign-/zero-extended,
5366
// the output of OR, ISEL or PHI is also sign-/zero-extended.
5367
case PPC::OR:
5368
case PPC::OR8:
5369
case PPC::ISEL:
5370
case PPC::PHI: {
5371
if (BinOpDepth >= MAX_BINOP_DEPTH)
5372
return std::pair<bool, bool>(false, false);
5373
5374
// The input registers for PHI are operand 1, 3, ...
5375
// The input registers for others are operand 1 and 2.
5376
unsigned OperandEnd = 3, OperandStride = 1;
5377
if (MI->getOpcode() == PPC::PHI) {
5378
OperandEnd = MI->getNumOperands();
5379
OperandStride = 2;
5380
}
5381
5382
IsSExt = true;
5383
IsZExt = true;
5384
for (unsigned I = 1; I != OperandEnd; I += OperandStride) {
5385
if (!MI->getOperand(I).isReg())
5386
return std::pair<bool, bool>(false, false);
5387
5388
Register SrcReg = MI->getOperand(I).getReg();
5389
auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth + 1, MRI);
5390
IsSExt &= SrcExt.first;
5391
IsZExt &= SrcExt.second;
5392
}
5393
return std::pair<bool, bool>(IsSExt, IsZExt);
5394
}
5395
5396
// If at least one of the incoming values of an AND is zero extended
5397
// then the output is also zero-extended. If both of the incoming values
5398
// are sign-extended then the output is also sign extended.
5399
case PPC::AND:
5400
case PPC::AND8: {
5401
if (BinOpDepth >= MAX_BINOP_DEPTH)
5402
return std::pair<bool, bool>(false, false);
5403
5404
Register SrcReg1 = MI->getOperand(1).getReg();
5405
Register SrcReg2 = MI->getOperand(2).getReg();
5406
auto Src1Ext = isSignOrZeroExtended(SrcReg1, BinOpDepth + 1, MRI);
5407
auto Src2Ext = isSignOrZeroExtended(SrcReg2, BinOpDepth + 1, MRI);
5408
return std::pair<bool, bool>(Src1Ext.first && Src2Ext.first,
5409
Src1Ext.second || Src2Ext.second);
5410
}
5411
5412
default:
5413
break;
5414
}
5415
return std::pair<bool, bool>(IsSExt, IsZExt);
5416
}
5417
5418
bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
5419
return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
5420
}
5421
5422
namespace {
5423
class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
5424
MachineInstr *Loop, *EndLoop, *LoopCount;
5425
MachineFunction *MF;
5426
const TargetInstrInfo *TII;
5427
int64_t TripCount;
5428
5429
public:
5430
PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
5431
MachineInstr *LoopCount)
5432
: Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
5433
MF(Loop->getParent()->getParent()),
5434
TII(MF->getSubtarget().getInstrInfo()) {
5435
// Inspect the Loop instruction up-front, as it may be deleted when we call
5436
// createTripCountGreaterCondition.
5437
if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
5438
TripCount = LoopCount->getOperand(1).getImm();
5439
else
5440
TripCount = -1;
5441
}
5442
5443
bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
5444
// Only ignore the terminator.
5445
return MI == EndLoop;
5446
}
5447
5448
std::optional<bool> createTripCountGreaterCondition(
5449
int TC, MachineBasicBlock &MBB,
5450
SmallVectorImpl<MachineOperand> &Cond) override {
5451
if (TripCount == -1) {
5452
// Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5453
// so we don't need to generate any thing here.
5454
Cond.push_back(MachineOperand::CreateImm(0));
5455
Cond.push_back(MachineOperand::CreateReg(
5456
MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
5457
true));
5458
return {};
5459
}
5460
5461
return TripCount > TC;
5462
}
5463
5464
void setPreheader(MachineBasicBlock *NewPreheader) override {
5465
// Do nothing. We want the LOOP setup instruction to stay in the *old*
5466
// preheader, so we can use BDZ in the prologs to adapt the loop trip count.
5467
}
5468
5469
void adjustTripCount(int TripCountAdjust) override {
5470
// If the loop trip count is a compile-time value, then just change the
5471
// value.
5472
if (LoopCount->getOpcode() == PPC::LI8 ||
5473
LoopCount->getOpcode() == PPC::LI) {
5474
int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
5475
LoopCount->getOperand(1).setImm(TripCount);
5476
return;
5477
}
5478
5479
// Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5480
// so we don't need to generate any thing here.
5481
}
5482
5483
void disposed() override {
5484
Loop->eraseFromParent();
5485
// Ensure the loop setup instruction is deleted too.
5486
LoopCount->eraseFromParent();
5487
}
5488
};
5489
} // namespace
5490
5491
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
5492
PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
5493
// We really "analyze" only hardware loops right now.
5494
MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
5495
MachineBasicBlock *Preheader = *LoopBB->pred_begin();
5496
if (Preheader == LoopBB)
5497
Preheader = *std::next(LoopBB->pred_begin());
5498
MachineFunction *MF = Preheader->getParent();
5499
5500
if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
5501
SmallPtrSet<MachineBasicBlock *, 8> Visited;
5502
if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
5503
Register LoopCountReg = LoopInst->getOperand(0).getReg();
5504
MachineRegisterInfo &MRI = MF->getRegInfo();
5505
MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
5506
return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
5507
}
5508
}
5509
return nullptr;
5510
}
5511
5512
MachineInstr *PPCInstrInfo::findLoopInstr(
5513
MachineBasicBlock &PreHeader,
5514
SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
5515
5516
unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
5517
5518
// The loop set-up instruction should be in preheader
5519
for (auto &I : PreHeader.instrs())
5520
if (I.getOpcode() == LOOPi)
5521
return &I;
5522
return nullptr;
5523
}
5524
5525
// Return true if get the base operand, byte offset of an instruction and the
5526
// memory width. Width is the size of memory that is being loaded/stored.
5527
bool PPCInstrInfo::getMemOperandWithOffsetWidth(
5528
const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
5529
LocationSize &Width, const TargetRegisterInfo *TRI) const {
5530
if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
5531
return false;
5532
5533
// Handle only loads/stores with base register followed by immediate offset.
5534
if (!LdSt.getOperand(1).isImm() ||
5535
(!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5536
return false;
5537
if (!LdSt.getOperand(1).isImm() ||
5538
(!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5539
return false;
5540
5541
if (!LdSt.hasOneMemOperand())
5542
return false;
5543
5544
Width = (*LdSt.memoperands_begin())->getSize();
5545
Offset = LdSt.getOperand(1).getImm();
5546
BaseReg = &LdSt.getOperand(2);
5547
return true;
5548
}
5549
5550
bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
5551
const MachineInstr &MIa, const MachineInstr &MIb) const {
5552
assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
5553
assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
5554
5555
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
5556
MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
5557
return false;
5558
5559
// Retrieve the base register, offset from the base register and width. Width
5560
// is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
5561
// base registers are identical, and the offset of a lower memory access +
5562
// the width doesn't overlap the offset of a higher memory access,
5563
// then the memory accesses are different.
5564
const TargetRegisterInfo *TRI = &getRegisterInfo();
5565
const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
5566
int64_t OffsetA = 0, OffsetB = 0;
5567
LocationSize WidthA = 0, WidthB = 0;
5568
if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
5569
getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
5570
if (BaseOpA->isIdenticalTo(*BaseOpB)) {
5571
int LowOffset = std::min(OffsetA, OffsetB);
5572
int HighOffset = std::max(OffsetA, OffsetB);
5573
LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
5574
if (LowWidth.hasValue() &&
5575
LowOffset + (int)LowWidth.getValue() <= HighOffset)
5576
return true;
5577
}
5578
}
5579
return false;
5580
}
5581
5582